1
|
Kopp JF, Paton L, Gajdosechova Z, Sinawivat S, Raab A, Brownlow A, Feldmann J. Toxic arsenolipids bioaccumulate in the developing brain of pilot whales. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:173816. [PMID: 38852872 DOI: 10.1016/j.scitotenv.2024.173816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/01/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024]
Abstract
Arsenic-containing hydrocarbons (AsHC), a subclass of arsenolipids (AsL), have been proven to exert neuro- and cytotoxic effects in in-vitro and in-vivo studies and were shown to pass through biological barriers like the blood-brain barrier. However, there has been no connection as to the environmental relevance of these findings, meaning there is no study based on samples from free living animals that are exposed to these compounds. Here, we report the identification of two AsHC as well as 3 arsenosugar phospholipids (AsPL) in the brains of a pod of stranded long-finned pilot whales (Globicephala melas) as well as the absence of arsenobetaine (AsB) which is often found to be a dominant As species in fish. We show data which suggests that there is an age-dependent accumulation of AsL in the brains of the animals. The results show that, in contrast to other organs, total arsenic as well as arsenolipids accumulate in an asymptotic pattern in the brains of the animals. Total As concentrations were found to range from 87 to 260 μg As/kg wet weight and between 0.6 and 27.6 μg As/kg was present in the form of AsPL958 in the brains of stranded pilot whales which was the most dominant lipophilic species present. The asymptotic relationship between total As, as well as AsPL, concentration in the brain and whale age may suggest that the accumulation of these species takes place prior to the full development of the blood-brain barrier in young whales. Finally, comparison between the organs of local squid, a common source of food for pilot whales, highlighted a comparable AsL profile which indicates a likely bioaccumulation pathway through the food chain.
Collapse
Affiliation(s)
- Johannes F Kopp
- TESLA-Chemistry, University of Aberdeen, Aberdeen AB24 3UE, Scotland, UK
| | - Lhiam Paton
- TESLA-Analytical Chemistry, University of Graz, Universitätsplatz 1, 8010 Graz, Austria
| | | | - Savarin Sinawivat
- TESLA-Chemistry, University of Aberdeen, Aberdeen AB24 3UE, Scotland, UK
| | - Andrea Raab
- TESLA-Analytical Chemistry, University of Graz, Universitätsplatz 1, 8010 Graz, Austria
| | - Andrew Brownlow
- Scottish Stranding Scheme, University of Glasgow, Scotland, UK
| | - Joerg Feldmann
- TESLA-Chemistry, University of Aberdeen, Aberdeen AB24 3UE, Scotland, UK; TESLA-Analytical Chemistry, University of Graz, Universitätsplatz 1, 8010 Graz, Austria.
| |
Collapse
|
2
|
Adebambo TH, Flores MFM, Zhang SL, Lerit DA. Arsenic impairs Drosophila neural stem cell mitotic progression and sleep behavior in a tauopathy model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.05.606375. [PMID: 39149321 PMCID: PMC11326188 DOI: 10.1101/2024.08.05.606375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Despite established exposure limits, arsenic remains the most significant environmental risk factor detrimental to human health and is associated with carcinogenesis and neurotoxicity. Arsenic compromises neurodevelopment, and it is associated with peripheral neuropathy in adults. Exposure to heavy metals, such as arsenic, may also increase the risk of neurodegenerative disorders. Nevertheless, the molecular mechanisms underlying arsenic-induced neurotoxicity remain poorly understood. Elucidating how arsenic contributes to neurotoxicity may mitigate some of the risks associated with chronic sublethal exposure and inform future interventions. In this study, we examine the effects of arsenic exposure on Drosophila larval neurodevelopment and adult neurologic function. Consistent with prior work, we identify significant developmental delays and heightened mortality in response to arsenic. Within the developing larval brain, we identify a dose-dependent increase in brain volume. This aberrant brain growth is coupled with impaired mitotic progression of the neural stem cells (NSCs), progenitors of the neurons and glia of the central nervous system. Live imaging of cycling NSCs reveals significant delays in cell cycle progression upon arsenic treatment, leading to genomic instability. In adults, chronic arsenic exposure reduces neurologic function, such as locomotion. Finally, we show arsenic selectively impairs circadian rhythms in a humanized tauopathy model. These findings inform mechanisms of arsenic neurotoxicity and reveal sex-specific and genetic vulnerabilities to sublethal exposure.
Collapse
Affiliation(s)
- Temitope H. Adebambo
- Department of Cell Biology, Emory University School of Medicine, Atlanta GA 30322
| | | | - Shirley L. Zhang
- Department of Cell Biology, Emory University School of Medicine, Atlanta GA 30322
| | - Dorothy A. Lerit
- Department of Cell Biology, Emory University School of Medicine, Atlanta GA 30322
- Winship Cancer Institute, Emory University, Atlanta GA 30322
| |
Collapse
|
3
|
Tian C, Qi Y, Zheng Y, Xia P, Liu Q, Luan M, Zheng J, Song R, Wang M, Qi D, Xiong C, Dong L. Exploring the Effect of Arsenic-Containing Hydrocarbon on the Bidirectional Synaptic Plasticity of the Dorsal Hippocampus. Int J Mol Sci 2024; 25:7223. [PMID: 39000331 PMCID: PMC11241539 DOI: 10.3390/ijms25137223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
Arsenic-containing hydrocarbons (AsHCs) are common in marine organisms. However, there is little research on their effects on the central nervous system's advanced activities, such as cognition. Bidirectional synaptic plasticity dynamically regulates cognition through the balance of long-term potentiation (LTP) and long-term depression (LTD). However, the effects of AsHCs on bidirectional synaptic plasticity and the underlying molecular mechanisms remain unexplored. This study provides the first evidence that 15 μg As L-1 AsHC 360 enhances bidirectional synaptic plasticity, occurring during the maintenance phase rather than the baseline phase. Further calcium gradient experiments hypothesize that AsHC 360 may enhance bidirectional synaptic plasticity by affecting calcium ion levels. The enhancement of bidirectional synaptic plasticity by 15 μg As L-1 AsHC 360 holds significant implications in improving cognitive function, treating neuro-psychiatric disorders, promoting neural recovery, and enhancing brain adaptability.
Collapse
Affiliation(s)
- Chunxiao Tian
- School of Life Sciences, Tiangong University, Tianjin 300387, China; (C.T.); (Y.Q.); (Y.Z.); (M.L.); (J.Z.); (R.S.); (M.W.); (D.Q.)
- School of Biomedical Engineering, Tianjin Medical University, Tianjin 300070, China
| | - Yenan Qi
- School of Life Sciences, Tiangong University, Tianjin 300387, China; (C.T.); (Y.Q.); (Y.Z.); (M.L.); (J.Z.); (R.S.); (M.W.); (D.Q.)
- School of Electronics & Information Engineering, Tiangong University, Tianjin 300387, China
| | - Yu Zheng
- School of Life Sciences, Tiangong University, Tianjin 300387, China; (C.T.); (Y.Q.); (Y.Z.); (M.L.); (J.Z.); (R.S.); (M.W.); (D.Q.)
- School of Electronics & Information Engineering, Tiangong University, Tianjin 300387, China
- School of Control Science and Engineering, Tiangong University, Tianjin 300387, China;
| | - Pei Xia
- School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou 310012, China;
| | - Qiwen Liu
- School of Control Science and Engineering, Tiangong University, Tianjin 300387, China;
| | - Mengying Luan
- School of Life Sciences, Tiangong University, Tianjin 300387, China; (C.T.); (Y.Q.); (Y.Z.); (M.L.); (J.Z.); (R.S.); (M.W.); (D.Q.)
| | - Junyao Zheng
- School of Life Sciences, Tiangong University, Tianjin 300387, China; (C.T.); (Y.Q.); (Y.Z.); (M.L.); (J.Z.); (R.S.); (M.W.); (D.Q.)
| | - Rujuan Song
- School of Life Sciences, Tiangong University, Tianjin 300387, China; (C.T.); (Y.Q.); (Y.Z.); (M.L.); (J.Z.); (R.S.); (M.W.); (D.Q.)
| | - Meng Wang
- School of Life Sciences, Tiangong University, Tianjin 300387, China; (C.T.); (Y.Q.); (Y.Z.); (M.L.); (J.Z.); (R.S.); (M.W.); (D.Q.)
| | - Dejiao Qi
- School of Life Sciences, Tiangong University, Tianjin 300387, China; (C.T.); (Y.Q.); (Y.Z.); (M.L.); (J.Z.); (R.S.); (M.W.); (D.Q.)
| | - Chan Xiong
- Analytical Chemistry, Institute of Chemistry, University of Graz, 8010 Graz, Austria
- BOKU Core Facility Mass Spectrometry, University of Natural Resources and Life Sciences (BOKU), 1190 Vienna, Austria
| | - Lei Dong
- School of Life Sciences, Tiangong University, Tianjin 300387, China; (C.T.); (Y.Q.); (Y.Z.); (M.L.); (J.Z.); (R.S.); (M.W.); (D.Q.)
- School of Electronics & Information Engineering, Tiangong University, Tianjin 300387, China
| |
Collapse
|
4
|
Kumari S, Kumari P, Sinha S, Azad GK, Yasmin S. Alleviation of arsenic-induced neurobehavioral defects with selenium in the larvae of Zaprionus indianus. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:2121-2132. [PMID: 37787783 DOI: 10.1007/s00210-023-02746-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 09/23/2023] [Indexed: 10/04/2023]
Abstract
Selenium is an essential antioxidative micronutrient. This study was conducted to characterize the arsenic toxicity induced on the African fig fly, Zaprionus indianus, and its possible amelioration by selenium. We used computational tools and in vivo experiments to elucidate the mechanism of action of arsenic and selenium on Z. indianus larvae. We conducted experiments to study neurobehavioral parameters including learning and memory ability test and crawling and contraction assays. Our in silico study revealed twelve primary targets of arsenic trioxide. The gene ontology annotation of primary and secondary targets of arsenic trioxide revealed selenocysteine metabolic processes as one of the most reliable targets. To validate our in silico data, we analyzed the effect of arsenic trioxide on larvae of Z. indianus and tested the possible amelioration by sodium selenite supplementation. Our data demonstrated that the arsenic trioxide deteriorated the learning and memory ability of 2nd instar larvae of Z. indianus and such effect was reversed by sodium selenite supplementation. Furthermore, crawling and contraction assay done on 3rd instar larvae showed that there was reduction in both parameters upon arsenic trioxide exposure, which was restored with sodium selenite supplementation. Altogether, our computational and in vivo results strongly indicated that the neurobehavioral defects induced by arsenic trioxide on the larvae of Z. indianus can be successfully alleviated in the presence of sodium selenite.
Collapse
Affiliation(s)
- Shilpi Kumari
- Department of Zoology, Patna Women's College, Patna University, Patna, Bihar, India
| | - Puja Kumari
- Department of Zoology, Patna Women's College, Patna University, Patna, Bihar, India
| | - Sneha Sinha
- Department of Zoology, Patna Women's College, Patna University, Patna, Bihar, India
| | - Gajendra Kumar Azad
- Department of Zoology, Molecular Biology Laboratory, Patna University, Patna, Bihar, India
| | - Shahla Yasmin
- Department of Zoology, Patna University, Patna, Bihar, India.
| |
Collapse
|
5
|
Li C, Chen J, Wang Z, Song B, Cheung KL, Chen J, Li R, Liu X, Jia X, Zhong SY. Speciation analysis and toxicity evaluation of arsenolipids-an overview focusing on sea food. Arch Toxicol 2024; 98:409-424. [PMID: 38099972 DOI: 10.1007/s00204-023-03639-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 11/14/2023] [Indexed: 01/18/2024]
Abstract
Arsenic, which can be divided into inorganic and organic arsenic, is a toxic metalloid that has been identified as a human carcinogen. A common source of arsenic exposure in seafood is arsenolipid, which is a complex structure of lipid-soluble organic arsenic compounds. At present, the known arsenolipid species mainly include arsenic-containing fatty acids (AsFAs), arsenic-containing hydrocarbons (AsHCs), arsenic glycophospholipids (AsPLs), and cationic trimethyl fatty alcohols (TMAsFOHs). Furthermore, the toxicity between different species is unique. However, the mechanism underlying arsenolipid toxicity and anabolism remain unclear, as arsenolipids exhibit a complex structure, are present at low quantities, and are difficult to extract and detect. Therefore, the objective of this overview is to summarize the latest research progress on methods to evaluate the toxicity and analyze the main speciation of arsenolipids in seafood. In addition, novel insights are provided to further elucidate the speciation, toxicity, and anabolism of arsenolipids and assess the risks on human health.
Collapse
Affiliation(s)
- Caiyan Li
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang, 524088, China
| | - Jing Chen
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang, 524088, China
| | - Zhuo Wang
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang, 524088, China
| | - Bingbing Song
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang, 524088, China
| | - Kit-Leong Cheung
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang, 524088, China
| | - Jianping Chen
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang, 524088, China
| | - Rui Li
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang, 524088, China
| | - Xiaofei Liu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang, 524088, China
| | - Xuejing Jia
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang, 524088, China
| | - Sai-Yi Zhong
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang, 524088, China.
- Shenzhen Research Institute, Guangdong Ocean University, Shenzhen, 518108, China.
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China.
| |
Collapse
|
6
|
Silva MS, Tibon J, Sartipiyarahmadi S, Remø SC, Sele V, Søfteland L, Sveier H, Wiech M, Philip AJP, Berntssen M. Arsenic speciation and arsenic feed-to-fish transfer in Atlantic salmon fed marine low trophic feeds based blue mussel and kelp. J Trace Elem Med Biol 2023; 80:127319. [PMID: 37866214 DOI: 10.1016/j.jtemb.2023.127319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 10/06/2023] [Accepted: 10/11/2023] [Indexed: 10/24/2023]
Abstract
BACKGROUND Aquaculture aims to reduce the environmental and climate footprints of feed production. Consequently, low trophic marine (LTM) resources such as blue mussels and kelp are potential candidates to be used as ingredients in salmon feed. It is relevant to study potential undesirables associated with their use, as well as assessing food safety by investigating their transfer from feed-to-fish. The marine biota is well known to contain relatively high levels of arsenic (As), which may be present in different organic forms depending on marine biota type and trophic position. Thus, it is important to not only obtain data on the concentrations of As, but also on the As species present in the raw materials, feed and farmed salmon when being fed novel LTM feed resources. METHODS Atlantic salmon were fed experimental diets for 70 days. A total of nine diets were prepared: four diets containing up to 4 % fermented kelp, three diets containing up to 11 % blue mussel silage, and one diet containing 12 % blue mussel meal, in addition to a standard reference diet containing 25 % fish meal. Concentrations of As and As species in feeds, faeces, liver and fillet of Atlantic salmon were determined by inductively coupled plasma mass spectrometry (ICP-MS) and high-performance liquid chromatography coupled to ICP-MS (HPLC-ICP-MS), respectively. RESULTS The use of kelp or blue mussel-based feed ingredients increased the concentration of total As, but maximum level as defined in Directive 2002/32 EC and amendments was not exceeded. The concentrations found in the experimental feeds ranged from 3.4 mg kg-1 to 4.6 mg kg-1 ww. Arsenic speciation in the feed varied based on the ingredient, with arsenobetaine dominating in all feed samples (36-60 % of the total As), while arsenosugars (5.2-8.9 % of the total As) were abundant in kelp-included feed. The intestinal uptake of total As ranged from 67 % to 83 %, but retention in fillet only ranged from 2 % to 22 % and in liver from 0.3 % to 0.6 %, depending on the marine source used. Fish fed feeds containing blue mussel showed higher intestinal uptake of total As when compared with fish fed feeds containing fermented kelp. Fish fed fermented kelp-based feeds had higher retained concentrations of total As when comparing with fish fed feeds containing blue mussel. Despite relatively high intestinal uptake of total As, inorganic and organic As, the retained concentrations of As did not reflect the same trend. CONCLUSION Although the use of LTM feed ingredients increased the level of total As in this feeds, salmon reared on these diets did not show increased total As levels. The well-known toxic inorganic As forms were not detected in salmon muscle reared on LTM diets, and the non-toxic organic AsB was the dominant As species that was retained in salmon muscle, while the organic AsSug forms were not. This study shows that speciation analysis of the LTM resources provides valuable information of the feed-to-fish transfer of As, needed to assess the food safety of farmed Atlantic salmon reared on novel low trophic feeds.
Collapse
Affiliation(s)
- Marta S Silva
- Institute of Marine Research, P.O. Box 1870, 5817 Bergen, Norway
| | - Jojo Tibon
- Institute of Marine Research, P.O. Box 1870, 5817 Bergen, Norway; National Food Institute, Technical University of Denmark, Kemitorvet, Building 201, 2800 Kgs, Lyngby, Denmark
| | - Sahar Sartipiyarahmadi
- Institute of Marine Research, P.O. Box 1870, 5817 Bergen, Norway; Department of Biological Sciences, University of Bergen, P.O. Box 7803, 5020 Bergen, Norway
| | - Sofie C Remø
- Institute of Marine Research, P.O. Box 1870, 5817 Bergen, Norway
| | - Veronika Sele
- Institute of Marine Research, P.O. Box 1870, 5817 Bergen, Norway
| | - Liv Søfteland
- Institute of Marine Research, P.O. Box 1870, 5817 Bergen, Norway
| | - Harald Sveier
- Lerøy Seafood Group ASA, P.O. Box 7600, 5020 Bergen, Norway
| | - Martin Wiech
- Institute of Marine Research, P.O. Box 1870, 5817 Bergen, Norway
| | | | - Marc Berntssen
- Institute of Marine Research, P.O. Box 1870, 5817 Bergen, Norway.
| |
Collapse
|
7
|
Dong L, Zhao L, Tian L, Zhao W, Xiong C, Zheng Y. AsHC 360 Exposure Influence on Epileptiform Discharges in Hippocampus of Infantile Male Rats In Vitro. Int J Mol Sci 2023; 24:16806. [PMID: 38069126 PMCID: PMC10705907 DOI: 10.3390/ijms242316806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/06/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
Arsenic-containing hydrocarbons (AsHCs) are typical arsenolipids found in various marine organisms. They can penetrate the blood-brain barrier, specifically affecting synaptic plasticity and the learning and memory ability of hippocampal neurons. Temporal lobe epilepsy often occurs in the hippocampus. Thus, the possible influence of AsHCs exposure to temporal lobe epilepsy garnered attention. The present study investigated the effects of epileptiform discharges (EDs) signals introduced by low-magnesium ACSF in the hippocampus of infantile male rats in vitro, using electrophysiological techniques with multi-electrode arrays under AsHC 360 exposure. In our study of the effects of AsHC 360 on EDs signals, we found that inter-ictal discharges (IIDs) were not significantly impacted. When AsHC 360 was removed, any minor effects observed were reversed. However, when we examined the impact of AsHC 360 on ictal discharges (IDs), distinct patterns emerged based on the concentration levels. For low-concentration groups (5, 20, 60 μg As L-1), both the frequency and duration effects on IDs returned to normal post-elimination of AsHC 360. However, this recovery was not evident for concentrations of 100 μg As L-1 or higher. IDs were only observed in EDs signals during exposures to AsHC 360 concentrations up to 60 μg As L-1. In these conditions, ID frequencies significantly enhanced with the increased of AsHC 360 concentration. At high concentrations of AsHC 360 (≥100 μg As L-1), the transition from IIDs or pre-ictal discharges (PIDs) to IDs was notably inhibited. Additional study on co-exposure of AsHC 360 (100 μg As L-1) and agonist (10 nM (S)-(-)-Bay-K-8644) indicated that the regulation of EDs signals under AsHC 360 exposure could be due to directly interference with the α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptor (AMPAR) expression which influences the binding of excitatory glutamate neurotransmitter to AMPAR. The results suggest that EDs activities in the hippocampus of infantile Sprague Dawley rats are concentration-dependent on AsHC 360 exposure. Thus, it provides a basis for the seafood intake with AsHCs for epileptic patients and those with potential seizures.
Collapse
Affiliation(s)
- Lei Dong
- School of Life Sciences, Tiangong University, Tianjin 300387, China; (L.D.); (L.Z.); (L.T.); (W.Z.)
| | - Ling Zhao
- School of Life Sciences, Tiangong University, Tianjin 300387, China; (L.D.); (L.Z.); (L.T.); (W.Z.)
| | - Lei Tian
- School of Life Sciences, Tiangong University, Tianjin 300387, China; (L.D.); (L.Z.); (L.T.); (W.Z.)
| | - Wenjun Zhao
- School of Life Sciences, Tiangong University, Tianjin 300387, China; (L.D.); (L.Z.); (L.T.); (W.Z.)
| | - Chan Xiong
- Institute of Chemistry, NAWI Graz, University of Graz, Graz 8010, Austria
| | - Yu Zheng
- School of Life Sciences, Tiangong University, Tianjin 300387, China; (L.D.); (L.Z.); (L.T.); (W.Z.)
| |
Collapse
|
8
|
Coniglio D, Ventura G, Calvano CD, Losito I, Cataldi TRI. Strategies for the analysis of arsenolipids in marine foods: A review. J Pharm Biomed Anal 2023; 235:115628. [PMID: 37579719 DOI: 10.1016/j.jpba.2023.115628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/05/2023] [Accepted: 08/07/2023] [Indexed: 08/16/2023]
Abstract
Arsenic-containing lipids, also named arsenolipids (AsLs), are a group of organic compounds usually found in a variety of marine organisms such as fish, algae, shellfish, marine oils, and microorganisms. Numerous AsLs have been recognised so far, from simple compounds such as arsenic fatty acids (AsFAs), arsenic hydrocarbons (AsHCs), and trimethylarsenio fatty alcohols (TMAsFOHs) to more complex arsenic-containing species, of which arsenophospholipids (AsPLs) are a case in point. Mass spectrometry, both as inductively coupled plasma (ICP-MS) and liquid chromatography coupled by an electrospray source (LC-ESI-MS), was applied to organic arsenicals playing a key role in extending and refining the characterisation of arsenic-containing lipids in marine organisms. Herein, upon the introduction of a systematic notation for AsLs and a brief examination of their toxicity and biological role, the most relevant literature concerning the characterisation of AsLs in marine organisms, including edible ones, is reviewed. The use of both ICP-MS and ESI-MS coupled with reversed-phase liquid chromatography (RPLC) has brought significant advancements in the field. In the case of ESI-MS, the employment of negative polarity and tandem MS analyses has further enhanced these advancements. One notable development is the identification of the m/z 389.0 ion ([AsC10H19O9P]-) as a diagnostic product ion of AsPLs, which is obtained from the fragmentation of the deprotonated forms of AsPLs ([M - H]-). The pinpointing product ions offer the possibility of determining the identity and regiochemistry of AsPL side chains. Advanced MS-based analytical methods may contribute remarkably to the understanding of the chemical diversity characterising the metalloid As in natural organic compounds of marine organisms.
Collapse
Affiliation(s)
- Davide Coniglio
- Department of Chemistry, University of Bari Aldo Moro, via Orabona 4, 70126 Bari, Italy
| | - Giovanni Ventura
- Department of Chemistry, University of Bari Aldo Moro, via Orabona 4, 70126 Bari, Italy; Interdepartmental Research Center SMART, University of Bari Aldo Moro, via Orabona 4, 70126 Bari, Italy
| | - Cosima D Calvano
- Department of Chemistry, University of Bari Aldo Moro, via Orabona 4, 70126 Bari, Italy; Interdepartmental Research Center SMART, University of Bari Aldo Moro, via Orabona 4, 70126 Bari, Italy.
| | - Ilario Losito
- Department of Chemistry, University of Bari Aldo Moro, via Orabona 4, 70126 Bari, Italy; Interdepartmental Research Center SMART, University of Bari Aldo Moro, via Orabona 4, 70126 Bari, Italy
| | - Tommaso R I Cataldi
- Department of Chemistry, University of Bari Aldo Moro, via Orabona 4, 70126 Bari, Italy; Interdepartmental Research Center SMART, University of Bari Aldo Moro, via Orabona 4, 70126 Bari, Italy.
| |
Collapse
|
9
|
Wang J, Wu C, Zhang X, Song Y, Wang B, Zhang K, Sun M. Developmental neurotoxic effects of bisphenol A and its derivatives in Drosophila melanogaster. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 260:115098. [PMID: 37269611 DOI: 10.1016/j.ecoenv.2023.115098] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/19/2023] [Accepted: 05/31/2023] [Indexed: 06/05/2023]
Abstract
As a result of the ban on bisphenol A (BPA), a hormone disruptor with developmental neurotoxicity, several BPA derivatives (BPs) have been widely used in industrial production. However, there are no effective methods for assessing the neurodevelopmental toxic effects of BPs. To address this, a Drosophila exposure model was established, and W1118 was reared in food containing these BPs. Results showed that each BPs displayed different semi-lethal doses ranging from 1.76 to 19.43 mM. Exposure to BPs delayed larval development and affected axonal growth, resulting in the abnormal crossing of the midline of axons in the β lobules of mushroom bodies, but the damage caused by BPE and BPF was relatively minor. BPC, BPAF, and BPAP have the most significant effects on locomotor behavior, whereas BPC exhibited the most affected social interactions. Furthermore, exposure to high-dose BPA, BPC, BPS, BPAF, and BPAP also significantly increased the expression of Drosophila estrogen-related receptors. These demonstrated that different kinds of BPs had different levels of neurodevelopmental toxicity, and the severity was BPZ > BPC and BPAF > BPB > BPS > BPAP ≈ BPAl ≈ BPF > BPE. Therefore, BPZ, BPC, BPS, BPAF, and BPAP should be evaluated as potential alternatives to BPA.
Collapse
Affiliation(s)
- Jie Wang
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Chunyan Wu
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xing Zhang
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yuanyuan Song
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Binquan Wang
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Ke Zhang
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Mingkuan Sun
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
10
|
Sadiku OO, Rodríguez-Seijo A. Metabolic and genetic derangement: a review of mechanisms involved in arsenic and lead toxicity and genotoxicity. Arh Hig Rada Toksikol 2022; 73:244-255. [PMID: 36607725 PMCID: PMC9985351 DOI: 10.2478/aiht-2022-73-3669] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/01/2022] [Accepted: 10/01/2022] [Indexed: 01/07/2023] Open
Abstract
Urbanisation and industrialisation are on the rise all over the world. Environmental contaminants such as potentially toxic elements (PTEs) are directly linked with both phenomena. Two PTEs that raise greatest concern are arsenic (As) and lead (Pb) as soil and drinking water contaminants, whether they are naturally occurring or the consequence of human activities. Both elements are potential carcinogens. This paper reviews the mechanisms by which As and Pb impair metabolic processes and cause genetic damage in humans. Despite efforts to ban or limit their use, due to high persistence both continue to pose a risk to human health, which justifies the need for further toxicological research.
Collapse
Affiliation(s)
- Olubusayo Olujimi Sadiku
- University of Lagos, College of Medicine, Faculty of Basic Medical Sciences, Department of Medical Laboratory Science, Lagos, Nigeria
| | - Andrés Rodríguez-Seijo
- University of Porto, Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Matosinhos, Portugal
- University of Porto, Faculty of Sciences, Biology Department, Porto, Portugal
- University of Vigo, Department of Plant Biology and Soil Sciences, Ourense, Spain
| |
Collapse
|
11
|
Tibon J, Amlund H, Gomez-Delgado AI, Berntssen MHG, Silva MS, Wiech M, Sloth JJ, Sele V. Arsenic species in mesopelagic organisms and their fate during aquafeed processing. CHEMOSPHERE 2022; 302:134906. [PMID: 35561763 DOI: 10.1016/j.chemosphere.2022.134906] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/26/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
A responsible harvest of mesopelagic species as aquafeed ingredients has the potential to address the United Nations Sustainable Development Goal 14, which calls for sustainable use of marine resources. Prior to utilization, the levels of undesirable substances need to be examined, and earlier studies on mesopelagic species have reported on total arsenic (As) content. However, the total As content does not give a complete basis for risk assessment since As can occur in different chemical species with varying toxicity. In this work, As speciation was conducted in single-species samples of the five most abundant mesopelagic organisms in Norwegian fjords. In addition, As species were studied in mesopelagic mixed biomass and in the resulting oil and meal feed ingredients after lab-scale feed processing. Water-soluble As species were determined based on ion-exchange high-performance liquid chromatography coupled to inductively coupled plasma mass spectrometry (HPLC-ICP-MS). This was supplemented by extracting arsenolipids (AsLipids) and determining total As in this fraction. The non-toxic arsenobetaine (AB) was the dominant form in mesopelagic crustaceans and fish species, accounting for approximately 70% and 50% of total As, respectively. Other water-soluble species were present in minor fractions, including carcinogenic inorganic As, which, in most samples, was below limit of quantification. The fish species had a higher proportion of AsLipids, approximately 35% of total As, compared to crustaceans which contained 20% on average. The feed processing simulation revealed generally low levels of water-soluble As species besides AB, but considerable fractions of potentially toxic AsLipids were found in the biomass, and transferred to the mesopelagic meal and oil. This study is the first to report occurrence data of at least 12 As species in mesopelagic organisms, thereby providing valuable information for future risk assessments on the feasibility of harnessing mesopelagic biomass as feed ingredients.
Collapse
Affiliation(s)
- Jojo Tibon
- Institute of Marine Research, P.O. Box 1870 Nordnes, NO-5817 Bergen, Norway; National Food Institute, Technical University of Denmark, Kemitorvet, Building 201, DK-2800 Kgs. Lyngby, Denmark
| | - Heidi Amlund
- National Food Institute, Technical University of Denmark, Kemitorvet, Building 201, DK-2800 Kgs. Lyngby, Denmark
| | | | - Marc H G Berntssen
- Institute of Marine Research, P.O. Box 1870 Nordnes, NO-5817 Bergen, Norway
| | - Marta S Silva
- Institute of Marine Research, P.O. Box 1870 Nordnes, NO-5817 Bergen, Norway
| | - Martin Wiech
- Institute of Marine Research, P.O. Box 1870 Nordnes, NO-5817 Bergen, Norway
| | - Jens J Sloth
- Institute of Marine Research, P.O. Box 1870 Nordnes, NO-5817 Bergen, Norway; National Food Institute, Technical University of Denmark, Kemitorvet, Building 201, DK-2800 Kgs. Lyngby, Denmark
| | - Veronika Sele
- Institute of Marine Research, P.O. Box 1870 Nordnes, NO-5817 Bergen, Norway.
| |
Collapse
|
12
|
Dietary exposure to arsenic species in Japan in 2019 using a total diet study based on composite sample with market basket approach at the national level. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104384] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Soultani G, Sele V, Rasmussen RR, Pasias I, Stathopoulou E, Thomaidis NS, Sinanoglou VJ, Sloth JJ. Elements of toxicological concern and the arsenolipids’ profile in the giant-red Mediterranean shrimp, Aristaeomorpha foliacea. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2020.103786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
14
|
Cheyns K, Demaegdt H, Waegeneers N, Ruttens A. Intake of food supplements based on algae or cyanobacteria may pose a health risk due to elevated concentrations of arsenic species. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2021; 38:609-621. [PMID: 33596153 DOI: 10.1080/19440049.2021.1877834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 01/11/2021] [Indexed: 10/22/2022]
Abstract
Despite the health benefits of food supplements (FS) based on algae or cyanobacteria, the elevated arsenic (As) concentrations in these FS may raise a health concern. In the present study 33 FS containing algae or cyanobacteria were collected and As (species) were analysed to estimate consumer exposure. Based on hazard and exposure data, potential risks were evaluated using inorganic arsenic (Asi) and the potentially toxic As fraction (Astot minus arsenobetaine (AB)). Astot concentrations were in the range 0.053-57 mg/kg with highest concentrations in FS containing brown algae. Asi concentrations were in the range <0.02-4.7 mg kg-1. A large part of As in FS containing algae or cyanobacteria was identified as potentially toxic AsSugars species. Negligible amounts of AB were detected. According to a tentative risk evaluation, the intake of Asi related to all FS collected was of no health concern for the general population. In 8 out of 33 of the analysed FS, however, the Asi concentration was of concern for population groups with increased cancer risks. If all As species except the non-toxic AB were taken into consideration, only 26 out of 33 of the FS showed 'no concern' for the general population, while for the other 7 FS a potential health risk was identified. This study indicates the need to obtain more data on toxicity of AsSugars and to develop limits for As (species) in FS.
Collapse
Affiliation(s)
- Karlien Cheyns
- Sciensano, Trace Elements and Nanomaterials, Tervuren, Belgium
| | - Heidi Demaegdt
- Sciensano, Trace Elements and Nanomaterials, Tervuren, Belgium
| | | | - Ann Ruttens
- Sciensano, Trace Elements and Nanomaterials, Tervuren, Belgium
| |
Collapse
|
15
|
Zhang Y, Wolosker MB, Zhao Y, Ren H, Lemos B. Exposure to microplastics cause gut damage, locomotor dysfunction, epigenetic silencing, and aggravate cadmium (Cd) toxicity in Drosophila. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 744:140979. [PMID: 32721682 PMCID: PMC8491431 DOI: 10.1016/j.scitotenv.2020.140979] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 07/08/2020] [Accepted: 07/13/2020] [Indexed: 04/13/2023]
Abstract
The interactions of microplastics (MPs) with other chemicals and the range of outcomes are of great importance to enhance understanding of their environmental impacts and health risks. Cadmium (Cd) and cadmium compounds are widely used as pigments and stabilizers in plastics, but they readily leach out. Here we addressed the impacts of MPs, Cd, and their joint exposure in a tractable Drosophila melanogaster model. We show that exposure to MPs lead to extensive particle size depended gut damage early in life and an enhancement of Cd-induced inhibition of locomotor-behavioral function in adult flies. In addition, we show that Cd exposure induces epigenetic gene silencing via position-effect variegation (PEV) in somatic tissues that was dramatically enhanced by co-exposure with MPs. The results indicate that MPs can aggravate the toxicity of other environmental contaminants and induce adverse effects across a range of diverse outcomes in a tractable and widely used model organism. These observations raise the prospects of using Drosophila as a tool for the rapid assessment of MP-mediated toxicity.
Collapse
Affiliation(s)
- Yan Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China; Program in Molecular and Integrative Physiological Sciences, Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA.
| | - Marina B Wolosker
- Program in Molecular and Integrative Physiological Sciences, Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Yanping Zhao
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Bernardo Lemos
- Program in Molecular and Integrative Physiological Sciences, Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02139, USA.
| |
Collapse
|
16
|
Gajdosechova Z, Palmer CH, Dave D, Jiao G, Zhao Y, Tan Z, Chisholm J, Zhang J, Stefanova R, Hossain A, Mester Z. Arsenic speciation in sea cucumbers: Identification and quantitation of water-extractable species. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115190. [PMID: 32688077 DOI: 10.1016/j.envpol.2020.115190] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/30/2020] [Accepted: 07/05/2020] [Indexed: 06/11/2023]
Abstract
With the constant quest for new sources of superfoods to supplement the largely nutrient deficient diet of the modern society, sea cucumbers are gaining increasing popularity. Three species of sea cucumbers, Cucumaria frondosa, Apostichopus californicus and Apostichopusjaponicus were collected from three geographical regions, Atlantic and Pacific coast of Canada and Yellow sea/ East China sea in China, respectively. These organisms were sectioned into parts (body wall, tentacles, internal organ, skin and muscle) and analysed for total arsenic (As) by inductively coupled plasma mass spectrometry (ICP-MS) and As species by high-performance liquid chromatography (HPLC) coupled to ICP-MS. Normal and reversed sequential extractions were optimised to address As distribution between lipids (polar and non-polar) and water-extractable fractions. Two extraction methods for water-extractable As were compared in terms of the number and the amount of extracted species. The results revealed that total As concentration and As species distribution varies significantly between sea cucumbers species. Total As in studied body parts ranged between 2.8 ± 0.52 and 7.9 ± 1.2 mg kg-1, with an exception of the muscle tissue of A. californicus, where it reached to 36 ± 3.5 mg kg-1. Arsenobetaine (AsB) was the most abundant As species in A. californicus and A.japonicus, however, inorganic As represented over 70% of total recovered As in the body parts of C. frondosa. Arsenosugars-328 and 482 were found in all studied body parts whereas arsenosugar-408 was only found in the skin of A. californicus. This is the first time that such a variation in As species distribution between sea cucumber species has been shown.
Collapse
Affiliation(s)
- Zuzana Gajdosechova
- Metrology Research Center, National Research Council of Canada, 1200 Montreal Road, Ottawa, Canada.
| | - Calvin H Palmer
- Metrology Research Center, National Research Council of Canada, 1200 Montreal Road, Ottawa, Canada
| | - Deepika Dave
- Centre for Aquaculture and Seafood Development, Fisheries and Marine Institute, Memorial University of Newfoundland, NFL, Canada
| | - Guangling Jiao
- Canadian Sea Cucumber Processors Association, NS, Canada
| | - Yanfang Zhao
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Zhijun Tan
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Jeffrey Chisholm
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, Charlottetown, PE, Canada
| | - Junzeng Zhang
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, Halifax, NS, Canada
| | - Roumiana Stefanova
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, Halifax, NS, Canada
| | - Abul Hossain
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada
| | - Zoltan Mester
- Metrology Research Center, National Research Council of Canada, 1200 Montreal Road, Ottawa, Canada
| |
Collapse
|
17
|
Finke H, Wandt VK, Ebert F, Guttenberger N, Glabonjat RA, Stiboller M, Francesconi KA, Raber G, Schwerdtle T. Toxicological assessment of arsenic-containing phosphatidylcholines in HepG2 cells. Metallomics 2020; 12:1159-1170. [PMID: 32459268 DOI: 10.1039/d0mt00073f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Arsenolipids include a wide range of organic arsenic species that occur naturally in seafood and thereby contribute to human arsenic exposure. Recently arsenic-containing phosphatidylcholines (AsPCs) were identified in caviar, fish, and algae. In this first toxicological assessment of AsPCs, we investigated the stability of both the oxo- and thioxo-form of an AsPC under experimental conditions, and analyzed cell viability, indicators of genotoxicity and biotransformation in human liver cancer cells (HepG2). Precise toxicity data could not be obtained owing to the low solubility in the cell culture medium of the thioxo-form, and the ease of hydrolysis of the oxo-form, and to a lesser degree the thioxo-form. Hydrolysis resulted amongst others in the respective constituent arsenic-containing fatty acid (AsFA). Incubation of the cells with oxo-AsPC resulted in a toxicity similar to that determined for the hydrolysis product oxo-AsFA alone, and there were no indices for genotoxicity. Furthermore, the oxo-AsPC was readily taken up by the cells resulting in high cellular arsenic concentrations (50 μM incubation: 1112 ± 146 μM As cellular), whereas the thioxo-AsPC was substantially less bioavailable (50 μM incubation: 293 ± 115 μM As cellular). Speciation analysis revealed biotransformation of the AsPCs to a series of AsFAs in the culture medium, and, in the case of the oxo-AsPC, to as yet unidentified arsenic species in cell pellets. The results reveal the difficulty of toxicity studies of AsPCs in vitro, indicate that their toxicity might be largely governed by their arsenic fatty acid content and suggest a multifaceted human metabolism of food derived complex arsenolipids.
Collapse
Affiliation(s)
- Hannah Finke
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Nuthetal, 14558, Germany.
| | - Viktoria K Wandt
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Nuthetal, 14558, Germany. and TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena, Germany
| | - Franziska Ebert
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Nuthetal, 14558, Germany.
| | - Nikolaus Guttenberger
- Institute of Chemistry - Analytical Chemistry, NAWI Graz, University of Graz, Universitätsplatz 1, 8010 Graz, Austria
| | - Ronald A Glabonjat
- Institute of Chemistry - Analytical Chemistry, NAWI Graz, University of Graz, Universitätsplatz 1, 8010 Graz, Austria
| | - Michael Stiboller
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Nuthetal, 14558, Germany. and Institute of Chemistry - Analytical Chemistry, NAWI Graz, University of Graz, Universitätsplatz 1, 8010 Graz, Austria
| | - Kevin A Francesconi
- Institute of Chemistry - Analytical Chemistry, NAWI Graz, University of Graz, Universitätsplatz 1, 8010 Graz, Austria
| | - Georg Raber
- Institute of Chemistry - Analytical Chemistry, NAWI Graz, University of Graz, Universitätsplatz 1, 8010 Graz, Austria
| | - Tanja Schwerdtle
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Nuthetal, 14558, Germany. and TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena, Germany
| |
Collapse
|
18
|
Ebert F, Ziemann V, Wandt VK, Witt B, Müller SM, Guttenberger N, Bankoglu EE, Stopper H, Raber G, Francesconi KA, Schwerdtle T. Cellular toxicological characterization of a thioxolated arsenic-containing hydrocarbon. J Trace Elem Med Biol 2020; 61:126563. [PMID: 32531707 DOI: 10.1016/j.jtemb.2020.126563] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 05/15/2020] [Accepted: 05/20/2020] [Indexed: 01/08/2023]
Abstract
Arsenolipids, especially arsenic-containing hydrocarbons (AsHC), are an emerging class of seafood originating contaminants. Here we toxicologically characterize a recently identified oxo-AsHC 332 metabolite, thioxo-AsHC 348 in cultured human liver (HepG2) cells. Compared to results of previous studies of the parent compound oxo-AsHC 332, thioxo-AsHC 348 substantially affected cell viability in the same concentration range but exerted about 10-fold lower cellular bioavailability. Similar to oxo-AsHC 332, thioxo-AsHC 348 did not substantially induce oxidative stress nor DNA damage. Moreover, in contrast to oxo-AsHC 332 mitochondria seem not to be a primary subcellular toxicity target for thioxo-AsHC 348. This study indicates that thioxo-AsHC 348 is at least as toxic as its parent compound oxo-AsHC 332 but very likely acts via a different mode of toxic action, which still needs to be identified.
Collapse
Affiliation(s)
- Franziska Ebert
- University of Potsdam, Institute of Nutritional Science, Department of Food Chemistry, Arthur-Scheunert-Allee 114-116, Nuthetal, Germany.
| | - Vanessa Ziemann
- University of Potsdam, Institute of Nutritional Science, Department of Food Chemistry, Arthur-Scheunert-Allee 114-116, Nuthetal, Germany.
| | - Viktoria Klara Wandt
- University of Potsdam, Institute of Nutritional Science, Department of Food Chemistry, Arthur-Scheunert-Allee 114-116, Nuthetal, Germany.
| | - Barbara Witt
- University of Potsdam, Institute of Nutritional Science, Department of Food Chemistry, Arthur-Scheunert-Allee 114-116, Nuthetal, Germany.
| | - Sandra Marie Müller
- University of Potsdam, Institute of Nutritional Science, Department of Food Chemistry, Arthur-Scheunert-Allee 114-116, Nuthetal, Germany
| | - Nikolaus Guttenberger
- University of Graz, Institute of Chemistry, NAWI Graz, Universitaetsplatz 1, Graz, Austria
| | - Ezgi Eyluel Bankoglu
- University of Würzburg, Institute of Pharmacology and Toxicology, Department of Toxicology, Versbacher Str. 9, Würzburg, Germany.
| | - Helga Stopper
- University of Würzburg, Institute of Pharmacology and Toxicology, Department of Toxicology, Versbacher Str. 9, Würzburg, Germany.
| | - Georg Raber
- University of Graz, Institute of Chemistry, NAWI Graz, Universitaetsplatz 1, Graz, Austria.
| | - Kevin A Francesconi
- University of Graz, Institute of Chemistry, NAWI Graz, Universitaetsplatz 1, Graz, Austria.
| | - Tanja Schwerdtle
- University of Potsdam, Institute of Nutritional Science, Department of Food Chemistry, Arthur-Scheunert-Allee 114-116, Nuthetal, Germany.
| |
Collapse
|
19
|
Xiong C, Stiboller M, Glabonjat RA, Rieger J, Paton L, Francesconi KA. Transport of arsenolipids to the milk of a nursing mother after consuming salmon fish. J Trace Elem Med Biol 2020; 61:126502. [PMID: 32344278 DOI: 10.1016/j.jtemb.2020.126502] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 03/04/2020] [Accepted: 03/23/2020] [Indexed: 01/17/2023]
Abstract
OBJECTIVE We address two questions relevant to infants' exposure to potentially toxic arsenolipids, namely, are the arsenolipids naturally present in fish transported intact to a mother's milk, and what is the efficiency of this transport. METHODS We investigated the transport of arsenolipids and other arsenic species present in fish to mother's milk by analyzing the milk of a single nursing mother at 15 sampling times over a 3-day period after she had consumed a meal of salmon. Total arsenic values were obtained by elemental mass spectrometry, and arsenic species were measured by HPLC coupled to both elemental and molecular mass spectrometry. RESULTS Total arsenic increased from background levels (0.1 μg As kg-1) to a peak value of 1.72 μg As kg-1 eight hours after the fish meal. The pattern for arsenolipids was similar to that of total arsenic, increasing from undetectable background levels (< 0.01 μg As kg-1) to a peak after eight hours of 0.45 μg As kg-1. Most of the remaining total arsenic in the milk was accounted for by arsenobetaine. The major arsenolipids in the salmon were arsenic hydrocarbons (AsHCs; 55 % of total arsenolipids), and these compounds were also the dominant arsenolipids in the milk where they contributed over 90 % of the total arsenolipids. CONCLUSIONS Our study has shown that ca 2-3 % of arsenic hydrocarbons, natural constituents of fish, can be directly transferred unchanged to the milk of a nursing mother. In view of the potential neurotoxicity of AsHCs, the effects of these compounds on the brain developmental stage of infants need to be investigated.
Collapse
Affiliation(s)
- Chan Xiong
- Institute of Chemistry, NAWI Graz, University of Graz, 8010 Graz, Austria.
| | - Michael Stiboller
- Institute of Nutritional Sciences, Food Chemistry, University of Potsdam, 14558 Nuthetal, Germany
| | - Ronald A Glabonjat
- Institute of Chemistry, NAWI Graz, University of Graz, 8010 Graz, Austria
| | - Jaqueline Rieger
- Institute of Chemistry, NAWI Graz, University of Graz, 8010 Graz, Austria
| | - Lhiam Paton
- TESLA (Trace Element Speciation Laboratory), Department of Chemistry, University of Aberdeen, Aberdeen AB24 3UE, Scotland, UK
| | | |
Collapse
|
20
|
Barral-Fraga L, Barral MT, MacNeill KL, Martiñá-Prieto D, Morin S, Rodríguez-Castro MC, Tuulaikhuu BA, Guasch H. Biotic and Abiotic Factors Influencing Arsenic Biogeochemistry and Toxicity in Fluvial Ecosystems: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17072331. [PMID: 32235625 PMCID: PMC7177459 DOI: 10.3390/ijerph17072331] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 03/17/2020] [Accepted: 03/19/2020] [Indexed: 01/20/2023]
Abstract
This review is focused on the biogeochemistry of arsenic in freshwaters and, especially, on the key role that benthic microalgae and prokaryotic communities from biofilms play together in through speciation, distribution, and cycling. These microorganisms incorporate the dominant iAs (inorganic arsenic) form and may transform it to other arsenic forms through metabolic or detoxifying processes. These transformations have a big impact on the environmental behavior of arsenic because different chemical forms exhibit differences in mobility and toxicity. Moreover, exposure to toxicants may alter the physiology and structure of biofilms, leading to changes in ecosystem function and trophic relations. In this review we also explain how microorganisms (i.e., biofilms) can influence the effects of arsenic exposure on other key constituents of aquatic ecosystems such as fish. At the end, we present two real cases of fluvial systems with different origins of arsenic exposure (natural vs. anthropogenic) that have improved our comprehension of arsenic biogeochemistry and toxicity in freshwaters, the Pampean streams (Argentina) and the Anllóns River (Galicia, Spain). We finish with a briefly discussion of what we consider as future research needs on this topic. This work especially contributes to the general understanding of biofilms influencing arsenic biogeochemistry and highlights the strong impact of nutrient availability on arsenic toxicity for freshwater (micro) organisms.
Collapse
Affiliation(s)
- Laura Barral-Fraga
- Grup de recerca en Ecologia aquàtica continental (GRECO), Departament de Ciències Ambientals, Universitat de Girona, 17071 Girona, Spain;
- LDAR24—Laboratoire Départemental d’Analyse et de Recherche du Département de la Dordogne, 24660 Coulounieix-Chamiers, Périgueux, France
- Correspondence:
| | - María Teresa Barral
- Instituto CRETUS, Departmento de Edafoloxía e Química Agrícola, Facultade de Farmacia, Campus Vida, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (M.T.B.); (D.M.-P.)
| | - Keeley L. MacNeill
- Forest Ecosystems and Society, Oregon State University, Corvallis, OR 97331, USA;
| | - Diego Martiñá-Prieto
- Instituto CRETUS, Departmento de Edafoloxía e Química Agrícola, Facultade de Farmacia, Campus Vida, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (M.T.B.); (D.M.-P.)
| | - Soizic Morin
- INRAE—Institut National de Recherche en Agriculture, Alimentation et Environnement, UR EABX—Equipe ECOVEA, 33612 Cestas Cedex, France;
| | - María Carolina Rodríguez-Castro
- INEDES—Instituto de Ecología y Desarrollo Sustentable (UNLu-CONICET), Universidad Nacional de Luján, 6700 Buenos Aires, Argentina;
- CONICET—Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires C1425FQB CABA, Argentina
| | - Baigal-Amar Tuulaikhuu
- School of Agroecology, Mongolian University of Life Sciences, Khoroo 11, Ulaanbaatar 17024, Mongolia;
| | - Helena Guasch
- Grup de recerca en Ecologia aquàtica continental (GRECO), Departament de Ciències Ambientals, Universitat de Girona, 17071 Girona, Spain;
- CEAB—Centre d’Estudis Avançats de Blanes, CSIC, Blanes, 17300 Girona, Spain
| |
Collapse
|
21
|
Luvonga C, Rimmer CA, Yu LL, Lee SB. Analytical Methodologies for the Determination of Organoarsenicals in Edible Marine Species: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:1910-1934. [PMID: 31999115 PMCID: PMC7250003 DOI: 10.1021/acs.jafc.9b04525] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Setting regulatory limits for arsenic in food is complicated, owing to the enormous diversity of arsenic metabolism in humans, lack of knowledge about the toxicity of these chemicals, and lack of accurate arsenic speciation data on foodstuffs. Identification and quantification of the toxic arsenic compounds are imperative to understanding the risk associated with exposure to arsenic from dietary intake, which, in turn, underscores the need for speciation analysis of the food. Arsenic speciation in seafood is challenging, owing to its existence in myriads of chemical forms and oxidation states. Interconversions occurring between chemical forms, matrix complexity, lack of standards and certified reference materials, and lack of widely accepted measurement protocols present additional challenges. This review covers the current analytical techniques for diverse arsenic species. The requirement for high-quality arsenic speciation data that is essential for establishing legislation and setting regulatory limits for arsenic in food is explored.
Collapse
Affiliation(s)
- Caleb Luvonga
- Analytical Chemistry Division , National Institute of Standards and Technology (NIST) , 100 Bureau Drive , Gaithersburg , Maryland 20899 , United States
- Department of Chemistry and Biochemistry , University of Maryland , College Park , Maryland 20742 , United States
| | - Catherine A Rimmer
- Analytical Chemistry Division , National Institute of Standards and Technology (NIST) , 100 Bureau Drive , Gaithersburg , Maryland 20899 , United States
| | - Lee L Yu
- Analytical Chemistry Division , National Institute of Standards and Technology (NIST) , 100 Bureau Drive , Gaithersburg , Maryland 20899 , United States
| | - Sang Bok Lee
- Department of Chemistry and Biochemistry , University of Maryland , College Park , Maryland 20742 , United States
| |
Collapse
|
22
|
Luvonga C, Rimmer CA, Yu LL, Lee SB. Organoarsenicals in Seafood: Occurrence, Dietary Exposure, Toxicity, and Risk Assessment Considerations - A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:943-960. [PMID: 31913614 PMCID: PMC7250045 DOI: 10.1021/acs.jafc.9b07532] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Diet, especially seafood, is the main source of arsenic exposure for humans. The total arsenic content of a diet offers inadequate information for assessment of the toxicological consequences of arsenic intake, which has impeded progress in the establishment of regulatory limits for arsenic in food. Toxicity assessments are mainly based on inorganic arsenic, a well-characterized carcinogen, and arsenobetaine, the main organoarsenical in seafood. Scarcity of toxicity data for organoarsenicals, and the predominance of arsenobetaine as an organic arsenic species in seafood, has led to the assumption of their nontoxicity. Recent toxicokinetic studies show that some organoarsenicals are bioaccessible and cytotoxic with demonstrated toxicities like that of pernicious trivalent inorganic arsenic, underpinning the need for speciation analysis. The need to investigate and compare the bioavailability, metabolic transformation, and elimination from the body of organoarsenicals to the well-established physiological consequences of inorganic arsenic and arsenobetaine exposure is apparent. This review provides an overview of the occurrence and assessment of human exposure to arsenic toxicity associated with the consumption of seafood.
Collapse
Affiliation(s)
- Caleb Luvonga
- Analytical Chemistry Division , National Institute of Standards and Technology (NIST) , 100 Bureau Drive , Gaithersburg , Maryland 20899 , United States
- Department of Chemistry and Biochemistry , University of Maryland , College Park , Maryland 20742 , United States
| | - Catherine A Rimmer
- Analytical Chemistry Division , National Institute of Standards and Technology (NIST) , 100 Bureau Drive , Gaithersburg , Maryland 20899 , United States
| | - Lee L Yu
- Analytical Chemistry Division , National Institute of Standards and Technology (NIST) , 100 Bureau Drive , Gaithersburg , Maryland 20899 , United States
| | - Sang B Lee
- Department of Chemistry and Biochemistry , University of Maryland , College Park , Maryland 20742 , United States
| |
Collapse
|
23
|
Bornhorst J, Ebert F, Meyer S, Ziemann V, Xiong C, Guttenberger N, Raab A, Baesler J, Aschner M, Feldmann J, Francesconi K, Raber G, Schwerdtle T. Toxicity of three types of arsenolipids: species-specific effects inCaenorhabditis elegans. Metallomics 2020; 12:794-798. [DOI: 10.1039/d0mt00039f] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
AsHCs and AsTAG are highly bioavailable toC. elegans., AsHCs are metabolized byC. elegans., AsHCs but not AsTAG and AsFA affect survival and development inC. elegans.
Collapse
|
24
|
Pétursdóttir ÁH, Blagden J, Gunnarsson K, Raab A, Stengel DB, Feldmann J, Gunnlaugsdóttir H. Arsenolipids are not uniformly distributed within two brown macroalgal species Saccharina latissima and Alaria esculenta. Anal Bioanal Chem 2019; 411:4973-4985. [PMID: 31152227 PMCID: PMC6611760 DOI: 10.1007/s00216-019-01907-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 04/24/2019] [Accepted: 05/08/2019] [Indexed: 11/29/2022]
Abstract
Brown macroalgae Saccharina latissima (30-40 individuals) and Alaria esculenta (15-20 individuals) were collected from natural populations in winter in Iceland. The algal thalli were sectioned into different parts (e.g. holdfast, stipe, old frond, young frond and sori-containing frond sections) that differed in age and biological function. The work elucidated that arsenic (As) was not uniformly distributed within the two brown macroalgal species, with lower levels of total As were found in the stipe/midrib compared to other thallus parts. The arsenosugars mirrored the total arsenic in the seaweed mainly due to AsSugSO3 being the most abundant As species. However, arsenic speciation using parallel HPLC-ICP-MS/ESI-MS elucidated that the arsenic-containing lipids (AsL) had a different distribution where the arsenosugarphospholipids (AsPL) differed by approximately a factor of 4 between the sections containing the lowest and highest concentrations of AsPLs. When placing the sections in order of metabolic activity and an estimate of tissue age, there appeared to be a relationship between the activity and AsPLs, with lower levels of AsPLs in oldest parts. This is the first time such a relationship has been shown for AsLs. Hence, by applying sophisticated analytical techniques, it was possible to gain a deeper understanding of arsenolipids in seaweed.
Collapse
Affiliation(s)
| | - Jonathan Blagden
- Matís, Research and Innovation, Vínlandsleið 12, 113, Reykjavík, Iceland
- Trace Element Speciation Laboratory Aberdeen, University of Aberdeen, Meston Walk, Aberdeen, AB24 3UE, UK
| | - Karl Gunnarsson
- Marine & Freshwater Research Institute, Skúlagata 4, 101, Reykjavík, Iceland
| | - Andrea Raab
- Trace Element Speciation Laboratory Aberdeen, University of Aberdeen, Meston Walk, Aberdeen, AB24 3UE, UK
| | - Dagmar B Stengel
- Botany and Plant Science, School of Natural Sciences, and, Ryan Institute for Environmental, Marine and Energy Research, National University of Ireland Galway, Galway, Ireland
| | - Jörg Feldmann
- Trace Element Speciation Laboratory Aberdeen, University of Aberdeen, Meston Walk, Aberdeen, AB24 3UE, UK.
| | | |
Collapse
|
25
|
Chen L, Zhang L. Arsenic speciation in Asiatic algae: Case studies in Asiatic continent. ARSENIC SPECIATION IN ALGAE 2019. [DOI: 10.1016/bs.coac.2019.03.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
26
|
de Santana SL, Verçosa CJ, de Araújo Castro ÍF, de Amorim ÉM, da Silva AS, da Rocha Bastos TM, da Silva Neto LJ, Dos Santos TO, De França EJ, Rohde C. Drosophila melanogaster as model organism for monitoring and analyzing genotoxicity associated with city air pollution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:32409-32417. [PMID: 30229497 DOI: 10.1007/s11356-018-3186-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 09/10/2018] [Indexed: 06/08/2023]
Abstract
This study evaluated the genotoxic potential of atmospheric pollution associated with urbanization using the model organism Drosophila melanogaster and the Comet assay with hemolymph cells. Larvae were exposed to atmospheric compounds in an urban and a rural area in the municipality of Vitória de Santo Antão, Pernambuco, Brazil, for 6 days (from the embryo stage to the third larval stage) in April 2015 and April 2017. The results were compared to a negative environmental control group exposed to a preserved area (Catimbau National Park) and to a negative control exposed to the laboratory room conditions. The Comet assay demonstrated significant genetic damage in the organisms exposed to the urban area compared with those exposed to the rural area and negative control groups. The evidences were supported by particulate matter analysis showing higher photopeaks of chemical elements such as aluminum, silicon, sulfur, potassium, calcium, titanium, and iron, associated to road dust fraction in urban environment. Once again, the results confirm D. melanogaster an ideal bioindicator organism to monitor genotoxic hazard associated with atmospheric pollution.
Collapse
Affiliation(s)
- Samuel Lima de Santana
- Programa de Pós-Graduação em Saúde Humana e Meio Ambiente, Centro Acadêmico de Vitória (CAV), Universidade Federal de Pernambuco (UFPE), Vitória de Santo Antão, Pernambuco, Brazil
- Laboratório de Genética, Centro Acadêmico de Vitória, Universidade Federal de Pernambuco, Rua do Alto do Reservatório s/n, Bairro Bela Vista, Vitória de Santo Antão, Pernambuco, CEP 51608-680, Brazil
| | - Cícero Jorge Verçosa
- Laboratório de Genética, Centro Acadêmico de Vitória, Universidade Federal de Pernambuco, Rua do Alto do Reservatório s/n, Bairro Bela Vista, Vitória de Santo Antão, Pernambuco, CEP 51608-680, Brazil
| | - Ícaro Fillipe de Araújo Castro
- Laboratório de Genética, Centro Acadêmico de Vitória, Universidade Federal de Pernambuco, Rua do Alto do Reservatório s/n, Bairro Bela Vista, Vitória de Santo Antão, Pernambuco, CEP 51608-680, Brazil
| | - Érima Maria de Amorim
- Laboratório de Genética, Centro Acadêmico de Vitória, Universidade Federal de Pernambuco, Rua do Alto do Reservatório s/n, Bairro Bela Vista, Vitória de Santo Antão, Pernambuco, CEP 51608-680, Brazil
| | - André Severino da Silva
- Laboratório de Genética, Centro Acadêmico de Vitória, Universidade Federal de Pernambuco, Rua do Alto do Reservatório s/n, Bairro Bela Vista, Vitória de Santo Antão, Pernambuco, CEP 51608-680, Brazil
| | - Thiago Moura da Rocha Bastos
- Centro Regional de Ciências Nucleares do Nordeste (CRCN-NE), Av. Prof. Luiz Freire, 200, Bairro Cidade Universitária, Recife, CEP 50740-545, Pernambuco, Brazil
| | - Luiz Joaquim da Silva Neto
- Centro Regional de Ciências Nucleares do Nordeste (CRCN-NE), Av. Prof. Luiz Freire, 200, Bairro Cidade Universitária, Recife, CEP 50740-545, Pernambuco, Brazil
| | - Thiago Oliveira Dos Santos
- Centro Regional de Ciências Nucleares do Nordeste (CRCN-NE), Av. Prof. Luiz Freire, 200, Bairro Cidade Universitária, Recife, CEP 50740-545, Pernambuco, Brazil
| | - Elvis Joacir De França
- Centro Regional de Ciências Nucleares do Nordeste (CRCN-NE), Av. Prof. Luiz Freire, 200, Bairro Cidade Universitária, Recife, CEP 50740-545, Pernambuco, Brazil
| | - Claudia Rohde
- Laboratório de Genética, Centro Acadêmico de Vitória, Universidade Federal de Pernambuco, Rua do Alto do Reservatório s/n, Bairro Bela Vista, Vitória de Santo Antão, Pernambuco, CEP 51608-680, Brazil.
| |
Collapse
|
27
|
Müller SM, Ebert F, Bornhorst J, Galla HJ, Francesconi KA, Schwerdtle T. Arsenic-containing hydrocarbons disrupt a model in vitro blood-cerebrospinal fluid barrier. J Trace Elem Med Biol 2018; 49:171-177. [PMID: 29449109 DOI: 10.1016/j.jtemb.2018.01.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 01/25/2018] [Accepted: 01/29/2018] [Indexed: 01/07/2023]
Abstract
Lipid-soluble arsenicals, so-called arsenolipids, have gained a lot of attention in the last few years because of their presence in many seafoods and reports showing substantial cytotoxicity emanating from arsenic-containing hydrocarbons (AsHCs), a prominent subgroup of the arsenolipids. More recent in vivo and in vitro studies indicate that some arsenolipids might have adverse effects on brain health. In the present study, we focused on the effects of selected arsenolipids and three representative metabolites on the blood-cerebrospinal fluid barrier (B-CSF-B), a brain-regulating interface. For this purpose, we incubated an in vitro model of the B-CSF-B composed of porcine choroid plexus epithelial cells (PCPECs) with three AsHCs, two arsenic-containing fatty acids (AsFAs) and three representative arsenolipid metabolites (dimethylarsinic acid, thio/oxo-dimethylpropanoic acid) to examine their cytotoxic potential and impact on barrier integrity. The toxic arsenic species arsenite was also tested in this way and served as a reference substance. While AsFAs and the metabolites showed no cytotoxic effects in the conducted assays, AsHCs showed a strong cytotoxicity, being up to 1.5-fold more cytotoxic than arsenite. Analysis of the in vitro B-CSF-B integrity showed a concentration-dependent disruption of the barrier within 72 h. The correlation with the decreased plasma membrane surface area (measured as capacitance) indicates cytotoxic effects. These findings suggest exposure to elevated levels of certain arsenolipids may have detrimental consequences for the central nervous system.
Collapse
Affiliation(s)
- S M Müller
- Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany; Heinrich-Stockmeyer Foundation, Parkstraße 44-46, 49214 Bad Rothenfelde, Germany
| | - F Ebert
- Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| | - J Bornhorst
- Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| | - H-J Galla
- Institute of Biochemistry, University of Münster, Wilhelm-Klemm-Str. 2, 48149 Münster, Germany
| | - K A Francesconi
- Institute of Chemistry, NAWI Graz, University of Graz, Universitätsplatz 1, 8010 Graz, Austria
| | - T Schwerdtle
- Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany.
| |
Collapse
|
28
|
Arsenic-containing hydrocarbons: effects on gene expression, epigenetics, and biotransformation in HepG2 cells. Arch Toxicol 2018; 92:1751-1765. [PMID: 29602950 DOI: 10.1007/s00204-018-2194-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 03/20/2018] [Indexed: 01/29/2023]
Abstract
Arsenic-containing hydrocarbons (AsHCs), a subgroup of arsenolipids found in fish and algae, elicit substantial toxic effects in various human cell lines and have a considerable impact on cellular energy levels. The underlying mode of action, however, is still unknown. The present study analyzes the effects of two AsHCs (AsHC 332 and AsHC 360) on the expression of 44 genes covering DNA repair, stress response, cell death, autophagy, and epigenetics via RT-qPCR in human liver (HepG2) cells. Both AsHCs affected the gene expression, but to different extents. After treatment with AsHC 360, flap structure-specific endonuclease 1 (FEN1) as well as xeroderma pigmentosum group A complementing protein (XPA) and (cytosine-5)-methyltransferase 3A (DNMT3A) showed time- and concentration-dependent alterations in gene expression, thereby indicating an impact on genomic stability. In the subsequent analysis of epigenetic markers, within 72 h, neither AsHC 332 nor AsHC 360 showed an impact on the global DNA methylation level, whereas incubation with AsHC 360 increased the global DNA hydroxymethylation level. Analysis of cell extracts and cell media by HPLC-mass spectrometry revealed that both AsHCs were considerably biotransformed. The identified metabolites include not only the respective thioxo-analogs of the two AsHCs, but also several arsenic-containing fatty acids and fatty alcohols, contributing to our knowledge of biotransformation mechanisms of arsenolipids.
Collapse
|
29
|
Yu X, Xiong C, Jensen KB, Glabonjat RA, Stiboller M, Raber G, Francesconi KA. Mono-acyl arsenosugar phospholipids in the edible brown alga Kombu (Saccharina japonica). Food Chem 2018; 240:817-821. [PMID: 28946346 DOI: 10.1016/j.foodchem.2017.08.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 07/31/2017] [Accepted: 08/03/2017] [Indexed: 11/21/2022]
Abstract
Twenty one arsenolipids, including eight new compounds (AsSugPL 692, AsSugPL 706, AsSugPL 720, AsSugPL 734, AsSugPL 742, AsSugPL 746, AsSugPL 748, and AsSugPL 776) were identified in the edible brown alga Kombu, Saccharina japonica, by means of HPLC coupled with elemental and molecular mass spectrometry. The hitherto undescribed compounds are all mono-acyl arsenosugar phospholipids, differing from previously reported natural arsenic-containing phospholipids by containing only one fatty acid on the glycerol group. Collectively, this new group of mono-acyl compounds constituted about 30% of total lipid arsenic; other significant groups were the di-acyl arsenosugar phospholipids (50%) and arsenic hydrocarbons (20%). The origin and relevance of the mono-acyl arsenosugar phospholipids in Kombu, a commercial seafood product, is briefly discussed.
Collapse
Affiliation(s)
- Xinwei Yu
- College of Biosystems Engineering and Food Science, Zhejiang University, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R & D Center for Food Technology and Equipment, Hangzhou 310058, China; Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, Zhoushan Municipal Center For Disease Control and Prevention, Zhoushan 316021, China
| | - Chan Xiong
- Institute of Chemistry, NAWI Graz, University of Graz, 8010, Austria
| | - Kenneth B Jensen
- Institute of Chemistry, NAWI Graz, University of Graz, 8010, Austria
| | | | - Michael Stiboller
- Institute of Chemistry, NAWI Graz, University of Graz, 8010, Austria
| | - Georg Raber
- Institute of Chemistry, NAWI Graz, University of Graz, 8010, Austria
| | | |
Collapse
|
30
|
Navarro JA, Schneuwly S. Copper and Zinc Homeostasis: Lessons from Drosophila melanogaster. Front Genet 2017; 8:223. [PMID: 29312444 PMCID: PMC5743009 DOI: 10.3389/fgene.2017.00223] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 12/11/2017] [Indexed: 01/19/2023] Open
Abstract
Maintenance of metal homeostasis is crucial for many different enzymatic activities and in turn for cell function and survival. In addition, cells display detoxification and protective mechanisms against toxic accumulation of metals. Perturbation of any of these processes normally leads to cellular dysfunction and finally to cell death. In the last years, loss of metal regulation has been described as a common pathological feature in many human neurodegenerative diseases. However, in most cases, it is still a matter of debate whether such dyshomeostasis is a primary or a secondary downstream defect. In this review, we will summarize and critically evaluate the contribution of Drosophila to model human diseases that involve altered metabolism of metals or in which metal dyshomeostasis influence their pathobiology. As a prerequisite to use Drosophila as a model, we will recapitulate and describe the main features of core genes involved in copper and zinc metabolism that are conserved between mammals and flies. Drosophila presents some unique strengths to be at the forefront of neurobiological studies. The number of genetic tools, the possibility to easily test genetic interactions in vivo and the feasibility to perform unbiased genetic and pharmacological screens are some of the most prominent advantages of the fruitfly. In this work, we will pay special attention to the most important results reported in fly models to unveil the role of copper and zinc in cellular degeneration and their influence in the development and progression of human neurodegenerative pathologies such as Parkinson's disease, Alzheimer's disease, Huntington's disease, Friedreich's Ataxia or Menkes, and Wilson's diseases. Finally, we show how these studies performed in the fly have allowed to give further insight into the influence of copper and zinc in the molecular and cellular causes and consequences underlying these diseases as well as the discovery of new therapeutic strategies, which had not yet been described in other model systems.
Collapse
Affiliation(s)
- Juan A. Navarro
- Department of Developmental Biology, Institute of Zoology, University of Regensburg, Regensburg, Germany
| | | |
Collapse
|
31
|
Müller SM, Ebert F, Raber G, Meyer S, Bornhorst J, Hüwel S, Galla HJ, Francesconi KA, Schwerdtle T. Effects of arsenolipids on in vitro blood-brain barrier model. Arch Toxicol 2017; 92:823-832. [PMID: 29058019 DOI: 10.1007/s00204-017-2085-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 09/26/2017] [Indexed: 02/04/2023]
Abstract
Arsenic-containing hydrocarbons (AsHCs), a subgroup of arsenolipids (AsLs) occurring in fish and edible algae, possess a substantial neurotoxic potential in fully differentiated human brain cells. Previous in vivo studies indicating that AsHCs cross the blood-brain barrier of the fruit fly Drosophila melanogaster raised the question whether AsLs could also cross the vertebrate blood-brain barrier (BBB). In the present study, we investigated the impact of several representatives of AsLs (AsHC 332, AsHC 360, AsHC 444, and two arsenic-containing fatty acids, AsFA 362 and AsFA 388) as well as of their metabolites (thio/oxo-dimethylpropionic acid, dimethylarsinic acid) on porcine brain capillary endothelial cells (PBCECs, in vitro model for the blood-brain barrier). AsHCs exerted the strongest cytotoxic effects of all investigated arsenicals as they were up to fivefold more potent than the toxic reference species arsenite (iAsIII). In our in vitro BBB-model, we observed a slight transfer of AsHC 332 across the BBB after 6 h at concentrations that do not affect the barrier integrity. Furthermore, incubation with AsHCs for 72 h led to a disruption of the barrier at sub-cytotoxic concentrations. The subsequent immunocytochemical staining of three tight junction proteins revealed a significant impact on the cell membrane. Because AsHCs enhance the permeability of the in vitro blood-brain barrier, a similar behavior in an in vivo system cannot be excluded. Consequently, AsHCs might facilitate the transfer of accompanying foodborne toxicants into the brain.
Collapse
Affiliation(s)
- S M Müller
- Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany.,Heinrich-Stockmeyer Foundation, Parkstraße 44-46, 49214, Bad Rothenfelde, Germany
| | - F Ebert
- Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
| | - G Raber
- Institute of Chemistry, NAWI Graz, University of Graz, Universitaetsplatz 1, 8010, Graz, Austria
| | - S Meyer
- Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
| | - J Bornhorst
- Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
| | - S Hüwel
- Institute of Biochemistry, University of Münster, Wilhelm-Klemm-Str. 2, 48149, Münster, Germany
| | - H-J Galla
- Institute of Biochemistry, University of Münster, Wilhelm-Klemm-Str. 2, 48149, Münster, Germany
| | - K A Francesconi
- Institute of Chemistry, NAWI Graz, University of Graz, Universitaetsplatz 1, 8010, Graz, Austria
| | - T Schwerdtle
- Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany.
| |
Collapse
|
32
|
Witt B, Ebert F, Meyer S, Francesconi KA, Schwerdtle T. Assessing neurodevelopmental effects of arsenolipids in pre-differentiated human neurons. Mol Nutr Food Res 2017; 61. [DOI: 10.1002/mnfr.201700199] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 07/13/2017] [Accepted: 07/14/2017] [Indexed: 11/12/2022]
Affiliation(s)
- Barbara Witt
- Institute of Nutritional Science; University of Potsdam; Nuthetal Germany
| | - Franziska Ebert
- Institute of Nutritional Science; University of Potsdam; Nuthetal Germany
| | - Sören Meyer
- Institute of Nutritional Science; University of Potsdam; Nuthetal Germany
| | | | - Tanja Schwerdtle
- Institute of Nutritional Science; University of Potsdam; Nuthetal Germany
| |
Collapse
|
33
|
Calap-Quintana P, González-Fernández J, Sebastiá-Ortega N, Llorens JV, Moltó MD. Drosophila melanogaster Models of Metal-Related Human Diseases and Metal Toxicity. Int J Mol Sci 2017; 18:E1456. [PMID: 28684721 PMCID: PMC5535947 DOI: 10.3390/ijms18071456] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 06/27/2017] [Accepted: 06/30/2017] [Indexed: 12/21/2022] Open
Abstract
Iron, copper and zinc are transition metals essential for life because they are required in a multitude of biological processes. Organisms have evolved to acquire metals from nutrition and to maintain adequate levels of each metal to avoid damaging effects associated with its deficiency, excess or misplacement. Interestingly, the main components of metal homeostatic pathways are conserved, with many orthologues of the human metal-related genes having been identified and characterized in Drosophila melanogaster. Drosophila has gained appreciation as a useful model for studying human diseases, including those caused by mutations in pathways controlling cellular metal homeostasis. Flies have many advantages in the laboratory, such as a short life cycle, easy handling and inexpensive maintenance. Furthermore, they can be raised in a large number. In addition, flies are greatly appreciated because they offer a considerable number of genetic tools to address some of the unresolved questions concerning disease pathology, which in turn could contribute to our understanding of the metal metabolism and homeostasis. This review recapitulates the metabolism of the principal transition metals, namely iron, zinc and copper, in Drosophila and the utility of this organism as an experimental model to explore the role of metal dyshomeostasis in different human diseases. Finally, a summary of the contribution of Drosophila as a model for testing metal toxicity is provided.
Collapse
Affiliation(s)
- Pablo Calap-Quintana
- Department of Genetics, University of Valencia, Campus of Burjassot, 46100 Valencia, Spain.
| | - Javier González-Fernández
- Department of Genetics, University of Valencia, Campus of Burjassot, 46100 Valencia, Spain.
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain.
| | - Noelia Sebastiá-Ortega
- Department of Genetics, University of Valencia, Campus of Burjassot, 46100 Valencia, Spain.
- Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM, Spain.
| | - José Vicente Llorens
- Department of Genetics, University of Valencia, Campus of Burjassot, 46100 Valencia, Spain.
| | - María Dolores Moltó
- Department of Genetics, University of Valencia, Campus of Burjassot, 46100 Valencia, Spain.
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain.
- Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM, Spain.
| |
Collapse
|
34
|
|
35
|
Taylor V, Goodale B, Raab A, Schwerdtle T, Reimer K, Conklin S, Karagas MR, Francesconi KA. Human exposure to organic arsenic species from seafood. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 580:266-282. [PMID: 28024743 PMCID: PMC5326596 DOI: 10.1016/j.scitotenv.2016.12.113] [Citation(s) in RCA: 292] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 12/13/2016] [Accepted: 12/16/2016] [Indexed: 05/18/2023]
Abstract
Seafood, including finfish, shellfish, and seaweed, is the largest contributor to arsenic (As) exposure in many human populations. In contrast to the predominance of inorganic As in water and many terrestrial foods, As in marine-derived foods is present primarily in the form of organic compounds. To date, human exposure and toxicological assessments have focused on inorganic As, while organic As has generally been considered to be non-toxic. However, the high concentrations of organic As in seafood, as well as the often complex As speciation, can lead to complications in assessing As exposure from diet. In this report, we evaluate the presence and distribution of organic As species in seafood, and combined with consumption data, address the current capabilities and needs for determining human exposure to these compounds. The analytical approaches and shortcomings for assessing these compounds are reviewed, with a focus on the best practices for characterization and quantitation. Metabolic pathways and toxicology of two important classes of organic arsenicals, arsenolipids and arsenosugars, are examined, as well as individual variability in absorption of these compounds. Although determining health outcomes or assessing a need for regulatory policies for organic As exposure is premature, the extensive consumption of seafood globally, along with the preliminary toxicological profiles of these compounds and their confounding effect on assessing exposure to inorganic As, suggests further investigations and process-level studies on organic As are needed to fill the current gaps in knowledge.
Collapse
Affiliation(s)
| | | | | | | | - Ken Reimer
- Royal Military College, Kingston, Ontario, Canada
| | | | | | | |
Collapse
|
36
|
Witt B, Meyer S, Ebert F, Francesconi KA, Schwerdtle T. Toxicity of two classes of arsenolipids and their water-soluble metabolites in human differentiated neurons. Arch Toxicol 2017; 91:3121-3134. [PMID: 28180949 DOI: 10.1007/s00204-017-1933-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 01/12/2017] [Indexed: 01/17/2023]
Abstract
Arsenolipids are lipid-soluble organoarsenic compounds, mainly occurring in marine organisms, with arsenic-containing hydrocarbons (AsHCs) and arsenic-containing fatty acids (AsFAs) representing two major subgroups. Recently, toxicity studies of several arsenolipids showed a high cytotoxic potential of those arsenolipids in human liver and bladder cells. Furthermore, feeding studies with Drosophila melanogaster indicated an accumulation of arsenolipids in the fruit fly's brain. In this study, the neurotoxic potential of three AsHCs, two AsFAs and three metabolites (dimethylarsinic acid, thio/oxo-dimethylarsenopropanoic acid) was investigated in comparison to the toxic reference arsenite (iAsIII) in fully differentiated human brain cells (LUHMES cells). Thereby, in the case of AsHCs both the cell number and cell viability were reduced in a low micromolar concentration range comparable to iAsIII, while AsFAs and the applied metabolites were less toxic. Mechanistic studies revealed that AsHCs reduced the mitochondrial membrane potential, whereas neither iAsIII nor AsFAs had an impact. Furthermore, neurotoxic mechanisms were investigated by examining the neuronal network. Here, AsHCs massively disturbed the neuronal network and induced apoptotic effects, while iAsIII and AsFAs showed comparatively lesser effects. Taking into account the substantial in vitro neurotoxic potential of the AsHCs and the fact that they could transfer across the physiological barriers of the brain, a neurotoxic potential in vivo for the AsHCs cannot be excluded and needs to be urgently characterized.
Collapse
Affiliation(s)
- Barbara Witt
- Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
| | - Sören Meyer
- Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
| | - Franziska Ebert
- Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
| | - Kevin A Francesconi
- Institute of Chemistry-Analytical Chemistry, University of Graz, Universitaetsplatz 1, 8010, Graz, Austria
| | - Tanja Schwerdtle
- Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany.
| |
Collapse
|
37
|
Witt B, Bornhorst J, Mitze H, Ebert F, Meyer S, Francesconi KA, Schwerdtle T. Arsenolipids exert less toxicity in a human neuron astrocyte co-culture as compared to the respective monocultures. Metallomics 2017; 9:442-446. [DOI: 10.1039/c7mt00036g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
38
|
|
39
|
Thomas DJ, Bradham K. Role of complex organic arsenicals in food in aggregate exposure to arsenic. J Environ Sci (China) 2016; 49:86-96. [PMID: 28007183 DOI: 10.1016/j.jes.2016.06.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Revised: 05/07/2016] [Accepted: 06/01/2016] [Indexed: 06/06/2023]
Abstract
For much of the world's population, food is the major source of exposure to arsenic. Exposure to this non-essential metalloid at relatively low levels may be linked to a wide range of adverse health effects. Thus, evaluating foods as sources of exposure to arsenic is important in assessing risk and developing strategies that protect public health. Although most emphasis has been placed on inorganic arsenic as human carcinogen and toxicant, an array of arsenic-containing species are found in plants and animals used as foods. Here, we 2evaluate the contribution of complex organic arsenicals (arsenosugars, arsenolipids, and trimethylarsonium compounds) that are found in foods and consider their origins, metabolism, and potential toxicity. Commonalities in the metabolism of arsenosugars and arsenolipids lead to the production of di-methylated arsenicals which are known to exert many toxic effects. Evaluating foods as sources of exposure to these complex organic arsenicals and understanding the formation of reactive metabolites may be critical in assessing their contribution to aggregate exposure to arsenic.
Collapse
Affiliation(s)
- David J Thomas
- Pharmacokinetics Branch, Integrated Systems Toxicology Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27709, USA.
| | - Karen Bradham
- Public Health Chemistry Branch, Exposure Methods and Measurements Division, National Exposure Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27709, USA
| |
Collapse
|
40
|
Raab A, Stiboller M, Gajdosechova Z, Nelson J, Feldmann J. Element content and daily intake from dietary supplements (nutraceuticals) based on algae, garlic, yeast fish and krill oils—Should consumers be worried? J Food Compost Anal 2016. [DOI: 10.1016/j.jfca.2016.09.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
41
|
Francesconi KA, Schwerdtle T. Fat-soluble arsenic - new lipids with a sting in their tail. ACTA ACUST UNITED AC 2016. [DOI: 10.1002/lite.201600024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | - Tanja Schwerdtle
- Institute of Nutritional Science; University of Potsdam; 14558 Nuthetal Germany
| |
Collapse
|
42
|
Niehoff AC, Schulz J, Soltwisch J, Meyer S, Kettling H, Sperling M, Jeibmann A, Dreisewerd K, Francesconi KA, Schwerdtle T, Karst U. Imaging by Elemental and Molecular Mass Spectrometry Reveals the Uptake of an Arsenolipid in the Brain of Drosophila melanogaster. Anal Chem 2016; 88:5258-63. [DOI: 10.1021/acs.analchem.6b00333] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Ann-Christin Niehoff
- Institute
of Inorganic and Analytical Chemistry, University of Münster, Corrensstrasse
30, 48149 Münster, Germany
- NRW
Graduate School of Chemistry, University of Münster, 48149 Münster, Germany
| | - Jacqueline Schulz
- Institute
of Neuropathology, University Hospital Münster, Pottkamp 2, 48149 Münster, Germany
| | - Jens Soltwisch
- Institute
for Hygiene, University of Münster, Robert-Koch-Strasse 41, 48149 Münster, Germany
| | - Sören Meyer
- NRW
Graduate School of Chemistry, University of Münster, 48149 Münster, Germany
- Institute
of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| | - Hans Kettling
- Institute
for Hygiene, University of Münster, Robert-Koch-Strasse 41, 48149 Münster, Germany
- Interdisciplinary
Center for Clinical Research (IZKF), Münster Medical School, Domagkstrasse
3, 48149 Münster, Germany
| | - Michael Sperling
- Institute
of Inorganic and Analytical Chemistry, University of Münster, Corrensstrasse
30, 48149 Münster, Germany
| | - Astrid Jeibmann
- Institute
of Neuropathology, University Hospital Münster, Pottkamp 2, 48149 Münster, Germany
| | - Klaus Dreisewerd
- Institute
for Hygiene, University of Münster, Robert-Koch-Strasse 41, 48149 Münster, Germany
- Interdisciplinary
Center for Clinical Research (IZKF), Münster Medical School, Domagkstrasse
3, 48149 Münster, Germany
| | - Kevin A. Francesconi
- Institute
of Chemistry−Analytical Chemistry, University of Graz, Universitätsplatz 1, 8010 Graz, Austria
| | - Tanja Schwerdtle
- Institute
of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| | - Uwe Karst
- Institute
of Inorganic and Analytical Chemistry, University of Münster, Corrensstrasse
30, 48149 Münster, Germany
| |
Collapse
|
43
|
Jackson BP, Punshon T. Recent Advances in the Measurement of Arsenic, Cadmium, and Mercury in Rice and Other Foods. Curr Environ Health Rep 2016; 2:15-24. [PMID: 25938012 DOI: 10.1007/s40572-014-0035-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Trace element analysis of foods is of increasing importance because of raised consumer awareness and the need to evaluate and establish regulatory guidelines for toxic trace metals and metalloids. This paper reviews recent advances in the analysis of trace elements in food, including challenges, state-of-the-art methods, and use of spatially resolved techniques for localizing the distribution of arsenic and mercury within rice grains. Total elemental analysis of foods is relatively well-established, but the push for ever lower detection limits requires that methods be robust from potential matrix interferences, which can be particularly severe for food. Inductively coupled plasma mass spectrometry (ICP-MS) is the method of choice, allowing for multi-element and highly sensitive analyses. For arsenic, speciation analysis is necessary because the inorganic forms are more likely to be subject to regulatory limits. Chromatographic techniques coupled to ICP-MS are most often used for arsenic speciation, and a range of methods now exist for a variety of different arsenic species in different food matrices. Speciation and spatial analysis of foods, especially rice, can also be achieved with synchrotron techniques. Sensitive analytical techniques and methodological advances provide robust methods for the assessment of several metals in animal- and plant-based foods, particularly for arsenic, cadmium, and mercury in rice and arsenic speciation in foodstuffs.
Collapse
|
44
|
Van de Wiele T, Laing GD, Calatayud M. Arsenic from food: biotransformations and risk assessment. Curr Opin Food Sci 2015. [DOI: 10.1016/j.cofs.2015.11.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
45
|
Meyer S, Raber G, Ebert F, Taleshi MS, Francesconi KA, Schwerdtle T. Arsenic-containing hydrocarbons and arsenic-containing fatty acids: Transfer across and presystemic metabolism in the Caco-2 intestinal barrier model. Mol Nutr Food Res 2015; 59:2044-56. [PMID: 26153761 DOI: 10.1002/mnfr.201500286] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 06/26/2015] [Accepted: 06/26/2015] [Indexed: 01/03/2023]
Abstract
SCOPE Arsenic-containing hydrocarbons (AsHCs) and arsenic-containing fatty acids (AsFAs) represent two classes of arsenolipids occurring naturally in marine food. Toxicological data are yet scarce and an assessment regarding the risk to human health has not been possible. Here, we investigated the transfer and presystemic metabolism of five arsenolipids in an intestinal barrier model. METHODS AND RESULTS Three AsHCs and two AsFAs were applied to the Caco-2 intestinal barrier model. Thereby, the short-chain AsHCs reached up to 50% permeability. Transport is likely to occur via passive diffusion. The AsFAs showed lower intestinal bioavailability, but respective permeabilities were still two to five times higher as compared to arsenobetaine or arsenosugars. Interestingly, AsFAs were effectively biotransformed while passing the in vitro intestinal barrier, whereas AsHCs were transported to the blood-facing compartment essentially unchanged. CONCLUSION AsFAs can be presystemically metabolised and the amount of transferred arsenic is lower than that for AsHCs. In contrast, AsHCs are likely to be highly intestinally bioavailable to humans. Since AsHCs exert strong toxicity in vitro and in vivo, toxicity studies with experimental animals as well as a human exposure assessment are needed to assess the risk to human health related to the presence of AsHCs in seafood.
Collapse
Affiliation(s)
- Sören Meyer
- Graduate School of Chemistry, University of Münster, Münster, Germany.,Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - Georg Raber
- Institute of Chemistry-Analytical Chemistry, NAWI Graz, University of Graz, Graz, Austria
| | - Franziska Ebert
- Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - Mojtaba S Taleshi
- Institute of Chemistry-Analytical Chemistry, NAWI Graz, University of Graz, Graz, Austria
| | - Kevin A Francesconi
- Institute of Chemistry-Analytical Chemistry, NAWI Graz, University of Graz, Graz, Austria
| | - Tanja Schwerdtle
- Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| |
Collapse
|
46
|
Meyer S, Raber G, Ebert F, Leffers L, Müller SM, Taleshi MS, Francesconi KA, Schwerdtle T. In vitro toxicological characterisation of arsenic-containing fatty acids and three of their metabolites. Toxicol Res (Camb) 2015; 4:1289-1296. [PMID: 26744620 PMCID: PMC4690163 DOI: 10.1039/c5tx00122f] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 06/17/2015] [Indexed: 01/10/2023] Open
Abstract
Arsenic-containing fatty acids are bioavailable and toxic to human liver cells in culture.
Arsenic-containing fatty acids are a group of fat-soluble arsenic species (arsenolipids) which are present in marine fish and other seafood. Recently, it has been shown that arsenic-containing hydrocarbons, another group of arsenolipids, exert toxicity in similar concentrations comparable to arsenite although the toxic modes of action differ. Hence, a risk assessment of arsenolipids is urgently needed. In this study the cellular toxicity of a saturated (AsFA 362) and an unsaturated (AsFA 388) arsenic-containing fatty acid and three of their proposed metabolites (DMAV, DMAPr and thio-DMAPr) were investigated in human liver cells (HepG2). Even though both arsenic-containing fatty acids were less toxic as compared to arsenic-containing hydrocarbons and arsenite, significant effects were observable at μM concentrations. DMAV causes effects in a similar concentration range and it could be seen that it is metabolised to its highly toxic thio analogue thio-DMAV in HepG2 cells. Nevertheless, DMAPr and thio-DMAPr did not exert any cytotoxicity. In summary, our data indicate that risks to human health related to the presence of arsenic-containing fatty acids in marine food cannot be excluded. This stresses the need for a full in vitro and in vivo toxicological characterisation of these arsenolipids.
Collapse
Affiliation(s)
- S Meyer
- Graduate School of Chemistry , University of Münster , Wilhelm-Klemm-Straße 10 , 48149 Münster , Germany . ; Institute of Nutritional Science , University of Potsdam , Arthur-Scheunert-Allee 114-116 , 14558 Nuthetal , Germany
| | - G Raber
- Institute of Chemistry - Analytical Chemistry , NAWI Graz , University of Graz , Universitätsplatz 1 , 8010 Graz , Austria
| | - F Ebert
- Institute of Nutritional Science , University of Potsdam , Arthur-Scheunert-Allee 114-116 , 14558 Nuthetal , Germany
| | - L Leffers
- Graduate School of Chemistry , University of Münster , Wilhelm-Klemm-Straße 10 , 48149 Münster , Germany .
| | - S M Müller
- Institute of Nutritional Science , University of Potsdam , Arthur-Scheunert-Allee 114-116 , 14558 Nuthetal , Germany ; Heinrich-Stockmeyer-Stiftung , Parkstraße 44-46 , 49214 Bad Rothenfelde , Germany
| | - M S Taleshi
- Department of Marine Chemistry , Faculty of Marine Science , University of Mazandaran , Babolsar , Iran
| | - K A Francesconi
- Institute of Chemistry - Analytical Chemistry , NAWI Graz , University of Graz , Universitätsplatz 1 , 8010 Graz , Austria
| | - T Schwerdtle
- Graduate School of Chemistry , University of Münster , Wilhelm-Klemm-Straße 10 , 48149 Münster , Germany . ; Institute of Nutritional Science , University of Potsdam , Arthur-Scheunert-Allee 114-116 , 14558 Nuthetal , Germany
| |
Collapse
|