1
|
Romero‐Pérez PS, Martínez‐Castro LV, Linares A, Arroyo‐Mosso I, Sánchez‐Puig N, Cuevas‐Velazquez CL, Sukenik S, Guerrero A, Covarrubias AA. Self-association and multimer formation in AtLEA4-5, a desiccation-induced intrinsically disordered protein from plants. Protein Sci 2024; 33:e5192. [PMID: 39467203 PMCID: PMC11516066 DOI: 10.1002/pro.5192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/18/2024] [Accepted: 10/08/2024] [Indexed: 10/30/2024]
Abstract
During seed maturation, plants may experience severe desiccation, leading to the accumulation of late embryogenesis abundant (LEA) proteins. These intrinsically disordered proteins also accumulate in plant tissues under water deficit. Functional roles of LEA proteins have been proposed based on in vitro studies, where monomers are considered as the functional units. However, the potential formation of homo-oligomers has been little explored. In this work, we investigated the potential self-association of Arabidopsis thaliana group 4 LEA proteins (AtLEA4) using in vitro and in vivo approaches. LEA4 proteins represent a compelling case of study due to their high conservation throughout the plant kingdom. This protein family is characterized by a conserved N-terminal region, with a high alpha-helix propensity and invitro protective activity, as compared to the highly disordered and low-conserved C-terminal region. Our findings revealed that full-length AtLEA4 proteins oligomerize and that both terminal regions are sufficient for self-association in vitro. However, the ability of both amino and carboxy regions of AtLEA4-5 to self-associate invivo is significantly lower than that of the entire protein. Using high-resolution and quantitative fluorescence microscopy, we were able to disclose the unreported ability of LEA proteins to form high-order oligomers in planta. Additionally, we found that high-order complexes require the simultaneous engagement of both terminal regions, indicating that the entire protein is needed to attain such structural organization. This research provides valuable insights into the self-association of LEA proteins in plants and emphasizes the role of protein oligomer formation.
Collapse
Affiliation(s)
- Paulette Sofía Romero‐Pérez
- Departamento de Biología Molecular de Plantas, Instituto de BiotecnologíaUniversidad Nacional Autónoma de MéxicoCuernavacaMexico
| | - Laura V. Martínez‐Castro
- Departamento de Biología Molecular de Plantas, Instituto de BiotecnologíaUniversidad Nacional Autónoma de MéxicoCuernavacaMexico
| | - Alejandro Linares
- Laboratorio Nacional de Microscopía AvanzadaInstituto de Biotecnología, Universidad Nacional Autónoma de MéxicoCuernavacaMexico
| | - Inti Arroyo‐Mosso
- Departamento de Biología Molecular de Plantas, Instituto de BiotecnologíaUniversidad Nacional Autónoma de MéxicoCuernavacaMexico
| | - Nuria Sánchez‐Puig
- Departamento de Química de BiomacromoléculasInstituto de Química, Universidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico
| | - Cesar L. Cuevas‐Velazquez
- Departamento de Bioquímica, Facultad de QuímicaUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico
| | - Shahar Sukenik
- Department of Chemistry and BiochemistryUniversity of California at MercedMercedCaliforniaUSA
| | - Adán Guerrero
- Laboratorio Nacional de Microscopía AvanzadaInstituto de Biotecnología, Universidad Nacional Autónoma de MéxicoCuernavacaMexico
| | - Alejandra A. Covarrubias
- Departamento de Biología Molecular de Plantas, Instituto de BiotecnologíaUniversidad Nacional Autónoma de MéxicoCuernavacaMexico
| |
Collapse
|
2
|
Cheng J, Wang H, Zhang Y, Wang X, Liu G. Advances in crosslinking chemistry and proximity-enabled strategies: deciphering protein complexes and interactions. Org Biomol Chem 2024; 22:7549-7559. [PMID: 39192765 DOI: 10.1039/d4ob01058b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Mass spectrometry, coupled with innovative crosslinking techniques to decode protein conformations and interactions through uninterrupted signal connections, has undergone remarkable progress in recent years. It is crucial to develop selective crosslinking reagents that minimally disrupt protein structure and dynamics, providing insights into protein network regulation and biological functions. Compared to traditional crosslinkers, new bifunctional chemical crosslinkers exhibit high selectivity and specificity in connecting proximal amino acid residues, resulting in stable molecular crosslinked products. The conjugation with specific amino acid residues like lysine, cysteine, arginine and tyrosine expands the XL-MS toolbox, enabling more precise modeling of target substrates and leading to improved data quality and reliability. Another emerging crosslinking method utilizes unnatural amino acids (UAAs) derived from proximity-enabled reactivity with specific amino acids or sulfur-fluoride exchange (SuFEx) reactions with nucleophilic residues. These UAAs are genetically encoded into proteins for the formation of specific covalent bonds. This technique combines the benefits of genetic encoding for live cell compatibility with chemical crosslinking, providing a valuable method for capturing transient and weak protein-protein interactions (PPIs) for mapping PPI coordinates and improving the pharmacological properties of proteins. With continued advancements in technology and applications, crosslinking mass spectrometry is poised to play an increasingly significant role in guiding our understanding of protein dynamics and function in the future.
Collapse
Affiliation(s)
- Jiongjia Cheng
- Key Laboratory of Advanced Functional Materials of Nanjing, School of Environmental Science, Nanjing Xiaozhuang University, Nanjing, 211171, China.
| | - Haiying Wang
- Key Laboratory of Advanced Functional Materials of Nanjing, School of Environmental Science, Nanjing Xiaozhuang University, Nanjing, 211171, China.
| | - Yuchi Zhang
- Key Laboratory of Advanced Functional Materials of Nanjing, School of Environmental Science, Nanjing Xiaozhuang University, Nanjing, 211171, China.
| | - Xiaofeng Wang
- Key Laboratory of Advanced Functional Materials of Nanjing, School of Environmental Science, Nanjing Xiaozhuang University, Nanjing, 211171, China.
| | - Guangxiang Liu
- Key Laboratory of Advanced Functional Materials of Nanjing, School of Environmental Science, Nanjing Xiaozhuang University, Nanjing, 211171, China.
| |
Collapse
|
3
|
Codding SJ, Trudeau MC. Photoinhibition of the hERG potassium channel PAS domain by ultraviolet light speeds channel closing. Biophys J 2024; 123:2392-2405. [PMID: 38796698 PMCID: PMC11365103 DOI: 10.1016/j.bpj.2024.05.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/30/2024] [Accepted: 05/22/2024] [Indexed: 05/28/2024] Open
Abstract
hERG potassium channels are critical for cardiac excitability. hERG channels have a Per-Arnt-Sim (PAS) domain at their N-terminus, and here, we examined the mechanism for PAS domain regulation of channel opening and closing (gating). We used TAG codon suppression to incorporate the noncanonical amino acid 4-benzoyl-L-phenylalanine (BZF), which is capable of forming covalent cross-links after photoactivation by ultraviolet (UV) light, at three locations (G47, F48, and E50) in the PAS domain. We found that hERG-G47BZF channels had faster closing (deactivation) when irradiated in the open state (at 0 mV) but showed no measurable changes when irradiated in the closed state (at -100 mV). hERG-F48BZF channels had slower activation, faster deactivation, and a marked rightward shift in the voltage dependence of activation when irradiated in the open (at 0 mV) or closed (at -100 mV) state. hERG-E50BZF channels had no measurable changes when irradiated in the open state (at 0 mV) but had slower activation, faster deactivation, and a rightward shift in the voltage dependence of activation when irradiated in the closed state (at -100mV), indicating that hERG-E50BZF had a state-dependent difference in UV photoactivation, which we interpret to mean that PAS underwent molecular motions between the open and closed states. Moreover, we propose that UV-dependent biophysical changes in hERG-G47BZF, F48BZF, and E50BZF were the direct result of photochemical cross-linking that reduced dynamic motions in the PAS domain and broadly stabilized the closed state relative to the open state of the channel.
Collapse
Affiliation(s)
- Sara J Codding
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Matthew C Trudeau
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland.
| |
Collapse
|
4
|
Kallitsis K, Alvarez-Fernandez A, Cloutet E, Brochon C, Hadziioannou G. Introducing Photo-Cross-Linkable Functionalities on P(VDF-co-TrFE) Ferroelectric Copolymer. Chempluschem 2024; 89:e202400113. [PMID: 38471131 DOI: 10.1002/cplu.202400113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 03/14/2024]
Abstract
Ferroelectric polymers have emerged as crucial materials for the development of advanced organic electronic devices. Their recent high-end commercial applications as fingerprint sensors have only increased the amount of scientific interest around them. Despite an ever-larger body of studies focusing on optimizing the properties of ferroelectric polymers by physical means (e. g., annealing, stretching, blending or nano-structuring), post-polymerization chemical modification of such polymers has only recently become a field of active study with great promise in expanding the scope of those polymers. In this work, a solution-based post-polymerization modification method was developed for the safe and facile grafting of a plethora of functional groups to the backbone of commercially available Poly(vinylidene fluoride-co-trifluoroethylene P(VDF-co-TrFE) ferroelectric polymers. To showcase the versatility of this approach, photosensitive groups were grafted onto the polymeric backbone, enabling them to undergo photo-cross-linking. Finally, these modified polymers were used as functional negative photoresists in a photolithographic process, highlighting the potential of this method to integrate ferroelectric fluorinated electroactive polymers into standard electronic microfabrication production lines.
Collapse
Affiliation(s)
- Konstantinos Kallitsis
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, CB3 1AS, United Kingdom
- Laboratoire de Chimie des Polymères Organiques (LCPO-UMR5629), Université de Bordeaux, F-33607, Pessac, France
| | - Alberto Alvarez-Fernandez
- Centro de Fisica de Materiales (CFM) (CSIC-UPV/EHU), Material Physics Centre, Paseo Manuel de Lardizabal 5, San Sebastian, 20018, Spain
| | - Eric Cloutet
- Laboratoire de Chimie des Polymères Organiques (LCPO-UMR5629), Université de Bordeaux, F-33607, Pessac, France
| | - C Brochon
- Laboratoire de Chimie des Polymères Organiques (LCPO-UMR5629), Université de Bordeaux, F-33607, Pessac, France
| | - G Hadziioannou
- Laboratoire de Chimie des Polymères Organiques (LCPO-UMR5629), Université de Bordeaux, F-33607, Pessac, France
| |
Collapse
|
5
|
Kc S, Nguyen KH, Nicholson V, Walgren A, Trent T, Gollub E, Ramero S, Holehouse AS, Sukenik S, Boothby TC. Disordered proteins interact with the chemical environment to tune their protective function during drying. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.28.582506. [PMID: 38464187 PMCID: PMC10925285 DOI: 10.1101/2024.02.28.582506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
The conformational ensemble and function of intrinsically disordered proteins (IDPs) are sensitive to their solution environment. The inherent malleability of disordered proteins combined with the exposure of their residues accounts for this sensitivity. One context in which IDPs play important roles that is concomitant with massive changes to the intracellular environment is during desiccation (extreme drying). The ability of organisms to survive desiccation has long been linked to the accumulation of high levels of cosolutes such as trehalose or sucrose as well as the enrichment of IDPs, such as late embryogenesis abundant (LEA) proteins or cytoplasmic abundant heat soluble (CAHS) proteins. Despite knowing that IDPs play important roles and are co-enriched alongside endogenous, species-specific cosolutes during desiccation, little is known mechanistically about how IDP-cosolute interactions influence desiccation tolerance. Here, we test the notion that the protective function of desiccation-related IDPs is enhanced through conformational changes induced by endogenous cosolutes. We find that desiccation-related IDPs derived from four different organisms spanning two LEA protein families and the CAHS protein family, synergize best with endogenous cosolutes during drying to promote desiccation protection. Yet the structural parameters of protective IDPs do not correlate with synergy for either CAHS or LEA proteins. We further demonstrate that for CAHS, but not LEA proteins, synergy is related to self-assembly and the formation of a gel. Our results suggest that functional synergy between IDPs and endogenous cosolutes is a convergent desiccation protection strategy seen among different IDP families and organisms, yet, the mechanisms underlying this synergy differ between IDP families.
Collapse
|
6
|
Feng F, Gao Y, Zhao Q, Luo T, Yang Q, Zhao N, Xiao Y, Han Y, Pan J, Feng S, Zhang L, Wu M. Single-electron transfer between sulfonium and tryptophan enables site-selective photo crosslinking of methyllysine reader proteins. Nat Chem 2024; 16:1267-1277. [PMID: 39079947 DOI: 10.1038/s41557-024-01577-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 06/12/2024] [Indexed: 08/15/2024]
Abstract
The identification of readers, an important class of proteins that recognize modified residues at specific sites, is essential to uncover the biological roles of post-translational modifications. Photoreactive crosslinkers are powerful tools for investigating readers. However, existing methods usually employ synthetically challenging photoreactive warheads, and their high-energy intermediates generated upon irradiation, such as nitrene and carbene, may cause substantial non-specific crosslinking. Here we report dimethylsulfonium as a methyllysine mimic that binds to specific readers and subsequently crosslinks to a conserved tryptophan inside the binding pocket through single-electron transfer under ultraviolet irradiation. The crosslinking relies on a protein-templated σ-π electron donor-acceptor interaction between sulfonium and indole, ensuring excellent site selectivity for tryptophan in the active site and orthogonality to other methyllysine readers. This method could escalate the discovery of methyllysine readers from complex cell samples. Furthermore, this photo crosslinking strategy could be extended to develop other types of microenvironment-dependent conjugations to site-specific tryptophan.
Collapse
Affiliation(s)
- Feng Feng
- Department of Chemistry, Zhejiang University, Hangzhou, China
- Department of Chemistry, School of Science, Westlake University, Hangzhou, China
| | - Yingxiao Gao
- Department of Chemistry, Fudan University, Shanghai, China
| | - Qun Zhao
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Ting Luo
- Department of Chemistry, School of Science, Westlake University, Hangzhou, China
| | - Qingyun Yang
- Department of Chemistry, School of Science, Westlake University, Hangzhou, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Nan Zhao
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Yihang Xiao
- Department of Chemistry, School of Science, Westlake University, Hangzhou, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Yusong Han
- Department of Chemistry, School of Science, Westlake University, Hangzhou, China
| | - Jinheng Pan
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Mass Spectrometry & Metabolomics Core Facility, The Biomedical Research Core Facility, Westlake University, Hangzhou, China
| | - Shan Feng
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Mass Spectrometry & Metabolomics Core Facility, The Biomedical Research Core Facility, Westlake University, Hangzhou, China
| | - Lihua Zhang
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Mingxuan Wu
- Department of Chemistry, School of Science, Westlake University, Hangzhou, China.
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.
| |
Collapse
|
7
|
Amiri A, Abedanzadeh S, Davaeil B, Shaabani A, Moosavi-Movahedi AA. Protein click chemistry and its potential for medical applications. Q Rev Biophys 2024; 57:e6. [PMID: 38619322 DOI: 10.1017/s0033583524000027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
A revolution in chemical biology occurred with the introduction of click chemistry. Click chemistry plays an important role in protein chemistry modifications, providing specific, sensitive, rapid, and easy-to-handle methods. Under physiological conditions, click chemistry often overlaps with bioorthogonal chemistry, defined as reactions that occur rapidly and selectively without interfering with biological processes. Click chemistry is used for the posttranslational modification of proteins based on covalent bond formations. With the contribution of click reactions, selective modification of proteins would be developed, representing an alternative to other technologies in preparing new proteins or enzymes for studying specific protein functions in different biological processes. Click-modified proteins have potential in diverse applications such as imaging, labeling, sensing, drug design, and enzyme technology. Due to the promising role of proteins in disease diagnosis and therapy, this review aims to highlight the growing applications of click strategies in protein chemistry over the last two decades, with a special emphasis on medicinal applications.
Collapse
Affiliation(s)
- Ahmad Amiri
- Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | | | - Bagher Davaeil
- Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Ahmad Shaabani
- Department of Chemistry, Shahid Beheshti University, Tehran, Iran
| | | |
Collapse
|
8
|
Cieslik PA, Klingler S, Nolff M, Holland JP. Radiolabelled 177 Lu-Bispidine-Trastuzumab for Targeting Human Epidermal Growth Factor Receptor 2 Positive Cancers. Chemistry 2024; 30:e202303805. [PMID: 38064536 DOI: 10.1002/chem.202303805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Indexed: 01/18/2024]
Abstract
Radioimmunotherapy (RIT) is a promising alternative to conventional treatment options. Here, we present experimental work on the synthesis, radiochemistry, and in vivo performance of a lanthanoid-selective nonadentate bispidine ligand suitable for 177 Lu3+ ion complexation. The ligand (bisp,1) was derivatised with a photoactivatable aryl azide (ArN3 ) group as a bioconjugation handle for light-induced labelling of proteins. Quantitative radiosynthesis of [177 Lu]Lu-1+ was accomplished in 10 minutes at 40 °C. Subsequent incubation of [177 Lu]Lu-1+ with trastuzumab, followed by irradiation with light at 365 nm for 15 min, at room temperature and pH 8.0-8.3, gave the radiolabelled mAb, [177 Lu]Lu-1-azepin-trastuzumab ([177 Lu]Lu-1-mAb) in a decay-corrected radiochemical yield of 14 %, and radiochemical purity (RCP)>90 %. Stability studies and cellular binding assays in vitro using the SK-OV-3 human ovarian cancer cells confirmed that [177 Lu]Lu-1-mAb remained biological active and displayed specific binding to HER2/neu. Experiments in immunocompromised female athymic nude mice bearing subcutaneous xenograft models of SK-OV-3 tumours revealed significantly higher tumour uptake in the normal group compared with the control block group (29.8±11.4 %ID g-1 vs. 14.8±6.1 %ID g-1 , respectively; P-value=0.037). The data indicate that bispidine-based ligand systems are suitable starting points for constructing novel, high-denticity chelators for specific complexation of larger radiotheranostic metal ion nuclides.
Collapse
Affiliation(s)
- Patrick A Cieslik
- University of Zurich, Department of Chemistry, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Simon Klingler
- University of Zurich, Department of Chemistry, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Mirja Nolff
- Klinik für Kleintierchirurgie, Vetsuisse-Fakultät, University of Zurich, Wintherturerstrasse 260, CH-8057, Zurich, Switzerland
| | - Jason P Holland
- University of Zurich, Department of Chemistry, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| |
Collapse
|
9
|
Codding SJ, Trudeau MC. Photo-crosslinking hERG channels causes a U.V.-driven, state-dependent disruption of kinetics and voltage dependence of activation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.09.574834. [PMID: 38260338 PMCID: PMC10802430 DOI: 10.1101/2024.01.09.574834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Human ether-à-go-go related gene (hERG) voltage-activated potassium channels are critical for cardiac excitability. Characteristic slow closing (deactivation) in hERG is regulated by direct interaction between the N-terminal Per-Arnt-Sim (PAS) domain and the C-terminal cyclic nucleotide binding homology domain (CNBHD). We aim to understand how the PAS domain that is distal to the pore rearranges during gating to allosterically regulate the channel pore (and ion flux). To achieve this, we utilized the non-canonical amino acid 4-Benzoyl-L-phenylalanine (BZF) which is a photo-activatable cross-linkable probe, that when irradiated with ultraviolet (U.V.) light forms a double radical capable of forming covalent cross-links with C-H bond-containing groups, enabling selective and potent U.V.-driven photoinactivation of ion channel dynamics. Here we incorporate BZF directly into the hERG potassium channel PAS domain at three locations (G47, F48, and E50) using TAG codon suppression technology. hERG channels with BZF incorporated into the PAS domain (hERG-BZF) showed a significant change in the biophysical properties of the channel. hERG-G47BZF activated slowly when irradiated in the closed state (-100mV) but deactivated quickly when irradiated in both the open (0mV) and closed state. hERG-F48BZF channels showed a state independent and U.V. dose-dependent change in channel activation (slowing down) and channel deactivation (speeding up), as well as a marked change (right-shift) in the voltage-dependence of conductance. When irradiated at -100 mV hERG-E50BZF showed a state dependent and U.V. dose-dependent change in a channel activation (slowing down) and deactivation (speeding up) of channel deactivation, as well as a marked change (right-shift) in the voltage-dependence of conductance that occurred only when the channel was irradiated in the closed state (-100mV). This approach demonstrated that direct photo-crosslinking of the PAS domain in hERG channels causes a measurable change in biophysical parameters and more broadly stabilized the closed state of the channel. We propose that altered channel gating is as a direct result of reduced dynamic motions in the PAS domain of hERG due to photo-chemical crosslinking.
Collapse
Affiliation(s)
- Sara J Codding
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD
| | - Matthew C Trudeau
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD
| |
Collapse
|
10
|
Epanchintseva AV, Poletaeva JE, Bakhno IA, Belov VV, Grigor’eva AE, Baranova SV, Ryabchikova EI, Dovydenko IS. Fixation and Visualization of Full Protein Corona on Lipid Surface of Composite Nanoconstruction. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:3094. [PMID: 38132992 PMCID: PMC10745710 DOI: 10.3390/nano13243094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/03/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023]
Abstract
Spontaneous sorption of proteins on the nanoparticles' surface leads to the fact that nanoparticles in biological media are always enveloped by a layer of proteins-the protein corona. Corona proteins affect the properties of nanoparticles and their behavior in a biological environment. In this regard, knowledge about the composition of the corona is a necessary element for the development of nanomedicine. Because proteins have different sorption efficacy, isolating particles with a full corona and characterizing the full corona is challenging. In this study, we propose a photo-activated cross-linker for full protein corona fixation. We believe that the application of our proposed approach will make it possible to capture and visualize the full corona on nanoparticles coated with a lipid shell.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Elena I. Ryabchikova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 630090 Novosibirsk, Russia; (A.V.E.); (J.E.P.); (I.A.B.); (V.V.B.); (A.E.G.); (S.V.B.)
| | - Ilya S. Dovydenko
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 630090 Novosibirsk, Russia; (A.V.E.); (J.E.P.); (I.A.B.); (V.V.B.); (A.E.G.); (S.V.B.)
| |
Collapse
|
11
|
Bi WJ, Lan ZX, Wang XC, Cheng YX, Jiang JB. Design and synthesis of photoaffinity-based probes for labeling β-glucuronidase. Bioorg Chem 2023; 141:106909. [PMID: 37832221 DOI: 10.1016/j.bioorg.2023.106909] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/06/2023] [Accepted: 10/06/2023] [Indexed: 10/15/2023]
Abstract
β-Glucuronidase (GUSB) plays an important role in human physiological and pathological activities. The activity level of GUSB is closely related to human health and diseases. It is imperative to detect the activity of GUSB for related disease diagnosis and treatment. However, exactly evaluating the activity of GUSB in complicated biological system remains a challenge. In this study, we developed photoaffinity-based probes (AfBPs) equipped with photosensitive benzophenone group for labeling active GUSB. Through molecule docking, we predicted the binding model of the AfBPs and GUSB, and the obtained results suggested thermodynamically favorable binding. The AfBPs indicated high efficiency and showed dose-/time-dependent labeling of Escherichia coli (E. coli) GUSB. The application of AfBPs toward GUSB provides a powerful tool to study the activity of target enzymes and contributes to huge potential of enzyme inhibitor discovery and biomedical diagnostics.
Collapse
Affiliation(s)
- Wen-Jing Bi
- Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, PR China
| | - Zhi-Xin Lan
- Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, PR China
| | - Xue-Chun Wang
- Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, PR China
| | - Yong-Xian Cheng
- Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, PR China.
| | - Jian-Bing Jiang
- Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, PR China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China.
| |
Collapse
|
12
|
Li J, Cui Z, Fan C, Zhou Y, Ren M, Zhou C. Photo-caged 2-butene-1,4-dial as an efficient, target-specific photo-crosslinker for covalent trapping of DNA-binding proteins. Chem Sci 2023; 14:10884-10891. [PMID: 37829010 PMCID: PMC10566456 DOI: 10.1039/d3sc03719c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/12/2023] [Indexed: 10/14/2023] Open
Abstract
Covalent trapping of DNA-binding proteins via photo-crosslinking is an advantageous method for studying DNA-protein interactions. However, traditional photo-crosslinkers generate highly reactive intermediates that rapidly and non-selectively react with nearby functional groups, resulting in low target-capture yields and high non-target background capture. Herein, we report that photo-caged 2-butene-1,4-dial (PBDA) is an efficient photo-crosslinker for trapping DNA-binding proteins. Photo-irradiation (360 nm) of PBDA-modified DNA generates 2-butene-1,4-dial (BDA), a small, long-lived intermediate that reacts selectively with Lys residues of DNA-binding proteins, leading in minutes to stable DNA-protein crosslinks in up to 70% yield. In addition, BDA exhibits high specificity for target proteins, leading to low non-target background capture. The high photo-crosslinking yield and target specificity make PBDA a powerful tool for studying DNA-protein interactions.
Collapse
Affiliation(s)
- Jiahui Li
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Department of Chemical Biology, College of Chemistry, Nankai University Tianjin 300071 China
| | - Zenghui Cui
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Department of Chemical Biology, College of Chemistry, Nankai University Tianjin 300071 China
| | - Chaochao Fan
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Department of Chemical Biology, College of Chemistry, Nankai University Tianjin 300071 China
| | - Yifei Zhou
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Department of Chemical Biology, College of Chemistry, Nankai University Tianjin 300071 China
| | - Mengtian Ren
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Department of Chemical Biology, College of Chemistry, Nankai University Tianjin 300071 China
| | - Chuanzheng Zhou
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Department of Chemical Biology, College of Chemistry, Nankai University Tianjin 300071 China
| |
Collapse
|
13
|
Guo AD, Yan KN, Hu H, Zhai L, Hu TF, Su H, Chi Y, Zha J, Xu Y, Zhao D, Lu X, Xu YJ, Zhang J, Tan M, Chen XH. Spatiotemporal and global profiling of DNA-protein interactions enables discovery of low-affinity transcription factors. Nat Chem 2023; 15:803-814. [PMID: 37106095 DOI: 10.1038/s41557-023-01196-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 03/30/2023] [Indexed: 04/29/2023]
Abstract
Precise dissection of DNA-protein interactions is essential for elucidating the recognition basis, dynamics and gene regulation mechanism. However, global profiling of weak and dynamic DNA-protein interactions remains a long-standing challenge. Here, we establish the light-induced lysine (K) enabled crosslinking (LIKE-XL) strategy for spatiotemporal and global profiling of DNA-protein interactions. Harnessing unique abilities to capture weak and transient DNA-protein interactions, we demonstrate that LIKE-XL enables the discovery of low-affinity transcription-factor/DNA interactions via sequence-specific DNA baits, determining the binding sites for transcription factors that have been previously unknown. More importantly, we successfully decipher the dynamics of the transcription factor subproteome in response to drug treatment in a time-resolved manner, and find downstream target transcription factors from drug perturbations, providing insight into their dynamic transcriptional networks. The LIKE-XL strategy offers a complementary method to expand the DNA-protein profiling toolbox and map accurate DNA-protein interactomes that were previously inaccessible via non-covalent strategies, for better understanding of protein function in health and disease.
Collapse
Affiliation(s)
- An-Di Guo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ke-Nian Yan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hao Hu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Linhui Zhai
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Teng-Fei Hu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Haixia Su
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yijia Chi
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jinyin Zha
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yechun Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Dongxin Zhao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaojie Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yong-Jiang Xu
- School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - Jian Zhang
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Minjia Tan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China.
- College of Pharmacy, Jiangsu Ocean University, Lianyungang, China.
| | - Xiao-Hua Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China.
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China.
| |
Collapse
|
14
|
Gordeeva AI, Valueva AA, Ershova MO, Rybakova EE, Shumov ID, Kozlov AF, Ziborov VS, Zavialova MG, Zgoda VG, Ivanov YD, Archakov AI, Pleshakova TO. Mass Spectrometric Identification of BSA Covalently Captured onto a Chip for Atomic Force Microscopy. Int J Mol Sci 2023; 24:ijms24108999. [PMID: 37240343 DOI: 10.3390/ijms24108999] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Mass spectrometry (MS) is one of the main techniques for protein identification. Herein, MS has been employed for the identification of bovine serum albumin (BSA), which was covalently immobilized on the surface of a mica chip intended for investigation by atomic force microscopy (AFM). For the immobilization, two different types of crosslinkers have been used: 4-benzoylbenzoic acid N-succinimidyl ester (SuccBB) and dithiobis(succinimidyl propionate) (DSP). According to the data obtained by using an AFM-based molecular detector, the SuccBB crosslinker was more efficient in BSA immobilization than the DSP. The type of crosslinker used for protein capturing has been found to affect the results of MS identification. The results obtained herein can be applied in the development of novel systems intended for the highly sensitive analysis of proteins with molecular detectors.
Collapse
Affiliation(s)
| | | | - Maria O Ershova
- Institute of Biomedical Chemistry (IBMC), 119121 Moscow, Russia
| | | | - Ivan D Shumov
- Institute of Biomedical Chemistry (IBMC), 119121 Moscow, Russia
| | - Andrey F Kozlov
- Institute of Biomedical Chemistry (IBMC), 119121 Moscow, Russia
| | - Vadim S Ziborov
- Institute of Biomedical Chemistry (IBMC), 119121 Moscow, Russia
| | | | - Victor G Zgoda
- Institute of Biomedical Chemistry (IBMC), 119121 Moscow, Russia
| | - Yuri D Ivanov
- Institute of Biomedical Chemistry (IBMC), 119121 Moscow, Russia
| | | | | |
Collapse
|
15
|
Park JY, Jang JW, Shen X, Jang JH, Kwak SL, Choi H, Lee BR, Hwang DH. Fluorene- and arylamine-based photo-crosslinkable hole transporting polymer for solution-processed perovskite and organic light-emitting diodes. Macromol Res 2023. [DOI: 10.1007/s13233-023-00151-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
16
|
Sun R, Zhang Y, Gao Y, Zhao M, Wang A, Zhu J, Cheng X, Shi H. A tumor-targetable NIR probe with photoaffinity crosslinking characteristics for enhanced imaging-guided cancer phototherapy. Chem Sci 2023; 14:2369-2378. [PMID: 36873836 PMCID: PMC9977396 DOI: 10.1039/d2sc06413h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 02/03/2023] [Indexed: 02/05/2023] Open
Abstract
Spatiotemporally manipulating the in situ immobilization of theranostic agents within cancer cells to improve their bioavailability is highly significant yet challenging in tumor diagnosis and treatment. Herein, as a proof-of concept, we for the first time report a tumor-targetable near-infrared (NIR) probe DACF with photoaffinity crosslinking characteristics for enhanced tumor imaging and therapeutic applications. This probe possesses great tumor-targeting capability, intensive NIR/photoacoustic (PA) signals, and a predominant photothermal effect, allowing for sensitive imaging and effective photothermal therapy (PTT) of tumors. Most notably, upon 405 nm laser illumination, DACF could be covalently immobilized within tumor cells through a photocrosslinking reaction between photolabile diazirine groups and surrounding biomolecules resulting in enhanced tumor accumulation and prolonged retention simultaneously, which significantly facilitates the imaging and PTT efficacy of tumor in vivo. We therefore believe that our current approach would provide a new insight for achieving precise cancer theranostics.
Collapse
Affiliation(s)
- Rui Sun
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University Suzhou 215123 P. R. China
| | - Yuqi Zhang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University Suzhou 215123 P. R. China
| | - Yinjia Gao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University Suzhou 215123 P. R. China
| | - Meng Zhao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University Suzhou 215123 P. R. China
| | - Anna Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University Suzhou 215123 P. R. China
| | - Jinfeng Zhu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University Suzhou 215123 P. R. China
| | - Xiaju Cheng
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University Suzhou 215123 P. R. China
| | - Haibin Shi
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University Suzhou 215123 P. R. China
| |
Collapse
|
17
|
Nickelsen A, Götz C, Lenz F, Niefind K, König S, Jose J. Analyzing the interactome of human CK2β in prostate carcinoma cells reveals HSP70-1 and Rho guanin nucleotide exchange factor 12 as novel interaction partners. FASEB Bioadv 2023; 5:114-130. [PMID: 36876296 PMCID: PMC9983076 DOI: 10.1096/fba.2022-00098] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/19/2022] [Accepted: 01/09/2023] [Indexed: 01/13/2023] Open
Abstract
CK2β is the non-catalytic modulating part of the S/T-protein kinase CK2. However, the overall function of CK2β is poorly understood. Here, we report on the identification of 38 new interaction partners of the human CK2β from lysates of DU145 prostate cancer cells using photo-crosslinking and mass spectrometry, whereby HSP70-1 was identified with high abundance. The KD value of its interaction with CK2β was determined as 0.57 μM by microscale thermophoresis, this being the first time, to our knowledge, that a KD value of CK2β with another protein than CK2α or CK2α' was quantified. Phosphorylation studies excluded HSP70-1 as a substrate or activity modulator of CK2, suggesting a CK2 activity independent interaction of HSP70-1 with CK2β. Co-immunoprecipitation experiments in three different cancer cell lines confirmed the interaction of HSP70-1 with CK2β in vivo. A second identified CK2β interaction partner was Rho guanin nucleotide exchange factor 12, indicating an involvement of CK2β in the Rho-GTPase signal pathway, described here for the first time to our knowledge. This points to a role of CK2β in the interaction network affecting the organization of the cytoskeleton.
Collapse
Affiliation(s)
- Anna Nickelsen
- Institute of Pharmaceutical and Medicinal ChemistryUniversity of MünsterMünsterGermany
| | - Claudia Götz
- Department of Medical Biochemistry and Molecular BiologySaarland UniversityHomburgGermany
| | - Florian Lenz
- Institute of Pharmaceutical and Medicinal ChemistryUniversity of MünsterMünsterGermany
| | - Karsten Niefind
- Department of Chemistry, Institute of BiochemistryUniversity of CologneKölnGermany
| | - Simone König
- Interdisciplinary Center for Clinical Research, Core Unit Proteomics, Medical FacultyUniversity of MünsterMünsterGermany
| | - Joachim Jose
- Institute of Pharmaceutical and Medicinal ChemistryUniversity of MünsterMünsterGermany
| |
Collapse
|
18
|
Zhu Q, Zhou X, Zhang Y, Ye D, Yu K, Cao W, Zhang L, Zheng H, Sun Z, Guo C, Hong X, Zhu Y, Zhang Y, Xiao Y, Valencak TG, Ren T, Ren D. White-light crosslinkable milk protein bioadhesive with ultrafast gelation for first-aid wound treatment. Biomater Res 2023; 27:6. [PMID: 36737833 PMCID: PMC9898936 DOI: 10.1186/s40824-023-00346-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/25/2023] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Post-traumatic massive hemorrhage demands immediately available first-aid supplies with reduced operation time and good surgical compliance. In-situ crosslinking gels that are flexibly adapting to the wound shape have a promising potential, but it is still hard to achieve fast gelation, on-demand adhesion, and wide feasibility at the same time. METHODS A white-light crosslinkable natural milk-derived casein hydrogel bioadhesive is presented for the first time. Benefiting from abundant tyrosine residues, casein hydrogel bioadhesive was synthesized by forming di-tyrosine bonds under white light with a ruthenium-based catalyst. We firstly optimized the concentration of proteins and initiators to achieve faster gelation and higher mechanical strength. Then, we examined the degradation, cytotoxicity, tissue adhesion, hemostasis, and wound healing ability of the casein hydrogels to study their potential to be used as bioadhesives. RESULT Rapid gelation of casein hydrogel is initiated with an outdoor flashlight, a cellphone flashlight, or an endoscopy lamp, which facilitates its usage during first-aid and minimally invasive operations. The rapid gelation enables 3D printing of the casein hydrogel and excellent hemostasis even during liver hemorrhage due to section injury. The covalent binding between casein and tissue enables robust adhesion which can withstand more than 180 mmHg blood pressure. Moreover, the casein-based hydrogel can facilitate post-traumatic wound healing caused by trauma due to its biocompatibility. CONCLUSION Casein-based bioadhesives developed in this study pave a way for broad and practical application in emergency wound management.
Collapse
Affiliation(s)
- Qinchao Zhu
- grid.13402.340000 0004 1759 700XInstitute of Dairy Science, College of Animal Sciences, Zhejiang University, 310058 Hangzhou, China
| | - Xuhao Zhou
- grid.13402.340000 0004 1759 700XDepartment of Cardiology, Cardiovascular Key Laboratory of Zhejiang Province, Second Affiliated Hospital, School of Medicine, Zhejiang University, 310027 Hangzhou, China
| | - Yanan Zhang
- grid.13402.340000 0004 1759 700XKey Laboratory of Animal Virology of Ministry of Agriculture, Center for Veterinary Sciences, Zhejiang University, 310058 Hangzhou, China
| | - Di Ye
- grid.13402.340000 0004 1759 700XDepartment of Veterinary Medicine, College of Animal Sciences, Zhejiang University, 310058 Hangzhou, China
| | - Kang Yu
- grid.13402.340000 0004 1759 700XKey Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, 310027 Hangzhou, China
| | - Wangbei Cao
- grid.13402.340000 0004 1759 700XMOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, 310027 Hangzhou, China
| | - Liwen Zhang
- grid.13402.340000 0004 1759 700XMOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, 310027 Hangzhou, China
| | - Houwei Zheng
- grid.13402.340000 0004 1759 700XMOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, 310027 Hangzhou, China
| | - Ziyang Sun
- grid.494629.40000 0004 8008 9315School of Engineering, Westlake University, 310023 Hangzhou, Zhejiang China
| | - Chengchen Guo
- grid.494629.40000 0004 8008 9315School of Engineering, Westlake University, 310023 Hangzhou, Zhejiang China
| | - Xiaoqian Hong
- grid.13402.340000 0004 1759 700XDepartment of Cardiology, Cardiovascular Key Laboratory of Zhejiang Province, Second Affiliated Hospital, School of Medicine, Zhejiang University, 310027 Hangzhou, China
| | - Yang Zhu
- grid.13402.340000 0004 1759 700XMOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, 310027 Hangzhou, China
| | - Yajun Zhang
- grid.13402.340000 0004 1759 700XSir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 310020 Hangzhou, Zhejiang China
| | - Ying Xiao
- grid.13402.340000 0004 1759 700XSir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 310020 Hangzhou, Zhejiang China
| | - Teresa G. Valencak
- grid.13402.340000 0004 1759 700XInstitute of Dairy Science, College of Animal Sciences, Zhejiang University, 310058 Hangzhou, China
| | - Tanchen Ren
- grid.13402.340000 0004 1759 700XDepartment of Cardiology, Cardiovascular Key Laboratory of Zhejiang Province, Second Affiliated Hospital, School of Medicine, Zhejiang University, 310027 Hangzhou, China
| | - Daxi Ren
- grid.13402.340000 0004 1759 700XInstitute of Dairy Science, College of Animal Sciences, Zhejiang University, 310058 Hangzhou, China
| |
Collapse
|
19
|
Kamal AHM, Chakrabarty JK, Chowdhury SM. Lipopolysaccharide and statin-mediated immune-responsive protein networks revealed in macrophages through affinity purification spacer-arm controlled cross-linking (AP-SPACC) proteomics. Mol Omics 2023; 19:48-59. [PMID: 36377691 DOI: 10.1039/d2mo00224h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Toll-like receptor 4 (TLR4), a pattern recognition receptor, is activated by lipopolysaccharides (LPS) and induces the MyD88 pathway, which subsequently produces pro-inflammatory cytokines through activation of transcriptional nuclear factor (NF)-κB. Statins have been widely prescribed to reduce cholesterol synthesis for patients with cardiovascular disease. Statins may have pleiotropic effects, which include anti- and pro-inflammatory effects on cells. The molecular mechanism of the sequential influence of LPS and statin on the innate immune system remains unknown. We employed affinity purification-spacer-arm controlled cross-linking (AP-SPACC) MS-based proteomics analysis to identify the LPS- and statin-LPS-responsive proteins and their networks. LPS-stimulated RAW 264.7 macrophage cells singly and combined with the drug statin used in this study. Two chemical cross-linkers with different spacer chain lengths were utilized to stabilize the weak and transient interactors. Proteomic analysis identified 1631 differentially expressed proteins. We identified 151 immune-response proteins through functional enrichment analysis and visualized their interaction networks. Selected candidate protein-coding genes were validated, specifically squamous cell carcinoma antigens recognized by T cells 3, sphingosine-1-phosphate lyase 1, Ras-related protein Rab-35, and tumor protein D52 protein-coding genes through transcript-level expression analysis. The expressions of those genes were significantly increased upon statin treatment and decreased in LPS-stimulated macrophage cells. Therefore, we presumed that the expression changes of genes occurred due to immune response during activation of inflammation. These results highlight the immune-responsive proteins network, providing a new platform for novel investigations and discovering future therapeutic targets for inflammatory diseases.
Collapse
Affiliation(s)
- Abu Hena Mostafa Kamal
- Department of Chemistry and Biochemistry, University of Texas at Arlington, TX, 76019, USA. .,Advanced Technology Cores, Dan L Duncan Comprehensive Cancer Center, Metabolomics Core, Baylor College of Medicine, Houston, TX, 77030, USA.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jayanta K Chakrabarty
- Department of Chemistry and Biochemistry, University of Texas at Arlington, TX, 76019, USA. .,Quantitative Proteomics and Metabolomics Center, Columbia University, New York, NY, 10027, USA
| | - Saiful M Chowdhury
- Department of Chemistry and Biochemistry, University of Texas at Arlington, TX, 76019, USA.
| |
Collapse
|
20
|
Kozoriz K, Shkel O, Hong KT, Kim DH, Kim YK, Lee JS. Multifunctional Photo-Cross-Linking Probes: From Target Protein Searching to Imaging Applications. Acc Chem Res 2023; 56:25-36. [PMID: 36534922 DOI: 10.1021/acs.accounts.2c00505] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Despite advances in genome sequencing technology, the complete molecular interaction networks reflecting the biological functions of gene products have not been fully elucidated due to the lack of robust molecular interactome profiling techniques. Traditionally, molecular interactions have been investigated in vitro by measuring their affinity. However, such a reductionist approach comes with throughput constraints and does not depict an intact living cell environment. Therefore, molecular interactions in live cells must be captured to minimize false-positive results. The photo-cross-linking technique is a promising tool because the production of a temporally controlled reactive functional group can be induced using light exposure. Photoaffinity labeling is used in biochemistry and medicinal chemistry for bioconjugation, including drug and antibody conjugation, target protein identification of bioactive compounds, and fluorescent labeling of target proteins. This Account summarizes recent advances in multifunctional photo-cross-linkers for drug target identification and bioimaging. In addition to our group's contributions, we reviewed the most notable examples from the last few decades to provide a comprehensive overview of how this field is evolving. Based on cross-linking chemistry, photo-cross-linkers are classified as either (i) reactive intermediate-generating or (ii) electrophile-generating. Reactive intermediates generating photoaffinity tags have been extensively modified to target a molecule of interest using aryl azide, benzophenone, diazirine, diazo, and acyl silanes. These species are highly reactive and can form covalent bonds, irrespective of residue. Their short lifetime is ideal for the instant capture and labeling of biomolecules. Recently, photocaged electrophiles have been investigated to take advantage of their residue selectivity and relatively high yield for adduct formation with tetrazole, nitrobenzyl alcohol, o-nitrophenylethylene, pyrone, and pyrimidone. Multifunctional photo-cross-linkers for two parallel practical applications have been developed using both classes of photoactivatable groups. Unbiased target interactome profiling of small-molecule drugs requires a challenging structure-activity relationship study (SAR) step to retain the nature or biological activity of the lead compound, which led to the design of a multifunctional "minimalist tag" comprising a bio-orthogonal handle, a photoaffinity labeling group, and functional groups to load target molecules. In contrast, fluorogenic photo-cross-linking is advantageous for bioimaging because it does not require an additional bio-orthogonal reaction to introduce a fluorophore to the minimalist tag. Our group has made progress on minimalist tags and fluorogenic photo-cross-linkers through fruitful collaborations with other groups. The current range of photoactivation reactions and applications demonstrate that photoaffinity tags can be improved. We expect exciting days in the rational design of new multifunctional photo-cross-linkers, particularly clinically interesting versions used in photodynamic or photothermal therapy.
Collapse
Affiliation(s)
- Kostiantyn Kozoriz
- Department of Pharmacology, Korea University College of Medicine, 73 Goryeodae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Olha Shkel
- Convergence Research Center for Brain Science, Korea Institute of Science and Technology (KIST) & Bio-Med Program, KIST-School UST, Hwarang-ro 14 gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Kyung Tae Hong
- Convergence Research Center for Brain Science, Korea Institute of Science and Technology (KIST) & Bio-Med Program, KIST-School UST, Hwarang-ro 14 gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Dong Hoon Kim
- Department of Pharmacology, Korea University College of Medicine, 73 Goryeodae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Yun Kyung Kim
- Convergence Research Center for Brain Science, Korea Institute of Science and Technology (KIST) & Bio-Med Program, KIST-School UST, Hwarang-ro 14 gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Jun-Seok Lee
- Department of Pharmacology, Korea University College of Medicine, 73 Goryeodae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| |
Collapse
|
21
|
Makhathini SS, Mdanda S, Kondiah PJ, Kharodia ME, Rumbold K, Alagidede I, Pathak Y, Bulbulia Z, Rants’o TA, Kondiah PPD. Biomedicine Innovations and Its Nanohydrogel Classifications. Pharmaceutics 2022; 14:2839. [PMID: 36559335 PMCID: PMC9787506 DOI: 10.3390/pharmaceutics14122839] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/04/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
As one of the most cutting-edge and promising polymer crosslinked network nanoparticle systems. Polymer nano-sized hydrogels (nanogels) have been a hot topic in the biomedical field over the last few decades. Due to their unique characteristics, which include their relatively high drug encapsulation efficiency, ease of preparation, high tunability, low toxicity, high stability in serum and responsive behavior to a range of stimuli to facilitate drug release. Nanogels are thought to be the next generation of drug delivery systems that can completely change the way that drug delivery systems have an impact on patients' lives. Nanogels have demonstrated significant potential in a variety of fields, including chemotherapy, diagnosis, organ targeting, and delivery of bioactive molecules of different dimensions. However, the lack of substantial clinical data from nanogels becomes one of the major barriers to translating the nanogel concept into a practical therapeutic application for many disease conditions. In addition, nanogel safety profiles have been the major concern that hinders it advancement to the clinical trial phase. This review aims to emphasize the unique properties of nanogels as delivery systems for a variety of bioactive molecules over other nano-delivery systems. Also, this review attempts to give insight into the recent progress in nanogels as a carrier in the field of nanomedicine to overcome complex biological barriers. Relevant scientific data and clinical rationale for the development and the potential use of nanogel as a carrier for targeted therapeutic interventions are discussed. Finally, the concluding points of this review highlight the importance of understanding the long-term toxicity profile of nanogel within the biological system to fully understand their biocompatibility.
Collapse
Affiliation(s)
- Sifiso S. Makhathini
- Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Sipho Mdanda
- Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Pariksha J. Kondiah
- Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Moosa E. Kharodia
- Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Karl Rumbold
- FH Campus Wien, University of Applied Sciences, Vienna, Höchstädtpl. 6, 1200 Wien, Austria
| | - Imhotep Alagidede
- Simon Diedong Dombo University of Business and Integrated Development Studies, Bamahu Box WA64 Wa, Upper West Region, Ghana
- Wits Business School, University of the Witwatersrand, 2 St Davids Pl &, St Andrew Rd, Parktown, Johannesburg 2193, South Africa
| | - Yashwant Pathak
- USF Health Taneja College of Pharmacy, University of South Florida, 12901 Bruce B Downs Blvd, MDC 030, Tampa, FL 33612-4749, USA
- Faculty of Pharmacy, Airlangga University, Surabaya 60115, East Java, Indonesia
| | - Zain Bulbulia
- Policy Research & Advisory Services Branch, Gauteng Office of Premier, 1 Central Place 30 Rahima Moosa Street Newtown, Johannesburg 2113, South Africa
| | - Thankhoe A. Rants’o
- Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Pierre P. D. Kondiah
- Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown, Johannesburg 2193, South Africa
- USF Health Taneja College of Pharmacy, University of South Florida, 12901 Bruce B Downs Blvd, MDC 030, Tampa, FL 33612-4749, USA
- Pearson College London Alumni (Pearson plc), London WC1V 7BH, UK
| |
Collapse
|
22
|
Alcala-Torano R, Islam M, Cika J, Ho Lam K, Jin R, Ichtchenko K, Shoemaker CB, Van Deventer JA. Yeast Display Enables Identification of Covalent Single-Domain Antibodies against Botulinum Neurotoxin Light Chain A. ACS Chem Biol 2022; 17:3435-3449. [PMID: 36459441 PMCID: PMC10065152 DOI: 10.1021/acschembio.2c00574] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
While covalent drug discovery is reemerging as an important route to small-molecule therapeutic leads, strategies for the discovery and engineering of protein-based irreversible binding agents remain limited. Here, we describe the use of yeast display in combination with noncanonical amino acids (ncAAs) to identify irreversible variants of single-domain antibodies (sdAbs), also called VHHs and nanobodies, targeting botulinum neurotoxin light chain A (LC/A). Starting from a series of previously described, structurally characterized sdAbs, we evaluated the properties of antibodies substituted with reactive ncAAs capable of forming covalent bonds with nearby groups after UV irradiation (when using 4-azido-l-phenylalanine) or spontaneously (when using O-(2-bromoethyl)-l-tyrosine). Systematic evaluations in yeast display format of more than 40 ncAA-substituted variants revealed numerous clones that retain binding function while gaining either UV-mediated or spontaneous crosslinking capabilities. Solution-based analyses indicate that ncAA-substituted clones exhibit site-dependent target specificity and crosslinking capabilities uniquely conferred by ncAAs. Interestingly, not all ncAA substitution sites resulted in crosslinking events, and our data showed no apparent correlation between detected crosslinking levels and distances between sdAbs and LC/A residues. Our findings highlight the power of yeast display in combination with genetic code expansion in the discovery of binding agents that covalently engage their targets. This platform streamlines the discovery and characterization of antibodies with therapeutically relevant properties that cannot be accessed in the conventional genetic code.
Collapse
Affiliation(s)
- Rafael Alcala-Torano
- Chemical and Biological Engineering Department, Tufts University, Medford, Massachusetts 02155, United States of America
| | - Mariha Islam
- Chemical and Biological Engineering Department, Tufts University, Medford, Massachusetts 02155, United States of America
| | - Jaclyn Cika
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, New York 10016, United States of America
| | - Kwok Ho Lam
- Department of Physiology and Biophysics, University of California, Irvine, California 92697, United States of America
| | - Rongsheng Jin
- Department of Physiology and Biophysics, University of California, Irvine, California 92697, United States of America
| | - Konstantin Ichtchenko
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, New York 10016, United States of America
| | - Charles B. Shoemaker
- Tufts Cummings School of Veterinary Medicine, North Grafton, Massachusetts 01536, United States of America
| | - James A. Van Deventer
- Chemical and Biological Engineering Department, Tufts University, Medford, Massachusetts 02155, United States of America
- Biomedical Engineering Department, Tufts University, Medford, Massachusetts 02155, United States of America
| |
Collapse
|
23
|
Dorn RS, Prescher JA. Bioorthogonal Phosphines: Then and Now. Isr J Chem 2022. [DOI: 10.1002/ijch.202200070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Robert S. Dorn
- Departments of Chemistry University of California Irvine California 92697 United States
| | - Jennifer A. Prescher
- Departments of Chemistry University of California Irvine California 92697 United States
- Molecular Biology & Biochemistry University of California Irvine California 92697 United States
- Pharmaceutical Sciences University of California Irvine California 92697 United States
| |
Collapse
|
24
|
Photo-tuneable protein nitration by sensitiser tris(bipyridine)-Ruthenium(II) chloride complex. Nitric Oxide 2022; 129:63-73. [DOI: 10.1016/j.niox.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 09/13/2022] [Accepted: 10/16/2022] [Indexed: 11/12/2022]
|
25
|
Li P, Li J, Ren H. Capture and mass spectrometry analysis of effector-substrate complexes using genetically incorporated photo-crosslinkers in host cells. STAR Protoc 2022; 3:101882. [PMID: 36595886 PMCID: PMC9700014 DOI: 10.1016/j.xpro.2022.101882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/10/2022] [Accepted: 11/03/2022] [Indexed: 11/24/2022] Open
Abstract
Interactions between effectors and their host targets are often weak or transient, making them difficult to identify. We describe a protocol for covalent capture of effector substrates in living cells using genetic code expansion technology. The effector-substrate complexes are captured by the crosslinker and subsequently purified with tandem chromatography. We detail steps for mass spectrum analysis and substrate verification. While the steps here are specific for substrates of enteropathogenic E. coli in HEK293T cells, the protocol has broader applications. For complete details on the use and execution of this protocol, please refer to Li et al. (2021).1.
Collapse
Affiliation(s)
- Pan Li
- Division of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu 610041, China,Corresponding author
| | - Jingxiang Li
- Division of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu 610041, China,Corresponding author
| | - Haiyan Ren
- Division of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu 610041, China,Collaborative Innovation Center of Biotherapy, Chengdu 610041, China,Corresponding author
| |
Collapse
|
26
|
d'Orchymont F, Holland JP. A rotaxane-based platform for tailoring the pharmacokinetics of cancer-targeted radiotracers. Chem Sci 2022; 13:12713-12725. [PMID: 36519052 PMCID: PMC9645377 DOI: 10.1039/d2sc03928a] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/10/2022] [Indexed: 08/01/2023] Open
Abstract
Radiolabelled monoclonal antibodies (mAbs) are a cornerstone of molecular diagnostic imaging and targeted radioimmunotherapy in nuclear medicine, but one of the major challenges in the field is to identify ways of reducing the radiation burden to patients. We reasoned that a rotaxane-based platform featuring a non-covalent mechanical bond between the radionuclide complex and the biologically active mAb could offer new ways of controlling the biophysical properties of cancer-specific radiotracers for positron emission tomography (PET). Herein, we present the photoradiosynthesis and characterisation of [89Zr]ZrFe-[4]rotaxane-azepin-onartuzumab ([89Zr]ZrFe-2), a unique rotaxane-antibody conjugate for PET imaging and quantification of the human hepatocyte growth factor receptor (c-MET). Multiple component self-assembly reactions were combined with simultaneous 89Zr-radiolabelling and light-induced bioconjugation methods to give [89Zr]ZrFe-2 in 15 ± 1% (n = 3) decay-corrected radiochemical yield, with >90% radiochemical purity, and molar activities suitable for PET imaging studies (>6.1 MBq mg-1 of protein). Cellular assays confirmed the specificity of [89Zr]ZrFe-2 binding to the c-MET receptor. Temporal PET imaging in athymic nude mice bearing subcutaneous MKN-45 gastric adenocarcinoma xenografts demonstrated specific binding of [89Zr]ZrFe-2 toward c-MET in vivo, where tumour uptake reached 9.8 ± 1.3 %ID g-1 (72 h, n = 5) in a normal group and was reduced by ∼56% in a control (blocking) group. Head-to-head comparison of the biodistribution and excretion profile of [89Zr]ZrFe-2versus two control compounds, alongside characterisation of two potential metabolites, showed that the rotaxane-radiotracer has an improved clearance profile with higher tumour-to-tissue contrast ratios and reduced radiation exposure to critical (dose-limiting) organs including liver, spleen, and kidneys. Collectively, the experimental results suggested that non-covalent mechanical bonds between the radionuclide and mAb can be used to fine-tune the pharmacokinetic profile of supramolecular radiopharmaceuticals in ways that are simply not accessible when using traditional covalent design.
Collapse
Affiliation(s)
- Faustine d'Orchymont
- University of Zurich, Department of Chemistry Winterthurerstrasse 190 CH-8057 Zurich Switzerland https://www.hollandlab.org https://twitter.com/HollandLab +41-44-63-53990 +41-44-63-53990
| | - Jason P Holland
- University of Zurich, Department of Chemistry Winterthurerstrasse 190 CH-8057 Zurich Switzerland https://www.hollandlab.org https://twitter.com/HollandLab +41-44-63-53990 +41-44-63-53990
| |
Collapse
|
27
|
Zhang Z, Lin J, Liu Z, Tian G, Li XM, Jing Y, Li X, Li XD. Photo-Cross-Linking To Delineate Epigenetic Interactome. J Am Chem Soc 2022; 144:20979-20997. [DOI: 10.1021/jacs.2c06135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Zhuoyuan Zhang
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Jianwei Lin
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
- Greater Bay Biomedical InnoCenter, Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Zheng Liu
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Gaofei Tian
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Xiao-Meng Li
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Yihang Jing
- Greater Bay Biomedical InnoCenter, Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Xin Li
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
- Greater Bay Biomedical InnoCenter, Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Xiang David Li
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| |
Collapse
|
28
|
Bustos F, Mathur S, Espejo-Serrano C, Toth R, Hastie CJ, Virdee S, Findlay GM. Activity-based probe profiling of RNF12 E3 ubiquitin ligase function in Tonne-Kalscheuer syndrome. Life Sci Alliance 2022; 5:e202101248. [PMID: 35764390 PMCID: PMC9240097 DOI: 10.26508/lsa.202101248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 06/08/2022] [Accepted: 06/08/2022] [Indexed: 11/24/2022] Open
Abstract
Ubiquitylation enzymes are involved in all aspects of eukaryotic biology and are frequently disrupted in disease. One example is the E3 ubiquitin ligase RNF12/RLIM, which is mutated in the developmental disorder Tønne-Kalscheuer syndrome (TOKAS). RNF12 TOKAS variants largely disrupt catalytic E3 ubiquitin ligase activity, which presents a pressing need to develop approaches to assess the impact of variants on RNF12 activity in patients. Here, we use photocrosslinking activity-based probes (photoABPs) to monitor RNF12 RING E3 ubiquitin ligase activity in normal and pathogenic contexts. We demonstrate that photoABPs undergo UV-induced labelling of RNF12 that is consistent with its RING E3 ligase activity. Furthermore, photoABPs robustly report the impact of RNF12 TOKAS variants on E3 activity, including variants within the RING domain and distal non-RING regulatory elements. Finally, we show that this technology can be rapidly deployed in human pluripotent stem cells. In summary, photoABPs are versatile tools that can directly identify disruptions to RING E3 ubiquitin ligase activity in human disease, thereby providing new insight into pathogenic mechanisms.
Collapse
Affiliation(s)
- Francisco Bustos
- Medical Research Council (MRC) Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Sunil Mathur
- Medical Research Council (MRC) Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Carmen Espejo-Serrano
- Medical Research Council (MRC) Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Rachel Toth
- Medical Research Council (MRC) Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - C James Hastie
- Medical Research Council (MRC) Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Satpal Virdee
- Medical Research Council (MRC) Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Greg M Findlay
- Medical Research Council (MRC) Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| |
Collapse
|
29
|
Bollu A, Peters A, Rentmeister A. Chemo-Enzymatic Modification of the 5' Cap To Study mRNAs. Acc Chem Res 2022; 55:1249-1261. [PMID: 35420432 DOI: 10.1021/acs.accounts.2c00059] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The central dogma of molecular biology hinges on messenger RNA (mRNA), which presents a blueprint of the genetic information encoded in the DNA and serves as a template for translation into proteins. In addition to its fundamental importance in basic research, this class of biomolecules has recently become the first approved Covid vaccine, underscoring its utility in medical applications.Eukaryotic mRNA is heavily processed, including the 5' cap as the primary hallmark. This 5' cap protects mRNA from degradation by exoribonucleases but also interacts specifically with several proteins and enzymes to ensure mRNA turnover and processing, like splicing, export from the nucleus to the cytoplasm, and initiation of translation. The absence of a 5' cap leads to a strong immune response, and the methylation status contributes to distinguishing self from non-self RNA.Non-natural modifications of the 5' cap provide an avenue to label mRNAs and make them accessible to analyses, which is important to study their cellular localization, trafficking, and binding partners. They bear potential to engineer mRNAs, e.g., more stable or immunogenic mRNAs that are still translated, by impacting select interactions in a distinct manner. The modification of the 5' cap itself is powerful as it can be applied to make long mRNAs (∼1000 nt, not directly accessible by solid-phase synthesis) by in vitro transcription.This Account describes our contribution to the field of chemo-enzymatic modification of mRNA at the 5' cap. Our approach relies on RNA methyltransferases (MTases) with promiscuous activity on analogues of their natural cosubstrate S-adenosyl-L-methionine (AdoMet). We will describe how RNA MTases in combination with non-natural cosubstrates provide access to site-specific modification of different positions of the 5' cap, namely, the N2 and N7 position of guanosine and the N6 position of adenosine as the transcription start nucleotide (TSN) and exemplify strategies to make long mRNAs with modified 5' caps.We will compare the chemical and enzymatic synthesis of the AdoMet analogues used for this purpose. We could overcome previous limitations in methionine adenosyltransferase (MAT) substrate scope by engineering variants (termed PC-MATs) with the ability to convert methionine analogues with benzylic and photocaging groups at the sulfonium ion.The final part of this Account will highlight applications of the modified mRNAs. Like in many chemo-enzymatic approaches, a versatile strategy is to install small functional groups enzymatically and use them as handles in subsequent bioorthogonal reactions. We showed fluorescent labeling of mRNAs via different types of click chemistry in vitro and in cells. In a second line of applications, we used the handles to make mRNAs amenable for analyses, most notably next-generation sequencing. In the case of extremely promiscuous enzymes, the direct installation of photo-cross-linking groups was successful also and provided a way to covalently bind protein-interaction partners. Finally, the non-natural modifications of mRNAs can also modulate the properties of mRNAs. Propargylation of Am as the transcription start nucleotide at its N6 position maintained the translation of mRNAs but increased their immunogenicity. The installation of photocaging groups provides a way to revert these effects and control interactions by light.
Collapse
Affiliation(s)
- Amarnath Bollu
- Department of Chemistry and Pharmacy, Institute of Biochemistry Westfälische Wilhelms-Universität Münster, University of Münster, Corrensstrasse 36, 48149 Münster, Germany
| | - Aileen Peters
- Department of Chemistry and Pharmacy, Institute of Biochemistry Westfälische Wilhelms-Universität Münster, University of Münster, Corrensstrasse 36, 48149 Münster, Germany
| | - Andrea Rentmeister
- Department of Chemistry and Pharmacy, Institute of Biochemistry Westfälische Wilhelms-Universität Münster, University of Münster, Corrensstrasse 36, 48149 Münster, Germany
| |
Collapse
|
30
|
Kneuttinger AC. A guide to designing photocontrol in proteins: methods, strategies and applications. Biol Chem 2022; 403:573-613. [PMID: 35355495 DOI: 10.1515/hsz-2021-0417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 03/08/2022] [Indexed: 12/20/2022]
Abstract
Light is essential for various biochemical processes in all domains of life. In its presence certain proteins inside a cell are excited, which either stimulates or inhibits subsequent cellular processes. The artificial photocontrol of specifically proteins is of growing interest for the investigation of scientific questions on the organismal, cellular and molecular level as well as for the development of medicinal drugs or biocatalytic tools. For the targeted design of photocontrol in proteins, three major methods have been developed over the last decades, which employ either chemical engineering of small-molecule photosensitive effectors (photopharmacology), incorporation of photoactive non-canonical amino acids by genetic code expansion (photoxenoprotein engineering), or fusion with photoreactive biological modules (hybrid protein optogenetics). This review compares the different methods as well as their strategies and current applications for the light-regulation of proteins and provides background information useful for the implementation of each technique.
Collapse
Affiliation(s)
- Andrea C Kneuttinger
- Institute of Biophysics and Physical Biochemistry and Regensburg Center for Biochemistry, University of Regensburg, D-93040 Regensburg, Germany
| |
Collapse
|
31
|
Earley D, Guillou A, Klingler S, Fay R, Gut M, d’Orchymont F, Behmaneshfar S, Reichert L, Holland JP. Charting the Chemical and Mechanistic Scope of Light-Triggered Protein Ligation. JACS AU 2022; 2:646-664. [PMID: 35373206 PMCID: PMC8970001 DOI: 10.1021/jacsau.1c00530] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Indexed: 05/04/2023]
Abstract
The creation of discrete, covalent bonds between a protein and a functional molecule like a drug, fluorophore, or radiolabeled complex is essential for making state-of-the-art tools that find applications in basic science and clinical medicine. Photochemistry offers a unique set of reactive groups that hold potential for the synthesis of protein conjugates. Previous studies have demonstrated that photoactivatable desferrioxamine B (DFO) derivatives featuring a para-substituted aryl azide (ArN3) can be used to produce viable zirconium-89-radiolabeled monoclonal antibodies (89Zr-mAbs) for applications in noninvasive diagnostic positron emission tomography (PET) imaging of cancers. Here, we report on the synthesis, 89Zr-radiochemistry, and light-triggered photoradiosynthesis of 89Zr-labeled human serum albumin (HSA) using a series of 14 different photoactivatable DFO derivatives. The photoactive groups explore a range of substituted, and isomeric ArN3 reagents, as well as derivatives of benzophenone, a para-substituted trifluoromethyl phenyl diazirine, and a tetrazole species. For the compounds studied, efficient photochemical activation occurs inside the UVA-to-visible region of the electromagnetic spectrum (∼365-450 nm) and the photochemical reactions with HSA in water were complete within 15 min under ambient conditions. Under standardized experimental conditions, photoradiosynthesis with compounds 1-14 produced the corresponding 89ZrDFO-PEG3-HSA conjugates with decay-corrected isolated radiochemical yields between 18.1 ± 1.8% and 62.3 ± 3.6%. Extensive density functional theory (DFT) calculations were used to explore the reaction mechanisms and chemoselectivity of the light-induced bimolecular conjugation of compounds 1-14 to protein. The photoactivatable DFO-derivatives operate by at least five distinct mechanisms, each producing a different type of bioconjugate bond. Overall, the experimental and computational work presented here confirms that photochemistry is a viable option for making diverse, functionalized protein conjugates.
Collapse
|
32
|
Characterization of protein unfolding by fast cross-linking mass spectrometry using di-ortho-phthalaldehyde cross-linkers. Nat Commun 2022; 13:1468. [PMID: 35304446 PMCID: PMC8933431 DOI: 10.1038/s41467-022-28879-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 02/10/2022] [Indexed: 01/16/2023] Open
Abstract
Chemical cross-linking of proteins coupled with mass spectrometry is widely used in protein structural analysis. In this study we develop a class of non-hydrolyzable amine-selective di-ortho-phthalaldehyde (DOPA) cross-linkers, one of which is called DOPA2. Cross-linking of proteins with DOPA2 is 60-120 times faster than that with the N-hydroxysuccinimide ester cross-linker DSS. Compared with DSS cross-links, DOPA2 cross-links show better agreement with the crystal structures of tested proteins. More importantly, DOPA2 has unique advantages when working at low pH, low temperature, or in the presence of denaturants. Using staphylococcal nuclease, bovine serum albumin, and bovine pancreatic ribonuclease A, we demonstrate that DOPA2 cross-linking provides abundant spatial information about the conformations of progressively denatured forms of these proteins. Furthermore, DOPA2 cross-linking allows time-course analysis of protein conformational changes during denaturant-induced unfolding.
Collapse
|
33
|
Choi W, Heo D, Kim T, Jung S, Choi M, Heo J, Kwon J, Kim B, Lee W, Koh W, Cho JH, Lee S, Hong J. Stress Dissipation Encoded Silk Fibroin Electrode for the Athlete-Beneficial Silk Bioelectronics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105420. [PMID: 35001517 PMCID: PMC8922117 DOI: 10.1002/advs.202105420] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Indexed: 06/14/2023]
Abstract
The kinetic body motions have guided the core-shell fabrics of wearable bioelectronics to be elastoplastic. However, the polymeric electrodes follow the trade-off relationship between toughness and stretchability. To this end, the stress dissipation encoded silk fibroin electrode is proposed as the core electrode of wearable bioelectronics. Significantly, the high degree of intrinsic stress dissipation is realized via an amino acid crosslink. The canonical phenolic amino acid (i.e., tyrosine) of silk fibroin is engineered to bridge the secondary structures. A sufficient crosslink network is constructed when tyrosine is exposed near the amorphous strand. The stress dissipative tyrosine crosslink affords 12.5-fold increments of toughness (4.72 to 58.9 MJ m-3 ) and implements the elastoplastic silk fibroin. The harmony of elastoplastic core electrodes with shell fabrics enables the wearable bioelectronics to employ mechanical performance (elastoplasticity of 750 MJ m-3 ) and stable electrical response. The proposed wearable is capable of assisting the effective workouts via triboelectricity. In principle, active mobility with suggested wearables potentially relieves muscular fatigues and severe injuries during daily fitness.
Collapse
Affiliation(s)
- Woojin Choi
- Department of Chemical and Biomolecular Engineering, College of EngineeringYonsei UniversitySeoul03722Republic of Korea
| | - Deokjae Heo
- School of Mechanical EngineeringChung‐ang University84, Heukseok‐ro, Dongjak‐guSeoul06974Republic of Korea
| | - Taeho Kim
- Department of Chemical and Biomolecular Engineering, College of EngineeringYonsei UniversitySeoul03722Republic of Korea
| | - Sungwon Jung
- Department of Chemical and Biomolecular Engineering, College of EngineeringYonsei UniversitySeoul03722Republic of Korea
| | - Moonhyun Choi
- Department of Chemical and Biomolecular Engineering, College of EngineeringYonsei UniversitySeoul03722Republic of Korea
| | - Jiwoong Heo
- Department of Chemical and Biomolecular Engineering, College of EngineeringYonsei UniversitySeoul03722Republic of Korea
| | - Jae‐Sung Kwon
- Department and Research Institute of Dental Biomaterials and Bioengineering and BK21 FOUR ProjectYonsei University College of DentistrySeoul03722Republic of Korea
| | - Byeong‐Su Kim
- Department of ChemistryYonsei UniversitySeoul03722Republic of Korea
| | - Wonhwa Lee
- Department of ChemistrySungkyunkwan UniversitySuwon16419Republic of Korea
| | - Won‐Gun Koh
- Department of Chemical and Biomolecular Engineering, College of EngineeringYonsei UniversitySeoul03722Republic of Korea
| | - Jeong Ho Cho
- Department of Chemical and Biomolecular Engineering, College of EngineeringYonsei UniversitySeoul03722Republic of Korea
| | - Sangmin Lee
- School of Mechanical EngineeringChung‐ang University84, Heukseok‐ro, Dongjak‐guSeoul06974Republic of Korea
| | - Jinkee Hong
- Department of Chemical and Biomolecular Engineering, College of EngineeringYonsei UniversitySeoul03722Republic of Korea
| |
Collapse
|
34
|
Peng Y, Liu S, Wang L, Xu Y, Wu Z, Chen H. Oxygen-demanding Photocontrolled RAFT Polymerization under Ambient Conditions. Macromol Rapid Commun 2022; 43:e2100920. [PMID: 35138013 DOI: 10.1002/marc.202100920] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 02/05/2022] [Indexed: 11/06/2022]
Abstract
A photocontrolled reversible addition-fragmentation chain transfer (RAFT) process is developed by initiating polymerization through a 1,3-diaminopropane-triethylborane (DAPTB)-diphenyl iodonium salt (Ph2 I+ ) complex (DAPTB/Ph2 I+ ) under ambient temperature and atmosphere. Upon demand, this air-stable DAPTB/Ph2 I+ complex is photolyzed to liberate a reactive triethylborane that consumes atmospheric oxygen and generates ethyl radicals, which initiate and mediate RAFT polymerization. Controlled RAFT polymerization is thus achieved without any prior deoxygenation using a novel RAFT chain transfer agent, BP-FSBC, which contains both benzophenone and sulfonyl fluoride moieties. Furthermore, the kinetics of polymerization reveal that the reaction process is rapid, and well-defined polymers are produced by a 61% conversion of 2-hydroxyethyl acrylate (HEA) within 7 minutes and 77% conversion of N,N-dimethylacrylamide (DMA) within 10.5 minutes. The temporal and spatial control of this photopolymerization is also demonstrated by an "on/off" switch of UV irradiation and a painting-on-a-surface approach, respectively. In addition, active chain ends are demonstrated by preparing block copolymers by chain extension and click sulfur(VI)-fluoride exchange (SuFEx) postreaction using RAFT-derived macrochain transfer agents. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yao Peng
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Shengjie Liu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Ling Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Ying Xu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, P. R. China
| | - Zhaoqiang Wu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| |
Collapse
|
35
|
Shin I, Li H, Lee CH. A Thiol-Activated Fluorogenic Probe for Detection of a Target Protein. Chem Commun (Camb) 2022; 58:6336-6339. [DOI: 10.1039/d2cc02029g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel fluorogenic probe for facile and efficient detection of a target protein that binds to a bioactive small molecule was developed. The probe was composed of a thiol-activated fluorogenic...
Collapse
|
36
|
Wu X, Wang R, Kwon N, Ma H, Yoon J. Activatable fluorescent probes for in situ imaging of enzymes. Chem Soc Rev 2021; 51:450-463. [PMID: 34951429 DOI: 10.1039/d1cs00543j] [Citation(s) in RCA: 134] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
As the main biomarkers of most diseases, enzymes play fundamental but extremely critical roles in biosystems. High-resolution studies of enzymes using activatable in situ fluorescence imaging may help to better elucidate their dynamics in living systems. Currently, most activatable probes can realize changeable imaging of enzymes but inevitably tend to diffuse away from the original active site of the enzyme and even translocate out of cells, seriously impairing in situ high-resolution observation of the enzymes. In situ fluorescence imaging of enzymes can be realized by labelling probes or antibodies with always-on signals that fail to enable activatable imaging of enzymes. Thus, fluorescent probes with both "activatable" and "in situ" properties will enable high-resolution studies of enzymes in living systems. In this tutorial review, we summarize the existing methods ranging from design strategies to bioimaging applications that could be used to develop activatable fluorescent probes for in situ imaging of enzymes. It is expected that this tutorial review will promote the new methods generated to design such probes for better deciphering enzymes in complex biosystems and further extend the application of these methods to other fields of enzymes.
Collapse
Affiliation(s)
- Xiaofeng Wu
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea.
| | - Rui Wang
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea.
| | - Nahyun Kwon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea.
| | - Huimin Ma
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea.
| |
Collapse
|
37
|
Fallon DJ, Lehmann S, Chung CW, Phillipou A, Eberl C, Fantom KGM, Zappacosta F, Patel VK, Bantscheff M, Schofield CJ, Tomkinson NCO, Bush JT. One-Step Synthesis of Photoaffinity Probes for Live-Cell MS-Based Proteomics. Chemistry 2021; 27:17880-17888. [PMID: 34328642 DOI: 10.1002/chem.202102036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Indexed: 11/06/2022]
Abstract
We present a one-step Ugi reaction protocol for the expedient synthesis of photoaffinity probes for live-cell MS-based proteomics. The reaction couples an amine affinity function with commonly used photoreactive groups, and a variety of handle functionalities. Using this technology, a series of pan-BET (BET: bromodomain and extra-terminal domain) selective bromodomain photoaffinity probes were obtained by parallel synthesis. Studies on the effects of photoreactive group, linker length and irradiation wavelength on photocrosslinking efficiency provide valuable insights into photoaffinity probe design. Optimal probes were progressed to MS-based proteomics to capture the BET family of proteins from live cells and reveal their potential on- and off-target profiles.
Collapse
Affiliation(s)
- David J Fallon
- GlaxoSmithKline R&D, Gunnels Wood Road, Stevenage, SG1 2NY, UK
- Department of Pure and Applied Chemistry, Thomas Graham Building, University of Strathclyde, Glasgow, G1 1XL, UK
| | - Stephanie Lehmann
- Cellzome GmbH, a GSK company, Meyerhofstraße 1, Heidelberg, 69117, Germany
| | - Chun-Wa Chung
- GlaxoSmithKline R&D, Gunnels Wood Road, Stevenage, SG1 2NY, UK
| | - Alex Phillipou
- GlaxoSmithKline R&D, Gunnels Wood Road, Stevenage, SG1 2NY, UK
| | - Christian Eberl
- Cellzome GmbH, a GSK company, Meyerhofstraße 1, Heidelberg, 69117, Germany
| | - Ken G M Fantom
- GlaxoSmithKline R&D, Gunnels Wood Road, Stevenage, SG1 2NY, UK
| | | | | | - Marcus Bantscheff
- Cellzome GmbH, a GSK company, Meyerhofstraße 1, Heidelberg, 69117, Germany
| | | | - Nicholas C O Tomkinson
- Department of Pure and Applied Chemistry, Thomas Graham Building, University of Strathclyde, Glasgow, G1 1XL, UK
| | - Jacob T Bush
- GlaxoSmithKline R&D, Gunnels Wood Road, Stevenage, SG1 2NY, UK
| |
Collapse
|
38
|
Dubois MAJ, Croft RA, Ding Y, Choi C, Owen DR, Bull JA, Mousseau JJ. Investigating 3,3-diaryloxetanes as potential bioisosteres through matched molecular pair analysis. RSC Med Chem 2021; 12:2045-2052. [PMID: 35024613 PMCID: PMC8672821 DOI: 10.1039/d1md00248a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/05/2021] [Indexed: 01/09/2023] Open
Abstract
Oxetanes have received increasing interest in medicinal chemistry as attractive polar and low molecular weight motifs. The application of oxetanes as replacements for methylene, methyl, gem-dimethyl and carbonyl groups has been demonstrated to often improve chemical properties of target molecules for drug discovery purposes. The investigation of the properties of 3,3-diaryloxetanes, particularly of interest as a benzophenone replacement, remains largely unexplored. With recent synthetic advances in accessing this motif we studied the effects of 3,3-diaryloxetanes on the physicochemical properties of 'drug-like' molecules. Here, we describe our efforts in the design and synthesis of a range of drug-like compounds for matched molecular pair analysis to investigate the viability of the 3,3-diaryloxetane motif as a replacement group in drug discovery. We conclude that the properties of the diaryloxetanes and ketones are similar, and generally superior to related alkyl linkers, and that diaryloxetanes provide a potentially useful new design element.
Collapse
Affiliation(s)
- Maryne A J Dubois
- Department of Chemistry, Molecular Sciences Research Hub, White City Campus, Imperial College London Wood Lane London W12 0BZ UK
| | - Rosemary A Croft
- Department of Chemistry, Molecular Sciences Research Hub, White City Campus, Imperial College London Wood Lane London W12 0BZ UK
| | - Yujie Ding
- Department of Chemistry, Molecular Sciences Research Hub, White City Campus, Imperial College London Wood Lane London W12 0BZ UK
| | - Chulho Choi
- Medicine Design, Pfizer Worldwide Research, Development and Medical 445 Eastern Point Rd. Groton CT 06340 USA
| | - Dafydd R Owen
- Pfizer Medicine Design 610 Main St Cambridge MA 02139 USA
| | - James A Bull
- Department of Chemistry, Molecular Sciences Research Hub, White City Campus, Imperial College London Wood Lane London W12 0BZ UK
| | - James J Mousseau
- Medicine Design, Pfizer Worldwide Research, Development and Medical 445 Eastern Point Rd. Groton CT 06340 USA
| |
Collapse
|
39
|
Zhu C, Kou T, Kadi AA, Li J, Zhang Y. Molecular platforms based on biocompatible photoreactions for photomodulation of biological targets. Org Biomol Chem 2021; 19:9358-9368. [PMID: 34632469 DOI: 10.1039/d1ob01613j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photoirradiation provides a convenient and biocompatible approach for spatiotemporal modulation of biological systems with photoresponsive components. The construction of molecular platforms with a photoresponse to be integrated into biomolecules for photomodulation has been of great research interest in optochemical biology. In this review, we summarize typical molecular platforms that are integratable with biomolecules for photomodulation purposes. We categorize these molecular platforms according to their excitation light source, namely ultraviolet (UV), visible (Vis) or near-infrared (NIR) light. The protype chemistry of these molecular platforms is introduced along with an overview of their most recent applications for spatiotemporal regulation of biomolecular function in living cells or mice models. Challenges and the outlook are also presented. We hope this review paper will contribute to further progress in the development of molecular platforms and their biomedical use.
Collapse
Affiliation(s)
- Chenghong Zhu
- State Key Laboratory of Analytical Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China.
| | - Tianzhang Kou
- State Key Laboratory of Analytical Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China.
| | - Adnan A Kadi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P. O. Box 2457, Riyadh 11451, Kingdom of Saudi Arabia.
| | - Jinbo Li
- State Key Laboratory of Analytical Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China.
| | - Yan Zhang
- State Key Laboratory of Analytical Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China.
| |
Collapse
|
40
|
Lin J, Bao X, Li XD. Chemoproteomic approach for mapping binding sites of post-translational-modification-mediated protein-protein interactions. Trends Biochem Sci 2021; 46:1030-1031. [PMID: 34642109 DOI: 10.1016/j.tibs.2021.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 10/20/2022]
Affiliation(s)
- Jianwei Lin
- Department of Chemistry, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Xiucong Bao
- Department of Chemistry, The University of Hong Kong, Pokfulam, Hong Kong, China; School of Biomedical Science, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China.
| | - Xiang D Li
- Department of Chemistry, The University of Hong Kong, Pokfulam, Hong Kong, China.
| |
Collapse
|
41
|
Weber P, Dzuricky M, Min J, Jenkins I, Chilkoti A. Concentration-Independent Multivalent Targeting of Cancer Cells by Genetically Encoded Core-Crosslinked Elastin/Resilin-like Polypeptide Micelles. Biomacromolecules 2021; 22:4347-4356. [PMID: 34477380 DOI: 10.1021/acs.biomac.1c00897] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Valency is a fundamental principle to control macromolecular interactions and is used to target specific cell types by multivalent ligand-receptor interactions using self-assembled nanoparticle carriers. At the concentrations encountered in solid tumors upon systemic administration, these nanoparticles are, however, likely to show critical micelle concentration (CMC)-dependent disassembly and thus loss of function. To overcome this limitation, core-crosslinkable micelles of genetically encoded resilin-/elastin-like diblock polypeptides were recombinantly synthesized. The amphiphilic constructs were covalently photo-crosslinked through the genetically encoded unnatural amino acid para-azidophenylalanine in their hydrophobic block and they carried different anticancer ligands on their hydrophilic block: the wild-type tenth human fibronectin type III domain, a GRGDSPAS peptide-both targeting αvβ3 integrin-and an engineered variant of the third fibronectin type III domain of tenascin C that is a death receptor 5 agonist. Although uncrosslinked micelles lost most of their targeting ability below their CMC, the crosslinked analogues remained active at concentrations up to 1000-fold lower than the CMC, with binding affinities that are comparable to antibodies.
Collapse
Affiliation(s)
- Patrick Weber
- Tissue Engineering & Biofabrication Laboratory, Department of Health Sciences and Technology, ETH Zurich, Otto-Stern-Weg 7, 8093 Zurich, Switzerland.,Department of Biomedical Engineering, Duke University, 101 Science Dr., Durham, North Carolina 27708, United States.,Swiss Nanoscience Institute, University of Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland
| | - Michael Dzuricky
- Department of Biomedical Engineering, Duke University, 101 Science Dr., Durham, North Carolina 27708, United States
| | - Junseon Min
- Department of Biomedical Engineering, Duke University, 101 Science Dr., Durham, North Carolina 27708, United States
| | - Irene Jenkins
- Department of Biomedical Engineering, Duke University, 101 Science Dr., Durham, North Carolina 27708, United States
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering, Duke University, 101 Science Dr., Durham, North Carolina 27708, United States
| |
Collapse
|
42
|
Li X, Li XD. Integrative Chemical Biology Approaches to Deciphering the Histone Code: A Problem-Driven Journey. Acc Chem Res 2021; 54:3734-3747. [PMID: 34553920 DOI: 10.1021/acs.accounts.1c00463] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The hereditary blueprint of a eukaryotic cell is encoded in its genomic DNA that is tightly compacted into chromatin together with histone proteins. The basic repeating units of chromatin fibers are nucleosomes, in which approximately 1.7 turns of DNA wrap around a proteinaceous octamer consisting of two copies of histones H2A, H2B, H3, and H4. Histones are extensively decorated by a variety of posttranslational modifications (PTMs, e.g., methylation, acetylation, ubiquitylation, phosphorylation, etc.), serving as one of the cellular mechanisms that regulates DNA-templated processes, including but not limited to gene transcription, DNA replication, and DNA damage repair. Most of the histone PTMs exist in dynamic fluctuations, and their on and off states are exquisitely regulated by enzymes known as "writers" and "erasers", respectively. When installed at certain sites, histone PTMs can change the local physicochemical environment and thereby directly influence the nucleosome and chromatin structures. Alternatively, histone PTMs can recruit effectors (or "readers") to signal the downstream events. A "histone code" hypothesis has been proposed in which the combinatory actions of different histone PTMs orchestrate the epigenetic landscape of cells, modulating the activity of the underlying DNA and maintaining the genome stability between generations. Accumulating evidence also suggests that malfunctions of histone PTMs are associated with the pathogenesis of human diseases, such as cancer. It is therefore important to fully decipher the histone code, namely, to dissect the regulatory mechanisms and biological functions of histone PTMs.Owing to the advances in state-of-the-art mass spectrometry, dozens of novel histone modifications have been archived during the past decade. However, most of these newly identified histone PTMs remain poorly explored. To unravel the roles played by these PTMs in histone code, key questions that have driven our study are (i) how to detect the novel histone PTMs; (ii) how to identify the enzymes that catalyze the addition (writers) and removal (erasers) of the histone PTMs along with the regulating mechanisms; (iii) what is the biological significance of the histone PTMs and how do they function, by affecting the nucleosome and chromatin dynamics or by recruiting readers; and (iv) how to develop chemical probes to interrogate the histone PTMs or even serve as potential leads for the drug discovery campaigns to treat diseases caused by abnormalities in the regulation of histone PTMs.This Account focuses on our efforts in developing and applying chemical tools and methods to answer the above questions. Specifically, we review the detection of negatively charged histone acylations by developing and applying chemical reporters; preparing homogeneous nucleosomes carrying negatively charged acylations by protein chemistry approaches and the in vitro biophysical analyses of the effects of the acylations on nucleosome structures; investigating the negatively charged acylations' influence on chromatin dynamics in vivo using yeast genetic approaches; identifying and characterizing protein-protein interactions (PPIs) mediated by histone PTMs in different biological contexts (i.e., to identify the readers and erasers) by establishing a chemical proteomics platform that is enabled by photo-cross-linking chemistry and quantitative proteomics strategies; and manipulating PTM-mediated PPIs by the structure-guided design of inhibitors. We also discuss possible future directions in our journey to fully decipher the histone code.
Collapse
Affiliation(s)
- Xin Li
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, 999077 China
| | - Xiang David Li
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, 999077 China
| |
Collapse
|
43
|
Lechner VM, Nappi M, Deneny PJ, Folliet S, Chu JCK, Gaunt MJ. Visible-Light-Mediated Modification and Manipulation of Biomacromolecules. Chem Rev 2021; 122:1752-1829. [PMID: 34546740 DOI: 10.1021/acs.chemrev.1c00357] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Chemically modified biomacromolecules-i.e., proteins, nucleic acids, glycans, and lipids-have become crucial tools in chemical biology. They are extensively used not only to elucidate cellular processes but also in industrial applications, particularly in the context of biopharmaceuticals. In order to enable maximum scope for optimization, it is pivotal to have a diverse array of biomacromolecule modification methods at one's disposal. Chemistry has driven many significant advances in this area, and especially recently, numerous novel visible-light-induced photochemical approaches have emerged. In these reactions, light serves as an external source of energy, enabling access to highly reactive intermediates under exceedingly mild conditions and with exquisite spatiotemporal control. While UV-induced transformations on biomacromolecules date back decades, visible light has the unmistakable advantage of being considerably more biocompatible, and a spectrum of visible-light-driven methods is now available, chiefly for proteins and nucleic acids. This review will discuss modifications of native functional groups (FGs), including functionalization, labeling, and cross-linking techniques as well as the utility of oxidative degradation mediated by photochemically generated reactive oxygen species. Furthermore, transformations at non-native, bioorthogonal FGs on biomacromolecules will be addressed, including photoclick chemistry and DNA-encoded library synthesis as well as methods that allow manipulation of the activity of a biomacromolecule.
Collapse
Affiliation(s)
- Vivian M Lechner
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Manuel Nappi
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Patrick J Deneny
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Sarah Folliet
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - John C K Chu
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Matthew J Gaunt
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
44
|
Laurin CMC, Bluck JP, Chan AKN, Keller M, Boczek A, Scorah AR, See KFL, Jennings LE, Hewings DS, Woodhouse F, Reynolds JK, Schiedel M, Humphreys PG, Biggin PC, Conway SJ. Fragment-Based Identification of Ligands for Bromodomain-Containing Factor 3 of Trypanosoma cruzi. ACS Infect Dis 2021; 7:2238-2249. [PMID: 33203208 DOI: 10.1021/acsinfecdis.0c00618] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The Trypanosoma cruzi (T. cruzi) parasite is the cause of Chagas disease, a neglected disease endemic in South America. The life cycle of the T. cruzi parasite is complex and includes transitions between distinct life stages. This change in phenotype (without a change in genotype) could be controlled by epigenetic regulation, and might involve the bromodomain-containing factors 1-5 (TcBDF1-5). However, little is known about the function of the TcBDF1-5. Here we describe a fragment-based approach to identify ligands for T. cruzi bromodomain-containing factor 3 (TcBDF3). We expressed a soluble construct of TcBDF3 in E. coli, and used this to develop a range of biophysical assays for this protein. Fragment screening identified 12 compounds that bind to the TcBDF3 bromodomain. On the basis of this screen, we developed functional ligands containing a fluorescence or 19F reporter group, and a photo-crosslinking probe for TcBDF3. These tool compounds will be invaluable in future studies on the function of TcBDF3 and will provide insight into the biology of T. cruzi.
Collapse
Affiliation(s)
- Corentine M. C. Laurin
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK
| | - Joseph P. Bluck
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK
- Department of Biochemistry, University of Oxford, 3 Parks Road, Oxford OX1 3QU, UK
| | - Anthony K. N. Chan
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK
| | - Michelle Keller
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK
| | - Andrew Boczek
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK
| | - Amy R. Scorah
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK
| | - K. F. Larissa See
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK
| | - Laura E. Jennings
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK
| | - David S. Hewings
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK
| | - Fern Woodhouse
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK
| | - Jessica K. Reynolds
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK
| | - Matthias Schiedel
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK
| | | | - Philip C. Biggin
- Department of Biochemistry, University of Oxford, 3 Parks Road, Oxford OX1 3QU, UK
| | - Stuart J. Conway
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK
| |
Collapse
|
45
|
Zisis T, Schwarz J, Balles M, Kretschmer M, Nemethova M, Chait R, Hauschild R, Lange J, Guet C, Sixt M, Zahler S. Sequential and Switchable Patterning for Studying Cellular Processes under Spatiotemporal Control. ACS APPLIED MATERIALS & INTERFACES 2021; 13:35545-35560. [PMID: 34283577 PMCID: PMC9282641 DOI: 10.1021/acsami.1c09850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Attachment of adhesive molecules on cell culture surfaces to restrict cell adhesion to defined areas and shapes has been vital for the progress of in vitro research. In currently existing patterning methods, a combination of pattern properties such as stability, precision, specificity, high-throughput outcome, and spatiotemporal control is highly desirable but challenging to achieve. Here, we introduce a versatile and high-throughput covalent photoimmobilization technique, comprising a light-dose-dependent patterning step and a subsequent functionalization of the pattern via click chemistry. This two-step process is feasible on arbitrary surfaces and allows for generation of sustainable patterns and gradients. The method is validated in different biological systems by patterning adhesive ligands on cell-repellent surfaces, thereby constraining the growth and migration of cells to the designated areas. We then implement a sequential photopatterning approach by adding a second switchable patterning step, allowing for spatiotemporal control over two distinct surface patterns. As a proof of concept, we reconstruct the dynamics of the tip/stalk cell switch during angiogenesis. Our results show that the spatiotemporal control provided by our "sequential photopatterning" system is essential for mimicking dynamic biological processes and that our innovative approach has great potential for further applications in cell science.
Collapse
Affiliation(s)
- Themistoklis Zisis
- Department
of Pharmacy, Center for Drug Research, Ludwig-Maximilians-University
Munich, Butenandtstraße 5, 81377 Munich, Germany
| | - Jan Schwarz
- Institute
of Science and Technology Austria (IST Austria), Am Campus 1, 3400 Klosterneuburg, Austria
- ibidi
GmbH, Am Klopferspitz
19, 82152 Martinsried, Germany
| | - Miriam Balles
- ibidi
GmbH, Am Klopferspitz
19, 82152 Martinsried, Germany
| | - Maibritt Kretschmer
- Department
of Pharmacy, Center for Drug Research, Ludwig-Maximilians-University
Munich, Butenandtstraße 5, 81377 Munich, Germany
| | - Maria Nemethova
- Institute
of Science and Technology Austria (IST Austria), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Remy Chait
- Institute
of Science and Technology Austria (IST Austria), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Robert Hauschild
- Institute
of Science and Technology Austria (IST Austria), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Janina Lange
- Faculty
of Physics and Center for NanoScience, Ludwig-Maximilians-University
Munich, Geschwister-Scholl-Platz 1, 80539 Munich, Germany
| | - Calin Guet
- Institute
of Science and Technology Austria (IST Austria), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Michael Sixt
- Institute
of Science and Technology Austria (IST Austria), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Stefan Zahler
- Department
of Pharmacy, Center for Drug Research, Ludwig-Maximilians-University
Munich, Butenandtstraße 5, 81377 Munich, Germany
| |
Collapse
|
46
|
Capota E, Wu H, Kohler JJ. Photocrosslinking O-GlcNAcylated Proteins to Neighboring Biomolecules. Curr Protoc 2021; 1:e201. [PMID: 34288588 DOI: 10.1002/cpz1.201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
This protocol enables identification of the interaction partners of O-GlcNAcylated proteins. The method involves the introduction of the diazirine photocrosslinker onto the O-GlcNAc modification within living cells. The photocrosslinker is activated by UV light to yield covalent crosslinking between O-GlcNAcylated proteins and neighboring molecules. The binding partners can be further characterized by immunoblot or proteomics mass spectrometry methods. The benefits of using the photocrosslinker include the capacity to trap low-affinity binding interactions and the ability to selectively target the interaction partners of the O-GlcNAcylated form of the protein of interest. © 2021 Wiley Periodicals LLC. Basic Protocol 1: In-cell production and crosslinking of O-GlcNDAzylated proteins Basic Protocol 2: Immunoblot analysis to assess O-GlcNDAz crosslinking Support Protocol: Detection of UDP-GlcNDAz from cell lysates.
Collapse
Affiliation(s)
- Emanuela Capota
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, Texas
| | - Han Wu
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, Texas
| | - Jennifer J Kohler
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
47
|
Li J, Guo S, Chai F, Sun Q, Li P, Gao L, Dai L, Ouyang X, Zhou Z, Zhou L, Cheng W, Qi S, Lu K, Ren H. Genetically incorporated crosslinkers reveal NleE attenuates host autophagy dependent on PSMD10. eLife 2021; 10:e69047. [PMID: 34254583 PMCID: PMC8324295 DOI: 10.7554/elife.69047] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/13/2021] [Indexed: 02/05/2023] Open
Abstract
Autophagy acts as a pivotal innate immune response against infection. Some virulence effectors subvert the host autophagic machinery to escape the surveillance of autophagy. The mechanism by which pathogens interact with host autophagy remains mostly unclear. However, traditional strategies often have difficulty identifying host proteins that interact with effectors due to the weak, dynamic, and transient nature of these interactions. Here, we found that Enteropathogenic Escherichia coli (EPEC) regulates autophagosome formation in host cells dependent on effector NleE. The 26S Proteasome Regulatory Subunit 10 (PSMD10) was identified as a direct interaction partner of NleE in living cells by employing genetically incorporated crosslinkers. Pairwise chemical crosslinking revealed that NleE interacts with the N-terminus of PSMD10. We demonstrated that PSMD10 homodimerization is necessary for its interaction with ATG7 and promotion of autophagy, but not necessary for PSMD10 interaction with ATG12. Therefore, NleE-mediated PSMD10 in monomeric state attenuates host autophagosome formation. Our study reveals the mechanism through which EPEC attenuates host autophagy activity.
Collapse
Affiliation(s)
- Jingxiang Li
- Division of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University and Collaborative Innovation Center of BiotherapyChengduChina
| | - Shupan Guo
- Division of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University and Collaborative Innovation Center of BiotherapyChengduChina
| | - Fangni Chai
- Division of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University and Collaborative Innovation Center of BiotherapyChengduChina
| | - Qi Sun
- Division of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University and Collaborative Innovation Center of BiotherapyChengduChina
| | - Pan Li
- Division of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University and Collaborative Innovation Center of BiotherapyChengduChina
| | - Li Gao
- Department of General Practice and National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, and Sichuan UniversityChengduChina
| | - Lunzhi Dai
- Department of General Practice and National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, and Sichuan UniversityChengduChina
| | - Xiaoxiao Ouyang
- Division of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University and Collaborative Innovation Center of BiotherapyChengduChina
| | - Zhihui Zhou
- Division of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University and Collaborative Innovation Center of BiotherapyChengduChina
| | - Li Zhou
- Division of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University and Collaborative Innovation Center of BiotherapyChengduChina
| | - Wei Cheng
- Division of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University and Collaborative Innovation Center of BiotherapyChengduChina
| | - Shiqian Qi
- Division of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University and Collaborative Innovation Center of BiotherapyChengduChina
| | - Kefeng Lu
- Division of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University and Collaborative Innovation Center of BiotherapyChengduChina
| | - Haiyan Ren
- Division of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University and Collaborative Innovation Center of BiotherapyChengduChina
| |
Collapse
|
48
|
Coan JP, Liu S, Gozani O. Chemical linguistics: Reading the modified proteome. Mol Cell 2021; 81:2501-2503. [PMID: 34143967 DOI: 10.1016/j.molcel.2021.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
In this issue of Molecular Cell, Lin et al. (2021) develop a tri-functional amino acid probe for the discovery and characterization of protein domains that sense or "read" protein post-translational modifications, a chemical tool that can facilitate our understanding of how signaling networks act at the molecular level.
Collapse
Affiliation(s)
- John P Coan
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Shuo Liu
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Or Gozani
- Department of Biology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
49
|
Abstract
Here, we describe a protocol for a photoaffinity labeling probe strategy for target deconvolution in live cells. We made a chemical probe by incorporation of a photoreactive group to covalently cross-link with adjacent amino acid residues upon UV irradiation. Click chemistry-based enrichment captures labeled proteins for proteomic analysis. Here, we detail specifics for finding targets of LXRβ, but the protocol has potential for application to other targets. For complete details on the use and execution of this protocol, please refer to Seneviratne et al. (2020). Protocol detailing photoaffinity probe strategy for target deconvolution in live cells Competition with parent compound demonstrates specific binding Photoaffinity label provides evidence of small-molecule binding to LXRβ Click chemistry-based enrichment captures labeled proteins for proteomic analysis
Collapse
|
50
|
Row RD, Nguyen SS, Ferreira AJ, Prescher JA. Chemically triggered crosslinking with bioorthogonal cyclopropenones. Chem Commun (Camb) 2021; 56:10883-10886. [PMID: 32808608 DOI: 10.1039/d0cc04600k] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
We report a proximity-driven crosslinking strategy featuring bioorthogonal cyclopropenones. These motifs react with phosphines to form electrophilic ketene-ylides. Such intermediates can be trapped by neighboring proteins to form covalent adducts. Successful crosslinking was achieved using a model split reporter, and the rate of crosslinking could be tuned using different phosphine triggers. We further demonstrated that the reaction can be performed in cell lysate. Based on these features, we anticipate that cyclopropenones will enable unique studies of protein-protein and other biomolecule interactions.
Collapse
Affiliation(s)
- R David Row
- Department of Chemistry, University of California, Irvine, California 92697, USA.
| | - Sean S Nguyen
- Department of Chemistry, University of California, Irvine, California 92697, USA.
| | - Andrew J Ferreira
- Department of Chemistry, University of California, Irvine, California 92697, USA.
| | - Jennifer A Prescher
- Department of Chemistry, University of California, Irvine, California 92697, USA. and Department of Molecular Biology & Biochemistry, University of California, Irvine, California 92697, USA and Department of Pharmaceutical Sciences, University of California, Irvine, California 92697, USA
| |
Collapse
|