1
|
Hassanen EI, Mansour HA, Issa MY, Ibrahim MA, Mohamed WA, Mahmoud MA. Epigallocatechin gallate-rich fraction alleviates histamine-induced neurotoxicity in rats via inactivating caspase-3/JNK signaling pathways. Food Chem Toxicol 2024; 193:115021. [PMID: 39322001 DOI: 10.1016/j.fct.2024.115021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/08/2024] [Accepted: 09/21/2024] [Indexed: 09/27/2024]
Abstract
Ingestion of prominent levels of histamine (HIS) leads to dangerous effects on biological systems. The most frequent and active catechin in green tea is epigallocatechin gallate which has strong antioxidant properties. Our research intended to investigate the possible neuroprotective effect of epigallocatechin gallate-rich fraction (EGCGR) against HIS-inducing neurotoxicity. Six groups of male rats (n = 5) were used as follows: (1) Distilled water, (2&3) EGCGR (100-200 mg/kg BWT/day, respectively), (4) HIS (1750 mg/kg BWT/week, (5&6) HIS + EGCGR. Administration of HIS for 14 days induced severe neurobehavioral changes including depression, incoordination, and loss of spatial memory. Extensive neuronal degeneration with diffuse gliosis was the prominent histopathological lesion observed and confirmed by strong immunostaining of casp-3, Cox-2, and GFAP. Additionally, the HIS group showed a significantly higher MDA level with lower CAT and GSH activity than the control group. Moreover, HIS promoted apoptosis, which is indicated by increasing JNK, and Bax and decreasing Bcl-2 gene expressions. Otherwise, the oral intake of EGCGR with HIS improved all neurotoxicological parameters induced by HIS. We concluded that HIS could cause neurotoxicity via an upset of the equilibrium between oxidants and antioxidants which trigger apoptosis through modulation of JNK signaling pathway. Furthermore, EGCGR has either direct or indirect antihistaminic effects.
Collapse
Affiliation(s)
- Eman I Hassanen
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.
| | - Hayam A Mansour
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Marwa Y Issa
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Giza, 12211, Egypt
| | - Marwa A Ibrahim
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Wafaa A Mohamed
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Mahmoud A Mahmoud
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| |
Collapse
|
2
|
Ghanbari P, Raiesi D, Alboebadi R, Zarejavid A, Dianati M, Razmi H, Bazyar H. The effects of grape seed extract supplementation on cardiovascular risk factors, liver enzymes and hepatic steatosis in patients with non-alcoholic fatty liver disease: a randomised, double-blind, placebo-controlled study. BMC Complement Med Ther 2024; 24:192. [PMID: 38755622 PMCID: PMC11100156 DOI: 10.1186/s12906-024-04477-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 04/17/2024] [Indexed: 05/18/2024] Open
Abstract
BACKGROUND Despite the high antioxidant potential of grape seed extract (GSE), very limited studies have investigated its effect on non-alcoholic fatty liver disease (NAFLD). Therefore, this study was conducted with the aim of investigating the effect of GSE on metabolic factors, blood pressure and steatosis severity in patients with NAFLD. METHODS In this double-blind randomized clinical trial study, 50 NAFLD patients were divided into two groups of 25 participants who were treated with 520 mg/day of GSE or the placebo group for 2 months. The parameters of glycemic, lipid profile, blood pressure and steatohepatitis were measured before and after the intervention. RESULTS The GSE group had an average age of 43.52 ± 8.12 years with 15 women and 10 men, while the placebo group had an average age of 44.88 ± 10.14 years with 11 women and 14 men. After 2 months of intervention with GSE, it was observed that insulin, HOMA-IR, TC, TG, LDL-c, ALT, AST, AST/ALT, SBP, DBP and MAP decreased and QUICKi and HDL-c increased significantly (p-value for all < 0.05). Also, before and after adjustment based on baseline, the average changes indicated that the levels of insulin, HOMA-IR, TC, TG, LDL-c, SBP, DBP, MAP in the GSE group decreased more than in the control group (p for all < 0.05). Furthermore, the changes in HDL-c were significantly higher in the GSE group (p < 0.05). The between-groups analysis showed a significant decrease in the HOMA-β and AST before and after adjustment based on baseline levels (p < 0.05). Moreover, the changes in QUICKi after adjustment based on baseline levels were higher in the GSE group than in the control group. Also, between-groups analysis showed that the severity of hepatic steatosis was reduced in the intervention group compared to the placebo group (P = 0.002). CONCLUSIONS It seems that GSE can be considered one of the appropriate strategies for controlling insulin resistance, hyperlipidemia, hypertension and hepatic steatosis in NAFLD patients. TRIAL REGISTRATION The clinical trial was registered in the Iranian Clinical Trial Registration Center (IRCT20190731044392N1). https://irct.behdasht.gov.ir/trial/61413 . (The registration date: 30/03/2022).
Collapse
Affiliation(s)
- Parisa Ghanbari
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Davoud Raiesi
- Department of Internal Medicine, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Roghayeh Alboebadi
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ahmad Zarejavid
- Nutrition and Metabolic Diseases Research Center, Clinical Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mostafa Dianati
- School of Medical and Life Sciences, Sunway University, Sunway City, Malaysia
- Department of Complex Genetics and Epidemiology, School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Hamidreza Razmi
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Hadi Bazyar
- Department of Public Health, Sirjan School of Medical Sciences, Sirjan, Iran.
- Student Research Committee, Sirjan School of Medical Sciences, Sirjan, Iran.
| |
Collapse
|
3
|
Dafne VJ, Manuel MA, Rocio CV. Chronobiotics, satiety signaling, and clock gene expression interplay. J Nutr Biochem 2024; 126:109564. [PMID: 38176625 DOI: 10.1016/j.jnutbio.2023.109564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/21/2023] [Accepted: 12/31/2023] [Indexed: 01/06/2024]
Abstract
The biological clock regulates the way our body works throughout the day, including releasing hormones and food intake. Disruption of the biological clock (chronodisruption) may deregulate satiety, which is strictly regulated by hormones and neurotransmitters, leading to health problems like obesity. Nowadays, using bioactive compounds as a coadjutant for several pathologies is a common practice. Phenolic compounds and short-chain fatty acids, called "chronobiotics," can modulate diverse mechanisms along the body to exert beneficial effects, including satiety regulation and circadian clock resynchronization; however, the evidence of the interplay between those processes is limited. This review compiles the evidence of natural chronobiotics, mainly polyphenols and short-chain fatty acids that affect the circadian clock mechanism and process modifications in genes or proteins resulting in a signaling chain that modulates satiety hormones or hunger pathways.
Collapse
Affiliation(s)
- Velásquez-Jiménez Dafne
- Research and Graduate Studies in Food Science, School of Chemistry, Autonomous University of Queretaro, Queretaro, Mexico
| | - Miranda-Anaya Manuel
- Multidisciplinary Unit for Teaching and Research (UMDI), School of Sciences, Autonomous National University of Mexico, Queretaro, Mexico
| | - Campos-Vega Rocio
- Research and Graduate Studies in Food Science, School of Chemistry, Autonomous University of Queretaro, Queretaro, Mexico.
| |
Collapse
|
4
|
AboZaid OAR, Abdel-Maksoud MA, Saleh IA, El-Tayeb MA, El-Sonbaty SM, Shoker FE, Salem MA, Emad AM, Mani S, Deva Magendhra Rao AK, Mamdouh MA, Kotob MH, Aufy M, Kodous AS. Targeting the NF-κB p65/Bcl-2 signaling pathway in hepatic cellular carcinoma using radiation assisted synthesis of zinc nanoparticles coated with naturally isolated gallic acid. Biomed Pharmacother 2024; 172:116274. [PMID: 38364738 DOI: 10.1016/j.biopha.2024.116274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/01/2024] [Accepted: 02/13/2024] [Indexed: 02/18/2024] Open
Abstract
PURPOSE Oral diethylnitrosamine (DEN) is a known hepatocarcinogen that damages the liver and causes cancer. DEN damages the liver through reactive oxygen species-mediated inflammation and biological process regulation. MATERIALS AND METHODS Gallic acid-coated zinc oxide nanoparticles (Zn-GANPs) were made from zinc oxide (ZnO) synthesized by irradiation dose of 50 kGy utilizing a Co-60 γ-ray source chamber with a dose rate of 0.83 kGy/h and gallic acid from pomegranate peel. UV-visible (UV) spectrophotometry verified Zn-GANP synthesis. TEM, DLS, and FTIR were utilized to investigate ZnO-NPs' characteristics. Rats were orally exposed to DEN for 8 weeks at 20 mg/kg five times per week, followed by intraperitoneal injection of Zn-GANPs at 20 mg/kg for 5 weeks. Using oxidative stress, anti-inflammatory, liver function, histologic, apoptotic, and cell cycle parameters for evaluating Zn-GANPs treatment. RESULTS DEN exposure elevated inflammatory markers (AFP and NF-κB p65), transaminases (AST, ALT), γ-GT, globulin, and total bilirubin, with reduced protein and albumin levels. It also increased MDA levels, oxidative liver cell damage, and Bcl-2, while decreasing caspase-3 and antioxidants like GSH, and CAT. Zn-GANPs significantly mitigated these effects and lowered lipid peroxidation, AST, ALT, and γ-GT levels, significantly increased CAT and GSH levels (p<0.05). Zn-GANPs caused S and G2/M cell cycle arrest and G0/G1 apoptosis. These results were associated with higher caspase-3 levels and lower Bcl-2 and TGF-β1 levels. Zn-GANPs enhance and restore the histology and ultrastructure of the liver in DEN-induced rats. CONCLUSION The data imply that Zn-GANPs may prevent and treat DEN-induced liver damage and carcinogenesis.
Collapse
Affiliation(s)
- Omayma A R AboZaid
- Department of Biochemistry, Faculty of Veterinary Medicine, Moshtohor, Benha University, Egypt
| | | | | | - Mohamed A El-Tayeb
- Botany and Microbiology department- College of Science- King Saud University, Saudi Arabia
| | - Sawsan M El-Sonbaty
- Radiation Microbiology Department, National Center for Radiation Research & Technology (NCRRT), Egyptian Atomic-Energy Authority (EAEA), Egypt
| | - Faten E Shoker
- Department of Biochemistry, Faculty of Veterinary Medicine, Moshtohor, Benha University, Egypt
| | - Maha A Salem
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Modern University for Technology and Information, Egypt
| | - Ayat M Emad
- Pharmacognosy Department, Faculty of Pharmacy, October 6 University, Sixth of October City, Giza 12585, Egypt
| | - Samson Mani
- Department of Research, Rajiv Gandhi Cancer Institute, and Research Centre, Sector 5, Rohini, Delhi 110085, India; Department of Molecular Oncology, Cancer Institute (WIA), 38, Sardar Patel Road, P.O. Box 600036, Chennai, Tamilnadu, India
| | | | - Mohamed A Mamdouh
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October 6 University, 6th of October City, Giza 12585, Egypt
| | - Mohamed H Kotob
- Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, University of Vienna, Vienna, Austria; Department of Pathology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Mohammed Aufy
- Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, University of Vienna, Vienna, Austria.
| | - Ahmad S Kodous
- Department of Molecular Oncology, Cancer Institute (WIA), 38, Sardar Patel Road, P.O. Box 600036, Chennai, Tamilnadu, India; Radiation Biology department, National Center for Radiation Research & Technology (NCRRT), Egyptian Atomic-Energy Authority (EAEA), Egypt.
| |
Collapse
|
5
|
Kohut L, Baldovska S, Mihal M, Belej L, Sirotkin AV, Roychoudhury S, Kolesarova A. The multiple actions of grape and its polyphenols on female reproductive processes with an emphasis on cell signalling. Front Endocrinol (Lausanne) 2024; 14:1245512. [PMID: 38239977 PMCID: PMC10794324 DOI: 10.3389/fendo.2023.1245512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 12/11/2023] [Indexed: 01/22/2024] Open
Abstract
Grapes are an economically important fruit crop, and their polyphenols (mainly phenolic acids, flavanols, flavonols, anthocyanins, proanthocyanidins, and stilbenes) can exert a wide range of health benefits as an interesting and valuable dietary supplement for natural complementary therapy. However, their potential physiological and therapeutic actions on reproductive processes have not been sufficiently elucidated. This evidence-based study presents current knowledge of grape extracts and polyphenols, as well as their properties and therapeutical actions in relation to female reproduction in a nutshell. Grape extract, and its polyphenols such as resveratrol, proanthocyanidin B2 or delphinidin may influence female reproductive physiology and pathology, as well as regulate multiple signaling pathways related to reproductive hormones, steroid hormones receptors, intracellular regulators of oxidative stress and subsequent inflammation, apoptosis, and proliferation. Their role in the management of ovarian cancer, age-related reproductive insufficiency, ovarian ischemia, PCOS, or menopausal syndrome has been indicated. In particular, the potential involvement of grapeseed extracts and/or proanthocyanidin B2 and delphinidin on ovarian steroidogenesis, oocyte maturation, and developmental capacity has been implicated, albeit at different regulatory levels. Grape polyphenols exert a wide range of health benefits posing grape extract as an interesting and valuable dietary supplement for natural complementary therapy. This evidence-based study focuses on the actions of grapeseed extract and grape polyphenols on female reproductive processes at various regulatory levels and multiple signalling pathways by regulating reproductive hormones (GnRH, gonadotropins, prolactin, steroid hormones, IGFBP), steroid receptors, markers of proliferation and apoptosis. However, lack of knowledge of standardized dosages so far limits their clinical application despite the wide range of their biological and therapeutic potentials.
Collapse
Affiliation(s)
- Ladislav Kohut
- Institute of Applied Biology, Slovak University of Agriculture in Nitra, Nitra, Slovakia
| | - Simona Baldovska
- AgroBioTech Research Center, Slovak University of Agriculture in Nitra, Nitra, Slovakia
| | - Michal Mihal
- Institute of Applied Biology, Slovak University of Agriculture in Nitra, Nitra, Slovakia
| | - Lubomir Belej
- Institute of Food Sciences, Slovak University of Agriculture in Nitra, Nitra, Slovakia
| | - Alexander V. Sirotkin
- Department of Zoology and Anthropology, Constantine the Philosopher University, Nitra, Slovakia
| | | | - Adriana Kolesarova
- Institute of Applied Biology, Slovak University of Agriculture in Nitra, Nitra, Slovakia
- AgroBioTech Research Center, Slovak University of Agriculture in Nitra, Nitra, Slovakia
| |
Collapse
|
6
|
Witte K, Wolk K, Witte-Händel E, Krause T, Kokolakis G, Sabat R. Targeting Metabolic Syndrome in Hidradenitis Suppurativa by Phytochemicals as a Potential Complementary Therapeutic Strategy. Nutrients 2023; 15:3797. [PMID: 37686829 PMCID: PMC10490062 DOI: 10.3390/nu15173797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/09/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
Hidradenitis suppurativa (HS) is a chronic inflammatory disease characterized by the appearance of painful inflamed nodules, abscesses, and pus-draining sinus tracts in the intertriginous skin of the groins, buttocks, and perianal and axillary regions. Despite its high prevalence of ~0.4-1%, therapeutic options for HS are still limited. Over the past 10 years, it has become clear that HS is a systemic disease, associated with various comorbidities, including metabolic syndrome (MetS) and its sequelae. Accordingly, the life expectancy of HS patients is significantly reduced. MetS, in particular, obesity, can support sustained inflammation and thereby exacerbate skin manifestations and the chronification of HS. However, MetS actually lacks necessary attention in HS therapy, underlining the high medical need for novel therapeutic options. This review directs attention towards the relevance of MetS in HS and evaluates the potential of phytomedical drug candidates to alleviate its components. It starts by describing key facts about HS, the specifics of metabolic alterations in HS patients, and mechanisms by which obesity may exacerbate HS skin alterations. Then, the results from the preclinical studies with phytochemicals on MetS parameters are evaluated and the outcomes of respective randomized controlled clinical trials in healthy people and patients without HS are presented.
Collapse
Affiliation(s)
- Katrin Witte
- Psoriasis Research and Treatment Center, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- Interdisciplinary Group of Molecular Immunopathology, Dermatology/Medical Immunology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- Inflammation and Regeneration of Skin, BIH Center for Regenerative Therapies, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany
| | - Kerstin Wolk
- Psoriasis Research and Treatment Center, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- Interdisciplinary Group of Molecular Immunopathology, Dermatology/Medical Immunology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- Inflammation and Regeneration of Skin, BIH Center for Regenerative Therapies, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany
| | - Ellen Witte-Händel
- Psoriasis Research and Treatment Center, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- Interdisciplinary Group of Molecular Immunopathology, Dermatology/Medical Immunology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Torben Krause
- Psoriasis Research and Treatment Center, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Georgios Kokolakis
- Psoriasis Research and Treatment Center, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Robert Sabat
- Psoriasis Research and Treatment Center, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- Interdisciplinary Group of Molecular Immunopathology, Dermatology/Medical Immunology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| |
Collapse
|
7
|
Lan H, Wang H, Chen C, Hu W, Ai C, Chen L, Teng H. Flavonoids and gastrointestinal health: single molecule for multiple roles. Crit Rev Food Sci Nutr 2023; 64:10987-11005. [PMID: 37409462 DOI: 10.1080/10408398.2023.2230501] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
Diet can be considered as one of the pivotal factors in regulating gastrointestinal health, and polyphenols widely distributed in human daily diet. The polyphenols and their metabolites playing a series of beneficial effects in human gastrointestinal tract that can regulate of the gut microbiota, increase intestinal barrier function, repair gastrointestinal mucosa, reduce oxidative stress, inhibit the secretion of inflammatory factors and regulating immune function, and their absorption and biotransformation mainly depend on the activity of intestinal microflora. However, little is known about the two-way interaction between polyphenols and intestinal microbiota. The objective of this review is to highlight the structure optimization and effect of flavonoids on intestinal flora, and discusses the mechanisms of dietary flavonoids regulating intestinal flora. The multiple effects of single molecule of flavonoids, and inter-dependence between the gut microbiota and polyphenol metabolites. Moreover, the protective effects of polyphenols on intestinal barrier function, and effects of interaction between plant polyphenols and macromolecules on gastrointestinal health. This review provided valuable insight that may be useful for better understanding the mechanism of the gastrointestinal health effects of polyphenols, and provide a scientific basis for their application as functional food.
Collapse
Affiliation(s)
- Haijing Lan
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang, China
| | - Hui Wang
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang, China
| | - Chong Chen
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang, China
| | - Wenlu Hu
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang, China
| | - Chao Ai
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang, China
| | - Lei Chen
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang, China
| | - Hui Teng
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang, China
| |
Collapse
|
8
|
Taladrid D, Rebollo-Hernanz M, Martin-Cabrejas MA, Moreno-Arribas MV, Bartolomé B. Grape Pomace as a Cardiometabolic Health-Promoting Ingredient: Activity in the Intestinal Environment. Antioxidants (Basel) 2023; 12:antiox12040979. [PMID: 37107354 PMCID: PMC10135959 DOI: 10.3390/antiox12040979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
Grape pomace (GP) is a winemaking by-product particularly rich in (poly)phenols and dietary fiber, which are the main active compounds responsible for its health-promoting effects. These components and their metabolites generated at the intestinal level have been shown to play an important role in promoting health locally and systemically. This review focuses on the potential bioactivities of GP in the intestinal environment, which is the primary site of interaction for food components and their biological activities. These mechanisms include (i) regulation of nutrient digestion and absorption (GP has been shown to inhibit enzymes such as α-amylase and α-glucosidase, protease, and lipase, which can help to reduce blood glucose and lipid levels, and to modulate the expression of intestinal transporters, which can also help to regulate nutrient absorption); (ii) modulation of gut hormone levels and satiety (GP stimulates GLP-1, PYY, CCK, ghrelin, and GIP release, which can help to regulate appetite and satiety); (iii) reinforcement of gut morphology (including the crypt-villi structures, which can improve nutrient absorption and protect against intestinal damage); (iv) protection of intestinal barrier integrity (through tight junctions and paracellular transport); (v) modulation of inflammation and oxidative stress triggered by NF-kB and Nrf2 signaling pathways; and (vi) impact on gut microbiota composition and functionality (leading to increased production of SCFAs and decreased production of LPS). The overall effect of GP within the gut environment reinforces the intestinal function as the first line of defense against multiple disorders, including those impacting cardiometabolic health. Future research on GP's health-promoting properties should consider connections between the gut and other organs, including the gut-heart axis, gut-brain axis, gut-skin axis, and oral-gut axis. Further exploration of these connections, including more human studies, will solidify GP's role as a cardiometabolic health-promoting ingredient and contribute to the prevention and management of cardiovascular diseases.
Collapse
Affiliation(s)
- Diego Taladrid
- Institute of Food Science Research (CIAL, CSIC-UAM), C/Nicolás Cabrera, 9, 28049 Madrid, Spain
| | - Miguel Rebollo-Hernanz
- Institute of Food Science Research (CIAL, CSIC-UAM), C/Nicolás Cabrera, 9, 28049 Madrid, Spain
- Department of Agricultural Chemistry and Food Science, Faculty of Science, C/Francisco Tomás y Valiente, 7, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Maria A Martin-Cabrejas
- Institute of Food Science Research (CIAL, CSIC-UAM), C/Nicolás Cabrera, 9, 28049 Madrid, Spain
- Department of Agricultural Chemistry and Food Science, Faculty of Science, C/Francisco Tomás y Valiente, 7, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | | | - Begoña Bartolomé
- Institute of Food Science Research (CIAL, CSIC-UAM), C/Nicolás Cabrera, 9, 28049 Madrid, Spain
| |
Collapse
|
9
|
Li M, Liu Y, Weigmann B. Biodegradable Polymeric Nanoparticles Loaded with Flavonoids: A Promising Therapy for Inflammatory Bowel Disease. Int J Mol Sci 2023; 24:4454. [PMID: 36901885 PMCID: PMC10003013 DOI: 10.3390/ijms24054454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 02/26/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a group of disorders that cause chronic non-specific inflammation in the gastrointestinal (GI) tract, primarily affecting the ileum and colon. The incidence of IBD has risen sharply in recent years. Despite continuous research efforts over the past decades, the aetiology of IBD is still not fully understood and only a limited number of drugs are available for its treatment. Flavonoids, a ubiquitous class of natural chemicals found in plants, have been widely used in the prevention and treatment of IBD. However, their therapeutic efficacy is unsatisfactory due to poor solubility, instability, rapid metabolism, and rapid systemic elimination. With the development of nanomedicine, nanocarriers can efficiently encapsulate various flavonoids and subsequently form nanoparticles (NPs), which greatly improves the stability and bioavailability of flavonoids. Recently, progress has also been made in the methodology of biodegradable polymers that can be used to fabricate NPs. As a result, NPs can significantly enhance the preventive or therapeutic effects of flavonoids on IBD. In this review, we aim to evaluate the therapeutic effect of flavonoid NPs on IBD. Furthermore, we discuss possible challenges and future perspectives.
Collapse
Affiliation(s)
- Mingrui Li
- Department of Medicine 1, Kussmaul Campus for Medical Research, University of Erlangen-Nürnberg, 91052 Erlangen, Germany
| | - Ying Liu
- Department of Medicine 1, Kussmaul Campus for Medical Research, University of Erlangen-Nürnberg, 91052 Erlangen, Germany
| | - Benno Weigmann
- Department of Medicine 1, Kussmaul Campus for Medical Research, University of Erlangen-Nürnberg, 91052 Erlangen, Germany
- Medical Immunology Campus Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91052 Erlangen, Germany
| |
Collapse
|
10
|
Oteiza PI, Cremonini E, Fraga CG. Anthocyanin actions at the gastrointestinal tract: Relevance to their health benefits. Mol Aspects Med 2023; 89:101156. [PMID: 36379746 DOI: 10.1016/j.mam.2022.101156] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 11/15/2022]
Abstract
Anthocyanins (AC) are flavonoids abundant in the human diet, which consumption has been associated to several health benefits, including the mitigation of cardiovascular disease, type 2 diabetes, non-alcoholic fatty liver disease, and neurological disorders. It is widely recognized that the gastrointestinal (GI) tract is not only central for food digestion but actively participates in the regulation of whole body physiology. Given that AC, and their metabolites reach high concentrations in the intestinal lumen after food consumption, their biological actions at the GI tract can in part explain their proposed local and systemic health benefits. In terms of mechanisms of action, AC have been found to: i) inhibit GI luminal enzymes that participate in the absorption of lipids and carbohydrates; ii) preserve intestinal barrier integrity and prevent endotoxemia, inflammation and oxidative stress; iii) sustain goblet cell number, immunological functions, and mucus production; iv) promote a healthy microbiota; v) be metabolized by the microbiota to AC metabolites which will be absorbed and have systemic effects; and vi) modulate the metabolism of GI-generated hormones. This review will summarize and discuss the latest information on AC actions at the GI tract and their relationship to overall health benefits.
Collapse
Affiliation(s)
- Patricia I Oteiza
- Department of Nutrition, University of California, Davis, USA; Department of Environmental Toxicology, University of California, Davis, USA.
| | - Eleonora Cremonini
- Department of Nutrition, University of California, Davis, USA; Department of Environmental Toxicology, University of California, Davis, USA
| | - Cesar G Fraga
- Department of Nutrition, University of California, Davis, USA; Fisicoquímica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Bioquímica y Medicina Molecular (IBIMOL), UBA-CONICET, Buenos Aires, Argentina
| |
Collapse
|
11
|
Milenkovic D, Capel F, Combaret L, Comte B, Dardevet D, Evrard B, Guillet C, Monfoulet LE, Pinel A, Polakof S, Pujos-Guillot E, Rémond D, Wittrant Y, Savary-Auzeloux I. Targeting the gut to prevent and counteract metabolic disorders and pathologies during aging. Crit Rev Food Sci Nutr 2022; 63:11185-11210. [PMID: 35730212 DOI: 10.1080/10408398.2022.2089870] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Impairment of gut function is one of the explanatory mechanisms of health status decline in elderly population. These impairments involve a decline in gut digestive physiology, metabolism and immune status, and associated to that, changes in composition and function of the microbiota it harbors. Continuous deteriorations are generally associated with the development of systemic dysregulations and ultimately pathologies that can worsen the initial health status of individuals. All these alterations observed at the gut level can then constitute a wide range of potential targets for development of nutritional strategies that can impact gut tissue or associated microbiota pattern. This can be key, in a preventive manner, to limit gut functionality decline, or in a curative way to help maintaining optimum nutrients bioavailability in a context on increased requirements, as frequently observed in pathological situations. The aim of this review is to give an overview on the alterations that can occur in the gut during aging and lead to the development of altered function in other tissues and organs, ultimately leading to the development of pathologies. Subsequently is discussed how nutritional strategies that target gut tissue and gut microbiota can help to avoid or delay the occurrence of aging-related pathologies.
Collapse
Affiliation(s)
- Dragan Milenkovic
- Human Nutrition Unit, UMR1019, University Clermont Auvergne, INRAE, Clermont-Ferrand, France
| | - Frédéric Capel
- Human Nutrition Unit, UMR1019, University Clermont Auvergne, INRAE, Clermont-Ferrand, France
| | - Lydie Combaret
- Human Nutrition Unit, UMR1019, University Clermont Auvergne, INRAE, Clermont-Ferrand, France
| | - Blandine Comte
- Human Nutrition Unit, UMR1019, University Clermont Auvergne, INRAE, Clermont-Ferrand, France
| | - Dominique Dardevet
- Human Nutrition Unit, UMR1019, University Clermont Auvergne, INRAE, Clermont-Ferrand, France
| | - Bertrand Evrard
- Human Nutrition Unit, UMR1019, University Clermont Auvergne, INRAE, Clermont-Ferrand, France
| | - Christelle Guillet
- Human Nutrition Unit, UMR1019, University Clermont Auvergne, INRAE, Clermont-Ferrand, France
| | | | - Alexandre Pinel
- Human Nutrition Unit, UMR1019, University Clermont Auvergne, INRAE, Clermont-Ferrand, France
| | - Sergio Polakof
- Human Nutrition Unit, UMR1019, University Clermont Auvergne, INRAE, Clermont-Ferrand, France
| | - Estelle Pujos-Guillot
- Human Nutrition Unit, UMR1019, University Clermont Auvergne, INRAE, Clermont-Ferrand, France
| | - Didier Rémond
- Human Nutrition Unit, UMR1019, University Clermont Auvergne, INRAE, Clermont-Ferrand, France
| | - Yohann Wittrant
- Human Nutrition Unit, UMR1019, University Clermont Auvergne, INRAE, Clermont-Ferrand, France
| | | |
Collapse
|
12
|
A Novel Pathway of Flavonoids Protecting against Inflammatory Bowel Disease: Modulating Enteroendocrine System. Metabolites 2022; 12:metabo12010031. [PMID: 35050153 PMCID: PMC8777795 DOI: 10.3390/metabo12010031] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/22/2021] [Accepted: 12/28/2021] [Indexed: 12/20/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a comprehensive term for chronic or relapsing inflammatory diseases occurring in the intestinal tract, generally including Crohn's disease (CD) and ulcerative colitis (UC). Presently, the pathogenesis of IBD is unknown, yet multiple factors have been reported to be related with the development of IBD. Flavonoids are phytochemicals with biological activity, which are ubiquitously distributed in edible plants, such as fruits and vegetables. Recent studies have demonstrated impressively that flavonoids have anti-IBD effects through multiple mechanisms. These include anti-inflammatory and antioxidant actions; the preservation of the epithelial barrier integrity, the intestinal immunomodulatory property, and the shaping microbiota composition and function. In addition, a few studies have shown the impact of flavonoids on enterohormones release; nonetheless, there is hardly any work showing the link between flavonoids, enterohormones release and IBD. So far, the interaction between flavonoids, enterohormones and IBD is elucidated for the first time in this review. Furthermore, the inference can be drawn that flavonoids may protect against IBD through modulating enterohormones, such as glucagon-like peptide 1 (GLP-1), GLP-2, dipeptidyl peptidase-4 inhibitors (DPP-4 inhibitors), ghrelin and cholecystokinin (CCK). In conclusion, this manuscript explores a possible mechanism of flavonoids protecting against IBD.
Collapse
|
13
|
Dirir AM, Daou M, Yousef AF, Yousef LF. A review of alpha-glucosidase inhibitors from plants as potential candidates for the treatment of type-2 diabetes. PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2022; 21:1049-1079. [PMID: 34421444 PMCID: PMC8364835 DOI: 10.1007/s11101-021-09773-1] [Citation(s) in RCA: 122] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 07/27/2021] [Indexed: 05/02/2023]
Abstract
UNLABELLED Diabetes mellitus is a multifactorial global health disorder that is rising at an alarming rate. Cardiovascular diseases, kidney damage and neuropathy are the main cause of high mortality rates among individuals with diabetes. One effective therapeutic approach for controlling hyperglycemia associated with type-2 diabetes is to target alpha-amylase and alpha-glucosidase, enzymes that catalyzes starch hydrolysis in the intestine. At present, approved inhibitors for these enzymes are restricted to acarbose, miglitol and voglibose. Although these inhibitors retard glucose absorption, undesirable gastrointestinal side effects impede their application. Therefore, research efforts continue to seek novel inhibitors with improved efficacy and minimal side effects. Natural products of plant origin have been a valuable source of therapeutic agents with lesser toxicity and side effects. The anti-diabetic potential through alpha-glucosidase inhibition of plant-derived molecules are summarized in this review. Eight molecules (Taxumariene F, Akebonoic acid, Morusin, Rhaponticin, Procyanidin A2, Alaternin, Mulberrofuran K and Psoralidin) were selected as promising drug candidates and their pharmacokinetic properties and toxicity were discussed where available. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s11101-021-09773-1.
Collapse
Affiliation(s)
- Amina M. Dirir
- Department of Chemistry, Khalifa University, Abu Dhabi, UAE
| | - Marianne Daou
- Department of Chemistry, Khalifa University, Abu Dhabi, UAE
| | - Ahmed F. Yousef
- Department of Chemistry, Khalifa University, Abu Dhabi, UAE
- Center for Membranes and Advances Water Technology, Khalifa University, Abu Dhabi, UAE
| | - Lina F. Yousef
- Department of Chemistry, Khalifa University, Abu Dhabi, UAE
| |
Collapse
|
14
|
Blahova J, Martiniakova M, Babikova M, Kovacova V, Mondockova V, Omelka R. Pharmaceutical Drugs and Natural Therapeutic Products for the Treatment of Type 2 Diabetes Mellitus. Pharmaceuticals (Basel) 2021; 14:806. [PMID: 34451903 PMCID: PMC8398612 DOI: 10.3390/ph14080806] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/12/2021] [Accepted: 08/14/2021] [Indexed: 12/13/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is the most widespread form of diabetes, characterized by chronic hyperglycaemia, insulin resistance, and inefficient insulin secretion and action. Primary care in T2DM is pharmacological, using drugs of several groups that include insulin sensitisers (e.g., biguanides, thiazolidinediones), insulin secretagogues (e.g., sulphonylureas, meglinides), alpha-glucosidase inhibitors, and the newest incretin-based therapies and sodium-glucose co-transporter 2 inhibitors. However, their long-term application can cause many harmful side effects, emphasising the importance of the using natural therapeutic products. Natural health substances including non-flavonoid polyphenols (e.g., resveratrol, curcumin, tannins, and lignans), flavonoids (e.g., anthocyanins, epigallocatechin gallate, quercetin, naringin, rutin, and kaempferol), plant fruits, vegetables and other products (e.g., garlic, green tea, blackcurrant, rowanberry, bilberry, strawberry, cornelian cherry, olive oil, sesame oil, and carrot) may be a safer alternative to primary pharmacological therapy. They are recommended as food supplements to prevent and/or ameliorate T2DM-related complications. In the advanced stage of T2DM, the combination therapy of synthetic agents and natural compounds with synergistic interactions makes the treatment more efficient. In this review, both pharmaceutical drugs and selected natural products, as well as combination therapies, are characterized. Mechanisms of their action and possible negative side effects are also provided.
Collapse
Affiliation(s)
- Jana Blahova
- Department of Botany and Genetics, Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, 949 74 Nitra, Slovakia; (J.B.); (M.B.); (V.M.)
| | - Monika Martiniakova
- Department of Zoology and Anthropology, Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, 949 74 Nitra, Slovakia;
| | - Martina Babikova
- Department of Botany and Genetics, Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, 949 74 Nitra, Slovakia; (J.B.); (M.B.); (V.M.)
| | - Veronika Kovacova
- Department of Zoology and Anthropology, Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, 949 74 Nitra, Slovakia;
| | - Vladimira Mondockova
- Department of Botany and Genetics, Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, 949 74 Nitra, Slovakia; (J.B.); (M.B.); (V.M.)
| | - Radoslav Omelka
- Department of Botany and Genetics, Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, 949 74 Nitra, Slovakia; (J.B.); (M.B.); (V.M.)
| |
Collapse
|
15
|
Grau-Bové C, Ginés I, Beltrán-Debón R, Terra X, Blay MT, Pinent M, Ardévol A. Glucagon Shows Higher Sensitivity than Insulin to Grapeseed Proanthocyanidin Extract (GSPE) Treatment in Cafeteria-Fed Rats. Nutrients 2021; 13:nu13041084. [PMID: 33810265 PMCID: PMC8066734 DOI: 10.3390/nu13041084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/20/2021] [Accepted: 03/24/2021] [Indexed: 11/16/2022] Open
Abstract
The endocrine pancreas plays a key role in metabolism. Procyanidins (GSPE) targets β-cells and glucagon-like peptide-1 (GLP-1)-producing cells; however, there is no information on the effects of GSPE on glucagon. We performed GSPE preventive treatments administered to Wistar rats before or at the same time as they were fed a cafeteria diet during 12 or 17 weeks. We then measured the pancreatic function and GLP-1 production. We found that glucagonemia remains modified by GSPE pre-treatment several weeks after the treatment has finished. The animals showed a higher GLP-1 response to glucose stimulation, together with a trend towards a higher GLP-1 receptor expression in the pancreas. When the GSPE treatment was administered every second week, the endocrine pancreas behaved differently. We show here that glucagon is a more sensitive parameter than insulin to GSPE treatments, with a secretion that is highly linked to GLP-1 ileal functionality and dependent on the type of treatment.
Collapse
|
16
|
Cremonini E, Daveri E, Mastaloudis A, Oteiza PI. (-)-Epicatechin and Anthocyanins Modulate GLP-1 Metabolism: Evidence from C57BL/6J Mice and GLUTag Cells. J Nutr 2021; 151:1497-1506. [PMID: 33693759 PMCID: PMC8659349 DOI: 10.1093/jn/nxab029] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/18/2020] [Accepted: 01/26/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Generated in intestinal L cells through cleavage of proglucagon (Gcg), glucagon-like peptide 1 (GLP-1) is secreted and rapidly inactivated by dipeptidyl peptidase IV (DPP-IV). GLP-1 regulates insulin secretion and overall glucose homeostasis. The capacity of dietary bioactives to increase GLP-1 circulating levels, and therefore increase insulin secretion and glucose metabolism, has gained significant interest of late. OBJECTIVES We evaluated the effects of (-)-epicatechin (EC) and different anthocyanins (ACs) and AC metabolites on GLP-1 metabolism in mice and on GLUTag cells. METHODS We fed 6-week-old C57BL/6J male mice a control diet or a control diet supplemented with either 40 mg AC or 20 mg EC/kg body weight for 14 weeks (AC) or 15 weeks (EC). Intestinal mRNA levels of Gcg and Dpp-iv were measured. In vitro, GLUTag cells were incubated in the presence or absence of different ACs, the AC metabolite protocatechuic acid (PCA), and EC. GLP-1 secretion and the main pathways involved in its release were assessed. RESULTS Long-term supplementation with EC or AC increased mouse GLP-1 plasma concentrations (55% and 98%, respectively; P < 0.05). In mice, 1) EC and AC increased Gcg mRNA levels in the ileum (91%) and colon (41%), respectively (P < 0.05); and 2) AC lowered ileum Dpp-iv mRNA levels (35%), while EC decreased plasma DPP-IV activity (15%; P < 0.05). In GLUTag cells, 1) cyanidin, delphinidin, PCA, and EC increased GLP-1 secretion (53%, 33%, 53%, and 68%, respectively; P < 0.05); and 2) cyanidin, delphinidin, EC, and PCA increased cyclin adenosine monophosphate levels (25-50%; P < 0.05) and activated protein kinase A (PKA; 100%, 50%, 80%, and 86%, respectively; P < 0.05). CONCLUSIONS In mice, EC and ACs regulated different steps in GLP-1 regulation, leading to increased plasma GLP-1. Cyanidin, delphinidin, PCA, and EC promoted GLP-1 secretion from GLUTag cells by activating the PKA-dependent pathway. These findings support the beneficial actions of these flavonoids in sustaining intestinal and glucose homeostasis through the modulation of the GLP-1 metabolism.
Collapse
Affiliation(s)
- Eleonora Cremonini
- Department of Nutrition and of Environmental Toxicology, University of California, Davis, CA, USA
| | - Elena Daveri
- Department of Nutrition and of Environmental Toxicology, University of California, Davis, CA, USA
| | | | | |
Collapse
|
17
|
Liskova A, Samec M, Koklesova L, Samuel SM, Zhai K, Al-Ishaq RK, Abotaleb M, Nosal V, Kajo K, Ashrafizadeh M, Zarrabi A, Brockmueller A, Shakibaei M, Sabaka P, Mozos I, Ullrich D, Prosecky R, La Rocca G, Caprnda M, Büsselberg D, Rodrigo L, Kruzliak P, Kubatka P. Flavonoids against the SARS-CoV-2 induced inflammatory storm. Biomed Pharmacother 2021; 138:111430. [PMID: 33662680 PMCID: PMC7906511 DOI: 10.1016/j.biopha.2021.111430] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/15/2021] [Accepted: 02/21/2021] [Indexed: 12/11/2022] Open
Abstract
The disease severity of COVID-19, especially in the elderly and patients with co-morbidities, is characterized by hypercytokinemia, an exaggerated immune response associated with an uncontrolled and excessive release of proinflammatory cytokine mediators (cytokine storm). Flavonoids, important secondary metabolites of plants, have long been studied as therapeutic interventions in inflammatory diseases due to their cytokine-modulatory effects. In this review, we discuss the potential role of flavonoids in the modulation of signaling pathways that are crucial for COVID-19 disease, particularly those related to inflammation and immunity. The immunomodulatory ability of flavonoids, carried out by the regulation of inflammatory mediators, the inhibition of endothelial activation, NLRP3 inflammasome, toll-like receptors (TLRs) or bromodomain containing protein 4 (BRD4), and the activation of the nuclear factor erythroid-derived 2-related factor 2 (Nrf2), might be beneficial in regulating the cytokine storm during SARS-CoV-2 infection. Moreover, the ability of flavonoids to inhibit dipeptidyl peptidase 4 (DPP4), neutralize 3-chymotrypsin-like protease (3CLpro) or to affect gut microbiota to maintain immune response, and the dual action of angiotensin-converting enzyme 2 (ACE-2) may potentially also be applied to the exaggerated inflammatory responses induced by SARS-CoV-2. Based on the previously proven effects of flavonoids in other diseases or on the basis of newly published studies associated with COVID-19 (bioinformatics, molecular docking), it is reasonable to assume positive effects of flavonoids on inflammatory changes associated with COVID-19. This review highlights the current state of knowledge of the utility of flavonoids in the management of COVID-19 and also points to the multiple biological effects of flavonoids on signaling pathways associated with the inflammation processes that are deregulated in the pathology induced by SARS-CoV-2. The identification of agents, including naturally occurring substances such as flavonoids, represents great approach potentially utilizable in the management of COVID-19. Although not clinically investigated yet, the applicability of flavonoids against COVID-19 could be a promising strategy due to a broad spectrum of their biological activities.
Collapse
Affiliation(s)
- Alena Liskova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Marek Samec
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Lenka Koklesova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Samson M Samuel
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Kevin Zhai
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Raghad Khalid Al-Ishaq
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Mariam Abotaleb
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Vladimir Nosal
- Department of Neurology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Karol Kajo
- Department of Pathology, St. Elizabeth Cancer Institute Hospital, Bratislava, Slovakia; Biomedical Research Centre, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Tuzla, Istanbul, Turkey; Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul, Turkey
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul, Turkey
| | - Aranka Brockmueller
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilian-University Munich, Munich, Germany
| | - Mehdi Shakibaei
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilian-University Munich, Munich, Germany
| | - Peter Sabaka
- Department of Infectiology and Geographical Medicine, Faculty Medicine, Comenius University and University Hospital, Bratislava, Slovakia
| | - Ioana Mozos
- Department of Functional Sciences, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania; Center for Translational Research and Systems Medicine, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| | - David Ullrich
- Department of Leadership, Faculty of Military Leadership, University of Defence, Brno, Czech Republic
| | - Robert Prosecky
- 2nd Department of Internal Medicine, Faculty of Medicine, Masaryk University and St. Anne's University Hospital, Brno, Czech Republic
| | - Giampiero La Rocca
- Human Anatomy Section, Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo and Euro-Mediterranean Institute of Science and Technology (IEMEST), Palermo, Italy
| | - Martin Caprnda
- 1st Department of Internal Medicine, Faculty of Medicine, Comenius University and University Hospital, Bratislava, Slovakia
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Luis Rodrigo
- Faculty of Medicine, University of Oviedo and Central University Hospital of Asturias (HUCA), Oviedo, Spain
| | - Peter Kruzliak
- 2nd Department of Surgery, Faculty of Medicine, Masaryk University and St. Anne's University Hospital, Brno, Czech Republic.
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia.
| |
Collapse
|
18
|
Abstract
Glucagon-like peptide-1 (GLP-1) is an enterohormone with a key role in several processes controlling body homeostasis, including glucose homeostasis and food intake regulation. It is secreted by the intestinal cells in response to nutrients, such as glucose, fat and amino acids. In the present review, we analyse the effect of protein on GLP-1 secretion and clearance. We review the literature on the GLP-1 secretory effects of protein and protein hydrolysates, and the mechanisms through which they exert these effects. We also review the studies on protein from different sources that has inhibitory effects on dipeptidyl peptidase-4 (DPP4), the enzyme responsible for GLP-1 inactivation, with particular emphasis on specific sources and treatments, and the gaps there still are in knowledge. There is evidence that the protein source and the hydrolytic processing applied to them can influence the effects on GLP-1 signalling. The gastrointestinal digestion of proteins, for example, significantly changes their effectiveness at modulating this enterohormone secretion in both in vivo and in vitro studies. Nevertheless, little information is available regarding human studies and more research is required to understand their potential as regulators of glucose homeostasis.
Collapse
|
19
|
Mohammad A, Shahnaz T, Sorayya K. Effect of 8 weeks' supplementation grape seed extract on insulin resistance in iranian adolescents with metabolic syndrome: A randomized controlled trial. Diabetes Metab Syndr 2021; 15:197-203. [PMID: 33385766 DOI: 10.1016/j.dsx.2020.12.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 12/12/2020] [Accepted: 12/14/2020] [Indexed: 12/26/2022]
Abstract
BACKGROUND AND AIMS Insulin resistance in adolescents is a major health concern. The aim of this study was to evaluate the effect of grape seed extract on insulin resistance in adolescents with metabolic syndrome (MetS). METHODS Participants were divided into grape seed extract (GSE) and placebo groups (n = 24 each) and received 100 mg/day of GSE or placebo and were placed on a weight loss diet for 8 weeks. Anthropometric and biochemical indices, blood pressure, dietary intake, and physical activity were measured before and after the intervention. RESULTS Forty-two participants completed the trial. After the intervention, the age, sex, baseline values, energy intake and physical activity as a covariate adjusted using ANCOVA for determine differences between groups. The MD (mean difference ±SEM) of HOMA-IR between the GSE group (-1.46 ± 0.45) and the placebo group (-0.48 ± 0.47), (p = 0.020), and the MD of insulin between the GSE group (-7.05 ± 2.11) and the placebo group (-1.71 ± 2.12), (p = 0.024), were significant. Although changes were observed in other variables, they were not statistically significant. CONCLUSIONS GSE improves insulin concentration and insulin resistance in adolescents with MetS and provides a basis for possible application of the GSE in the clinical management of MetS in adolescents. This study registered under Randomized Clinical Trials.gov Identifier no. IRCT2013112611288N7.
Collapse
Affiliation(s)
- Alizadeh Mohammad
- Department of Biochemistry and Diet Therapy, Faculty of Nutrition Tabriz University of Medical Sciences, Attar Nishabouri St., Tabriz, Iran, Postal code: 5166614711, POBOX: 14711.
| | - Taghizadeh Shahnaz
- Student Research Committee, Department of Biochemistry and Diet Therapy, Faculty of Nutrition Tabriz University of Medical Sciences, Attar Nishabouri St., Tabriz, Iran, Postal code: 5166614711, POBOX: 14711.
| | - Kheirouri Sorayya
- Department of Biochemistry and Diet Therapy, Faculty of Nutrition Tabriz University of Medical Sciences, Attar Nishabouri St., Tabriz, Iran, Postal code: 5166614711, POBOX: 14711.
| |
Collapse
|
20
|
Ramos‐Romero S, Léniz A, Martínez‐Maqueda D, Amézqueta S, Fernández‐Quintela A, Hereu M, Torres JL, Portillo MP, Pérez‐Jiménez J. Inter‐Individual Variability in Insulin Response after Grape Pomace Supplementation in Subjects at High Cardiometabolic Risk: Role of Microbiota and miRNA. Mol Nutr Food Res 2020; 65:e2000113. [DOI: 10.1002/mnfr.202000113] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 10/30/2020] [Indexed: 12/29/2022]
Affiliation(s)
- Sara Ramos‐Romero
- Institute of Advanced Chemistry of Catalonia (IQAC‐CSIC) Barcelona 08034 Spain
- Department of Cell Biology Physiology and Immunology Faculty of Biology University of Barcelona Barcelona 08028 Spain
| | - Asier Léniz
- Basque Health Service (Osakidetza) Araba Integrated Health Care Organization Vitoria 01009 Spain
- Nutrition and Obesity Group, Department of Nutrition and Food Science Faculty of Pharmacy and Lucio Lascaray Research Center University of the Basque Country (UPV/EHU) Vitoria 01006 Spain
| | - Daniel Martínez‐Maqueda
- Department of Metabolism and Nutrition Technology and Nutrition (ICTAN‐CSIC) Institute of Food Science José Antonio Novais 10 Madrid 28040 Spain
| | - Susana Amézqueta
- Departament d'Enginyeria Química i Química Analítica and Institut de Biomedicina (IBUB) Universitat de Barcelona Barcelona 08028 Spain
| | - Alfredo Fernández‐Quintela
- Nutrition and Obesity Group, Department of Nutrition and Food Science Faculty of Pharmacy and Lucio Lascaray Research Center University of the Basque Country (UPV/EHU) Vitoria 01006 Spain
- Instituto de Salud Carlos III (ISCIII) CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN) Madrid 28029 Spain
| | - Mercè Hereu
- Institute of Advanced Chemistry of Catalonia (IQAC‐CSIC) Barcelona 08034 Spain
| | - Josep Luís Torres
- Institute of Advanced Chemistry of Catalonia (IQAC‐CSIC) Barcelona 08034 Spain
| | - María P. Portillo
- Nutrition and Obesity Group, Department of Nutrition and Food Science Faculty of Pharmacy and Lucio Lascaray Research Center University of the Basque Country (UPV/EHU) Vitoria 01006 Spain
- Instituto de Salud Carlos III (ISCIII) CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN) Madrid 28029 Spain
| | - Jara Pérez‐Jiménez
- Department of Metabolism and Nutrition Technology and Nutrition (ICTAN‐CSIC) Institute of Food Science José Antonio Novais 10 Madrid 28040 Spain
| |
Collapse
|
21
|
Ballard CR, Dos Santos EF, Dubois MJ, Pilon G, Cazarin CBB, Maróstica Junior MR, Marette A. Two polyphenol-rich Brazilian fruit extracts protect from diet-induced obesity and hepatic steatosis in mice. Food Funct 2020; 11:8800-8810. [PMID: 32959866 DOI: 10.1039/d0fo01912g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Consumption of polyphenol-rich food is associated with better metabolic health. Tucum-do-Pantanal (Bactris setosa Mart) and taruma-do-cerrado (Vitex cymosa Bertero ex Spreng) are underexploited native Brazilian fruits with an important source of phytochemicals. In this study, we assessed the effects of 100 mg kg-1 tucum (TPE) and taruma (TCE) extracts on diet-induced obesity (DIO) C57BL/6J mice. After 8 weeks of daily treatment, TPE and TCE were found to significantly prevented the diet-induced body weight gain and fully protected against hepatic steatosis associated with a tendency to stimulate hepatic AMPK phosphorylation. TPE reduced visceral obesity and improved glucose metabolism as revealed by an improvement of the insulin tolerance test, a reduction in the insulin fasting level, and a decreased glucose-induced hyperinsulinemia during an oral glucose tolerance test. TPE and TCE showed promising effects on the treatment of obesity and NAFLD, furthermore, TPE on insulin resistance.
Collapse
Affiliation(s)
- Cíntia Reis Ballard
- Department of Food and Nutrition, School of Food Engineering, University of Campinas, Campinas, 80 Monteiro Lobato, 13083-862, São Paulo, Brazil.
| | - Elisvânia Freitas Dos Santos
- School of Pharmaceutical Sciences, Food and Nutrition, Federal University of Mato Grosso do Sul, Campo Grande, S/N Costa e Silva, 79070-900, Mato Grosso do Sul, Brazil.
| | - Marie-Julie Dubois
- Quebec Heart and Lung Institute, Laval Hospital, Laval University, Quebec City, 2725 Sainte Foy, G1V 4G5, Quebec, Canada.
| | - Geneviève Pilon
- Quebec Heart and Lung Institute, Laval Hospital, Laval University, Quebec City, 2725 Sainte Foy, G1V 4G5, Quebec, Canada.
| | - Cinthia Baú Betim Cazarin
- Department of Food and Nutrition, School of Food Engineering, University of Campinas, Campinas, 80 Monteiro Lobato, 13083-862, São Paulo, Brazil.
| | - Mário Roberto Maróstica Junior
- Department of Food and Nutrition, School of Food Engineering, University of Campinas, Campinas, 80 Monteiro Lobato, 13083-862, São Paulo, Brazil.
| | - Andre Marette
- Quebec Heart and Lung Institute, Laval Hospital, Laval University, Quebec City, 2725 Sainte Foy, G1V 4G5, Quebec, Canada.
| |
Collapse
|
22
|
Matacchione G, Gurău F, Baldoni S, Prattichizzo F, Silvestrini A, Giuliani A, Pugnaloni A, Espinosa E, Amenta F, Bonafè M, Procopio AD, Rippo MR, Olivieri F, Sabbatinelli J. Pleiotropic effects of polyphenols on glucose and lipid metabolism: Focus on clinical trials. Ageing Res Rev 2020; 61:101074. [PMID: 32335301 DOI: 10.1016/j.arr.2020.101074] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 03/03/2020] [Accepted: 04/13/2020] [Indexed: 12/18/2022]
Abstract
Epidemiological evidence from observational studies suggests that dietary polyphenols (PPs) - phytochemicals found in a variety of plant-based foods - can reduce the risk of developing type 2 diabetes mellitus (T2DM). Clinical trials have also indicated that PPs may help manage the two key features of T2DM, hyperglycemia and dyslipidemia. Since the incidence of T2DM is dramatically increasing worldwide, identifying food-based approaches that can reduce the risk of developing it and help manage its main risk factors in early-stage disease has clinical and socioeconomic relevance. After a brief overview of current epidemiological data on the incidence of T2DM in individuals consuming PP-rich diets, we review the evidence from clinical trials investigating PP-enriched foods and/or PP-based nutraceutical compounds, report their main results, and highlight the knowledge gaps that should be bridged to enhance our understanding of the role of PPs in T2DM development and management.
Collapse
|
23
|
Cremonini E, Iglesias DE, Kang J, Lombardo GE, Mostofinejad Z, Wang Z, Zhu W, Oteiza PI. (-)-Epicatechin and the comorbidities of obesity. Arch Biochem Biophys 2020; 690:108505. [PMID: 32679195 DOI: 10.1016/j.abb.2020.108505] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/08/2020] [Accepted: 07/10/2020] [Indexed: 02/07/2023]
Abstract
Obesity has major adverse consequences on human health contributing to the development of, among others, insulin resistance and type 2 diabetes, cardiovascular disease, non-alcoholic fatty liver disease, altered behavior and cognition, and cancer. Changes in dietary habits and lifestyle could contribute to mitigate the development and/or progression of these pathologies. This review will discuss current evidence on the beneficial actions of the flavan-3-ol (-)-epicatechin (EC) on obesity-associated comorbidities. These benefits can be in part explained through EC's capacity to mitigate several common events underlying the development of these pathologies, including: i) high circulating levels of glucose, lipids and endotoxins; ii) chronic systemic inflammation; iii) tissue endoplasmic reticulum and oxidative stress; iv) insulin resistance; v) mitochondria dysfunction and vi) dysbiosis. The currently known underlying mechanisms and cellular targets of EC's beneficial effects are discussed. While, there is limited evidence from human studies supplementing with pure EC, other studies involving cocoa supplementation in humans, pure EC in rodents and in vitro studies, support a potential beneficial action of EC on obesity-associated comorbidities. This evidence also stresses the need of further research in the field, which would contribute to the development of human dietary strategies to mitigate the adverse consequences of obesity.
Collapse
Affiliation(s)
- Eleonora Cremonini
- Departments of Nutrition and Environmental Toxicology, University of California, Davis, CA, USA
| | - Dario E Iglesias
- Departments of Nutrition and Environmental Toxicology, University of California, Davis, CA, USA
| | - Jiye Kang
- Departments of Nutrition and Environmental Toxicology, University of California, Davis, CA, USA
| | - Giovanni E Lombardo
- Departments of Nutrition and Environmental Toxicology, University of California, Davis, CA, USA; Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Zahra Mostofinejad
- Departments of Nutrition and Environmental Toxicology, University of California, Davis, CA, USA
| | - Ziwei Wang
- Departments of Nutrition and Environmental Toxicology, University of California, Davis, CA, USA
| | - Wei Zhu
- Departments of Nutrition and Environmental Toxicology, University of California, Davis, CA, USA
| | - Patricia I Oteiza
- Departments of Nutrition and Environmental Toxicology, University of California, Davis, CA, USA.
| |
Collapse
|
24
|
Casanova-Martí À, González-Abuín N, Serrano J, Blay MT, Terra X, Frost G, Pinent M, Ardévol A. Long Term Exposure to a Grape Seed Proanthocyanidin Extract Enhances L-Cell Differentiation in Intestinal Organoids. Mol Nutr Food Res 2020; 64:e2000303. [PMID: 32613679 DOI: 10.1002/mnfr.202000303] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/17/2020] [Indexed: 01/08/2023]
Abstract
SCOPE A grape-seed proanthocyanidin extract (GSPE) interacts at the intestinal level, enhancing glucagon-like peptide-1 (GLP-1) and peptide YY (PYY) release, which modulate appetite and glucose homeostasis. Thus, enhancing L-cell numbers could be a strategy to promote hormone production, providing a potential strategy for obesity and type-2 diabetes mellitus (T2DM) treatment. METHODS AND RESULTS Mice ileum organoids are used to evaluate the long-term effects of GSPE and two of its main components, epicatechin (EC) and gallic acid (GA), on intestinal differentiation. Hormone levels are determined using RIA and ELISA kits, and gene expression of transcription factors involved in intestinal cell differentiation, as well as markers of different cell types, are assessed by real-time qPCR. GSPE upregulates enterohormone gene expression and content, as well as the pan-endocrine marker chromogranin A. GSPE also modulates the temporal gene expression profile of early and late transcription factors involved in L-cell differentiation. Furthermore, GSPE upregulates goblet cell (Muc2) and enterocyte (sucraseisomaltase) markers, while downregulating stem cell markers (Lgr5+). Although EC and GA modified enterohormone release, they do not reproduce GSPE effects on transcription factor's profile. CONCLUSIONS This study shows the potential role of GSPE in promoting enteroendocrine differentiation, effect that is not mediated by EC or GA.
Collapse
Affiliation(s)
- Àngela Casanova-Martí
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, C/Marcel·li Domingo 1, Tarragona, 43007, Spain
| | - Noemi González-Abuín
- Section for Nutrition Research, Department of Metabolism, Digestion, and Reproduction, Hammersmith Hospital, Imperial College London, London, W12 0NN, UK
| | - Joan Serrano
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, C/Marcel·li Domingo 1, Tarragona, 43007, Spain
| | - Maria Teresa Blay
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, C/Marcel·li Domingo 1, Tarragona, 43007, Spain
| | - Ximena Terra
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, C/Marcel·li Domingo 1, Tarragona, 43007, Spain
| | - Gary Frost
- Section for Nutrition Research, Department of Metabolism, Digestion, and Reproduction, Hammersmith Hospital, Imperial College London, London, W12 0NN, UK
| | - Montserrat Pinent
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, C/Marcel·li Domingo 1, Tarragona, 43007, Spain
| | - Anna Ardévol
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, C/Marcel·li Domingo 1, Tarragona, 43007, Spain
| |
Collapse
|
25
|
Rambaran TF, Bergman J, Nordström P, Nordström A. Effect of Berry Polyphenols on Glucose Metabolism: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Curr Dev Nutr 2020; 4:nzaa100. [PMID: 32666033 PMCID: PMC7326477 DOI: 10.1093/cdn/nzaa100] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/20/2020] [Accepted: 05/22/2020] [Indexed: 12/17/2022] Open
Abstract
The effect of berry polyphenols on glucose metabolism has been evaluated in several studies; however, the results are conflicting. A systematic review and meta-analysis was therefore conducted to evaluate the effect of berry polyphenol consumption on glucose metabolism in adults with impaired glucose tolerance or insulin resistance. PubMed/MEDLINE, Cochrane Central Register of Controlled Trials, CINAHL (EBSCO), and Scopus were searched for randomized controlled trials published by June 2019. Of the 3240 articles found, 21 met inclusion criteria. Study-specific effects were calculated as mean differences, which were pooled using fixed-effect, inverse-variance weighting. Overall, berry polyphenol consumption did not have a clear effect on biomarkers of glucose metabolism compared with placebo or no treatment. Although some analyses showed statistically significant effects, these effects were too small to be of clinical relevance. The review protocol was registered in the PROSPERO International Prospective Register of Systematic Reviews as CRD42019130811.
Collapse
Affiliation(s)
- Theresa F Rambaran
- Department of Public Health and Clinical Medicine, Section of Sustainable Health, Umeå University, Umeå, Sweden
| | - Jonathan Bergman
- Department of Community Medicine and Rehabilitation, Unit of Geriatric Medicine, Umeå University, Umeå, Sweden
| | - Peter Nordström
- Department of Community Medicine and Rehabilitation, Unit of Geriatric Medicine, Umeå University, Umeå, Sweden
| | - Anna Nordström
- Department of Public Health and Clinical Medicine, Section of Sustainable Health, Umeå University, Umeå, Sweden
- School of Sport Sciences, UiT Arctic University of Norway, Tromsö, Norway
| |
Collapse
|
26
|
Grau-Bové C, González-Quilen C, Terra X, Blay MT, Beltrán-Debón R, Jorba-Martín R, Espina B, Pinent M, Ardévol A. Effects of Flavanols on Enteroendocrine Secretion. Biomolecules 2020; 10:biom10060844. [PMID: 32492958 PMCID: PMC7355421 DOI: 10.3390/biom10060844] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 05/26/2020] [Accepted: 05/29/2020] [Indexed: 12/23/2022] Open
Abstract
Some beneficial effects of grape seed proanthocyanidin extract (GSPE) can be explained by the modulation of enterohormone secretion. As GSPE comprises a combination of different molecules, the pure compounds that cause these effects need to be elucidated. The enterohormones and chemoreceptors present in the gastrointestinal tract differ between species, so if humans are to gain beneficial effects, species closer to humans-and humans themselves-must be used. We demonstrate that 100 mg/L of GSPE stimulates peptide YY (PYY) release, but not glucagon-like peptide 1 (GLP-1) release in the human colon. We used a pig ex vivo system that differentiates between apical and basolateral intestinal sides to analyse how apical stimulation with GSPE and its pure compounds affects the gastrointestinal tract. In pigs, apical GSPE treatment stimulates the basolateral release of PYY in the duodenum and colon and that of GLP-1 in the ascending, but not the descending colon. In the duodenum, luminal stimulation with procyanidin dimer B2 increased PYY secretion, but not CCK secretion, while catechin monomers (catechin/epicatechin) significantly increased CCK release, but not PYY release. The differential effects of GSPE and its pure compounds on enterohormone release at the same intestinal segment suggest that they act through chemosensors located apically and unevenly distributed along the gastrointestinal tract.
Collapse
Affiliation(s)
- Carme Grau-Bové
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, c/Marcel·lí Domingo nº1, 43007 Tarragona, Spain; (C.G.-B.); (C.G.-Q.); (X.T.); (M.T.B.); (R.B.-D.); (A.A.)
| | - Carlos González-Quilen
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, c/Marcel·lí Domingo nº1, 43007 Tarragona, Spain; (C.G.-B.); (C.G.-Q.); (X.T.); (M.T.B.); (R.B.-D.); (A.A.)
| | - Ximena Terra
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, c/Marcel·lí Domingo nº1, 43007 Tarragona, Spain; (C.G.-B.); (C.G.-Q.); (X.T.); (M.T.B.); (R.B.-D.); (A.A.)
- Institut d’Investigació Sanitària Pere Virgili (IISPV), 43005 Tarragona, Spain; (R.J.-M.); (B.E.)
| | - M. Teresa Blay
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, c/Marcel·lí Domingo nº1, 43007 Tarragona, Spain; (C.G.-B.); (C.G.-Q.); (X.T.); (M.T.B.); (R.B.-D.); (A.A.)
- Institut d’Investigació Sanitària Pere Virgili (IISPV), 43005 Tarragona, Spain; (R.J.-M.); (B.E.)
| | - Raul Beltrán-Debón
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, c/Marcel·lí Domingo nº1, 43007 Tarragona, Spain; (C.G.-B.); (C.G.-Q.); (X.T.); (M.T.B.); (R.B.-D.); (A.A.)
- Institut d’Investigació Sanitària Pere Virgili (IISPV), 43005 Tarragona, Spain; (R.J.-M.); (B.E.)
| | - Rosa Jorba-Martín
- Institut d’Investigació Sanitària Pere Virgili (IISPV), 43005 Tarragona, Spain; (R.J.-M.); (B.E.)
- Servei de Cirurgia General i de l’Aparell Digestiu, Hospital Universitari Joan XXIII, 43005 Tarragona, Spain
| | - Beatriz Espina
- Institut d’Investigació Sanitària Pere Virgili (IISPV), 43005 Tarragona, Spain; (R.J.-M.); (B.E.)
- Servei de Cirurgia General i de l’Aparell Digestiu, Hospital Universitari Joan XXIII, 43005 Tarragona, Spain
| | - Montserrat Pinent
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, c/Marcel·lí Domingo nº1, 43007 Tarragona, Spain; (C.G.-B.); (C.G.-Q.); (X.T.); (M.T.B.); (R.B.-D.); (A.A.)
- Institut d’Investigació Sanitària Pere Virgili (IISPV), 43005 Tarragona, Spain; (R.J.-M.); (B.E.)
- Correspondence: ; Tel.: +34-97-755-9566
| | - Anna Ardévol
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, c/Marcel·lí Domingo nº1, 43007 Tarragona, Spain; (C.G.-B.); (C.G.-Q.); (X.T.); (M.T.B.); (R.B.-D.); (A.A.)
- Institut d’Investigació Sanitària Pere Virgili (IISPV), 43005 Tarragona, Spain; (R.J.-M.); (B.E.)
| |
Collapse
|
27
|
Barbe A, Mellouk N, Ramé C, Grandhaye J, Anger K, Chahnamian M, Ganier P, Brionne A, Riva A, Froment P, Dupont J. A grape seed extract maternal dietary supplementation improves egg quality and reduces ovarian steroidogenesis without affecting fertility parameters in reproductive hens. PLoS One 2020; 15:e0233169. [PMID: 32407420 PMCID: PMC7224513 DOI: 10.1371/journal.pone.0233169] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 04/29/2020] [Indexed: 02/06/2023] Open
Abstract
In broiler hens, the genetic selection increased susceptibility to metabolic disorders and reproductive dysfunctions. In human ovarian cells, grape seed extracts (GSE) improved steroid production. Here, we investigated the effects of a GSE dietary supplementation on egg production and quality, fertility parameters, Reactive Oxygen Species (ROS) and steroid content in yolk egg associated to plasma adipokines in broiler hens. For this, we designed two in vivo experiments, the first one included three groups of hens: A (control), B and C (supplemented with GSE at 0.5% and 1% of the total diet composition, respectively, since week 4), and the second one used two groups of hens: A (control) and D (supplemented with GSE at 1% of the total diet composition since hatching). We assessed the egg production from 23th to 40th weeks and quality at 33th week. After artificial inseminations, the fertility parameters were calculated. In egg yolk, Reactive Oxygen Species (ROS) level and steroid production were evaluated by Ros-Glo H202 and ELISA assay, respectively. Expression of steroidogenic enzymes and adipokines and their receptors was determined by RT-qPCR in ovarian cells and plasma adipokines (RARRES2, ADIPOQ and NAMPT) were evaluated by specific ELISA assays. The fertility parameters and egg production were unaffected by GSE supplementation whatever the experiment (exp.). However, the rate of double-yolk eggs decreased for all GSE supplemented groups (exp. 1 P <0.01, exp.2, P<0.02). In exp.1, C group eggs were bigger and larger (P<0.0001) and the shell elasticity was higher for both B and C (P<0.0003) as compared to control. In the egg yolk, GSE supplementation in both exp. reduced ROS content and steroidogenesis consistent with a decrease in P450 aromatase and StAR mRNA expression and basal in vitro progesterone secretion in granulosa cells (P<0.001). Interestingly, in both exp. RARRES2 plasma levels were positively correlated while ADIPOQ and NAMPT plasma levels were negatively correlated, with steroids and ROS in yolk (P<0.0001). Taken together, maternal dietary GSE supplementation did not affect egg production and fertility parameters whereas it reduced ROS content and steroidogenesis in yolk egg. Furthermore, it ameliorated egg quality by decreasing the number of double-yolk eggs and by improving the size of normal eggs and the elasticity of the shell. Taken together, our data suggest the possibility of using dietary maternal GSE to improve egg quality.
Collapse
Affiliation(s)
- Alix Barbe
- INRAE UMR85 Physiologie de la Reproduction et des Comportements, Nouzilly, France
- CNRS UMR7247 Physiologie de la Reproduction et des Comportements, Nouzilly, France
- Université François Rabelais de Tours, Tours, France
- IFCE Nouzilly, Nouzilly, France
| | - Namya Mellouk
- INRAE UMR85 Physiologie de la Reproduction et des Comportements, Nouzilly, France
- CNRS UMR7247 Physiologie de la Reproduction et des Comportements, Nouzilly, France
- Université François Rabelais de Tours, Tours, France
- IFCE Nouzilly, Nouzilly, France
| | - Christelle Ramé
- INRAE UMR85 Physiologie de la Reproduction et des Comportements, Nouzilly, France
- CNRS UMR7247 Physiologie de la Reproduction et des Comportements, Nouzilly, France
- Université François Rabelais de Tours, Tours, France
- IFCE Nouzilly, Nouzilly, France
| | - Jérémy Grandhaye
- INRAE UMR85 Physiologie de la Reproduction et des Comportements, Nouzilly, France
- CNRS UMR7247 Physiologie de la Reproduction et des Comportements, Nouzilly, France
- Université François Rabelais de Tours, Tours, France
- IFCE Nouzilly, Nouzilly, France
| | - Karine Anger
- INRAE - Unité Expérimentale du Pôle d’Expérimentation Avicole de Tours UEPEAT, 1295, Nouzilly, Nouzilly, France
| | - Marine Chahnamian
- INRAE - Unité Expérimentale du Pôle d’Expérimentation Avicole de Tours UEPEAT, 1295, Nouzilly, Nouzilly, France
| | - Patrice Ganier
- INRAE - Unité Expérimentale du Pôle d’Expérimentation Avicole de Tours UEPEAT, 1295, Nouzilly, Nouzilly, France
| | - Aurélien Brionne
- INRAE, UMR0083 Biologie des Oiseaux et Aviculture, Nouzilly, France
| | | | - Pascal Froment
- INRAE UMR85 Physiologie de la Reproduction et des Comportements, Nouzilly, France
- CNRS UMR7247 Physiologie de la Reproduction et des Comportements, Nouzilly, France
- Université François Rabelais de Tours, Tours, France
- IFCE Nouzilly, Nouzilly, France
| | - Joëlle Dupont
- INRAE UMR85 Physiologie de la Reproduction et des Comportements, Nouzilly, France
- CNRS UMR7247 Physiologie de la Reproduction et des Comportements, Nouzilly, France
- Université François Rabelais de Tours, Tours, France
- IFCE Nouzilly, Nouzilly, France
- * E-mail:
| |
Collapse
|
28
|
Osamudiamen P, Oluremi B, Oderinlo O, Aiyelaagbe O. Trans-resveratrol, piceatannol and gallic acid: Potent polyphenols isolated from Mezoneuron benthamianum effective as anticaries, antioxidant and cytotoxic agents. SCIENTIFIC AFRICAN 2020. [DOI: 10.1016/j.sciaf.2019.e00244] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
29
|
Hu J, Wang Z, Tan BK, Christian M. Dietary polyphenols turn fat “brown”: A narrative review of the possible mechanisms. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.01.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
30
|
Wang Y, Wang A, Alkhalidy H, Luo J, Moomaw E, Neilson AP, Liu D. Flavone Hispidulin Stimulates Glucagon-Like Peptide-1 Secretion and Ameliorates Hyperglycemia in Streptozotocin-Induced Diabetic Mice. Mol Nutr Food Res 2020; 64:e1900978. [PMID: 31967385 DOI: 10.1002/mnfr.201900978] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 12/24/2019] [Indexed: 12/17/2022]
Abstract
SCOPE Loss of functional β-cell mass is central for the deterioration of glycemic control in diabetes. The incretin hormone glucagon-like peptide-1 (GLP-1) plays a critical role in maintaining glycemic homeostasis via potentiating glucose-stimulated insulin secretion and promoting β-cell mass. Agents that can directly promote GLP-1 secretion, thereby increasing insulin secretion and preserving β-cell mass, hold great potential for the treatment of T2D. METHODS AND RESULTS GluTag L-cells, INS832/13 cells, and mouse ileum crypts and islets are cultured for examining the effects of flavone hispidulin on GLP-1 and insulin secretion. Mouse livers and isolated hepatocytes are used for gluconeogenesis. Streptozotocin-induced diabetic mice are treated with hispidulin (20 mg kg-1 day-1 , oral gavage) for 6 weeks to evaluate its anti-diabetic potential. Hispidulin stimulates GLP-1 secretion from the L-cell line, ileum crypts, and in vivo. This hispidulin action is mediated via activation of cyclic adenosine monophosphate/protein kinase A signaling. Hispidulin significantly improves glycemic control in diabetic mice, concomitant with improved insulin release, and β-cell survival. Additionally, hispidulin decreases hepatic pyruvate carboxylase expression in diabetic mice and suppresses gluconeogenesis in hepatocytes. Furthermore, hispidulin stimulates insulin secretion from β-cells. CONCLUSION These findings suggest that Hispidulin may be a novel dual-action anti-diabetic compound via stimulating GLP-1 secretion and suppressing hepatic glucose production.
Collapse
Affiliation(s)
- Yao Wang
- Department of Human Nutrition, Foods, and Exercise, College of Agricultural and Life Sciences, Virginia Tech, Blacksburg, VA, 24060, USA
| | - Aiping Wang
- College of Life Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Hana Alkhalidy
- Department of Nutrition and Food Technology, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Jing Luo
- Department of Human Nutrition, Foods, and Exercise, College of Agricultural and Life Sciences, Virginia Tech, Blacksburg, VA, 24060, USA
| | - Elizabeth Moomaw
- Department of Human Nutrition, Foods, and Exercise, College of Agricultural and Life Sciences, Virginia Tech, Blacksburg, VA, 24060, USA
| | - Andrew P Neilson
- Plants for Human Health Institution, North Carolina State University, Kannapolis, NC, 28081, USA
| | - Dongmin Liu
- Department of Human Nutrition, Foods, and Exercise, College of Agricultural and Life Sciences, Virginia Tech, Blacksburg, VA, 24060, USA
| |
Collapse
|
31
|
Casanova-Martí À, Bravo FI, Serrano J, Ardévol A, Pinent M, Muguerza B. Antihyperglycemic effect of a chicken feet hydrolysate via the incretin system: DPP-IV-inhibitory activity and GLP-1 release stimulation. Food Funct 2020; 10:4062-4070. [PMID: 31225553 DOI: 10.1039/c9fo00695h] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Herein, the potential of hydrolysates of chicken feet proteins as natural dipeptidyl-peptidase IV (DPP-IV) inhibitors was investigated; moreover, three hydrolysates were selected due to their high DPP-IV inhibitory capacity (>80% inhibition), showing the IC50 values of around 300 μg estimated protein per mL; one of them (named p4H) was selected for the posterior analysis. In addition, its effect on glucose tolerance was investigated in two rat models (diet and age-induced) of glucose-intolerance and healthy animals; the amount of 300 mg estimated peptide per kg body weight improved the plasma glucose profile in both glucose-intolerance models. Moreover, it stimulated active GLP-1 release in the enteroendocrine STC-1 cells and rat ileum tissue. In conclusion, our results indicate that chicken feet proteins are a good source of bioactive peptides as DPP-IV inhibitors. Moreover, our results highlight the potential of the selected hydrolysate p4H in the management of type 2 diabetes due to its dual function of inhibition of the DPP-IV activity and induction of the GLP-1 release.
Collapse
Affiliation(s)
- Àngela Casanova-Martí
- MoBioFood Research Group, Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, c/Marcel·lí Domingo no. 1, 43007 Tarragona, Spain.
| | - Francisca Isabel Bravo
- Nutrigenomics Research Group, Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, c/Marcel·lí Domingo no. 1, 43007 Tarragona, Spain
| | - Joan Serrano
- MoBioFood Research Group, Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, c/Marcel·lí Domingo no. 1, 43007 Tarragona, Spain.
| | - Anna Ardévol
- MoBioFood Research Group, Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, c/Marcel·lí Domingo no. 1, 43007 Tarragona, Spain.
| | - Montserrat Pinent
- MoBioFood Research Group, Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, c/Marcel·lí Domingo no. 1, 43007 Tarragona, Spain.
| | - Begoña Muguerza
- Nutrigenomics Research Group, Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, c/Marcel·lí Domingo no. 1, 43007 Tarragona, Spain
| |
Collapse
|
32
|
The Potential of Hibiscus sabdariffa Linn in Inducing Glucagon-Like Peptide-1 via SGLT-1 and GLPR in DM Rats. BIOMED RESEARCH INTERNATIONAL 2019; 2019:8724824. [PMID: 31828140 PMCID: PMC6885171 DOI: 10.1155/2019/8724824] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 09/25/2019] [Indexed: 12/15/2022]
Abstract
Background Glucagon-like peptide 1 (GLP-1) hormone is an incretin hormone that is secreted in the ileum and plays a role in the pancreas to increase insulin secretion, stimulate proliferation, and prevent pancreatic β-cell apoptosis. Currently, diabetes mellitus (DM) treatment based on GLP-1 work is being developed, for instance, from herbal plants such as Hibiscus sabdariffa Linn (H. sabdariffa). Therefore, this study aims to determine the potential of H. sabdariffa in GLP-1 secretion in the ileum and its action in pancreatic β-cells. In addition, this study also aims to determine the active ingredients of H. sabdariffa (Hib) that interact with sodium-glucose cotransporter-1 (SGLT-1) so that it can increase GLP-1 secretion in the ileum and interact with GLP-1 receptors (GLP-1R) in the pancreas. Method This experimental study used 24 experimental animals of Sprague-Dawley type (aged 8-10 weeks, weight 200-250 g) that were divided into 6 groups, namely, (i) normal (C), (ii) normal-Hib 200 (C-Hib200), (iii) normal-Hib 500 (C-Hib500), (iv) DM (C-DM), (v) DM-Hib200, and (vi) DM-Hib500. H. sabdariffa extract was given orally once a day for 5 weeks. Testing of GLP-1 levels in the ileum and pancreatic tissue was performed by enzyme-linked immunosorbent assay. The prediction of the interaction mechanism of the active substance H. sabdariffa against GLP-1 was done using molecular docking. Results There was a decrease in GLP-1 levels in the ileum of DM rats (p < 0.05). However, DM rats administered H. sabdariffa 500 mg/kg BW had GLP-1 levels that were the same as in normal rats (p > 0.05). This is due to active ingredients such as leucosin, which binds to SGLT-1. Administration of 500 mg/kg BW H. sabdariffa in DM rats resulted in GLP-1 levels in the pancreas that were the same as in normal rats (p > 0.05). In addition, the active ingredient of H. sabdariffa, delphinidin, binds to GLPR in the pancreas. Conclusion The active ingredient of H. sabdariffa can increase GLP-1 secretion in the ileum and can interact with G protein-linked receptors in the pancreas.
Collapse
|
33
|
Averilla JN, Oh J, Kim HJ, Kim JS, Kim JS. Potential health benefits of phenolic compounds in grape processing by-products. Food Sci Biotechnol 2019; 28:1607-1615. [PMID: 31807333 DOI: 10.1007/s10068-019-00628-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/03/2019] [Accepted: 05/17/2019] [Indexed: 12/12/2022] Open
Abstract
Prevention emerges as a powerful approach in minimizing the risk of deleterious lifestyle diseases because therapies do not necessarily guarantee a permanent cure. Accordingly, consumers' growing preference for natural and health-promoting dietary options that are rich in antioxidants has become widespread. Grape (Vitis vinifera) is an antioxidant-rich fruit extensively grown for fresh or processed consumption. The long-term consumption of its polyphenolic antioxidants may promote multiple health benefits. However, grape pomace (GP), consisting of peel, seed, stem, and pulp, is discarded during grape processing, including juice extraction and winemaking, despite its substantial antioxidant content. Polyphenolic extraction techniques have been widely explored to date, but the consolidation of reported physiological impacts of GP-derived polyphenolic constituents is limited. Thus, this review highlights current studies of the potential applications of GP extract in disease prevention and treatment, emphasizing the major influence of polyphenolic compositions and origins of different grape varieties.
Collapse
Affiliation(s)
- Janice N Averilla
- 1School of Food Science and Biotechnology (BK21 Plus), Kyungpook National University, Daegu, 41566 Republic of Korea
| | - Jisun Oh
- 1School of Food Science and Biotechnology (BK21 Plus), Kyungpook National University, Daegu, 41566 Republic of Korea
| | - Hyo Jung Kim
- 2National Development Institute of Korean Medicine, Gyeongbuk Gyeongsan, 38540 Republic of Korea
| | - Jae Sik Kim
- Kimjaesik Health Foods, Gyeongbuk Yeongcheon, 38912 Republic of Korea
| | - Jong-Sang Kim
- 1School of Food Science and Biotechnology (BK21 Plus), Kyungpook National University, Daegu, 41566 Republic of Korea
| |
Collapse
|
34
|
Intestinal metabolism of baicalein after oral administration in mice: Pharmacokinetics and mechanisms. J Funct Foods 2019. [DOI: 10.1016/j.jff.2018.12.037] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
35
|
A Novel Dipeptidyl Peptidase IV Inhibitory Tea Peptide Improves Pancreatic β-Cell Function and Reduces α-Cell Proliferation in Streptozotocin-Induced Diabetic Mice. Int J Mol Sci 2019; 20:ijms20020322. [PMID: 30646613 PMCID: PMC6359713 DOI: 10.3390/ijms20020322] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 12/28/2018] [Accepted: 01/11/2019] [Indexed: 12/24/2022] Open
Abstract
Dipeptidyl peptidase IV (DPP-IV) inhibitors occupy a growing place in the drugs used for the management of type 2 diabetes. Recently, food components, including food-derived bioactive peptides, have been suggested as sources of DPP-IV inhibitors without side effects. Chinese black tea is a traditional health beverage, and it was used for finding DPP-IV inhibitory peptides in this study. The ultra-filtrated fractions isolated from the aqueous extracts of black tea revealed DPP-IV inhibitory activity in vitro. Four peptides under 1 kDa were identified by SDS-PAGE and LC-MS/MS (Liquid Chromatography-Mass Spectrometry-Mass Spectrometry) from the ultra-filtrate. The peptide II (sequence: AGFAGDDAPR), with a molecular mass of 976 Da, showed the greatest DPP-IV inhibitory activity (in vitro) among the four peptides. After administration of peptide II (400 mg/day) for 57 days to streptozotocin (STZ)-induced hyperglycemic mice, the concentration of glucagon-like peptide-1 (GLP-1) in the blood increased from 9.85 ± 1.96 pmol/L to 19.22 ± 6.79 pmol/L, and the insulin level was increased 4.3-fold compared to that in STZ control mice. Immunohistochemistry revealed the improved function of pancreatic beta-cells and suppressed proliferation of pancreatic alpha-cells. This study provides new insight into the use of black tea as a potential resource of food-derived DPP-IV inhibitory peptides for the management of type 2 diabetes.
Collapse
|
36
|
Oteiza P, Fraga C, Mills D, Taft D. Flavonoids and the gastrointestinal tract: Local and systemic effects. Mol Aspects Med 2018; 61:41-49. [DOI: 10.1016/j.mam.2018.01.001] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 01/04/2018] [Accepted: 01/05/2018] [Indexed: 12/25/2022]
|
37
|
Casanova-Martí À, Serrano J, Portune KJ, Sanz Y, Blay MT, Terra X, Ardévol A, Pinent M. Grape seed proanthocyanidins influence gut microbiota and enteroendocrine secretions in female rats. Food Funct 2018; 9:1672-1682. [DOI: 10.1039/c7fo02028g] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
An 8-day treatment of GSPE changed the microbiota composition, and several microbiota taxa correlated with metabolic parameters and enterohormones.
Collapse
Affiliation(s)
- Àngela Casanova-Martí
- MoBioFood Research Group. Departament de Bioquímica i Biotecnologia
- Universitat Rovira i Virgili
- 43007 Tarragona
- Spain
| | - Joan Serrano
- MoBioFood Research Group. Departament de Bioquímica i Biotecnologia
- Universitat Rovira i Virgili
- 43007 Tarragona
- Spain
| | - Kevin J. Portune
- Microbial Ecology
- Nutrition & Health Research Unit. Institute of Agrochemistry and Food Technology
- National Research Council (IATA-CSIC)
- Valencia
- Spain
| | - Yolanda Sanz
- Microbial Ecology
- Nutrition & Health Research Unit. Institute of Agrochemistry and Food Technology
- National Research Council (IATA-CSIC)
- Valencia
- Spain
| | - M. Teresa Blay
- MoBioFood Research Group. Departament de Bioquímica i Biotecnologia
- Universitat Rovira i Virgili
- 43007 Tarragona
- Spain
| | - Ximena Terra
- MoBioFood Research Group. Departament de Bioquímica i Biotecnologia
- Universitat Rovira i Virgili
- 43007 Tarragona
- Spain
| | - Anna Ardévol
- MoBioFood Research Group. Departament de Bioquímica i Biotecnologia
- Universitat Rovira i Virgili
- 43007 Tarragona
- Spain
| | - Montserrat Pinent
- MoBioFood Research Group. Departament de Bioquímica i Biotecnologia
- Universitat Rovira i Virgili
- 43007 Tarragona
- Spain
| |
Collapse
|
38
|
Serrano J, Casanova-Martí À, Blay MT, Terra X, Pinent M, Ardévol A. Strategy for limiting food intake using food components aimed at multiple targets in the gastrointestinal tract. Trends Food Sci Technol 2017. [DOI: 10.1016/j.tifs.2017.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
39
|
Galloylation of polyphenols alters their biological activity. Food Chem Toxicol 2017; 105:223-240. [DOI: 10.1016/j.fct.2017.04.021] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 03/23/2017] [Accepted: 04/15/2017] [Indexed: 01/08/2023]
|
40
|
Casanova-Martí À, Serrano J, Blay MT, Terra X, Ardévol A, Pinent M. Acute selective bioactivity of grape seed proanthocyanidins on enteroendocrine secretions in the gastrointestinal tract. Food Nutr Res 2017; 61:1321347. [PMID: 28659730 PMCID: PMC5475339 DOI: 10.1080/16546628.2017.1321347] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 04/11/2017] [Indexed: 01/08/2023] Open
Abstract
Background: Enteroendocrine cells respond to food components by secreting an array of hormones that regulate several functions. We have previously shown that grape seed proanthocyanidins (GSPE) modulate GLP-1 levels. Objective: To deepen on the knowledge of the mechanisms used by GSPE to increase GLP-1, and extend it to its role at modulation of other enterohormones. Design: We used an ex vivo system to test direct modulation of enterohormones; STC-1 cells to test pure phenolic compounds; and rats to test the effects at different gastrointestinal segments. Results: GSPE compounds act at several locations along the gastrointestinal tract modulating enterohormone secretion depending on the feeding condition. GSPE directly promotes GLP-1 secretion in the ileum, while unabsorbed/metabolized forms do so in the colon. Such stimulation requires the presence of glucose. GSPE enhanced GIP and reduced CCK secretion; gallic acid could be partly responsible for this effect. Conclusions: The activity of GSPE modulating enterohormone secretion may help to explain its effects on metabolism. GSPE acts through several mechanisms; its compounds and their metabolites are GLP-1 secretagogues in ileum and colon, respectively. In vivo GLP-1 secretion might also be mediated by indirect pathways involving modulation of other enterohormones that in turn regulate GLP-1 release.
Collapse
Affiliation(s)
- Àngela Casanova-Martí
- MoBioFood Research Group. Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, Tarragona, Spain
| | - Joan Serrano
- MoBioFood Research Group. Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, Tarragona, Spain
| | - M Teresa Blay
- MoBioFood Research Group. Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, Tarragona, Spain
| | - Ximena Terra
- MoBioFood Research Group. Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, Tarragona, Spain
| | - Anna Ardévol
- MoBioFood Research Group. Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, Tarragona, Spain
| | - Montserrat Pinent
- MoBioFood Research Group. Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, Tarragona, Spain
| |
Collapse
|
41
|
Domínguez Avila JA, Rodrigo García J, González Aguilar GA, de la Rosa LA. The Antidiabetic Mechanisms of Polyphenols Related to Increased Glucagon-Like Peptide-1 (GLP1) and Insulin Signaling. Molecules 2017; 22:molecules22060903. [PMID: 28556815 PMCID: PMC6152752 DOI: 10.3390/molecules22060903] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 05/24/2017] [Accepted: 05/26/2017] [Indexed: 02/07/2023] Open
Abstract
Type-2 diabetes mellitus (T2DM) is an endocrine disease related to impaired/absent insulin signaling. Dietary habits can either promote or mitigate the onset and severity of T2DM. Diets rich in fruits and vegetables have been correlated with a decreased incidence of T2DM, apparently due to their high polyphenol content. Polyphenols are compounds of plant origin with several documented bioactivities related to health promotion. The present review describes the antidiabetic effects of polyphenols, specifically related to the secretion and effects of insulin and glucagon-like peptide 1 (GLP1), an enteric hormone that stimulates postprandial insulin secretion. The evidence suggests that polyphenols from various sources stimulate L-cells to secrete GLP1, increase its half-life by inhibiting dipeptidyl peptidase-4 (DPP4), stimulate β-cells to secrete insulin and stimulate the peripheral response to insulin, increasing the overall effects of the GLP1-insulin axis. The glucose-lowering potential of polyphenols has been evidenced in various acute and chronic models of healthy and diabetic organisms. Some polyphenols appear to exert their effects similarly to pharmaceutical antidiabetics; thus, rigorous clinical trials are needed to fully validate this claim. The broad diversity of polyphenols has not allowed for entirely describing their mechanisms of action, but the evidence advocates for their regular consumption.
Collapse
Affiliation(s)
- J Abraham Domínguez Avila
- Coordinación de Tecnología de Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo A. C., Carretera a La Victoria km 0.6, AP 1735, Hermosillo 83304, Sonora, Mexico.
| | - Joaquín Rodrigo García
- Departamento de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Anillo Envolvente del PRONAF y Estocolmo s/n, Ciudad Juárez 32310, Chihuahua, Mexico.
| | - Gustavo A González Aguilar
- Coordinación de Tecnología de Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo A. C., Carretera a La Victoria km 0.6, AP 1735, Hermosillo 83304, Sonora, Mexico.
| | - Laura A de la Rosa
- Departamento de Ciencias Químico-Biológicas, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Anillo Envolvente del PRONAF y Estocolmo s/n, Ciudad Juárez 32310, Chihuahua, Mexico.
| |
Collapse
|
42
|
DFT study of structural and electronic properties of gallic acid and its anions in gas phase and in aqueous solution. Struct Chem 2017. [DOI: 10.1007/s11224-017-0958-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
43
|
Ryan CM, Khoo W, Stewart AC, O'Keefe SF, Lambert JD, Neilson AP. Flavanol concentrations do not predict dipeptidyl peptidase-IV inhibitory activities of four cocoas with different processing histories. Food Funct 2017; 8:746-756. [PMID: 28106217 DOI: 10.1039/c6fo01730d] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cocoa and its constituent bioactives (particularly flavanols) have reported anti-diabetic and anti-obesity activities. One potential mechanism of action is inhibition of dipeptidyl peptidase-IV (DPP4), the enzyme that inactivates incretin hormones such as glucagon-like peptide-1 and gastric inhibitory peptide. The objective of this study was to determine the DPP4 inhibitory activities of cocoas with different processing histories, and identify processing factors and bioactive compounds that predict DPP4 inhibition. IC25 values (μg mL-1) were 4.82 for Diprotin A (positive control), 2135 for fermented bean extract, 1585 for unfermented bean extract, 2871 for unfermented liquor extract, and 1076 for fermented liquor extract This suggests mild inhibitory activity. Surprisingly, protein binding activity, total polyphenol, total flavanol, individual flavanol and complex fermentation/roasting product levels were all positively correlated to IC25 concentrations (greater levels correspond to less potent inhibition). For the representative samples studied, fermentation appeared to improve inhibition. This study suggests that cocoa may possess mild DPP4 inhibitory activity, and that processing steps such as fermentation may actually enhance activity. Furthermore, this activity and the variation between samples were not easily explainable by traditional putative bioactives in cocoa. The compounds driving this activity, and the associated mechanism(s) by which this inhibition occurs, remain to be elucidated.
Collapse
Affiliation(s)
- Caroline M Ryan
- Department of Food Science and Technology, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.
| | - Weslie Khoo
- Department of Food Science, Pennsylvania State University, University Park, PA, USA
| | - Amanda C Stewart
- Department of Food Science and Technology, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.
| | - Sean F O'Keefe
- Department of Food Science and Technology, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.
| | - Joshua D Lambert
- Department of Food Science, Pennsylvania State University, University Park, PA, USA
| | - Andrew P Neilson
- Department of Food Science and Technology, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.
| |
Collapse
|
44
|
Kato M, Nakanishi T, Tani T, Tsuda T. Low-molecular fraction of wheat protein hydrolysate stimulates glucagon-like peptide-1 secretion in an enteroendocrine L cell line and improves glucose tolerance in rats. Nutr Res 2017; 37:37-45. [DOI: 10.1016/j.nutres.2016.12.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 11/22/2016] [Accepted: 12/01/2016] [Indexed: 01/19/2023]
|
45
|
Serrano J, Casanova-Martí À, Blay M, Terra X, Ardévol A, Pinent M. Defining Conditions for Optimal Inhibition of Food Intake in Rats by a Grape-Seed Derived Proanthocyanidin Extract. Nutrients 2016; 8:nu8100652. [PMID: 27775601 PMCID: PMC5084038 DOI: 10.3390/nu8100652] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 09/29/2016] [Accepted: 10/14/2016] [Indexed: 12/12/2022] Open
Abstract
Food intake depends on homeostatic and non-homeostatic factors. In order to use grape seed proanthocyanidins (GSPE) as food intake limiting agents, it is important to define the key characteristics of their bioactivity within this complex function. We treated rats with acute and chronic treatments of GSPE at different doses to identify the importance of eating patterns and GSPE dose and the mechanistic aspects of GSPE. GSPE-induced food intake inhibition must be reproduced under non-stressful conditions and with a stable and synchronized feeding pattern. A minimum dose of around 350 mg GSPE/kg body weight (BW) is needed. GSPE components act by activating the Glucagon-like peptide-1 (GLP-1) receptor because their effect is blocked by Exendin 9-39. GSPE in turn acts on the hypothalamic center of food intake control probably because of increased GLP-1 production in the intestine. To conclude, GSPE inhibits food intake through GLP-1 signaling, but it needs to be dosed under optimal conditions to exert this effect.
Collapse
Affiliation(s)
- Joan Serrano
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, 43007 Tarragona, Spain.
| | - Àngela Casanova-Martí
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, 43007 Tarragona, Spain.
| | - Mayte Blay
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, 43007 Tarragona, Spain.
| | - Ximena Terra
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, 43007 Tarragona, Spain.
| | - Anna Ardévol
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, 43007 Tarragona, Spain.
| | - Montserrat Pinent
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, 43007 Tarragona, Spain.
| |
Collapse
|
46
|
Serrano J, Casanova-Martí À, Gil-Cardoso K, Blay MT, Terra X, Pinent M, Ardévol A. Acutely administered grape-seed proanthocyanidin extract acts as a satiating agent. Food Funct 2016; 7:483-90. [PMID: 26514231 DOI: 10.1039/c5fo00892a] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Grape-seed proanthocyanidins' role as stimulators of active GLP-1 in rats suggests that they could be effective as satiating agents. Wistar rats were used to study the effects of proanthocyanidins on food intake with different doses, administration times and proanthocyanidin extract compositions. A dose of 423 mg of phenolics per kg body weight (BW) of grape-seed proanthocyanidin extract (GSPE) was necessary to decrease the 12-hour cumulative food intake by 18.7 ± 3.4%. Proanthocyanidins were effective when delivered directly into the gastrointestinal tract one hour before, or simultaneously at the start of the feeding period. Proanthocyanidins without galloyl forms, such as those from cocoa extract, were not as effective as grape-seed derived forms. GSPE increased the portal levels of active GLP-1 and total ghrelin and decreased the CCK levels, simultaneously with a decrease in gastric emptying. In conclusion, grape-seed proanthocyanidins could be useful as a satiating agent under the conditions defined in this study.
Collapse
Affiliation(s)
- Joan Serrano
- Universitat Rovira i Virgili, Biochemistry and Biotechnology Department, c/Marcel lí Domingo no. 1, 43007, Tarragona, Spain.
| | - Àngela Casanova-Martí
- Universitat Rovira i Virgili, Biochemistry and Biotechnology Department, c/Marcel lí Domingo no. 1, 43007, Tarragona, Spain.
| | - Katherine Gil-Cardoso
- Universitat Rovira i Virgili, Biochemistry and Biotechnology Department, c/Marcel lí Domingo no. 1, 43007, Tarragona, Spain.
| | - M Teresa Blay
- Universitat Rovira i Virgili, Biochemistry and Biotechnology Department, c/Marcel lí Domingo no. 1, 43007, Tarragona, Spain.
| | - Ximena Terra
- Universitat Rovira i Virgili, Biochemistry and Biotechnology Department, c/Marcel lí Domingo no. 1, 43007, Tarragona, Spain.
| | - Montserrat Pinent
- Universitat Rovira i Virgili, Biochemistry and Biotechnology Department, c/Marcel lí Domingo no. 1, 43007, Tarragona, Spain.
| | - Anna Ardévol
- Universitat Rovira i Virgili, Biochemistry and Biotechnology Department, c/Marcel lí Domingo no. 1, 43007, Tarragona, Spain.
| |
Collapse
|
47
|
Serrano J, Casanova-Martí À, Depoortere I, Blay MT, Terra X, Pinent M, Ardévol A. Subchronic treatment with grape-seed phenolics inhibits ghrelin production despite a short-term stimulation of ghrelin secretion produced by bitter-sensing flavanols. Mol Nutr Food Res 2016; 60:2554-2564. [PMID: 27417519 DOI: 10.1002/mnfr.201600242] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 06/06/2016] [Accepted: 07/06/2016] [Indexed: 12/26/2022]
Abstract
SCOPE Grape-seed phenolic compounds have recently been described as satiating agents in rats when administered as a whole phenolic extract (GSPE). This satiating effect may involve the release of satiating gut hormones such as GLP-1, although a short-term increase in the orexigenic hormone ghrelin was also reported. In this study, we investigated the short- and long-term effects of GSPE in rats, focusing on the role of the main grape-seed phenolics in ghrelin secretion. METHODS AND RESULTS GSPE produced a short-term increase in plasma ghrelin in rats after an acute treatment. A mouse ghrelinoma cell line was used to test the effects of the main pure grape-seed phenolic compounds on ghrelin release. Monomeric flavanols stimulated ghrelin secretion by activating bitter taste receptors. In contrast, gallic acid (GA) and oligomeric flavanols inhibited ghrelin release. The ghrelin-inhibiting effects of GA were confirmed in rats and in rat duodenal segments. One day after the last dose of a subchronic treatment, GSPE decreased plasma ghrelin in rats, ghrelin secretion in intestinal segments, and ghrelin mRNA expression in stomach. CONCLUSION The sustained satiating effects of GSPE are related to a long-term decrease in ghrelin expression. GA and oligomeric flavanols play a ghrelin-inhibiting role in this process.
Collapse
Affiliation(s)
- Joan Serrano
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, Tarragona, Spain
| | - Àngela Casanova-Martí
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, Tarragona, Spain
| | - Inge Depoortere
- Gut Peptide Research Lab, Translational Research Center for Gastrointestinal Disorders, KU Leuven, Leuven, Belgium
| | - Maria Teresa Blay
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, Tarragona, Spain
| | - Ximena Terra
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, Tarragona, Spain
| | - Montserrat Pinent
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, Tarragona, Spain
| | - Anna Ardévol
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, Tarragona, Spain
| |
Collapse
|
48
|
Identification of the bioactive and consensus peptide motif from Momordica charantia insulin receptor-binding protein. Food Chem 2016; 204:298-305. [DOI: 10.1016/j.foodchem.2016.02.135] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 01/29/2016] [Accepted: 02/22/2016] [Indexed: 12/26/2022]
|
49
|
Badhani B, Kakkar R. In silico studies on potential MCF-7 inhibitors: a combination of pharmacophore and 3D-QSAR modeling, virtual screening, molecular docking, and pharmacokinetic analysis. J Biomol Struct Dyn 2016; 35:1950-1967. [PMID: 27401212 DOI: 10.1080/07391102.2016.1202863] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Gallic acid and its derivatives exhibit a diverse range of biological applications, including anti-cancer activity. In this work, a data-set of forty-six molecules containing the galloyl moiety, and known to show anticarcinogenic activity against the MCF-7 human cancer cell line, have been chosen for pharmacophore modeling and 3D-Quantitative Structure Activity Relationship (3D-QSAR) studies. A tree-based partitioning algorithm has been used to find common pharmacophore hypotheses. The QSAR model was generated for three, four, and five featured hypotheses with increasing PLS factors and analyzed. Results for five featured hypotheses with three acceptors and two aromatic rings were the best out of all the possible combinations. On analyzing the results, the most robust (R2 = .8990) hypothesis with a good predictive power (Q2 = .7049) was found to be AAARR.35. A good external validation (R2 = .6109) was also obtained. In order to design new MCF-7 inhibitors, the QSAR model was further utilized in pharmacophore-based virtual screening of a large database. The predicted IC50 values of the identified potential MCF-7 inhibitors were found to lie in the micromolar range. Molecular docking into the colchicine domain of tubulin was performed in order to examine one of the probable mechanisms. This revealed various interactions between the ligand and the active site protein residues. The present study is expected to provide an effective guide for methodical development of potent MCF-7 inhibitors.
Collapse
Affiliation(s)
- Bharti Badhani
- a Computational Chemistry Laboratory, Department of Chemistry , University of Delhi , Delhi 110007 , India
| | - Rita Kakkar
- a Computational Chemistry Laboratory, Department of Chemistry , University of Delhi , Delhi 110007 , India
| |
Collapse
|
50
|
A specific dose of grape seed-derived proanthocyanidins to inhibit body weight gain limits food intake and increases energy expenditure in rats. Eur J Nutr 2016; 56:1629-1636. [PMID: 27039093 DOI: 10.1007/s00394-016-1209-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 03/17/2016] [Indexed: 12/22/2022]
Abstract
PURPOSE Several studies have suggested that flavanols may have antiobesity effects; however, those effects clearly depend on the experimental conditions. In a previous study, we found that a single acute dose of grape seed proanthocyanidin extract (GSPE) has satiating effects. We therefore hypothesise that satiating doses of GSPE could be used to reduce body weight gain, and our present objective was to define the most effective dose. METHODS We assayed two GSPE doses in aged male Wistar rats. First we performed a subchronic (8-day) treatment by intragastric administration, which was repeated after a washout period. We measured body weight, energy intake and faeces composition; we performed indirect calorimetry; and we analysed the mRNA expression of genes involved in lipid metabolism to determine the target tissue for the GSPE. RESULTS We observed that 0.5 g GSPE/kg BW significantly reduced food intake and thus the amount of energy absorbed. This dosage also increased lipid oxidation in subcutaneous adipose tissue, thus causing a higher total energy expenditure. These combined effects caused a decrease in body weight. Conversely, 1 g GSPE/kg BW, which also reduced energy absorption after the first treatment, had a rebound effect on body weight gain which resulted in a lower response to the proanthocyanidin extract. That is, after the second treatment, the GSPE did not reduce the energy absorbed or modify energy expenditure and body weight. CONCLUSION GSPE at a dose of 0.5 g/kg can reduce body weight by limiting food intake and activating energy expenditure in subcutaneous adipose tissue.
Collapse
|