1
|
Behera S, Mohapatra S, Behera BC, Thatoi H. Recent updates on green synthesis of lignin nanoparticle and its potential applications in modern biotechnology. Crit Rev Biotechnol 2024; 44:774-794. [PMID: 37455422 DOI: 10.1080/07388551.2023.2229512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/08/2023] [Indexed: 07/18/2023]
Abstract
Lignin is a complex of organic polymers that are abundantly present in the plant cell wall which considered of emerging substrates for various kinds of value-added industrial products. Lignin has potential use for the production of green nanomaterials, which exhibit improved or different properties corresponding to their parent polymers. Nano lignin has received significant interest in recent years due to its applications in numerous fields. Lignin, the abundant and limited functionality has challenges for its potential uses. Creating advanced functional lignin-derived material like lignin nanoparticles (LNPs) which significantly alter the biological process has great potential for its applications. In the fields of biotechnology, several lignin extraction processes from various raw materials and diverse synthesis techniques, including acid precipitation, dialysis, solvent shifting/solvent exchange, antisolvent precipitation, homogenization, water-in-oil (W/O) microemulsion, ultra-sonication, interfacial crosslinking, polymerization, and biological pathway can be employed to produce LNPs. The scientific community has recently become more concerned about the transformation of lignin to lignin nanomaterials, including nanoparticles, nanocapsules, nanofibers, nanotubes, and nanofilms. Recent research has shown that lignin nanoparticles (LNPs) are: non-toxic at adequate amounts (both in vitro and in vivo), are economical, and can be biodegradable by bacteria and fungi. In promising studies, LNPs have been investigated for their potential applications in gene delivery systems, drug carriers, biocatalysts, tissue engineering, heavy metal absorbers, encapsulation of molecules, supercapacitors, hybrid nanocomposites, and other applications. This current review addresses the recent advances in the synthesis of LNPs, their advanced application in different areas, future perspectives, and challenges associated with lignin-based nanomaterials.
Collapse
Affiliation(s)
- Sandesh Behera
- Department of Biotechnology, Maharaja Sriram Chandra Bhanja Deo University, Baripada, India
| | - Sonali Mohapatra
- Department of Biological Systems Engineering, Enzyme Institute, University of Wisconsin-Madison, Madison, WI, USA
| | - Bikash Chandra Behera
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, India
| | - Hrudayanath Thatoi
- Department of Biotechnology, Maharaja Sriram Chandra Bhanja Deo University, Baripada, India
| |
Collapse
|
2
|
Devu C, Sreelakshmi S, Chandana R, Sivanand P, Santhy A, Lakshmi KCS, Rejithamol R. Recent progress in tannin and lignin blended metal oxides and metal sulfides as smart materials for electrochemical sensor applications. ANAL SCI 2024; 40:981-996. [PMID: 38517582 DOI: 10.1007/s44211-024-00544-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/24/2024] [Indexed: 03/24/2024]
Abstract
Our technologically advanced civilization has made sensors an essential component. They have potential uses in the pharmaceutical sector, clinical analysis, food quality control, environmental monitoring, and other areas. One of the most active fields of analytical chemistry research is the fabrication of electrochemical sensors. An intriguing area of electroanalytical chemistry is the modification of electrodes using polymeric films. Due to their benefits, which include high adhesion to the electrode surface, chemical stability of the coating, superior selectivity, sensitivity, and homogeneity in electrochemical deposition, polymer-modified electrodes have attracted a great deal of interest in the electroanalytical sector. Conducting polymers are an important material for sensing devices because of their fascinating features, which include high mechanical flexibility, electrical conductivity, and the capacity to be electrochemically converted between electronically insulating and conducting states. Tannin or lignin nanomaterials can be an inter-linker leading to flexible and functional polymeric networks. There is a continuing demand for fast and simple analytical methods for the determination of many clinically important biomarkers, food additives, environmental pollutants etc. This review in a comprehensive way summarizes and discusses the various metal oxide and sulfide-incorporated tannin and lignin scaffolds using electrochemical sensing and biosensing.
Collapse
Affiliation(s)
- C Devu
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, 690525, India
| | - S Sreelakshmi
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, 690525, India
| | - R Chandana
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, 690525, India
| | - P Sivanand
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, 690525, India
| | - A Santhy
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, 690525, India
| | - K C Seetha Lakshmi
- Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba-shi, 2638522, Japan
| | - R Rejithamol
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, 690525, India.
| |
Collapse
|
3
|
Vasile C, Baican M. Lignins as Promising Renewable Biopolymers and Bioactive Compounds for High-Performance Materials. Polymers (Basel) 2023; 15:3177. [PMID: 37571069 PMCID: PMC10420922 DOI: 10.3390/polym15153177] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/16/2023] [Accepted: 07/17/2023] [Indexed: 08/13/2023] Open
Abstract
The recycling of biomass into high-value-added materials requires important developments in research and technology to create a sustainable circular economy. Lignin, as a component of biomass, is a multipurpose aromatic polymer with a significant potential to be used as a renewable bioresource in many fields in which it acts both as promising biopolymer and bioactive compound. This comprehensive review gives brief insights into the recent research and technological trends on the potential of lignin development and utilization. It is divided into ten main sections, starting with an outlook on its diversity; main properties and possibilities to be used as a raw material for fuels, aromatic chemicals, plastics, or thermoset substitutes; and new developments in the use of lignin as a bioactive compound and in nanoparticles, hydrogels, 3D-printing-based lignin biomaterials, new sustainable biomaterials, and energy production and storage. In each section are presented recent developments in the preparation of lignin-based biomaterials, especially the green approaches to obtaining nanoparticles, hydrogels, and multifunctional materials as blends and bio(nano)composites; most suitable lignin type for each category of the envisaged products; main properties of the obtained lignin-based materials, etc. Different application categories of lignin within various sectors, which could provide completely sustainable energy conversion, such as in agriculture and environment protection, food packaging, biomedicine, and cosmetics, are also described. The medical and therapeutic potential of lignin-derived materials is evidenced in applications such as antimicrobial, antiviral, and antitumor agents; carriers for drug delivery systems with controlled/targeting drug release; tissue engineering and wound healing; and coatings, natural sunscreen, and surfactants. Lignin is mainly used for fuel, and, recently, studies highlighted more sustainable bioenergy production technologies, such as the supercapacitor electrode, photocatalysts, and photovoltaics.
Collapse
Affiliation(s)
- Cornelia Vasile
- Romanian Academy, “P. Poni” Institute of Macromolecular Chemistry, Physical Chemistry of Polymers Department 41A Grigore Ghica Voda Alley, RO700487 Iaşi, Romania
| | - Mihaela Baican
- “Grigore T. Popa” Medicine and Pharmacy University, Faculty of Pharmacy, Pharmaceutical Sciences I Department, Laboratory of Pharmaceutical Physics, 16 University Street, RO700115 Iaşi, Romania;
| |
Collapse
|
4
|
Moreno A, Pylypchuk I, Okahisa Y, Sipponen MH. Urushi as a Green Component for Thermally Curable Colloidal Lignin Particles and Hydrophobic Coatings. ACS Macro Lett 2023; 12:759-766. [PMID: 37212611 PMCID: PMC10286546 DOI: 10.1021/acsmacrolett.3c00186] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/18/2023] [Indexed: 05/23/2023]
Abstract
Colloidal lignin nanoparticles are promising building blocks for sustainable functional materials. However, their instability in organic solvents and aqueous alkali limits their applicability. Current stabilization methods require nonrenewable and toxic reagents or tedious workup procedures. Here we show a method to prepare hybrid nanoparticles using only natural components. Urushi, a form of black oriental lacquer, and lignin are coaggregated to form hybrid particles, with Urushi acting as a sustainable component that stabilizes the particles via hydration barrier effect and thermally triggered internal cross-linking. The weight fractions of the two components can be adjusted to achieve the desired level of stabilization. Hybrid particles with Urushi content >25 wt % undergo interparticle cross-linking that produces multifunctional hydrophobic protective coatings that improve the water resistance of wood. This approach provides a sustainable and efficient method for stabilizing lignin nanoparticles and opens up neoteric possibilities for the development of lignin-based advanced functional materials.
Collapse
Affiliation(s)
- Adrian Moreno
- Department
of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16C, SE-106
91 Stockholm, Sweden
- Laboratory
of Sustainable Polymers, Department of Analytical Chemistry and Organic
Chemistry, Rovira i Virgili University, Tarragona 43007, Spain
| | - Ievgen Pylypchuk
- Department
of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16C, SE-106
91 Stockholm, Sweden
| | - Yoko Okahisa
- Faculty
of Fiber Science and Engineering, Kyoto
Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Mika H. Sipponen
- Department
of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16C, SE-106
91 Stockholm, Sweden
- Wallenberg
Wood Science Center, Department of Materials and Environmental Chemistry, Stockholm University, SE-10691 Stockholm, Sweden
| |
Collapse
|
5
|
Chen Y, Nozdriukhin D, Michel-Souzy S, Padberg C, Wurm FR, Razansky D, Deán-Ben XL, Koshkina O. Biobased Agents for Single-Particle Detection with Optoacoustics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2207199. [PMID: 37021720 DOI: 10.1002/smll.202207199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 02/28/2023] [Indexed: 06/19/2023]
Abstract
Optoacoustic (OA, photoacoustic) imaging synergistically combines rich optical contrast with the resolution of ultrasound within light-scattering biological tissues. Contrast agents have become essential to boost deep-tissue OA sensitivity and fully exploit the capabilities of state-of-the-art OA imaging systems, thus facilitating the clinical translation of this modality. Inorganic particles with sizes of several microns can also be individually localized and tracked, thus enabling new applications in drug delivery, microrobotics, or super-resolution imaging. However, significant concerns have been raised regarding the low bio-degradability and potential toxic effects of inorganic particles. Bio-based, biodegradable nano- and microcapsules consisting of an aqueous core with clinically-approved indocyanine green (ICG) and a cross-linked casein shell obtained in an inverse emulsion approach are introduced. The feasibility to provide contrast-enhanced in vivo OA imaging with nanocapsules as well as localizing and tracking individual larger microcapsules of 4-5 µm is demonstrated. All components of the developed capsules are safe for human use and the inverse emulsion approach is known to be compatible with a variety of shell materials and payloads. Hence, the enhanced OA imaging performance can be exploited in multiple biomedical studies and can open a route to clinical approval of agents detectable at a single-particle level.
Collapse
Affiliation(s)
- Yunbo Chen
- Sustainable Polymer Chemistry, Department of Molecules and Materials, Mesa+ Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, Drienerlolaan 5, Enschede, 7522NB, The Netherlands
- Key Lab of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, P. R. China
| | - Daniil Nozdriukhin
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zürich, Winterturenstraße 190, Zürich, 8057, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zürich, Wolfgang-Pauli-Str. 27, Zürich, 8093, Switzerland
| | - Sandra Michel-Souzy
- Biomolecular Nanotechnology, Department of Molecules and Materials, Mesa+ Institute for Nanotechnology, Faculty of Science and Technology University of Twente, Drienerlolaan 5, Enschede, 7522NB, The Netherlands
| | - Clemens Padberg
- Sustainable Polymer Chemistry, Department of Molecules and Materials, Mesa+ Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, Drienerlolaan 5, Enschede, 7522NB, The Netherlands
| | - Frederik R Wurm
- Sustainable Polymer Chemistry, Department of Molecules and Materials, Mesa+ Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, Drienerlolaan 5, Enschede, 7522NB, The Netherlands
| | - Daniel Razansky
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zürich, Winterturenstraße 190, Zürich, 8057, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zürich, Wolfgang-Pauli-Str. 27, Zürich, 8093, Switzerland
| | - Xosé Luís Deán-Ben
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zürich, Winterturenstraße 190, Zürich, 8057, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zürich, Wolfgang-Pauli-Str. 27, Zürich, 8093, Switzerland
| | - Olga Koshkina
- Sustainable Polymer Chemistry, Department of Molecules and Materials, Mesa+ Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, Drienerlolaan 5, Enschede, 7522NB, The Netherlands
| |
Collapse
|
6
|
Moreira WM, Moreira PVV, Dos Santos DF, Gimenes ML, Vieira MGA. Nanogreen is the new future: the conversion of lignin and lignocellulosic wastes into nanomaterials. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:19564-19591. [PMID: 36645595 DOI: 10.1007/s11356-023-25150-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
The lignocellulose biorefinery industry has assumed an important role within the current scenario. Lignin is an abundant and available biopolymer and one of the compounds present in the lignocellulosic waste. Therefore, processing lignin into new materials and nanomaterials, such as nanolignin, has attracted the attention of the scientific community. Lignin nanoparticles are materials that have excellent properties, such as biodegradability and non-toxicity, and have great potential as chelating agents, antimicrobials agents, UV protectors, nanofillers, adsorbents, catalysts, supercapacitors, emulsion stabilizers, delivered systems, drugs, and gene carriers. This review article covers the emergent scenario of nanolignin and the main aspects of scientific interest, such as the conversion and functionalization of lignin, the valorization of lignocellulose waste, and nanoparticle synthesis. A techno-economic evaluation of the biorefinery model of the nanolignin synthesis is presented based on the simulation of the process on the experimental and commercial databases available and reported by some authors. Finally, the techno-economic assessment is complemented by the life cycle assessment of various nanolignin synthesis pathways reported to evaluate the environmental implications and support this emergent technology development.
Collapse
Affiliation(s)
- Wardleison Martins Moreira
- School of Chemical Engineering, University of Campinas, Albert Einstein Avenue, Campinas, São Paulo, 50013083-852, Brazil.
- Department of Chemical Engineering, PEQ, State University of Maringá, Avenida Colombo, Maringá, Paraná, 579087020-900, Brazil.
| | - Paula Valéria Viotti Moreira
- Department of Chemical Engineering, PEQ, State University of Maringá, Avenida Colombo, Maringá, Paraná, 579087020-900, Brazil
| | - Débora Federici Dos Santos
- Department of Chemical Engineering, PEQ, State University of Maringá, Avenida Colombo, Maringá, Paraná, 579087020-900, Brazil
| | - Marcelino Luiz Gimenes
- Department of Chemical Engineering, PEQ, State University of Maringá, Avenida Colombo, Maringá, Paraná, 579087020-900, Brazil
| | - Melissa Gurgel Adeodato Vieira
- School of Chemical Engineering, University of Campinas, Albert Einstein Avenue, Campinas, São Paulo, 50013083-852, Brazil
| |
Collapse
|
7
|
Zhang DX, Wang R, Ren C, Wang Y, Li BX, Mu W, Liu F, Hou Y. One-Step Construct Responsive Lignin/Polysaccharide/Fe Nano Loading System Driven by Digestive Enzymes of Lepidopteran for Precise Delivery of Pesticides. ACS APPLIED MATERIALS & INTERFACES 2022; 14:41337-41347. [PMID: 36053529 DOI: 10.1021/acsami.2c10899] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A strategy that relies on the differences in feeding behavior between pests and natural enemies to deliver insecticides precisely was proposed. After proving that the digestive enzymes in Lepidopteran pests can act as triggers for lignin-based controlled-release carriers, a novel multiple-enzyme-responsive lignin/polysaccharide/Fe nanocarrier was constructed by combining the electrostatic self-assembly and chelation and loaded with lambda-cyhalothrin (LC) to form a nanocapsule suspension loading system. The nanocapsules were LC@sodium lignosulfonate/chitosan/Fe (LC@SL/CS/Fe) and LC@sodium lignosulfonate/alkyl polyglycoside quaternary ammonium salt/Fe (LC@SL/APQAS/Fe). LC@SL/APQAS/Fe was more stable than LC@SL/CS/Fe because it adsorbs more Fe3+, and the half-lives of LC in LC@SL/APQAS/Fe under UV irradiation were prolonged at 4.02- and 6.03-folds than those of LC@SL/CS/Fe and LC emulsifiable concentrate (LC EC), respectively. Both LC@SL/APQAS/Fe and LC@SL/CS/Fe have responsive release functions to laccase and cellulase, and the release rate of the former was slower. The insecticidal activity of LC@SL/APQAS/Fe against Agrotis ipsilonis was similar to those of LC@SL/CS/Fe and LC EC, while the toxicity of LC@SL/APQAS/Fe to the natural enemy was 2-3 times less than those of LC@SL/CS/Fe and LC EC. Meanwhile, the organic solvent component in the nanocapsule suspension was 94% less than that in the EC preparation. Therefore, the nano loading system based on SL/APQAS/Fe is a promising nanoplatform with the advantages of high efficiency, low toxicity, and environmental friendliness.
Collapse
Affiliation(s)
- Da-Xia Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Key Lab of Biopesticide and Chemical Biology, Ministry of Education & Fujian Province Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, P. R. China
- College of Plant Protection, Key Laboratory of Pesticide Toxicology & Application Technique, Shandong Agricultural University, Tai'an, Shandong 271018, P. R. China
| | - Rui Wang
- College of Plant Protection, Key Laboratory of Pesticide Toxicology & Application Technique, Shandong Agricultural University, Tai'an, Shandong 271018, P. R. China
| | - Chuangling Ren
- College of Plant Protection, Key Laboratory of Pesticide Toxicology & Application Technique, Shandong Agricultural University, Tai'an, Shandong 271018, P. R. China
| | - Yaru Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Key Lab of Biopesticide and Chemical Biology, Ministry of Education & Fujian Province Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, P. R. China
| | - Bei-Xing Li
- College of Plant Protection, Key Laboratory of Pesticide Toxicology & Application Technique, Shandong Agricultural University, Tai'an, Shandong 271018, P. R. China
| | - Wei Mu
- College of Plant Protection, Key Laboratory of Pesticide Toxicology & Application Technique, Shandong Agricultural University, Tai'an, Shandong 271018, P. R. China
| | - Feng Liu
- College of Plant Protection, Key Laboratory of Pesticide Toxicology & Application Technique, Shandong Agricultural University, Tai'an, Shandong 271018, P. R. China
| | - Youming Hou
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Key Lab of Biopesticide and Chemical Biology, Ministry of Education & Fujian Province Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, P. R. China
| |
Collapse
|
8
|
Li R, Huang D, Chen S, Lei L, Chen Y, Tao J, Zhou W, Wang G. From residue to resource: new insights into the synthesis of functionalized lignin micro/nanospheres by self-assembly technology for waste resource utilization. NANOSCALE 2022; 14:10299-10320. [PMID: 35834293 DOI: 10.1039/d2nr01350a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Among the most abundant biopolymers in the biosphere, lignin is a renewable aromatic compound that represents an untapped opportunity to create new biological products. However, the complex interlacing structures of cellulose, hemicellulose and lignin, as well as the unique properties of lignin, limit the utilization of value-added lignin. Lignin-based nanomaterials open the door for lignin applications in environmental pollutant remediation, biofuel production, biomedicine, and other fields. Herein, we present various factors influencing the formation of micro-nanospheres by self-assembly techniques through a review of previous literature, and emphasize the simple and green synthesis of lignin micro/nanospheres (LMNPs) under non-modified conditions. More importantly, we discuss the mechanism of the formation of nanospheres. Considering the heterogeneity of lignin and the polarity of different solvents, we propose that self-assembly techniques should focus more on the influence brought by lignin itself or the solvent, so that the external conditions can be controlled to prepare LMNPs, which can be used in specific fields. A brief overview of the contribution of lignin-based nanomaterials in various fields is also presented. This review could provide insight for the development of lignin-based nanomaterials.
Collapse
Affiliation(s)
- Ruijin Li
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China.
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Danlian Huang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China.
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Sha Chen
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China.
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Lei Lei
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China.
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Yashi Chen
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China.
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Jiaxi Tao
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China.
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Wei Zhou
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China.
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Guangfu Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China.
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
9
|
Extraction of lignin from corncob residue via a deep eutectic solvent for the preparation of nanoparticles by self-assembly. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.117694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Liu K, Zhuang Y, Chen J, Yang G, Dai L. Research Progress on the Preparation and High-Value Utilization of Lignin Nanoparticles. Int J Mol Sci 2022; 23:7254. [PMID: 35806259 PMCID: PMC9266533 DOI: 10.3390/ijms23137254] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/28/2022] [Accepted: 06/28/2022] [Indexed: 02/01/2023] Open
Abstract
Lignin nanoparticles, the innovative achievements in the development and utilization of lignin, combine the structural characteristics of nanomaterials and lignin molecules and have a wide range of applications. In this review, we summarize the methods for preparing lignin nanoparticles by solvent exchange method, mechanical method, biological enzymatic method, interface polymerization/crosslinking method, and spray freezing method, and emphatically introduce the application prospects of lignin nanoparticles in ultraviolet protection, antibacterial, nano-filler, drug delivery, and adsorption, aiming to provide a certain reference direction for additional high-value applications of lignin nanoparticles.
Collapse
Affiliation(s)
- Kefeng Liu
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China;
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (Y.Z.); (J.C.)
| | - Yuntang Zhuang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (Y.Z.); (J.C.)
| | - Jiachuan Chen
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (Y.Z.); (J.C.)
| | - Guihua Yang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (Y.Z.); (J.C.)
| | - Lin Dai
- College of Light Industry and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| |
Collapse
|
11
|
Athinarayanan J, Periasamy VS, Alshatwi AA. Unveiling the Biocompatible Properties of Date Palm Tree ( Phoenix dactylifera L.) Biomass-Derived Lignin Nanoparticles. ACS OMEGA 2022; 7:19270-19279. [PMID: 35721957 PMCID: PMC9202292 DOI: 10.1021/acsomega.2c00753] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 04/29/2022] [Indexed: 06/15/2023]
Abstract
Searching for sustainable, ecofriendly, and renewable precursors for nanostructured material synthesis is a fascinating area pertaining to feasibility in various applications. Especially, lignin-based material preparation is essential for unraveling the usage of lignin by valorization. Hence, we have synthesized lignin nanoparticles (LNPs) using date palm tree (Phoenix dactylifera L.) biomass as a precursor in this investigation. The LNP's morphological and thermal features were assessed. Moreover, we have evaluated the LNP's cytocompatibility properties by adopting in vitro approach. The P. dactylifera L. (PD) biomass-derived LNP's morphological features show a spherical shape with a 10-100 nm diameter. The LNPs have a decreased cell viability of ∼8% at a high concentration exposure to human mesenchymal stem cells (hMSCs) for 48 h. However, the LNPs do not cause any cellular and nuclear morphology changes in hMSCs. The mitochondrial membrane potential assessment results confirm healthy mitochondria with high mitochondrial membrane potential in LNP-treated cells. The intracellular reactive oxygen species (ROS) generation assay results revealed that LNPs do not trigger ROS generation in hMSCs. We examined the upregulation of GSTM3 and GSR genes and the downregulation of SOD1 genes in LNP-treated hMSCs, but no significant changes were observed. Our study concluded that PD biomass-derived LNPs have a good cytocompatibility and an antioxidant property. Thus, they can be applicable for various biological, cosmetic, and environmental applications.
Collapse
Affiliation(s)
- Jegan Athinarayanan
- Nanobiotechnology and Molecular
Biology
Research Laboratory, Department of Food Science and Nutrition, College
of Food Science and Agriculture, King Saud
University, Riyadh 11451, Saudi Arabia
| | - Vaiyapuri Subbarayan Periasamy
- Nanobiotechnology and Molecular
Biology
Research Laboratory, Department of Food Science and Nutrition, College
of Food Science and Agriculture, King Saud
University, Riyadh 11451, Saudi Arabia
| | - Ali A. Alshatwi
- Nanobiotechnology and Molecular
Biology
Research Laboratory, Department of Food Science and Nutrition, College
of Food Science and Agriculture, King Saud
University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
12
|
Li R, Huang D, Chen S, Lei L, Chen Y, Tao J, Zhou W, Wang G. Insight into the self-assembly process of bamboo lignin purified by solvent fractionation to form uniform nanospheres with excellent UV resistance. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128652] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
13
|
Hussin MH, Appaturi JN, Poh NE, Latif NHA, Brosse N, Ziegler-Devin I, Vahabi H, Syamani FA, Fatriasari W, Solihat NN, Karimah A, Iswanto AH, Sekeri SH, Ibrahim MNM. A recent advancement on preparation, characterization and application of nanolignin. Int J Biol Macromol 2022; 200:303-326. [PMID: 34999045 DOI: 10.1016/j.ijbiomac.2022.01.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/23/2021] [Accepted: 01/01/2022] [Indexed: 12/24/2022]
Abstract
Each year, 50 to 70 million tonnes of lignin are produced worldwide as by-products from pulp industries and biorefineries through numerous processes. Nevertheless, about 98% of lignin is directly burnt to produce steam to generate energy for the pulp mills and only a handful of isolated lignin is used as a raw material for the chemical conversion and for the preparation of various substances as well as modification of lignin into nanomaterials. Thus, thanks to its complex structure, the conversion of lignin to nanolignin, attracting growing attention and generating considerable interest in the scientific community. The objective of this review is to provide a complete understanding and knowledge of the synthesis methods and functionalization of various lignin nanoparticles (LNP). The characterization of LNP such as structural, thermal, molecular weight properties together with macromolecule and quantification assessments are also reviewed. In particular, emerging applications in different areas such as UV barriers, antimicrobials, drug administration, agriculture, anticorrosives, the environment, wood protection, enzymatic immobilization and others were highlighted. In addition, future perspectives and challenges related to the development of LNP are discussed.
Collapse
Affiliation(s)
- M Hazwan Hussin
- Materials Technology Research Group (MaTReC), School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia.
| | - Jimmy Nelson Appaturi
- Materials Technology Research Group (MaTReC), School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| | - Ng Eng Poh
- Materials Technology Research Group (MaTReC), School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| | - Nur Hanis Abd Latif
- Materials Technology Research Group (MaTReC), School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| | - Nicolas Brosse
- Laboratoire d'Etude et de Recherche sur le MAteriau Bois (LERMAB), Faculte des Sciences et Technologies, Universite de Lorraine, Vandoeuvre-les-Nancy, France
| | - Isabelle Ziegler-Devin
- Laboratoire d'Etude et de Recherche sur le MAteriau Bois (LERMAB), Faculte des Sciences et Technologies, Universite de Lorraine, Vandoeuvre-les-Nancy, France
| | - Henri Vahabi
- Université de Lorraine, CentraleSupélec, LMOPS, F-57000, Metz, France
| | - Firda Aulya Syamani
- Research Center for Biomaterial, National Research and Innovation Agency, Bogor 16911, Indonesia
| | - Widya Fatriasari
- Research Center for Biomaterial, National Research and Innovation Agency, Bogor 16911, Indonesia
| | - Nissa Nurfajrin Solihat
- Research Center for Biomaterial, National Research and Innovation Agency, Bogor 16911, Indonesia
| | - Azizatul Karimah
- Research Center for Biomaterial, National Research and Innovation Agency, Bogor 16911, Indonesia
| | - Apri Heri Iswanto
- Department of Forest Product, Faculty of Forestry, Universitas Sumatera Utara, Medan 20155, Indonesia; JATI-Sumatran Forestry Analysis Study Center, Jl. Tridharma Ujung No. 1, Kampus USU, Medan 20155, North Sumatera, Indonesia
| | - Siti Hajar Sekeri
- Materials Technology Research Group (MaTReC), School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| | - Mohamad Nasir Mohamad Ibrahim
- Materials Technology Research Group (MaTReC), School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| |
Collapse
|
14
|
Tran NT, Nguyen TTT, Ha D, Nguyen TH, Nguyen NN, Baek K, Nguyen NT, Tran CK, Tran TTV, Le HV, Nguyen DM, Hoang D. Highly Functional Materials Based on Nano-Lignin, Lignin, and Lignin/Silica Hybrid Capped Silver Nanoparticles with Antibacterial Activities. Biomacromolecules 2021; 22:5327-5338. [PMID: 34807571 DOI: 10.1021/acs.biomac.1c01250] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Rice husk is one of the most abundant biomass resources in the world, yet it is not effectively used. This study focuses on the sustainably rice-husk-extracted lignin, nano-lignin (n-Lignin), lignin-capped silver nanoparticles (LCSN), n-Lignin-capped silver nanoparticles (n-LCSN), and lignin-capped silica-silver nanoparticles (LCSSN), and using them for antibacterial activities. The final n-Lignin-based products had a sphere-like structure, of which the size varied between 50 and 80 nm. We found that while n-Lignin and lignin were less effective against Escherichia coli than against Staphylococcus aureus, n-Lignin/lignin-based hybrid materials, i.e., n-LCSN, LCSN, and LCSSN, were better against E. coli than against S. aureus. Interestingly, the antimicrobial behaviors of n-LCSNs could be further improved by decreasing the size of n-Lignin. Considering the facile, sustainable, and eco-friendly method that we have developed here, it is promising to use n-Lignin/lignin-based materials as highly efficient antimicrobials without environmental concerns.
Collapse
Affiliation(s)
- Nhat Thong Tran
- University of Science, Vietnam National University, Ho Chi Minh City 700000, Vietnam.,Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Trang Thi Thu Nguyen
- University of Science, Vietnam National University, Ho Chi Minh City 700000, Vietnam.,Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Dat Ha
- University of Science, Vietnam National University, Ho Chi Minh City 700000, Vietnam.,Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Thu Hien Nguyen
- University of Science, Vietnam National University, Ho Chi Minh City 700000, Vietnam.,Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Nguyen Ngan Nguyen
- University of Science, Vietnam National University, Ho Chi Minh City 700000, Vietnam.,Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Kangkyun Baek
- Center for Self-assembly and Complexity, Institute for Basic Science, Pohang 37673, Korea
| | - Ngoc Thuy Nguyen
- University of Science, Vietnam National University, Ho Chi Minh City 700000, Vietnam.,Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Cong Khanh Tran
- University of Science, Vietnam National University, Ho Chi Minh City 700000, Vietnam.,Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Thi Thanh Van Tran
- University of Science, Vietnam National University, Ho Chi Minh City 700000, Vietnam.,Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Hieu Van Le
- University of Science, Vietnam National University, Ho Chi Minh City 700000, Vietnam.,Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Dang Mao Nguyen
- University of Science, Vietnam National University, Ho Chi Minh City 700000, Vietnam.,Laboratoire Innovation Matériau Bois Habitat Apprentissage (LIMBHA), Ecole Supérieure du Bois, 7 Rue Christian Pauc, 44306 Nantes, France
| | - DongQuy Hoang
- University of Science, Vietnam National University, Ho Chi Minh City 700000, Vietnam.,Vietnam National University, Ho Chi Minh City 700000, Vietnam
| |
Collapse
|
15
|
Synergistic effect of lignin and ethylene glycol crosslinked epoxy resin on enhancing thermal, mechanical and shape memory performance. Int J Biol Macromol 2021; 192:516-524. [PMID: 34653437 DOI: 10.1016/j.ijbiomac.2021.10.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/30/2021] [Accepted: 10/06/2021] [Indexed: 11/21/2022]
Abstract
Lignosulfonate (LS) was successfully introduced into the epoxy resin matrix with the aid of ethylene glycol (EG) dissolution. Both the rigid LS and soft EG segments were linked into the cross-linked network structure of epoxy resin via esterification of hydroxyl groups in LS and EG molecules with anhydride. The ultimate properties of cured samples were adjusted effectively by changing the proportion of LS and EG components. Curing reaction and kinetics were analyzed, by which the optimal curing process parameters were determined. Although thermal stability of LS itself was relatively lower than that of neat epoxy, the thermal performance was significantly enhanced for the modified sample of epoxy/LS0.5-EG0.5. At the same time, the flexural strength, flexural modulus and impact strength were found to be increased by 23.1, 35.7 and 15.1% respectively compared with the neat epoxy. In addition, the excellent shape memory behavior and improved mechanical stability with LS addition were exhibited by the cured LS-EG modified specimens. This work reveals that lignin can be used as an efficient functional additive to regulate thermal, mechanical and shape memory properties of epoxy resin.
Collapse
|
16
|
Zhang DX, Wang R, Cao H, Luo J, Jing TF, Li BX, Mu W, Liu F, Hou Y. Emamectin benzoate nanogel suspension constructed from poly(vinyl alcohol)-valine derivatives and lignosulfonate enhanced insecticidal efficacy. Colloids Surf B Biointerfaces 2021; 209:112166. [PMID: 34739877 DOI: 10.1016/j.colsurfb.2021.112166] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 10/13/2021] [Accepted: 10/16/2021] [Indexed: 12/29/2022]
Abstract
To reduce the negative impact of nanopesticide carriers of on the environment, a greener nanodelivery system is necessary. Nanogels are nontoxic and degradable carriers, however, the potential of nanogels for delivering pesticides has not been proven. In this study, poly(vinyl alcohol)-valine, an ecofriendly polymer, was synthesized and used to fabricate emamectin benzoate nanogel suspension (EB NS). The nanoformulation showed favorable stability at low temperature, high temperature or one year storage, and in water with different hardnesses. The retention of the EB NS solution on leaves was higher than that of an EB emulsifiable concentrate (EC) by approximately 9% at a concentration of 10 mg L-1. The half-life of EB nanogels under Ultra Violet irradiation was prolonged by 3.3-fold. Moreover, the bioactivity of the EB NS against Plutella xylostella was higher than that of the EB EC. These advantages resulted in a relatively long duration of pest control. The response of nanogels to laccase, a digestive enzyme in the digestive tract of lepidopteran pests, enables pesticide release on demand. Nanogels have the advantages of being ecofriendly carriers, exhibiting higher utilization, and prolonged pest control periods, and they have a brilliant future in pesticide delivery.
Collapse
Affiliation(s)
- Da-Xia Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Lab of Biopesticide and Chemical Biology, Ministry of Education & Fujian Province Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Rui Wang
- College of Plant Protection, Key Laboratory of Pesticide Toxicology & Application Technique, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Haichao Cao
- College of Plant Protection, Key Laboratory of Pesticide Toxicology & Application Technique, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Jian Luo
- College of Plant Protection, Key Laboratory of Pesticide Toxicology & Application Technique, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Tong-Fang Jing
- College of Plant Protection, Key Laboratory of Pesticide Toxicology & Application Technique, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Bei-Xing Li
- College of Plant Protection, Key Laboratory of Pesticide Toxicology & Application Technique, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Wei Mu
- College of Plant Protection, Key Laboratory of Pesticide Toxicology & Application Technique, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Feng Liu
- College of Plant Protection, Key Laboratory of Pesticide Toxicology & Application Technique, Shandong Agricultural University, Tai'an, Shandong 271018, PR China.
| | - Youming Hou
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Lab of Biopesticide and Chemical Biology, Ministry of Education & Fujian Province Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China.
| |
Collapse
|
17
|
Beckers SJ, Staal AHJ, Rosenauer C, Srinivas M, Landfester K, Wurm FR. Targeted Drug Delivery for Sustainable Crop Protection: Transport and Stability of Polymeric Nanocarriers in Plants. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100067. [PMID: 34105269 PMCID: PMC8188206 DOI: 10.1002/advs.202100067] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/11/2021] [Indexed: 05/07/2023]
Abstract
Spraying of agrochemicals (pesticides, fertilizers) causes environmental pollution on a million-ton scale. A sustainable alternative is target-specific, on-demand drug delivery by polymeric nanocarriers. Trunk injections of aqueous nanocarrier dispersions can overcome the biological size barriers of roots and leaves and allow distributing the nanocarriers through the plant. To date, the fate of polymeric nanocarriers inside a plant is widely unknown. Here, the in planta conditions in grapevine plants are simulated and the colloidal stability of a systematic series of nanocarriers composed of polystyrene (well-defined model) and biodegradable lignin and polylactic-co-glycolic acid by a combination of different techniques is studied. Despite the adsorption of carbohydrates and other biomolecules onto the nanocarriers' surface, they remain colloidally stable after incubation in biological fluids (wood sap), suggesting a potential transport via the xylem. The transport is tracked by fluorine- and ruthenium-labeled nanocarriers inside of grapevines by 19 F-magnetic resonance imaging or induced coupled plasma - optical emission spectroscopy. Both methods show that the nanocarriers are transported inside of the plant and proved to be powerful tools to localize nanomaterials in plants. This study provides essential information to design nanocarriers for agrochemical delivery in plants to sustainable crop protection.
Collapse
Affiliation(s)
| | - Alexander H. J. Staal
- Department of Tumor ImmunologyRadboud Institute for Molecular Life SciencesRadboud University Medical CenterGeert Grooteplein 26/28Nijmegen6525GAThe Netherlands
| | | | - Mangala Srinivas
- Department of Tumor ImmunologyRadboud Institute for Molecular Life SciencesRadboud University Medical CenterGeert Grooteplein 26/28Nijmegen6525GAThe Netherlands
- Cenya Imaging BVTweede Kostverlorlenkade 11hAmsterdam1052RKThe Netherlands
| | | | - Frederik R. Wurm
- Max‐Planck‐Institut für PolymerforschungAckermannweg 10Mainz55128Germany
- Sustainable Polymer Chemistry GroupMESA+ Institute for NanotechnologyFaculty of Science and TechnologyUniversiteit TwentePO Box 217Enschede7500AEThe Netherlands
| |
Collapse
|
18
|
Qi F, Chaoqun Z, Weijun Y, Qingwen W, Rongxian O. Lignin-based polymers. PHYSICAL SCIENCES REVIEWS 2021. [DOI: 10.1515/psr-2020-0066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
On the basis of the world’s continuing consumption of raw materials, there was an urgent need to seek sustainable resources. Lignin, the second naturally abundant biomass, accounts for 15–35% of the cell walls of terrestrial plants and is considered waste for low-cost applications such as thermal and electricity generation. The impressive characteristics of lignin, such as its high abundance, low density, biodegradability, antioxidation, antibacterial capability, and its CO2 neutrality and enhancement, render it an ideal candidate for developing new polymer/composite materials. In past decades, considerable works have been conducted to effectively utilize waste lignin as a component in polymer matrices for the production of high-performance lignin-based polymers. This chapter is intended to provide an overview of the recent advances and challenges involving lignin-based polymers utilizing lignin macromonomer and its derived monolignols. These lignin-based polymers include phenol resins, polyurethane resins, polyester resins, epoxy resins, etc. The structural characteristics and functions of lignin-based polymers are discussed in each section. In addition, we also try to divide various lignin reinforced polymer composites into different polymer matrices, which can be separated into thermoplastics, rubber, and thermosets composites. This chapter is expected to increase the interest of researchers worldwide in lignin-based polymers and develop new ideas in this field.
Collapse
Affiliation(s)
- Fan Qi
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University , Guangzhou , 510642 , P. R. China
- Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology , Guangzhou , P. R. China
| | - Zhang Chaoqun
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University , Guangzhou , 510642 , P. R. China
- Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology , Guangzhou , P. R. China
| | - Yang Weijun
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University , 214122 Wuxi , P. R. China
| | - Wang Qingwen
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University , Guangzhou , 510642 , P. R. China
- Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology , Guangzhou , P. R. China
| | - Ou Rongxian
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University , Guangzhou , 510642 , P. R. China
- Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology , Guangzhou , P. R. China
| |
Collapse
|
19
|
Self-Assembly Preparation of Nano-Lignin/Cationic Polyacrylamide Complexes. Polymers (Basel) 2021; 13:polym13111726. [PMID: 34070262 PMCID: PMC8197304 DOI: 10.3390/polym13111726] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/08/2021] [Accepted: 05/10/2021] [Indexed: 11/17/2022] Open
Abstract
The present work describes the preparation of nano-lignin particles from calcium lignosulfonate (CL). The nano-lignin was fabricated from colloidal lignin-polyacrylamide complexes via self-assembly. The sizes of the nano-lignin particles were examined by dynamic light scattering (DLS) and scanning electron microscopy (SEM). The results indicated that the average particle size of the prepared nano-lignin was approximately 100 nm. In addition, the obtained nano-lignin exhibited enhanced fluorescence intensity when compared with the original lignin, which might represent a potential application of this nano-particle product.
Collapse
|
20
|
Zhang Z, Terrasson V, Guénin E. Lignin Nanoparticles and Their Nanocomposites. NANOMATERIALS 2021; 11:nano11051336. [PMID: 34069477 PMCID: PMC8159083 DOI: 10.3390/nano11051336] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/13/2021] [Accepted: 05/16/2021] [Indexed: 01/14/2023]
Abstract
Lignin nanomaterials have emerged as a promising alternative to fossil-based chemicals and products for some potential added-value applications, which benefits from their structural diversity and biodegradability. This review elucidates a perspective in recent research on nanolignins and their nanocomposites. It summarizes the different nanolignin preparation methods, emphasizing anti-solvent precipitation, self-assembly and interfacial crosslinking. Also described are the preparation of various nanocomposites by the chemical modification of nanolignin and compounds with inorganic materials or polymers. Additionally, advances in numerous potential high-value applications, such as use in food packaging, biomedical, chemical engineering and biorefineries, are described.
Collapse
|
21
|
Chen K, Wang S, Qi Y, Guo H, Guo Y, Li H. State-of-the-Art: Applications and Industrialization of Lignin Micro/Nano Particles. CHEMSUSCHEM 2021; 14:1284-1294. [PMID: 33403798 DOI: 10.1002/cssc.202002441] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 01/04/2021] [Indexed: 05/19/2023]
Abstract
As a new product of high-value utilization of lignin, lignin micro/nano particles (LMNPs) have attracted the attention of researchers due to their non-toxicity, corrosion-resistance, UV resistance, and other excellent characteristics and potential application value. This article outlined the main preparation methods of LMNPs at the current stage, summarized and compared them from three perspectives of preparation technology, final product state and product composition. Subsequently, based on the different focuses of the properties of LMNPs, their application research progress as fillers, UV blockers, drug delivery carriers, among others, were introduced. Then a concise analysis of the technical and economic assessment and life cycle assessment of LMNPs in the process of industrialization was made. Finally, the main problems at present and the future development directions were analyzed and prospected to provide references for the deep processing of forest resources and the development of bio-based nanomaterials.
Collapse
Affiliation(s)
- Kai Chen
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Liaoning Key Laboratory of Lignocellulose Chemistry and BioMaterials, No.1 Qinggongyuan, Ganjingzi District, Dalian, 116034, P. R. China
| | - Shiyu Wang
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Liaoning Key Laboratory of Lignocellulose Chemistry and BioMaterials, No.1 Qinggongyuan, Ganjingzi District, Dalian, 116034, P. R. China
| | - Yungeng Qi
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Liaoning Key Laboratory of Lignocellulose Chemistry and BioMaterials, No.1 Qinggongyuan, Ganjingzi District, Dalian, 116034, P. R. China
| | - Hong Guo
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Liaoning Key Laboratory of Lignocellulose Chemistry and BioMaterials, No.1 Qinggongyuan, Ganjingzi District, Dalian, 116034, P. R. China
| | - Yanzhu Guo
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Liaoning Key Laboratory of Lignocellulose Chemistry and BioMaterials, No.1 Qinggongyuan, Ganjingzi District, Dalian, 116034, P. R. China
| | - Haiming Li
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Liaoning Key Laboratory of Lignocellulose Chemistry and BioMaterials, No.1 Qinggongyuan, Ganjingzi District, Dalian, 116034, P. R. China
| |
Collapse
|
22
|
Yiamsawas D, Kangwansupamonkon W, Kiatkamjornwong S. Lignin-based nanogels for the release of payloads in alkaline conditions. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2020.110241] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
23
|
Vahabi H, Brosse N, Latif NA, Fatriasari W, Solihat N, Hashim R, Hazwan Hussin M, Laoutid F, Saeb M. Nanolignin in materials science and technology— does flame retardancy matter? BIOPOLYMERIC NANOMATERIALS 2021:515-559. [DOI: 10.1016/b978-0-12-824364-0.00003-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
24
|
Abstract
Bio-based lignin-like building blocks were synthesized and transformed into polyurethane nanocarriers by interfacial polymerization in a miniemulsion. The nanocarriers were degradable by fungal enzymes and might be used for agrochemical delivery.
Collapse
Affiliation(s)
- Sebastian J. Beckers
- Max-Planck-Institut für Polymerforschung (MPIP), Ackermannweg 10, 55128 Mainz, Germany
| | - Jochen Fischer
- IBWF gGmbH, Institute for Biotechnology and Drug Research, Erwin-Schrödinger-Str. 56, 67663 Kaiserslautern, Germany
| | - Frederik R. Wurm
- Sustainable Polymer Chemistry, Department of Molecules and Materials, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, Universiteit Twente, PO Box 217, 7500 AE Enschede, The Netherlands
| |
Collapse
|
25
|
Melro E, Filipe A, Sousa D, Medronho B, Romano A. Revisiting lignin: a tour through its structural features, characterization methods and applications. NEW J CHEM 2021. [DOI: 10.1039/d0nj06234k] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A pedagogical overview of the main extraction procedures and structural features, characterization methods and state-of-the-art applications.
Collapse
Affiliation(s)
- Elodie Melro
- University of Coimbra
- CQC
- Department of Chemistry
- Rua Larga
- 3004-535 Coimbra
| | - Alexandra Filipe
- CIEPQPF
- Department of Chemical Engineering
- University of Coimbra
- Pólo II – R. Silvio Lima
- 3030-790 Coimbra
| | - Dora Sousa
- c5Lab – Edifício Central Park
- Rua Central Park 6
- 2795-242 Linda-a-Velha
- Portugal
| | - Bruno Medronho
- MED – Mediterranean Institute for Agriculture
- Environment and Development
- Universidade do Algarve
- Faculdade de Ciências e Tecnologia
- Campus de Gambelas
| | - Anabela Romano
- MED – Mediterranean Institute for Agriculture
- Environment and Development
- Universidade do Algarve
- Faculdade de Ciências e Tecnologia
- Campus de Gambelas
| |
Collapse
|
26
|
Schneider WDH, Dillon AJP, Camassola M. Lignin nanoparticles enter the scene: A promising versatile green tool for multiple applications. Biotechnol Adv 2020; 47:107685. [PMID: 33383155 DOI: 10.1016/j.biotechadv.2020.107685] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/23/2020] [Accepted: 12/22/2020] [Indexed: 02/02/2023]
Abstract
Strategies to take advantage of residual lignin from industrial processes are well regarded in the field of green chemistry and biotechnology. Quite recently, researchers transformed lignin into nanomaterials, such as nanoparticles, nanofibers, nanofilms, nanocapsules and nanotubes, attracting increasing attention from the scientific community. Lignin nanoparticles are seen as green way to use high-value renewable resources for application in different fields because recent studies have shown they are non-toxic in reasonable concentrations (both in vitro and in vivo assays), inexpensive (a waste generated in the biorefinery, for example, from the bioethanol platform) and potentially biodegradable (by fungi and bacteria in nature). Promising studies have tested lignin nanoparticles for antioxidants, UV-protectants, heavy metal absorption, antimicrobials, drugs carriers, gene delivery systems, encapsulation of molecules, biocatalysts, supercapacitors, tissue engineering, hybrid nanocomposites, wound dressing, and others. These nanoparticles can be produced from distinct lignin types and by different chemical/physical/biological methods, which will result in varied characteristics for their morphology, shape, size, yield and stability. Therefore, taking into account that the theme "lignin nanoparticles" is a trending topic, this present review is emerging and has the discuss the current status, covering from concepts, the formation mechanism, synthesis methods and applications, to the future perspectives and challenges linked to lignin-based nanomaterials, aiming at the viability and commercialization of this biotechnological product.
Collapse
Affiliation(s)
- Willian Daniel Hahn Schneider
- Enzymes and Biomass Laboratory, Institute of Biotechnology, University of Caxias do Sul, Francisco Getúlio Vargas Street, 1130, 95070-560 Caxias do Sul, RS, Brazil.
| | - Aldo José Pinheiro Dillon
- Enzymes and Biomass Laboratory, Institute of Biotechnology, University of Caxias do Sul, Francisco Getúlio Vargas Street, 1130, 95070-560 Caxias do Sul, RS, Brazil
| | - Marli Camassola
- Enzymes and Biomass Laboratory, Institute of Biotechnology, University of Caxias do Sul, Francisco Getúlio Vargas Street, 1130, 95070-560 Caxias do Sul, RS, Brazil
| |
Collapse
|
27
|
Beckers S, Peil S, Wurm FR. Pesticide-Loaded Nanocarriers from Lignin Sulfonates-A Promising Tool for Sustainable Plant Protection. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2020; 8:18468-18475. [PMID: 33381356 PMCID: PMC7756456 DOI: 10.1021/acssuschemeng.0c05897] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/10/2020] [Indexed: 05/04/2023]
Abstract
Lignin is a promising feedstock in sustainable formulations for agrochemicals not only because of its biodegradability but also because the biopolymer occurs naturally in the cell wall of plants and therefore is renewable and abundant. We used different lignin sulfonates to prepare stable aqueous dispersions of lignin nanocarriers loaded with agrochemicals by interfacial cross-linking in a direct miniemulsion. Despite the differences in structure and functionality, different lignin sulfonates were successfully methacrylated and degrees of methacrylation (>70%) were achieved. The resulting methacrylated lignin sulfonates were water-soluble and exhibited interfacial activity; they were used as reactive surfactants to stabilize oil droplets (cyclohexane or olive or rapeseed oil) loaded with a dithiol cross-linker [EDBET, 2,2'-(ethylenedioxy)bis(ethylthiol)] and a hydrophobic cargo (the fluorescent dye 1,3,5,7-tetramethyl-8-phenyl-4,4-difluoroboradiazaindacene or the commercial fungicides prothioconazole and pyraclostrobin). After the addition of a water-soluble base, the thia-Michael addition was initiated at the droplet interface and produced lignin sulfonate nanocarriers with a core-shell structure within oily core and a cross-linked shell. Nanocarriers with diameters of ca. 200-300 nm were prepared; encapsulation efficiencies between 65 and 90% were achieved depending on the cargo. When the amount of the cross-linker was varied, the resulting lignin nanocarriers allowed a controlled release of loaded cargo by diffusion over a period of several days. The strategy proves the potential of lignin sulfonates as a feedstock for delivery systems for advanced plant protection.
Collapse
Affiliation(s)
- Sebastian Beckers
- Max-Planck-Institut
für Polymerforschung, Ackermannweg 10, 55128 Mainz, Germany
| | - Stefan Peil
- Max-Planck-Institut
für Polymerforschung, Ackermannweg 10, 55128 Mainz, Germany
| | - Frederik R. Wurm
- Max-Planck-Institut
für Polymerforschung, Ackermannweg 10, 55128 Mainz, Germany
- Sustainable
Polymer Chemistry Group, MESA+ Institute for Nanotechnology, Faculty
of Science and Technology, Universiteit
Twente, P.O. Box 217, 7500
AE Enschede, The Netherlands
| |
Collapse
|
28
|
Beckers SJ, Wetherbee L, Fischer J, Wurm FR. Fungicide-loaded and biodegradable xylan-based nanocarriers. Biopolymers 2020; 111:e23413. [PMID: 33306838 PMCID: PMC7816251 DOI: 10.1002/bip.23413] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/26/2020] [Accepted: 11/30/2020] [Indexed: 01/05/2023]
Abstract
The delivery of agrochemicals is typically achieved by the spraying of fossil-based polymer dispersions, which might accumulate in the soil and increase microplastic pollution. A potentially sustainable alternative is the use of biodegradable nano- or micro-formulations based on biopolymers, which can be degraded selectively by fungal enzymes to release encapsulated agrochemicals. To date, no hemicellulose nanocarriers for drug delivery in plants have been reported. Xylan is a renewable and abundant feedstock occurring naturally in high amounts in hemicellulose - a major component of the plant cell wall. Herein, xylan from corncobs was used to produce the first fungicide-loaded xylan-based nanocarriers by interfacial polyaddition in an inverse miniemulsion using toluene diisocyanate (TDI) as a crosslinking agent. The nanocarriers were redispersed in water and the aqueous dispersions were proven to be active in vitro against several pathogenic fungi, which are responsible for fungal plant diseases in horticulture or agriculture. Besides, empty xylan-based nanocarriers stimulated the growth of fungal mycelium, which indicated the degradation of xylan in the presence of the fungi, and underlined the degradation as a trigger to release a loaded agrochemical. This first example of crosslinked xylan-based nanocarriers expands the library of biodegradable and biobased nanocarriers for agrochemical release and might play a crucial role for future formulations in plant protection.
Collapse
Affiliation(s)
- Sebastian J. Beckers
- Physical Chemistry of PolymersMax‐Planck‐Institut für PolymerforschungMainzGermany
| | - Luc Wetherbee
- Physical Chemistry of PolymersMax‐Planck‐Institut für PolymerforschungMainzGermany
| | - Jochen Fischer
- IBWF gGmbHInstitute for Biotechnology and Drug ResearchKaiserslauternGermany
| | - Frederik R. Wurm
- Sustainable Polymer Chemistry Group, MESA+ Institute for Nanotechnology, Faculty of Science and TechnologyUniversiteit TwenteEnschedeThe Netherlands
| |
Collapse
|
29
|
Tang Q, Qian Y, Yang D, Qiu X, Qin Y, Zhou M. Lignin-Based Nanoparticles: A Review on Their Preparations and Applications. Polymers (Basel) 2020; 12:E2471. [PMID: 33113775 PMCID: PMC7693155 DOI: 10.3390/polym12112471] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/18/2020] [Accepted: 10/20/2020] [Indexed: 12/14/2022] Open
Abstract
Lignin is the most abundant by-product from the pulp and paper industry as well as the second most abundant natural renewable biopolymer after cellulose on earth. In recent years, transforming unordered and complicated lignin into ordered and uniform nanoparticles has attracted wide attention due to their excellent properties such as controlled structures and sizes, better miscibility with polymers, and improved antioxidant activity. In this review, we first introduce five important technical lignin from different sources and then provide a comprehensive overview of the recent progress of preparation techniques which are involved in the fabrication of various lignin-based nanoparticles and their industrial applications in different fields such as drug delivery carriers, UV absorbents, hybrid nanocomposites, antioxidant agents, antibacterial agents, adsorbents for heavy metal ions and dyes, and anticorrosion nanofillers.
Collapse
Affiliation(s)
- Qianqian Tang
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, China;
| | - Yong Qian
- School of Chemistry and Chemical Engineering, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China; (Y.Q.); (D.Y.)
| | - Dongjie Yang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China; (Y.Q.); (D.Y.)
| | - Xueqing Qiu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China;
| | - Yanlin Qin
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China;
| | - Mingsong Zhou
- School of Chemistry and Chemical Engineering, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China; (Y.Q.); (D.Y.)
| |
Collapse
|
30
|
Liu R, Dai L, Xu C, Wang K, Zheng C, Si C. Lignin-Based Micro- and Nanomaterials and their Composites in Biomedical Applications. CHEMSUSCHEM 2020; 13:4266-4283. [PMID: 32462781 DOI: 10.1002/cssc.202000783] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/28/2020] [Indexed: 05/13/2023]
Abstract
Lignin, as the most abundant aromatic renewable biopolymer in nature, has long been regarded as waste and simply discarded from the pulp and paper industry. In recent years, with many breakthroughs in lignin chemistry, pretreatment, and processing techniques, a lot of the inherent bioactivities of lignin, including antioxidant activities, antimicrobial activities, biocompatibilities, optical properties, and metal-ion chelating and redox activities, have been discovered and this has opened a new field not only for lignin-based materials but also for biomaterials. In this Review, the biological activities of lignin and drug/gene delivery and bioimaging applications of various types of lignin-based material are summarized. In addition, the challenges and limitations of lignin-based materials encountered during the development of biomedical applications are also discussed.
Collapse
Affiliation(s)
- Rui Liu
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, No. 9 at 13th Avenue, TEDA, Tianjin, 300457, China
- Johan Gadolin Process Chemistry Centre, Laboratory of Natural Materials Technology, Åbo Akademi University, Turku, 20500, Finland
| | - Lin Dai
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, No. 9 at 13th Avenue, TEDA, Tianjin, 300457, China
| | - Chunlin Xu
- Johan Gadolin Process Chemistry Centre, Laboratory of Natural Materials Technology, Åbo Akademi University, Turku, 20500, Finland
| | - Kai Wang
- International Medicine Centre, Tianjin Hospital, 506 Jiefang South Road, Tianjin, 300211, China
| | - Chunyang Zheng
- Robustnique Co. Ltd., Block C, Phase II, Pioneer Park, Lanyuan Road, Tianjin, 300384, China
| | - Chuanling Si
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, No. 9 at 13th Avenue, TEDA, Tianjin, 300457, China
| |
Collapse
|
31
|
Rastgar S, Teixeira Santos K, Angelucci CA, Wittstock G. Catalytic Activity of Alkali Metal Cations for the Chemical Oxygen Reduction Reaction in a Biphasic Liquid System Probed by Scanning Electrochemical Microscopy. Chemistry 2020; 26:10882-10890. [PMID: 32460434 PMCID: PMC7496973 DOI: 10.1002/chem.202001967] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/24/2020] [Indexed: 12/01/2022]
Abstract
Chemical reduction of dioxygen in organic solvents for the production of reactive oxygen species or the concomitant oxidation of organic substrates can be enhanced by the separation of products and educts in biphasic liquid systems. Here, the coupled electron and ion transfer processes is studied as well as reagent fluxes across the liquid|liquid interface for the chemical reduction of dioxygen by decamethylferrocene (DMFc) in a dichloroethane-based organic electrolyte forming an interface with an aqueous electrolyte containing alkali metal ions. This interface is stabilized at the orifice of a pipette, across which a Galvani potential difference is externally applied and precisely adjusted to enforce the transfer of different alkali metal ions from the aqueous to the organic electrolyte. The oxygen reduction is followed by H2 O2 detection in the aqueous phase close to the interface by a microelectrode of a scanning electrochemical microscope (SECM). The results prove a strong catalytic effect of hydrated alkali metal ions on the formation rate of H2 O2 , which varies systematically with the acidity of the transferred alkali metal ions in the organic phase.
Collapse
Affiliation(s)
- Shokoufeh Rastgar
- Carl von Ossietzky University of OldenburgChemistry Department261111OldenburgGermany
| | - Keyla Teixeira Santos
- Carl von Ossietzky University of OldenburgChemistry Department261111OldenburgGermany
- Federal University of ABCCenter for Natural and Human SciencesAv. dos Estados 500109210-580Santo André/SPBrazil
| | - Camilo Andrea Angelucci
- Federal University of ABCCenter for Natural and Human SciencesAv. dos Estados 500109210-580Santo André/SPBrazil
| | - Gunther Wittstock
- Carl von Ossietzky University of OldenburgChemistry Department261111OldenburgGermany
| |
Collapse
|
32
|
Machado T, Beckers SJ, Fischer J, Müller B, Sayer C, de Araújo PHH, Landfester K, Wurm FR. Bio-Based Lignin Nanocarriers Loaded with Fungicides as a Versatile Platform for Drug Delivery in Plants. Biomacromolecules 2020; 21:2755-2763. [PMID: 32543851 PMCID: PMC7467573 DOI: 10.1021/acs.biomac.0c00487] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/15/2020] [Indexed: 12/31/2022]
Abstract
Lignin-based nano- and microcarriers are a promising biodegradable drug delivery platform inside of plants. Many wood-decaying fungi are capable of degrading the wood component lignin by segregated lignases. These fungi are responsible for severe financial damage in agriculture, and many of these plant diseases cannot be treated today. However, enzymatic degradation is also an attractive handle to achieve a controlled release of drugs from artificial lignin vehicles. Herein, chemically cross-linked lignin nanocarriers (NCs) were prepared by aza-Michael addition in miniemulsion, followed by solvent evaporation. The cross-linking of lignin was achieved with the bio-based amines (spermine and spermidine). Several fungicides-namely, azoxystrobin, pyraclostrobin, tebuconazole, and boscalid-were encapsulated in situ during the miniemulsion polymerization, demonstrating the versatility of the method. Lignin NCs with diameters of 200-300 nm (determined by dynamic light scattering) were obtained, with high encapsulation efficiencies (70-99%, depending on the drug solubility). Lignin NCs successfully inhibited the growth of Phaeomoniella chlamydospora and Phaeoacremonium minimum, which are lignase-producing fungi associated with the worldwide occurring fungal grapevine trunk disease Esca. In planta studies proved their efficiency for at least 4 years after a single injection into Vitis vinifera ("Portugieser") plants on a test vineyard in Germany. The lignin NCs are of high interest as biodegradable delivery vehicles to be applied by trunk injection against the devastating fungal disease Esca but might also be promising against other fungal plant diseases.
Collapse
Affiliation(s)
- Thiago
O. Machado
- Max-Planck-Institut
für Polymerforschung, Ackermannweg 10, 55128 Mainz, Germany
- Department
of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, P.O. Box 476, Florianópolis, 88040-900 Santa Catarina, Brazil
| | | | - Jochen Fischer
- Institute
for Biotechnology and Drug Research, Erwin-Schrödinger-Str. 56, 67663 Kaiserslautern, Germany
| | - Beate Müller
- Max-Planck-Institut
für Polymerforschung, Ackermannweg 10, 55128 Mainz, Germany
| | - Claudia Sayer
- Department
of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, P.O. Box 476, Florianópolis, 88040-900 Santa Catarina, Brazil
| | - Pedro H. H. de Araújo
- Department
of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, P.O. Box 476, Florianópolis, 88040-900 Santa Catarina, Brazil
| | | | - Frederik R. Wurm
- Max-Planck-Institut
für Polymerforschung, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
33
|
Alqahtani MS, Kazi M, Ahmad MZ, Syed R, Alsenaidy MA, Albraiki SA. Lignin nanoparticles as a promising vaccine adjuvant and delivery system for ovalbumin. Int J Biol Macromol 2020; 163:1314-1322. [PMID: 32645499 DOI: 10.1016/j.ijbiomac.2020.07.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 07/01/2020] [Accepted: 07/03/2020] [Indexed: 10/23/2022]
Abstract
Vaccination is the most effective strategy of preventing and treating infectious diseases and the most significant issue in the development of potent vaccines is the sufficient immunogenicity and safety of vaccines. The main goal of the present study is to develop a potent and safe vaccine adjuvant that can also stabilize antigen formulations during preparation and storage. In this study, the model antigen ovalbumin (OVA) was encapsulated in polymeric nanoparticles based on lignin (OVA-LNPs). The nanoparticles had a particle size of 216 nm and a low polydispersity index. The nanoparticles were negatively charged (-26.7 mV) with high encapsulation efficiency 81.6% of OVA antigen. In vitro studies of the nanoparticles were tested against dendritic cells (DCs), specialized antigen-presenting cells (APCs). The results showed no cytotoxic effect from LNPs and a significantly higher percentage of dendritic cells have taken up the antigen when encapsulated inside LNPs in contrast to free OVA. The nanoparticle was administered intradermally to BALB/c mice and the resulting time-dependent systemic immune responses towards OVA were assessed by measuring the OVA-specific IgG titers using an enzyme-linked immunosorbent assay (ELISA). In vivo immunization with OVA-LNPs induced a stronger IgG antibody response than that induced by free OVA or alum adjuvanted OVA. Enhanced immunization by OVA-LNPs was attributed to the observed efficient uptake of the antigen by dendritic cells. These findings demonstrate that LNPs are promising to be used as vaccine adjuvant and delivery system for the induction of long-term immune responses.
Collapse
Affiliation(s)
- Mohammed S Alqahtani
- Department of Pharmaceutics, College of Pharmacy, PO Box 2457, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Mohsin Kazi
- Department of Pharmaceutics, College of Pharmacy, PO Box 2457, King Saud University, Riyadh 11451, Saudi Arabia
| | - Muhammad Z Ahmad
- Department of Pharmacognosy, College of Pharmacy, King Saud University, PO Box 2457, Riyadh 11451, Saudi Arabia
| | - Rabbani Syed
- Department of Pharmaceutics, College of Pharmacy, PO Box 2457, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammad A Alsenaidy
- Department of Pharmaceutics, College of Pharmacy, PO Box 2457, King Saud University, Riyadh 11451, Saudi Arabia
| | - Salem A Albraiki
- Department of Pharmaceutics, College of Pharmacy, PO Box 2457, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
34
|
Liu D, Liu J, Zhou Y, Chen J, Zhan P, Yang G, Wu Z. Assembly of lignin-based colloidal particles: effects of cationic surfactants, molecular weight, and solvent on morphology. RSC Adv 2020; 10:18594-18600. [PMID: 35518291 PMCID: PMC9054004 DOI: 10.1039/d0ra01444c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/29/2020] [Indexed: 12/26/2022] Open
Abstract
Sodium lignosulfonate (LS) is a lignin derivative, which has abundant resources and is an environmentally friendly raw material. In this study, cetyltrimethylammonium bromide (CTAB) and stearyltrimethylammonium bromide (STAB) were combined with LS at the isoelectric point for hydrophobic self-assembly. Transmission electron microscopy (TEM), Fourier-transform infrared (FTIR) spectroscopy, and static contact angle data proved that LS/CTAB could form colloidal spheres, while LS/STAB could not form such spheres. The impact of the molecular weight of LS on the self-assembly of LS/CTAB was investigated by using the TEM, FTIR, and static contact angle data. The obtained results showed that LS/CTAB with 10 000–50 000 Da of LS could form colloidal spheres, while LS/CTAB with 3000–5000 Da of LS could not. In addition, the TEM images revealed that the solvent plays an important role in the morphology of LS/CTAB colloidal spheres. Finally, LS/CTAB colloidal spheres were used for the encapsulation of ibuprofen (IBU). The in vitro release behavior of IBU was proven to be pH-sensitive and exhibited controlled release properties. More than 85% IBU could be preserved in simulated gastric fluid, and over 75% could be released in simulated intestinal fluid. This work provides a theoretical basis for the preparation of LS/CTAB colloidal spheres and facilitates the expansion of its applications as a drug carrier. Effect of cationic surfactants, molecular weight and solvent on the morphology of lignin based particles and in vitro release behavior.![]()
Collapse
Affiliation(s)
- Dexiang Liu
- School of Materials Science and Engineering, Central South University of Forestry and Technology Changsha 410004 China
| | - Jinyu Liu
- School of Materials Science and Engineering, Central South University of Forestry and Technology Changsha 410004 China
| | - Yingxiang Zhou
- School of Materials Science and Engineering, Central South University of Forestry and Technology Changsha 410004 China
| | - Jienan Chen
- School of Materials Science and Engineering, Central South University of Forestry and Technology Changsha 410004 China .,Ministry of Forestry Bioethanol Research Center, Central South University of Forestry and Technology Changsha 410004 China.,Hunan Engineering Research Center for Woody Biomass Conversion, Central South University of Forestry and Technology Changsha 410004 China.,Hunan International Joint Laboratory of Woody Biomass Conversion, Central South University of Forestry and Technology Changsha 410004 China
| | - Peng Zhan
- School of Materials Science and Engineering, Central South University of Forestry and Technology Changsha 410004 China .,Ministry of Forestry Bioethanol Research Center, Central South University of Forestry and Technology Changsha 410004 China.,Hunan Engineering Research Center for Woody Biomass Conversion, Central South University of Forestry and Technology Changsha 410004 China.,Hunan International Joint Laboratory of Woody Biomass Conversion, Central South University of Forestry and Technology Changsha 410004 China
| | - Guoen Yang
- School of Materials Science and Engineering, Central South University of Forestry and Technology Changsha 410004 China
| | - Zhiping Wu
- School of Materials Science and Engineering, Central South University of Forestry and Technology Changsha 410004 China .,Ministry of Forestry Bioethanol Research Center, Central South University of Forestry and Technology Changsha 410004 China.,Hunan Engineering Research Center for Woody Biomass Conversion, Central South University of Forestry and Technology Changsha 410004 China.,Hunan International Joint Laboratory of Woody Biomass Conversion, Central South University of Forestry and Technology Changsha 410004 China
| |
Collapse
|
35
|
Astete CE, De Mel JU, Gupta S, Noh Y, Bleuel M, Schneider GJ, Sabliov CM. Lignin-Graft-Poly(lactic- co-glycolic) Acid Biopolymers for Polymeric Nanoparticle Synthesis. ACS OMEGA 2020; 5:9892-9902. [PMID: 32391476 PMCID: PMC7203963 DOI: 10.1021/acsomega.0c00168] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 04/09/2020] [Indexed: 05/13/2023]
Abstract
A lignin-graft-poly(lactic-co-glycolic) acid (PLGA) biopolymer was synthesized with two types of lignin (LGN), alkaline lignin (ALGN) and sodium lignosulfonate (SLGN), at different (A/S)LGN/PLGA ratios (1:2, 1:4, and 1:6 w/w). 1H NMR and Fourier-transform infrared spectroscopy (FT-IR) confirmed the conjugation of PLGA to LGN. The (A/S)LGN-graft-PLGA biopolymers were used to form nanodelivery systems suitable for entrapment and delivery of drugs for disease treatment. The LGN-graft-PLGA NPs were generally small (100-200 nm), increased in size with the amount of PLGA added, monodisperse, and negatively charged (-48 to -60 mV). Small-angle scattering data showed that particles feature a relatively smooth surface and a compact spherical structure with a distinct core and a shell. The core size and shell thickness varied with the LGN/PLGA ratio, and at a 1:6 ratio, the particles deviated from the core-shell structure to a complex internal structure. The newly developed (A/S)LGN-graft-PLGA NPs are proposed as a potential delivery system for applications in biopharmaceutical, food, and agricultural sectors.
Collapse
Affiliation(s)
- Carlos E. Astete
- Biological
& Agricultural Engineering Department, Louisiana State University and LSU Ag Center, 149 E. B. Doran Bldg., Baton Rouge, Louisiana 70803, United States
| | - Judith U. De Mel
- Department
of Chemistry, Louisiana State University, Baton Rouge, 331 Chemistry
and Materials Bldg, Louisiana 70803, United States
| | - Sudipta Gupta
- Department
of Chemistry, Louisiana State University, Baton Rouge, 331 Chemistry
and Materials Bldg, Louisiana 70803, United States
| | - YeRim Noh
- Department
of Chemistry, Louisiana State University, Baton Rouge, 331 Chemistry
and Materials Bldg, Louisiana 70803, United States
| | - Markus Bleuel
- A235
NIST Center for Neutron Research National Institute of Standards and
Technology, Gaithersburg, Maryland 20988-8562, United States
| | - Gerald J. Schneider
- Department
of Chemistry, Louisiana State University, Baton Rouge, 331 Chemistry
and Materials Bldg, Louisiana 70803, United States
| | - Cristina M. Sabliov
- Biological
& Agricultural Engineering Department, Louisiana State University and LSU Ag Center, 149 E. B. Doran Bldg., Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
36
|
Beisl S, Adamcyk J, Friedl A. Direct Precipitation of Lignin Nanoparticles from Wheat Straw Organosolv Liquors Using a Static Mixer. Molecules 2020; 25:E1388. [PMID: 32197518 PMCID: PMC7145315 DOI: 10.3390/molecules25061388] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 02/23/2020] [Accepted: 03/09/2020] [Indexed: 11/16/2022] Open
Abstract
Micro- and nanosize lignin shows improved properties compared to standard lignin available today and has been gaining interest in recent years. Lignin is the largest renewable resource with an aromatic skeleton on earth but it is used for relatively low-value applications. Lignin in micro- to nanoscale; however, could facilitate rather valuable applications. Current production methods consume high amounts of solvents for purification and precipitation. The process investigated in this work uses the direct precipitation of lignin nanoparticles from organosolv pretreatment extract in a static mixer and can reduce solvent consumption drastically. The pH value, ratio of antisolvent to organosolv extract and flowrate in the mixer were investigated as precipitation parameters in terms of the resulting particle properties. Particles with dimensions ranging from 97.3 to 219.3 nm could be produced, and at certain precipitation parameters, carbohydrate impurities reach values as low as in purified lignin particles. Yields were found independent of the precipitation parameters with 48.2 ± 4.99%. Results presented in this work can be used to optimize precipitation parameters with emphasis on particle size, carbohydrate impurities or the solvent consumption.
Collapse
Affiliation(s)
- Stefan Beisl
- Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, 1060 Vienna, Austria; (J.A.); (A.F.)
| | | | | |
Collapse
|
37
|
Etman SM, Abdallah OY, Mehanna RA, Elnaggar YS. Lactoferrin/Hyaluronic acid double-coated lignosulfonate nanoparticles of quinacrine as a controlled release biodegradable nanomedicine targeting pancreatic cancer. Int J Pharm 2020. [DOI: https://doi.org/10.1016/j.ijpharm.2020.119097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
38
|
Etman SM, Abdallah OY, Mehanna RA, Elnaggar YSR. Lactoferrin/Hyaluronic acid double-coated lignosulfonate nanoparticles of quinacrine as a controlled release biodegradable nanomedicine targeting pancreatic cancer. Int J Pharm 2020; 578:119097. [PMID: 32032904 DOI: 10.1016/j.ijpharm.2020.119097] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 01/27/2020] [Accepted: 01/28/2020] [Indexed: 02/07/2023]
Abstract
Quinacrine is an antimalarial drug that was repositioned for treatment of cancer. This is the first work to enhance quinacrine activity and minimize its associated hepatotoxicity via loading into bio-degradable, bio-renewable lignosulfonate nanoparticles. Particles were appraised for treatment of pancreatic cancer, one of the most life-threatening tumors with a five-year survival estimate. Optimum nanocomposites prepared by polyelectrolyte interaction exhibited a particle size of 138 nm, a negative surface charge (-28 mV) and a pH dependent release of the drug in an acidic environment. Ligands used for active targeting (lactoferrin and hyaluronic acid) were added to nanoparticles' surface via layer by layer coating technique. The highest anticancer activity on PANC-1 cells was demonstrated with dual active targeted particles (3-fold decrease in IC50) along with an increased ability to inhibit migration and invasion of pancreatic cancer cells. In vivo studies revealed that elaborated nanoparticles particles showed the highest tumor volume reduction with enhanced survival without any toxicity on major organs. In conclusion, the elaborated nanoparticles could be considered as a promising targeted nanotherapy for treatment of pancreatic cancer with higher efficacy& survival rate and lower organ toxicity.
Collapse
Affiliation(s)
- Samar M Etman
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Egypt
| | - Ossama Y Abdallah
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Egypt
| | - Radwa A Mehanna
- Medical Physiology Department, Faculty of Medicine, Alexandria University, Egypt; Center of Excellence for Research in Regenerative Medicine and Applications CERRMA, Faculty of Medicine, Alexandria University, Egypt
| | - Yosra S R Elnaggar
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Egypt; Head of International Publication and Nanotechnology Center INCC, Department of Pharmaceutics, Faculty of Pharmacy and Drug Manufacturing, Pharos University of Alexandria, Egypt.
| |
Collapse
|
39
|
Cha YL, Alam AM, Park SM, Moon YH, Kim KS, Lee JE, Kwon DE, Kang YG. Hydrothermal-process-based direct extraction of polydisperse lignin microspheres from black liquor and their physicochemical characterization. BIORESOURCE TECHNOLOGY 2020; 297:122399. [PMID: 31759855 DOI: 10.1016/j.biortech.2019.122399] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 11/06/2019] [Accepted: 11/07/2019] [Indexed: 06/10/2023]
Abstract
Lignin nano-/microstructures are widely employed for agricultural drug delivery and heavy metal removal from wastewater, and facile low-cost methods of their large-scale production are therefore highly sought after. Herein, uniform-morphology polydisperse lignin microspheres were directly extracted from black liquor by lowering its pH to <4 followed by hydrothermal treatment and featured several lignin-typical characteristics, e.g., functional groups, thermal stability, amorphousness, and monolignol units. It was assumed that lignin rearranged and assembled into microspheres of various size, shape, and uniformity depending on pH, temperature, and hydrothermal treatment time. Lignin microsphere extraction efficiency was estimated as 15.87-21.62 g L-1, and the average size of microspheres obtained under different conditions was calculated as ∼1 µm, while the C, H, O, and N contents equaled 48-62, 5-6, 30-36, and 0.2-1.5%, respectively. Thus, our method was deemed suitable for direct large-scale extraction of lignin microspheres from black liquor.
Collapse
Affiliation(s)
- Young-Lok Cha
- Bioenergy Crop Research Institute, National Institute of Crop Science, Rural Development Administration, Muan 58545, Republic of Korea
| | - Al-Mahmnur Alam
- Bioenergy Crop Research Institute, National Institute of Crop Science, Rural Development Administration, Muan 58545, Republic of Korea.
| | - Sung-Min Park
- Bioenergy Crop Research Institute, National Institute of Crop Science, Rural Development Administration, Muan 58545, Republic of Korea
| | - Youn-Ho Moon
- Bioenergy Crop Research Institute, National Institute of Crop Science, Rural Development Administration, Muan 58545, Republic of Korea
| | - Kwang-Soo Kim
- Bioenergy Crop Research Institute, National Institute of Crop Science, Rural Development Administration, Muan 58545, Republic of Korea
| | - Ji-Eun Lee
- Bioenergy Crop Research Institute, National Institute of Crop Science, Rural Development Administration, Muan 58545, Republic of Korea
| | - Da-Eun Kwon
- Bioenergy Crop Research Institute, National Institute of Crop Science, Rural Development Administration, Muan 58545, Republic of Korea
| | - Yong-Gu Kang
- Bioenergy Crop Research Institute, National Institute of Crop Science, Rural Development Administration, Muan 58545, Republic of Korea
| |
Collapse
|
40
|
|
41
|
Jiang P, Li Q, Gao C, Lu J, Cheng Y, Zhai S, An Q, Wang H. Fractionation of alkali lignin by organic solvents for biodegradable microsphere through self-assembly. BIORESOURCE TECHNOLOGY 2019; 289:121640. [PMID: 31212176 DOI: 10.1016/j.biortech.2019.121640] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 06/08/2019] [Accepted: 06/10/2019] [Indexed: 06/09/2023]
Abstract
Here we report a centrifugation-based fractionation methodology that was integrated with three types of organic solvents to fractionate industrial alkali lignin toward the fabrication of lignin microsphere. The Fourier-transform infrared spectroscopy (FT-IR) result showed that the chemical structure of lignin was not changed by solvent fractionation. Soluble lignin in each solvent had lower molecular weight, improved polydispersity index (PDI) and less impurities (S, N), while insoluble lignin had a high bio-char yield and can be utilized as potential carbon source for porous carbon nanosphere materials. In addition, well-shaped lignin microsphere with smooth or anisotropic surface can be prepared by selecting proper lignin fraction without any chemical modification. This work thus provides a new strategy for the derivation of lignin as raw materials for value-added products, which paved a new way to develop a green and sustainable bio-refining industry.
Collapse
Affiliation(s)
- Pan Jiang
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Qiang Li
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77840, USA
| | - Ce Gao
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Jie Lu
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Yi Cheng
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Shangru Zhai
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Qingda An
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Haisong Wang
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, Liaoning, China.
| |
Collapse
|
42
|
Gao W, Fatehi P. Lignin for polymer and nanoparticle production: Current status and challenges. CAN J CHEM ENG 2019. [DOI: 10.1002/cjce.23620] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Weijue Gao
- Chemical Engineering DepartmentLakehead University Thunder Bay Ontario Canada
| | - Pedram Fatehi
- Chemical Engineering DepartmentLakehead University Thunder Bay Ontario Canada
- State Key Laboratory of Paper Science and Technology of Ministry of EducationQilu University of Technology (Shandong Academy of Sciences) Jinan China
| |
Collapse
|
43
|
Liu H, Mohsin N, Kim S, Chung H. Lignin, a biomass crosslinker, in a shape memory polycaprolactone network. ACTA ACUST UNITED AC 2019. [DOI: 10.1002/pola.29483] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hailing Liu
- Department of Chemical and Biomedical EngineeringFlorida State University, 2525 Pottsdamer Street, Building A, Suite A131 Tallahassee Florida 32310
| | - Nuverah Mohsin
- Department of Chemical and Biomedical EngineeringFlorida State University, 2525 Pottsdamer Street, Building A, Suite A131 Tallahassee Florida 32310
| | - Sundol Kim
- Department of Chemical and Biomedical EngineeringFlorida State University, 2525 Pottsdamer Street, Building A, Suite A131 Tallahassee Florida 32310
| | - Hoyong Chung
- Department of Chemical and Biomedical EngineeringFlorida State University, 2525 Pottsdamer Street, Building A, Suite A131 Tallahassee Florida 32310
| |
Collapse
|
44
|
Fischer J, Beckers SJ, Yiamsawas D, Thines E, Landfester K, Wurm FR. Targeted Drug Delivery in Plants: Enzyme-Responsive Lignin Nanocarriers for the Curative Treatment of the Worldwide Grapevine Trunk Disease Esca. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1802315. [PMID: 31406660 PMCID: PMC6685467 DOI: 10.1002/advs.201802315] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 04/21/2019] [Indexed: 05/21/2023]
Abstract
Nanocarrier (NC)-mediated drug delivery is widely researched in medicine but to date has not been used in agriculture. The first curative NC-based treatment of the worldwide occurring grapevine trunk disease Esca, with more than 2 billion infected plants causing a loss yearly of $1.5 billion, is presented. To date, only repetitive spraying of fungicides is used to reduce chances of infection. This long-term treatment against Esca uses minimal amounts of fungicide encapsulated in biobased and biodegradable lignin NCs. A single trunk injection of <10 mg fungicide results in curing of an infected plant. Only upon Esca infection, ligninolytic enzymes, secreted by the Esca-associated fungi, degrade the lignin NC to release the fungicide. The specific antifungal activity is confirmed in vitro and in planta (in Vitis vinifera L. cv. 'Portugieser'). All treated plants prove to exhibit significantly fewer symptoms several weeks after treatment, and their condition is monitored for 5 years (2014-2018), proving a long-term curative effect of this NC treatment. This study proves the efficacy of this NC-mediated drug delivery for agriculture, using a minimum amount of fungicides. It is believed that this concept can be extended to other plant diseases worldwide to reduce extensive spraying of agrochemicals.
Collapse
Affiliation(s)
- Jochen Fischer
- IBWF gGmbHInstitute for Biotechnology and Drug ResearchErwin‐Schrödinger‐Str. 5667663KaiserslauternGermany
| | | | | | - Eckhard Thines
- IBWF gGmbHInstitute for Biotechnology and Drug ResearchErwin‐Schrödinger‐Str. 5667663KaiserslauternGermany
- Microbiology and Wine Research at the Institute of Molecular Physiology (IMP)Johannes Gutenberg‐UniversityJohann‐Joachim‐Becherweg 1555128MainzGermany
| | | | - Frederik R. Wurm
- Max‐Planck‐Institut für PolymerforschungAckermannweg 1055128MainzGermany
| |
Collapse
|
45
|
|
46
|
Collins MN, Nechifor M, Tanasă F, Zănoagă M, McLoughlin A, Stróżyk MA, Culebras M, Teacă CA. Valorization of lignin in polymer and composite systems for advanced engineering applications – A review. Int J Biol Macromol 2019; 131:828-849. [DOI: 10.1016/j.ijbiomac.2019.03.069] [Citation(s) in RCA: 237] [Impact Index Per Article: 47.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 03/04/2019] [Accepted: 03/10/2019] [Indexed: 01/30/2023]
|
47
|
Sipponen MH, Lange H, Crestini C, Henn A, Österberg M. Lignin for Nano- and Microscaled Carrier Systems: Applications, Trends, and Challenges. CHEMSUSCHEM 2019; 12:2039-2054. [PMID: 30933420 PMCID: PMC6593669 DOI: 10.1002/cssc.201900480] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Indexed: 05/19/2023]
Abstract
To liberate society from its dependence on fossil-based fuels and materials it is pivotal to explore components of renewable plant biomass in applications that benefit from their intrinsic biodegradability, safety, and sustainability. Lignin, a byproduct of the pulp and paper industry, is a plausible material for carrying various types of cargo in small- and large-scale applications. Herein, possibilities and constraints regarding the physical-chemical properties of the lignin source as well as modifications and processing required to render lignins suitable for the loading and release of pesticides, pharmaceuticals, and biological macromolecules is reviewed. In addition, the technical challenges, regulatory and toxicological aspects, and future research needed to realize some of the promises that nano- and microscaled lignin materials hold for a sustainable future are critically discussed.
Collapse
Affiliation(s)
- Mika Henrikki Sipponen
- Department of Bioproducts and BiosystemsSchool of Chemical EngineeringAalto UniversityVuorimiehentie 1Espoo02150Finland
| | - Heiko Lange
- Department of PharmacyUniversity of Naples 'Federico II'Via Domenico MontesanoNaples80131Italy
| | - Claudia Crestini
- Department of Molecular Sciences and NanosystemsUniversity of Venice Ca' FoscariVia Torino 15530170Venice MestreItaly
| | - Alexander Henn
- Department of Bioproducts and BiosystemsSchool of Chemical EngineeringAalto UniversityVuorimiehentie 1Espoo02150Finland
| | - Monika Österberg
- Department of Bioproducts and BiosystemsSchool of Chemical EngineeringAalto UniversityVuorimiehentie 1Espoo02150Finland
| |
Collapse
|
48
|
Affiliation(s)
- Yi-Chen Ethan Li
- Department of Chemical Engineering, Feng Chia University, 40724 Taichung, Taiwan
| |
Collapse
|
49
|
Liu C, Li Y, Hou Y. A simple environment-friendly process for preparing high-concentration alkali lignin nanospheres. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2018.12.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
50
|
Mishra PK, Ekielski A. The Self-Assembly of Lignin and Its Application in Nanoparticle Synthesis: A Short Review. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E243. [PMID: 30754724 PMCID: PMC6410071 DOI: 10.3390/nano9020243] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/03/2019] [Accepted: 02/04/2019] [Indexed: 01/16/2023]
Abstract
Lignin serves as a significant contributor to the natural stock of non-fossilized carbon, second only to cellulose in the biosphere. In this review article, we focus on the self-assembly properties of lignin and their contribution to its effective utilization and valorization. Traditionally, investigations on self-assembly properties of lignin have aimed at understanding the lignification process of the cell wall and using it for efficient delignification for commercial purposes. In recent years (mainly the last three years), an increased number of attempts and reports of technical-lignin nanostructure synthesis with controlled particle size and morphology have been published. This has renewed the interests in the self-assembly properties of technical lignins and their possible applications. Based on the sources and processing methods of lignin, there are significant differences between its structure and properties, which is the primary obstacle in the generalized understanding of the lignin structure and the lignification process occurring within cell walls. The reported studies are also specific to source and processing methods. This work has been divided into two parts. In the first part, the aggregation propensity of lignin based on type, source and extraction method, temperature, and pH of solution is discussed. This is followed by a critical overview of non-covalent interactions and their contribution to the self-associative properties of lignin. The role of self-assembly towards the understanding of xylogenesis and nanoparticle synthesis is also discussed. A particular emphasis is placed on the interaction and forces involved that are used to explain the self-association of lignin.
Collapse
Affiliation(s)
- Pawan Kumar Mishra
- Department of Wood Processing Technology, Mendel University in Brno, 61300 Brno, Czech Republic.
| | - Adam Ekielski
- Department of Production Management and Engineering, Warsaw University Of Life Sciences, 02-787 Warsaw, Poland.
| |
Collapse
|