1
|
Mainas E, Curtin GM, Riddles SD, Pieri E. Biliverdin's Propionic Chains Influence Oligomerization in Sandercyanin. J Phys Chem B 2024; 128:12443-12455. [PMID: 39651944 DOI: 10.1021/acs.jpcb.4c06722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
Sandercyanin is a mildly fluorescent biliprotein with a large Stokes shift, a tetrameric quaternary structure, and a biliverdin (BV) chromophore that does not covalently bond to the protein. To adapt this promising protein for use in bioimaging, it is necessary to produce monomeric mutants that retain the spectroscopic properties while increasing the fluorescence quantum yield. Modulating these properties through the protonation state of BV's propionic tails is a possible avenue, if detailed mechanistic information on the role of such chains becomes available. In this study, we use a microstate model for the titration process of BV and couple it with constant pH molecular dynamics to study protonation states in the apo protein, the artificial monomer, and the tetramer and identify shifts. Our results indicate that several residues might have a central role in oligomerization as a response to the presence of BV and especially to the protonation state of the propionic tails. While the absorption properties are not strongly impacted by the tails, their protonation state has an impact on the chromophore geometry, which likely influences the fluorescence.
Collapse
Affiliation(s)
- Eleftherios Mainas
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Gregory M Curtin
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Shaena D Riddles
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Elisa Pieri
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
2
|
Zhang GC, Song K, Wang XF, He Z, Du J, Sun JL, Xu RC, Liu ZY, Wang F, Qi ZR, Yu XN, Miao Y, Dong L, Weng SQ, Shen XZ, Liu TT, Li Y, Zhu JM. Bismuth-based mesoporous nanoball carrying sorafenib for synergistic photothermal and molecularly-targeted therapy in an orthotopic hepatocellular carcinoma xenograft mouse model. Colloids Surf B Biointerfaces 2024; 245:114279. [PMID: 39368423 DOI: 10.1016/j.colsurfb.2024.114279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 09/03/2024] [Accepted: 09/27/2024] [Indexed: 10/07/2024]
Abstract
Sorafenib (SOR), a multi-kinase inhibitor for advanced hepatocellular carcinoma (HCC), has limited clinical application due to severe side effects and drug resistance. To overcome these challenges, we developed a bismuth-based nanomaterial (BOS) for thermal injury-assisted continuous targeted therapy in HCC. Initially, the mesoporous nanomaterial was loaded with SOR, forming the BOS@SOR nano-carrier system for drug delivery and controlled release. Notably, compared to targeted or photothermal therapy alone, the combination therapy using this nano-carrier system significantly impaired cell proliferation and increased apoptosis. In vivo efficacy evaluations demonstrated that BOS@SOR exhibited excellent biocompatibility, confirmed through hemolysis and biochemical analyses. Additionally, BOS@SOR enhanced contrast in computed tomography, aiding in the precise identification of HCC size and location. The photothermal therapeutic properties of bismuth further contributed to the synergistic anti-tumor activity of BOS@SOR, significantly reducing tumor growth in an orthotopic xenograft HCC model. Taken together, encapsulating SOR within a bismuth-based mesoporous nanomaterial creates a multifunctional and environmentally stable nanocomposite (BOS@SOR), enhancing the therapeutic effect of SOR and presenting an effective strategy for HCC treatment.
Collapse
Affiliation(s)
- Guang-Cong Zhang
- Department of Gastroenterology and Hepatology and Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Rd., Shanghai 200032, China
| | - Kang Song
- School of Materials and Chemistry, Institute of Bismuth Science, Shanghai Collaborative Innovation Center of Energy Therapy for Tumors, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xiao-Fan Wang
- Department of Gastroenterology and Hepatology and Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Rd., Shanghai 200032, China
| | - Zongyan He
- School of Materials and Chemistry, Institute of Bismuth Science, Shanghai Collaborative Innovation Center of Energy Therapy for Tumors, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Jun Du
- School of Materials and Chemistry, Institute of Bismuth Science, Shanghai Collaborative Innovation Center of Energy Therapy for Tumors, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Jia-Lei Sun
- Department of Gastroenterology and Hepatology and Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Rd., Shanghai 200032, China
| | - Ru-Chen Xu
- Department of Gastroenterology and Hepatology and Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Rd., Shanghai 200032, China
| | - Zhi-Yong Liu
- Department of Gastroenterology and Hepatology and Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Rd., Shanghai 200032, China
| | - Fu Wang
- Department of Gastroenterology and Hepatology and Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Rd., Shanghai 200032, China
| | - Zhuo-Ran Qi
- Department of Gastroenterology and Hepatology and Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Rd., Shanghai 200032, China
| | - Xiang-Nan Yu
- Department of Gastroenterology and Hepatology and Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Rd., Shanghai 200032, China
| | - Yuqing Miao
- School of Materials and Chemistry, Institute of Bismuth Science, Shanghai Collaborative Innovation Center of Energy Therapy for Tumors, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Ling Dong
- Department of Gastroenterology and Hepatology and Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Rd., Shanghai 200032, China
| | - Shu-Qiang Weng
- Department of Gastroenterology and Hepatology and Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Rd., Shanghai 200032, China
| | - Xi-Zhong Shen
- Department of Gastroenterology and Hepatology and Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Rd., Shanghai 200032, China; Key Laboratory of Medical Molecular Virology, Shanghai Medical College of Fudan University, 138 Yixueyuan Rd., Shanghai 200032, China
| | - Tao-Tao Liu
- Department of Gastroenterology and Hepatology and Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Rd., Shanghai 200032, China; Department of Gastroenterology and Hepatology, Shanghai Geriatric Medical Center, Shanghai, China.
| | - Yuhao Li
- School of Materials and Chemistry, Institute of Bismuth Science, Shanghai Collaborative Innovation Center of Energy Therapy for Tumors, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Ji-Min Zhu
- Department of Gastroenterology and Hepatology and Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Rd., Shanghai 200032, China.
| |
Collapse
|
3
|
Jiang H, Cao Z, Liu Y, Liu R, Zhou Y, Liu J. Bacteria-Based Living Probes: Preparation and the Applications in Bioimaging and Diagnosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306480. [PMID: 38032119 PMCID: PMC10811517 DOI: 10.1002/advs.202306480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/06/2023] [Indexed: 12/01/2023]
Abstract
Bacteria can colonize a variety of in vivo biointerfaces, particularly the skin, nasal, and oral mucosa, the gastrointestinal tract, and the reproductive tract, but also target specific lesion sites, such as tumor and wound. By virtue of their prominent characteristics in motility, editability, and targeting ability, bacteria carrying imageable agents are widely developed as living probes for bioimaging and diagnosis of different diseases. This review first introduces the strategies used for preparing bacteria-based living probes, including biological engineering, chemical modification, intracellular loading, and optical manipulation. It then summarizes the recent progress of these living probes for fluorescence imaging, near-infrared imaging, ultrasonic imaging, photoacoustic imaging, magnetic resonance imaging, and positron emission tomography imaging. The biomedical applications of bacteria-based living probes are also reviewed particularly in the bioimaging and diagnosis of bacterial infections, cancers, and intestine-associated diseases. In addition, the advantages and challenges of bacteria-based living probes are discussed and future perspectives are also proposed. This review provides an updated overview of bacteria-based living probes, highlighting their great potential as a unique yet versatile platform for developing next-generation imageable agents for intelligent bioimaging, diagnosis, and even therapy.
Collapse
Affiliation(s)
- Hejin Jiang
- Shanghai Key Laboratory for Nucleic Acid Chemistry and NanomedicineInstitute of Molecular MedicineState Key Laboratory of Systems Medicine for CancerRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Zhenping Cao
- Shanghai Key Laboratory for Nucleic Acid Chemistry and NanomedicineInstitute of Molecular MedicineState Key Laboratory of Systems Medicine for CancerRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Ying Liu
- Shanghai Key Laboratory for Nucleic Acid Chemistry and NanomedicineInstitute of Molecular MedicineState Key Laboratory of Systems Medicine for CancerRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Rui Liu
- Shanghai Key Laboratory for Nucleic Acid Chemistry and NanomedicineInstitute of Molecular MedicineState Key Laboratory of Systems Medicine for CancerRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Yan Zhou
- Department of RadiologyRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Jinyao Liu
- Shanghai Key Laboratory for Nucleic Acid Chemistry and NanomedicineInstitute of Molecular MedicineState Key Laboratory of Systems Medicine for CancerRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| |
Collapse
|
4
|
Fischer T, Köhler L, Engel PD, Song C, Gärtner W, Wachtveitl J, Slavov C. Conserved tyrosine in phytochromes controls the photodynamics through steric demand and hydrogen bonding capabilities. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2023; 1864:148996. [PMID: 37437858 DOI: 10.1016/j.bbabio.2023.148996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 06/02/2023] [Accepted: 07/06/2023] [Indexed: 07/14/2023]
Abstract
Using ultrafast spectroscopy and site-specific mutagenesis, we demonstrate the central role of a conserved tyrosine within the chromophore binding pocket in the forward (Pr → Pfr) photoconversion of phytochromes. Taking GAF1 of the knotless phytochrome All2699g1 from Nostoc as representative member of phytochromes, it was found that the mutations have no influence on the early (<30 ps) dynamics associated with conformational changes of the chromophore in the excited state. Conversely, they drastically impact the extended protein-controlled excited state decay (>100 ps). Thus, the steric demand, position and H-bonding capabilities of the identified tyrosine control the chromophore photoisomerization while leaving the excited state chromophore dynamics unaffected. In effect, this residue operates as an isomerization-steric-gate that tunes the excited state lifetime and the photoreaction efficiency by modulating the available space of the chromophore and by stabilizing the primary intermediate Lumi-R. Understanding the role of such a conserved structural element sheds light on a key aspect of phytochrome functionality and provides a basis for rational design of optimized photoreceptors for biotechnological applications.
Collapse
Affiliation(s)
- Tobias Fischer
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt am Main, Max-von-Laue-Straße 7, 60438 Frankfurt, Germany.
| | - Lisa Köhler
- Institute for Analytical Chemistry, University of Leipzig, Linnéstraße 3, 04103 Leipzig, Germany.
| | - Philipp D Engel
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt am Main, Max-von-Laue-Straße 7, 60438 Frankfurt, Germany.
| | - Chen Song
- Institute for Analytical Chemistry, University of Leipzig, Linnéstraße 3, 04103 Leipzig, Germany.
| | - Wolfgang Gärtner
- Institute for Analytical Chemistry, University of Leipzig, Linnéstraße 3, 04103 Leipzig, Germany.
| | - Josef Wachtveitl
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt am Main, Max-von-Laue-Straße 7, 60438 Frankfurt, Germany.
| | - Chavdar Slavov
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt am Main, Max-von-Laue-Straße 7, 60438 Frankfurt, Germany; Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, 33620 Tampa, United States of America.
| |
Collapse
|
5
|
Zhang H, Papadaki S, Sun X, Wang X, Drobizhev M, Yao L, Rehbock M, Köster RW, Wu L, Namikawa K, Piatkevich KD. Quantitative assessment of near-infrared fluorescent proteins. Nat Methods 2023; 20:1605-1616. [PMID: 37666982 PMCID: PMC11753454 DOI: 10.1038/s41592-023-01975-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 06/29/2023] [Indexed: 09/06/2023]
Abstract
Recent progress in fluorescent protein development has generated a large diversity of near-infrared fluorescent proteins (NIR FPs), which are rapidly becoming popular probes for a variety of imaging applications. However, the diversity of NIR FPs poses a challenge for end-users in choosing the optimal one for a given application. Here we conducted a systematic and quantitative assessment of intracellular brightness, photostability, oligomeric state, chemical stability and cytotoxicity of 22 NIR FPs in cultured mammalian cells and primary mouse neurons and identified a set of top-performing FPs including emiRFP670, miRFP680, miRFP713 and miRFP720, which can cover a majority of imaging applications. The top-performing proteins were further validated for in vivo imaging of neurons in Caenorhabditis elegans, zebrafish, and mice as well as in mice liver. We also assessed the applicability of the selected NIR FPs for multicolor imaging of fusions, expansion microscopy and two-photon imaging.
Collapse
Affiliation(s)
- Hanbin Zhang
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Stavrini Papadaki
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Xiaoting Sun
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Xinyue Wang
- Division of Cellular and Molecular Neurobiology, Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
| | - Mikhail Drobizhev
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Luxia Yao
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Michel Rehbock
- Division of Cellular and Molecular Neurobiology, Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
| | - Reinhard W Köster
- Division of Cellular and Molecular Neurobiology, Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
| | - Lianfeng Wu
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Kazuhiko Namikawa
- Division of Cellular and Molecular Neurobiology, Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
| | - Kiryl D Piatkevich
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China.
| |
Collapse
|
6
|
Dan Q, Jiang X, Wang R, Dai Z, Sun D. Biogenic Imaging Contrast Agents. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207090. [PMID: 37401173 PMCID: PMC10477908 DOI: 10.1002/advs.202207090] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 06/08/2023] [Indexed: 07/05/2023]
Abstract
Imaging contrast agents are widely investigated in preclinical and clinical studies, among which biogenic imaging contrast agents (BICAs) are developing rapidly and playing an increasingly important role in biomedical research ranging from subcellular level to individual level. The unique properties of BICAs, including expression by cells as reporters and specific genetic modification, facilitate various in vitro and in vivo studies, such as quantification of gene expression, observation of protein interactions, visualization of cellular proliferation, monitoring of metabolism, and detection of dysfunctions. Furthermore, in human body, BICAs are remarkably helpful for disease diagnosis when the dysregulation of these agents occurs and can be detected through imaging techniques. There are various BICAs matched with a set of imaging techniques, including fluorescent proteins for fluorescence imaging, gas vesicles for ultrasound imaging, and ferritin for magnetic resonance imaging. In addition, bimodal and multimodal imaging can be realized through combining the functions of different BICAs, which helps overcome the limitations of monomodal imaging. In this review, the focus is on the properties, mechanisms, applications, and future directions of BICAs.
Collapse
Affiliation(s)
- Qing Dan
- Shenzhen Key Laboratory for Drug Addiction and Medication SafetyDepartment of UltrasoundInstitute of Ultrasonic MedicinePeking University Shenzhen HospitalShenzhen Peking University‐The Hong Kong University of Science and Technology Medical CenterShenzhen518036P. R. China
| | - Xinpeng Jiang
- Department of Biomedical EngineeringCollege of Future TechnologyPeking UniversityBeijing100871P. R. China
| | - Run Wang
- Shenzhen Key Laboratory for Drug Addiction and Medication SafetyDepartment of UltrasoundInstitute of Ultrasonic MedicinePeking University Shenzhen HospitalShenzhen Peking University‐The Hong Kong University of Science and Technology Medical CenterShenzhen518036P. R. China
| | - Zhifei Dai
- Department of Biomedical EngineeringCollege of Future TechnologyPeking UniversityBeijing100871P. R. China
| | - Desheng Sun
- Shenzhen Key Laboratory for Drug Addiction and Medication SafetyDepartment of UltrasoundInstitute of Ultrasonic MedicinePeking University Shenzhen HospitalShenzhen Peking University‐The Hong Kong University of Science and Technology Medical CenterShenzhen518036P. R. China
| |
Collapse
|
7
|
Yan X, Liu X, Zhao C, Chen GQ. Applications of synthetic biology in medical and pharmaceutical fields. Signal Transduct Target Ther 2023; 8:199. [PMID: 37169742 PMCID: PMC10173249 DOI: 10.1038/s41392-023-01440-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 03/15/2023] [Accepted: 03/24/2023] [Indexed: 05/13/2023] Open
Abstract
Synthetic biology aims to design or assemble existing bioparts or bio-components for useful bioproperties. During the past decades, progresses have been made to build delicate biocircuits, standardized biological building blocks and to develop various genomic/metabolic engineering tools and approaches. Medical and pharmaceutical demands have also pushed the development of synthetic biology, including integration of heterologous pathways into designer cells to efficiently produce medical agents, enhanced yields of natural products in cell growth media to equal or higher than that of the extracts from plants or fungi, constructions of novel genetic circuits for tumor targeting, controllable releases of therapeutic agents in response to specific biomarkers to fight diseases such as diabetes and cancers. Besides, new strategies are developed to treat complex immune diseases, infectious diseases and metabolic disorders that are hard to cure via traditional approaches. In general, synthetic biology brings new capabilities to medical and pharmaceutical researches. This review summarizes the timeline of synthetic biology developments, the past and present of synthetic biology for microbial productions of pharmaceutics, engineered cells equipped with synthetic DNA circuits for diagnosis and therapies, live and auto-assemblied biomaterials for medical treatments, cell-free synthetic biology in medical and pharmaceutical fields, and DNA engineering approaches with potentials for biomedical applications.
Collapse
Affiliation(s)
- Xu Yan
- School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Xu Liu
- PhaBuilder Biotech Co. Ltd., Shunyi District, Zhaoquan Ying, 101309, Beijing, China
| | - Cuihuan Zhao
- School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Guo-Qiang Chen
- School of Life Sciences, Tsinghua University, 100084, Beijing, China.
- Center for Synthetic and Systems Biology, Tsinghua University, 100084, Beijing, China.
- MOE Key Lab for Industrial Biocatalysis, Dept Chemical Engineering, Tsinghua University, 100084, Beijing, China.
| |
Collapse
|
8
|
Huang Q, Zhu W, Gao X, Liu X, Zhang Z, Xing B. Nanoparticles-mediated ion channels manipulation: From their membrane interactions to bioapplications. Adv Drug Deliv Rev 2023; 195:114763. [PMID: 36841331 DOI: 10.1016/j.addr.2023.114763] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/14/2023] [Accepted: 02/18/2023] [Indexed: 02/26/2023]
Abstract
Ion channels are transmembrane proteins ubiquitously expressed in all cells that control various ions (e.g. Na+, K+, Ca2+ and Cl- etc) crossing cellular plasma membrane, which play critical roles in physiological processes including regulating signal transduction, cell proliferation as well as excitatory cell excitation and conduction. Abnormal ion channel function is usually associated with dysfunctions and many diseases, such as neurodegenerative disorders, ophthalmic diseases, pulmonary diseases and even cancers. The precise regulation of ion channels not only helps to decipher physiological and pathological processes, but also is expected to become cutting-edge means for disease treatment. Recently, nanoparticles-mediated ion channel manipulation emerges as a highly promising way to meet the increasing requirements with respect to their simple, efficient, precise, spatiotemporally controllable and non-invasive regulation in biomedicine and other research frontiers. Thanks the advantages of their unique properties, nanoparticles can not only directly block the pore sites or kinetics of ion channels through their tiny size effect, and perturb active voltage-gated ion channel by their charged surface, but they can also act as antennas to conduct or enhance external physical stimuli to achieve spatiotemporal, precise and efficient regulation of various ion channel activities (e.g. light-, mechanical-, and temperature-gated ion channels etc). So far, nanoparticles-mediated ion channel regulation has shown potential prospects in many biomedical fields at the interfaces of neuro- and cardiovascular modulation, physiological function regeneration and tumor therapy et al. Towards such important fields, in this typical review, we specifically outline the latest studies of different types of ion channels and their activities relevant to the diseases. In addition, the different types of stimulation responsive nanoparticles, their interaction modes and targeting strategies towards the plasma membrane ion channels will be systematically summarized. More importantly, the ion channel regulatory methods mediated by functional nanoparticles and their bioapplications associated with physiological modulation and therapeutic development will be discussed. Last but not least, current challenges and future perspectives in this field will be covered as well.
Collapse
Affiliation(s)
- Qiwen Huang
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Weisheng Zhu
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xiaoyin Gao
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xinping Liu
- School of Pharmaceutical Science, University of South China, Hengyang 421001, China
| | - Zhijun Zhang
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Bengang Xing
- School of Chemistry, Chemical Engineering & Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore.
| |
Collapse
|
9
|
Lavilla-Puerta M, Giuntoli B. Assessing In Vivo Oxygen Dynamics Using Plant N-Terminal Degrons in Saccharomyces cerevisiae. Methods Mol Biol 2023; 2564:269-286. [PMID: 36107348 DOI: 10.1007/978-1-0716-2667-2_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The expression of plant cysteine oxidase (PCO) enzyme in Saccharomyces cerevisiae enables the Arg/Cys N-degron pathway (Cys-NDP) for selective protein degradation that, in plants, functions as direct oxygen perception mechanism. A synthetic construct based on the plant Cys-NDP substrate related to apetala 2.12 (RAP2.12), the dual luciferase oxygen reporter (DLOR), exploits the N-terminal Cys of RAP2.12, and its oxygen-dependent degradation through the Cys-NDP. The luminescent output of DLOR can be used as a proxy for intracellular oxygen dynamics in budding yeast. Replacement of the luciferase reporter of the DLOR with fluorescent proteins would furthermore facilitate the imaging of reporter dynamics in living cells. In this chapter, we describe the methods for delivering the DLOR synthetic construct to yeast and calibrating its output by means of oxygen quantification in the culture with a physical oxygen sensor. We explain the setup needed to carry out hypoxic treatments with several colonies as replicates. We also describe the method to measure oxygen concentration in the culture, the closest indication of intracellular oxygen levels, as a way that would serve to calibrate the DLOR output. Finally, we propose a strategy to replace the luminescent reporters in the DLOR with fluorescent proteins to visualize oxygen dynamics in vivo.
Collapse
Affiliation(s)
| | - Beatrice Giuntoli
- Biology Department, University of Pisa, Pisa, Italy.
- Sant'Anna School of Advanced Studies, Plantlab, Pisa, Italy.
| |
Collapse
|
10
|
Smirnova MN, Kop’eva MA, Nipan GD, Nikiforova GE, Yapryntsev AD, Petrova KV, Korotkova NA. Solid Solution with Spinel Structure in the System MgO–NiO–Ga2O3. RUSS J INORG CHEM+ 2022. [DOI: 10.1134/s0036023622070221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Leopold AV, Thankachan S, Yang C, Gerashchenko D, Verkhusha VV. A general approach for engineering RTKs optically controlled with far-red light. Nat Methods 2022; 19:871-880. [PMID: 35681062 DOI: 10.1038/s41592-022-01517-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 05/06/2022] [Indexed: 11/09/2022]
Abstract
Regulation of receptor tyrosine kinase (RTK) activity is necessary for studying cell signaling pathways in health and disease. We developed a generalized approach for engineering RTKs optically controlled with far-red light. We targeted the bacterial phytochrome DrBphP to the cell surface and allowed its light-induced conformational changes to be transmitted across the plasma membrane via transmembrane helices to intracellular RTK domains. Systematic optimization of these constructs has resulted in optically regulated epidermal growth factor receptor, HER2, TrkA, TrkB, FGFR1, IR1, cKIT and cMet, named eDrRTKs. eDrRTKs induced downstream signaling in mammalian cells in tens of seconds. The ability to activate eDrRTKs with far-red light enabled spectral multiplexing with fluorescent probes operating in a shorter spectral range, allowing for all-optical assays. We validated eDrTrkB performance in mice and found that minimally invasive stimulation in the neocortex with penetrating via skull far-red light-induced neural activity, early immediate gene expression and affected sleep patterns.
Collapse
Affiliation(s)
- Anna V Leopold
- Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | | | - Chun Yang
- Department of Psychiatry, Harvard Medical School, West Roxbury, MA, USA
| | | | - Vladislav V Verkhusha
- Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland. .,Department of Genetics and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
12
|
Garzella F, Bianchini P, Diaspro A, Losi A, Gärtner W, Abbruzzetti S, Viappiani C. A red-green photochromic bacterial protein as a new contrast agent for improved photoacoustic imaging. PHOTOACOUSTICS 2022; 26:100358. [PMID: 35656384 PMCID: PMC9152790 DOI: 10.1016/j.pacs.2022.100358] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/14/2022] [Indexed: 06/15/2023]
Abstract
The GAF3 domain of the cyanobacteriochrome Slr1393 from Synechocystis sp. PCC6803, binding phycocyanobilin as a chromophore, shows photochromicity between two stable, green- and red-absorbing states, characterized by relatively high photoconversion yields. Using nanosecond-pulsed excitation by red or green light, respectively, and suitable cw photoconversion beams, we demonstrate that the light-modulatable photoacoustic waveforms arising from GAF3 can be easily distinguished from background signals originating from non-modulatable competitive absorbers and scattering media. It is demonstrated that this effect can be exploited to identify the position of the photochromic molecule by using as a phantom a cylindrical capillary tube filled with either a GAF3 solution or with an E.coli suspension overexpressing GAF3. These properties identify the high potential of GAF3 to be included in the palette of genetically encoded photochromic probes for photoacoustic imaging.
Collapse
Affiliation(s)
- Francesco Garzella
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, Italy
- Nanoscopy @ Istituto Italiano di Tecnologia, Genova, Italy
| | - Paolo Bianchini
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, Italy
- Nanoscopy @ Istituto Italiano di Tecnologia, Genova, Italy
- DIFILAB, Dipartimento di Fisica, Università di Genova, Genova, Italy
| | - Alberto Diaspro
- Nanoscopy @ Istituto Italiano di Tecnologia, Genova, Italy
- DIFILAB, Dipartimento di Fisica, Università di Genova, Genova, Italy
| | - Aba Losi
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, Italy
| | - Wolfgang Gärtner
- Institut für Analytische Chemie - Universität Leipzig, Leipzig, Germany
| | - Stefania Abbruzzetti
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, Italy
| | - Cristiano Viappiani
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, Italy
| |
Collapse
|
13
|
Nagano S, Sadeghi M, Balke J, Fleck M, Heckmann N, Psakis G, Alexiev U. Improved fluorescent phytochromes for in situ imaging. Sci Rep 2022; 12:5587. [PMID: 35379835 PMCID: PMC8980088 DOI: 10.1038/s41598-022-09169-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 03/14/2022] [Indexed: 12/18/2022] Open
Abstract
AbstractModern biology investigations on phytochromes as near-infrared fluorescent pigments pave the way for the development of new biosensors, as well as for optogenetics and in vivo imaging tools. Recently, near-infrared fluorescent proteins (NIR-FPs) engineered from biliverdin-binding bacteriophytochromes and cyanobacteriochromes, and from phycocyanobilin-binding cyanobacterial phytochromes have become promising probes for fluorescence microscopy and in vivo imaging. However, current NIR-FPs typically suffer from low fluorescence quantum yields and short fluorescence lifetimes. Here, we applied the rational approach of combining mutations known to enhance fluorescence in the cyanobacterial phytochrome Cph1 to derive a series of highly fluorescent variants with fluorescence quantum yield exceeding 15%. These variants were characterised by biochemical and spectroscopic methods, including time-resolved fluorescence spectroscopy. We show that these new NIR-FPs exhibit high fluorescence quantum yields and long fluorescence lifetimes, contributing to their bright fluorescence, and provide fluorescence lifetime imaging measurements in E.coli cells.
Collapse
|
14
|
Zhao H, Zastrow ML. Transition Metals Induce Quenching of Monomeric Near-Infrared Fluorescent Proteins. Biochemistry 2022; 61:494-504. [PMID: 35289592 DOI: 10.1021/acs.biochem.1c00705] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Transition metals such as zinc and copper are essential in numerous life processes, and both deficiency and toxic overload of these metals are associated with various diseases. Fluorescent metal sensors are powerful tools for studying the roles of metal ions in the physiology and pathology of biological systems. Green fluorescent protein (GFP) and its derivatives are highly utilized for protein-based sensor design, but application to anaerobic systems is limited because these proteins require oxygen to become fluorescent. Bacteriophytochrome-based monomeric near-infrared fluorescent proteins (miRFPs) covalently bind a bilin cofactor, which can be added exogenously for anaerobic cells. miRFPs can also have emission wavelengths extending to >700 nm, which is valuable for imaging applications. Here, we evaluated the suitability of miRFP670 and miRFP709 as platforms for single fluorescent protein metal ion sensors. We found that divalent metal ions like Zn2+, Co2+, Ni2+, and Cu2+ can quench from ∼6-20% (Zn2+, Co2+, and Ni2+) and up to nearly 90% (Cu2+) of the fluorescence intensity of pure miRFPs and have similar impacts in live Escherichia coli cells expressing miRFPs. The presence of a 6× histidine tag for purification influences metal quenching, but significant Cu2+-induced quenching and a picomolar binding affinity are retained in the absence of the His6 tag in both cuvettes and live bacterial cells. By comparing the Cu2+ and Cu+-induced quenching results for miRFP670 and miRFP709 and through examining absorption spectra and previously reported crystal structures, we propose a surface metal binding site near the biliverdin IXα chromophore.
Collapse
Affiliation(s)
- Haowen Zhao
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Melissa L Zastrow
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| |
Collapse
|
15
|
Babakhanova S, Jung EE, Namikawa K, Zhang H, Wang Y, Subach OM, Korzhenevskiy DA, Rakitina TV, Xiao X, Wang W, Shi J, Drobizhev M, Park D, Eisenhard L, Tang H, Köster RW, Subach FV, Boyden ES, Piatkevich KD. Rapid directed molecular evolution of fluorescent proteins in mammalian cells. Protein Sci 2022; 31:728-751. [PMID: 34913537 PMCID: PMC8862398 DOI: 10.1002/pro.4261] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/24/2021] [Accepted: 12/14/2021] [Indexed: 12/31/2022]
Abstract
In vivo imaging of model organisms is heavily reliant on fluorescent proteins with high intracellular brightness. Here we describe a practical method for rapid optimization of fluorescent proteins via directed molecular evolution in cultured mammalian cells. Using this method, we were able to perform screening of large gene libraries containing up to 2 × 107 independent random genes of fluorescent proteins expressed in HEK cells, completing one iteration of directed evolution in a course of 8 days. We employed this approach to develop a set of green and near-infrared fluorescent proteins with enhanced intracellular brightness. The developed near-infrared fluorescent proteins demonstrated high performance for fluorescent labeling of neurons in culture and in vivo in model organisms such as Caenorhabditis elegans, Drosophila, zebrafish, and mice. Spectral properties of the optimized near-infrared fluorescent proteins enabled crosstalk-free multicolor imaging in combination with common green and red fluorescent proteins, as well as dual-color near-infrared fluorescence imaging. The described method has a great potential to be adopted by protein engineers due to its simplicity and practicality. We also believe that the new enhanced fluorescent proteins will find wide application for in vivo multicolor imaging of small model organisms.
Collapse
|
16
|
Effects of local matrix environment on the spectroscopic properties of ensemble to single-particle level carbon dots. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.08.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
17
|
Dwijayanti A, Zhang C, Poh CL, Lautier T. Toward Multiplexed Optogenetic Circuits. Front Bioeng Biotechnol 2022; 9:804563. [PMID: 35071213 PMCID: PMC8766309 DOI: 10.3389/fbioe.2021.804563] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/06/2021] [Indexed: 11/25/2022] Open
Abstract
Owing to its ubiquity and easy availability in nature, light has been widely employed to control complex cellular behaviors. Light-sensitive proteins are the foundation to such diverse and multilevel adaptive regulations in a large range of organisms. Due to their remarkable properties and potential applications in engineered systems, exploration and engineering of natural light-sensitive proteins have significantly contributed to expand optogenetic toolboxes with tailor-made performances in synthetic genetic circuits. Progressively, more complex systems have been designed in which multiple photoreceptors, each sensing its dedicated wavelength, are combined to simultaneously coordinate cellular responses in a single cell. In this review, we highlight recent works and challenges on multiplexed optogenetic circuits in natural and engineered systems for a dynamic regulation breakthrough in biotechnological applications.
Collapse
Affiliation(s)
| | - Congqiang Zhang
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Chueh Loo Poh
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Thomas Lautier
- CNRS@CREATE, Singapore, Singapore
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| |
Collapse
|
18
|
Zheng G, Cui Y, Zhou Y, Jiang Z, Wang Q, Zhou M, Wang P, Yu Y. Photoenzymatic Activity of Artificial-Natural Bienzyme Applied in Biodegradation of Methylene Blue and Accelerating Polymerization of Dopamine. ACS APPLIED MATERIALS & INTERFACES 2021; 13:56191-56204. [PMID: 34787400 DOI: 10.1021/acsami.1c17098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Enzymes as biocatalysts have attracted extensive attention. In addition to immobilizing or encapsulating various enzymes for combating the easy loss of enzymatic activity, strengthening the enzymatic activity upon light irradiation is a challenge. To the best of our knowledge, the work of spatiotemporally modulating the catalytic activity of artificial-natural bienzymes with a near-infrared light irradiation has not been reported. Inspired by immobilized enzymes and nanozymes, herein a platinum nanozyme was synthesized; subsequently, the platinum nanozyme was grafted on the body of laccase, thus successfully obtaining the artificial-natural bienzyme. The three-dimensional structure of the artificial-natural bienzyme was greatly different from that of the immobilized enzyme or the encapsulated enzyme. The platinum nanozyme possessed excellent laccase-like activity, which was 3.7 times higher than that of laccase. Meanwhile, the coordination between the platinum nanozyme and laccase was proved. Besides, the cascaded catalysis of artificial-natural bienzyme was verified with hydrogen peroxide as a mediator. The enzymatic activities of artificial-natural bienzyme with and without near-infrared light irradiation were, respectively, 46.2 and 29.5% higher than that of free laccase. Moreover, the reversible catalytic activity of the coupled enzyme could be manipulated with and without a near-infrared light at 808 nm. As a result, the degradation rates of methylene blue catalyzed by the coupled enzyme and the platinum nanozyme were higher than that of laccase. Furthermore, accelerating polymerization of the dopamine was also demonstrated. Briefly, this facile strategy may provide a universal approach to control the catalytic activity of other natural enzymes.
Collapse
Affiliation(s)
- Guolin Zheng
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Jiangsu Province, Wuxi 214122, P. R. China
| | - Yifan Cui
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Jiangsu Province, Wuxi 214122, P. R. China
| | - Yu Zhou
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Jiangsu Province, Wuxi 214122, P. R. China
| | - Zhe Jiang
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Jiangsu Province, Wuxi 214122, P. R. China
| | - Qiang Wang
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Jiangsu Province, Wuxi 214122, P. R. China
| | - Man Zhou
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Jiangsu Province, Wuxi 214122, P. R. China
| | - Ping Wang
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Jiangsu Province, Wuxi 214122, P. R. China
| | - Yuanyuan Yu
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Jiangsu Province, Wuxi 214122, P. R. China
| |
Collapse
|
19
|
Fischer T, van Wilderen LJGW, Gnau P, Bredenbeck J, Essen LO, Wachtveitl J, Slavov C. Ultrafast Photoconversion Dynamics of the Knotless Phytochrome SynCph2. Int J Mol Sci 2021; 22:ijms221910690. [PMID: 34639031 PMCID: PMC8508867 DOI: 10.3390/ijms221910690] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/24/2021] [Accepted: 09/28/2021] [Indexed: 12/03/2022] Open
Abstract
The family of phytochrome photoreceptors contains proteins with different domain architectures and spectral properties. Knotless phytochromes are one of the three main subgroups classified by their distinct lack of the PAS domain in their photosensory core module, which is in contrast to the canonical PAS-GAF-PHY array. Despite intensive research on the ultrafast photodynamics of phytochromes, little is known about the primary kinetics in knotless phytochromes. Here, we present the ultrafast Pr ⇆ Pfr photodynamics of SynCph2, the best-known knotless phytochrome. Our results show that the excited state lifetime of Pr* (~200 ps) is similar to bacteriophytochromes, but much longer than in most canonical phytochromes. We assign the slow Pr* kinetics to relaxation processes of the chromophore-binding pocket that controls the bilin chromophore’s isomerization step. The Pfr photoconversion dynamics starts with a faster excited state relaxation than in canonical phytochromes, but, despite the differences in the respective domain architectures, proceeds via similar ground state intermediate steps up to Meta-F. Based on our observations, we propose that the kinetic features and overall dynamics of the ultrafast photoreaction are determined to a great extent by the geometrical context (i.e., available space and flexibility) within the binding pocket, while the general reaction steps following the photoexcitation are most likely conserved among the red/far-red phytochromes.
Collapse
Affiliation(s)
- Tobias Fischer
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt am Main, Max-von-Laue Straße 7, 60438 Frankfurt, Germany;
| | - Luuk J. G. W. van Wilderen
- Institute of Biophysics, Goethe University Frankfurt am Main, Max-von-Laue Straße 1, 60438 Frankfurt, Germany; (L.J.G.W.v.W.); (J.B.)
| | - Petra Gnau
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany; (P.G.); (L.-O.E.)
| | - Jens Bredenbeck
- Institute of Biophysics, Goethe University Frankfurt am Main, Max-von-Laue Straße 1, 60438 Frankfurt, Germany; (L.J.G.W.v.W.); (J.B.)
| | - Lars-Oliver Essen
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany; (P.G.); (L.-O.E.)
- Center for Synthetic Microbiology, Philipps-Universität Marburg, Hans-Meerwein-Straße 6, 35032 Marburg, Germany
| | - Josef Wachtveitl
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt am Main, Max-von-Laue Straße 7, 60438 Frankfurt, Germany;
- Correspondence: (J.W.); (C.S.)
| | - Chavdar Slavov
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt am Main, Max-von-Laue Straße 7, 60438 Frankfurt, Germany;
- Correspondence: (J.W.); (C.S.)
| |
Collapse
|
20
|
Kaberniuk AA, Baloban M, Monakhov MV, Shcherbakova DM, Verkhusha VV. Single-component near-infrared optogenetic systems for gene transcription regulation. Nat Commun 2021; 12:3859. [PMID: 34162879 PMCID: PMC8222386 DOI: 10.1038/s41467-021-24212-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 06/03/2021] [Indexed: 11/09/2022] Open
Abstract
Near-infrared (NIR) optogenetic systems for transcription regulation are in high demand because NIR light exhibits low phototoxicity, low scattering, and allows combining with probes of visible range. However, available NIR optogenetic systems consist of several protein components of large size and multidomain structure. Here, we engineer single-component NIR systems consisting of evolved photosensory core module of Idiomarina sp. bacterial phytochrome, named iLight, which are smaller and packable in adeno-associated virus. We characterize iLight in vitro and in gene transcription repression in bacterial and gene transcription activation in mammalian cells. Bacterial iLight system shows 115-fold repression of protein production. Comparing to multi-component NIR systems, mammalian iLight system exhibits higher activation of 65-fold in cells and faster 6-fold activation in deep tissues of mice. Neurons transduced with viral-encoded iLight system exhibit 50-fold induction of fluorescent reporter. NIR light-induced neuronal expression of green-light-activatable CheRiff channelrhodopsin causes 20-fold increase of photocurrent and demonstrates efficient spectral multiplexing. Current near-IR optogenetic systems to regulate transcription consist of a number of large protein components. Here the authors report a smaller single-component near-IR system, iLight, developed from a bacterial phytochrome that they use to control gene transcription in bacterial and mammalian cells.
Collapse
Affiliation(s)
- Andrii A Kaberniuk
- Department of Anatomy and Structural Biology, and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Mikhail Baloban
- Department of Anatomy and Structural Biology, and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Mikhail V Monakhov
- Department of Anatomy and Structural Biology, and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Daria M Shcherbakova
- Department of Anatomy and Structural Biology, and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Vladislav V Verkhusha
- Department of Anatomy and Structural Biology, and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA. .,Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland. .,Science Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Russia.
| |
Collapse
|
21
|
An Engineered Biliverdin-Compatible Cyanobacteriochrome Enables a Unique Ultrafast Reversible Photoswitching Pathway. Int J Mol Sci 2021; 22:ijms22105252. [PMID: 34065754 PMCID: PMC8156171 DOI: 10.3390/ijms22105252] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/09/2021] [Accepted: 05/14/2021] [Indexed: 11/17/2022] Open
Abstract
Cyanobacteriochromes (CBCRs) are promising optogenetic tools for their diverse absorption properties with a single compact cofactor-binding domain. We previously uncovered the ultrafast reversible photoswitching dynamics of a red/green photoreceptor AnPixJg2, which binds phycocyanobilin (PCB) that is unavailable in mammalian cells. Biliverdin (BV) is a mammalian cofactor with a similar structure to PCB but exhibits redder absorption. To improve the AnPixJg2 feasibility in mammalian applications, AnPixJg2_BV4 with only four mutations has been engineered to incorporate BV. Herein, we implemented femtosecond transient absorption (fs-TA) and ground state femtosecond stimulated Raman spectroscopy (GS-FSRS) to uncover transient electronic dynamics on molecular time scales and key structural motions responsible for the photoconversion of AnPixJg2_BV4 with PCB (Bpcb) and BV (Bbv) cofactors in comparison with the parent AnPixJg2 (Apcb). Bpcb adopts the same photoconversion scheme as Apcb, while BV4 mutations create a less bulky environment around the cofactor D ring that promotes a faster twist. The engineered Bbv employs a reversible clockwise/counterclockwise photoswitching that requires a two-step twist on ~5 and 35 picosecond (ps) time scales. The primary forward Pfr → Po transition displays equal amplitude weights between the two processes before reaching a conical intersection. In contrast, the primary reverse Po → Pfr transition shows a 2:1 weight ratio of the ~35 ps over 5 ps component, implying notable changes to the D-ring-twisting pathway. Moreover, we performed pre-resonance GS-FSRS and quantum calculations to identify the Bbv vibrational marker bands at ~659,797, and 1225 cm-1. These modes reveal a stronger H-bonding network around the BV cofactor A ring with BV4 mutations, corroborating the D-ring-dominant reversible photoswitching pathway in the excited state. Implementation of BV4 mutations in other PCB-binding GAF domains like AnPixJg4, AM1_1870g3, and NpF2164g5 could promote similar efficient reversible photoswitching for more directional bioimaging and optogenetic applications, and inspire other bioengineering advances.
Collapse
|
22
|
Tachibana SR, Tang L, Chen C, Zhu L, Takeda Y, Fushimi K, Seevers TK, Narikawa R, Sato M, Fang C. Transient electronic and vibrational signatures during reversible photoswitching of a cyanobacteriochrome photoreceptor. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 250:119379. [PMID: 33401182 DOI: 10.1016/j.saa.2020.119379] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/12/2020] [Accepted: 12/19/2020] [Indexed: 06/12/2023]
Abstract
Cyanobacteriochromes (CBCRs) are an emerging class of photoreceptors that are distant relatives of the phytochromes family. Unlike phytochromes, CBCRs have gained popularity in optogenetics due to their highly diverse spectral properties spanning the UV to near-IR region and only needing a single compact binding domain. AnPixJg2 is a CBCR that can reversibly photoswitch between its red-absorbing (15ZPr) and green-absorbing (15EPg) forms of the phycocyanobilin (PCB) cofactor. To reveal primary events of photoconversion, we implemented femtosecond transient absorption spectroscopy with a homemade LED box and a miniature peristaltic pump flow cell to track transient electronic responses of the photoexcited AnPixJg2 on molecular time scales. The 525 nm laser-induced Pg-to-Pr reverse conversion exhibits a ~3 ps excited-state lifetime before reaching the conical intersection (CI) and undergoing further relaxation on the 30 ps time scale to generate a long-lived Lumi-G ground state intermediate en route to Pr. The 650 nm laser-induced Pr-to-Pg forward conversion is less efficient than reverse conversion, showing a longer-lived excited state which requires two steps with ~13 and 217 ps time constants to enter the CI region. Furthermore, using a tunable ps Raman pump with broadband Raman probe on both the Stokes and anti-Stokes sides, we collected the pre-resonance ground-state femtosecond stimulated Raman spectroscopy (GS-FSRS) data with mode assignments aided by quantum calculations. Key vibrational marker bands at ~850, 1050, 1615, and 1649 cm-1 of the Pr conformer exhibit a notable blueshift to those of the Pg conformer inside AnPixJg2, reflecting the PCB chromophore terminal D (major) and A (minor) ring twist along the primary photoswitching reaction coordinate. This integrated ultrafast spectroscopy and computational platform has the potential to elucidate photochemistry and photophysics of more CBCRs and photoactive proteins in general, providing the highly desirable mechanistic insights to facilitate the rational design of functional molecular sensors and devices.
Collapse
Affiliation(s)
- Sean R Tachibana
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR 97331-4003, United States
| | - Longteng Tang
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR 97331-4003, United States
| | - Cheng Chen
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR 97331-4003, United States
| | - Liangdong Zhu
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR 97331-4003, United States
| | - Yuka Takeda
- Graduate School of Integrated Science and Technology, Shizuoka University, 422-8529 Shizuoka, Japan
| | - Keiji Fushimi
- Graduate School of Integrated Science and Technology, Shizuoka University, 422-8529 Shizuoka, Japan
| | - Travis K Seevers
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR 97331-4003, United States
| | - Rei Narikawa
- Graduate School of Integrated Science and Technology, Shizuoka University, 422-8529 Shizuoka, Japan; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, 332-0012 Saitama, Japan
| | - Moritoshi Sato
- Graduate School of Arts and Sciences, University of Tokyo, 153-8902 Tokyo, Japan; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, 332-0012 Saitama, Japan
| | - Chong Fang
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR 97331-4003, United States.
| |
Collapse
|
23
|
Bandara S, Rockwell NC, Zeng X, Ren Z, Wang C, Shin H, Martin SS, Moreno MV, Lagarias JC, Yang X. Crystal structure of a far-red-sensing cyanobacteriochrome reveals an atypical bilin conformation and spectral tuning mechanism. Proc Natl Acad Sci U S A 2021; 118:e2025094118. [PMID: 33727422 PMCID: PMC8000052 DOI: 10.1073/pnas.2025094118] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Cyanobacteriochromes (CBCRs) are small, linear tetrapyrrole (bilin)-binding photoreceptors in the phytochrome superfamily that regulate diverse light-mediated adaptive processes in cyanobacteria. More spectrally diverse than canonical red/far-red-sensing phytochromes, CBCRs were thought to be restricted to sensing visible and near UV light until recently when several subfamilies with far-red-sensing representatives (frCBCRs) were discovered. Two of these frCBCRs subfamilies have been shown to incorporate bilin precursors with larger pi-conjugated chromophores, while the third frCBCR subfamily uses the same phycocyanobilin precursor found in the bulk of the known CBCRs. To elucidate the molecular basis of far-red light perception by this third frCBCR subfamily, we determined the crystal structure of the far-red-absorbing dark state of one such frCBCR Anacy_2551g3 from Anabaena cylindrica PCC 7122 which exhibits a reversible far-red/orange photocycle. Determined by room temperature serial crystallography and cryocrystallography, the refined 2.7-Å structure reveals an unusual all-Z,syn configuration of the phycocyanobilin (PCB) chromophore that is considerably less extended than those of previously characterized red-light sensors in the phytochrome superfamily. Based on structural and spectroscopic comparisons with other bilin-binding proteins together with site-directed mutagenesis data, our studies reveal protein-chromophore interactions that are critical for the atypical bathochromic shift. Based on these analyses, we propose that far-red absorption in Anacy_2551g3 is the result of the additive effect of two distinct red-shift mechanisms involving cationic bilin lactim tautomers stabilized by a constrained all-Z,syn conformation and specific interactions with a highly conserved anionic residue.
Collapse
Affiliation(s)
- Sepalika Bandara
- Department of Chemistry, University of Illinois, Chicago, IL 60607
| | - Nathan C Rockwell
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616
| | - Xiaoli Zeng
- Department of Chemistry, University of Illinois, Chicago, IL 60607
| | - Zhong Ren
- Department of Chemistry, University of Illinois, Chicago, IL 60607
| | - Cong Wang
- Department of Chemistry, University of Illinois, Chicago, IL 60607
| | - Heewhan Shin
- Department of Chemistry, University of Illinois, Chicago, IL 60607
| | - Shelley S Martin
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616
| | - Marcus V Moreno
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616
| | - J Clark Lagarias
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616;
| | - Xiaojing Yang
- Department of Chemistry, University of Illinois, Chicago, IL 60607;
- Department of Ophthalmology and Vision Sciences, University of Illinois, Chicago, IL 60607
| |
Collapse
|
24
|
Sokolovski SG, Zherebtsov EA, Kar RK, Golonka D, Stabel R, Chichkov NB, Gorodetsky A, Schapiro I, Möglich A, Rafailov EU. Two-photon conversion of a bacterial phytochrome. Biophys J 2021; 120:964-974. [PMID: 33545103 DOI: 10.1016/j.bpj.2021.01.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/20/2020] [Accepted: 01/07/2021] [Indexed: 02/07/2023] Open
Abstract
In nature, sensory photoreceptors underlie diverse spatiotemporally precise and generally reversible biological responses to light. Photoreceptors also serve as genetically encoded agents in optogenetics to control by light organismal state and behavior. Phytochromes represent a superfamily of photoreceptors that transition between states absorbing red light (Pr) and far-red light (Pfr), thus expanding the spectral range of optogenetics to the near-infrared range. Although light of these colors exhibits superior penetration of soft tissue, the transmission through bone and skull is poor. To overcome this fundamental challenge, we explore the activation of a bacterial phytochrome by a femtosecond laser emitting in the 1 μm wavelength range. Quantum chemical calculations predict that bacterial phytochromes possess substantial two-photon absorption cross sections. In line with this notion, we demonstrate that the photoreversible Pr ↔ Pfr conversion is driven by two-photon absorption at wavelengths between 1170 and 1450 nm. The Pfr yield was highest for wavelengths between 1170 and 1280 nm and rapidly plummeted beyond 1300 nm. By combining two-photon activation with bacterial phytochromes, we lay the foundation for enhanced spatial resolution in optogenetics and unprecedented penetration through bone, skull, and soft tissue.
Collapse
Affiliation(s)
- Serge G Sokolovski
- Optoelectronics and Biomedical Photonics Group, AIPT, Aston University, Birmingham, United Kingdom
| | - Evgeny A Zherebtsov
- Optoelectronics and Measurement Techniques, University of Oulu, Oulu, Finland; Cell Physiology and Pathology Laboratory, Orel State University, Orel, Russia
| | - Rajiv K Kar
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - David Golonka
- Photobiochemistry, University of Bayreuth, Bayreuth, Germany
| | - Robert Stabel
- Photobiochemistry, University of Bayreuth, Bayreuth, Germany
| | - Nikolai B Chichkov
- Optoelectronics and Biomedical Photonics Group, AIPT, Aston University, Birmingham, United Kingdom
| | - Andrei Gorodetsky
- ITMO University, St. Petersburg, Russia; Department of Chemistry, Imperial College London, London, United Kingdom; School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
| | - Igor Schapiro
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Andreas Möglich
- Photobiochemistry, University of Bayreuth, Bayreuth, Germany.
| | - Edik U Rafailov
- Optoelectronics and Biomedical Photonics Group, AIPT, Aston University, Birmingham, United Kingdom.
| |
Collapse
|
25
|
Panicucci G, Iacopino S, De Meo E, Perata P, Weits DA. An Improved HRPE-Based Transcriptional Output Reporter to Detect Hypoxia and Anoxia in Plant Tissue. BIOSENSORS-BASEL 2020; 10:bios10120197. [PMID: 33287141 PMCID: PMC7761731 DOI: 10.3390/bios10120197] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/27/2020] [Accepted: 12/01/2020] [Indexed: 01/22/2023]
Abstract
Oxygen levels in plant tissues may vary, depending on metabolism, diffusion barriers, and environmental availability. Current techniques to assess the oxic status of plant cells rely primarily on invasive microoptodes or Clark-type electrodes, which are not optimally suited for experiments that require high spatial and temporal resolution. In this case, a genetically encoded oxygen biosensor is required instead. This article reports the design, test, and optimization of a hypoxia-signaling reporter, based on five-time repeated hypoxia-responsive promoter elements (HRPE) driving the expression of different reporter proteins. Specifically, this study aimed to improve its performance as a reporter of hypoxic conditions by testing the effect of different untranslated regions (UTRs) at the 5′ end of the reporter coding sequence. Next, we characterized an optimized version of the HRPE promoter (HRPE-Ω) in terms of hypoxia sensitivity and time responsiveness. We also observed that severe oxygen deficiency counteracted the reporter activity due to inhibition of GFP maturation, which requires molecular oxygen. To overcome this limitation, we therefore employed an oxygen-independent UnaG fluorescent protein-coupled to an O2-dependent mCherry fluorophore under the control of the optimized HRPE-Ω promoter. Remarkably, this sensor, provided a different mCherry/UnaG ratiometric output depending on the externally imposed oxygen concentration, providing a solution to distinguish between different degrees of tissue hypoxia. Moreover, a ubiquitously expressed UnaG-mCherry fusion could be used to image oxygen concentrations directly, albeit at a narrow range. The luminescent and fluorescent hypoxia-reporters described here can readily be used to conduct studies that involve anaerobiosis in plants.
Collapse
Affiliation(s)
- Gabriele Panicucci
- Biology Department, University of Pisa, 56126 Pisa, Italy; (G.P.); (S.I.)
| | - Sergio Iacopino
- Biology Department, University of Pisa, 56126 Pisa, Italy; (G.P.); (S.I.)
- Institute of Life Sciences, Scuola Superiore Sant’Anna, 56127 Pisa, Italy;
| | - Elisa De Meo
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy;
| | | | - Daan A. Weits
- Institute of Life Sciences, Scuola Superiore Sant’Anna, 56127 Pisa, Italy;
- Correspondence: ; Tel.: +39-050-881913
| |
Collapse
|
26
|
Jähnigen S, Sebastiani D. Carbon Atoms Speaking Out: How the Geometric Sensitivity of 13C Chemical Shifts Leads to Understanding the Colour Tuning of Phycocyanobilin in Cph1 and AnPixJ. Molecules 2020; 25:E5505. [PMID: 33255423 PMCID: PMC7727823 DOI: 10.3390/molecules25235505] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 11/29/2022] Open
Abstract
We present a combined quantum mechanics/molecular mechanics (QM/MM) molecular dynamics-statistical approach for the interpretation of nuclear magnetic resonance (NMR) chemical shift patterns in phycocyanobilin (PCB). These were originally associated with colour tuning upon photoproduct formation in red/green-absorbing cyanobacteriochrome AnPixJg2 and red/far-red-absorbing phytochrome Cph1Δ2. We pursue an indirect approach without computation of the absorption frequencies since the molecular geometry of cofactor and protein are not accurately known. Instead, we resort to a heuristic determination of the conjugation length in PCB through the experimental NMR chemical shift patterns, supported by quantum chemical calculations. We have found a characteristic correlation pattern of 13C chemical shifts to specific bond orders within the π-conjugated system, which rests on the relative position of carbon atoms with respect to electron-withdrawing groups and the polarisation of covalent bonds. We propose the inversion of this regioselective relationship using multivariate statistics and to apply it to the known experimental NMR chemical shifts in order to predict changes in the bond alternation pattern. Therefrom the extent of electronic conjugation, and eventually the change in absorption frequency, can be derived. In the process, the consultation of explicit mesomeric formulae plays an important role to qualitatively account for possible conjugation scenarios of the chromophore. While we are able to consistently associate the NMR chemical shifts with hypsochromic and bathochromic shifts in the Pg and Pfr, our approach represents an alternative method to increase the explanatory power of NMR spectroscopic data in proteins.
Collapse
Affiliation(s)
| | - Daniel Sebastiani
- Institut für Chemie, Naturwissenschaftliche Fakultät II, Martin-Luther-Universität Halle-Wittenberg, von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany;
| |
Collapse
|
27
|
Mathony J, Niopek D. Enlightening Allostery: Designing Switchable Proteins by Photoreceptor Fusion. Adv Biol (Weinh) 2020; 5:e2000181. [PMID: 33107225 DOI: 10.1002/adbi.202000181] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/01/2020] [Indexed: 11/05/2022]
Abstract
Optogenetics harnesses natural photoreceptors to non-invasively control selected processes in cells with previously unmet spatiotemporal precision. Linking the activity of a protein of choice to the conformational state of a photosensor domain through allosteric coupling represents a powerful method for engineering light-responsive proteins. It enables the design of compact and highly potent single-component optogenetic systems with fast on- and off-switching kinetics. However, designing protein-photoreceptor chimeras, in which structural changes of the photoreceptor are effectively propagated to the fused effector protein, is a challenging engineering problem and often relies on trial and error. Here, recent advances in the design and application of optogenetic allosteric switches are reviewed. First, an overview of existing optogenetic tools based on inducible allostery is provided and their utility for cell biology applications is highlighted. Focusing on light-oxygen-voltage domains, a widely applied class of small blue light sensors, the available strategies for engineering light-dependent allostery are presented and their individual advantages and limitations are highlighted. Finally, high-throughput screening technologies based on comprehensive insertion libraries, which could accelerate the creation of stimulus-responsive receptor-protein chimeras for use in optogenetics and beyond, are discussed.
Collapse
Affiliation(s)
- Jan Mathony
- Department of Biology and Centre for Synthetic Biology, Technische Universität Darmstadt, Schnittspahnstrasse 12, Darmstadt, 64287, Germany.,BZH graduate school, Heidelberg University, Im Neuheimer Feld 328, Heidelberg, 69120, Germany
| | - Dominik Niopek
- Department of Biology and Centre for Synthetic Biology, Technische Universität Darmstadt, Schnittspahnstrasse 12, Darmstadt, 64287, Germany
| |
Collapse
|
28
|
Leopold AV, Verkhusha VV. Light control of RTK activity: from technology development to translational research. Chem Sci 2020; 11:10019-10034. [PMID: 33209247 PMCID: PMC7654314 DOI: 10.1039/d0sc03570j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 08/30/2020] [Indexed: 12/11/2022] Open
Abstract
Inhibition of receptor tyrosine kinases (RTKs) by small molecule inhibitors and monoclonal antibodies is used to treat cancer. Conversely, activation of RTKs with their ligands, including growth factors and insulin, is used to treat diabetes and neurodegeneration. However, conventional therapies that rely on injection of RTK inhibitors or activators do not provide spatiotemporal control over RTK signaling, which results in diminished efficiency and side effects. Recently, a number of optogenetic and optochemical approaches have been developed that allow RTK inhibition or activation in cells and in vivo with light. Light irradiation can control RTK signaling non-invasively, in a dosed manner, with high spatio-temporal precision, and without the side effects of conventional treatments. Here we provide an update on the current state of the art of optogenetic and optochemical RTK technologies and the prospects of their use in translational studies and therapy.
Collapse
Affiliation(s)
- Anna V Leopold
- Medicum , Faculty of Medicine , University of Helsinki , Helsinki 00290 , Finland
| | - Vladislav V Verkhusha
- Medicum , Faculty of Medicine , University of Helsinki , Helsinki 00290 , Finland
- Department of Anatomy and Structural Biology and Gruss-Lipper Biophotonics Center , Albert Einstein College of Medicine , Bronx , NY 10461 , USA .
| |
Collapse
|
29
|
Das S, Zhao L, Crooke SN, Tran L, Bhattacharya S, Gaucher EA, Finn MG. Stabilization of Near-Infrared Fluorescent Proteins by Packaging in Virus-like Particles. Biomacromolecules 2020; 21:2432-2439. [DOI: 10.1021/acs.biomac.0c00362] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Soumen Das
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, Georgia 30306, United States
| | - Liangjun Zhao
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, Georgia 30306, United States
| | - Stephen N. Crooke
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, Georgia 30306, United States
| | - Lily Tran
- Department of Biology, Georgia State University, Atlanta, Georgia 30303, United States
| | - Sonia Bhattacharya
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, Georgia 30306, United States
| | - Eric A. Gaucher
- Department of Biology, Georgia State University, Atlanta, Georgia 30303, United States
| | - M. G. Finn
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, Georgia 30306, United States
- School of Biological Sciences, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, Georgia 30306, United States
| |
Collapse
|
30
|
Alizadeh S, Esmaeili A, Barzegari A, Rafi MA, Omidi Y. Bioengineered smart bacterial carriers for combinational targeted therapy of solid tumours. J Drug Target 2020; 28:700-713. [PMID: 32116051 DOI: 10.1080/1061186x.2020.1737087] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Despite many endeavours for the development of new anticancer drugs, effective therapy of solid tumours remains a challenging issue. The current cancer chemotherapies may associate with two important limitations, including the lack/trivial specificity of treatment modalities towards diseased cells/tissues resulting in undesired side effects, and the emergence of drug-resistance mechanisms by tumour cells causing the failure of the treatment. Much attention, therefore, has currently been paid to develop smart and highly specific anticancer agents with maximal therapeutic impacts and minimal side effects. Among various strategies used to target cancer cells, bacteria-based cancer therapies (BCTs) have been validated as potential gene/drug delivery carriers, which can also be engineered to be used in diagnosis processes. They can be devised to selectively target the tumour microenvironment (TME), within which they may preferentially proliferate in the necrotic and anaerobic parts - often inaccessible to other therapeutics. BCTs are capable to sense and respond to the environmental signals, upon which they are considered as smart microrobots applicable in the controlled delivery of therapeutic agents to the TME. In this review, we aimed to provide comprehensive insights into the potentials of the bioengineered bacteria as smart and targeted bio-carriers and discuss their applications in cancer therapy.
Collapse
Affiliation(s)
- Siamak Alizadeh
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.,Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abolghasem Esmaeili
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Abolfazl Barzegari
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad A Rafi
- Department of Neurology, Sidney Kimmel College of Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Yadollah Omidi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
31
|
Deng H, Liu H, Kang W, Lei C, Nie Z, Huang Y, Yao S. Biomineralization synthesis of a near-infrared fluorescent nanoprobe for direct glucose sensing in whole blood. NANOSCALE 2020; 12:864-870. [PMID: 31833533 DOI: 10.1039/c9nr06691h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A near-infrared (NIR) fluorescent nanoprobe that enables to circumvent the interference of background absorption and fluorescence in whole blood was developed for the direct sensing of blood glucose. Here, NIR fluorescent protein (iRFP) and glucose oxidase (GOx) were collectively deployed as the templates for the biomineralization of Mn2+ to prepare a NIR fluorescent nanoprobe (iRFP-GOx-MnO2 nanoparticles, iRGMs), in which the fluorescence of iRFP was effectively quenched by MnO2via energy transfer. When the iRGMs were mixed with whole blood samples, GOx can convert blood glucose into gluconic acid, as well as H2O2, which will reduce MnO2 and decompose the iRGMs. As a result, the NIR fluorescence of iRFPs was restored, providing a fluorometric assay for the direct detection of blood glucose. Owing to the high efficiency of the cascade reaction and the low background interference of the NIR fluorescence signal, accurate and rapid analysis of the glucose levels in whole blood samples was achieved using the iRGMs. Moreover, an iRGM-based paper device that only requires 5 microliters of samples was also demonstrated in the direct assay of blood glucose without any pretreatment, affording an alternative approach for the accurate monitoring of blood glucose levels.
Collapse
Affiliation(s)
- Honghua Deng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, P. R. China..
| | | | | | | | | | | | | |
Collapse
|
32
|
Hu Y, Liu X, Ren ATM, Gu JD, Cao B. Optogenetic Modulation of a Catalytic Biofilm for the Biotransformation of Indole into Tryptophan. CHEMSUSCHEM 2019; 12:5142-5148. [PMID: 31621183 DOI: 10.1002/cssc.201902413] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/15/2019] [Indexed: 06/10/2023]
Abstract
In green chemical synthesis, biofilms as biocatalysts have shown great promise. Efficient biofilm-mediated biocatalysis requires the modulation of biofilm formation. Optogenetic tools are ideal to control biofilms because light is noninvasive, easily controllable, and cost-efficient. In this study, a gene circuit responsive to near-infrared (NIR) light was used to modulate the cellular level of bis-(3'-5') cyclic dimeric guanosine monophosphate (c-di-GMP), a central regulator of the prokaryote biofilm lifestyle, which allowed the regulation of biofilm formation by using NIR light. The engineered biofilm was applied to catalyze the biotransformation of indole into tryptophan in submerged biofilm reactors and NIR-light-enhanced biofilm formation resulted in an approximately 30 % increase in tryptophan yield, which demonstrates the feasibility of the application of light to modulate the formation and performance of catalytic biofilms for chemical production. The c-di-GMP-targeted optogenetic approach to modulate catalytic biofilms showcases applications for biofilm-mediated biocatalysis.
Collapse
Affiliation(s)
- Yidan Hu
- Singapore Centre for Environmental Life Sciences Engineering, Interdisciplinary Graduate School, Nanyang Technological University, 60 Nanyang Dr, Singapore, 637551, Singapore
| | - Xiaobo Liu
- Singapore Centre for Environmental Life Sciences Engineering, Interdisciplinary Graduate School, Nanyang Technological University, 60 Nanyang Dr, Singapore, 637551, Singapore
- Laboratory of Environmental Microbiology and Toxicology, School of Biological Sciences, The University of Hong Kong, Hong Kong, P.R. China
| | - Aloysius Teng Min Ren
- Singapore Centre for Environmental Life Sciences Engineering, Interdisciplinary Graduate School, Nanyang Technological University, 60 Nanyang Dr, Singapore, 637551, Singapore
| | - Ji-Dong Gu
- Laboratory of Environmental Microbiology and Toxicology, School of Biological Sciences, The University of Hong Kong, Hong Kong, P.R. China
| | - Bin Cao
- Singapore Centre for Environmental Life Sciences Engineering, Interdisciplinary Graduate School, Nanyang Technological University, 60 Nanyang Dr, Singapore, 637551, Singapore
- School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Ave, Singapore, 639798, Singapore
| |
Collapse
|
33
|
Asiri AM, Al-Ghamdi NSM, Dzudzevic-Cancar H, Kumar P, Khan SA. Physicochemical and Photophysical investigation of newly synthesized carbazole containing pyrazoline-benzothiazole as fluorescent chemosensor for the detection of Cu2+, Fe3+ & Fe2+ metal ion. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.05.088] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
34
|
Liu M, Ma S, She M, Chen J, Wang Z, Liu P, Zhang S, Li J. Structural modification of BODIPY: Improve its applicability. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2019.08.028] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
35
|
Xu Z, Huang X, Zhang MX, Chen W, Liu SH, Tan Y, Yin J. Tissue Imaging of Glutathione-Specific Naphthalimide-Cyanine Dye with Two-Photon and Near-Infrared Manners. Anal Chem 2019; 91:11343-11348. [PMID: 31386811 DOI: 10.1021/acs.analchem.9b02458] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Molecular probes suitable for different fluorescence imaging technologies can meet the requirements of different scientific research in biological applications. In this work, a naphthalimide-cyanine-based sulfonamide was used to specifically visualize the glutathione of mouse tissues with a two-photon manner for the naphthalimide moiety and a near-infrared manner for the cyanine moiety, respectively. The results showed that this probe served as a dual-model tissue-imaging agent for visualization of glutathione with around 200 μm imaging depth in a two-photon manner and 120 μm imaging depth in a near-infrared manner, which provided a model for tissue imaging in the visible and near-infrared channels.
Collapse
Affiliation(s)
- Zhiqiang Xu
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education; Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis; International Joint Research Center for Intelligent Biosensing Technology and Health; College of Chemistry , Central China Normal University , Wuhan 430079 , People's Republic of China.,Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy , Wuhan Institute of Technology , Wuhan 430205 , People's Republic of China
| | - Xiaoting Huang
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Graduate School at Shenzhen , Tsinghua University , Shenzhen , Guangdong 518055 , People's Republic of China
| | - Ming-Xing Zhang
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education; Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis; International Joint Research Center for Intelligent Biosensing Technology and Health; College of Chemistry , Central China Normal University , Wuhan 430079 , People's Republic of China
| | - Weijie Chen
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education; Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis; International Joint Research Center for Intelligent Biosensing Technology and Health; College of Chemistry , Central China Normal University , Wuhan 430079 , People's Republic of China
| | - Sheng Hua Liu
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education; Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis; International Joint Research Center for Intelligent Biosensing Technology and Health; College of Chemistry , Central China Normal University , Wuhan 430079 , People's Republic of China
| | - Ying Tan
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Graduate School at Shenzhen , Tsinghua University , Shenzhen , Guangdong 518055 , People's Republic of China
| | - Jun Yin
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education; Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis; International Joint Research Center for Intelligent Biosensing Technology and Health; College of Chemistry , Central China Normal University , Wuhan 430079 , People's Republic of China.,State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Graduate School at Shenzhen , Tsinghua University , Shenzhen , Guangdong 518055 , People's Republic of China
| |
Collapse
|
36
|
Subach OM, Barykina NV, Anokhin KV, Piatkevich KD, Subach FV. Near-Infrared Genetically Encoded Positive Calcium Indicator Based on GAF-FP Bacterial Phytochrome. Int J Mol Sci 2019; 20:ijms20143488. [PMID: 31315229 PMCID: PMC6678319 DOI: 10.3390/ijms20143488] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/09/2019] [Accepted: 07/15/2019] [Indexed: 02/01/2023] Open
Abstract
A variety of genetically encoded calcium indicators are currently available for visualization of calcium dynamics in cultured cells and in vivo. Only one of them, called NIR-GECO1, exhibits fluorescence in the near-infrared region of the spectrum. NIR-GECO1 is engineered based on the near-infrared fluorescent protein mIFP derived from bacterial phytochromes. However, NIR-GECO1 has an inverted response to calcium ions and its excitation spectrum is not optimal for the commonly used 640 nm lasers. Using small near-infrared bacterial phytochrome GAF-FP and calmodulin/M13-peptide pair, we developed a near-infrared calcium indicator called GAF-CaMP2. In vitro, GAF-CaMP2 showed a positive response of 78% and high affinity (Kd of 466 nM) to the calcium ions. It had excitation and emission maxima at 642 and 674 nm, respectively. GAF-CaMP2 had a 2.0-fold lower brightness, 5.5-fold faster maturation and lower pH stability compared to GAF-FP in vitro. GAF-CaMP2 showed 2.9-fold higher photostability than smURFP protein. The GAF-CaMP2 fusion with sfGFP demonstrated a ratiometric response with a dynamic range of 169% when expressed in the cytosol of mammalian cells in culture. Finally, we successfully applied the ratiometric version of GAF-CaMP2 for the simultaneous visualization of calcium transients in three organelles of mammalian cells using four-color fluorescence microscopy.
Collapse
Affiliation(s)
- Oksana M Subach
- National Research Center "Kurchatov Institute", Moscow 123182, Russia
| | | | - Konstantin V Anokhin
- P.K. Anokhin Institute of Normal Physiology, Moscow 125315, Russia
- Lomonosov Moscow State University, Moscow 119991, Russia
| | - Kiryl D Piatkevich
- MIT Media Lab, Massachusetts Institute of Technology, Cambridge, MA 02139-4307, USA
| | - Fedor V Subach
- National Research Center "Kurchatov Institute", Moscow 123182, Russia.
| |
Collapse
|
37
|
Liu H, Yang J, Li Z, Xiao L, Aryee AA, Sun Y, Yang R, Meng H, Qu L, Lin Y, Zhang X. Hydrogen-Bond-Induced Emission of Carbon Dots for Wash-Free Nucleus Imaging. Anal Chem 2019; 91:9259-9265. [DOI: 10.1021/acs.analchem.9b02147] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Haifang Liu
- Institute of Chemical Biology and Clinical Application at the First Affiliated Hospital, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, People’s Republic of China
| | - Jie Yang
- Institute of Chemical Biology and Clinical Application at the First Affiliated Hospital, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, People’s Republic of China
| | - Zhaohui Li
- Institute of Chemical Biology and Clinical Application at the First Affiliated Hospital, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, People’s Republic of China
| | - Lehui Xiao
- College of Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
| | - Aaron Albert Aryee
- Institute of Chemical Biology and Clinical Application at the First Affiliated Hospital, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, People’s Republic of China
| | - Yuanqiang Sun
- Institute of Chemical Biology and Clinical Application at the First Affiliated Hospital, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, People’s Republic of China
| | - Ran Yang
- Institute of Chemical Biology and Clinical Application at the First Affiliated Hospital, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, People’s Republic of China
| | - Hongmin Meng
- Institute of Chemical Biology and Clinical Application at the First Affiliated Hospital, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, People’s Republic of China
| | - Lingbo Qu
- Institute of Chemical Biology and Clinical Application at the First Affiliated Hospital, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, People’s Republic of China
| | - Yuehe Lin
- School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| | - Xiaobing Zhang
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, People’s Republic of China
| |
Collapse
|
38
|
Lanin AA, Chebotarev AS, Barykina NV, Subach FV, Zheltikov AM. The whither of bacteriophytochrome-based near-infrared fluorescent proteins: Insights from two-photon absorption spectroscopy. JOURNAL OF BIOPHOTONICS 2019; 12:e201800353. [PMID: 30414251 DOI: 10.1002/jbio.201800353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 11/01/2018] [Accepted: 11/06/2018] [Indexed: 06/08/2023]
Abstract
We present one- and two-photon-absorption fluorescence spectroscopic analysis of biliverdin (BV) chromophore-based single-domain near-infrared fluorescent proteins (iRFPs). The results of these studies are used to estimate the internal electric fields acting on BV inside iRFPs and quantify the electric dipole properties of this chromophore, defining the red shift of excitation and emission spectra of BV-based iRFPs. The iRFP studied in this work is shown to fit well the global diagram of the red-shift tunability of currently available BV-based iRFPs as dictated by the quadratic Stark effect, suggesting the existence of the lower bound for the strongest red shifts attainable within this family of fluorescent proteins. The absolute value of the two-photon absorption (TPA) cross section of a fluorescent calcium sensor based on the studied iRFP is found to be significantly larger than the TPA cross sections of other widely used genetically encodable fluorescent calcium sensors.
Collapse
Affiliation(s)
- Aleksandr A Lanin
- Physics Department, International Laser Center, M.V. Lomonosov Moscow State University, Moscow, Russia
- Russian Quantum Center, Skolkovo, Russia
| | - Artem S Chebotarev
- Physics Department, International Laser Center, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Natalia V Barykina
- INBICST, Moscow Institute of Physics and Technology, Moscow, Russia
- P.K. Anokhin Institute of Normal Physiology, Moscow, Russia
| | - Fedor V Subach
- INBICST, Moscow Institute of Physics and Technology, Moscow, Russia
- Kurchatov Institute National Research Center, Moscow, Russia
| | - Aleksei M Zheltikov
- Physics Department, International Laser Center, M.V. Lomonosov Moscow State University, Moscow, Russia
- Department of Physics and Astronomy, Texas A&M University, College Station, Texas
- Russian Quantum Center, Skolkovo, Russia
- Kurchatov Institute National Research Center, Moscow, Russia
| |
Collapse
|
39
|
Leopold AV, Chernov KG, Shemetov AA, Verkhusha VV. Neurotrophin receptor tyrosine kinases regulated with near-infrared light. Nat Commun 2019; 10:1129. [PMID: 30850602 PMCID: PMC6408446 DOI: 10.1038/s41467-019-08988-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 02/11/2019] [Indexed: 12/14/2022] Open
Abstract
Optical control over the activity of receptor tyrosine kinases (RTKs) provides an efficient way to reversibly and non-invasively map their functions. We combined catalytic domains of Trk (tropomyosin receptor kinase) family of RTKs, naturally activated by neurotrophins, with photosensory core module of DrBphP bacterial phytochrome to develop opto-kinases, termed Dr-TrkA and Dr-TrkB, reversibly switchable on and off with near-infrared and far-red light. We validated Dr-Trk ability to reversibly light-control several RTK pathways, calcium level, and demonstrated that their activation triggers canonical Trk signaling. Dr-TrkA induced apoptosis in neuroblastoma and glioblastoma, but not in other cell types. Absence of spectral crosstalk between Dr-Trks and blue-light-activatable LOV-domain-based translocation system enabled intracellular targeting of Dr-TrkA independently of its activation, additionally modulating Trk signaling. Dr-Trks have several superior characteristics that make them the opto-kinases of choice for regulation of RTK signaling: high activation range, fast and reversible photoswitching, and multiplexing with visible-light-controllable optogenetic tools.
Collapse
Affiliation(s)
- Anna V Leopold
- Medicum, Faculty of Medicine, University of Helsinki, Helsinki, 00290, Finland
| | | | - Anton A Shemetov
- Department of Anatomy and Structural Biology, and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Vladislav V Verkhusha
- Medicum, Faculty of Medicine, University of Helsinki, Helsinki, 00290, Finland.
- Department of Anatomy and Structural Biology, and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| |
Collapse
|
40
|
Cook ZT, Brockway NL, Tobias ZJC, Pajarla J, Boardman IS, Ippolito H, Nkombo Nkoula S, Weissman TA. Combining near-infrared fluorescence with Brainbow to visualize expression of specific genes within a multicolor context. Mol Biol Cell 2019; 30:491-505. [PMID: 30586321 PMCID: PMC6594444 DOI: 10.1091/mbc.e18-06-0340] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 12/13/2018] [Accepted: 12/18/2018] [Indexed: 12/18/2022] Open
Abstract
Fluorescent proteins are a powerful experimental tool, allowing the visualization of gene expression and cellular behaviors in a variety of systems. Multicolor combinations of fluorescent proteins, such as Brainbow, have expanded the range of possible research questions and are useful for distinguishing and tracking cells. The addition of a separately driven color, however, would allow researchers to report expression of a manipulated gene within the multicolor context to investigate mechanistic effects. A far-red or near-infrared protein could be particularly suitable in this context, as these can be distinguished spectrally from Brainbow. We investigated five far-red/near-infrared proteins in zebrafish: TagRFP657, mCardinal, miRFP670, iRFP670, and mIFP. Our results show that both mCardinal and iRFP670 are useful fluorescent proteins for zebrafish expression. We also introduce a new transgenic zebrafish line that expresses Brainbow under the control of the neuroD promoter. We demonstrate that mCardinal can be used to track the expression of a manipulated bone morphogenetic protein receptor within the Brainbow context. The overlay of near-infrared fluorescence onto a Brainbow background defines a clear strategy for future research questions that aim to manipulate or track the effects of specific genes within a population of cells that are delineated using multicolor approaches.
Collapse
Affiliation(s)
- Zoe T. Cook
- Biology Department, Lewis and Clark College, Portland, OR 97219
| | | | | | - Joy Pajarla
- Biology Department, Lewis and Clark College, Portland, OR 97219
| | | | - Helen Ippolito
- Biology Department, Lewis and Clark College, Portland, OR 97219
| | | | | |
Collapse
|
41
|
Advances in Engineering and Application of Optogenetic Indicators for Neuroscience. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9030562] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Our ability to investigate the brain is limited by available technologies that can record biological processes in vivo with suitable spatiotemporal resolution. Advances in optogenetics now enable optical recording and perturbation of central physiological processes within the intact brains of model organisms. By monitoring key signaling molecules noninvasively, we can better appreciate how information is processed and integrated within intact circuits. In this review, we describe recent efforts engineering genetically-encoded fluorescence indicators to monitor neuronal activity. We summarize recent advances of sensors for calcium, potassium, voltage, and select neurotransmitters, focusing on their molecular design, properties, and current limitations. We also highlight impressive applications of these sensors in neuroscience research. We adopt the view that advances in sensor engineering will yield enduring insights on systems neuroscience. Neuroscientists are eager to adopt suitable tools for imaging neural activity in vivo, making this a golden age for engineering optogenetic indicators.
Collapse
|
42
|
Gourinchas G, Vide U, Winkler A. Influence of the N-terminal segment and the PHY-tongue element on light-regulation in bacteriophytochromes. J Biol Chem 2019; 294:4498-4510. [PMID: 30683693 PMCID: PMC6433076 DOI: 10.1074/jbc.ra118.007260] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 01/22/2019] [Indexed: 11/30/2022] Open
Abstract
Photoreceptors enable the integration of ambient light stimuli to trigger lifestyle adaptations via modulation of central metabolite levels involved in diverse regulatory processes. Red light–sensing bacteriophytochromes are attractive targets for the development of innovative optogenetic tools because of their natural modularity of coupling with diverse functionalities and the natural availability of the light-absorbing biliverdin chromophore in animal tissues. However, a rational design of such tools is complicated by the poor understanding of molecular mechanisms of light signal transduction over long distances—from the site of photon absorption to the active site of downstream enzymatic effectors. Here we show how swapping structural elements between two bacteriophytochrome homologs provides additional insight into light signal integration and effector regulation, involving a fine-tuned interplay of important structural elements of the sensor, as well as the sensor–effector linker. Facilitated by the availability of structural information of inhibited and activated full-length structures of one of the two homologs (Idiomarina species A28L phytochrome-activated diguanylyl cyclase (IsPadC)) and characteristic differences in photoresponses of the two homologs, we identify an important cross-talk between the N-terminal segment, containing the covalent attachment site of the chromophore, and the PHY-tongue region. Moreover, we highlight how these elements influence the dynamic range of photoactivation and how activation can be improved to light/dark ratios of ∼800-fold by reducing basal dark-state activities at the same time as increasing conversion in the light state. This will enable future optimization of optogenetic tools aiming at a direct allosteric regulation of enzymatic effectors.
Collapse
Affiliation(s)
- Geoffrey Gourinchas
- From the Institute of Biochemistry, Graz University of Technology, 8010 Graz, Austria and
| | - Uršula Vide
- From the Institute of Biochemistry, Graz University of Technology, 8010 Graz, Austria and
| | - Andreas Winkler
- From the Institute of Biochemistry, Graz University of Technology, 8010 Graz, Austria and .,BioTechMed-Graz, 8010 Graz, Austria
| |
Collapse
|
43
|
Wang Z, Hu M, Ai X, Zhang Z, Xing B. Near-Infrared Manipulation of Membrane Ion Channels via Upconversion Optogenetics. ADVANCED BIOSYSTEMS 2019; 3:e1800233. [PMID: 32627341 DOI: 10.1002/adbi.201800233] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 09/27/2018] [Indexed: 12/21/2022]
Abstract
Membrane ion channels are ultimately responsible for the propagation and integration of electrical signals in the nervous, muscular, and other systems. Their activation or malfunctioning plays a significant role in physiological and pathophysiological processes. Using optogenetics to dynamically and spatiotemporally control ion channels has recently attracted considerable attention. However, most of the established optogenetic tools (e.g., channelrhodopsins, ChRs) for optical manipulations, are mainly stimulated by UV or visible light, which raises the concerns of potential photodamage, limited tissue penetration, and high-invasive implantation of optical fiber devices. Near-infrared (NIR) upconversion nanoparticle (UCNP)-mediated optogenetic systems provide great opportunities for overcoming the problems encountered in the manipulation of ion channels in deep tissues. Hence, this review focuses on the recent advances in NIR regulation of membrane ion channels via upconversion optogenetics in biomedical research. The engineering and applications of upconversion optogenetic systems by the incorporation multiple emissive UCNPs into various light-gated ChRs/ligands are first elaborated, followed by a detailed discussion of the technical improvements for more precise and efficient control of membrane channels. Finally, the future perspectives for refining and advancing NIR-mediated upconversion optogenetics into in vivo even in clinical applications are proposed.
Collapse
Affiliation(s)
- Zhimin Wang
- Division of Chemistry and Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Ming Hu
- Division of Chemistry and Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Xiangzhao Ai
- Division of Chemistry and Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Zhijun Zhang
- Division of Chemistry and Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Bengang Xing
- Division of Chemistry and Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| |
Collapse
|
44
|
Ueda Y, Sato M. Cell membrane dynamics induction using optogenetic tools. Biochem Biophys Res Commun 2018; 506:387-393. [DOI: 10.1016/j.bbrc.2017.11.091] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 11/13/2017] [Indexed: 10/25/2022]
|
45
|
Synthetic far-red light-mediated CRISPR-dCas9 device for inducing functional neuronal differentiation. Proc Natl Acad Sci U S A 2018; 115:E6722-E6730. [PMID: 29967137 PMCID: PMC6055150 DOI: 10.1073/pnas.1802448115] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
We have developed an optogenetic far-red light (FRL)-activated CRISPR-dCas9 system (FACE) that is orthogonal, fine-tunable, reversible, and has robust endogenous gene-activation profiles upon stimulation with FRL, with deep tissue penetration capacity, low brightness, short illumination time, and negligible phototoxicity. The FACE device is biocompatible and meets the criteria for safe medical application in humans, providing a robust differentiation strategy for mass production of functional neural cells from induced pluripotent stem cells simply by utilizing a beam of FRL. This optogenetic device has expanded the optogenetic toolkit for precise mammalian genome engineering in many areas of basic and translational research that require precise spatiotemporal control of cellular behavior, which may in turn boost the clinical progress of optogenetics-based precision therapy. The ability to control the activity of CRISPR-dCas9 with precise spatiotemporal resolution will enable tight genome regulation of user-defined endogenous genes for studying the dynamics of transcriptional regulation. Optogenetic devices with minimal phototoxicity and the capacity for deep tissue penetration are extremely useful for precise spatiotemporal control of cellular behavior and for future clinic translational research. Therefore, capitalizing on synthetic biology and optogenetic design principles, we engineered a far-red light (FRL)-activated CRISPR-dCas9 effector (FACE) device that induces transcription of exogenous or endogenous genes in the presence of FRL stimulation. This versatile system provides a robust and convenient method for precise spatiotemporal control of endogenous gene expression and also has been demonstrated to mediate targeted epigenetic modulation, which can be utilized to efficiently promote differentiation of induced pluripotent stem cells into functional neurons by up-regulating a single neural transcription factor, NEUROG2. This FACE system might facilitate genetic/epigenetic reprogramming in basic biological research and regenerative medicine for future biomedical applications.
Collapse
|
46
|
Lyu L, Hu M, Fu A, Xing B. Extracellular Vesicle Directed Exogenous Ion Channel Transport for Precise Manipulation of Biological Events. Bioconjug Chem 2018; 29:2715-2722. [DOI: 10.1021/acs.bioconjchem.8b00377] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Linna Lyu
- Division of Chemistry and Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore, 637371
| | - Ming Hu
- Division of Chemistry and Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore, 637371
| | - Afu Fu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459
| | - Bengang Xing
- Division of Chemistry and Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore, 637371
| |
Collapse
|
47
|
Ueda Y, Sato M. Induction of Signal Transduction by Using Non-Channelrhodopsin-Type Optogenetic Tools. Chembiochem 2018; 19:1217-1231. [PMID: 29577530 DOI: 10.1002/cbic.201700635] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Indexed: 12/24/2022]
Abstract
Signal transductions are the basis for all cellular functions. Previous studies investigating signal transductions mainly relied on pharmacological inhibition, RNA interference, and constitutive active/dominant negative protein expression systems. However, such studies do not allow the modulation of protein activity with high spatial and temporal precision in cells, tissues, and organs in animals. Recently, non-channelrhodopsin-type optogenetic tools for regulating signal transduction have emerged. These photoswitches address several disadvantages of previous techniques, and allow us to control a variety of signal transductions such as cell membrane dynamics, calcium signaling, lipid signaling, and apoptosis. In this review we summarize recent advances in the development of such photoswitches and in how these optotools are applied to signaling processes.
Collapse
Affiliation(s)
- Yoshibumi Ueda
- Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan
- AMED-PRIME (Japan), Agency for Medical Research and Development, Tokyo, Japan
| | - Moritoshi Sato
- Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| |
Collapse
|
48
|
Near-infrared light-controlled systems for gene transcription regulation, protein targeting and spectral multiplexing. Nat Protoc 2018; 13:1121-1136. [PMID: 29700485 DOI: 10.1038/nprot.2018.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Near-infrared (NIR, 740-780 nm) optogenetic systems are well-suited to spectral multiplexing with blue-light-controlled tools. Here, we present two protocols, one for regulation of gene transcription and another for control of protein localization, that use a NIR-responsive bacterial phytochrome BphP1-QPAS1 optogenetic pair. In the first protocol, cells are transfected with the optogenetic constructs for independently controlling gene transcription by NIR (BphP1-QPAS1) and blue (LightOn) light. The NIR and blue-light-controlled gene transcription systems show minimal spectral crosstalk and induce a 35- to 40-fold increase in reporter gene expression. In the second protocol, the BphP1-QPAS1 pair is combined with a light-oxygen-voltage-sensing (LOV) domain-based construct into a single optogenetic tool, termed iRIS. This dual-light-controllable protein localization tool allows tridirectional protein translocation among the cytoplasm, nucleus and plasma membrane. Both procedures can be performed within 3-5 d. Use of NIR light-controlled optogenetic systems should advance basic and biomedical research.
Collapse
|
49
|
Polesskaya O, Baranova A, Bui S, Kondratev N, Kananykhina E, Nazarenko O, Shapiro T, Nardia FB, Kornienko V, Chandhoke V, Stadler I, Lanzafame R, Myakishev-Rempel M. Optogenetic regulation of transcription. BMC Neurosci 2018; 19:12. [PMID: 29745855 PMCID: PMC5998900 DOI: 10.1186/s12868-018-0411-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Optogenetics has become widely recognized for its success in real-time control of brain neurons by utilizing non-mammalian photosensitive proteins to open or close membrane channels. Here we review a less well known type of optogenetic constructs that employs photosensitive proteins to transduce the signal to regulate gene transcription, and its possible use in medicine. One of the problems with existing gene therapies is that they could remain active indefinitely while not allowing regulated transgene production on demand. Optogenetic regulation of transcription (ORT) could potentially be used to regulate the production of a biological drug in situ, by repeatedly applying light to the tissue, and inducing expression of therapeutic transgenes when needed. Red and near infrared wavelengths, which are capable of penetration into tissues, have potential for therapeutic applications. Existing ORT systems are reviewed herein with these considerations in mind.
Collapse
Affiliation(s)
| | - Ancha Baranova
- Research Center for Medical Genetics RAMS, Moscow, Russia.,Center for the Study of Chronic Metabolic and Rare Diseases, School of Systems Biology, George Mason University, Fairfax, VA, USA.,Atlas Biomed Group, Moscow, Russia.,Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Sarah Bui
- Center for the Study of Chronic Metabolic and Rare Diseases, School of Systems Biology, George Mason University, Fairfax, VA, USA
| | | | | | | | | | | | | | - Vikas Chandhoke
- Center for the Study of Chronic Metabolic and Rare Diseases, School of Systems Biology, George Mason University, Fairfax, VA, USA
| | | | | | - Max Myakishev-Rempel
- Localized Therapeutics, LLC, San Diego, CA, USA. .,Vaccine Research Institute of San Diego, San Diego, CA, USA.
| |
Collapse
|
50
|
Leopold AV, Chernov KG, Verkhusha VV. Optogenetically controlled protein kinases for regulation of cellular signaling. Chem Soc Rev 2018; 47:2454-2484. [PMID: 29498733 DOI: 10.1039/c7cs00404d] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Protein kinases are involved in the regulation of many cellular processes including cell differentiation, survival, migration, axon guidance and neuronal plasticity. A growing set of optogenetic tools, termed opto-kinases, allows activation and inhibition of different protein kinases with light. The optogenetic regulation enables fast, reversible and non-invasive manipulation of protein kinase activities, complementing traditional methods, such as treatment with growth factors, protein kinase inhibitors or chemical dimerizers. In this review, we summarize the properties of the existing optogenetic tools for controlling tyrosine kinases and serine-threonine kinases. We discuss how the opto-kinases can be applied for studies of spatial and temporal aspects of protein kinase signaling in cells and organisms. We compare approaches for chemical and optogenetic regulation of protein kinase activity and present guidelines for selection of opto-kinases and equipment to control them with light. We also describe strategies to engineer novel opto-kinases on the basis of various photoreceptors.
Collapse
Affiliation(s)
- Anna V Leopold
- Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, Helsinki 00290, Finland
| | | | | |
Collapse
|