1
|
Kawish M, Ullah S, Roome T, Razzak A, Aslam S, Raza Shah M. Thermoresponsive lipids engineered magnetic nanoparticles for spatiotemporal delivery of hesperidin to inflammatory sites in animal model. Pharm Dev Technol 2024; 29:762-775. [PMID: 39143894 DOI: 10.1080/10837450.2024.2393216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 08/01/2024] [Accepted: 08/12/2024] [Indexed: 08/16/2024]
Abstract
Thermoresponsive nanoparticles are exploited as drug-delivery vehicles that release their payload upon increment in temperature. We prepared and characterized thermoresponsive lipid-anchored folic acid engineered magnetic nanoparticles (LP-HP-FANPs) that combine receptor-based targeting and thermoresponsive sustained release of hesperidin (HP) in response to endogenous inflammation site temperature. The progressive surface engineering of NPs was validated by FTIR analysis. Our LP-HP-FANPs had a particle size of 100.5 ± 1.76 nm and a zeta potential of 14.6 ± 2.65 mV. The HP encapsulation effectiveness of LP-HP-FANPs is around 91 ± 0.78%. AFM scans indicated that our modified nanoparticles were spherical. LP-HP-FANPs exhibit increased drug release (85.8% at pH 4.0, 50.9% at pH 7.0) at 40 °C. Animal studies showed no toxicity from nanoparticles. Compared to conventional drugs and HP, LP-HP-FANPs effectively decreased paw edema, cytokine levels, and total cell recruitment in thioglycollate-induced peritonitis (p < 0.05). LP-HP-FANPs substantially decreased cytokines compared to HP, HP-FA-NPs, and the standard medication (p < 0.05, p < 0.01, and p < 0.001). These findings imply that the synthesized HP-loaded formulation (LP-HP-FANPs) may be a potential anti-inflammatory formulation for clinical development.
Collapse
Affiliation(s)
- Muhammad Kawish
- International Center for Chemical and Biological Sciences, H.E.J Research Institute of Chemistry, University of Karachi, Karachi, Pakistan
| | - Shafi Ullah
- International Center for Chemical and Biological Sciences, H.E.J Research Institute of Chemistry, University of Karachi, Karachi, Pakistan
| | - Talat Roome
- Molecular Pathology Section, Department of Pathology, Dow Diagnostic Reference and Research Laboratory, Dow University of Health Sciences, Karachi, Pakistan
- Dow Institute for Advanced Biological and Animal Research, Dow International Medical College, Dow University of Health Sciences, Karachi, Pakistan
| | - Anam Razzak
- Molecular Pathology Section, Department of Pathology, Dow Diagnostic Reference and Research Laboratory, Dow University of Health Sciences, Karachi, Pakistan
- Dow Institute for Advanced Biological and Animal Research, Dow International Medical College, Dow University of Health Sciences, Karachi, Pakistan
| | - Shazmeen Aslam
- Dow Institute for Advanced Biological and Animal Research, Dow International Medical College, Dow University of Health Sciences, Karachi, Pakistan
| | - Muhammad Raza Shah
- International Center for Chemical and Biological Sciences, H.E.J Research Institute of Chemistry, University of Karachi, Karachi, Pakistan
| |
Collapse
|
2
|
Xu M, Zhang C, Yan J, Lu Z, Shi L, Zhang Y, Lin J, Cao Y, Pei R. A responsive nanoplatform with molecular and structural imaging capacity for assisting accurate diagnosis of early rheumatoid arthritis. Int J Biol Macromol 2024; 271:132514. [PMID: 38768917 DOI: 10.1016/j.ijbiomac.2024.132514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/27/2024] [Accepted: 05/17/2024] [Indexed: 05/22/2024]
Abstract
Accurate early diagnosis of rheumatoid arthritis (RA) and prompt implementation of appropriate treatment approaches are crucial. In the clinic, magnetic resonance imaging (MRI) has been recommended for implementation to aid in the precise and early diagnosis of RA. However, they are still limited by issues regarding specificity and their ability to capture comprehensive information about the pathological features. Herein, a responsive multifunctional nanoplatform with targeting capabilities (hMnO2-IR@BSA-PEG-FA) is constructed through integrating a RA microenvironment-responsive MRI contrast agent with activatable near-infrared (NIR) fluorescence imaging, aiming to simultaneously acquire comprehensive pathological features of RA from both structural and molecular imaging perspectives. Moreover, taking advantage of its targeting function to synovial microphages, hMnO2-IR@BSA-PEG-FA demonstrated a remarkable capability to accumulate effectively at the synovial tissue. Additionally, hMnO2 responded to the mild acidity and reactive oxygen species (ROS) in the RA microenvironment, leading to the controlled release of Mn2+ ions and IR780, which separately caused special MRI contrast enhancement of synovial tissues and sensitively demonstrated the presence of ROS and weakly acid microenvironment by NIR imaging. Consequently, hMnO2-IR@BSA-PEG-FA is expected to serve as a promising nanoplatform, offering valuable assistance in the precise diagnosis of early-stage RA by specially providing comprehensive information about the pathological features.
Collapse
Affiliation(s)
- Mingsheng Xu
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China; CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Chenhui Zhang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China; Department of Orthopaedics, Suzhou Dushu Lake Hospital, Dushu Lake Hospital Affiliated to Soochow University, Medical Centre of Soochow University, Suzhou 215001, China
| | - Jincong Yan
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China; CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Zhongzhong Lu
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China; CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Lei Shi
- Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan, Jiangsu 215300, China
| | - Yuehu Zhang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Jun Lin
- Department of Orthopaedics, Suzhou Dushu Lake Hospital, Dushu Lake Hospital Affiliated to Soochow University, Medical Centre of Soochow University, Suzhou 215001, China.
| | - Yi Cao
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China; Jiangxi Institute of Nanotechnology, Nanchang 330200, China.
| | - Renjun Pei
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China; CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| |
Collapse
|
3
|
Mallik R, Saha M, Ghosh B, Chauhan N, Mohan H, Kumaran SS, Mukherjee C. Folate Receptor Targeting Mn(II) Complex Encapsulated Porous Silica Nanoparticle as an MRI Contrast Agent for Early-State Detection of Cancer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2401787. [PMID: 38766969 DOI: 10.1002/smll.202401787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/01/2024] [Indexed: 05/22/2024]
Abstract
Cancer is recognized as one of the major causes of mortality, however, early-stage detection can increase the survival chance greatly. It is recognized that folate receptors are gradually overexpressed in the cellular membrane with the progress of cancer from stage 1 to stage 4. Utilizing the fact, herein, developed a porous silica nanoparticle system C1@SiO2-FA-NP; A) impregnated with thermodynamically stable Mn(II) complex (1) molecules within the core of the nanoparticle, and B) surface functionalized with folate units. It exhibited a high longitudinal relaxivity value r1 = 21.45 mM-1s-1 that substantially increased to r1 = 40.97 mM-1s-1 in the presence of 0.67 mM concentration of BSA under the physiological condition. The in vitro fluorescent images after surface conjugation of C1@SiO2-FA-NP with FITC (fluorescein isothiocyanate) buttressed the inclusion of the nanoparticle exclusively within the cancerous HeLa cells than that of healthy HEK293 cells. The importance of the surface-bound folate unit in the nanoparticle is further established by comparing the fluorescent images of HeLa cells in the absence of the group. Finally, the applicability of C1@SiO2-FA-NP as the T1-weighted MRI contrast agent for early-stage cancer diagnosis is established within C57BL/6 mice after infecting the mice with HeLa cells.
Collapse
Affiliation(s)
- Riya Mallik
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Muktashree Saha
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Basab Ghosh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Nisha Chauhan
- Department of NMR, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Hari Mohan
- Department of Medical Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - S Senthil Kumaran
- Department of NMR, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Chandan Mukherjee
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| |
Collapse
|
4
|
Kumari M, Sharma S, Kanwar N, Naman S, Baldi A. Dextran-based Drug Delivery Approaches for Lung Diseases: A Review. Curr Drug Deliv 2024; 21:1474-1496. [PMID: 38243938 DOI: 10.2174/0115672018267737231116100812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/13/2023] [Accepted: 09/27/2023] [Indexed: 01/22/2024]
Abstract
Respiratory disorders, such as tuberculosis, cystic fibrosis, chronic obstructive pulmonary disease, asthma, lung cancer, and pulmonary inflammation, are among the most prevalent ailments in today's world. Dextran, an exopolysaccharide formed by Leuconostoc mesenteroides (slimeproducing bacteria), and its derivatives are investigated for several therapeutic utilities. Dextranbased drug delivery system can become an innovative strategy in the treatment of several respiratory ailments as it offers numerous advantages, such as mucolytic action, airway hydration, antiinflammatory properties, and radioprotective effect as compared to other polysaccharides. Being biocompatible, flexible hydrophilic nature, biodegradable, tasteless, odourless, non-mutagenic, watersoluble and non-toxic edible polymer, dextran-based drug delivery systems have been explored for a wide range of therapeutic applications, especially in lungs and respiratory diseases. The present article comprehensively discusses various derivatives of dextran with their attributes to be considered for drug delivery and extensive therapeutic benefits, with a special emphasis on the armamentarium of dextran-based formulations for the treatment of respiratory disorders and associated pathological conditions. The information provided will act as a platform for formulation scientists as important considerations in designing therapeutic approaches for lung and respiratory diseases. With an emphasis on lung illnesses, this article will offer an in-depth understanding of dextran-based delivery systems in respiratory illnesses.
Collapse
Affiliation(s)
- Manisha Kumari
- Pharma Innovation Lab, Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda-151001, Punjab, India
| | - Sanyam Sharma
- Pharma Innovation Lab, Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda-151001, Punjab, India
| | - Navjot Kanwar
- Pharma Innovation Lab, Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda-151001, Punjab, India
| | - Subh Naman
- Pharma Innovation Lab, Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda-151001, Punjab, India
| | - Ashish Baldi
- Pharma Innovation Lab, Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda-151001, Punjab, India
| |
Collapse
|
5
|
Álvarez K, Rojas M. Nanoparticles targeting monocytes and macrophages as diagnostic and therapeutic tools for autoimmune diseases. Heliyon 2023; 9:e19861. [PMID: 37810138 PMCID: PMC10559248 DOI: 10.1016/j.heliyon.2023.e19861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 08/16/2023] [Accepted: 09/04/2023] [Indexed: 10/10/2023] Open
Abstract
Autoimmune diseases are chronic conditions that result from an inadequate immune response to self-antigens and affect many people worldwide. Their signs, symptoms, and clinical severity change throughout the course of the disease, therefore the diagnosis and treatment of autoimmune diseases are major challenges. Current diagnostic tools are often invasive and tend to identify the issue at advanced stages. Moreover, the available treatments for autoimmune diseases do not typically lead to complete remission and are associated with numerous side effects upon long-term usage. A promising strategy is the use of nanoparticles that can be used as contrast agents in diagnostic imaging techniques to detect specific cells present at the inflammatory infiltrates in tissues that are not easily accessible by biopsy. In addition, NPs can be designed to deliver drugs to a cell population or tissue. Considering the significant role played by monocytes in the development of chronic inflammatory conditions and their emergence as a target for extracorporeal monitoring and precise interventions, this review focuses on recent advancements in nanoparticle-based strategies for diagnosing and treating autoimmune diseases, with a particular emphasis on targeting monocyte populations.
Collapse
Affiliation(s)
- Karen Álvarez
- Grupo de Inmunología Celular e Inmunogenética, Sede de Investigación Universitaria (SIU), Universidad de Antioquia (UDEA), Colombia
| | - Mauricio Rojas
- Grupo de Inmunología Celular e Inmunogenética, Sede de Investigación Universitaria (SIU), Universidad de Antioquia (UDEA), Colombia
- Unidad de Citometría de Flujo, Sede de Investigación Universitaria (SIU), Universidad de Antioquia (UDEA), Colombia
| |
Collapse
|
6
|
Dextran Formulations as Effective Delivery Systems of Therapeutic Agents. Molecules 2023; 28:molecules28031086. [PMID: 36770753 PMCID: PMC9920038 DOI: 10.3390/molecules28031086] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/12/2023] [Accepted: 01/20/2023] [Indexed: 01/24/2023] Open
Abstract
Dextran is by far one of the most interesting non-toxic, bio-compatible macromolecules, an exopolysaccharide biosynthesized by lactic acid bacteria. It has been extensively used as a major component in many types of drug-delivery systems (DDS), which can be submitted to the next in-vivo testing stages, and may be proposed for clinical trials or pharmaceutical use approval. An important aspect to consider in order to maintain high DDS' biocompatibility is the use of dextran obtained by fermentation processes and with a minimum chemical modification degree. By performing chemical modifications, artefacts can appear in the dextran spatial structure that can lead to decreased biocompatibility or even cytotoxicity. The present review aims to systematize DDS depending on the dextran type used and the biologically active compounds transported, in order to obtain desired therapeutic effects. So far, pure dextran and modified dextran such as acetalated, oxidised, carboxymethyl, diethylaminoethyl-dextran and dextran sulphate sodium, were used to develop several DDSs: microspheres, microparticles, nanoparticles, nanodroplets, liposomes, micelles and nanomicelles, hydrogels, films, nanowires, bio-conjugates, medical adhesives and others. The DDS are critically presented by structures, biocompatibility, drugs loaded and therapeutic points of view in order to highlight future therapeutic perspectives.
Collapse
|
7
|
Zheng K, Bai J, Yang H, Xu Y, Pan G, Wang H, Geng D. Nanomaterial-assisted theranosis of bone diseases. Bioact Mater 2022; 24:263-312. [PMID: 36632509 PMCID: PMC9813540 DOI: 10.1016/j.bioactmat.2022.12.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/16/2022] [Accepted: 12/18/2022] [Indexed: 12/27/2022] Open
Abstract
Bone-related diseases refer to a group of skeletal disorders that are characterized by bone and cartilage destruction. Conventional approaches can regulate bone homeostasis to a certain extent. However, these therapies are still associated with some undesirable problems. Fortunately, recent advances in nanomaterials have provided unprecedented opportunities for diagnosis and therapy of bone-related diseases. This review provides a comprehensive and up-to-date overview of current advanced theranostic nanomaterials in bone-related diseases. First, the potential utility of nanomaterials for biological imaging and biomarker detection is illustrated. Second, nanomaterials serve as therapeutic delivery platforms with special functions for bone homeostasis regulation and cellular modulation are highlighted. Finally, perspectives in this field are offered, including current key bottlenecks and future directions, which may be helpful for exploiting nanomaterials with novel properties and unique functions. This review will provide scientific guidance to enhance the development of advanced nanomaterials for the diagnosis and therapy of bone-related diseases.
Collapse
Affiliation(s)
- Kai Zheng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, 215006, Jiangsu, China
| | - Jiaxiang Bai
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, 215006, Jiangsu, China,Corresponding author.Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China.
| | - Huilin Yang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, 215006, Jiangsu, China
| | - Yaozeng Xu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, 215006, Jiangsu, China
| | - Guoqing Pan
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Huaiyu Wang
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China,Corresponding author.
| | - Dechun Geng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, 215006, Jiangsu, China,Corresponding author. Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China.
| |
Collapse
|
8
|
Zhang C, Huang W, Huang C, Zhou C, Tang Y, Wei W, Li Y, Tang Y, Luo Y, Zhou Q, Chen W. VHPKQHR Peptide Modified Ultrasmall Paramagnetic Iron Oxide Nanoparticles Targeting Rheumatoid Arthritis for T1-Weighted Magnetic Resonance Imaging. Front Bioeng Biotechnol 2022; 10:821256. [PMID: 35295653 PMCID: PMC8918785 DOI: 10.3389/fbioe.2022.821256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/14/2022] [Indexed: 11/18/2022] Open
Abstract
Magnetic resonance imaging (MRI) could be the ideal diagnostic modality for early rheumatoid arthritis (RA). Vascular cell adhesion molecule-1 (VCAM-1) is highly expressed in synovial locations in patients with RA, which could be a potential target protein for RA diagnosis. The peptide VHPKQHR (VHP) has a high affinity to VCAM-1. To make the contrast agent to target RA at an early stage, we used VHP and ultrasmall paramagnetic iron oxide (USPIO) to synthesize UVHP (U stands for USPIO) through a chemical reaction with 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride and N-hydroxysuccinimide. The size of UVHP was 6.7 nm; the potential was −27.7 mV, and the r2/r1 value was 1.73. Cytotoxicity assay exhibited that the cell survival rate was higher than 80% at even high concentrations of UVHP (Fe concentration 200 µg/mL), which showed the UVHP has low toxicity. Compared with no TNF-α stimulation, VCAM-1 expression was increased nearly 3-fold when mouse aortic endothelial cells (MAECs) were stimulated with 50 ng/mL TNF-α; cellular Fe uptake was increased very significantly with increasing UVHP concentration under TNF-α treatment; cellular Fe content was 17 times higher under UVHP with Fe concentration 200 µg/mL treating MAECs. These results indicate that UVHP can target overexpression of VCAM-1 at the cellular level. RA mice models were constructed with adjuvant-induced arthritis. In vivo MRI and biodistribution results show that the signal intensity of knee joints was increased significantly and Fe accumulation in RA model mice compared with normal wild-type mice after injecting UVHP 24 h. These results suggest that we have synthesized a simple, low-cost, and less toxic contrast agent UVHP, which targeted VCAM-1 for early-stage RA diagnosis and generates high contrast in T1-weighted MRI.
Collapse
Affiliation(s)
- Chunyu Zhang
- MOE Key Laboratory of Laser Life Science, Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
- Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Wentao Huang
- MOE Key Laboratory of Laser Life Science, Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
- Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Chen Huang
- Department of Minimally Invasive Interventional Radiology, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Chengqian Zhou
- Neuroscience Laboratory, Hugo Moser Research Institute at Kennedy Krieger, Baltimore, MD, United States
| | - Yukuan Tang
- Department of Minimally Invasive Interventional Radiology, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Wei Wei
- Institution of GuangDong Cord Blood Bank, Guangzhou, China
| | - Yongsheng Li
- Institution of GuangDong Cord Blood Bank, Guangzhou, China
| | - Yukuan Tang
- Department of Minimally Invasive Interventional Radiology, Guangzhou Panyu Central Hospital, Guangzhou, China
- *Correspondence: Yukuan Tang, ; Yu Luo, ; Quan Zhou, ; Wenli Chen,
| | - Yu Luo
- Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular Noncoding RNA, Institute for Frontier Medical Technology, College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, China
- *Correspondence: Yukuan Tang, ; Yu Luo, ; Quan Zhou, ; Wenli Chen,
| | - Quan Zhou
- Department of Radiology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- *Correspondence: Yukuan Tang, ; Yu Luo, ; Quan Zhou, ; Wenli Chen,
| | - Wenli Chen
- MOE Key Laboratory of Laser Life Science, Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
- Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, China
- *Correspondence: Yukuan Tang, ; Yu Luo, ; Quan Zhou, ; Wenli Chen,
| |
Collapse
|
9
|
Jobdeedamrong A, Theerasilp M, Thumrongsiri N, Dana P, Saengkrit N, Crespy D. Responsive polyprodrug for anticancer nanocarriers. Polym Chem 2022. [DOI: 10.1039/d2py00427e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Nanocarriers responsive to glutathione (GSH), a molecule overexpressed in cancer cells, are extensively investigated for the delivery of Pt-based chemotherapeutics for cancer treatment.
Collapse
Affiliation(s)
- Arjaree Jobdeedamrong
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, 21210 Rayong, Thailand
| | - Man Theerasilp
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, 21210 Rayong, Thailand
| | - Nutthanit Thumrongsiri
- National Nanotechnology Center, National Science and Technology Development Agency, Pathumthani, 12120, Thailand
| | - Paweena Dana
- National Nanotechnology Center, National Science and Technology Development Agency, Pathumthani, 12120, Thailand
| | - Nattika Saengkrit
- National Nanotechnology Center, National Science and Technology Development Agency, Pathumthani, 12120, Thailand
| | - Daniel Crespy
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, 21210 Rayong, Thailand
| |
Collapse
|
10
|
Martín-Sabroso C, Torres-Suárez AI, Alonso-González M, Fernández-Carballido A, Fraguas-Sánchez AI. Active Targeted Nanoformulations via Folate Receptors: State of the Art and Future Perspectives. Pharmaceutics 2021; 14:14. [PMID: 35056911 PMCID: PMC8781617 DOI: 10.3390/pharmaceutics14010014] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/14/2021] [Accepted: 12/20/2021] [Indexed: 02/08/2023] Open
Abstract
In normal tissues, the expression of folate receptors is low and limited to cells that are important for embryonic development or for folate reabsorption. However, in several pathological conditions some cells, such as cancer cells and activated macrophages, overexpress folate receptors (FRs). This overexpression makes them a potential therapeutic target in the treatment of cancer and inflammatory diseases to obtain a selective delivery of drugs at altered cells level, and thus to improve the therapeutic efficacy and decrease the systemic toxicity of the pharmacological treatments. Two strategies have been used to achieve this folate receptor targeting: (i) the use of ligands with high affinity to FRs (e.g., folic acid or anti-FRs monoclonal antibodies) linked to the therapeutic agents or (ii) the use of nanocarriers whose surface is decorated with these ligands and in which the drug is encapsulated. This manuscript analyzes the use of FRs as a target to develop new therapeutic tools in the treatment of cancer and inflammatory diseases with an emphasis on the nanoformulations that have been developed for both therapeutic and imaging purposes.
Collapse
Affiliation(s)
- Cristina Martín-Sabroso
- Department of Pharmaceutics and Food Technology, School of Pharmacy, Complutense University, 28040 Madrid, Spain; (C.M.-S.); (A.I.T.-S.); (M.A.-G.); (A.F.-C.)
- Institute of Industrial Pharmacy, Complutense University, 28040 Madrid, Spain
| | - Ana Isabel Torres-Suárez
- Department of Pharmaceutics and Food Technology, School of Pharmacy, Complutense University, 28040 Madrid, Spain; (C.M.-S.); (A.I.T.-S.); (M.A.-G.); (A.F.-C.)
- Institute of Industrial Pharmacy, Complutense University, 28040 Madrid, Spain
| | - Mario Alonso-González
- Department of Pharmaceutics and Food Technology, School of Pharmacy, Complutense University, 28040 Madrid, Spain; (C.M.-S.); (A.I.T.-S.); (M.A.-G.); (A.F.-C.)
| | - Ana Fernández-Carballido
- Department of Pharmaceutics and Food Technology, School of Pharmacy, Complutense University, 28040 Madrid, Spain; (C.M.-S.); (A.I.T.-S.); (M.A.-G.); (A.F.-C.)
- Institute of Industrial Pharmacy, Complutense University, 28040 Madrid, Spain
| | - Ana Isabel Fraguas-Sánchez
- Department of Pharmaceutics and Food Technology, School of Pharmacy, Complutense University, 28040 Madrid, Spain; (C.M.-S.); (A.I.T.-S.); (M.A.-G.); (A.F.-C.)
- Institute of Industrial Pharmacy, Complutense University, 28040 Madrid, Spain
| |
Collapse
|
11
|
Miller HA, Schake MA, Bony BA, Curtis ET, Gee CC, McCue IS, Ripperda TJ, Chatzizisis YS, Kievit FM, Pedrigi RM. Smooth muscle cells affect differential nanoparticle accumulation in disturbed blood flow-induced murine atherosclerosis. PLoS One 2021; 16:e0260606. [PMID: 34882722 PMCID: PMC8659666 DOI: 10.1371/journal.pone.0260606] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 11/12/2021] [Indexed: 11/19/2022] Open
Abstract
Atherosclerosis is a lipid-driven chronic inflammatory disease that leads to the formation of plaques in the inner lining of arteries. Plaques form over a range of phenotypes, the most severe of which is vulnerable to rupture and causes most of the clinically significant events. In this study, we evaluated the efficacy of nanoparticles (NPs) to differentiate between two plaque phenotypes based on accumulation kinetics in a mouse model of atherosclerosis. This model uses a perivascular cuff to induce two regions of disturbed wall shear stress (WSS) on the inner lining of the instrumented artery, low (upstream) and multidirectional (downstream), which, in turn, cause the development of an unstable and stable plaque phenotype, respectively. To evaluate the influence of each WSS condition, in addition to the final plaque phenotype, in determining NP uptake, mice were injected with NPs at intermediate and fully developed stages of plaque growth. The kinetics of artery wall uptake were assessed in vivo using dynamic contrast-enhanced magnetic resonance imaging. At the intermediate stage, there was no difference in NP uptake between the two WSS conditions, although both were different from the control arteries. At the fully-developed stage, however, NP uptake was reduced in plaques induced by low WSS, but not multidirectional WSS. Histological evaluation of plaques induced by low WSS revealed a significant inverse correlation between the presence of smooth muscle cells and NP accumulation, particularly at the plaque-lumen interface, which did not exist with other constituents (lipid and collagen) and was not present in plaques induced by multidirectional WSS. These findings demonstrate that NP accumulation can be used to differentiate between unstable and stable murine atherosclerosis, but accumulation kinetics are not directly influenced by the WSS condition. This tool could be used as a diagnostic to evaluate the efficacy of experimental therapeutics for atherosclerosis.
Collapse
Affiliation(s)
- Hunter A. Miller
- Department of Biological Systems Engineering, University of Nebraska–Lincoln, Lincoln, NE, United States of America
| | - Morgan A. Schake
- Department of Mechanical and Materials Engineering, University of Nebraska–Lincoln, Lincoln, NE, United States of America
| | - Badrul Alam Bony
- Department of Biological Systems Engineering, University of Nebraska–Lincoln, Lincoln, NE, United States of America
| | - Evan T. Curtis
- Department of Biological Systems Engineering, University of Nebraska–Lincoln, Lincoln, NE, United States of America
| | - Connor C. Gee
- Department of Biological Systems Engineering, University of Nebraska–Lincoln, Lincoln, NE, United States of America
| | - Ian S. McCue
- Department of Mechanical and Materials Engineering, University of Nebraska–Lincoln, Lincoln, NE, United States of America
| | - Thomas J. Ripperda
- Department of Mechanical and Materials Engineering, University of Nebraska–Lincoln, Lincoln, NE, United States of America
| | - Yiannis S. Chatzizisis
- Cardiovascular Division, University of Nebraska Medical Center, Omaha, NE, United States of America
| | - Forrest M. Kievit
- Department of Biological Systems Engineering, University of Nebraska–Lincoln, Lincoln, NE, United States of America
- * E-mail: (RMP); (FMK)
| | - Ryan M. Pedrigi
- Department of Mechanical and Materials Engineering, University of Nebraska–Lincoln, Lincoln, NE, United States of America
- * E-mail: (RMP); (FMK)
| |
Collapse
|
12
|
You SM, Park JS, Luo K, Jeong KB, Adra HJ, Kim YR. Modulation of the peroxidase-like activity of iron oxide nanoparticles by surface functionalization with polysaccharides and its application for the detection of glutathione. Carbohydr Polym 2021; 267:118164. [PMID: 34119137 DOI: 10.1016/j.carbpol.2021.118164] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 12/30/2022]
Abstract
Here, we employed three polysaccharides, such as dextran, hyaluronic acid, and chitosan, for surface modification of iron oxide nanoparticles (IONPs) and carried out in-depth investigation to elucidate the effect of surface functionalities on the peroxidase (POD) like activity of IONPs. The affinity of substrates to the catalytic site of IONPs was found to be determined by the surface functional groups and hydration layer of polysaccharide coating on the surface of IONPs. The role of hydration layer was further confirmed by the results that the POD-like activity of IONPs coated with a certain polysaccharide having higher water holding capacity was significantly enhanced by salting-out reagent, such as ammonium chloride that is known to reduce the thickness of hydration layer. Moreover, the excellent catalytic activity of dextran-coated IONPs was successfully applied to develop a highly sensitive sensing system for the detection of glutathione (GSH) with a limit of detection of 2.3 nM.
Collapse
Affiliation(s)
- Sang-Mook You
- Institute of Life Sciences and Resources, Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Jin-Sung Park
- Institute of Life Sciences and Resources, Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Ke Luo
- Institute of Life Sciences and Resources, Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Ki-Baek Jeong
- Institute of Life Sciences and Resources, Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Hazzel Joy Adra
- Institute of Life Sciences and Resources, Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Young-Rok Kim
- Institute of Life Sciences and Resources, Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea.
| |
Collapse
|
13
|
Crețu BEB, Dodi G, Shavandi A, Gardikiotis I, Șerban IL, Balan V. Imaging Constructs: The Rise of Iron Oxide Nanoparticles. Molecules 2021; 26:3437. [PMID: 34198906 PMCID: PMC8201099 DOI: 10.3390/molecules26113437] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/27/2021] [Accepted: 06/01/2021] [Indexed: 12/14/2022] Open
Abstract
Over the last decade, an important challenge in nanomedicine imaging has been the work to design multifunctional agents that can be detected by single and/or multimodal techniques. Among the broad spectrum of nanoscale materials being investigated for imaging use, iron oxide nanoparticles have gained significant attention due to their intrinsic magnetic properties, low toxicity, large magnetic moments, superparamagnetic behaviour and large surface area-the latter being a particular advantage in its conjunction with specific moieties, dye molecules, and imaging probes. Tracers-based nanoparticles are promising candidates, since they combine synergistic advantages for non-invasive, highly sensitive, high-resolution, and quantitative imaging on different modalities. This study represents an overview of current advancements in magnetic materials with clinical potential that will hopefully provide an effective system for diagnosis in the near future. Further exploration is still needed to reveal their potential as promising candidates from simple functionalization of metal oxide nanomaterials up to medical imaging.
Collapse
Affiliation(s)
- Bianca Elena-Beatrice Crețu
- Advanced Centre for Research-Development in Experimental Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 700115 Iasi, Romania; (B.E.-B.C.); (I.G.)
| | - Gianina Dodi
- Advanced Centre for Research-Development in Experimental Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 700115 Iasi, Romania; (B.E.-B.C.); (I.G.)
| | - Amin Shavandi
- BioMatter-Biomass Transformation Lab, École Polytechnique de Bruxelles, Université Libre de Bruxelles, 1050 Brussels, Belgium;
| | - Ioannis Gardikiotis
- Advanced Centre for Research-Development in Experimental Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 700115 Iasi, Romania; (B.E.-B.C.); (I.G.)
| | - Ionela Lăcrămioara Șerban
- Physiology Department, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 700115 Iasi, Romania;
| | - Vera Balan
- Faculty of Medical Bioengineering, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 700115 Iasi, Romania;
| |
Collapse
|
14
|
Zhao J, Chen X, Ho KH, Cai C, Li CW, Yang M, Yi C. Nanotechnology for diagnosis and therapy of rheumatoid arthritis: Evolution towards theranostic approaches. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.11.048] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
15
|
Han D, Chen Q, Chen H. Food-Derived Nanoscopic Drug Delivery Systems for Treatment of Rheumatoid Arthritis. Molecules 2020; 25:E3506. [PMID: 32752061 PMCID: PMC7436204 DOI: 10.3390/molecules25153506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/23/2020] [Accepted: 07/30/2020] [Indexed: 12/12/2022] Open
Abstract
Rheumatoid arthritis (RA) is a severe systemic inflammatory disease with no cure at present. Recent developments in the understanding of inflammation and nanomaterial science have led to increased applications of nanostructured drug delivery systems in the treatment of RA. The present review summarizes novel fabrications of nanoscale drug carriers using food components as either the delivered drugs or carrier structures, in order to achieve safe, effective and convenient drug administration. Polyphenols and flavonoids are among the most frequently carried anti-RA therapeutics in the nanosystems. Fatty substances, polysaccharides, and peptides/proteins can function as structuring agents of the nanocarriers. Frequently used nanostructures include nanoemulsions, nanocapsules, liposomes, and various nanoparticles. Using these nanostructures has improved drug solubility, absorption, biodistribution, stability, targeted accumulation, and release. Joint vectorization, i.e., using a combination of bioactive molecules, can bring elevated therapeutic outcomes. Utilization of anti-arthritic chemicals that can self-assemble into nanostructures is a promising research orientation in this field.
Collapse
Affiliation(s)
| | - Qilei Chen
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China;
| | - Hubiao Chen
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China;
| |
Collapse
|
16
|
Wu Y, Lu Z, Li Y, Yang J, Zhang X. Surface Modification of Iron Oxide-Based Magnetic Nanoparticles for Cerebral Theranostics: Application and Prospection. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1441. [PMID: 32722002 PMCID: PMC7466388 DOI: 10.3390/nano10081441] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/09/2020] [Accepted: 07/11/2020] [Indexed: 12/22/2022]
Abstract
Combining diagnosis with therapy, magnetic iron oxide nanoparticles (INOPs) act as an important vehicle for drug delivery. However, poor biocompatibility of INOPs limits their application. To improve the shortcomings, various surface modifications have been developed, including small molecules coatings, polymers coatings, lipid coatings and lipopolymer coatings. These surface modifications facilitate iron nanoparticles to cross the blood-brain-barrier, which is essential for diagnosis and treatments of brain diseases. Here we focus on the characteristics of different coated INOPs and their application in brain disease, particularly gliomas, Alzheimer's disease (AD) and Parkinson's disease (PD). Moreover, we summarize the current progress and expect to provide help for future researches.
Collapse
Affiliation(s)
- Yanyue Wu
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiguo Lu
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Li
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Jun Yang
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Zhang
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
17
|
Wang S, Lv J, Meng S, Tang J, Nie L. Recent Advances in Nanotheranostics for Treat-to-Target of Rheumatoid Arthritis. Adv Healthc Mater 2020; 9:e1901541. [PMID: 32031759 DOI: 10.1002/adhm.201901541] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/31/2019] [Indexed: 12/16/2022]
Abstract
Early diagnosis, standardized treatment, and regular monitoring are the clinical treatment principle of rheumatoid arthritis (RA). The overarching principles and recommendations of treat-to-target (T2T) in RA advocate remission as the optimum aim, especially for patients with very early disease who are initiating therapy with anti-RA medications. However, traditional anti-RA drugs cannot selectively target the inflammatory areas and may cause serious side effects due to its short biological half-life and poor bioavailability. These limitations have significantly driven the research and application of nanomaterial-based drugs in theranostics of RA. Nanomedicines have appropriate sizes and easily modified surfaces which can enhance their biological compatibility and prolong circulation time of drug-loading systems in vivo. Traditional T2T regimens cannot evaluate the efficacy of drugs in real time, while clinical drug nanosizing can realize the integration of diagnosis and treatment of RA. This review bridges clinically proposed T2T concepts and nanomedicine in an integrated system for RA early-stage diagnosis and treatment. The most advanced progress in various nanodrug delivery systems for theranostics of RA is summarized, establishing a clear path and a new perspective for further optimization of T2T. Finally, the key facing challenges are discussed and prospects are addressed.
Collapse
Affiliation(s)
- Shasha Wang
- Hunan Key Laboratory of Biomedical Nanomaterials and DevicesHunan University of Technology Zhuzhou 412007 P. R. China
| | - Jing Lv
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnosis & Center for Molecular Imaging and Translational MedicineSchool of Public HealthXiamen University Xiamen 361102 P. R. China
| | - Shanshan Meng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnosis & Center for Molecular Imaging and Translational MedicineSchool of Public HealthXiamen University Xiamen 361102 P. R. China
| | - Jianxin Tang
- Hunan Key Laboratory of Biomedical Nanomaterials and DevicesHunan University of Technology Zhuzhou 412007 P. R. China
| | - Liming Nie
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnosis & Center for Molecular Imaging and Translational MedicineSchool of Public HealthXiamen University Xiamen 361102 P. R. China
| |
Collapse
|
18
|
Xu XL, Lu KJ, Yao XQ, Ying XY, Du YZ. Stimuli-responsive Drug Delivery Systems as an Emerging Platform for Treatment of Rheumatoid Arthritis. Curr Pharm Des 2020; 25:155-165. [PMID: 30907308 DOI: 10.2174/1381612825666190321104424] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 03/16/2019] [Indexed: 12/21/2022]
Abstract
Rheumatoid Arthritis (RA) is a systemic autoimmune disease accompanied by chronic inflammation. Due to the long-term infiltration in inflammatory sites, joints get steadily deteriorated, eventually resulting in functional incapacitation and disability. Despite the considerable effect, RA sufferers treated with current drug therapeutic efficacy are exposed to severe side effects. Application of Drug Delivery Systems (DDS) has improved these situations while the problem of limited drug exposure remains untackled. Stimuli-responsive DDS that are responsive to a variety of endogenous and exogenous stimuli, such as pH, redox status, and temperature, have emerged as a promising therapeutic strategy to optimize the drug release. Herein, we discussed the therapeutic regimes and serious side effects of current RA therapy, as well as focused on some of the potential stimuliresponsive DDS utilized in RA therapy. Besides, the prospective room in designing DDS for RA treatment has also been discussed.
Collapse
Affiliation(s)
- Xiao-Ling Xu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Kong-Jun Lu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiao-Qin Yao
- School of Medicine, Zhejiang University City College, Hangzhou 310058, China
| | - Xiao-Ying Ying
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yong-Zhong Du
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
19
|
Xiao S, Tang Y, Lv Z, Lin Y, Chen L. Nanomedicine - advantages for their use in rheumatoid arthritis theranostics. J Control Release 2019; 316:302-316. [PMID: 31715278 DOI: 10.1016/j.jconrel.2019.11.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 11/07/2019] [Accepted: 11/08/2019] [Indexed: 02/08/2023]
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease accompanies with synovial inflammation and progressive bone destruction. Currently, anti-rheumatic drugs need high dose and frequent use for a long-term, which lead to serious side effect and low patient compliance. To overcome above problems and improve clinical efficacy, nano-technology with targeting ability, sustained release and so forth, has been proposed on RA treatment and already achieved success in RA animal models. In this review, authors summarize and illustrate representative nanomedicine targeting to RA states, which is achieved either through passive or active targeting with high affinity to the receptors that are over-expressed in macrophages or angiogenesis. In particular, authors highlight the new strategies to promote the efficacy of nanoscale treatments through phototherapy and the addition of contrast elements for theranostic application. The described advances may pave the way to better understanding and designing the novel nanomedicine and multifunctional nano-system on efficient RA treatment.
Collapse
Affiliation(s)
- Shuyi Xiao
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, PR China; Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, PR China
| | - Yufu Tang
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), Nanjing 211816, PR China
| | - Zhuang Lv
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications (NUPT), Nanjing 210023, PR China
| | - Yimu Lin
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, PR China
| | - Liang Chen
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, PR China.
| |
Collapse
|
20
|
Liu L, Guo W, Liang XJ. Move to Nano-Arthrology: Targeted Stimuli-Responsive Nanomedicines Combat Adaptive Treatment Tolerance (ATT) of Rheumatoid Arthritis. Biotechnol J 2018; 14:e1800024. [DOI: 10.1002/biot.201800024] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/15/2018] [Indexed: 12/27/2022]
Affiliation(s)
- Lu Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety; CAS Center for Excellence in Nanoscience; National Center for Nanoscience and Technology of China; Beijing 100190 P. R. China
- University of Chinese Academy of Sciences; Beijing 100049 P. R. China
| | - Weisheng Guo
- Translational Medicine Center, State Key Laboratory of Respiratory Disease; The Second Affiliated Hospital; Guangzhou Medical University; Guangzhou 510260 P. R. China
| | - Xing-Jie Liang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety; CAS Center for Excellence in Nanoscience; National Center for Nanoscience and Technology of China; Beijing 100190 P. R. China
- University of Chinese Academy of Sciences; Beijing 100049 P. R. China
| |
Collapse
|
21
|
Pirmardvand Chegini S, Varshosaz J, Taymouri S. Recent approaches for targeted drug delivery in rheumatoid arthritis diagnosis and treatment. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:502-514. [PMID: 29661045 DOI: 10.1080/21691401.2018.1460373] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory disease with complex pathology characterized by inflammation of joints, devastation of the synovium, pannus formation, bones and cartilage destruction and often is associated with persistent arthritic pain, swelling, stiffness and work disability. In conventional RA therapy, because of short biological half-life, poor bioavailability, high and frequent dosing is required. Thereby, these anti-RA medications, which unable to selectively target affected zone, may cause severe side effects in extra-articular tissues. Today, nanotechnology has emerged as promising tool in the development of novel drug delivery systems for the treatment and diagnosis of intractable diseases such as RA. Active targeting in RA nanomedicine has also been introduced a successful way for facilitating specific uptake of therapeutic agents by the disease cells. In this review, it is attempted to describe various targeted drug delivery systems (localized and receptor-based) used for RA diagnosis and therapy. Then, we highlight recent developments related to various non-viral gene delivery systems for RA gene therapy.
Collapse
Affiliation(s)
- Sana Pirmardvand Chegini
- a Department of Pharmaceutics, School of Pharmacy and Novel Drug Delivery Systems Research Centre , Isfahan University of Medical Sciences , Isfahan , Iran
| | - Jaleh Varshosaz
- a Department of Pharmaceutics, School of Pharmacy and Novel Drug Delivery Systems Research Centre , Isfahan University of Medical Sciences , Isfahan , Iran
| | - Somayeh Taymouri
- a Department of Pharmaceutics, School of Pharmacy and Novel Drug Delivery Systems Research Centre , Isfahan University of Medical Sciences , Isfahan , Iran
| |
Collapse
|
22
|
Li Z, Narouz MR, Munro K, Hao B, Crudden CM, Horton JH, Hao H. Carboxymethylated Dextran-Modified N-Heterocyclic Carbene Self-Assembled Monolayers on Gold for Use in Surface Plasmon Resonance Biosensing. ACS APPLIED MATERIALS & INTERFACES 2017; 9:39223-39234. [PMID: 29048150 DOI: 10.1021/acsami.7b13114] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Surface chemistry is a key enabler for various biosensing applications. Biosensors based on surface plasmon resonance routinely employ thiol-based chemistry for the linker layer between gold-coated support surfaces and functional biosensor surfaces. However, there is a growing awareness that such sensor surfaces are prone to oxidation/degradation problems in the presence of oxygen, and previous efforts to improve the stability have shown limited advancements. As an alternative, recent studies employing N-heterocyclic carbene (NHC) self-assembled monolayers (SAMs) deposited on gold have shown significant promise in this area. Here, we describe a sensor surface employing an NHC SAM to couple a modified carboxymethylated dextran onto a gold surface. Such a dextran matrix is also used for affinity chromatography, and it is the most commonly employed matrix for commercial biosensor surfaces today. The performance reliability of the dextran-modified NHC chip to act as an alternative biosensing platform is compared with that of a thiol-based commercial chip in the proof-of-concept tests. The resultant NHC sensor surface shows a higher thermal stability compared to thiol analogues. Moreover, the plasma protein/drug and antibody/antigen interactions were validated on the NHC-based dextran chip and showed similar performance as compared to the thiol-based commercial chip. Ultimately, this study shows the strong potential applicability of chemical modifications to gold surfaces using NHC ligands for biosensing applications.
Collapse
Affiliation(s)
- Zhijun Li
- Collaborative Innovation Center of Judicial Civilization and Key Laboratory of Evidence Science, China University of Political Science and Law , Beijing 100088, China
| | | | | | - Bin Hao
- Collaborative Innovation Center of Judicial Civilization and Key Laboratory of Evidence Science, China University of Political Science and Law , Beijing 100088, China
| | - Cathleen M Crudden
- Institute for Transformative Bio-Molecules (ITbM-WPI), Nagoya University , Chikusa, Nagoya 464-8602, Japan
| | | | - Hongxia Hao
- Collaborative Innovation Center of Judicial Civilization and Key Laboratory of Evidence Science, China University of Political Science and Law , Beijing 100088, China
| |
Collapse
|
23
|
Huang Y, Mao K, Zhang B, Zhao Y. Superparamagnetic iron oxide nanoparticles conjugated with folic acid for dual target-specific drug delivery and MRI in cancer theranostics. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 70:763-771. [DOI: 10.1016/j.msec.2016.09.052] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 09/08/2016] [Accepted: 09/23/2016] [Indexed: 01/13/2023]
|
24
|
Abstract
Schematic illustration of inflammatory microenvironment in inflamed joints and events occurring in rheumatoid arthritis.
Collapse
Affiliation(s)
- Qin Wang
- Key Laboratory of Drug Targeting and Drug Delivery Systems
- Ministry of Education
- West China School of Pharmacy
- Sichuan University
- Chengdu
| | - Xun Sun
- Key Laboratory of Drug Targeting and Drug Delivery Systems
- Ministry of Education
- West China School of Pharmacy
- Sichuan University
- Chengdu
| |
Collapse
|
25
|
Bonvin D, Bastiaansen JAM, Stuber M, Hofmann H, Mionić Ebersold M. Folic acid on iron oxide nanoparticles: platform with high potential for simultaneous targeting, MRI detection and hyperthermia treatment of lymph node metastases of prostate cancer. Dalton Trans 2017; 46:12692-12704. [DOI: 10.1039/c7dt02139a] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Folic acid directly bound to the surface of iron oxide nanoparticles with simultaneously high targeting, MRI relaxivity and heating efficacy.
Collapse
Affiliation(s)
- Debora Bonvin
- Powder Technology Laboratory
- Insitute of Materials
- Ecole polytechnique fédérale de Lausanne
- Switzerland
| | - Jessica A. M. Bastiaansen
- Department of Radiology
- University Hospital (CHUV) and University of Lausanne (UNIL)
- Switzerland
- Center of Biomedical Imaging (CIBM)
- Lausanne
| | - Matthias Stuber
- Department of Radiology
- University Hospital (CHUV) and University of Lausanne (UNIL)
- Switzerland
- Center of Biomedical Imaging (CIBM)
- Lausanne
| | - Heinrich Hofmann
- Powder Technology Laboratory
- Insitute of Materials
- Ecole polytechnique fédérale de Lausanne
- Switzerland
| | - Marijana Mionić Ebersold
- Powder Technology Laboratory
- Insitute of Materials
- Ecole polytechnique fédérale de Lausanne
- Switzerland
- Department of Radiology
| |
Collapse
|
26
|
Riccardi C, Musumeci D, Irace C, Paduano L, Montesarchio D. RuIIIComplexes for Anticancer Therapy: The Importance of Being Nucleolipidic. European J Org Chem 2016. [DOI: 10.1002/ejoc.201600943] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Claudia Riccardi
- Department of Chemical Sciences; University of Napoli Federico II; Via Cintia 21 80126 Napoli Italy
| | - Domenica Musumeci
- Department of Chemical Sciences; University of Napoli Federico II; Via Cintia 21 80126 Napoli Italy
| | - Carlo Irace
- Department of Pharmacy; University of Napoli Federico II; Via D. Montesano 49 80131 Napoli Italy
| | - Luigi Paduano
- Department of Chemical Sciences; University of Napoli Federico II; Via Cintia 21 80126 Napoli Italy
| | - Daniela Montesarchio
- Department of Chemical Sciences; University of Napoli Federico II; Via Cintia 21 80126 Napoli Italy
| |
Collapse
|
27
|
Periyathambi P, Sastry TP, Anandasadagopan SK, Manickavasagam K. Macrophages mediated diagnosis of rheumatoid arthritis using fibrin based magnetic nanoparticles as MRI contrast agents. Biochim Biophys Acta Gen Subj 2016; 1861:2992-3001. [PMID: 27663233 DOI: 10.1016/j.bbagen.2016.09.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 09/12/2016] [Accepted: 09/18/2016] [Indexed: 02/06/2023]
Abstract
BACKGROUND A variety of bioimaging tools assists in the diagnosis and evaluation of rheumatoid arthritis (RA) and other osteoarthritis. However, detection of RA in the early stages by targeting its macrophages with suitable contrast agents will help in arresting the progression of the disease. METHODS In the present study, we investigated the effectiveness of using magnetic fibrin nanoparticles (MFNPs) conjugated with folic acid (FA-MFNPs) as a specific contrast agent to target the activated macrophages, which overexpress the folate receptors (FR) in the knee joints of rats with antigen-induced arthritis (AIA). RESULTS FA-MFNPs were spherical with an average size of 18.3±1.6nm. In vitro studies have shown effective internalization of FA-MFNPs into the Raw264.7 macrophage cells. In vivo studies were carried out by injecting FA-MFNPs intravenously into the arthritic rats. The results showed enhanced MR imaging in the synovium of arthritic joints. Prussian blue histological staining confirmed uptake of FA-MFNPs by macrophages in the synovial tissue. CONCLUSION The animal experiment results indicate that FA-MFNPs can be used as a specific MRI contrast agent in identifying phagocytic active macrophages in the synovial joints. GENERAL SIGNIFICANCE Blood is the precursor source for synthesising the fibrin-based iron oxide (magnetic) nanoparticles (MFNPs) with diameters between 12 and 15nm. It has excellent superparamagnetic behaviour, biocompatibility, osteogenic potency, hemocompatibility, and biodegradable properties. MFNPs-based nanocomposites might be a promising contrast agent for bioimaging.
Collapse
Affiliation(s)
- Prabu Periyathambi
- Biological Materials/Bio-Products Laboratory, Central Leather Research Institute (CLRI), Adyar, Chennai 600 020, India
| | | | - Suresh Kumar Anandasadagopan
- Biochemistry and Biotechnology Laboratory, Central Leather Research Institute (CLRI), Adyar, Chennai 600 020, India
| | | |
Collapse
|
28
|
Hu B, Zeng M, Chen J, Zhang Z, Zhang X, Fan Z, Zhang X. External Magnetic Field-Induced Targeted Delivery of Highly Sensitive Iron Oxide Nanocubes for MRI of Myocardial Infarction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:4707-4712. [PMID: 27147555 DOI: 10.1002/smll.201600263] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 04/01/2016] [Indexed: 06/05/2023]
Abstract
Magnetic field responsive nanocubes (MFRFs) are synthesized as nanoplatforms for external magnetic field-induced selective targeting of macrophages in the infarcted tissue and magnetic resonance imaging (MRI) monitoring. MFRFs have uniform size, favorable colloidal stability, and high magnetic properties. Under the influence of external magnetic field, MFRFs perform qualitative and quantitative MRI of myocardial infarction.
Collapse
Affiliation(s)
- Bingbing Hu
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Mu Zeng
- Department of Radiology, Beijing An Zhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Disease, Beijing, 100029, P. R. China
| | - Jingli Chen
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Zhenzhong Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Xiaoning Zhang
- Collaborative Innovation Center for Biotherapy, School of Medicine, Tsinghua University, Beijing, 100084, P. R. China
| | - Zhanming Fan
- Department of Radiology, Beijing An Zhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Disease, Beijing, 100029, P. R. China.
| | - Xin Zhang
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
| |
Collapse
|
29
|
Lima-Tenório MK, Pineda EA, Ahmad NM, Agusti G, Manzoor S, Kabbaj D, Fessi H, Elaissari A. Aminodextran polymer-functionalized reactive magnetic emulsions for potential theranostic applications. Colloids Surf B Biointerfaces 2016; 145:373-381. [DOI: 10.1016/j.colsurfb.2016.05.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Revised: 04/28/2016] [Accepted: 05/06/2016] [Indexed: 12/13/2022]
|
30
|
Luchini A, Heenan RK, Paduano L, Vitiello G. Functionalized SPIONs: the surfactant nature modulates the self-assembly and cluster formation. Phys Chem Chem Phys 2016; 18:18441-9. [PMID: 27338137 DOI: 10.1039/c6cp01694d] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
SuperParamagnetic Iron Oxide Nanoparticles (SPIONs) represent a suitable system for several applications especially in nanomedicine. Great efforts have been made to design stable and biocompatible functionalized SPIONs suitable for diagnostics and drug delivery. In particular, zwitterionic-surfactant functionalized SPIONs, obtained through a coating strategy based on hydrophobic interaction, are promising systems for biomedical applications. The size of functionalized SPIONs has emerged as a crucial parameter determining their fate in living organisms. However, not all the proposed functionalization strategies lead to monodispersed systems and SPION clustering often occurs. In this study, we report a systematic investigation on different surfactant-functionalized SPIONs in order to explore the possibility of tuning the particle size by choosing an appropriate amphiphilic molecule. By combining Small-Angle Neutron Scattering (SANS) and Dynamic Light Scattering (DLS) analysis, we have provided a detailed description of the functionalized SPION structure. Furthermore, we have also related the surfactant aggregation properties, i.e. the Critical Micelle Concentration (CMC), to their efficiency in coating the SPION surface. A lack in the formation of a compact shell leads to a clusters formation. On this basis, the present study contributes to furnishing decisive information to define synthetic strategies able to tune functionalized-SPION design.
Collapse
Affiliation(s)
- Alessandra Luchini
- Department of Chemical Sciences, University of Naples "Federico II", Complesso Universitario di Monte S. Angelo, via Cintia 4, 80126 Naples, Italy
| | | | | | | |
Collapse
|
31
|
Luchini A, Irace C, Santamaria R, Montesarchio D, Heenan RK, Szekely N, Flori A, Menichetti L, Paduano L. Phosphocholine-decorated superparamagnetic iron oxide nanoparticles: defining the structure and probing in vivo applications. NANOSCALE 2016; 8:10078-86. [PMID: 26751053 DOI: 10.1039/c5nr08486e] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Superparamagnetic Iron Oxide Nanoparticles (SPIONs) are performing contrast agents for Magnetic Resonance Imaging (MRI). A functionalization strategy for SPIONs based on hydrophobic interactions is a versatile approach easily extendable to several kinds of inorganic nanoparticles and suitable for obtaining stable and biocompatible systems. Here we report on the original preparation of functionalized SPIONs with an 8 nm radius exploiting the hydrophobic interaction between a phosphocholine and an inner amphiphilic. With respect to other similarly functionalized SPIONs, characterized by the typical nanoparticle clustering that leads to large aggregates, our phosphocholine-decorated SPIONs are demonstrated to be monodisperse. We report the in vitro and in vivo study that proves the effective applicability of phosphocholine-decorated SPIONs as MRI contrast agents. The versatility of this functionalization approach is highlighted by introducing on the SPION surface a ruthenium-based potential antitumoral drug, named ToThyCholRu. Even if in this case we observed the formation of SPION clusters, ascribable to the presence of the amphiphilic ruthenium complex, interesting and promising antiproliferative activity points at the ToThyCholRu-decorated SPIONs as potential theranostic agents.
Collapse
Affiliation(s)
- Alessandra Luchini
- Dipartimento di Scienze Chimiche, Università degli Studi di Napoli "Federico II", Complesso Universitario di Monte S. Angelo, via Cintia, 80126 Napoli, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Sadhasivam S, Savitha S, Wu CJ, Lin FH, Stobiński L. Carbon encapsulated iron oxide nanoparticles surface engineered with polyethylene glycol-folic acid to induce selective hyperthermia in folate over expressed cancer cells. Int J Pharm 2015; 480:8-14. [PMID: 25601197 DOI: 10.1016/j.ijpharm.2015.01.029] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 01/06/2015] [Accepted: 01/16/2015] [Indexed: 11/29/2022]
Abstract
Carbon encapsulated iron oxide nanoparticles (CEIO-NPs) prepared by carbon arc method were successfully applied for in vitro magnetic hyperthermia. The CEIO-NPs were chemically oxidized and surface modified with PEG-FA for selective tumor localization in cancer cells that over expresses the folate receptors (FR(+)). The size, morphology, heating efficiency, biocompatibility and in vitro cell uptake of CEIO-PEG-FA NPs are extensively characterized. The as-prepared nanoparticles have generated quick heating (43-45°C) upon exposure to an alternating magnetic field (AMF) with the saturation magnetization of 25emu/g. The LDH cytotoxic assay demonstrated that the nanoparticle did not affect the viability of normal human fibroblast. The quantitative and cellular uptake studies by TEM confirmed the selective and increased uptake of CEIO-PEG-FA NPs when compared to the CEIO-nanoparticles. In conclusion, CEIO-PEG-FA NPs have the potential to induce magnetic hyperthermia in FR(+) cells via the receptor mediated endocytosis uptake mechanism.
Collapse
Affiliation(s)
- S Sadhasivam
- Biomedical Engineering and Nanomedicine Research, National Health Research Institutes, Taiwan
| | - S Savitha
- Department of Biotechnology, Sree Sastha Institute of Engineering and Technology, Chennai, India
| | - Chun-Jen Wu
- Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan
| | - Feng-Huei Lin
- Biomedical Engineering and Nanomedicine Research, National Health Research Institutes, Taiwan; Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan.
| | - Leszek Stobiński
- Institute of Physical Chemistry, Polish Academy of Sciences Warsaw, Poland
| |
Collapse
|
33
|
Abstract
This review focuses on the different approaches to synthesizing glycopolymer-based nanoparticles and their various applications.
Collapse
Affiliation(s)
- Xiao Li
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou
- P. R. China
| | - Gaojian Chen
- Center for Soft Condensed Matter Physics and Interdisciplinary Research
- Soochow University
- Suzhou 215006
- P. R. China
| |
Collapse
|
34
|
Dai F, Zhang M, Hu B, Sun Y, Tang Q, Du M, Zhang X. Immunomagnetic nanoparticles based on a hydrophilic polymer coating for sensitive detection of Salmonella in raw milk by polymerase chain reaction. RSC Adv 2015. [DOI: 10.1039/c4ra09799h] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The super hydrophilic poly(2-methacryloyloxyethyl phosphorylcholine (PMPC) coating could increase the capture performance of immunomagnetic nanoparticles effectively in the experimentally contaminated milk.
Collapse
Affiliation(s)
- Fengying Dai
- National Key Laboratory of Biochemical Engineering
- Institute of Process Engineering
- Chinese Academy of Sciences
- Beijing 100190
- PR China
| | - Miao Zhang
- National Key Laboratory of Biochemical Engineering
- Institute of Process Engineering
- Chinese Academy of Sciences
- Beijing 100190
- PR China
| | - Bingbing Hu
- National Key Laboratory of Biochemical Engineering
- Institute of Process Engineering
- Chinese Academy of Sciences
- Beijing 100190
- PR China
| | - Yongjun Sun
- Beijing Center for Physical and Chemical Analysis
- Beijing 100871
- PR China
| | - Qunwei Tang
- Institute of Materials Science and Engineering
- Ocean University of China
- Qingdao 266100
- PR China
| | - Meihong Du
- Beijing Center for Physical and Chemical Analysis
- Beijing 100871
- PR China
| | - Xin Zhang
- National Key Laboratory of Biochemical Engineering
- Institute of Process Engineering
- Chinese Academy of Sciences
- Beijing 100190
- PR China
| |
Collapse
|