1
|
Paine ZH, Sharma M, Friedman SH. Selective Dissolution of Calcium Pyrophosphate Dihydrate Crystals Using a Pyrophosphate Specific Receptor. Chembiochem 2024; 25:e202400319. [PMID: 39248271 DOI: 10.1002/cbic.202400319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/26/2024] [Indexed: 09/10/2024]
Abstract
Pseudo-gout is caused by the deposition of highly insoluble calcium pyrophosphate dihydrate (CPPD) crystals in the joints of sufferers. This leads to inflammation and ultimately joint damage. The insolubility of CPPD is driven by the strong attraction of di-cationic calcium ions with tetra-anionic pyrophosphate ions. One of the challenges of dissolving CPPD is that a related mineral, hydroxy apatite (HA) is present in larger amounts in the form of bone and also contains strongly interacting calcium and phosphate ions. Our aim in this work was to selectively dissolve CPPD in preference to HA. To accomplish this, we used a known receptor for pyrophosphate that contains two complexed zinc ions that are ideally spaced to interact with the tetra-anion of pyrophosphate. We hypothesized that such a molecule could act as a preorganized tetra-cation that would be able to outcompete the two calcium ions present in the crystal lattice of CPPD. We demonstrate both visually and through analysis of released phosphorous that this molecule is able to preferentially dissolve CPPD over the closely related HA and thus can form the basis for a possible approach for the treatment of pseudo-gout.
Collapse
Affiliation(s)
- Zachary H Paine
- Pharmacology and Pharmaceutical Sciences, University of Missouri-Kansas City School of Pharmacy, 2464 Charlotte St., Kansas City, MO, 64108
| | - Mayank Sharma
- Pharmacology and Pharmaceutical Sciences, University of Missouri-Kansas City School of Pharmacy, 2464 Charlotte St., Kansas City, MO, 64108
| | - Simon H Friedman
- Pharmacology and Pharmaceutical Sciences, University of Missouri-Kansas City School of Pharmacy, 2464 Charlotte St., Kansas City, MO, 64108
| |
Collapse
|
2
|
Virtue JI, Tsoukatos S, Johnston MR, Bloch WM. Halide-triggered assembly and selective bisulfate recognition in a quadruply interlocked coordination cage. Chem Sci 2024:d4sc04913f. [PMID: 39494370 PMCID: PMC11525710 DOI: 10.1039/d4sc04913f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024] Open
Abstract
Interlocked coordination cages are a class of multi-cavity architectures with applications in selective anion recognition, adaptive sensing, and catalysis. Controlling the partitioning of their cavities through ligand design and appropriate anion templates is critical to their guest binding scope, yet remains a challenge. Here, we present a thermodynamically stable [Pd2L4](BF4)4 cage assembled from a bis-monodentate ligand featuring a non-coordinating bis-pyrazole methane backbone. As a result of its idealized dimensions, NMR, ESI-MS, and X-ray analyses reveal that halides can trigger the interpenetration of this cage into a [X@Pd4L8]7+ dimer (X = Cl- or Br-) where the halide template resides only in the central pocket. The anion-cation pattern of this interlocked host facilitates exceptional binding affinity for the bisulfate anion in its two outer pockets (up to 106 M-1 in MeCN), strongly outcompeting other tetrahedral anions of similar size.
Collapse
Affiliation(s)
- Jemma I Virtue
- Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University Bedford Park South Australia 5042 Australia
| | - Steven Tsoukatos
- Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University Bedford Park South Australia 5042 Australia
| | - Martin R Johnston
- Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University Bedford Park South Australia 5042 Australia
| | - Witold M Bloch
- Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University Bedford Park South Australia 5042 Australia
| |
Collapse
|
3
|
Butler SM, Ercan B, You J, Schulz LP, Jolliffe KA. A change in metal cation switches selectivity of a phospholipid sensor from phosphatidic acid to phosphatidylserine. Org Biomol Chem 2024; 22:5843-5849. [PMID: 38957899 DOI: 10.1039/d4ob00418c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Phosphatidic acid and phosphatidylserine are anionic phospholipids with emerging signalling roles in cells. Determination of how phosphatidic acid and phosphatidylserine change location and quantity in cells over time requires selective fluorescent sensors that can distinguish these two anionic phospholipids. However, the design of such synthetic sensors that can selectively bind and respond to a single phospholipid within the complex membrane milieu remains challenging. In this work, we present a simple and robust strategy to control the selectivity of synthetic sensors for phosphatidic acid and phosphatidylserine. By changing the coordination metal of a dipicolylamine (DPA) ligand from Zn(II) to Ni(II) on the same synthetic sensor with a peptide backbone, we achieve a complete switch in selectivity from phosphatidic acid to phosphatidylserine in model lipid membranes. Furthermore, this strategy was largely unaffected by the choice and the position of the fluorophores. We envision that this strategy will provide a platform for the rational design of targeted synthetic phospholipid sensors to probe plasma and intracellular membranes.
Collapse
Affiliation(s)
- Stephen M Butler
- School of Chemistry, The University of Sydney, NSW, 2006, Australia.
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, NSW, 2006, Australia
| | - Bilge Ercan
- School of Chemistry, The University of Sydney, NSW, 2006, Australia.
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, NSW, 2006, Australia
| | - Jingyao You
- School of Chemistry, The University of Sydney, NSW, 2006, Australia.
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, NSW, 2006, Australia
| | - Luke P Schulz
- School of Chemistry, The University of Sydney, NSW, 2006, Australia.
| | - Katrina A Jolliffe
- School of Chemistry, The University of Sydney, NSW, 2006, Australia.
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, NSW, 2006, Australia
- The University of Sydney Nano Institute (Sydney Nano), The University of Sydney, NSW, 2006, Australia
| |
Collapse
|
4
|
Paderni D, Macedi E, Giacomazzo GE, Formica M, Giorgi L, Valtancoli B, Rossi P, Paoli P, Conti L, Fusi V, Giorgi C. A new biphenol-dipicolylamine based ligand and its dinuclear Zn 2+ complex as fluorescent sensors for ibuprofen and ketoprofen in aqueous solution. Dalton Trans 2024; 53:9495-9509. [PMID: 38767612 DOI: 10.1039/d4dt00935e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
In this work, the study of the new ligand 3,3'-bis[N,N-bis(pyridine-2-ylmethyl)aminomethyl]-2,2'-dihydroxybiphenyl (L) is reported, where a central 2,2'-biphenol (BPH) fluorophore was functionalized at 3,3'-positions with two dipicolylamine (DPA) side arms as receptor units. Following the synthesis and full chemical-physical characterization, the acid-base and Zn2+-coordination abilities of L were investigated through a combination of potentiometric, UV-Vis, fluorescence, NMR, XRD and DFT measurements. The optical properties of the ligand turned out to be strongly dependent on the pH, being straightforwardly associated with the protonation state of the BPH moiety, whereas its peculiar design allowed to form stable mono and dinuclear Zn2+ complexes. In the latter species, the presence of two Zn2+ ions coordinatively unsaturated and placed at close distance to each other, prompted us to test their usefulness as metallo-receptors for two environmental pollutants of great relevance, ibuprofen and ketoprofen. Potentiometric and fluorescence investigations evidenced that these important non-steroidal anti-inflammatory drugs (NSAIDs) are effectively coordinated by the metallo-receptors and, of relevance, both the stability and the fluorescence properties of the resulting ternary adducts are markedly affected by the different chemical architectures of the two substrates. This study aims at highlighting the promising perspectives arising from the use of polyamino phenolic ligands as chemosensors for H+/Zn2+ and other additional anionic targets in their metal-complexed forms.
Collapse
Affiliation(s)
- Daniele Paderni
- Department of Pure and Applied Sciences, University of Urbino, via Ca' le Suore, 2-4, 61029 Urbino, Italy.
| | - Eleonora Macedi
- Department of Pure and Applied Sciences, University of Urbino, via Ca' le Suore, 2-4, 61029 Urbino, Italy.
| | - Gina Elena Giacomazzo
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, FI, Italy.
| | - Mauro Formica
- Department of Pure and Applied Sciences, University of Urbino, via Ca' le Suore, 2-4, 61029 Urbino, Italy.
| | - Luca Giorgi
- Department of Pure and Applied Sciences, University of Urbino, via Ca' le Suore, 2-4, 61029 Urbino, Italy.
| | - Barbara Valtancoli
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, FI, Italy.
| | - Patrizia Rossi
- Department of Industrial Engineering, University of Florence, via S. Marta 3, 50139 Florence, Italy
| | - Paola Paoli
- Department of Industrial Engineering, University of Florence, via S. Marta 3, 50139 Florence, Italy
| | - Luca Conti
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, FI, Italy.
| | - Vieri Fusi
- Department of Pure and Applied Sciences, University of Urbino, via Ca' le Suore, 2-4, 61029 Urbino, Italy.
| | - Claudia Giorgi
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, FI, Italy.
| |
Collapse
|
5
|
Jones Lipinski RA, Stancill JS, Nuñez R, Wynia-Smith SL, Sprague DJ, Nord JA, Bird A, Corbett JA, Smith BC. Zinc-chelating BET bromodomain inhibitors equally target islet endocrine cell types. Am J Physiol Regul Integr Comp Physiol 2024; 326:R515-R527. [PMID: 38618911 PMCID: PMC11381023 DOI: 10.1152/ajpregu.00259.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 03/19/2024] [Accepted: 04/07/2024] [Indexed: 04/16/2024]
Abstract
Inhibition of the bromodomain and extraterminal domain (BET) protein family is a potential strategy to prevent and treat diabetes; however, the clinical use of BET bromodomain inhibitors (BETis) is associated with adverse effects. Here, we explore a strategy for targeting BETis to β cells by exploiting the high-zinc (Zn2+) concentration in β cells relative to other cell types. We report the synthesis of a novel, Zn2+-chelating derivative of the pan-BETi (+)-JQ1, (+)-JQ1-DPA, in which (+)-JQ1 was conjugated to dipicolyl amine (DPA). As controls, we synthesized (+)-JQ1-DBA, a non-Zn2+-chelating derivative, and (-)-JQ1-DPA, an inactive enantiomer that chelates Zn2+. Molecular modeling and biophysical assays showed that (+)-JQ1-DPA and (+)-JQ1-DBA retain potent binding to BET bromodomains in vitro. Cellular assays demonstrated (+)-JQ1-DPA attenuated NF-ĸB target gene expression in β cells stimulated with the proinflammatory cytokine interleukin 1β. To assess β-cell selectivity, we isolated islets from a mouse model that expresses green fluorescent protein in insulin-positive β cells and mTomato in insulin-negative cells (non-β cells). Surprisingly, Zn2+ chelation did not confer β-cell selectivity as (+)-JQ1-DPA was equally effective in both β and α cells; however, (+)-JQ1-DPA was less effective in macrophages, a nonendocrine islet cell type. Intriguingly, the non-Zn2+-chelating derivative (+)-JQ1-DBA displayed the opposite selectivity, with greater effect in macrophages compared with (+)-JQ1-DPA, suggesting potential as a macrophage-targeting molecule. These findings suggest that Zn2+-chelating small molecules confer endocrine cell selectivity rather than β-cell selectivity in pancreatic islets and provide valuable insights and techniques to assess Zn2+ chelation as an approach to selectively target small molecules to pancreatic β cells.NEW & NOTEWORTHY Inhibition of BET bromodomains is a novel potential strategy to prevent and treat diabetes mellitus. However, BET inhibitors have negative side effects. We synthesized a BET inhibitor expected to exploit the high zinc concentration in β cells to accumulate in β cells. We show our inhibitor targeted pancreatic endocrine cells; however, it was less effective in immune cells. A control inhibitor showed the opposite effect. These findings help us understand how to target specific cells in diabetes treatment.
Collapse
Affiliation(s)
- Rachel A Jones Lipinski
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Program in Chemical Biology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Jennifer S Stancill
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Raymundo Nuñez
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Sarah L Wynia-Smith
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Daniel J Sprague
- Program in Chemical Biology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Joshua A Nord
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Amir Bird
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - John A Corbett
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Brian C Smith
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Program in Chemical Biology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| |
Collapse
|
6
|
Patrick SC, Beer PD, Davis JJ. Solvent effects in anion recognition. Nat Rev Chem 2024; 8:256-276. [PMID: 38448686 DOI: 10.1038/s41570-024-00584-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2024] [Indexed: 03/08/2024]
Abstract
Anion recognition is pertinent to a range of environmental, medicinal and industrial applications. Recent progress in the field has relied on advances in synthetic host design to afford a broad range of potent recognition motifs and novel supramolecular structures capable of effective binding both in solution and at derived molecular films. However, performance in aqueous media remains a critical challenge. Understanding the effects of bulk and local solvent on anion recognition by host scaffolds is imperative if effective and selective detection in real-world media is to be viable. This Review seeks to provide a framework within which these effects can be considered both experimentally and theoretically. We highlight proposed models for solvation effects on anion binding and discuss approaches to retain strong anion binding in highly competitive (polar) solvents. The synthetic design principles for exploiting the aforementioned solvent effects are explored.
Collapse
Affiliation(s)
| | - Paul D Beer
- Department of Chemistry, University of Oxford, Oxford, UK
| | - Jason J Davis
- Department of Chemistry, University of Oxford, Oxford, UK.
| |
Collapse
|
7
|
Bagha H, Hein R, Lim JYC, Durr CB, Sambrook MR, Beer PD. Halogen Bonding Tripodal Metallo-Receptors for Phosphate Recognition and Sensing in Aqueous-Containing Organic Media. Chemistry 2024; 30:e202302775. [PMID: 37792284 DOI: 10.1002/chem.202302775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 10/05/2023]
Abstract
The anion recognition and electrochemical anion-sensing properties of halogen-bonding (XB) tripodal zinc(II) receptors strategically designed and constructed for tetrahedral anion guest binding are described. The XB tris(iodotriazole)-containing hosts exhibit high affinities and selectivities for inorganic phosphate over other more basic, mono-charged oxoanions such as acetate and the halides in a competitive CD3 CN/D2 O (9 : 1 v/v) aqueous solvent mixture. 1 H NMR anion binding and electrochemical voltammetric anion sensing studies with redox-active ferrocene functionalised metallo-tripodal receptor analogues, reveal each of the XB tripods as superior anion complexants when compared to their tris(prototriazole)-containing, hydrogen bonding (HB) counterparts, not only exemplifying the halogen bond as a strong alternative interaction to the traditional hydrogen bond for molecular recognition but also providing rare evidence of the ability of XB receptors to preferentially bind the "harder" phosphate oxoanion over the "softer" and less hydrated halides in aqueous containing media.
Collapse
Affiliation(s)
- Hena Bagha
- Department of Chemistry, University of Oxford Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Robert Hein
- Department of Chemistry, University of Oxford Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Jason Y C Lim
- Department of Chemistry, University of Oxford Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Christopher B Durr
- Department of Chemistry, University of Oxford Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | | | - Paul D Beer
- Department of Chemistry, University of Oxford Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK
| |
Collapse
|
8
|
Xu W, Leskinen J, Sahlström T, Happonen E, Tarvainen T, Lehto VP. Assembly of fluorophore J-aggregates with nanospacer onto mesoporous nanoparticles for enhanced photoacoustic imaging. PHOTOACOUSTICS 2023; 33:100552. [PMID: 38021288 PMCID: PMC10658600 DOI: 10.1016/j.pacs.2023.100552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 05/23/2023] [Accepted: 08/26/2023] [Indexed: 12/01/2023]
Abstract
Many fluorophores, such as indocyanine green (ICG), have poor photostability and low photothermal efficiency hindering their wide application in photoacoustic (PA) tomography. In the present study, a supramolecular assembly approach was used to develop the hybrid nanoparticles (Hy NPs) of ICG and porous silicon (PSi) as a novel contrast agent for PA tomography. ICG was assembled on the PSi NPs to form J-aggregates within 30 min. The Hy NPs presented a red-shifted absorption, improved photothermal stability, and enhanced PA performance. Furthermore, 1-dodecene (DOC) was assembled into the NPs as a 'nanospacer', which enhanced non-radiative decay for increased thermal release. Compared to the Hy NPs, adding DOC into the Hy NPs (DOC-Hy) increased the PA signal by 83%. Finally, the DOC-Hy was detectable in PA tomography at 1.5 cm depth in tissue phantom even though its concentration was as low as 6.25 µg/mL, indicating the potential for deep tissue PA imaging.
Collapse
Affiliation(s)
- Wujun Xu
- Department of Technical Physics, University of Eastern Finland, 70210 Kuopio, Finland
| | - Jarkko Leskinen
- Department of Technical Physics, University of Eastern Finland, 70210 Kuopio, Finland
| | - Teemu Sahlström
- Department of Technical Physics, University of Eastern Finland, 70210 Kuopio, Finland
| | - Emilia Happonen
- Department of Technical Physics, University of Eastern Finland, 70210 Kuopio, Finland
| | - Tanja Tarvainen
- Department of Technical Physics, University of Eastern Finland, 70210 Kuopio, Finland
| | - Vesa-Pekka Lehto
- Department of Technical Physics, University of Eastern Finland, 70210 Kuopio, Finland
| |
Collapse
|
9
|
Sasaki Y, Ohshiro K, Okabe K, Lyu X, Tsuchiya K, Matsumoto A, Takizawa SY, Minami T. Zn(II)-Dipicolylamine-Attached Amphiphilic Polythiophene for Quantitative Pattern Recognition of Oxyanions in Mixtures. Chem Asian J 2023; 18:e202300372. [PMID: 37309739 DOI: 10.1002/asia.202300372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/08/2023] [Accepted: 06/12/2023] [Indexed: 06/14/2023]
Abstract
Herein, we propose a novel amphiphilic polythiophene-based chemosensor functionalized with a Zn(II)-dipicolylamine side chain (1poly ⋅ Zn) for the pattern recognition of oxyanions. Optical changes in amphiphilic 1poly ⋅ Zn can be induced by the formation of a random coil from a backbone-planarized structure upon the addition of target oxyanions, which results in blueshifts in the UV-vis absorption spectra and turn-on-type fluorescence responses. Dynamic behavior in a polythiophene wire and/or among wires could be a driving force for obtaining visible color changes, while the molecular wire effect is dominant in obtaining fluorescence sensor responses. Notably, the magnitude of optical changes in 1poly ⋅ Zn has depended on differences in properties of oxyanions, such as their binding affinity, hydrophilicity, and molecular geometry. Thus, various colorimetric and fluorescence response patterns of 1poly ⋅ Zn to oxyanions were obtained, albeit using a single chemosensor. A constructed information-rich dataset was applied to pattern recognition for the simultaneous group categorization of phosphate and carboxylate groups and the prediction of similar structural oxyanions at a different order of concentrations in their mixture solutions.
Collapse
Affiliation(s)
- Yui Sasaki
- Institute of Industrial Science, The University of Tokyo, 4-6-1, Komaba, Meguro-ku, 153-8505, Tokyo, Japan
| | - Kohei Ohshiro
- Institute of Industrial Science, The University of Tokyo, 4-6-1, Komaba, Meguro-ku, 153-8505, Tokyo, Japan
| | - Kiyosumi Okabe
- Institute of Industrial Science, The University of Tokyo, 4-6-1, Komaba, Meguro-ku, 153-8505, Tokyo, Japan
| | - Xiaojun Lyu
- Institute of Industrial Science, The University of Tokyo, 4-6-1, Komaba, Meguro-ku, 153-8505, Tokyo, Japan
| | - Kazuhiko Tsuchiya
- Institute of Industrial Science, The University of Tokyo, 4-6-1, Komaba, Meguro-ku, 153-8505, Tokyo, Japan
| | - Akira Matsumoto
- Institute of Industrial Science, The University of Tokyo, 4-6-1, Komaba, Meguro-ku, 153-8505, Tokyo, Japan
| | - Shin-Ya Takizawa
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1, Komaba, Meguro-ku, 153-8902, Tokyo, Japan
| | - Tsuyoshi Minami
- Institute of Industrial Science, The University of Tokyo, 4-6-1, Komaba, Meguro-ku, 153-8505, Tokyo, Japan
| |
Collapse
|
10
|
Nie X, You W, Zhang Z, Gao F, Zhou XH, Wang HL, Wang LH, Chen G, Wang CH, Hong CY, Shao Q, Wang F, Xia L, Li Y, You YZ. DPA-Zinc around Polyplexes Acts Like PEG to Reduce Protein Binding While Targeting Cancer Cells. Adv Healthc Mater 2023; 12:e2203252. [PMID: 37154112 DOI: 10.1002/adhm.202203252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/24/2023] [Indexed: 05/10/2023]
Abstract
Gene therapy holds great promise as an effective treatment for many diseases of genetic origin. Gene therapy works by employing cationic polymers, liposomes, and nanoparticles to condense DNA into polyplexes via electronic interactions. Then, a therapeutic gene is introduced into target cells, thereby restoring or changing cellular function. However, gene transfection efficiency remains low in vivo due to high protein binding, poor targeting ability, and substantial endosomal entrapment. Artificial sheaths containing PEG, anions, or zwitterions can be introduced onto the surface of gene carriers to prevent interaction with proteins; however, they reduce the cellular uptake efficacy, endosomal escape, targeting ability, thereby, lowering gene transfection. Here, it is reported that linking dipicolylamine-zinc (DPA-Zn) ions onto polyplex nanoparticles can produce a strong hydration water layer around the polyplex, mimicking the function of PEGylation to reduce protein binding while targeting cancer cells, augmenting cellular uptake and endosomal escape. The polyplexes with a strong hydration water layer on the surface can achieve a high gene transfection even in a 50% serum environment. This strategy provides a new solution for preventing protein adsorption while improving cellular uptake and endosomal escape.
Collapse
Affiliation(s)
- Xuan Nie
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Wei You
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Ze Zhang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Fan Gao
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Xiao-Hong Zhou
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Hai-Li Wang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Long-Hai Wang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Guang Chen
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Chang-Hui Wang
- Department of Cardiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Chun-Yan Hong
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Qi Shao
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Fei Wang
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Lei Xia
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Yang Li
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Ye-Zi You
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
11
|
Vogel J, Chen Y, Fadler RE, Flood AH, von Delius M. Steric Control over the Threading of Pyrophosphonates with One or Two Cyanostar Macrocycles during Pseudorotaxane Formation. Chemistry 2023; 29:e202300899. [PMID: 37156722 PMCID: PMC10655069 DOI: 10.1002/chem.202300899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/01/2023] [Accepted: 05/08/2023] [Indexed: 05/10/2023]
Abstract
The supramolecular recognition of anions is increasingly harnessed to achieve the self-assembly of supramolecular architectures, ranging from cages and polymers to (pseudo)rotaxanes. The cyanostar (CS) macrocycle has previously been shown to form 2 : 1 complexes with organophosphate anions that can be turned into [3]rotaxanes by stoppering. Here we achieved steric control over the assembly of pseudorotaxanes comprising the cyanostar macrocycle and a thread that is based, for the first time, on organo-pyrophosphonates. Subtle differences in steric bulk on the threads allowed formation of either [3]pseudorotaxanes or [2]pseudorotaxanes. We demonstrate that the threading kinetics are governed by the steric demand of the organo-pyrophosphonates and in one case, slows down to the timescale of minutes. Calculations show that the dianions are sterically offset inside the macrocycles. Our findings broaden the scope of cyanostar-anion assemblies and may have relevance for the design of molecular machines whose directionality is a result of relatively slow slipping.
Collapse
Affiliation(s)
- Julian Vogel
- Institute of Organic Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Yusheng Chen
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, IN, 47405, USA
| | - Rachel E Fadler
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, IN, 47405, USA
| | - Amar H Flood
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, IN, 47405, USA
| | - Max von Delius
- Institute of Organic Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| |
Collapse
|
12
|
Sivagnanam S, Mahato P, Das P. An overview on the development of different optical sensing platforms for adenosine triphosphate (ATP) recognition. Org Biomol Chem 2023; 21:3942-3983. [PMID: 37128980 DOI: 10.1039/d3ob00209h] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Adenosine triphosphate (ATP), one of the biological anions, plays a crucial role in several biological processes including energy transduction, cellular respiration, enzyme catalysis and signaling. ATP is a bioactive phosphate molecule, recognized as an important extracellular signaling agent. Apart from serving as a universal energy currency for various cellular events, ATP is also considered a factor responsible for numerous physiological activities. It regulates cellular metabolism by breaking phosphoanhydride bonds. Several diseases have been reported widely based on the levels and behavior of ATP. The variation of ATP concentration usually causes a foreseeable impact on mitochondrial physiological function. Mitochondrial dysfunction is responsible for the occurrence of many severe diseases such as angiocardiopathy, malignant tumors and Parkinson's disease. Therefore, there is high demand for developing a sensitive, fast-responsive, nontoxic and versatile detection platform for the detection of ATP. To this end, considerable efforts have been employed by several research groups throughout the world to develop specific and sensitive detection platforms to recognize ATP. Although a repertoire of optical chemosensors (both colorimetric and fluorescent) for ATP has been developed, many of them are not arrayed appropriately. Therefore, in this present review, we focused on the design and sensing strategy of some chemosensors including metal-free, metal-based, sequential sensors, aptamer-based sensors, nanoparticle-based sensors etc. for ATP recognition via diverse binding mechanisms.
Collapse
Affiliation(s)
- Subramaniyam Sivagnanam
- Department of Chemistry, SRM Institute of Science and Technology, SRM Nagar, Potheri, Kattankulathur, Tamil Nadu-603203, India.
| | - Prasenjit Mahato
- Department of Chemistry, Raghunathpur College, Sidho-Kanho-Birsha University, Purulia, West Bengal-723133, India
| | - Priyadip Das
- Department of Chemistry, SRM Institute of Science and Technology, SRM Nagar, Potheri, Kattankulathur, Tamil Nadu-603203, India.
| |
Collapse
|
13
|
Sultana T, Mahato M, Tohora N, Das A, Datta P, Das SK. Phthalimide‐Based Off‐On‐Off Fluorosensor for Cascade Detection of Cyanide Ions and Picric Acid. ChemistrySelect 2023. [DOI: 10.1002/slct.202204388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Affiliation(s)
- Tuhina Sultana
- Department of Chemistry University of North Bengal, Raja Rammohunpur Darjeeling, West Bengal 734013 India
| | - Manas Mahato
- Department of Chemistry University of North Bengal, Raja Rammohunpur Darjeeling, West Bengal 734013 India
| | - Najmin Tohora
- Department of Chemistry University of North Bengal, Raja Rammohunpur Darjeeling, West Bengal 734013 India
| | - Ankita Das
- Centre for Healthcare Science and Technology Indian Institute of Engineering Science and Technology West Bengal 711103 India
| | - Pallab Datta
- Department of Pharmaceutics National Institute of Pharmaceutical Education and Research Kolkata West Bengal 700054 India
| | - Sudhir Kumar Das
- Department of Chemistry University of North Bengal, Raja Rammohunpur Darjeeling, West Bengal 734013 India
| |
Collapse
|
14
|
Lou J, Hudson MM, Ancajas CF, Best MD. Development of GTP-responsive liposomes by exchanging the metal-DPA binding site in a synthetic lipid switch. Chem Commun (Camb) 2023; 59:3285-3288. [PMID: 36826384 DOI: 10.1039/d3cc00288h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
We report stimuli-responsive liposomes that selectively release encapsulated contents upon treatment with guanosine triphosphate (GTP) over a wide variety of phosphorylated metabolites, validated by fluorescence-based leakage assays. Significant changes in liposome self-assembly properties were also observed. Our results showcase the potential of this platform for triggered release applications.
Collapse
Affiliation(s)
- Jinchao Lou
- Department of Chemistry, University of Tennessee, Knoxville, TN, 37996, USA.
| | - Macy M Hudson
- Department of Chemistry, University of Tennessee, Knoxville, TN, 37996, USA.
| | | | - Michael D Best
- Department of Chemistry, University of Tennessee, Knoxville, TN, 37996, USA.
| |
Collapse
|
15
|
Teng P, Shao H, Huang B, Xie J, Cui S, Wang K, Cai J. Small Molecular Mimetics of Antimicrobial Peptides as a Promising Therapy To Combat Bacterial Resistance. J Med Chem 2023; 66:2211-2234. [PMID: 36739538 DOI: 10.1021/acs.jmedchem.2c00757] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Clinically, antibiotics are widely used to treat infectious diseases; however, excessive drug abuse and overuse exacerbate the prevalence of drug-resistant bacterial pathogens, making the development of novel antibiotics extremely difficult. Antimicrobial peptide (AMP) is one of the most promising candidates for overcoming bacterial resistance owing to its unique structure and mechanism of action. This study examines the development of small molecular mimetics of AMPs over the past two decades. These mimetics can selectively disrupt membranes, which are the characteristic antibacterial mechanism of AMPs. In addition, the advantages and disadvantages of small AMP mimetics are discussed. The small molecular mimetics of AMPs are anticipated to garner interest and investment in discovering new antibiotics. This Perspective will assist in revitalizing the golden age of antibiotics in the current era of combating bacterial resistance.
Collapse
Affiliation(s)
- Peng Teng
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Haodong Shao
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Bo Huang
- Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, Tampa, Florida 33620, United States
| | - Junqiu Xie
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, West Donggang Road 199, Lanzhou, 730000, China
| | - Sunliang Cui
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Kairong Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, West Donggang Road 199, Lanzhou, 730000, China
| | - Jianfeng Cai
- Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, Tampa, Florida 33620, United States
| |
Collapse
|
16
|
Grafted dinuclear zinc complexes for selective recognition of phosphatidylserine: Application to the capture of extracellular membrane microvesicles. J Inorg Biochem 2023; 239:112065. [PMID: 36403435 DOI: 10.1016/j.jinorgbio.2022.112065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/25/2022] [Accepted: 11/01/2022] [Indexed: 11/11/2022]
Abstract
Microvesicles (MVs) are key markers in human body fluids that reflect cellular activation related to diseases as thrombosis. These MVs display phosphatidylserine at the outer leaflet of their plasma membrane as specific recognition moieties. The work reported in this manuscript focuses on the development of an original method where MVs are captured by bimetallic zinc complexes. A set of ligands have been synthetized based on a phenol spacer bearing in para position an amine group appended to a short or a longer alkyl chain (for grafting on surface) and bis(dipicolylamine) arms in ortho position (for zinc coordination). The corresponding dibridged zinc phenoxido and hydroxido complexes have been prepared in acetronitrile in presence of triethylamine and characterized by several spectroscopic techniques. The pH-driven interconversion studies for both complexes in H2O:DMSO (70:30) evidence that at physiologic pH the main species are mono-bridged by the phenoxido spacer. An X-Ray structure obtained from complex 2 (based on the ligand with the amine group on the short chain) in aqueous medium confirms the presence of a mono-bridged complex. Then, the complexes have been used for interaction studies with short-chain phospholipids. Both have established the selective recognition of the anionic phosphatidylserine model versus zwitterionic phospholipids (in solution by 31P NMR and after immobilization on solid support by surface plasmon resonance (SPR)). Moreover, both complexes have also demonstrated their ability to capture MVs isolated from human plasma. These complexes are thus promising candidates for MVs probing by a new approach based on coordination chemistry.
Collapse
|
17
|
Gomes LJ, Carrilho JP, Pereira PM, Moro AJ. A Near InfraRed Emissive Chemosensor for Zn 2+ and Phosphate Derivatives Based on a Di-(2-picolyl)amine-styrylflavylium Push-Pull Fluorophore. SENSORS (BASEL, SWITZERLAND) 2023; 23:471. [PMID: 36617069 PMCID: PMC9823994 DOI: 10.3390/s23010471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/19/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
A new Near InfraRed (NIR) fluorescent chemosensor for metal ions and anions is herein presented. The fluorophore is based on a styrylflavylium dye, a synthetic analogue of the natural anthocyanin family, with a di-(2-picolyl)amine (DPA) moiety as the metal chelating unit. The substitution pattern of the styrylflavylium core (with tertiary amines on positions 7 and 4') shifts the optical properties of the dye towards the NIR region of the electronic spectra, due to a strong push-pull character over the π-conjugated system. The NIR chemosensor is highly sensitive to the presence of Zn2+, which induces a strong CHelation Enhanced Fluorescence (CHEF) effect upon binding to the DPA unit (2.7 fold increase). The strongest competing ion is Cu2+, with a complete fluorescence quenching, while other metals induce lower responses on the optical properties of the chemosensor. Subsequent anion screening of the Zn2+-chemosensor coordination compound has demonstrated a distinct selectivity towards adenosine 5'-triphosphate (ATP) and adenosine 5'-diphosphate (ADP), with high association constants (K ~ 106 M-1) and a strong CHEF effect (2.4 and 2.9 fold fluorescence increase for ATP and ADP, respectively). Intracellular studies with the Zn2+-complexed sensor showed strong luminescence in the cellular membrane of Gram- bacteria (E. coli) and mitochondrial membrane of mammalian cells (A659), which highlights its possible application for intracellular labelling.
Collapse
Affiliation(s)
- Liliana J. Gomes
- LAQV-REQUIMTE, Departamento de Química, CQFB, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - João P. Carrilho
- Intracelular Microbial Infection Biology, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
| | - Pedro M. Pereira
- Intracelular Microbial Infection Biology, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
| | - Artur J. Moro
- LAQV-REQUIMTE, Departamento de Química, CQFB, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| |
Collapse
|
18
|
Dual stimulus-responsive core-satellite SERS nanoprobes for reactive oxygen species sensing during autophagy. Talanta 2022; 250:123712. [DOI: 10.1016/j.talanta.2022.123712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/19/2022] [Accepted: 06/22/2022] [Indexed: 11/17/2022]
|
19
|
Lou J, Sagar R, Best MD. Metabolite-Responsive Liposomes Employing Synthetic Lipid Switches Driven by Molecular Recognition Principles. Acc Chem Res 2022; 55:2882-2891. [PMID: 36174148 DOI: 10.1021/acs.accounts.2c00446] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The ability to exert control over lipid properties, including structure, charge, function, and self-assembly characteristics is a powerful tool that can be implemented to achieve a wide range of biomedical applications. Examples in this arena include the development of caged lipids for controlled activation of signaling properties, metabolic labeling strategies for tracking lipid biosynthesis, lipid activity probes for identifying cognate binding partners, approaches for in situ membrane assembly, and liposome triggered release strategies. In this Account, we describe recent advancements in the latter area entailing the development of stimuli-responsive liposomes through programmable changes to lipid self-assembly properties, which can be harnessed to drive the release of encapsulated contents toward applications including drug delivery. We will focus on an emerging paradigm involving liposomal platforms that are sensitized toward chemical agents ranging from metal cations to small organic molecules that exhibit dysregulation in disease states. This has been achieved by developing synthetic lipid switches that are designed to undergo programmed conformational changes upon the recognition of specific target analytes. These structural alterations are leveraged to perturb the packing of lipids within the membrane and thereby drive the release of encapsulated contents.We provide an overview of the inspiration, design, and characterization of liposomes that selectively respond to wide-ranging target analytes. This series of studies began with the development of calcium-responsive liposomes utilizing a lipid switch inspired by sensors including indo-1. Following this successful demonstration, we next showed that the selectivity of the lipid switch could be altered among different metal cations by producing a liposomal platform for which release is induced through zinc binding. Our next goal was to develop metabolite-responsive liposomes in which switching is driven by molecular recognition events involving phosphorylated small molecules. In this work, screening of lipid switches designed to interact with phosphorylated metabolites led to the identification of liposomal formulations that selectivity release contents in the presence of adenosine triphosphate (ATP). Finally, we were able to modulate the metabolite selectivity by rationally designing a modified lipid switch structure that is activated through complexation of inositol-(1,4,5)-trisphosphate (IP3). These projects show the progression of our approaches for liposome release triggered by molecular recognition principles, building from ion-responsive lipid switches to structures that are activated by small molecules. These "smart" liposomal platforms provide an important addition to the toolbox for controlled cargo release since they respond to ions or small molecules that are commonly overproduced by diseased cells.
Collapse
Affiliation(s)
- Jinchao Lou
- Department of Chemistry, University of Tennessee, 1420 Circle Drive, Knoxville, Tennessee 37996, United States
| | - Ruhani Sagar
- Department of Chemistry, University of Tennessee, 1420 Circle Drive, Knoxville, Tennessee 37996, United States
| | - Michael D Best
- Department of Chemistry, University of Tennessee, 1420 Circle Drive, Knoxville, Tennessee 37996, United States
| |
Collapse
|
20
|
Yin BB, Gao NN, Xu AR, Liang J, Wang LJ, Wang Y. High Emission Zinc Metal‐Organic Framework for Sensitive and Selective Detection of Fe
3+
, Cr
6+
and Nitrofurazone Antibiotic. ChemistrySelect 2022. [DOI: 10.1002/slct.202202812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Bei B. Yin
- Anhui Key Laboratory of Functional Coordination Compounds School of Chemistry and Chemical Engineering Anqing Normal University Anqing 246011 China
| | - Ning N. Gao
- Anhui Key Laboratory of Functional Coordination Compounds School of Chemistry and Chemical Engineering Anqing Normal University Anqing 246011 China
| | - An R. Xu
- Anhui Key Laboratory of Functional Coordination Compounds School of Chemistry and Chemical Engineering Anqing Normal University Anqing 246011 China
| | - Jing Liang
- Anhui Key Laboratory of Functional Coordination Compounds School of Chemistry and Chemical Engineering Anqing Normal University Anqing 246011 China
| | - Li J. Wang
- Anhui Key Laboratory of Functional Coordination Compounds School of Chemistry and Chemical Engineering Anqing Normal University Anqing 246011 China
| | - Yan Wang
- Anhui Key Laboratory of Functional Coordination Compounds School of Chemistry and Chemical Engineering Anqing Normal University Anqing 246011 China
| |
Collapse
|
21
|
Yin BB, Wang Y, Gao NN, Liang J, Jiang H. A Water‐Stable Luminescent Zn‐MOF Based on A Conjugated π‐electron Ligand as An Efficient Sensor for Fe
3+
, CrO
4
2−
, Cr
2
O
7
2−
and MnO
4
−. ChemistrySelect 2022. [DOI: 10.1002/slct.202201588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Bei B. Yin
- Anhui Key Laboratory of Functional Coordination Compounds School of Chemistry and Chemical Engineering Anqing Normal University Anqing 246011 China
| | - Yan Wang
- Anhui Key Laboratory of Functional Coordination Compounds School of Chemistry and Chemical Engineering Anqing Normal University Anqing 246011 China
| | - Ning N. Gao
- Anhui Key Laboratory of Functional Coordination Compounds School of Chemistry and Chemical Engineering Anqing Normal University Anqing 246011 China
| | - Jing Liang
- Anhui Key Laboratory of Functional Coordination Compounds School of Chemistry and Chemical Engineering Anqing Normal University Anqing 246011 China
| | - Hao Jiang
- Anhui Key Laboratory of Functional Coordination Compounds School of Chemistry and Chemical Engineering Anqing Normal University Anqing 246011 China
| |
Collapse
|
22
|
van Groesen E, Innocenti P, Martin NI. Recent Advances in the Development of Semisynthetic Glycopeptide Antibiotics: 2014-2022. ACS Infect Dis 2022; 8:1381-1407. [PMID: 35895325 PMCID: PMC9379927 DOI: 10.1021/acsinfecdis.2c00253] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The accelerated appearance of drug-resistant bacteria poses an ever-growing threat to modern medicine's capacity to fight infectious diseases. Gram-positive species such as methicillin-resistant Staphylococcus aureus (MRSA) and Streptococcus pneumoniae continue to contribute significantly to the global burden of antimicrobial resistance. For decades, the treatment of serious Gram-positive infections relied upon the glycopeptide family of antibiotics, typified by vancomycin, as a last line of defense. With the emergence of vancomycin resistance, the semisynthetic glycopeptides telavancin, dalbavancin, and oritavancin were developed. The clinical use of these compounds is somewhat limited due to toxicity concerns and their unusual pharmacokinetics, highlighting the importance of developing next-generation semisynthetic glycopeptides with enhanced antibacterial activities and improved safety profiles. This Review provides an updated overview of recent advancements made in the development of novel semisynthetic glycopeptides, spanning the period from 2014 to today. A wide range of approaches are covered, encompassing innovative strategies that have delivered semisynthetic glycopeptides with potent activities against Gram-positive bacteria, including drug-resistant strains. We also address recent efforts aimed at developing targeted therapies and advances made in extending the activity of the glycopeptides toward Gram-negative organisms.
Collapse
Affiliation(s)
- Emma van Groesen
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University 2333 BE Leiden, The Netherlands
| | - Paolo Innocenti
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University 2333 BE Leiden, The Netherlands
| | - Nathaniel I Martin
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University 2333 BE Leiden, The Netherlands
| |
Collapse
|
23
|
Oliveri IP, Consiglio G, Munzi G, Failla S, Di Bella S. Deaggregation properties and transmetalation studies of a zinc(II) salen-type Schiff-base complex. Dalton Trans 2022; 51:11859-11867. [PMID: 35876090 DOI: 10.1039/d2dt01448c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This paper reports the synthesis and the deaggregation properties of a Lewis acidic Zn(II) salen-type Schiff-base complex derivative from diaminomaleonitrile and a systematic detailed study of its transmetalation with other metal ions in solution. In a solution of non-coordinating solvents, the complex is in a dimeric form, while in coordinating solvents or upon addition of a Lewis base it is stabilized as monomeric adducts. Experiments done in two solvents with different Lewis basicities indicate a major role of the stability of the starting adduct in transmetalation. Thus, using nitrate or perchlorate salts, acetonitrile solutions of the complex give an immediate and complete transmetalation with Cu2+, while with Co2+ and Ni2+ a much slower transmetalation rate is observed. Instead, using chloride salts a fast and complete transmetalation is observed for divalent ions of the first transition series (Mn2+, Fe2+, Co2+, Ni2+, Cu2+), indicating the role of the chloride in stabilizing the transition state of the transmetalation. On the other hand, DMF solutions of the complex are less prone to transmetalation, according with the greater basicity of the solvent and, hence, the greater stability of the related adducts with the complex. Therefore, the nature of the solvent and the counteranion allow controlling the transmetalation process of this Zn(II) Schiff-base complex.
Collapse
Affiliation(s)
- Ivan Pietro Oliveri
- Dipartimento di Scienze Chimiche, Università di Catania, I-95125 Catania, Italy.
| | - Giuseppe Consiglio
- Dipartimento di Scienze Chimiche, Università di Catania, I-95125 Catania, Italy.
| | - Gabriella Munzi
- Dipartimento di Scienze Chimiche, Università di Catania, I-95125 Catania, Italy.
| | - Salvatore Failla
- Dipartimento di Scienze Chimiche, Università di Catania, I-95125 Catania, Italy.
| | - Santo Di Bella
- Dipartimento di Scienze Chimiche, Università di Catania, I-95125 Catania, Italy.
| |
Collapse
|
24
|
Rim Lee Y, Kwon N, Swamy KMK, Kim G, Yoon J. Rhodamine-thiourea Linked Naphthalimide Derivative to Image ATP in Mitochondria using Two Channels. Chem Asian J 2022; 17:e202200413. [PMID: 35671139 DOI: 10.1002/asia.202200413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/02/2022] [Indexed: 11/08/2022]
Abstract
Adenosine 5'-triphosphate (ATP), synthesized in mitochondria, is an energy molecule in all living things. ATP not only serves as an energy source for protein synthesis and muscle contraction, but also as an important indicator for various diseases, such as Parkinson's disease, cardiovascular disease, and others. Accordingly, detection and sensing of ATP, especially in mitochondria, are important. In this study, a unique ring-opening process of rhodamine was coupled to recognition of ATP via introduction of a thiourea moiety, which was further linked to a naphthalimide group. A strong fluorescent emission at ∼580 nm was accompanied by a color change from colorless to pink upon addition of ATP at pH 7.4. Fluorescent probe 1 successfully imaged mitochondrial ATP with a Pearson's coefficient of 0.8. In addition, green emission from the naphthalimide moiety at ∼530 nm was observed without any change upon addition of ATP. This emission can be considered equivalent to an internal standard to utilize probe 1 as a dual-channel probe for ATP. Furthermore, probe 1 showed negligible cytotoxicity based on MTT assays.
Collapse
Affiliation(s)
- You Rim Lee
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 120-750, Korea)
| | - Nahyun Kwon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 120-750, Korea)
| | - K M K Swamy
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 120-750, Korea)
| | - Gyoungmi Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 120-750, Korea)
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 120-750, Korea)
| |
Collapse
|
25
|
Hu J, Li G. Recent Progress in Fluorescent Chemosensors for Protein Kinases. Chem Asian J 2022; 17:e202200182. [PMID: 35486328 DOI: 10.1002/asia.202200182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/21/2022] [Indexed: 11/10/2022]
Abstract
Protein kinases are involved in almost all biological activities. The activities of different kinases reflect the normal or abnormal status of the human body. Therefore, detecting the activities of different kinases is important for disease diagnosis and drug discovery. Fluorescent probes offer opportunities for studying kinase behaviors at different times and spatial locations. In this review, we summarize different kinds of fluorescent chemosensors that have been used to detect the activities of many different kinases.
Collapse
Affiliation(s)
- Jun Hu
- Fujian Agriculture and Forestry University, College of Life Sciences, No.15 Shangxiadian Road, Cangshan District, 350002, Fuzhou, CHINA
| | - Gao Li
- Minjiang University, College of Material and Chemical Engineering, CHINA
| |
Collapse
|
26
|
Bottcher SE, Lou J, Best MD. Liposome triggered content release through molecular recognition of inositol trisphosphate. Chem Commun (Camb) 2022; 58:4520-4523. [PMID: 35302139 DOI: 10.1039/d2cc00951j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A stimuli-responsive liposomal platform that is selectively activated by inositol 1,4,5-trisphosphate (IP3) over eleven other phosphorylated metabolites is reported. Dye release assays validated dose-dependent release of both hydrophilic and hydrophobic cargo driven by IP3, showcasing the potential of this platform for triggered release and sensing applications.
Collapse
Affiliation(s)
- Sydney E Bottcher
- Department of Chemistry, University of Tennessee, Knoxville, TN, 37996, USA.
| | - Jinchao Lou
- Department of Chemistry, University of Tennessee, Knoxville, TN, 37996, USA.
| | - Michael D Best
- Department of Chemistry, University of Tennessee, Knoxville, TN, 37996, USA.
| |
Collapse
|
27
|
Chen GY, Wan W, Cao QY, Xie Y. Aminoquinoline-anchored polynorbornene for sequential fluorescent sensing of Zn 2+ and ATP. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 269:120771. [PMID: 34952445 DOI: 10.1016/j.saa.2021.120771] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/02/2021] [Accepted: 12/12/2021] [Indexed: 06/14/2023]
Abstract
A novel aminoquinoline functionalized norbornene (1) and its ring-opening metathesis polymerization (ROMP) copolymer P1 have been designed and synthesized. The polymer probe P1 can self-assemble nano aggregation in aqueous solution. The fluorescent experiments revealed that both 1 and P1 show a ratiometric fluorescence response toward Zn2+ over other mental ions in Tris-HCl buffer solution, with the polymer probe P1 shows a better photostability and higher binding affinity than that of the small molecular probe 1. Furthermore, the in situ formed P1-Zn2+ ensemble was successfully used as the secondary sensor for ATP. P1 is also successfully used for monitoring intracellular Zn2+ and ATP in living cells.
Collapse
Affiliation(s)
- Gui-Yan Chen
- Department of Chemistry, Nanchang University, Nanchang 330031, PR China
| | - Wen Wan
- Department of Chemistry, Nanchang University, Nanchang 330031, PR China
| | - Qian-Yong Cao
- Department of Chemistry, Nanchang University, Nanchang 330031, PR China.
| | - Yu Xie
- College of Environment and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, PR China.
| |
Collapse
|
28
|
Yang Y, Wang C, Shu Q, Xu N, Qi S, Zhuo S, Zhu C, Du J. Facile one-step fabrication of Cu-doped carbon dots as a dual-selective biosensor for detection of pyrophosphate ions and measurement of pH. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 268:120681. [PMID: 34894564 DOI: 10.1016/j.saa.2021.120681] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/19/2021] [Accepted: 11/26/2021] [Indexed: 06/14/2023]
Abstract
High-performance determination of pyrophosphate ions (PPi) and pH is an important goal in biological systems. In this work, Cu-doped carbon dots (Cu-CDs) were synthesized rapidly and simply via a one-pot hydrothermal method. The as-obtained Cu-CDs, with an average size of 2.55 nm, exhibit an excitation-independent fluorescence emission and possess desirable functional groups of carboxyl and amine, which can be served as fluorescence nanoprobes for detection of PPi based on surface passivation. Under the optimal condition, the linear range for detection of PPi was 0.05-20 µM, and the corresponding limit of detection (LOD) was 0.013 µM, indicative of a promising assay for the PPi. Moreover, the fluorescent intensity of the Cu-CDs is linear against pH value from 6 to 8.7 in buffer solution, suggesting the feasibility as a pH sensor. The synthesized Cu-CDs coated fluorescent paper indeed can monitor pH in urine with satisfaction by naked eyes through ultraviolet irradiation. The successful detection of PPi and the visual detection of pH value suggest a highly promising application of Cu-CDs in the field of biosensing.
Collapse
Affiliation(s)
- Ying Yang
- Anhui Key Laboratory of Chemo-Biosensing, Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, PR China
| | - Chaofeng Wang
- Anhui Key Laboratory of Chemo-Biosensing, Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, PR China
| | - Qin Shu
- Anhui Key Laboratory of Chemo-Biosensing, Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, PR China
| | - Na Xu
- Anhui Key Laboratory of Chemo-Biosensing, Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, PR China
| | - Shuangqing Qi
- Anhui Key Laboratory of Chemo-Biosensing, Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, PR China
| | - Shujuan Zhuo
- Anhui Key Laboratory of Chemo-Biosensing, Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, PR China
| | - Changqing Zhu
- Anhui Key Laboratory of Chemo-Biosensing, Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, PR China
| | - Jinyan Du
- Anhui Key Laboratory of Chemo-Biosensing, Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, PR China.
| |
Collapse
|
29
|
HASHIMOTO T, TABUCHI N, HAYASHITA T. Phosphate Derivative Recognition Using Polyamide Amine Dendrimer Reagent Modified by Dipicorylamine Ligand. BUNSEKI KAGAKU 2022. [DOI: 10.2116/bunsekikagaku.71.167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Takeshi HASHIMOTO
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University
| | - Naoto TABUCHI
- Graduate Program in Science and Technology (Chemistry Division), Graduate School of Science and Technology, Sophia University
| | - Takashi HAYASHITA
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University
| |
Collapse
|
30
|
Lou J, Schuster JA, Barrera FN, Best MD. ATP-Responsive Liposomes via Screening of Lipid Switches Designed to Undergo Conformational Changes upon Binding Phosphorylated Metabolites. J Am Chem Soc 2022; 144:3746-3756. [PMID: 35171601 DOI: 10.1021/jacs.2c00191] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Liposomal delivery vehicles can dramatically enhance drug transport. However, their clinical application requires enhanced control over content release at diseased sites. For this reason, triggered release strategies have been explored, although a limited toolbox of stimuli has thus far been developed. Here, we report a novel strategy for stimuli-responsive liposomes that release encapsulated contents in the presence of phosphorylated small molecules. Our formulation efforts culminated in selective cargo release driven by ATP, a universal energy source that is upregulated in diseases such as cancer. Specifically, we developed lipid switches 1a-b bearing two ZnDPA units designed to undergo substantial conformational changes upon ATP binding, thereby disrupting membrane packing and triggering the release of encapsulated contents. Dye leakage assays using the hydrophobic dye Nile red validated that ATP-driven release was selective over 11 similar phosphorylated metabolites, and release of the hydrophilic dye calcein was also achieved. Multiple alternative lipid switch structures were synthesized and studied (1c-d and 2), which provided insights into the structural features that render 1a-b selective toward ATP-driven release. Importantly, analysis of cellular delivery using fluorescence microscopy in conjunction with pharmacological ATP manipulation showed that liposome delivery was specific, as it increased upon intracellular ATP accumulation, and was inhibited by ATP downregulation. Our new approach shows strong prospects for enhancing the selectivity of release and payload delivery to diseased cells driven by metabolites such as ATP, providing an exciting new paradigm for controlled release.
Collapse
Affiliation(s)
- Jinchao Lou
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Jennifer A Schuster
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Francisco N Barrera
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Michael D Best
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|
31
|
An overview of the molecular sensors developed for the recognition of inorganic phosphate. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
32
|
Mitobe R, Sasaki Y, Tang W, Zhou Q, Lyu X, Ohshiro K, Kamiko M, Minami T. Multi-Oxyanion Detection by an Organic Field-Effect Transistor with Pattern Recognition Techniques and Its Application to Quantitative Phosphate Sensing in Human Blood Serum. ACS APPLIED MATERIALS & INTERFACES 2022; 14:22903-22911. [PMID: 35040626 DOI: 10.1021/acsami.1c21092] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We herein report an organic field-effect transistor (OFET) based chemical sensor for multi-oxyanion detection with pattern recognition techniques. The oxyanions ubiquitously play versatile roles in biological systems, and accessing the chemical information they provide would potentially facilitate fundamental research in diagnosis and pharmacology. In this regard, phosphates in human blood serum would be a promising indicator for early case detection of significant diseases. Thus, the development of an easy-to-use chemical sensor for qualitative and quantitative detection of oxyanions is required in real-world scenarios. To this end, an extended-gate-type OFET has been functionalized with a metal complex consisting of 2,2'-dipicolylamine and a copper(II) ion (CuII-dpa), allowing a compact chemical sensor for oxyanion detection. The OFET combined with a uniform CuII-dpa-based self-assembled monolayer (SAM) on the extended-gate gold electrode shows a cross-reactive response, which suggests a discriminatory power for pattern recognition. Indeed, the qualitative detection of 13 oxyanions (i.e., hydrogen monophosphate, pyrophosphate, adenosine monophosphate, adenosine diphosphate, adenosine triphosphate, terephthalate, phthalate, isophthalate, malonate, oxalate, lactate, benzoate, and acetate) has been demonstrated by only using a single OFET-based sensor with linear discriminant analysis, which has shown 100% correct classification. The OFET has been further applied to the quantification of hydrogen monophosphate in human blood serum using a support vector machine (SVM). The multiple predictions of hydrogen monophosphate at 49 and 89 μM have been successfully realized with low errors, which indicates that the OFET-based sensor with pattern recognition techniques would be a practical sensing platform for medical assays. We believe that a combination of the OFET functionalized with the SAM-based recognition scaffold and powerful pattern recognition methods can achieve multi-analyte detection from just a single sensor.
Collapse
Affiliation(s)
- Riho Mitobe
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Yui Sasaki
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Wei Tang
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Qi Zhou
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Xiaojun Lyu
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Kohei Ohshiro
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Masao Kamiko
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Tsuyoshi Minami
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| |
Collapse
|
33
|
Patel SK, Patel RN, Patel AK, Patel N, Coloma I, Cortijo M, Herrero S, Choquesillo-Lazarte D. Synthesis, single crystal structures, DFT and in vitro anti oxidant superoxide dismutase studies of copper(II) complexes derived from the di-(2-picolyl)amine and co-ligands: Promising antioxidants. Polyhedron 2022. [DOI: 10.1016/j.poly.2021.115609] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
34
|
Mikagi A, Manita K, Yoyasu A, Tsuchido Y, Kanzawa N, Hashimoto T, Hayashita T. Rapid Bacterial Recognition over a Wide pH Range by Boronic Acid-Based Ditopic Dendrimer Probes for Gram-Positive Bacteria. Molecules 2021; 27:molecules27010256. [PMID: 35011488 PMCID: PMC8746651 DOI: 10.3390/molecules27010256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/28/2021] [Accepted: 12/30/2021] [Indexed: 11/16/2022] Open
Abstract
We have developed a convenient and selective method for the detection of Gram-positive bacteria using a ditopic poly(amidoamine) (PAMAM) dendrimer probe. The dendrimer that was modified with dipicolylamine (dpa) and phenylboronic acid groups showed selectivity toward Staphylococcus aureus. The ditopic dendrimer system had higher sensitivity and better pH tolerance than the monotopic PAMAM dendrimer probe. We also investigated the mechanisms of various ditopic PAMAM dendrimer probes and found that the selectivity toward Gram-positive bacteria was dependent on a variety of interactions. Supramolecular interactions, such as electrostatic interaction and hydrophobic interaction, per se, did not contribute to the bacterial recognition ability, nor did they improve the selectivity of the ditopic dendrimer system. In contrast, the ditopic PAMAM dendrimer probe that had a phosphate-sensing dpa group and formed a chelate with metal ions showed improved selectivity toward S. aureus. The results suggested that the targeted ditopic PAMAM dendrimer probe showed selectivity toward Gram-positive bacteria. This study is expected to contribute to the elucidation of the interaction between synthetic molecules and bacterial surface. Moreover, our novel method showed potential for the rapid and species-specific recognition of various bacteria.
Collapse
Affiliation(s)
- Ayame Mikagi
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo 102-8554, Japan; (A.M.); (K.M.); (A.Y.); (Y.T.); (N.K.); (T.H.)
| | - Koichi Manita
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo 102-8554, Japan; (A.M.); (K.M.); (A.Y.); (Y.T.); (N.K.); (T.H.)
| | - Asuka Yoyasu
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo 102-8554, Japan; (A.M.); (K.M.); (A.Y.); (Y.T.); (N.K.); (T.H.)
| | - Yuji Tsuchido
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo 102-8554, Japan; (A.M.); (K.M.); (A.Y.); (Y.T.); (N.K.); (T.H.)
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University (TWIns), 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Nobuyuki Kanzawa
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo 102-8554, Japan; (A.M.); (K.M.); (A.Y.); (Y.T.); (N.K.); (T.H.)
| | - Takeshi Hashimoto
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo 102-8554, Japan; (A.M.); (K.M.); (A.Y.); (Y.T.); (N.K.); (T.H.)
| | - Takashi Hayashita
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo 102-8554, Japan; (A.M.); (K.M.); (A.Y.); (Y.T.); (N.K.); (T.H.)
- Correspondence: ; Tel.: +81-3-3238-3372
| |
Collapse
|
35
|
Dey S, Paul S, Debsharma K, Sinha C. A highly emissive Zn(II)-pyridyl-benzimidazolyl-phenolato-based chemosensor: detection of H 2PO 4-via "use" and "throw" device fabrication. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:5282-5292. [PMID: 34726675 DOI: 10.1039/d1ay01575c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
2-Ethoxy-6-[1-(phenyl-pyridin-2-yl-methyl)-1H-benzoimidazol-2-yl]-phenol (HL) selectively serves as a sensitive 'turn on' Zn2+ sensor in 9 : 1 (v/v) DMSO/H2O (HEPES buffer, pH = 7.4) medium in the presence of sixteen other cations at the limit of detection (LOD) of 3.2 nM. The strong blue emission of the complex, {[Zn(L1)OAc]} (HL1 = benzimidazolyl ring-opening structure of HL) (λem, 461 nm), is quenched by H2PO4- in the presence of eighteen other anions and the LOD is 0.238 μM. The emission of the complex is due to restricted intramolecular rotation (RIR) followed by chelation-enhanced fluorescence (CHEF). The quenching of the emission of [Zn(L1)OAc] by H2PO4- (in the presence of other PVs (inorganic and biological) as well as additional anions) is due to the 'turn off' fluorescence via the demetallation and release of the nonfluorescent ligand, HL, and [Zn(H2PO4)]+. An INHIBIT logic gate memory circuit of the probe HL was devised with Zn2+ and H2PO4- as two consecutive inputs. The percentage of H2PO4- recovery was excellent and was obtained from distilled, tap, and drinking water sources. The bright blue emission of [Zn(L1)OAc] further triggered the fabrication of ready-made portable thin films of the Zn-complex, which executed a cost-effective 'on-site' solid-state contact mode detection of H2PO4- with selectivity at the picogram level (10.97 pg cm-2) by monitoring the intensities of quenched spots under UV light upon varying the analyte concentration from 10-8 to 10-3 M. Finally, taking advantage of reversible fluorescence switching, a simple and definite ion-responsive security feature was successfully embedded into a "use" and "throw" solution-coated paper strip of the Zn(II)-pyridyl-benzimidazolyl-phenolato-based chemosensor, which efficiently detected H2PO4- in water by a successive 'ON-OFF' fluorescence switching-driven security activity without any exhaustion of the emission phenomenon.
Collapse
Affiliation(s)
- Sunanda Dey
- Department of Chemistry, Jadavpur University, Kolkata 700 032, India.
- Department of Chemistry, Mrinalini Datta Mahavidyapith, Birati, Kolkata 700051, India
| | - Sukanya Paul
- Department of Chemistry, Jadavpur University, Kolkata 700 032, India.
| | - Kingshuk Debsharma
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | | |
Collapse
|
36
|
Mitchell EJ, Beecroft AJ, Martin J, Thompson S, Marques I, Félix V, Beer PD. Hydrosulfide (HS - ) Recognition and Sensing in Water by Halogen Bonding Hosts. Angew Chem Int Ed Engl 2021; 60:24048-24053. [PMID: 34494708 PMCID: PMC8596634 DOI: 10.1002/anie.202110442] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/03/2021] [Indexed: 11/16/2022]
Abstract
Hydrogen sulfide (H2 S) plays a crucial signalling role in a variety of physiological systems, existing as the hydrosulfide anion (HS- ) at physiological pH. Combining the potency of halogen bonding (XB) for anion recognition in water with coumarin fluorophore incorporation in acyclic host structural design, the first XB receptors to bind and, more importantly, sense the hydrosulfide anion in pure water in a reversible chemosensing fashion are demonstrated. The XB receptors exhibit characteristic selective quenching of fluorescence upon binding to HS- . Computational DFT and molecular dynamics simulations in water corroborate the experimental anion binding observations, revealing the mode and nature of HS- recognition by the XB receptors.
Collapse
Affiliation(s)
- Edward J. Mitchell
- Department of ChemistryUniversity of OxfordChemistry Research LaboratoryMansfield RoadOxfordOX1 3TAUK
| | - Adam J. Beecroft
- Department of ChemistryUniversity of OxfordChemistry Research LaboratoryMansfield RoadOxfordOX1 3TAUK
| | - Jonathan Martin
- Radioactive Waste ManagementBuilding 329, Thomson Avenue, Harwell CampusDidcotOX11 0GDUK
| | - Sally Thompson
- Radioactive Waste ManagementBuilding 329, Thomson Avenue, Harwell CampusDidcotOX11 0GDUK
| | - Igor Marques
- CICECO—Aveiro Institute of MaterialsDepartment of ChemistryUniversity of Aveiro3810-193AveiroPortugal
| | - Vítor Félix
- CICECO—Aveiro Institute of MaterialsDepartment of ChemistryUniversity of Aveiro3810-193AveiroPortugal
| | - Paul D. Beer
- Department of ChemistryUniversity of OxfordChemistry Research LaboratoryMansfield RoadOxfordOX1 3TAUK
| |
Collapse
|
37
|
López-Alled CM, Park SJ, Lee DJ, Murfin LC, Kociok-Köhn G, Hann JL, Wenk J, James TD, Kim HM, Lewis SE. Azulene-based fluorescent chemosensor for adenosine diphosphate. Chem Commun (Camb) 2021; 57:10608-10611. [PMID: 34570136 DOI: 10.1039/d1cc04122c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
AzuFluor® 435-DPA-Zn, an azulene fluorophore bearing two zinc(II)-dipicolylamine receptor motifs, exhibits fluorescence enhancement in the presence of adenosine diphosphate. Selectivity for ADP over ATP, AMP and PPi results from appropriate positioning of the receptor motifs, since an isomeric sensor cannot discriminate between ADP and ATP.
Collapse
Affiliation(s)
- Carlos M López-Alled
- Department of Chemistry, University of Bath, Bath, BA2 7AY, UK. .,Centre for Sustainable Circular Technologies, University of Bath, Bath, BA2 7AY, UK.
| | - Sang Jun Park
- Department of Energy Systems Research, Ajou University, Suwon 443-749, South Korea.
| | - Dong Joon Lee
- Department of Energy Systems Research, Ajou University, Suwon 443-749, South Korea.
| | - Lloyd C Murfin
- Department of Chemistry, University of Bath, Bath, BA2 7AY, UK.
| | - Gabriele Kociok-Köhn
- Material and Chemical Characterisation Facility (MC2), University of Bath, Bath, BA2 7AY, UK
| | - Jodie L Hann
- Department of Chemistry, University of Bath, Bath, BA2 7AY, UK.
| | - Jannis Wenk
- Centre for Sustainable Circular Technologies, University of Bath, Bath, BA2 7AY, UK. .,Department of Chemical Engineering, University of Bath, Bath, BA2 7AY, UK
| | - Tony D James
- Department of Chemistry, University of Bath, Bath, BA2 7AY, UK. .,Centre for Sustainable Circular Technologies, University of Bath, Bath, BA2 7AY, UK. .,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Hwan Myung Kim
- Department of Energy Systems Research, Ajou University, Suwon 443-749, South Korea.
| | - Simon E Lewis
- Department of Chemistry, University of Bath, Bath, BA2 7AY, UK. .,Centre for Sustainable Circular Technologies, University of Bath, Bath, BA2 7AY, UK.
| |
Collapse
|
38
|
Mitchell EJ, Beecroft AJ, Martin J, Thompson S, Marques I, Félix V, Beer PD. Hydrosulfide (HS
−
) Recognition and Sensing in Water by Halogen Bonding Hosts. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202110442] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Edward J. Mitchell
- Department of Chemistry University of Oxford Chemistry Research Laboratory Mansfield Road Oxford OX1 3TA UK
| | - Adam J. Beecroft
- Department of Chemistry University of Oxford Chemistry Research Laboratory Mansfield Road Oxford OX1 3TA UK
| | - Jonathan Martin
- Radioactive Waste Management Building 329, Thomson Avenue, Harwell Campus Didcot OX11 0GD UK
| | - Sally Thompson
- Radioactive Waste Management Building 329, Thomson Avenue, Harwell Campus Didcot OX11 0GD UK
| | - Igor Marques
- CICECO—Aveiro Institute of Materials Department of Chemistry University of Aveiro 3810-193 Aveiro Portugal
| | - Vítor Félix
- CICECO—Aveiro Institute of Materials Department of Chemistry University of Aveiro 3810-193 Aveiro Portugal
| | - Paul D. Beer
- Department of Chemistry University of Oxford Chemistry Research Laboratory Mansfield Road Oxford OX1 3TA UK
| |
Collapse
|
39
|
Pushina M, Farshbaf S, Mochida W, Kanakubo M, Nishiyabu R, Kubo Y, Anzenbacher P. A Fluorescence Sensor Array Based on Zinc(II)-Carboxyamidoquinolines: Toward Quantitative Detection of ATP*. Chemistry 2021; 27:11344-11351. [PMID: 34129701 DOI: 10.1002/chem.202100896] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Indexed: 02/06/2023]
Abstract
The newly prepared fluorescent carboxyamidoquinolines (1-3) and their Zn(II) complexes (Zn@1-Zn@3) were used to bind and sense various phosphate anions utilizing a relay mechanism, in which the Zn(II) ion migrates from the Zn@1-Zn@3 complexes to the phosphate, namely adenosine 5'-triphosphate (ATP) and pyrophosphate (PPi), a process accompanied by a dramatic change in fluorescence. Zn@1-Zn@3 assemblies interact with adenine nucleotide phosphates while displaying an analyte-specific response. This process was investigated using UV-vis, fluorescence, and NMR spectroscopy. It is shown that the different binding selectivity and the corresponding fluorescence response enable differentiation of adenosine 5'-triphosphate (ATP), adenosine 5'-diphosphate (ADP), pyrophosphate (PPi), and phosphate (Pi). The cross-reactive nature of the carboxyamidoquinolines-Zn(II) sensors in conjunction with linear discriminant analysis (LDA) was utilized in a simple fluorescence chemosensor array that allows for the identification of ATP, ADP, PPi, and Pi from 8 other anions including adenosine 5'-monophosphate (AMP) with 100 % correct classification. Furthermore, the support vector machine algorithm, a machine learning method, allowed for highly accurate quantitation of ATP in the range of 5-100 μM concentration in unknown samples with error <2.5 %.
Collapse
Affiliation(s)
- Mariia Pushina
- Department of Chemistry, Bowling Green State University, Bowling Green, OH, 43403, USA
| | - Sepideh Farshbaf
- Department of Chemistry, Bowling Green State University, Bowling Green, OH, 43403, USA
| | - Wakana Mochida
- Department of Applied Chemistry, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, Tokyo, 192-0397, Japan
| | - Masashi Kanakubo
- Department of Applied Chemistry, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, Tokyo, 192-0397, Japan
| | - Ryuhei Nishiyabu
- Department of Applied Chemistry, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, Tokyo, 192-0397, Japan
| | - Yuji Kubo
- Department of Applied Chemistry, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, Tokyo, 192-0397, Japan
| | - Pavel Anzenbacher
- Department of Chemistry, Bowling Green State University, Bowling Green, OH, 43403, USA
| |
Collapse
|
40
|
Di Bella S. Lewis acidic zinc(II) salen-type Schiff-base complexes: sensing properties and responsive nanostructures. Dalton Trans 2021; 50:6050-6063. [PMID: 33876173 DOI: 10.1039/d1dt00949d] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In this frontier article some peculiar characteristics of Zn(salen)-type Schiff-base complexes are reviewed. The paper is mainly focused on the most recent and relevant achievements on responsive supramolecular nanostructures and sensing properties, both of them related to the Lewis acidic character of the ZnII centre in these molecular species, providing an interpretation of these features. The sensing properties of Zn(salen)-type complexes mainly originate from optical spectroscopic changes associated with the formation of the adducts upon addition of a Lewis base (analyte), either by deaggregation of dimeric species or displacement of the solvent coordinated to the metal centre. In both cases the direct sensing is related either to the Lewis acidic character of the complex as well as to the Lewis basicity of the analyte. The formation of responsive nanostructures with fluorescent, and/or vapochromic, mechanochromic, and thermochromic characteristics is driven by non-mutual intermolecular ZnO interactions, further stabilized by π-π stacking interactions and/or interdigitation of the alkyl side groups. The Lewis acidic character is not a prerogative of Zn(salen)-type complexes of tetradentate Schiff-bases. Many other classes of ZnII complexes can possess this property. A correct interpretation of their chemistry is certainly useful for further development of these classical coordination compounds as new molecular materials.
Collapse
Affiliation(s)
- Santo Di Bella
- Dipartimento di Scienze Chimiche, Università di Catania, I-95125 Catania, Italy.
| |
Collapse
|
41
|
Reinke L, Koch M, Müller-Renno C, Kubik S. Selective sensing of adenosine monophosphate (AMP) over adenosine diphosphate (ADP), adenosine triphosphate (ATP), and inorganic phosphates with zinc(II)-dipicolylamine-containing gold nanoparticles. Org Biomol Chem 2021; 19:3893-3900. [PMID: 33949587 DOI: 10.1039/d1ob00341k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Mixed monolayer-protected gold nanoparticles containing surface-bound triethylene glycol and dipicolylamine groups aggregated in water/methanol, 1 : 2 (v/v) in the presence of nucleotides, if the solution also contained zinc(ii) nitrate to convert the dipicolylamine units into the corresponding zinc complexes. Nanoparticle aggregation could be followed with the naked eye by the colour change of the solution from red to purple followed by nanoparticle precipitation. The sensitivity was highest for adenosine triphosphate (ATP), which could be detected at concentrations >10 μM, and decreased over adenosine diphosphate (ADP) to adenosine monophosphate (AMP), consistent with the typically higher affinity of zinc(ii)-dipicolylamine-derived receptors for higher charged nucleotides. Inorganic sodium diphosphate and triphosphate interfered in the assay by also inducing nanoparticle aggregation. However, while the nucleotide-induced aggregates persisted even at higher analyte concentrations, the nanoparticles that were precipitated with inorganic salts redissolved again when the salt concentration was increased. The thus resulting solutions retained their ability to respond to nucleotides, but they now preferentially responded to AMP. Accordingly, AMP could be sensed selectively at concentrations ≥50 μM in an aqueous environment, even in the presence of other nucleotides and inorganic anions. This work thus introduces a novel approach for the sensing of a nucleotide that is often the most difficult analyte to detect with other assays.
Collapse
Affiliation(s)
- Lena Reinke
- Technische Universität Kaiserslautern, Fachbereich Chemie - Organische Chemie, Erwin-Schrödinger-Straße 54, 67663 Kaiserslautern, Germany.
| | - Marcus Koch
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany
| | - Christine Müller-Renno
- Technische Universität Kaiserslautern, Fachbereich Physik und Forschungszentrum OPTIMAS, AG Grenzflächen, Nanomaterialien und Biophysik, Erwin-Schrödinger-Straße 56, 67663 Kaiserslautern, Germany
| | - Stefan Kubik
- Technische Universität Kaiserslautern, Fachbereich Chemie - Organische Chemie, Erwin-Schrödinger-Straße 54, 67663 Kaiserslautern, Germany.
| |
Collapse
|
42
|
Minagawa S, Fujiwara S, Hashimoto T, Hayashita T. Supramolecular Zn(II)-Dipicolylamine-Azobenzene-Aminocyclodextrin-ATP Complex: Design and ATP Recognition in Water. Int J Mol Sci 2021; 22:ijms22094683. [PMID: 33925230 PMCID: PMC8125763 DOI: 10.3390/ijms22094683] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/19/2021] [Accepted: 04/27/2021] [Indexed: 01/14/2023] Open
Abstract
Cyclodextrins (CyDs) are water-soluble host molecules possessing a nanosized hydrophobic cavity. In the realm of molecular recognition, this cavity is used not only as a recognition site but also as a reaction medium, where a hydrophobic sensor recognizes a guest molecule. Based on the latter concept, we have designed a novel supramolecular sensing system composed of Zn(II)-dipicolylamine metal complex-based azobenzene (1-Zn) and 3A-amino-3A-deoxy-(2AS,3AS)-γ-cyclodextrin (3-NH2-γ-CyD) for sensing adenosine-5′-triphosphate (ATP). 1-Zn showed redshifts in the UV-Vis spectra and induced circular dichroism (ICD) only when both ATP and 3-NH2-γ-CyD were present. Calculations of equilibrium constants indicated that the amino group of 3-NH2-γ-CyD was involved in the formation of supramolecular 1-Zn/3-NH2-γ-CyD/ATP. The Job plot of the ICD spectral response revealed that the stoichiometry of 1-Zn/3-NH2-γ-CyD/ATP was 2:1:1. The pH effect was examined and 1-Zn/3-NH2-γ-CyD/ATP was most stable in the neutral condition. The NOESY spectrum suggested the localization of 1-Zn in the 3-NH2-γ-CyD cavity. Based on the obtained results, the metal coordination interaction of 1-Zn and the electrostatic interaction of 3-NH2-γ-CyD were found to take place for ATP recognition. The “reaction medium approach” enabled us to develop a supramolecular sensing system that undergoes multi-point interactions in water. This study is the first step in the design of a selective sensing system based on a good understanding of supramolecular structures.
Collapse
Affiliation(s)
- Shohei Minagawa
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo 102-8554, Japan; (S.M.); (S.F.)
| | - Shoji Fujiwara
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo 102-8554, Japan; (S.M.); (S.F.)
- Department of Material and Life Chemistry, Faculty of Engineering, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama-shi, Kanagawa 221-8686, Japan
| | - Takeshi Hashimoto
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo 102-8554, Japan; (S.M.); (S.F.)
- Correspondence: (T.H.); (T.H.); Tel.: +81-3-3238-3370 (T.H.); +81-3-3238-3372 (T.H.)
| | - Takashi Hayashita
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo 102-8554, Japan; (S.M.); (S.F.)
- Correspondence: (T.H.); (T.H.); Tel.: +81-3-3238-3370 (T.H.); +81-3-3238-3372 (T.H.)
| |
Collapse
|
43
|
Kadoya Y, Hata M, Tanaka Y, Hirohata A, Hitomi Y, Kodera M. Dicopper(II) Complexes of p-Cresol-2,6-Bis(dpa) Amide-Tether Ligands: Large Enhancement of Oxidative DNA Cleavage, Cytotoxicity, and Mechanistic Insight by Intracellular Visualization. Inorg Chem 2021; 60:5474-5482. [PMID: 33259197 DOI: 10.1021/acs.inorgchem.0c02954] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Dicopper complexes of a new p-cresol-2,6-bis(dpa) amide-tether ligand (HL1), [Cu2(μ-OH2)(μ-1,3-OAc)(L1)](ClO4)2 (1) and [Cu2(μ-1,1-OAc)(μ-1,3-OAc)(L1)]X (X = ClO4 (2a), OAc (2b)) were synthesized and structurally characterized. 2b rapidly cleaves supercoiled plasmid DNA by activating H2O2 at neutral pH to a linear DNA and shows remarkable cytotoxicity in comparison with related complexes. As 2b is more cytotoxic than HL1, the dicopper core is kept in the cell. A boron dipyrromethene (Bodipy)-modified complex of the p-cresol-2,6-bis(dpa) amide-tether ligand having a Bodipy pendant (HL2), [Cu2(μ-OAc)2(L2)](OAc) (3), was synthesized to visualize intracellular behavior, suggesting that 2b attacks the nucleolus and mitochondria. A comet assay clearly shows that 2b does not cleave nuclear DNA. The apoptotic cell death is evidenced from flow cytometry.
Collapse
Affiliation(s)
- Yuki Kadoya
- Department of Molecular Chemistry and Biochemistry, Doshisha University, Kyotanabe, Kyoto 610-0321, Japan
| | - Machi Hata
- Department of Molecular Chemistry and Biochemistry, Doshisha University, Kyotanabe, Kyoto 610-0321, Japan
| | - Yoshiki Tanaka
- Department of Molecular Chemistry and Biochemistry, Doshisha University, Kyotanabe, Kyoto 610-0321, Japan
| | - Atsuhiro Hirohata
- Department of Molecular Chemistry and Biochemistry, Doshisha University, Kyotanabe, Kyoto 610-0321, Japan
| | - Yutaka Hitomi
- Department of Molecular Chemistry and Biochemistry, Doshisha University, Kyotanabe, Kyoto 610-0321, Japan
| | - Masahito Kodera
- Department of Molecular Chemistry and Biochemistry, Doshisha University, Kyotanabe, Kyoto 610-0321, Japan
| |
Collapse
|
44
|
Formica M, Fusi V, Paderni D, Ambrosi G, Inclán M, Clares MP, Verdejo B, García-España E. A Metal-Based Receptor for Selective Coordination and Fluorescent Sensing of Chloride. Molecules 2021; 26:molecules26082352. [PMID: 33919489 PMCID: PMC8073790 DOI: 10.3390/molecules26082352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 12/03/2022] Open
Abstract
A scorpionate Zn2+ complex, constituted by a macrocyclic pyridinophane core attached to a pendant arm containing a fluorescent pyridyl-oxadiazole-phenyl unit (PyPD), has been shown to selectively recognize chloride anions, giving rise to changes in fluorescence emission that are clearly visible under a 365 nm UV lamp. This recognition event has been studied by means of absorption, fluorescence, and NMR spectroscopy, and it involves the intramolecular displacement of the PyPD unit by chloride anions. Moreover, since the chromophore is not removed from the system after the recognition event, the fluorescence can readily be restored by elimination of the bound chloride anion.
Collapse
Affiliation(s)
- Mauro Formica
- Department of Pure and Applied Sciences, University of Urbino “Carlo Bo”, Via della Stazione 4, 61029 Urbino, Italy; (V.F.); (D.P.); (G.A.)
- Correspondence: (M.F.); (M.I.); Tel.: +39-072-230-4883 (M.F.); +34-964-4377 (M.I.)
| | - Vieri Fusi
- Department of Pure and Applied Sciences, University of Urbino “Carlo Bo”, Via della Stazione 4, 61029 Urbino, Italy; (V.F.); (D.P.); (G.A.)
| | - Daniele Paderni
- Department of Pure and Applied Sciences, University of Urbino “Carlo Bo”, Via della Stazione 4, 61029 Urbino, Italy; (V.F.); (D.P.); (G.A.)
| | - Gianluca Ambrosi
- Department of Pure and Applied Sciences, University of Urbino “Carlo Bo”, Via della Stazione 4, 61029 Urbino, Italy; (V.F.); (D.P.); (G.A.)
| | - Mario Inclán
- Institute of Molecular Sciences, University of Valencia, C/Catedrático José Beltrán 2, 46980 Paterna Valencia, Spain; (M.P.C.); (B.V.); (E.G.-E.)
- Correspondence: (M.F.); (M.I.); Tel.: +39-072-230-4883 (M.F.); +34-964-4377 (M.I.)
| | - Maria Paz Clares
- Institute of Molecular Sciences, University of Valencia, C/Catedrático José Beltrán 2, 46980 Paterna Valencia, Spain; (M.P.C.); (B.V.); (E.G.-E.)
| | - Begoña Verdejo
- Institute of Molecular Sciences, University of Valencia, C/Catedrático José Beltrán 2, 46980 Paterna Valencia, Spain; (M.P.C.); (B.V.); (E.G.-E.)
| | - Enrique García-España
- Institute of Molecular Sciences, University of Valencia, C/Catedrático José Beltrán 2, 46980 Paterna Valencia, Spain; (M.P.C.); (B.V.); (E.G.-E.)
| |
Collapse
|
45
|
Van de Wiele C, Ustmert S, De Spiegeleer B, De Jonghe PJ, Sathekge M, Alex M. Apoptosis Imaging in Oncology by Means of Positron Emission Tomography: A Review. Int J Mol Sci 2021; 22:ijms22052753. [PMID: 33803180 PMCID: PMC7963162 DOI: 10.3390/ijms22052753] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 12/02/2022] Open
Abstract
To date, a wide variety of potential PET-apoptosis imaging radiopharmaceuticals targeting apoptosis-induced cell membrane asymmetry and acidification, as well as caspase 3 activation (substrates and inhibitors) have been developed with the purpose of rapidly assessing the response to treatment in cancer patients. Many of these probes were shown to specifically bind to their apoptotic target in vitro and their uptake to be enhanced in the in vivo-xenografted tumours in mice treated by means of chemotherapy, however, to a significantly variable degree. This may, in part, relate to the tumour model used given the fact that different tumour cell lines bear a different sensitivity to a similar chemotherapeutic agent, to differences in the chemotherapeutic concentration and exposure time, as well as to the different timing of imaging performed post-treatment. The best validated cell membrane acidification and caspase 3 targeting radioligands, respectively 18F-ML-10 from the Aposense family and the radiolabelled caspase 3 substrate 18F-CP18, have also been injected in healthy individuals and shown to bear favourable dosimetric and safety characteristics. However, in contrast to, for instance, the 99mTc-HYNIC-Annexin V, neither of both tracers was taken up to a significant degree by the bone marrow in the healthy individuals under study. Removal of white and red blood cells from the bone marrow through apoptosis plays a major role in the maintenance of hematopoietic cell homeostasis. The major apoptotic population in normal bone marrow are immature erythroblasts. While an accurate estimate of the number of immature erythroblasts undergoing apoptosis is not feasible due to their unknown clearance rate, their number is likely substantial given the ineffective quote of the erythropoietic process described in healthy subjects. Thus, the clinical value of both 18F-ML-10 and 18F-CP18 for apoptosis imaging in cancer patients, as suggested by a small number of subsequent clinical phase I/II trials in patients suffering from primary or secondary brain malignancies using 18F-ML-10 and in an ongoing trial in patients suffering from cancer of the ovaries using 18F-CP18, remains to be proven and warrants further investigation.
Collapse
Affiliation(s)
- Christophe Van de Wiele
- Department of Nuclear Medicine AZ Groeninge, 8500 Kortrijk, Belgium; (S.U.); (P.-J.D.J.); (M.A.)
- Department of Diagnostic Sciences, University Ghent, 9000 Ghent, Belgium
- Correspondence: ; Tel.: +32-5663-4120
| | - Sezgin Ustmert
- Department of Nuclear Medicine AZ Groeninge, 8500 Kortrijk, Belgium; (S.U.); (P.-J.D.J.); (M.A.)
| | - Bart De Spiegeleer
- Department of Analytical Chemistry, DRUQUAR, University Ghent, 9000 Ghent, Belgium;
| | - Pieter-Jan De Jonghe
- Department of Nuclear Medicine AZ Groeninge, 8500 Kortrijk, Belgium; (S.U.); (P.-J.D.J.); (M.A.)
| | - Mike Sathekge
- Department of Nuclear Medicine, University of Pretoria, Pretoria 0084, South Africa;
| | - Maes Alex
- Department of Nuclear Medicine AZ Groeninge, 8500 Kortrijk, Belgium; (S.U.); (P.-J.D.J.); (M.A.)
- Department of Morphology and Imaging, University Leuven, 3000 Leuven, Belgium
| |
Collapse
|
46
|
Recent Progress in the Molecular Imaging of Tumor-Treating Bacteria. Nucl Med Mol Imaging 2021; 55:7-14. [PMID: 33643484 DOI: 10.1007/s13139-021-00689-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 01/13/2021] [Accepted: 01/20/2021] [Indexed: 12/20/2022] Open
Abstract
Bacterial cancer therapy (BCT) approaches have been extensively investigated because bacteria can show unique features of strong tropism for cancer, proliferation inside tumors, and antitumor immunity, while bacteria are also possible agents for drug delivery. Despite the rapidly increasing number of preclinical studies using BCT to overcome the limitations of conventional cancer treatments, very few BCT studies have advanced to clinical trials. In patients undergoing BCT, the precise localization and quantification of bacterial density in different body locations is important; however, most clinical trials have used subjective clinical signs and invasive sampling to confirm bacterial colonization. There is therefore a need to improve the visualization of bacterial densities using noninvasive and repetitive in vivo imaging techniques that can facilitate the clinical translation of BCT. In vivo optical imaging techniques using bioluminescence and fluorescence, which are extensively employed to image the therapeutic process of BCT in small animal research, are hard to apply to the human body because of their low penetrative power. Thus, new imaging techniques need to be developed for clinical trials. In this review, we provide an overview of the various in vivo bacteria-specific imaging techniques available for visualizing tumor-treating bacteria in BCT studies.
Collapse
|
47
|
Recent developments in molecular sensor designs for inorganic pyrophosphate detection and biological imaging. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213744] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
48
|
Zwicker VE, Sergeant GE, New EJ, Jolliffe KA. A colorimetric sensor array for the classification of biologically relevant tri-, di- and mono-phosphates. Org Biomol Chem 2021; 19:1017-1021. [DOI: 10.1039/d0ob02397c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A cyclic tetrapeptide paired with six commercially available indicators provides a chemosensing array able to classify biological phosphate derivatives.
Collapse
Affiliation(s)
| | | | - Elizabeth J. New
- The University of Sydney
- School of Chemistry
- Australia
- The University of Sydney Nano Institute (Sydney Nano)
- The University of Sydney
| | - Katrina A. Jolliffe
- The University of Sydney
- School of Chemistry
- Australia
- The University of Sydney Nano Institute (Sydney Nano)
- The University of Sydney
| |
Collapse
|
49
|
Kumar N, Roopa, Bhalla V, Kumar M. Beyond zinc coordination: Bioimaging applications of Zn(II)-complexes. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213550] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
50
|
Bartoli F, Conti L, Romano GM, Massai L, Paoli P, Rossi P, Pietraperzia G, Gellini C, Bencini A. Protonation of cyclen-based chelating agents containing fluorescent moieties. NEW J CHEM 2021. [DOI: 10.1039/d1nj03539h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The fluorescence emission properties of 1,4,7,10-tetraazacyclododecane-based receptors with appended heteroaromatic fluorophores are tuned by photoinduced electron and proton transfer processes.
Collapse
Affiliation(s)
- Francesco Bartoli
- Department of Chemistry “Ugo Schiff”, Università di Firenze, Via della Lastruccia 3, 50019, Sesto Fiorentino, Italy
| | - Luca Conti
- Department of Chemistry “Ugo Schiff”, Università di Firenze, Via della Lastruccia 3, 50019, Sesto Fiorentino, Italy
| | - Giammarco Maria Romano
- Department of Chemistry “Ugo Schiff”, Università di Firenze, Via della Lastruccia 3, 50019, Sesto Fiorentino, Italy
| | - Lara Massai
- Department of Chemistry “Ugo Schiff”, Università di Firenze, Via della Lastruccia 3, 50019, Sesto Fiorentino, Italy
| | - Paola Paoli
- Department of Industrial Engineering, Università di Firenze, Via S. Marta 3, Florence, I-50139, Italy
| | - Patrizia Rossi
- Department of Industrial Engineering, Università di Firenze, Via S. Marta 3, Florence, I-50139, Italy
| | - Giangaetano Pietraperzia
- Department of Chemistry “Ugo Schiff”, Università di Firenze, Via della Lastruccia 3, 50019, Sesto Fiorentino, Italy
- European Laboratory for Non Linear Spectroscopy (LENS), Via Nello Carrara 1, I-50019 Sesto Fiorentino (FI), Italy
| | - Cristina Gellini
- Department of Chemistry “Ugo Schiff”, Università di Firenze, Via della Lastruccia 3, 50019, Sesto Fiorentino, Italy
| | - Andrea Bencini
- Department of Chemistry “Ugo Schiff”, Università di Firenze, Via della Lastruccia 3, 50019, Sesto Fiorentino, Italy
| |
Collapse
|