1
|
Ding XX, Yang WZ, Yao SJ, Tong XY, Ling YX, Jiang ZG, Wang CF, Zhan CH. Au/Ag@polyoxometalate core-shell structures: from nanoparticles to atomically precise nanoclusters. Dalton Trans 2024; 53:15787-15794. [PMID: 39253864 DOI: 10.1039/d4dt02098g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
This review summarizes the progress in the research on polyoxometalate (POM)-decorated gold (Au) and silver (Ag) core-shell structures (Au/Ag@POMs), emphasizing their substantial application potential in catalysis, medicine, and biology. It outlines the central strategies for fabricating Au/Ag@POMs with diverse morphologies and dimensions, leveraging POMs as protective ligands and reducing agents as well as for ligand exchange. Of particular note is the focus on the analysis of the nanoparticle size, shape, and intricate architecture of POM shells using cryo-electron microscopy techniques. By integrating recent findings on atomically precise POM-stabilized nanoclusters, this review delves deeper into understanding surface interface structures, intrinsic atomic architectures, and electronic interactions between POM shells and metallic cores. Collectively, advancements in this field underscore significant strides in the controllable synthesis and precise structural manipulation of Au/Ag@POM architectures, thus paving the way for engineering high-performance metal catalysts.
Collapse
Affiliation(s)
- Xiu-Xia Ding
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Institute of Physical Chemistry, College of Chemistry and Materials Science, Zhejiang Normal University, No.688, Yingbin Avenue, Jinhua, Zhejiang, 321004, China.
| | - Wen-Zhu Yang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Institute of Physical Chemistry, College of Chemistry and Materials Science, Zhejiang Normal University, No.688, Yingbin Avenue, Jinhua, Zhejiang, 321004, China.
| | - Sheng-Jie Yao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Institute of Physical Chemistry, College of Chemistry and Materials Science, Zhejiang Normal University, No.688, Yingbin Avenue, Jinhua, Zhejiang, 321004, China.
| | - Xin-Yu Tong
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Institute of Physical Chemistry, College of Chemistry and Materials Science, Zhejiang Normal University, No.688, Yingbin Avenue, Jinhua, Zhejiang, 321004, China.
| | - Yan-Xiang Ling
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Institute of Physical Chemistry, College of Chemistry and Materials Science, Zhejiang Normal University, No.688, Yingbin Avenue, Jinhua, Zhejiang, 321004, China.
| | - Zhan-Guo Jiang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Institute of Physical Chemistry, College of Chemistry and Materials Science, Zhejiang Normal University, No.688, Yingbin Avenue, Jinhua, Zhejiang, 321004, China.
| | - Chun-Feng Wang
- GuangDong Engineering Technology Research Center of Biomaterials, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, China.
| | - Cai-Hong Zhan
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Institute of Physical Chemistry, College of Chemistry and Materials Science, Zhejiang Normal University, No.688, Yingbin Avenue, Jinhua, Zhejiang, 321004, China.
| |
Collapse
|
2
|
Zeiri O, Hatzis KM, Gomez M, Cook EA, Kincanon M, Murphy CJ. Self-assembly of hard anions around cationic gold nanorods: potential structures for SERS. NANOSCALE ADVANCES 2024:d4na00654b. [PMID: 39415774 PMCID: PMC11472117 DOI: 10.1039/d4na00654b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 09/23/2024] [Indexed: 10/19/2024]
Abstract
The placement of polyoxometalates next to the surface of noble metallic nanoparticles has been found to enhance the surface-enhanced Raman scattering (SERS) effect. The enhancement is believed to stem from either charge (electrostatic attraction) or chemical effects. Anisotropic gold nanorods are recognized as useful nanostructures for SERS, mainly due to the high electric field enhancement at their ends. The presented work examines the use of a polyoxometalate encapsulated gold nanorod for SERS, to assess whether the two enhancement pathways would be synergetic. For this, a gold nanorod-polyoxometalate composite was synthesized by coating cetyltrimethylammonium bromide-stabilized gold nanorods with a silicotungstic Keggin anion through electrostatic attraction. The structure was characterized, confirming that the nanorods have been fully encapsulated by the polyoxometalate. The SERS performance of the composite was assessed in solution using crystal violet as a SERS indicator, finding an analytical enhancement factor of 1.8 × 104 in colloidal solution. The enhancement mechanism was examined first by comparison to gold nanorods stabilized by a cetyltriethylammonium bromide bilayer, cationic thiol bound polyoxometalate, and polyelectrolyte coating. Next, composites made using polyoxometalates of different atomic composition and charge were examined. It was concluded that the polyoxometalate charge had a noticeable effect on the enhancement while the atomic composition did not. Furthermore, high enhancement is observed mainly in cases where the nanorod monolayer allows the sequestration of the dye molecule into the nanoparticle's ligand layer. The proposed mechanism therefore involves the negative charge of the polyoxometalate attracting the positively charged dye, and facilitating the sequestration of the dye within the ligand bilayer, closer to the nanorod's surface.
Collapse
Affiliation(s)
- Offer Zeiri
- Department of Chemistry, University of Illinois Urbana-Champaign Urbana Illinois 61801 USA
- Department of Analytical Chemistry, Nuclear Research Center Negev P.O. Box 9001 Beer-Sheva Israel
| | - Katherine M Hatzis
- Department of Chemistry, University of Illinois Urbana-Champaign Urbana Illinois 61801 USA
| | - Maurea Gomez
- Department of Chemistry, University of Illinois Urbana-Champaign Urbana Illinois 61801 USA
| | - Emily A Cook
- Department of Chemistry, University of Illinois Urbana-Champaign Urbana Illinois 61801 USA
| | - Maegen Kincanon
- Department of Chemistry, University of Illinois Urbana-Champaign Urbana Illinois 61801 USA
| | - Catherine J Murphy
- Department of Chemistry, University of Illinois Urbana-Champaign Urbana Illinois 61801 USA
| |
Collapse
|
3
|
Ma M, Chen J, Dong L, Su Y, Tian S, Zhou Y, Li M. Polyoxometalates and their composites for antimicrobial applications: Advances, mechanisms and future prospects. J Inorg Biochem 2024; 262:112739. [PMID: 39293326 DOI: 10.1016/j.jinorgbio.2024.112739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/30/2024] [Accepted: 09/10/2024] [Indexed: 09/20/2024]
Abstract
The overuse of antibiotics can lead to the development of antibiotic-resistant bacteria, which can be even more difficult to treat and pose an even greater threat to public health. In order to address the issue of antibiotic-resistant bacteria, researchers currently are exploring alternative methods of sterilization that are both effective and sustainable. Polyoxometalates (POMs), as emerging transition metal oxide compounds, exhibit significant potential in various applications due to their remarkable tunable physical and chemical performance, especially in antibacterial fields. They constitute a diverse family of inorganic clusters, characterized by a wide array of composition, structures and charges. Presently, several studies indicated that POM-based composites have garnered extensive attention in the realms of the antibacterial field and may become promising materials for future medical applications. Moreover, this review will focus on exploring the antibacterial properties and mechanisms of different kinds of organic-inorganic hybrid POMs, POM-based composites, films and hydrogels with substantial bioactivity, while POM-based composites have the dual advantages of POMs and other materials. Additionally, the potential antimicrobial mechanisms have also been discussed, mainly encompassing cell wall/membrane disruption, intracellular material leakage, heightened intracellular reactive oxygen species (ROS) levels, and depletion of glutathione (GSH). These findings open up exciting possibilities for POMs as exemplary materials in the antibacterial arena and expand their prospective applications.
Collapse
Affiliation(s)
- Min Ma
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Jiayin Chen
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Liuyang Dong
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Yue Su
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China; International Joint Research Laboratory for Cell Medical Engineering of Henan, Kaifeng, Henan 475000, China.
| | - Shufang Tian
- School of Energy Science and Technology, Henan University, Zhengzhou 450046, China.
| | - Yuemin Zhou
- Department of Plastic and Reconstructive Surgery, Huaihe Hospital of Henan University, Kaifeng, Henan 475000, China; International Joint Research Laboratory for Cell Medical Engineering of Henan, Kaifeng, Henan 475000, China
| | - Mingxue Li
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China; Department of Plastic and Reconstructive Surgery, Huaihe Hospital of Henan University, Kaifeng, Henan 475000, China.
| |
Collapse
|
4
|
Xing S, Ma X, Gu Q, Ma N, Zhang Z, Han G, Huang R, Feng X, Yang B, Duan C, Liu Y. Cluster-Cluster Co-Nucleation Induced Defective Polyoxometalate-Based Metal-Organic Frameworks for Efficient Tandem Catalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400410. [PMID: 38721986 DOI: 10.1002/smll.202400410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/29/2024] [Indexed: 10/01/2024]
Abstract
The construction of defective sites is one of the effective strategies to create high-activity Metal-Organic frameworks (MOFs) catalysts. However, traditional synthesis methods usually suffer from cumbersome synthesis steps and disordered defect structures. Herein, a cluster-cluster co-nucleation (CCCN) strategy is presented that involves the in situ introduction of size-matched functional polyoxometalates (H6P2W18O62, {P2W18}) to intervene the nucleation process of cluster-based MOFs (UiO-66), achieving one-step inducement of exposed defective sites without redundant post-processing. POM-induced UiO-66 ({P2W18}-0.1@UiO-66) exhibits a classical reo topology for well-defined cluster defects. Moreover, the defective sites and the interaction between POM and skeletal cluster nodes are directly observed by Integrated Differential Phase Contrast in Scanning Transmission Electron Microscopy (iDPC-STEM). Owing to the molecular-level proximity between defective sites and POM in the same nano-reaction space, {P2W18}-0.1@UiO-66 exhibits efficient tandem catalysis in the preparation of γ-valerolactone (γ-GVL) from laevulinic acid (LA) by the combination of Lewis and Brønsted acids with 11 times higher performance than defective UiO-66 formed by conventional coordination modulation strategy. The CCCN strategy is applicable to different POM and has the potential to be extended to other cluster-based MOFs, which will pave a new way for the construction of functional MOFs with multi-centered synergistic catalysis.
Collapse
Affiliation(s)
- Songzhu Xing
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Xujiao Ma
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Qingqing Gu
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Nana Ma
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Zhong Zhang
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Guoying Han
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Rui Huang
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Xiao Feng
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Bing Yang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Chunying Duan
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Yiwei Liu
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
5
|
Xia K, Yatabe T, Yamaguchi K, Suzuki K. Multidentate polyoxometalate modification of metal nanoparticles with tunable electronic states. Dalton Trans 2024; 53:11088-11093. [PMID: 38885120 DOI: 10.1039/d4dt01218f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
To respond to the increasing demands for practical applications, stabilization and property modulation of metal nanoparticles have emerged as a key research subject. Herein, we present a viable protocol for preparing small metal nanoparticles (<5 nm; Ag, Pd, Pt, and Ru) via multidentate polyoxometalate (POM, [SiW9O34]10-) modification. In addition to enhancing stability, the POMs can modulate the electronic states of metal nanoparticles. Moreover, immobilization of the POM-modified metal nanoparticles on solid supports enables further tuning of the electronic states via a cooperative effect between the POMs and the supports without altering the particle size. Notably, POM-modified Pd nanoparticles on carbon support exhibited superior catalytic activity and selectivity in hydrogenation reactions in comparison with the catalyst without the POM modification.
Collapse
Affiliation(s)
- Kang Xia
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Takafumi Yatabe
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Kazuya Yamaguchi
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Kosuke Suzuki
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| |
Collapse
|
6
|
Mallick L, Annadata HV, Chakraborty B. Vacancy-Rich SnO 2 Quantum Dot Stabilized by Polyoxomolybdate as Electrocatalyst for Selective NH 3 Production. ACS APPLIED MATERIALS & INTERFACES 2024; 16:32385-32393. [PMID: 38873812 DOI: 10.1021/acsami.4c04466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
The pronounced conductivity of tin dioxide (SnO2) nanoparticles makes it an ideal multifunctional electrode material, while the challenge is to stabilize the quantum dot (QD) SnO2 nanocore in water. An Anderson-type polyoxomolybdate, (NH4)6[Mo7O24], is employed as an inorganic ligand to stabilize a ca. 6 nm SnO2 QD (Mox@SnO2). X-ray scattering and diffraction studies confirm the tetragonal SnO2 nanocore in Mox@SnO2. Elemental analyses are in good agreement with the mass spectrometric detection of the [Mo7O24]6- cluster present in Mox@SnO2. The ionic POMs attached to the SnO2 surface through [Mo-O-Sn] covalent linkages have been established by surface zeta potential, shift of the [Mo = O]t Raman vibration, and extended X-ray absorption fine structure (EXAFS) analyses. The presence of the [Mo7O24]6- cluster in the Mox@SnO2 is responsible for the remarkable aqueous stability of Mox@SnO2 in the pH range of 3-9. Dominant oxygen vacancy in the SnO2 core, identified by EXAFS data and the anisotropic electron paramagnetic resonance (EPR) signals (g ∼ 2.4 and 1.9), results in facile electronic conduction in Mox@SnO2 while being deposited on the electrode surface. Mox@SnO2 acts as an active catalyst for the electrocatalytic nitrate reduction (eNOR) to ammonia with 94% faradaic efficiency (FE) at -0.2 V vs RHE and a yield rate of 28.9 mg h-1 cm-2. The stability of Mox@SnO2 in acidic pH provides scope to reuse the Mox@SnO2 electrode at least four times with notable NH3 selectivity and a superior production rate (239.06 mmol g-1(cat) h-1). This study demonstrates the essential role of POM in stabilizing SnO2 QD, harnessing its electrochemical activity toward electrocatalytic ammonia production.
Collapse
Affiliation(s)
- Laxmikanta Mallick
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas New Delhi 110016, India
| | - Harshini V Annadata
- Beamline Development and Application Section, Bhabha Atomic Research Center, Trombay Mumbai 400085, India
| | - Biswarup Chakraborty
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas New Delhi 110016, India
| |
Collapse
|
7
|
Bruckschlegel C, Pasquier C, Toquer G, Girard L, Odorico M, Lautru J, Diat O, Bauduin P. Toward Distinguishing between the Superchaotropic and Hydrophobic Characters of Nanometric-Sized Ions in Interaction with PEGylated Surfaces. J Phys Chem Lett 2024; 15:4229-4236. [PMID: 38634114 DOI: 10.1021/acs.jpclett.4c00710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
In this study, we explore the superchaotropic effect of various polyoxometalate or boron cluster nano-ions on hydrophilic neutral surfaces. Nano-ions, characterized by low charge densities, exhibit strong adsorption on non-ionic hydrophilic surfaces like PEGylated micelles. This adsorption phenomenon was attributed to the enthalpically favorable dehydration of nano-ions, the so-called superchaotropic effect. Here, we investigate the adsorption of three nano-ions, α-SiW12O404-, α-PW12O403-, and B12I122-, with decreasing charge density or increasing superchaotropicity (or hydrophobicity), on hydrophilic solid surfaces, PEGylated gold nanoparticles, and PEGylated gold-coated quartz crystal. Solid surfaces are devoid of hydrophobic regions, enabling the study of the subtle nuance between hydrophobic and superchaotropic effects. Unlike adsorption on PEGylated micelles, the adsorption constant decreases with a reduced charge density, aligning with the well-established principle that hydrophobic ions do not adsorb on hydrophilic surfaces. This research improves our understanding of the subtle difference between superchaotropic and hydrophobic effects in nano-ion adsorption phenomena.
Collapse
Affiliation(s)
- Christoph Bruckschlegel
- Institute of Analytical Chemistry, Chemo- and Biosensors University of Regensburg, 93053 Regensburg, Germany
- ICSM, CEA, CNRS, ENSCM, Univ Montpellier, Marcoule, 30207 Bagnols sur Cèze Cedex, France
| | - Coralie Pasquier
- ICSM, CEA, CNRS, ENSCM, Univ Montpellier, Marcoule, 30207 Bagnols sur Cèze Cedex, France
| | - Guillaume Toquer
- ICSM, CEA, CNRS, ENSCM, Univ Montpellier, Marcoule, 30207 Bagnols sur Cèze Cedex, France
| | - Luc Girard
- ICSM, CEA, CNRS, ENSCM, Univ Montpellier, Marcoule, 30207 Bagnols sur Cèze Cedex, France
| | - Michael Odorico
- ICSM, CEA, CNRS, ENSCM, Univ Montpellier, Marcoule, 30207 Bagnols sur Cèze Cedex, France
| | - Joseph Lautru
- ICSM, CEA, CNRS, ENSCM, Univ Montpellier, Marcoule, 30207 Bagnols sur Cèze Cedex, France
| | - Olivier Diat
- ICSM, CEA, CNRS, ENSCM, Univ Montpellier, Marcoule, 30207 Bagnols sur Cèze Cedex, France
| | - Pierre Bauduin
- ICSM, CEA, CNRS, ENSCM, Univ Montpellier, Marcoule, 30207 Bagnols sur Cèze Cedex, France
| |
Collapse
|
8
|
Ma T, Yan R, Wu X, Wang M, Yin B, Li S, Cheng C, Thomas A. Polyoxometalate-Structured Materials: Molecular Fundamentals and Electrocatalytic Roles in Energy Conversion. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310283. [PMID: 38193756 DOI: 10.1002/adma.202310283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/02/2024] [Indexed: 01/10/2024]
Abstract
Polyoxometalates (POMs), a kind of molecular metal oxide cluster with unique physical-chemical properties, have made essential contributions to creating efficient and robust electrocatalysts in renewable energy systems. Due to the fundamental advantages of POMs, such as the diversity of molecular structures and large numbers of redox active sites, numerous efforts have been devoted to extending their application areas. Up to now, various strategies of assembling POM molecules into superstructures, supporting POMs on heterogeneous substrates, and POMs-derived metal compounds have been developed for synthesizing electrocatalysts. From a multidisciplinary perspective, the latest advances in creating POM-structured materials with a unique focus on their molecular fundamentals, electrocatalytic roles, and the recent breakthroughs of POMs and POM-derived electrocatalysts, are systematically summarized. Notably, this paper focuses on exposing the current states, essences, and mechanisms of how POM-structured materials influence their electrocatalytic activities and discloses the critical requirements for future developments. The future challenges, objectives, comparisons, and perspectives for creating POM-structured materials are also systematically discussed. It is anticipated that this review will offer a substantial impact on stimulating interdisciplinary efforts for the prosperities and widespread utilizations of POM-structured materials in electrocatalysis.
Collapse
Affiliation(s)
- Tian Ma
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Rui Yan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Xizheng Wu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Mao Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - Bo Yin
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Shuang Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Arne Thomas
- Department of Chemistry, Technische Universität Berlin, Hardenbergstraße 40, 10623, Berlin, Germany
| |
Collapse
|
9
|
Xia K, Yatabe T, Yonesato K, Kikkawa S, Yamazoe S, Nakata A, Ishikawa R, Shibata N, Ikuhara Y, Yamaguchi K, Suzuki K. Ultra-stable and highly reactive colloidal gold nanoparticle catalysts protected using multi-dentate metal oxide nanoclusters. Nat Commun 2024; 15:851. [PMID: 38321026 PMCID: PMC10847421 DOI: 10.1038/s41467-024-45066-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 01/11/2024] [Indexed: 02/08/2024] Open
Abstract
Owing to their remarkable properties, gold nanoparticles are applied in diverse fields, including catalysis, electronics, energy conversion and sensors. However, for catalytic applications of colloidal gold nanoparticles, the trade-off between their reactivity and stability is a significant concern. Here we report a universal approach for preparing stable and reactive colloidal small (~3 nm) gold nanoparticles by using multi-dentate polyoxometalates as protecting agents in non-polar solvents. These nanoparticles exhibit exceptional stability even under conditions of high concentration, long-term storage, heating and addition of bases. Moreover, they display excellent catalytic performance in various oxidation reactions of organic substrates using molecular oxygen as the sole oxidant. Our findings highlight the ability of inorganic multi-dentate ligands with structural stability and robust steric and electronic effects to confer stability and reactivity upon gold nanoparticles. This approach can be extended to prepare metal nanoparticles other than gold, enabling the design of novel nanomaterials with promising applications.
Collapse
Affiliation(s)
- Kang Xia
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Takafumi Yatabe
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Kentaro Yonesato
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Soichi Kikkawa
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Tokyo, Japan
| | - Seiji Yamazoe
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Tokyo, Japan
| | - Ayako Nakata
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Ibaraki, Japan
| | - Ryo Ishikawa
- Institute of Engineering Innovation, The University of Tokyo, Tokyo, Japan
| | - Naoya Shibata
- Institute of Engineering Innovation, The University of Tokyo, Tokyo, Japan
| | - Yuichi Ikuhara
- Institute of Engineering Innovation, The University of Tokyo, Tokyo, Japan
| | - Kazuya Yamaguchi
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Kosuke Suzuki
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
10
|
Goberna-Ferrón S, Cots L, Perxés Perich M, Zhu JJ, Gómez-Romero P. Polyoxometalate-Stabilized Silver Nanoparticles and Hybrid Electrode Assembly Using Activated Carbon. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2241. [PMID: 37570559 PMCID: PMC10421052 DOI: 10.3390/nano13152241] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 07/28/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023]
Abstract
The intersection between the field of hybrid materials and that of electrochemistry is a quickly expanding area. Hybrid combinations usually consist of two constituents, but new routes toward more complex and versatile electroactive hybrid designs are quickly emerging. The objective of the present work is to explore novel triple hybrid material integrating polyoxometalates (POMs), silver nanoparticles (Ag0 NPs), and activated carbon (AC) and to demonstrate its use as a hybrid electrode in a symmetric supercapacitor. The tri-component nanohybrid (AC/POM-Ag0 NPs) was fabricated through the combination of AC with pre-synthesized ∼27 nm POM-protected Ag0 NPs (POM-Ag0 NPs). The POM-Ag0 NPs were prepared using a green electrochemical method and characterized via UV-vis and IR spectroscopy, electron microscopy, dynamic light scattering (DLS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and cyclic voltammetry (CV). Afterward, the AC/POM-Ag0 NPs ternary nanocomposite material was constructed and characterized. The electrochemical behavior of AC/POM-Ag0 NPs' modified electrodes reveal that the nanomaterial is electroactive and exhibits a moderately higher specific capacitance (81 F/g after 20 cycles) than bare AC electrodes (75 F/g) in a symmetrical supercapacitor configuration in the voltage range 0 to 0.75 V and 20 mV/s, demonstrating the potential use of this type of tri-component nanohybrid for electrochemical applications.
Collapse
Affiliation(s)
- Sara Goberna-Ferrón
- Instituto Universitario de Tecnología Química (CSIC-UPV), Universitat Politècnica de València, Avda. De los Naranjos s/n, 46022 Valencia, Spain
| | - Laia Cots
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain (P.G.-R.)
| | - Marta Perxés Perich
- Materials Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Jun-Jie Zhu
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain (P.G.-R.)
| | - Pedro Gómez-Romero
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain (P.G.-R.)
| |
Collapse
|
11
|
Yonesato K, Yanai D, Yamazoe S, Yokogawa D, Kikuchi T, Yamaguchi K, Suzuki K. Surface-exposed silver nanoclusters inside molecular metal oxide cavities. Nat Chem 2023; 15:940-947. [PMID: 37291453 DOI: 10.1038/s41557-023-01234-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 05/09/2023] [Indexed: 06/10/2023]
Abstract
The surfaces of metal nanoclusters, including their interface with metal oxides, exhibit a high reactivity that is attractive for practical purposes. This high reactivity, however, has also hindered the synthesis of structurally well-defined hybrids of metal nanoclusters and metal oxides with exposed surfaces and/or interfaces. Here we report the sequential synthesis of structurally well-defined {Ag30} nanoclusters in the cavity of ring-shaped molecular metal oxides known as polyoxometalates. The {Ag30} nanoclusters possess exposed silver surfaces yet are stabilized both in solution and the solid state by the surrounding ring-shaped polyoxometalate species. The clusters underwent a redox-induced structural transformation without undesirable agglomeration or decomposition. Furthermore, {Ag30} nanoclusters showed high catalytic activity for the selective reduction of several organic functional groups using H2 under mild reaction conditions. We believe that these findings will serve for the discrete synthesis of surface-exposed metal nanoclusters stabilized by molecular metal oxides, which may in turn find applications in, for example, the fields of catalysis and energy conversion.
Collapse
Affiliation(s)
- Kentaro Yonesato
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Daiki Yanai
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Seiji Yamazoe
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Tokyo, Japan
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Kawaguchi, Japan
| | - Daisuke Yokogawa
- Graduate School of Arts and Science, The University of Tokyo, Tokyo, Japan
| | | | - Kazuya Yamaguchi
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Tokyo, Japan.
| | - Kosuke Suzuki
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Tokyo, Japan.
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Kawaguchi, Japan.
| |
Collapse
|
12
|
Streb C. Ag wrapped up. Nat Chem 2023; 15:899-900. [PMID: 37291454 DOI: 10.1038/s41557-023-01217-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Affiliation(s)
- Carsten Streb
- Department of Chemistry, Johannes Gutenberg University Mainz, Mainz, Germany.
| |
Collapse
|
13
|
Korenev VS, Burilova EA, Volchek VV, Benassi E, Amirov RR, Sokolov MN, Abramov PA. NMR-Relaxometric Investigation of Mn(II)-Doped Polyoxometalates in Aqueous Solutions. Int J Mol Sci 2023; 24:ijms24087308. [PMID: 37108471 PMCID: PMC10139238 DOI: 10.3390/ijms24087308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 04/08/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Solution behavior of K;5[(Mn(H2O))PW11O39]·7H2O (1), Na3.66(NH4)4.74H3.1[(MnII(H2O))2.75(WO(H2O))0.25(α-B-SbW9O33)2]·27H2O (2), and Na4.6H3.4[(MnII(H2O)3)2(WO2)2(β-B-TeW9O33)2]·19H2O (3) was studied with NMR-relaxometry and HPLC-ICP-AES (High Performance Liquid Chromatography coupled with Inductively Coupled Plasma Atomic Emission Spectroscopy). According to the data, the [(Mn(H2O))PW11O39]5- Keggin-type anion is the most stable in water among the tested complexes, even in the presence of ethylenediaminetetraacetic acid (EDTA) or diethylenetriaminepentaacetic acid (DTPA). Aqueous solutions of 2 and 3 anions are less stable and contain other species resulting from dissociation of Mn2+. Quantum chemical calculations show the change in Mn2+ electronic state between [Mn(H2O)6]2+ and [(Mn(H2O))PW11O39]5-.
Collapse
Affiliation(s)
- Vladimir S Korenev
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Akad. Lavrentiev Ave., Novosibirsk 630090, Russia
| | - Evgenia A Burilova
- A.M. Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya Str. 18, Kazan 420008, Russia
- A.E. Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov Street 8, Kazan 420088, Russia
| | - Victoria V Volchek
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Akad. Lavrentiev Ave., Novosibirsk 630090, Russia
| | - Enrico Benassi
- Faculty of Natural Sciences, Novosibirsk State University, 1 Pirogova Str., Novosibirsk 630090, Russia
| | - Rustem R Amirov
- A.M. Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya Str. 18, Kazan 420008, Russia
| | - Maxim N Sokolov
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Akad. Lavrentiev Ave., Novosibirsk 630090, Russia
| | - Pavel A Abramov
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Akad. Lavrentiev Ave., Novosibirsk 630090, Russia
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634034, Russia
| |
Collapse
|
14
|
Lu X, Geletii YV, Cheng T, Hill CL. Role of Multiple Vanadium Centers on Redox Buffering and Rates of Polyvanadomolybdate-Cu(II)-Catalyzed Aerobic Oxidations. Inorg Chem 2023; 62:5822-5830. [PMID: 36977374 PMCID: PMC10091476 DOI: 10.1021/acs.inorgchem.3c00469] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
A recent report established that the tetrabutylammonium (TBA) salt of hexavanadopolymolybdate TBA4H5[PMo6V6O40] (PV6Mo6) serves as the redox buffer with Cu(II) as a co-catalyst for aerobic deodorization of thiols in acetonitrile. Here, we document the profound impact of vanadium atom number (x = 0-4 and 6) in TBA salts of PVxMo12-xO40(3+x)- (PVMo) on this multicomponent catalytic system. The PVMo cyclic voltammetric peaks from 0 to -2000 mV vs Fc/Fc+ under catalytic conditions (acetonitrile, ambient T) are assigned and clarify that the redox buffering capability of the PVMo/Cu catalytic system derives from the number of steps, the number of electrons transferred each step, and the potential ranges of each step. All PVMo are reduced by varying numbers of electrons, from 1 to 6, in different reaction conditions. Significantly, PVMo with x ≤ 3 not only has much lower activity than when x > 3 (for example, the turnover frequencies (TOF) of PV3Mo9 and PV4Mo8 are 8.9 and 48 s-1, respectively) but also, unlike the latter, cannot maintain steady reduction states when the Mo atoms in these polyoxometalate (POMs) are also reduced. Stopped-flow kinetics measurements reveal that Mo atoms in Keggin PVMo exhibit much slower electron transfer rates than V atoms. There are two kinetic arguments: (a) In acetonitrile, the first formal potential of PMo12 is more positive than that of PVMo11 (-236 and -405 mV vs Fc/Fc+); however, the initial reduction rates are 1.06 × 10-4 s-1 and 0.036 s-1 for PMo12 and PVMo11, respectively. (b) In aqueous sulfate buffer (pH = 2), a two-step kinetics is observed for PVMo11 and PV2Mo10, where the first and second steps are assigned to reduction of the V and Mo centers, respectively. Since fast and reversible electron transfers are key for the redox buffering behavior, the slower electron transfer kinetics of Mo preclude these centers functioning in redox buffering that maintains the solution potential. We conclude that PVMo with more vanadium atoms allows the POM to undergo more and faster redox changes, which enables the POM to function as a redox buffer dictating far higher catalytic activity.
Collapse
Affiliation(s)
- Xinlin Lu
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Yurii V Geletii
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Ting Cheng
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Craig L Hill
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
15
|
Lee J, Lee S, Choi Y, Lee S. Treatment of Semiconductor Wastewater Containing Tetramethylammonium Hydroxide (TMAH) Using Nanofiltration, Reverse Osmosis, and Membrane Capacitive Deionization. MEMBRANES 2023; 13:336. [PMID: 36984723 PMCID: PMC10051574 DOI: 10.3390/membranes13030336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 06/18/2023]
Abstract
As the semiconductor industry has grown tremendously over the last decades, its environmental impact has become a growing concern, including the withdrawal of fresh water and the generation of harmful wastewater. Tetramethylammonium hydroxide (TMAH), one of the toxic compounds inevitably found in semiconductor wastewater, should be removed before the wastewater is discharged. However, there are few affordable technologies available to remove TMAH from semiconductor wastewater. Therefore, the objective of this study was to compare different treatment options, such as Membrane Capacitive Deionization (MCDI), Reverse Osmosis (RO), and Nanofiltration (NF), for the treatment of semiconductor wastewater containing TMAH. A series of bench-scale experimental setups were conducted to investigate the removal efficiencies of TMAH, TDS, and TOC. The results confirmed that the MCDI process showed its great ability as well as RO to remove them, while the NF could not make a sufficient removal under identical recovery conditions. MCDI showed higher removals of monovalent ions, including TMA+, than divalent ions. Moreover, the removal of TMA+ by MCDI was higher under the basic solution than under both neutral and acidic conditions. These results were the first to demonstrate that MCDI has significant potential for treating semiconductor wastewater that contains TMAH.
Collapse
Affiliation(s)
- Juyoung Lee
- School of Civil and Environmental Engineering, Kookmin University, 77, Jeongneung-ro, Seongbuk-gu, Seoul 02707, Republic of Korea; (J.L.)
| | - Song Lee
- School of Civil and Environmental Engineering, Kookmin University, 77, Jeongneung-ro, Seongbuk-gu, Seoul 02707, Republic of Korea; (J.L.)
| | - Yongjun Choi
- School of Civil and Environmental Engineering, Kookmin University, 77, Jeongneung-ro, Seongbuk-gu, Seoul 02707, Republic of Korea; (J.L.)
| | - Sangho Lee
- School of Civil and Environmental Engineering, Kookmin University, 77, Jeongneung-ro, Seongbuk-gu, Seoul 02707, Republic of Korea; (J.L.)
- Desalination Technologies Research Institute (DTRI), Saline Water Conversion Corporation (SWCC), WQ36+XJP, Al Jubayl 35417, Saudi Arabia
| |
Collapse
|
16
|
González A, Grágeda M, Ushak S. Modeling and Validation of a LiOH Production Process by Bipolar Membrane Electrodialysis from Concentrated LiCl. MEMBRANES 2023; 13:187. [PMID: 36837690 PMCID: PMC9963233 DOI: 10.3390/membranes13020187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/23/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Electromembrane processes for LiOH production from lithium brines obtained from solar evaporation ponds in production processes of the Salar de Atacama are considered. In order to analyze high concentrations' effect on ion exchange membranes, the use of concentrated LiCl aqueous solutions in a bipolar membrane electrodialysis process to produce LiOH solutions higher than 3.0% by mass is initially investigated. For this purpose, a mathematical model based on the Nernst-Planck equation is developed and validated, and a parametric study is simulated considering as input variables electrolyte concentrations, applied current density, stack design, process design and membrane characteristics. As a novelty, this mathematical model allows estimating LiOH production in a wide concentration range of LiCl, HCl and LiOH solutions and its effect on the process, providing data on final LiOH solution purity, current efficiency, specific electricity consumption and membrane performance. Among the main results, a concentration of 4.0% to 4.5% by LiOH mass is achieved, with a solution purity higher than 95% by mass and specific electrical energy consumption close to 4.0 kWh/kg. The work performed provides key information on process sensitivity to operating conditions and process design characteristics. These results serve as a guide in the application of this technology to lithium hydroxide production.
Collapse
|
17
|
Xia K, Yamaguchi K, Suzuki K. Recent Advances in Hybrid Materials of Metal Nanoparticles and Polyoxometalates. Angew Chem Int Ed Engl 2023; 62:e202214506. [PMID: 36282183 DOI: 10.1002/anie.202214506] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Indexed: 11/25/2022]
Abstract
Polyoxometalates (POMs), anionic metal-oxygen nanoclusters that possess various composition-dependent properties, are widely used to modify the existing properties of metal nanoparticles and to endow them with new ones. Herein, we present an overview of recent advances in hybrid materials that consist of metal nanoparticles and POMs. Following a brief introduction on the inception of this area and its development, representative properties and applications of these materials in various fields such as electrochemistry, photochemistry, and catalysis are introduced. We discuss how the combination of two classic inorganic materials facilitates cooperative and synergistic behavior, and we also give personal perspectives on the future development of this field.
Collapse
Affiliation(s)
- Kang Xia
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Kazuya Yamaguchi
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Kosuke Suzuki
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| |
Collapse
|
18
|
Breibeck J, Gumerova NI, Rompel A. Oxo-Replaced Polyoxometalates: There Is More than Oxygen. ACS ORGANIC & INORGANIC AU 2022; 2:477-495. [PMID: 36510613 PMCID: PMC9732882 DOI: 10.1021/acsorginorgau.2c00014] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 08/10/2022] [Accepted: 08/10/2022] [Indexed: 02/02/2023]
Abstract
The presence of oxo-ligands is one of the main required characteristics for polyoxometalates (POMs), although some oxygen ions in a metallic environment can be replaced by other nonmetals, while maintaining the POM structure. The replacement of oxo-ligands offers a valuable approach to tune the charge distribution and connected properties like reducibility and hydrolytic stability of POMs for the development of tailored compounds. By assessing the reported catalytic and biological applications and connecting them to POM structures, the present review provides a guideline for synthetic approaches and aims to stimulate further applications where the oxo-replaced compounds are superior to their oxo-analogues. Oxo-replacement in POMs deserves more attention as a valuable tool to form chemically activated precursors for the synthesis of novel structures or to upgrade established structures with extraordinary properties for challenging applications.
Collapse
|
19
|
Anticancer, antimicrobial and biomedical features of polyoxometalate as advanced materials: A review study. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
20
|
Fabre B, Falaise C, Cadot E. Polyoxometalates-Functionalized Electrodes for (Photo)Electrocatalytic Applications: Recent Advances and Prospects. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Bruno Fabre
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226, F-35000 Rennes, France
| | - Clément Falaise
- Institut Lavoisier de Versailles (UMR-CNRS 8180), UVSQ, Université Paris-Saclay, 45 Avenue des Etats-Unis, 78000 Versailles, France
| | - Emmanuel Cadot
- Institut Lavoisier de Versailles (UMR-CNRS 8180), UVSQ, Université Paris-Saclay, 45 Avenue des Etats-Unis, 78000 Versailles, France
| |
Collapse
|
21
|
Xia K, Yatabe T, Yonesato K, Yabe T, Kikkawa S, Yamazoe S, Nakata A, Yamaguchi K, Suzuki K. Supported Anionic Gold Nanoparticle Catalysts Modified Using Highly Negatively Charged Multivacant Polyoxometalates. Angew Chem Int Ed Engl 2022; 61:e202205873. [DOI: 10.1002/anie.202205873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Kang Xia
- Department of Applied Chemistry School of Engineering The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-8656 Japan
| | - Takafumi Yatabe
- Department of Applied Chemistry School of Engineering The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-8656 Japan
| | - Kentaro Yonesato
- Department of Applied Chemistry School of Engineering The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-8656 Japan
| | - Tomohiro Yabe
- Department of Applied Chemistry School of Engineering The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-8656 Japan
| | - Soichi Kikkawa
- Department of Chemistry Graduate School of Science Tokyo Metropolitan University 1-1 Minami Osawa Hachioji Tokyo 192-0397 Japan
| | - Seiji Yamazoe
- Department of Chemistry Graduate School of Science Tokyo Metropolitan University 1-1 Minami Osawa Hachioji Tokyo 192-0397 Japan
- Precursory Research for Embryonic Science and Technology (PRESTO) Japan Science and Technology Agency (JST) 4-1-8 Honcho Kawaguchi Saitama 332-0012 Japan
| | - Ayako Nakata
- Precursory Research for Embryonic Science and Technology (PRESTO) Japan Science and Technology Agency (JST) 4-1-8 Honcho Kawaguchi Saitama 332-0012 Japan
- International Center for Materials Nanoarchitectonics (WPI-MANA) National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
| | - Kazuya Yamaguchi
- Department of Applied Chemistry School of Engineering The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-8656 Japan
| | - Kosuke Suzuki
- Department of Applied Chemistry School of Engineering The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-8656 Japan
- Precursory Research for Embryonic Science and Technology (PRESTO) Japan Science and Technology Agency (JST) 4-1-8 Honcho Kawaguchi Saitama 332-0012 Japan
| |
Collapse
|
22
|
Zhu Y, Wang Z, Li D, Zhu YD, Li QH, Li DS, Zhang L. Silver-Templated γ-Keggin Alkyltin-Oxo Cluster: Electronic Structure and Optical Limiting Effect. Angew Chem Int Ed Engl 2022; 61:e202202853. [PMID: 35478311 DOI: 10.1002/anie.202202853] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Indexed: 11/06/2022]
Abstract
As one of the most representative polyoxometalate (POM) structures, Keggin clusters have attracted considerable attention. Nevertheless, the noble-metal-templated Keggin structure has not been reported to date. In this work, for the first time, a Ag atom was successfully incorporated to template the formation of a γ-Keggin alkytin-oxo cluster. Moreover, the central Ag atom has brought a significant heavy atom effect, showing the important influence on the electronic structure and optical properties. Theoretical calculations demonstrate that the Ag atom affects the frontier molecular orbitals and excited states of the AgSn12 cluster, and also the process of electron transfer. The solid structure of the AgSn12 cluster exhibits a significant third-order nonlinear optical (NLO) response, and an excellent optical limiting effect has been experimentally verified. The success of this work opens the way for the construction and optical properties modulation of noble metal templated Keggin structures.
Collapse
Affiliation(s)
- Yu Zhu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China.,Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, College of Materials and Chemical Engineering, China Three Gorges University, Yichang, 443002, P. R. China
| | - Zirui Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China.,School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
| | - Dejing Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
| | - Yin-Di Zhu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
| | - Qiao-Hong Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
| | - Dong-Sheng Li
- Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, College of Materials and Chemical Engineering, China Three Gorges University, Yichang, 443002, P. R. China
| | - Lei Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
| |
Collapse
|
23
|
Xia K, Yatabe T, Yonesato K, Yabe T, Kikkawa S, Yamazoe S, Nakata A, Yamaguchi K, Suzuki K. Supported Anionic Gold Nanoparticle Catalysts Modified Using Highly Negatively Charged Multivacant Polyoxometalates. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Kang Xia
- Department of Applied Chemistry School of Engineering The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-8656 Japan
| | - Takafumi Yatabe
- Department of Applied Chemistry School of Engineering The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-8656 Japan
| | - Kentaro Yonesato
- Department of Applied Chemistry School of Engineering The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-8656 Japan
| | - Tomohiro Yabe
- Department of Applied Chemistry School of Engineering The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-8656 Japan
| | - Soichi Kikkawa
- Department of Chemistry Graduate School of Science Tokyo Metropolitan University 1-1 Minami Osawa Hachioji Tokyo 192-0397 Japan
| | - Seiji Yamazoe
- Department of Chemistry Graduate School of Science Tokyo Metropolitan University 1-1 Minami Osawa Hachioji Tokyo 192-0397 Japan
- Precursory Research for Embryonic Science and Technology (PRESTO) Japan Science and Technology Agency (JST) 4-1-8 Honcho Kawaguchi Saitama 332-0012 Japan
| | - Ayako Nakata
- Precursory Research for Embryonic Science and Technology (PRESTO) Japan Science and Technology Agency (JST) 4-1-8 Honcho Kawaguchi Saitama 332-0012 Japan
- International Center for Materials Nanoarchitectonics (WPI-MANA) National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
| | - Kazuya Yamaguchi
- Department of Applied Chemistry School of Engineering The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-8656 Japan
| | - Kosuke Suzuki
- Department of Applied Chemistry School of Engineering The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-8656 Japan
- Precursory Research for Embryonic Science and Technology (PRESTO) Japan Science and Technology Agency (JST) 4-1-8 Honcho Kawaguchi Saitama 332-0012 Japan
| |
Collapse
|
24
|
Bagheri AR, Aramesh N, Chen J, Liu W, Shen W, Tang S, Lee HK. Polyoxometalate-based materials in extraction, and electrochemical and optical detection methods: A review. Anal Chim Acta 2022; 1209:339509. [PMID: 35569843 DOI: 10.1016/j.aca.2022.339509] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 02/07/2023]
Abstract
Polyoxometalates (POMs) as metal-oxide anions have exceptional properties like high negative charges, remarkable redox abilities, unique ligand properties and availability of organic grafting. Moreover, the amenability of POMs to modification with different materials makes them suitable as precursors to further obtain new composites. Due to their unique attributes, POMs and their composites have been utilized as adsorbents, electrodes and catalysts in extraction, and electrochemical and optical detection methods, respectively. A survey of the recent progress and developments of POM-based materials in these methods is therefore desirable, and should be of great interest. In this review article, POM-based materials, their properties as well as their identification methods, and analytical applications as adsorbents, electrodes and catalysts, and corresponding mechanisms of action, where relevant, are reviewed. Some current issues of the utilization of these materials and their future prospects in analytical chemistry are discussed.
Collapse
Affiliation(s)
| | - Nahal Aramesh
- Department of Chemistry, Isfahan University, Isfahan, 81746-73441, Iran
| | - Jisen Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, China
| | - Wenning Liu
- Department of Environmental Toxicology, University of California, Davis, CA, 95616, USA
| | - Wei Shen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, China
| | - Sheng Tang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, China.
| | - Hian Kee Lee
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore.
| |
Collapse
|
25
|
Zhu Y, Wang Z, Li D, Zhu Y, Li QH, Li D, Zhang L. Silver‐Templated γ‐Keggin Alkyltin‐Oxo Cluster: Electronic Structure and Optical Limiting Effect. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yu Zhu
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter State Key Laboratory of Structural Chemistry CHINA
| | - Zirui Wang
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter State Key Laboratory of Structural Chemistry CHINA
| | - Dejing Li
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter State Key Laboratory of Structural Chemistry CHINA
| | - Yindi Zhu
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter State Key Laboratory of Structural Chemistry CHINA
| | - Qiao-Hong Li
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter State Key Laboratory of Structural Chemistry CHINA
| | - Dongsheng Li
- China Three Gorges University College of Materials and Chemical Engineering CHINA
| | - Lei Zhang
- Fujian Institute of Research on the Structure of Matter State Key Laboratory of Structural Chemistry 155 Yangqiao Road West 350002 Fuzhou CHINA
| |
Collapse
|
26
|
Immobilization of Polyoxometalates on Carbon Nanotubes: Tuning Catalyst Activity, Selectivity and Stability in H2O2-Based Oxidations. Catalysts 2022. [DOI: 10.3390/catal12050472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In recent years, carbon nanotubes (CNTs), including N-doped ones (N-CNTs), have received significant attention as supports for the construction of heterogeneous catalysts. In this work, we summarize our progress in the application of (N)-CNTs for immobilization of anionic metal-oxygen clusters or polyoxometalates (POMs) and use of (N)-CNTs-supported POM as catalysts for liquid-phase selective oxidation of organic compounds with the green oxidant–aqueous hydrogen peroxide. We discuss here the main factors, which favor adsorption of POMs on (N)-CNTs and ensure a quasi-molecular dispersion of POM on the surface and their strong attachment to the support. The effects of the POM nature, N-doping of CNTs, acid additives, and other factors on the POM immobilization process and catalytic activity/selectivity of the (N)-CNTs-immobilized POMs are analyzed. Particular attention is drawn to the critical issue of the catalyst stability and reusability. The scope and limitations of the POM/(N)-CNTs catalysts in H2O2-based selective oxidations are discussed.
Collapse
|
27
|
Pardiwala A, Kumar S, Jangir R. Insights into organic-inorganic hybrid molecular materials: organoimido functionalized polyoxomolybdates. Dalton Trans 2022; 51:4945-4975. [PMID: 35246674 DOI: 10.1039/d1dt04376e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Polyoxometalates (POMs) are polyatomic anions that comprise transition metal group 5 (V, Nb, Ta) or group 6 (Mo, W) oxyanions connected together by shared oxygen atoms. POMs are fascinating because of their exclusive and remarkable characteristics. One of the most interesting features of POMs is their capability to function as an electron relay by performing stepwise multi-electron redox reactions while maintaining their structural integrity. Functionalization of POMs with amino organic compounds results in organoimido derivatives of polyoxometalates, which have aroused interest due to augmentation of their properties. Comprehensive study has shown that the synthesis methodologies to obtain desired organoimido derivatives of POMs by employing various imido-releasing reagents have progressed drastically in recent decades, particularly the innovative DCC-dehydrating technique. These organoimido functionalized POMs have been used as major building blocks to develop unique nanostructured organic-inorganic hybrid molecular materials. Many conventional organic synthesis processes such as Pd-catalyzed carbon-carbon coupling and esterification reactions have been performed with organoimido functionalized POMs where the presence of POM triggered the reaction process. Thus, investigation of the reactivity of organoimido derivatives of POMs foreshadows the intriguing future of POMs chemistry.
Collapse
Affiliation(s)
- Ankita Pardiwala
- Sardar Vallabhbhai National Institute of Technology, Ichchanath, Surat-395 007, Gujarat, India.
| | - Shubham Kumar
- Sardar Vallabhbhai National Institute of Technology, Ichchanath, Surat-395 007, Gujarat, India.
| | - Ritambhara Jangir
- Sardar Vallabhbhai National Institute of Technology, Ichchanath, Surat-395 007, Gujarat, India.
| |
Collapse
|
28
|
Salazar Marcano DE, Moussawi MA, Anyushin AV, Lentink S, Van Meervelt L, Ivanović-Burmazović I, Parac-Vogt TN. Versatile post-functionalisation strategy for the formation of modular organic-inorganic polyoxometalate hybrids. Chem Sci 2022; 13:2891-2899. [PMID: 35382468 PMCID: PMC8905796 DOI: 10.1039/d1sc06326j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 02/07/2022] [Indexed: 11/28/2022] Open
Abstract
Hybrid structures incorporating different organic and inorganic constituents are emerging as a very promising class of materials since they synergistically combine the complementary and diverse properties of the individual components. Hybrid materials based on polyoxometalate clusters (POMs) are particularly interesting due to their versatile catalytic, redox, electronic, and magnetic properties, yet the controlled incorporation of different clusters into a hybrid structure is challenging and has been scarcely reported. Herein we propose a novel and general strategy for combining multiple types of metal-oxo clusters in a single hybrid molecule. Two novel hybrid POM structures (HPOMs) bis-functionalised with dipentaerythritol (R-POM1-R; R = (OCH2)3CCH2OCH2C(CH2OH)) were synthesised as building-blocks for the formation of heterometallic hybrid triads (POM2-R-POM1-R-POM2). Such a modular approach resulted in the formation of four novel heterometallic hybrids combing the Lindqvist {V6}, Anderson-Evans {XMo6} (X = Cr or Al) and trisubstituted Wells-Dawson {P2V3W15} POM structures. Their formation was confirmed by multinuclear Nuclear Magnetic Resonance (NMR), infrared (IR) and UV-Vis spectroscopy, as well as Mass Spectrometry, Diffusion Ordered Spectroscopy (DOSY) and elemental analysis. The thermal stability of the hybrids was also examined by Thermogravimetric Analysis (TGA), which showed that the HPOM triads exhibit higher thermal stability than comparable hybrid structures containing only one type of POM. The one-pot synthesis of these novel compounds was achieved in high yields in aqueous and organic media under simple reflux conditions, without the need of any additives, and could be translated to create other hybrid materials based on a variety of metal-oxo cluster building-blocks.
Collapse
Affiliation(s)
- David E Salazar Marcano
- Laboratory of Bioinorganic Chemistry, KU Leuven Department of Chemistry Celestijnenlaan 200F 3001 Leuven Belgium
| | - Mhamad Aly Moussawi
- Laboratory of Bioinorganic Chemistry, KU Leuven Department of Chemistry Celestijnenlaan 200F 3001 Leuven Belgium
| | - Alexander V Anyushin
- Laboratory of Bioinorganic Chemistry, KU Leuven Department of Chemistry Celestijnenlaan 200F 3001 Leuven Belgium
| | - Sarah Lentink
- Laboratory of Bioinorganic Chemistry, KU Leuven Department of Chemistry Celestijnenlaan 200F 3001 Leuven Belgium
| | - Luc Van Meervelt
- Biomolecular Architecture, KU Leuven Department of Chemistry Celestijnenlaan 200F 3001 Leuven Belgium
| | - Ivana Ivanović-Burmazović
- Department of Chemistry, Ludwig-Maximilian-University Butenandtstr. 5-13, Haus D 81377 Munich Germany
| | - Tatjana N Parac-Vogt
- Laboratory of Bioinorganic Chemistry, KU Leuven Department of Chemistry Celestijnenlaan 200F 3001 Leuven Belgium
| |
Collapse
|
29
|
Vijay AK, Meyerstein D, Marks V, Albo Y. Reaction of H 2 with polyoxometalate supported Rhodium(0) and Iridium(0) nanoparticles in aqueous suspensions: a kinetic study. NEW J CHEM 2022. [DOI: 10.1039/d2nj02253b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The mechanism of the reaction between Rh0 and Ir0 NPs with H2 was measured in the absence of an electrical bias via monitoring the catalytic reduction of PW12O403− and it was compared to the previous results of Pt0 NPs.
Collapse
Affiliation(s)
- Aswin Kottapurath Vijay
- Department of Chemical Science and The Radical Research Center, Ariel University, Ariel, Israel
- Department of Chemistry Ben-Gurion University, Beer-Sheva, Israel
| | - Dan Meyerstein
- Department of Chemical Science and The Radical Research Center, Ariel University, Ariel, Israel
- Department of Chemistry Ben-Gurion University, Beer-Sheva, Israel
| | - Vered Marks
- Department of Chemical Science Ariel University, Ariel, Israel
| | - Yael Albo
- Department of Chemical Engineering and The Radical Research Center Ariel University, Ariel, Israel
| |
Collapse
|
30
|
Wang W, Zhang M, Pan Z, Biesold GM, Liang S, Rao H, Lin Z, Zhong X. Colloidal Inorganic Ligand-Capped Nanocrystals: Fundamentals, Status, and Insights into Advanced Functional Nanodevices. Chem Rev 2021; 122:4091-4162. [PMID: 34968050 DOI: 10.1021/acs.chemrev.1c00478] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Colloidal nanocrystals (NCs) are intriguing building blocks for assembling various functional thin films and devices. The electronic, optoelectronic, and thermoelectric applications of solution-processed, inorganic ligand (IL)-capped colloidal NCs are especially promising as the performance of related devices can substantially outperform their organic ligand-capped counterparts. This in turn highlights the significance of preparing IL-capped NC dispersions. The replacement of initial bulky and insulating ligands capped on NCs with short and conductive inorganic ones is a critical step in solution-phase ligand exchange for preparing IL-capped NCs. Solution-phase ligand exchange is extremely appealing due to the highly concentrated NC inks with completed ligand exchange and homogeneous ligand coverage on the NC surface. In this review, the state-of-the-art of IL-capped NCs derived from solution-phase inorganic ligand exchange (SPILE) reactions are comprehensively reviewed. First, a general overview of the development and recent advancements of the synthesis of IL-capped colloidal NCs, mechanisms of SPILE, elementary reaction principles, surface chemistry, and advanced characterizations is provided. Second, a series of important factors in the SPILE process are offered, followed by an illustration of how properties of NC dispersions evolve after ILE. Third, surface modifications of perovskite NCs with use of inorganic reagents are overviewed. They are necessary because perovskite NCs cannot withstand polar solvents or undergo SPILE due to their soft ionic nature. Fourth, an overview of the research progresses in utilizing IL-capped NCs for a wide range of applications is presented, including NC synthesis, NC solid and film fabrication techniques, field effect transistors, photodetectors, photovoltaic devices, thermoelectric, and photoelectrocatalytic materials. Finally, the review concludes by outlining the remaining challenges in this field and proposing promising directions to further promote the development of IL-capped NCs in practical application in the future.
Collapse
Affiliation(s)
- Wenran Wang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China.,School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Meng Zhang
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Zhenxiao Pan
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Gill M Biesold
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Shuang Liang
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Huashang Rao
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Zhiqun Lin
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Xinhua Zhong
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| |
Collapse
|
31
|
Cameron JM, Guillemot G, Galambos T, Amin SS, Hampson E, Mall Haidaraly K, Newton GN, Izzet G. Supramolecular assemblies of organo-functionalised hybrid polyoxometalates: from functional building blocks to hierarchical nanomaterials. Chem Soc Rev 2021; 51:293-328. [PMID: 34889926 DOI: 10.1039/d1cs00832c] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This review provides a comprehensive overview of recent advances in the supramolecular organisation and hierarchical self-assembly of organo-functionalised hybrid polyoxometalates (hereafter referred to as hybrid POMs), and their emerging role as multi-functional building blocks in the construction of new nanomaterials. Polyoxometalates have long been studied as a fascinating outgrowth of traditional metal-oxide chemistry, where the unusual position they occupy between individual metal oxoanions and solid-state bulk oxides imbues them with a range of attractive properties (e.g. solubility, high structural modularity and tuneable properties/reactivity). Specifically, the capacity for POMs to be covalently coupled to an effectively limitless range of organic moieties has opened exciting new avenues in their rational design, while the combination of distinct organic and inorganic components facilitates the formation of complex molecular architectures and the emergence of new, unique functionalities. Here, we present a detailed discussion of the design opportunities afforded by hybrid POMs, where fine control over their size, topology and their covalent and non-covalent interactions with a range of other species and/or substrates makes them ideal building blocks in the assembly of a broad range of supramolecular hybrid nanomaterials. We review both direct self-assembly approaches (encompassing both solution and solid-state approaches) and the non-covalent interactions of hybrid POMs with a range of suitable substrates (including cavitands, carbon nanotubes and biological systems), while giving key consideration to the underlying driving forces in each case. Ultimately, this review aims to demonstrate the enormous potential that the rational assembly of hybrid POM clusters shows for the development of next-generation nanomaterials with applications in areas as diverse as catalysis, energy-storage and molecular biology, while providing our perspective on where the next major developments in the field may emerge.
Collapse
Affiliation(s)
- Jamie M Cameron
- Nottingham Applied Materials and Interfaces (NAMI) Group, The GSK Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham, UK.
| | - Geoffroy Guillemot
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, 4 Place Jussieu, F-75005 Paris, France.
| | - Theodor Galambos
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, 4 Place Jussieu, F-75005 Paris, France.
| | - Sharad S Amin
- Nottingham Applied Materials and Interfaces (NAMI) Group, The GSK Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham, UK.
| | - Elizabeth Hampson
- Nottingham Applied Materials and Interfaces (NAMI) Group, The GSK Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham, UK.
| | - Kevin Mall Haidaraly
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, 4 Place Jussieu, F-75005 Paris, France.
| | - Graham N Newton
- Nottingham Applied Materials and Interfaces (NAMI) Group, The GSK Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham, UK.
| | - Guillaume Izzet
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, 4 Place Jussieu, F-75005 Paris, France.
| |
Collapse
|
32
|
Generalova AN, Oleinikov VA, Khaydukov EV. One-dimensional necklace-like assemblies of inorganic nanoparticles: Recent advances in design, preparation and applications. Adv Colloid Interface Sci 2021; 297:102543. [PMID: 34678536 DOI: 10.1016/j.cis.2021.102543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 01/12/2023]
Abstract
One-dimensional (1D) necklace-like assembly of inorganic nanoparticles exhibits unique collective properties, which are critical to open up new and remarkable opportunities in the field of nanotechnology. This review focuses on the recent advances in the production of these types of assemblies employing two strategies: colloidal synthesis and self-assembly procedures. After a brief description of the forces guiding nanoparticles towards the assembly, the main features of both strategies are discussed. Examples of approaches, typically involved in colloidal synthesis, are highlighted. The peculiar properties of 1D nanostructures are strictly associated with the nanoparticle arrangement in the form of highly ordered assemblies, which are attained during the synthesis both in the solution and using a template, as well as under the action of an external force. The various 1D necklace-like structures, created through nanoparticle self-assembly, demonstrate aligned, oriented nanoparticle organization. Diverse nature, size and shape of preformed particles as building blocks, along with utilizing different linkers, templates or external field lead to fabrication of 1D chain nanostructures with properties responsible for their wide applications. The unique structure-property relationship, both in colloidal synthesis, and self-assembly, offers broad spectrum of 1D necklace-like nanostructure implementations, illustrated by their use in photonics, electronics, electrocatalysis, magnetics.
Collapse
|
33
|
State-of-the-art advances in the structural diversities and catalytic applications of polyoxoniobate-based materials. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213966] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
34
|
Kurbah SD. Development of sustainable and efficient nanocatalyst based on polyoxometalate/nickel oxide nanocomposite: A simple and recyclable catalyst for reduction of nitroaromatic compounds. J CHIN CHEM SOC-TAIP 2021. [DOI: 10.1002/jccs.202100057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
35
|
Nakagawa Y, Kuwata A, Yamaguchi K, Tamura M, Yabushita M, Tomishige K. Adsorption of Keggin-Type Polyoxometalates on Rh Metal Particles under Reductive Conditions. Inorg Chem 2021; 60:12413-12424. [PMID: 34323068 DOI: 10.1021/acs.inorgchem.1c01644] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The adsorption of POMs on Rh/SiO2 in water solvent under strongly reductive conditions was investigated. Aqueous solutions of α-Keggin type silicotungstate and silicovanadotungstates were mixed with Rh/SiO2 at 393-473 K under 1 MPa of H2. Monovanadium-substituted silicotungstate, α-SiVW11O405- (SiVW11), was more readily adsorbed than nonsubstituted silicotungstate, α-SiW12O404- (SiW12). After adsorption at 433 K, SiVW11 was desorbed from Rh/SiO2 by oxidation with Br2 water without change of the Keggin structure, as evidenced by 51V NMR. Trivanadium-substituted silicotungstate, α-1,2,3-SiV3W9O407-, was not stable, and the desorbed species from Rh/SiO2 by oxidation with Br2 did not maintain the Keggin structure. The very high temperature for adsorption (473 K) also led to the decomposition of the Keggin structure of SiVW11. An increase in the concentration of SiVW11 in the liquid phase gave a saturation of the amount of desorbable SiVW11, up to five SiVW11 anions per one Rh particle with a 3 nm size. The elemental analysis and W L3-edge extended X-ray absorption fine structure of Rh/SiO2 after the adsorption of SiVW11 showed that a part of SiVW11 was decomposed and irreversibly adsorbed as metallic W species incorporated into the surface of Rh metal particles. The amount of decomposed SiVW11 was almost the same as that of SiVW11 adsorbed as the original Keggin structure. The desorbable SiVW11 was probably bonded on the W atom incorporated on the Rh metal particles as the two-electron-reduced form (α-SiVIIIW11O407-).
Collapse
Affiliation(s)
- Yoshinao Nakagawa
- Department of Applied Chemistry, School of Engineering, Tohoku University, 6-6-07 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan.,Research Center for Rare Metal and Green Innovation, Tohoku University, 468-1, Aoba, Aramaki, Aoba-ku, Sendai 980-0845, Japan
| | - Ayaka Kuwata
- Department of Applied Chemistry, School of Engineering, Tohoku University, 6-6-07 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | - Kosuke Yamaguchi
- Department of Applied Chemistry, School of Engineering, Tohoku University, 6-6-07 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | - Masazumi Tamura
- Research Center for Artificial Photosynthesis, Advanced Research Institute for Natural Science and Technology, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi, Osaka 558-8585, Japan
| | - Mizuho Yabushita
- Department of Applied Chemistry, School of Engineering, Tohoku University, 6-6-07 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | - Keiichi Tomishige
- Department of Applied Chemistry, School of Engineering, Tohoku University, 6-6-07 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan.,Research Center for Rare Metal and Green Innovation, Tohoku University, 468-1, Aoba, Aramaki, Aoba-ku, Sendai 980-0845, Japan
| |
Collapse
|
36
|
Fabricating polyoxometalates-stabilized single-atom site catalysts in confined space with enhanced activity for alkynes diboration. Nat Commun 2021; 12:4205. [PMID: 34244508 PMCID: PMC8271022 DOI: 10.1038/s41467-021-24513-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 06/14/2021] [Indexed: 12/04/2022] Open
Abstract
Effecting the synergistic function of single metal atom sites and their supports is of great importance to achieve high-performance catalysts. Herein, we successfully fabricate polyoxometalates (POMs)-stabilized atomically dispersed platinum sites by employing three-dimensional metal-organic frameworks (MOFs) as the finite spatial skeleton to govern the accessible quantity, spatial dispersion, and mobility of metal precursors around each POM unit. The isolated single platinum atoms (Pt1) are steadily anchored in the square-planar sites on the surface of monodispersed Keggin-type phosphomolybdic acid (PMo) in the cavities of various MOFs, including MIL-101, HKUST-1, and ZIF-67. In contrast, either the absence of POMs or MOFs yielded only platinum nanoparticles. Pt1-PMo@MIL-101 are seven times more active than the corresponding nanoparticles in the diboration of phenylacetylene, which can be attributed to the synergistic effect of the preconcentration of organic reaction substrates by porous MOFs skeleton and the decreased desorption energy of products on isolated Pt atom sites. It is of great significance to exert the synergistic effect between single atom and support. Here, the authors prepare polyoxometalates-stabilized single-atom site catalysts in confined space with enhanced activity for alkynes diboration.
Collapse
|
37
|
|
38
|
Hong TZX, You L, Dahanayaka M, Law AWK, Zhou K. Influence of Substitutional Defects in ZIF-8 Membranes on Reverse Osmosis Desalination: A Molecular Dynamics Study. Molecules 2021; 26:molecules26113392. [PMID: 34205198 PMCID: PMC8200035 DOI: 10.3390/molecules26113392] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 11/17/2022] Open
Abstract
In this study, molecular dynamics simulation is used to investigate the effects of water-based substitutional defects in zeolitic imidazolate frameworks (ZIF)-8 membranes on their reverse osmosis (RO) desalination performance. ZIF-8 unit cells containing up to three defect sites are used to construct the membranes. These substitutional defects can either be Zn defects or linker defects. The RO desalination performance of the membranes is assessed in terms of the water flux and ion rejection rate. The effects of defects on the interactions between the ZIF-8 membranes and NaCl are investigated and explained with respect to the radial distribution function (RDF) and ion density distribution. The results show that ion adsorption on the membranes occurs at either the nitrogen atoms or the defect sites. Complete NaCl rejection can be achieved by introducing defects to change the size of the pores. It has also been discovered that the presence of linker defects increases membrane hydrophilicity. Overall, molecular dynamics simulations have been used in this study to show that water-based substitutional defects in a ZIF-8 structure reduce the water flux and influence its hydrophilicity and ion adsorption performance, which is useful in predicting the type and number of defect sites per unit cell required for RO applications. Of the seven ZIF-8 structures tested, pristine ZIF-8 exhibits the best RO desalination performance.
Collapse
Affiliation(s)
- Terence Zhi Xiang Hong
- Environmental Process Modeling Centre, Nanyang Environment and Water Research Institute, 1 Cleantech Loop, Singapore 637141, Singapore; (T.Z.X.H.); (M.D.); (A.W.-K.L.)
- Interdisciplinary Graduate School, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore;
| | - Liming You
- Interdisciplinary Graduate School, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore;
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Madhavi Dahanayaka
- Environmental Process Modeling Centre, Nanyang Environment and Water Research Institute, 1 Cleantech Loop, Singapore 637141, Singapore; (T.Z.X.H.); (M.D.); (A.W.-K.L.)
- Interdisciplinary Graduate School, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore;
| | - Adrian Wing-Keung Law
- Environmental Process Modeling Centre, Nanyang Environment and Water Research Institute, 1 Cleantech Loop, Singapore 637141, Singapore; (T.Z.X.H.); (M.D.); (A.W.-K.L.)
- School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Kun Zhou
- Environmental Process Modeling Centre, Nanyang Environment and Water Research Institute, 1 Cleantech Loop, Singapore 637141, Singapore; (T.Z.X.H.); (M.D.); (A.W.-K.L.)
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
- Correspondence: ; Tel.: +65-6790-5499; Fax: +65-6792-4062
| |
Collapse
|
39
|
Liu C, Wang Y. Supramolecular Chemistry of Titanium Oxide Clusters. Chemistry 2021; 27:4270-4282. [PMID: 32964513 DOI: 10.1002/chem.202003378] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/23/2020] [Indexed: 12/26/2022]
Abstract
Titanium oxide clusters (TOCs) have been emerging as a new type of inorganic molecular entities of supramolecular chemistry. Herein, a perspective on the structures and functionalities of TOCs over the past three decades is given and the paramount roles of TOCs in serving supramolecular chemistry are demonstrated. Four types of supramolecular assemblies based on TOCs are reviewed, namely, TOC hosts for ion inclusion, mechanically interlocked molecular systems built from cyclic TOCs, reactivities of surface sites toward ligand exchange, and hierarchical structures of TOCs. The principles and advantages of TOCs toward each application are fully discussed, along with structural analyses. Following this path, more functional TOC-based supramolecular systems may be designed and synthesized in the future, which, in turn, will certainly enhance research into both supramolecular and coordination chemistry of titanium.
Collapse
Affiliation(s)
- Caiyun Liu
- School of Chemistry and Chemical Engineering, Shandong University, Shanda South Road 27, 250100, Jinan, P.R. China
| | - Yifeng Wang
- School of Chemistry and Chemical Engineering, Shandong University, Shanda South Road 27, 250100, Jinan, P.R. China.,State Key Laboratory of Crystal Materials, Shandong University, Shanda South Road 27, 250100, Jinan, P.R. China
| |
Collapse
|
40
|
Huo Z, Liang Y, Lv Y, Melin F, Hellwig P, Ibrahim H, Goldmann M, Boudon C, Badets V, Bonnefont A, Ruhlmann L. Enhancement of photocurrent by incorporation of Preyssler type polyoxometalate protected nanoparticles in polyporphyrin films. Chem Commun (Camb) 2021; 57:1482-1485. [PMID: 33443265 DOI: 10.1039/d0cc06283a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The introduction of nanoparticles (MNPs) at the surface of cationic poly-porphyrin films, obtained by electrostatic interaction between the bis-porphyrin copolymer and the Preyssler type polyoxometalate P5W30@MNPs, enhances the photocurrent (up to 2.5-3 times greater as a function of the used nanoparticle).
Collapse
Affiliation(s)
- Zhaohui Huo
- Department of Chemistry, Guangdong University of Education, Guangzhou, 510303, P. R. China and Université de Strasbourg, Institut de Chimie, UMR CNRS 7177, Laboratoire d'Electrochimie et de Chimie Physique du Corps Solide, 4 rue Blaise Pascal, CS 90032, Strasbourg cedex 67081, France.
| | - Yiming Liang
- Université de Strasbourg, Institut de Chimie, UMR CNRS 7177, Laboratoire d'Electrochimie et de Chimie Physique du Corps Solide, 4 rue Blaise Pascal, CS 90032, Strasbourg cedex 67081, France.
| | - Yaokang Lv
- Université de Strasbourg, Institut de Chimie, UMR CNRS 7177, Laboratoire d'Electrochimie et de Chimie Physique du Corps Solide, 4 rue Blaise Pascal, CS 90032, Strasbourg cedex 67081, France. and College of Chemical Engineering and Materials Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Frédéric Melin
- Chimie de la Matière Complexe UMR 7140, Laboratoire de Bioélectrochimie et Spectroscopie, CNRS-Université de Strasbourg, 4 rue Blaise Pascal, Strasbourg 67070, France
| | - Petra Hellwig
- Chimie de la Matière Complexe UMR 7140, Laboratoire de Bioélectrochimie et Spectroscopie, CNRS-Université de Strasbourg, 4 rue Blaise Pascal, Strasbourg 67070, France
| | - Helen Ibrahim
- Sorbonne Universités, Institut des NanoSciences de Paris, UMR CNRS 7588, Université Paris 6, 4 place Jussieu, boîte courrier 840, Paris, F-75252, France
| | - Michel Goldmann
- Sorbonne Universités, Institut des NanoSciences de Paris, UMR CNRS 7588, Université Paris 6, 4 place Jussieu, boîte courrier 840, Paris, F-75252, France
| | - Corinne Boudon
- Université de Strasbourg, Institut de Chimie, UMR CNRS 7177, Laboratoire d'Electrochimie et de Chimie Physique du Corps Solide, 4 rue Blaise Pascal, CS 90032, Strasbourg cedex 67081, France.
| | - Vasilica Badets
- Université de Strasbourg, Institut de Chimie, UMR CNRS 7177, Laboratoire d'Electrochimie et de Chimie Physique du Corps Solide, 4 rue Blaise Pascal, CS 90032, Strasbourg cedex 67081, France.
| | - Antoine Bonnefont
- Université de Strasbourg, Institut de Chimie, UMR CNRS 7177, Laboratoire d'Electrochimie et de Chimie Physique du Corps Solide, 4 rue Blaise Pascal, CS 90032, Strasbourg cedex 67081, France.
| | - Laurent Ruhlmann
- Université de Strasbourg, Institut de Chimie, UMR CNRS 7177, Laboratoire d'Electrochimie et de Chimie Physique du Corps Solide, 4 rue Blaise Pascal, CS 90032, Strasbourg cedex 67081, France.
| |
Collapse
|
41
|
Tandekar K, Naulakha P, Supriya S. Coating Keplerate based host-guest material PMo12O40 @{Mo72Fe30} surface with silver iron molybdate. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2020.120123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
42
|
Maksimov GM, Gerasimov EY, Kenzhin RM, Saraev AA, Kaichev VV, Vedyagin AA. CO oxidation over titania-supported gold catalysts obtained using polyoxometalate. REACTION KINETICS MECHANISMS AND CATALYSIS 2021. [DOI: 10.1007/s11144-020-01881-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
43
|
Vijay AK, Meyerstein D, Marks V, Albo Y. Kinetics of the reaction of H 2 with Pt 0-nanoparticles in aqueous suspensions monitored by the catalytic reduction of PW 12O 403−. Inorg Chem Front 2021. [DOI: 10.1039/d0qi01255f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The mechanism of the reaction between Pt0 nanoparticles and Hydrogen was measured in the absence of an electric field via following the formation of PW12O404−/5−.
Collapse
Affiliation(s)
| | - Dan Meyerstein
- Department of Chemical Sciences and The Radical Research Center
- Ariel University
- Ariel
- Israel
- Chemistry Department
| | - Vered Marks
- Department of Chemical Sciences
- Ariel University
- Ariel
- Israel
| | - Yael Albo
- Department of Chemical Engineering and The Radical Research Center
- Ariel University
- Ariel
- Israel
| |
Collapse
|
44
|
Yao Y, Huang K, Liu Y, Luo T, Tian G, Li J, Zhang S, Chang G, Yang X. A hierarchically multifunctional integrated catalyst with intimate and synergistic active sites for one-pot tandem catalysis. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00170a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
As a typical process-intensive strategy, a tandem reaction driven by a multifunctional catalyst is a paragon of the green catalytic process.
Collapse
Affiliation(s)
- Yao Yao
- School of Chemistry
- Chemical Engineering and Life Science
- Wuhan University of Technology
- Wuhan 430070
- China
| | - Kexin Huang
- School of Chemistry
- Chemical Engineering and Life Science
- Wuhan University of Technology
- Wuhan 430070
- China
| | - Yi Liu
- School of Mechanical and Electronic
- Engineering Wuhan Donghu University
- Wuhan 430212
- China
| | - Tingting Luo
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
- Wuhan University of Technology
- Wuhan 430070
- China
| | - Ge Tian
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
- Wuhan University of Technology
- Wuhan 430070
- China
| | - Jiaxin Li
- School of Chemistry
- Chemical Engineering and Life Science
- Wuhan University of Technology
- Wuhan 430070
- China
| | - Song Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
- Wuhan University of Technology
- Wuhan 430070
- China
| | - Ganggang Chang
- School of Chemistry
- Chemical Engineering and Life Science
- Wuhan University of Technology
- Wuhan 430070
- China
| | - Xiaoyu Yang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
- Wuhan University of Technology
- Wuhan 430070
- China
| |
Collapse
|
45
|
Xing C, Ma P, Zhao M, Chang J, Guo X, Sun L, Li M. Facile and green synthesis of decatungstate-based nickel( ii) complex coated onto modified Fe 3O 4 nanoparticles with enhanced antimicrobial activity against antibiotic-resistant bacteria. CrystEngComm 2021. [DOI: 10.1039/d1ce00421b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A nanostructured Fe3O4@PDA@Ni-DT composite was successfully prepared with high-efficiency antibacterial properties and excellent recyclable performance.
Collapse
Affiliation(s)
- Cuili Xing
- Henan Key Laboratory of Polyoxometalate Chemistry
- Institute of Molecular and Crystal Engineering
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng
| | - Pengtao Ma
- Henan Key Laboratory of Polyoxometalate Chemistry
- Institute of Molecular and Crystal Engineering
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng
| | - Meng Zhao
- Henan Key Laboratory of Polyoxometalate Chemistry
- Institute of Molecular and Crystal Engineering
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng
| | - Jiangnan Chang
- Henan Key Laboratory of Polyoxometalate Chemistry
- Institute of Molecular and Crystal Engineering
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng
| | - Xiaoyuan Guo
- Henan Key Laboratory of Polyoxometalate Chemistry
- Institute of Molecular and Crystal Engineering
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng
| | - Lin Sun
- Henan Key Laboratory of Polyoxometalate Chemistry
- Institute of Molecular and Crystal Engineering
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng
| | - Mingxue Li
- Henan Key Laboratory of Polyoxometalate Chemistry
- Institute of Molecular and Crystal Engineering
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng
| |
Collapse
|
46
|
Dehghani Sanij F, Balakrishnan P, Su H, Khotseng L, Xu Q. Fabrication of polyoxometalate-modified palladium–nickel/reduced graphene oxide alloy catalysts for enhanced oxygen reduction reaction activity. RSC Adv 2021; 11:39118-39129. [PMID: 35492496 PMCID: PMC9044417 DOI: 10.1039/d1ra06936e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/29/2021] [Indexed: 11/21/2022] Open
Abstract
A novel nanocatalyst, polyoxometalate-modified palladium–nickel/reduced graphene oxide (Pd8Ni2/rGO-POM), is prepared and served as an effective ORR nanomaterial in alkaline media.
Collapse
Affiliation(s)
| | | | - Huaneng Su
- Institute for Energy Research, Jiangsu University, Zhenjiang 212013, China
| | - Lindiwe Khotseng
- Department of Chemistry, University of the Western Cape, Cape Town 7535, South Africa
| | - Qian Xu
- Institute for Energy Research, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
47
|
Das K, Yan T, Paul S, Qiu S, Ben T, Roy S. Self-Assembly and Cascade Catalysis by a Soft-Oxometalate (SOM) System. Front Chem 2020; 8:601814. [PMID: 33330395 PMCID: PMC7729020 DOI: 10.3389/fchem.2020.601814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 10/28/2020] [Indexed: 11/13/2022] Open
Abstract
Cascade catalysis has gained importance due to its various applications. In this work, cascade catalysis was performed using a self-assembled soft-oxometalate (SOM) as a model system. At first, we synthesized an oxometalate (OM) hybrid with a polymerizable organic cation, namely tetrakis(4-aminophenyl)methane, and an OM, K8[SiW11O39]. The hybrid in turn was converted into SOM in water, DMSO mixture, and characterized by different techniques, ranging from electron microscopy to DLS. The SOM state is endowed with the ability to polymerize the aniline based counter ions associated with it in the presence of UV-light. This polymerization is possible due to the presence of photocatalytic OMs (oxometalates) in the SOMs. The polymer-SOM hybrid in cascade oxidizes selectively aniline to nitrobenzene and nitrite to nitrate owing to the residual oxidizing property of the OM constituents in it. This is the first example of cascade catalysis in SOM chemistry.
Collapse
Affiliation(s)
- Kousik Das
- Eco-Friendly Applied Materials Laboratory, Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, India
| | - Tingting Yan
- Department of Chemistry, Jilin University, Changchun, China
| | - Shounik Paul
- Eco-Friendly Applied Materials Laboratory, Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, India
| | - Shilun Qiu
- Department of Chemistry, Jilin University, Changchun, China
| | - Teng Ben
- Department of Chemistry, Jilin University, Changchun, China
| | - Soumyajit Roy
- Eco-Friendly Applied Materials Laboratory, Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, India
| |
Collapse
|
48
|
Repp S, Lopez-Lorente ÁI, Mizaikoff B, Streb C. Hybrid Gold Nanoparticle-Polyoxovanadate Matrices: A Novel Surface Enhanced Raman/Surface Enhanced Infrared Spectroscopy Substrate. ACS OMEGA 2020; 5:25036-25041. [PMID: 33043181 PMCID: PMC7542588 DOI: 10.1021/acsomega.0c01605] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/31/2020] [Indexed: 05/08/2023]
Abstract
Bare gold nanoparticles were embedded into an iron-polyoxovanadate matrix and used to enhance both the infrared and Raman signatures of a model analyte. A detailed characterization of the matrix-embedded nanoparticles revealed that they retained a plasmon resonance at 564 nm. The enhancement of vibrational signatures of the model analyte crystal violet using bare and embedded gold nanoparticles was compared for both surface enhanced infrared (SEIRA) spectroscopy and surface enhanced Raman spectroscopy (SERS) yielding enhancement factors of 2.2 for SEIRA and 77 for SERS. In contrast, the bare gold nanoparticles revealed significantly lower enhancements (1.6 for SEIRA; 20 for SERS). Hence, it was shown that embedding nanoparticles within an inorganic polyoxometalate-based matrix is an innovative strategy to amplify their signal enhancement properties in vibrational spectroscopies.
Collapse
Affiliation(s)
- Stefan Repp
- Institute
of Analytical and Bioanalytical Chemistry, Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
- Institute
of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Ángela I. Lopez-Lorente
- Departamento
de Química Analítica, Instituto Universitario de Investigación
en Química Fina y Nanoquímica IUNAN, Universidad de Córdoba, Campus de Rabanales, Edificio Marie Curie Anexo, E-14071 Córdoba, Spain
| | - Boris Mizaikoff
- Institute
of Analytical and Bioanalytical Chemistry, Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Carsten Streb
- Institute
of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| |
Collapse
|
49
|
Veselov GB, Karnaukhov TM, Bauman YI, Mishakov IV, Vedyagin AA. Sol-Gel-Prepared Ni-Mo-Mg-O System for Catalytic Transformation of Chlorinated Organic Wastes into Nanostructured Carbon. MATERIALS 2020; 13:ma13194404. [PMID: 33023242 PMCID: PMC7579027 DOI: 10.3390/ma13194404] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 09/26/2020] [Accepted: 09/29/2020] [Indexed: 11/26/2022]
Abstract
The present work aimed to prepare Ni-Mo particles distributed within the MgO matrix. With this purpose in mind, a ternary Ni-Mo-Mg oxide system was synthesized by a sol-gel approach. The samples were studied by low-temperature nitrogen adsorption, X-ray diffraction analysis, and transmission electron microscopy equipped with energy dispersive X-ray analysis. Both the nickel and molybdenum species in the prepared samples were characterized by a fine and uniform distribution. The diffraction pattern of the ternary system was predominantly represented by the MgO reflections. The catalytic activity of the samples was tested in the decomposition of 1,2-dichloroethane used as a representative of the chlorinated organic wastes. The nanostructured carbon filaments resulting from the decomposition of the halogenated substrate were found to be characterized by a narrow diameter distribution, according to the transmission electron microscopy data, thus confirming the fine distribution of the active Ni-Mo particles. The results obviously show the advantages of the sol-gel technique for obtaining efficient catalysts.
Collapse
Affiliation(s)
- Grigory B. Veselov
- Department of Materials Science and Functional Materials, Boreskov Institute of Catalysis SB RAS, 630090 Novosibirsk, Russia; (G.B.V.); (T.M.K.); (Y.I.B.); (I.V.M.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Timofey M. Karnaukhov
- Department of Materials Science and Functional Materials, Boreskov Institute of Catalysis SB RAS, 630090 Novosibirsk, Russia; (G.B.V.); (T.M.K.); (Y.I.B.); (I.V.M.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Yury I. Bauman
- Department of Materials Science and Functional Materials, Boreskov Institute of Catalysis SB RAS, 630090 Novosibirsk, Russia; (G.B.V.); (T.M.K.); (Y.I.B.); (I.V.M.)
| | - Ilya V. Mishakov
- Department of Materials Science and Functional Materials, Boreskov Institute of Catalysis SB RAS, 630090 Novosibirsk, Russia; (G.B.V.); (T.M.K.); (Y.I.B.); (I.V.M.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Aleksey A. Vedyagin
- Department of Materials Science and Functional Materials, Boreskov Institute of Catalysis SB RAS, 630090 Novosibirsk, Russia; (G.B.V.); (T.M.K.); (Y.I.B.); (I.V.M.)
- Correspondence:
| |
Collapse
|
50
|
Zoladek S, Blicharska-Sobolewska M, Krata AA, Rutkowska IA, Wadas A, Miecznikowski K, Negro E, Vezzù K, Di Noto V, Kulesza PJ. Heteropolytungstate-assisted fabrication and deposition of catalytic silver nanoparticles on different reduced graphene oxide supports: Electroreduction of oxygen in alkaline electrolyte. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114694] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|