1
|
Naineni S, Bhatt G, Jiramongkolsiri E, Robert F, Cencic R, Huang S, Nagar B, Pelletier J. Protein-RNA interactions mediated by silvestrol-insight into a unique molecular clamp. Nucleic Acids Res 2024; 52:12701-12711. [PMID: 39351865 PMCID: PMC11551732 DOI: 10.1093/nar/gkae824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/03/2024] [Accepted: 09/11/2024] [Indexed: 11/12/2024] Open
Abstract
Molecular staples or interfacial inhibitors are small molecules that exert their activity through co-association with macromolecules leading to various effects on target functions. Some molecules inhibit target activity, while others generate gain-of-function complexes. We and others have previously identified two structurally distinct classes of molecular staples, pateamine A and rocaglates. These molecules inhibit eukaryotic initiation factor (eIF) 4A, a critical RNA helicase required for translation initiation, by simultaneously interacting with both RNA and protein components. Structural insights from members of these two families indicate that they wedge themselves between RNA bases during engagement. To extend our understanding of rocaglates, we investigated the RNA-binding properties of silvestrol, a natural rocaglate distinguished by the presence of a unique dioxanyloxy ring. Our study demonstrates that silvestrol expands the RNA-binding repertoire of rocaglates due to this structural characteristic, providing a rationale for improving synthetic molecular staples targeting eIF4A.
Collapse
Affiliation(s)
- Sai Kiran Naineni
- Department of Biochemistry, McGill University, 3655 Promenade Sir William Osler, Montreal, H3G 1Y6, Quebec, Canada
- Rosalind and Morris Goodman Cancer Research Institute, 1160 Pine Ave W, Montreal, H3A 1A3, Quebec, Canada
| | - Garvit Bhatt
- Department of Biochemistry, McGill University, 3655 Promenade Sir William Osler, Montreal, H3G 1Y6, Quebec, Canada
- Department of Pharmacology and Therapeutics, McGill University, 3649 Promenade Sir William Osler, Montreal H3G 0B1 Quebec, Canada
- Centre de Recherche en Biologie Structurale (CRBS), McGill University, 3649 Promenade Sir William Osler, Montreal H3G 0B1 Quebec, Canada
| | - Ekkanat Jiramongkolsiri
- Department of Biochemistry, McGill University, 3655 Promenade Sir William Osler, Montreal, H3G 1Y6, Quebec, Canada
- Rosalind and Morris Goodman Cancer Research Institute, 1160 Pine Ave W, Montreal, H3A 1A3, Quebec, Canada
| | - Francis Robert
- Department of Biochemistry, McGill University, 3655 Promenade Sir William Osler, Montreal, H3G 1Y6, Quebec, Canada
- Rosalind and Morris Goodman Cancer Research Institute, 1160 Pine Ave W, Montreal, H3A 1A3, Quebec, Canada
| | - Regina Cencic
- Department of Biochemistry, McGill University, 3655 Promenade Sir William Osler, Montreal, H3G 1Y6, Quebec, Canada
- Rosalind and Morris Goodman Cancer Research Institute, 1160 Pine Ave W, Montreal, H3A 1A3, Quebec, Canada
| | - Sidong Huang
- Department of Biochemistry, McGill University, 3655 Promenade Sir William Osler, Montreal, H3G 1Y6, Quebec, Canada
- Rosalind and Morris Goodman Cancer Research Institute, 1160 Pine Ave W, Montreal, H3A 1A3, Quebec, Canada
- Department of Human Genetics, McGill University, 3640 University, Room W 315 D, Montreal, H3A 0C7 Quebec, Canada
| | - Bhushan Nagar
- Department of Biochemistry, McGill University, 3655 Promenade Sir William Osler, Montreal, H3G 1Y6, Quebec, Canada
- Centre de Recherche en Biologie Structurale (CRBS), McGill University, 3649 Promenade Sir William Osler, Montreal H3G 0B1 Quebec, Canada
| | - Jerry Pelletier
- Department of Biochemistry, McGill University, 3655 Promenade Sir William Osler, Montreal, H3G 1Y6, Quebec, Canada
- Rosalind and Morris Goodman Cancer Research Institute, 1160 Pine Ave W, Montreal, H3A 1A3, Quebec, Canada
- Department of Oncology, McGill University, 5100 de Maisonneuve Blvd. Montreal H4A 3T2 Quebec, Canada
| |
Collapse
|
2
|
Chen S, Mao Q, Cheng H, Tai W. RNA-Binding Small Molecules in Drug Discovery and Delivery: An Overview from Fundamentals. J Med Chem 2024; 67:16002-16017. [PMID: 39287926 DOI: 10.1021/acs.jmedchem.4c01330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
RNA molecules, similar to proteins, fold into complex structures to confer diverse functions in cells. The intertwining of functions with RNA structures offers a new therapeutic opportunity for small molecules to bind and manipulate disease-relevant RNA pathways, thus creating a therapeutic realm of RNA-binding small molecules. The ongoing interest in RNA targeting and subsequent screening campaigns have led to the identification of numerous compounds that can regulate RNAs from splicing, degradation to malfunctions, with therapeutic benefits for a variety of diseases. Moreover, along with the rise of RNA-based therapeutics, RNA-binding small molecules have expanded their application to the modification, regulation, and delivery of RNA drugs, leading to the burgeoning interest in this field. This Perspective overviews the emerging roles of RNA-binding small molecules in drug discovery and delivery, covering aspects from their action fundamentals to therapeutic applications, which may inspire researchers to advance the field.
Collapse
Affiliation(s)
- Siyi Chen
- Department of Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei 430071, China
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Qi Mao
- Department of Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei 430071, China
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Hong Cheng
- Department of Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei 430071, China
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Wanyi Tai
- Department of Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei 430071, China
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| |
Collapse
|
3
|
Peron G, Mastinu A, Peña-Corona SI, Hernández-Parra H, Leyva-Gómez G, Calina D, Sharifi-Rad J. Silvestrol, a potent anticancer agent with unfavourable pharmacokinetics: Current knowledge on its pharmacological properties and future directions for the development of novel drugs. Biomed Pharmacother 2024; 177:117047. [PMID: 38959604 DOI: 10.1016/j.biopha.2024.117047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/14/2024] [Accepted: 06/25/2024] [Indexed: 07/05/2024] Open
Abstract
Cancer remains a leading cause of death, with increasing incidence. Conventional treatments offer limited efficacy and cause significant side effects, hence novel drugs with improved pharmacological properties and safety are required. Silvestrol (SLV) is a flavagline derived from some plants of the Aglaia genus that has shown potent anticancer effects, warranting further study. Despite its efficacy in inhibiting the growth of several types of cancer cells, SLV is characterized by an unfavorable pharmacokinetics that hamper its use as a drug. A consistent research over the recent years has led to develop novel SLV derivatives with comparable pharmacodynamics and an ameliorated pharmacokinetic profile, demonstrating potential applications in the clinical management of cancer. This comprehensive review aims to highlight the most recent data available on SLV and its synthetic derivatives, addressing their pharmacological profile and therapeutic potential in cancer treatment. A systematic literature review of both in vitro and in vivo studies focusing on anticancer effects, pharmacodynamics, and pharmacokinetics of these compounds is presented. Overall, literature data highlight that rationale chemical modifications of SLV are critical for the development of novel drugs with high efficacy on a broad variety of cancers and improved bioavailability in vivo. Nevertheless, SLV analogues need to be further studied to better understand their mechanisms of action, which can be partially different to SLV. Furthermore, clinical research is still required to assess their efficacy in humans and their safety.
Collapse
Affiliation(s)
- Gregorio Peron
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, Brescia 25123, Italy.
| | - Andrea Mastinu
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, Brescia 25123, Italy
| | - Sheila I Peña-Corona
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Hector Hernández-Parra
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico; Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova 200349, Romania.
| | - Javad Sharifi-Rad
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Republic of Korea; Centro de Estudios Tenológicos y Universitarios del Golfo, Veracruz, Mexico.
| |
Collapse
|
4
|
Esteva-Socias M, Aguilo F. METTL3 as a master regulator of translation in cancer: mechanisms and implications. NAR Cancer 2024; 6:zcae009. [PMID: 38444581 PMCID: PMC10914372 DOI: 10.1093/narcan/zcae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/18/2024] [Accepted: 02/21/2024] [Indexed: 03/07/2024] Open
Abstract
Translational regulation is an important step in the control of gene expression. In cancer cells, the orchestration of both global control of protein synthesis and selective translation of specific mRNAs promote tumor cell survival, angiogenesis, transformation, invasion and metastasis. N6-methyladenosine (m6A), the most prevalent mRNA modification in higher eukaryotes, impacts protein translation. Over the past decade, the development of m6A mapping tools has facilitated comprehensive functional investigations, revealing the involvement of this chemical mark, together with its writer METTL3, in promoting the translation of both oncogenes and tumor suppressor transcripts, with the impact being context-dependent. This review aims to consolidate our current understanding of how m6A and METTL3 shape translation regulation in the realm of cancer biology. In addition, it delves into the role of cytoplasmic METTL3 in protein synthesis, operating independently of its catalytic activity. Ultimately, our goal is to provide critical insights into the interplay between m6A, METTL3 and translational regulation in cancer, offering a deeper comprehension of the mechanisms sustaining tumorigenesis.
Collapse
Affiliation(s)
- Margalida Esteva-Socias
- Department of Molecular Biology, Umeå University, SE-901 85Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, SE-901 85Umeå, Sweden
| | - Francesca Aguilo
- Department of Molecular Biology, Umeå University, SE-901 85Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, SE-901 85Umeå, Sweden
| |
Collapse
|
5
|
Ge W, Ming W, Li Z, Tang Y, Li YN, Yang J, Hao X, Yuan C. Design and Synthesis of Cytotoxic Water-Soluble Rocaglaol Derivatives against HEL Cells by Inhibiting Fli-1. JOURNAL OF NATURAL PRODUCTS 2024; 87:276-285. [PMID: 38253024 DOI: 10.1021/acs.jnatprod.3c00948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Rocaglaol, embedding a cyclopenta[b]benzofuran scaffold, was isolated mainly from the plants of Aglaia and exhibited nanomolar level antitumor activity. However, the drug-like properties of these compounds are poor. To improve the physicochemical properties of rocaglaol, 36 nitrogen-containing phenyl-substituted rocaglaol derivatives were designed and synthesized. These derivatives were tested for the inhibitory effects on three tumor cell lines, HEL, MDA-231, and SW480, using the MTT assay. Among them, 22 derivatives exhibited good cytotoxic activities with IC50 values between 0.11 ± 0.07 and 0.88 ± 0.02 μM. Fourteen derivatives exhibited stronger cytotoxicity than the positive control, adriamycin. In particular, a water-soluble derivative revealed selective cytotoxic effects on HEL cells (IC50 = 0.19 ± 0.01 μM). This compound could induce G1 cell cycle arrest and apoptosis in HEL cells. Western blot assays suggested that the water-soluble derivative could downregulate the expression of the marker proteins of apoptosis, PARP, caspase-3, and caspase-9, thus inducing apoptosis. Further CETSA and Western blot studies implied that this water-soluble derivative might be an inhibitor of friend leukemia integration 1 (Fli-1). This water-soluble derivative may serve as a potential antileukemia agent by suppressing the expression of Fli-1.
Collapse
Affiliation(s)
- Wei Ge
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, People's Republic of China
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, People's Republic of China
- Natural Products Research Center of Guizhou Province, Guiyang 550014, People's Republic of China
| | - Weikang Ming
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, People's Republic of China
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, People's Republic of China
- Natural Products Research Center of Guizhou Province, Guiyang 550014, People's Republic of China
| | - Zhenkun Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, People's Republic of China
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, People's Republic of China
- Natural Products Research Center of Guizhou Province, Guiyang 550014, People's Republic of China
| | - Yunyan Tang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, People's Republic of China
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, People's Republic of China
- Natural Products Research Center of Guizhou Province, Guiyang 550014, People's Republic of China
| | - Ya-Nan Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, People's Republic of China
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, People's Republic of China
- Natural Products Research Center of Guizhou Province, Guiyang 550014, People's Republic of China
| | - Jue Yang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, People's Republic of China
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, People's Republic of China
- Natural Products Research Center of Guizhou Province, Guiyang 550014, People's Republic of China
| | - Xiaojiang Hao
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, People's Republic of China
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, People's Republic of China
- Natural Products Research Center of Guizhou Province, Guiyang 550014, People's Republic of China
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| | - Chunmao Yuan
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, People's Republic of China
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, People's Republic of China
- Natural Products Research Center of Guizhou Province, Guiyang 550014, People's Republic of China
| |
Collapse
|
6
|
Yao P, Liang S, Liu Z, Xu C. A review of natural products targeting tumor immune microenvironments for the treatment of lung cancer. Front Immunol 2024; 15:1343316. [PMID: 38361933 PMCID: PMC10867126 DOI: 10.3389/fimmu.2024.1343316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/18/2024] [Indexed: 02/17/2024] Open
Abstract
Lung cancer (LC) produces some of the most malignant tumors in the world, with high morbidity and mortality. Tumor immune microenvironment (TIME), a component of the tumor microenvironment (TME), are critical in tumor development, immune escape, and drug resistance. The TIME is composed of various immune cells, immune cytokines, etc, which are important biological characteristics and determinants of tumor progression and outcomes. In this paper, we reviewed the recently published literature and discussed the potential uses of natural products in regulating TIME. We observed that a total of 37 natural compounds have been reported to exert anti-cancer effects by targeting the TIME. In different classes of natural products, terpenoids are the most frequently mentioned compounds. TAMs are one of the most investigated immune cells about therapies with natural products in TIME, with 9 natural products acting through it. 17 natural products exhibit anti-cancer properties in LC by modulating PD-1 and PD-L1 protein activity. These natural products have been extensively evaluated in animal and cellular LC models, but their clinical trials in LC patients are lacking. Based on the current review, we have revealed that the mechanisms of LC can be treated with natural products through TIME intervention, resulting in a new perspective and potential therapeutic drugs.
Collapse
Affiliation(s)
- Pengyu Yao
- Department of Traditional Chinese Medicine, Jinan Maternity and Child Care Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Su Liang
- Department of Traditional Chinese Medicine, Jinan Maternity and Child Care Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Zhenying Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Cuiping Xu
- Department of Nursing, The First Affiliated Hospital of Shandong First Medical University (Shandong Provincial Qianfoshan Hospital), Jinan, China
| |
Collapse
|
7
|
Victoria C, Schulz G, Klöhn M, Weber S, Holicki CM, Brüggemann Y, Becker M, Gerold G, Eiden M, Groschup MH, Steinmann E, Kirschning A. Halogenated Rocaglate Derivatives: Pan-antiviral Agents against Hepatitis E Virus and Emerging Viruses. J Med Chem 2024; 67:289-321. [PMID: 38127656 PMCID: PMC10788925 DOI: 10.1021/acs.jmedchem.3c01357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/04/2023] [Accepted: 11/20/2023] [Indexed: 12/23/2023]
Abstract
The synthesis of a library of halogenated rocaglate derivatives belonging to the flavagline class of natural products, of which silvestrol is the most prominent example, is reported. Their antiviral activity and cytotoxicity profile against a wide range of pathogenic viruses, including hepatitis E, Chikungunya, Rift Valley Fever virus and SARS-CoV-2, were determined. The incorporation of halogen substituents at positions 4', 6 and 8 was shown to have a significant effect on the antiviral activity of rocaglates, some of which even showed enhanced activity compared to CR-31-B and silvestrol.
Collapse
Affiliation(s)
- Catherine Victoria
- Institute
of Organic Chemistry, Leibniz University
Hannover, Schneiderberg
1B, 30167 Hannover, Germany
| | - Göran Schulz
- Institute
of Organic Chemistry, Leibniz University
Hannover, Schneiderberg
1B, 30167 Hannover, Germany
| | - Mara Klöhn
- Department
of Molecular and Medical Virology, Ruhr-University
Bochum, 44801 Bochum, Germany
| | - Saskia Weber
- Federal
Research Institute in Animal Health (FLI), Südufer 10, 17493 Greifswald, Insel Riems, Germany
| | - Cora M. Holicki
- Federal
Research Institute in Animal Health (FLI), Südufer 10, 17493 Greifswald, Insel Riems, Germany
| | - Yannick Brüggemann
- Department
of Molecular and Medical Virology, Ruhr-University
Bochum, 44801 Bochum, Germany
| | - Miriam Becker
- Institute
for Biochemistry and Research Center for Emerging Infections and Zoonoses
(RIZ), University of Veterinary Medicine
Hannover, Bünteweg
2, 30559 Hannover, Germany
| | - Gisa Gerold
- Institute
for Biochemistry and Research Center for Emerging Infections and Zoonoses
(RIZ), University of Veterinary Medicine
Hannover, Bünteweg
2, 30559 Hannover, Germany
- Wallenberg
Centre for Molecular Medicine (WCMM), Umeå
University, 901 87 Umeå, Sweden
- Department
of Clinical Microbiology, Virology, Umeå
University, 901 87 Umeå, Sweden
| | - Martin Eiden
- Federal
Research Institute in Animal Health (FLI), Südufer 10, 17493 Greifswald, Insel Riems, Germany
| | - Martin H. Groschup
- Federal
Research Institute in Animal Health (FLI), Südufer 10, 17493 Greifswald, Insel Riems, Germany
| | - Eike Steinmann
- Department
of Molecular and Medical Virology, Ruhr-University
Bochum, 44801 Bochum, Germany
| | - Andreas Kirschning
- Institute
of Organic Chemistry, Leibniz University
Hannover, Schneiderberg
1B, 30167 Hannover, Germany
| |
Collapse
|
8
|
Knopf P, Stowbur D, Hoffmann SHL, Hermann N, Maurer A, Bucher V, Poxleitner M, Tako B, Sonanini D, Krishnamachary B, Sinharay S, Fehrenbacher B, Gonzalez-Menendez I, Reckmann F, Bomze D, Flatz L, Kramer D, Schaller M, Forchhammer S, Bhujwalla ZM, Quintanilla-Martinez L, Schulze-Osthoff K, Pagel MD, Fransen MF, Röcken M, Martins AF, Pichler BJ, Ghoreschi K, Kneilling M. Acidosis-mediated increase in IFN-γ-induced PD-L1 expression on cancer cells as an immune escape mechanism in solid tumors. Mol Cancer 2023; 22:207. [PMID: 38102680 PMCID: PMC10722725 DOI: 10.1186/s12943-023-01900-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 11/12/2023] [Indexed: 12/17/2023] Open
Abstract
Immune checkpoint inhibitors have revolutionized cancer therapy, yet the efficacy of these treatments is often limited by the heterogeneous and hypoxic tumor microenvironment (TME) of solid tumors. In the TME, programmed death-ligand 1 (PD-L1) expression on cancer cells is mainly regulated by Interferon-gamma (IFN-γ), which induces T cell exhaustion and enables tumor immune evasion. In this study, we demonstrate that acidosis, a common characteristic of solid tumors, significantly increases IFN-γ-induced PD-L1 expression on aggressive cancer cells, thus promoting immune escape. Using preclinical models, we found that acidosis enhances the genomic expression and phosphorylation of signal transducer and activator of transcription 1 (STAT1), and the translation of STAT1 mRNA by eukaryotic initiation factor 4F (elF4F), resulting in an increased PD-L1 expression. We observed this effect in murine and human anti-PD-L1-responsive tumor cell lines, but not in anti-PD-L1-nonresponsive tumor cell lines. In vivo studies fully validated our in vitro findings and revealed that neutralizing the acidic extracellular tumor pH by sodium bicarbonate treatment suppresses IFN-γ-induced PD-L1 expression and promotes immune cell infiltration in responsive tumors and thus reduces tumor growth. However, this effect was not observed in anti-PD-L1-nonresponsive tumors. In vivo experiments in tumor-bearing IFN-γ-/- mice validated the dependency on immune cell-derived IFN-γ for acidosis-mediated cancer cell PD-L1 induction and tumor immune escape. Thus, acidosis and IFN-γ-induced elevation of PD-L1 expression on cancer cells represent a previously unknown immune escape mechanism that may serve as a novel biomarker for anti-PD-L1/PD-1 treatment response. These findings have important implications for the development of new strategies to enhance the efficacy of immunotherapy in cancer patients.
Collapse
Affiliation(s)
- Philipp Knopf
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University, Tübingen, Germany
| | - Dimitri Stowbur
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image Guided and Functionally Instructed Tumor Therapies", Röntgenweg 13, 72076, Tübingen, Germany
| | - Sabrina H L Hoffmann
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University, Tübingen, Germany
| | - Natalie Hermann
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University, Tübingen, Germany
| | - Andreas Maurer
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image Guided and Functionally Instructed Tumor Therapies", Röntgenweg 13, 72076, Tübingen, Germany
| | - Valentina Bucher
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University, Tübingen, Germany
| | - Marilena Poxleitner
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University, Tübingen, Germany
| | - Bredi Tako
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University, Tübingen, Germany
| | - Dominik Sonanini
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image Guided and Functionally Instructed Tumor Therapies", Röntgenweg 13, 72076, Tübingen, Germany
| | - Balaji Krishnamachary
- Division of Cancer Imaging Research, The Russell H Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sanhita Sinharay
- Department of Cancer Systems Imaging, MD Anderson Cancer Center, 1881 East Rd, Houston, TX, 77054, USA
| | | | - Irene Gonzalez-Menendez
- Cluster of Excellence iFIT (EXC 2180) "Image Guided and Functionally Instructed Tumor Therapies", Röntgenweg 13, 72076, Tübingen, Germany
- Institute of Pathology and Neuropathology, Department of Pathology, Eberhard Karls University of Tübingen and Comprehensive Cancer Center, Tübingen University Hospital, Tübingen, Germany
| | - Felix Reckmann
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University, Tübingen, Germany
| | - David Bomze
- Department of Dermatology, Tel-Aviv Medical Center, Tel-Aviv, Israel
| | - Lukas Flatz
- Department of Dermatology, Eberhard Karls University, Tübingen, Germany
| | - Daniela Kramer
- Interfaculty Institute of Biochemistry, Eberhard Karls University, Tübingen, Germany
| | - Martin Schaller
- Department of Dermatology, Eberhard Karls University, Tübingen, Germany
| | | | - Zaver M Bhujwalla
- Division of Cancer Imaging Research, The Russell H Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University, School of Medicine, Baltimore, MD, USA
- Department of Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Leticia Quintanilla-Martinez
- Cluster of Excellence iFIT (EXC 2180) "Image Guided and Functionally Instructed Tumor Therapies", Röntgenweg 13, 72076, Tübingen, Germany
- Institute of Pathology and Neuropathology, Department of Pathology, Eberhard Karls University of Tübingen and Comprehensive Cancer Center, Tübingen University Hospital, Tübingen, Germany
| | - Klaus Schulze-Osthoff
- Cluster of Excellence iFIT (EXC 2180) "Image Guided and Functionally Instructed Tumor Therapies", Röntgenweg 13, 72076, Tübingen, Germany
- Interfaculty Institute of Biochemistry, Eberhard Karls University, Tübingen, Germany
- German Cancer Consortium (DKTK), partner site Tübingen, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Mark D Pagel
- Department of Cancer Systems Imaging, MD Anderson Cancer Center, 1881 East Rd, Houston, TX, 77054, USA
| | - Marieke F Fransen
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Martin Röcken
- Cluster of Excellence iFIT (EXC 2180) "Image Guided and Functionally Instructed Tumor Therapies", Röntgenweg 13, 72076, Tübingen, Germany
- Department of Dermatology, Eberhard Karls University, Tübingen, Germany
- German Cancer Consortium (DKTK), partner site Tübingen, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - André F Martins
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image Guided and Functionally Instructed Tumor Therapies", Röntgenweg 13, 72076, Tübingen, Germany
- German Cancer Consortium (DKTK), partner site Tübingen, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Bernd J Pichler
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image Guided and Functionally Instructed Tumor Therapies", Röntgenweg 13, 72076, Tübingen, Germany
- German Cancer Consortium (DKTK), partner site Tübingen, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Kamran Ghoreschi
- Department of Dermatology, Venereology and Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, 10117, Berlin, Germany
| | - Manfred Kneilling
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University, Tübingen, Germany.
- Cluster of Excellence iFIT (EXC 2180) "Image Guided and Functionally Instructed Tumor Therapies", Röntgenweg 13, 72076, Tübingen, Germany.
- Department of Dermatology, Eberhard Karls University, Tübingen, Germany.
| |
Collapse
|
9
|
Carcache de Blanco EJ, Addo EM, Rakotondraibe HL, Soejarto DD, Kinghorn AD. Strategies for the discovery of potential anticancer agents from plants collected from Southeast Asian tropical rainforests as a case study. Nat Prod Rep 2023; 40:1181-1197. [PMID: 37194649 PMCID: PMC10524867 DOI: 10.1039/d2np00080f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Covering up to early 2023The present review summarizes recent accomplishments made as part of a multidisciplinary, multi-institutional anticancer drug discovery project, wherein samples comprising higher plants were collected primarily from Southeast Asia, and also from Central America, and the West Indies. In the introductory paragraphs, a short perspective is provided on the current importance of plants in the discovery of cancer therapeutic agents, and the contributions of other groups working towards this objective are mentioned. For our own investigations, following their collection, tropical plants have been subjected to solvent extraction and biological evaluation for their antitumor potential. Several examples of purified plant lead bioactive compounds were obtained and characterized, and found to exhibit diverse structures, including those of the alkaloid, cardiac glycoside, coumarin, cucurbitacin, cyclobenzofuran (rocaglate), flavonoid, lignan, and terpenoid types. In order to maximize the efficiency of work on drug discovery from tropical plant species, strategies to optimize various research components have been developed, including those for the plant collections and taxonomic identification, in accordance with the requirements of contemporary international treaties and with a focus on species conservation. A major component of this aspect of the work is the development of collaborative research agreements with representatives of the source countries of tropical rainforest plants. The phytochemical aspects have included the preparation of plant extracts for initial screening and the selection of promising extracts for activity-guided fractionation. In an attempt to facilitate this process, a TOCSY-based NMR procedure has been applied for the determination of bioactive rocaglate derivatives in samples of Aglaia species (Meliaceae) collected for the project. Preliminary in vitro and in vivo mechanistic studies carried out by the authors are described for two tropical plant-derived bioactive lead compounds, corchorusoside C and (+)-betulin, including work conducted with a zebrafish (Danio rerio) model. In the concluding remarks, a number of lessons are summarized that our group has learned as a result of working on anticancer drug discovery using tropical plants, which we hope will be of interest to future workers.
Collapse
Affiliation(s)
- Esperanza J Carcache de Blanco
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, USA.
| | - Ermias Mekuria Addo
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, USA.
| | - H Liva Rakotondraibe
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, USA.
| | - Djaja D Soejarto
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA
- Science and Education, Field Museum, Chicago, IL 60605, USA
| | - A Douglas Kinghorn
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, USA.
| |
Collapse
|
10
|
Fernandez A, Monsen PJ, Platanias LC, Schiltz GE. Medicinal chemistry approaches to target the MNK-eIF4E axis in cancer. RSC Med Chem 2023; 14:1060-1087. [PMID: 37360400 PMCID: PMC10285747 DOI: 10.1039/d3md00121k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/08/2023] [Indexed: 06/28/2023] Open
Abstract
Aberrant translation of proteins that promote cell proliferation is an essential factor that defines oncogenic processes and cancer. The process for ribosomal translation of proteins from mRNA requires an essential initiation step which is controlled by the protein eIF4E, which binds the RNA 5'-cap and forms the eIF4F complex that subsequently translates protein. Typically, eIF4E is activated by phosphorylation on Ser209 by MNK1 and MNK2 kinases. Substantial work has shown that eIF4E and MNK1/2 are dysregulated in many cancers and this axis has therefore become an active area of interest for developing new cancer therapeutics. This review summarizes and discusses recent work to develop small molecules that target different steps in the MNK-eIF4E axis as potential cancer therapeutics. The aim of this review is to cover the breadth of different molecular approaches being taken and the medicinal chemistry basis for their optimization and testing as new cancer therapeutics.
Collapse
Affiliation(s)
- Ann Fernandez
- Department of Chemistry, Northwestern University Evanston IL 60208 USA
| | - Paige J Monsen
- Department of Chemistry, Northwestern University Evanston IL 60208 USA
| | - Leonidas C Platanias
- Robert H. Lurie Comprehensive Cancer Center Chicago IL 60611 USA
- Division of Hematology-Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University Chicago IL 60611 USA
- Department of Medicine, Jesse Brown Veterans Affairs Medical Center Chicago IL 60612 USA
| | - Gary E Schiltz
- Department of Chemistry, Northwestern University Evanston IL 60208 USA
- Robert H. Lurie Comprehensive Cancer Center Chicago IL 60611 USA
- Department of Pharmacology, Northwestern University Feinberg School of Medicine Chicago IL 60611 USA
| |
Collapse
|
11
|
Tian WJ, Wang XJ. Broad-Spectrum Antivirals Derived from Natural Products. Viruses 2023; 15:v15051100. [PMID: 37243186 DOI: 10.3390/v15051100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Scientific advances have led to the development and production of numerous vaccines and antiviral drugs, but viruses, including re-emerging and emerging viruses, such as SARS-CoV-2, remain a major threat to human health. Many antiviral agents are rarely used in clinical treatment, however, because of their inefficacy and resistance. The toxicity of natural products may be lower, and some natural products have multiple targets, which means less resistance. Therefore, natural products may be an effective means to solve virus infection in the future. New techniques and ideas are currently being developed for the design and screening of antiviral drugs thanks to recent revelations about virus replication mechanisms and the advancement of molecular docking technology. This review will summarize recently discovered antiviral drugs, mechanisms of action, and screening and design strategies for novel antiviral agents.
Collapse
Affiliation(s)
- Wen-Jun Tian
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing 100193, China
| | - Xiao-Jia Wang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing 100193, China
| |
Collapse
|
12
|
Li HP, Wu XL, Zhan G, Fu XJ, Chen JH, He XH, Han B. Construction of cyclopenta[ b]dihydronaphthofurans via TsOH-catalyzed consecutive biscyclization of dithioallylic alcohols and 1-styrylnaphthols. Chem Commun (Camb) 2023; 59:2275-2278. [PMID: 36734602 DOI: 10.1039/d2cc06324g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
An efficient TsOH-catalyzed consecutive biscyclization cascade reaction of dithioallylic alcohols with 1-styrylnaphthols is demonstrated for the concise construction of pharmaceutically important cyclopenta[b]dihydrobenzofuran scaffolds. This process involved an acid-catalyzed (3+2) cycloaddition followed by an intramolecular nucleophilic addition, providing cyclopenta[b]dihydronaphthofurans bearing a tetra- or fully substituted cyclopentane core in good yields with exclusive diastereoselectivities (>20 : 1 d.r.).
Collapse
Affiliation(s)
- He-Ping Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China.
| | - Xiao-Ling Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China.
| | - Gu Zhan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China.
| | - Xue-Ju Fu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China.
| | - Jian-Hua Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China.
| | - Xiang-Hong He
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China.
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China.
| |
Collapse
|
13
|
eIF4A1 Is a Prognostic Marker and Actionable Target in Human Hepatocellular Carcinoma. Int J Mol Sci 2023; 24:ijms24032055. [PMID: 36768380 PMCID: PMC9917075 DOI: 10.3390/ijms24032055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a primary liver tumor with high lethality and increasing incidence worldwide. While tumor resection or liver transplantation is effective in the early stages of the disease, the therapeutic options for advanced HCC remain limited and the benefits are temporary. Thus, novel therapeutic targets and more efficacious treatments against this deadly cancer are urgently needed. Here, we investigated the pathogenetic and therapeutic role of eukaryotic initiation factor 4A1 (eIF4A1) in this tumor type. We observed consistent eIF4A1 upregulation in HCC lesions compared with non-tumorous surrounding liver tissues. In addition, eIF4A1 levels were negatively correlated with the prognosis of HCC patients. In HCC lines, the exposure to various eIF4A inhibitors triggered a remarkable decline in proliferation and augmented apoptosis, paralleled by the inhibition of several oncogenic pathways. Significantly, anti-growth effects were achieved at nanomolar concentrations of the eIF4A1 inhibitors and were further increased by the simultaneous administration of the pan mTOR inhibitor, Rapalink-1. In conclusion, our results highlight the pathogenetic relevance of eIF4A1 in HCC and recommend further evaluation of the potential usefulness of pharmacological combinations based on eIF4A and mTOR inhibitors in treating this aggressive tumor.
Collapse
|
14
|
Wu X, Yang X, Varier KM, Rao Q, Song J, Huang L, Huang Y, Gajendran B, He Z, Yuan C, Li Y. Synthetic flavagline derivative 1-chloroacetylrocaglaol promotes apoptosis in K562 erythroleukemia cells through miR-17-92 cluster genes. Arch Pharm (Weinheim) 2022; 355:e2200367. [PMID: 36216575 DOI: 10.1002/ardp.202200367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 11/07/2022]
Abstract
Chronic myeloid leukemia accounts for human deaths worldwide and could enhance sevenfold by 2050. Thus, the treatment regimen for this disorder is highly crucial at this time. Flavaglines are a natural class of cyclopentane benzofurans exhibiting various bioactivities like anticancer action. Despite the antiproliferative activity of flavaglines against diverse cancer cells, their roles and mechanism of action in chronic myeloid leukemia (CML) remain poorly understood. Thus, this study examines the antiproliferative effect of a newly synthesized flavagline derivative, 1-chloracetylrocaglaol (A2074), on erythroleukemia K562 cells and the zebrafish xenograft model. The study revealed that A2074 could inhibit proliferation, promote apoptosis, and boost megakaryocyte differentiation of K562 cells. This flavagline downregulated c-MYC and miR-17-92 cluster genes, targeting upregulation of the apoptotic protein Bcl-2-like protein 11 (BIM). The work uncovered a critical role of the c-MYC-miR-17-92-BIM axis in the growth and survival of CML cells.
Collapse
Affiliation(s)
- Xijun Wu
- State Key Laboratory for Functions and Applications of Medicinal Plants, Department of Immunology, School of Pharmaceutical Sciences, The Affiliated Jinyang Hospital, Guizhou Medical University, Guiyang, China.,The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang, China
| | - Xinmei Yang
- State Key Laboratory for Functions and Applications of Medicinal Plants, Department of Immunology, School of Pharmaceutical Sciences, The Affiliated Jinyang Hospital, Guizhou Medical University, Guiyang, China.,The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang, China
| | - Krishnapriya M Varier
- State Key Laboratory for Functions and Applications of Medicinal Plants, Department of Immunology, School of Pharmaceutical Sciences, The Affiliated Jinyang Hospital, Guizhou Medical University, Guiyang, China.,The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang, China
| | - Qing Rao
- State Key Laboratory for Functions and Applications of Medicinal Plants, Department of Immunology, School of Pharmaceutical Sciences, The Affiliated Jinyang Hospital, Guizhou Medical University, Guiyang, China.,The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang, China
| | - Jingrui Song
- State Key Laboratory for Functions and Applications of Medicinal Plants, Department of Immunology, School of Pharmaceutical Sciences, The Affiliated Jinyang Hospital, Guizhou Medical University, Guiyang, China.,The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang, China
| | - Lei Huang
- State Key Laboratory for Functions and Applications of Medicinal Plants, Department of Immunology, School of Pharmaceutical Sciences, The Affiliated Jinyang Hospital, Guizhou Medical University, Guiyang, China.,The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang, China
| | - Yubing Huang
- State Key Laboratory for Functions and Applications of Medicinal Plants, Department of Immunology, School of Pharmaceutical Sciences, The Affiliated Jinyang Hospital, Guizhou Medical University, Guiyang, China.,The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang, China
| | - Babu Gajendran
- State Key Laboratory for Functions and Applications of Medicinal Plants, Department of Immunology, School of Pharmaceutical Sciences, The Affiliated Jinyang Hospital, Guizhou Medical University, Guiyang, China.,The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang, China
| | - Zhixu He
- State Key Laboratory for Functions and Applications of Medicinal Plants, Department of Immunology, School of Pharmaceutical Sciences, The Affiliated Jinyang Hospital, Guizhou Medical University, Guiyang, China
| | - Chunmao Yuan
- State Key Laboratory for Functions and Applications of Medicinal Plants, Department of Immunology, School of Pharmaceutical Sciences, The Affiliated Jinyang Hospital, Guizhou Medical University, Guiyang, China.,The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang, China
| | - Yanmei Li
- State Key Laboratory for Functions and Applications of Medicinal Plants, Department of Immunology, School of Pharmaceutical Sciences, The Affiliated Jinyang Hospital, Guizhou Medical University, Guiyang, China.,The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang, China
| |
Collapse
|
15
|
Pedroni L, Dellafiora L, Varrà MO, Galaverna G, Ghidini S. In silico study on the Hepatitis E virus RNA Helicase and its inhibition by silvestrol, rocaglamide and other flavagline compounds. Sci Rep 2022; 12:15512. [PMID: 36109625 PMCID: PMC9477874 DOI: 10.1038/s41598-022-19818-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 09/05/2022] [Indexed: 11/19/2022] Open
Abstract
Hepatitis E Virus (HEV) follows waterborne or zoonotic/foodborne transmission. Genotype 3 HEV infections are worldwide spread, especially in swine populations, representing an emerging threat for human health, both for farm workers and pork meat consumers. Unfortunately, HEV in vitro culture and analysis are still difficult, resulting in a poor understanding of its biology and hampering the implementation of counteracting strategies. Indeed, HEV encodes for only one non-structural multifunctional and multidomain protein (ORF1), which might be a good candidate for anti-HEV drugging strategies. In this context, an in silico molecular modelling approach that consisted in homology modelling to derive the 3D model target, docking study to simulate the binding event, and molecular dynamics to check complex stability over time was used. This workflow succeeded to describe ORF1 RNA Helicase domain from a molecular standpoint allowing the identification of potential inhibitory compounds among natural plant-based flavagline-related molecules such as silvestrol, rocaglamide and derivatives thereof. In the context of scouting potential anti-viral compounds and relying on the outcomes presented, further dedicated investigations on silvestrol, rocaglamide and a promising oxidized derivative have been suggested. For the sake of data reproducibility, the 3D model of HEV RNA Helicase has been made publicly available.
Collapse
|
16
|
Abdelkrim YZ, Harigua-Souiai E, Bassoumi-Jamoussi I, Barhoumi M, Banroques J, Essafi-Benkhadir K, Nilges M, Blondel A, Tanner NK, Guizani I. Enzymatic and Molecular Characterization of Anti- Leishmania Molecules That Differently Target Leishmania and Mammalian eIF4A Proteins, LieIF4A and eIF4A Mus. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27185890. [PMID: 36144626 PMCID: PMC9502374 DOI: 10.3390/molecules27185890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/22/2022] [Accepted: 09/02/2022] [Indexed: 02/05/2023]
Abstract
Previous investigations of the Leishmania infantum eIF4A-like protein (LieIF4A) as a potential drug target delivered cholestanol derivatives inhibitors. Here, we investigated the mode of action of cholesterol derivatives as a novel scaffold structure of LieIF4A inhibitors on the RNA-dependent ATPase activity of LieIF4A and its mammalian ortholog (eIF4AI). We compared their biochemical effects on RNA-dependent ATPase activities of both proteins and investigated if rocaglamide, a known inhibitor of eIF4A, could affect LieIF4A as well. Kinetic measurements were conducted at different concentrations of ATP, of the compound and in the presence of saturating whole yeast RNA concentrations. Kinetic analyses showed different ATP binding affinities for the two enzymes as well as different sensitivities to 7-α-aminocholesterol and rocaglamide. The 7-α-aminocholesterol inhibited LieIF4A with a higher binding affinity relative to cholestanol analogs. Cholesterol, another tested sterol, had no effect on the ATPase activity of LieIF4A or eIF4AI. The 7-α-aminocholesterol demonstrated an anti-Leishmania activity on L. infantum promastigotes. Additionally, docking simulations explained the importance of the double bond between C5 and C6 in 7-α-aminocholesterol and the amino group in the C7 position. In conclusion, Leishmania and mammalian eIF4A proteins appeared to interact differently with effectors, thus making LieIF4A a potential drug against leishmaniases.
Collapse
Affiliation(s)
- Yosser Zina Abdelkrim
- Laboratory of Molecular Epidemiology and Experimental Pathology (LR11IPT04/LR16IPT04)/Laboratory of Epidemiology and Ecology of Parasites, Institut Pasteur de Tunis—University Tunis El Manar, Tunis 1002, Tunisia
- Université de Paris Cité & CNRS, Expression Génétique Microbienne, Institut de Biologie Physico-Chimique, 13 Rue Pierre et Marie Curie, F-75005 Paris, France
- Correspondence: (Y.Z.A.); (I.G.)
| | - Emna Harigua-Souiai
- Laboratory of Molecular Epidemiology and Experimental Pathology (LR11IPT04/LR16IPT04)/Laboratory of Epidemiology and Ecology of Parasites, Institut Pasteur de Tunis—University Tunis El Manar, Tunis 1002, Tunisia
| | - Imen Bassoumi-Jamoussi
- Laboratory of Molecular Epidemiology and Experimental Pathology (LR11IPT04/LR16IPT04)/Laboratory of Epidemiology and Ecology of Parasites, Institut Pasteur de Tunis—University Tunis El Manar, Tunis 1002, Tunisia
| | - Mourad Barhoumi
- Laboratory of Molecular Epidemiology and Experimental Pathology (LR11IPT04/LR16IPT04)/Laboratory of Epidemiology and Ecology of Parasites, Institut Pasteur de Tunis—University Tunis El Manar, Tunis 1002, Tunisia
| | - Josette Banroques
- Université de Paris Cité & CNRS, Expression Génétique Microbienne, Institut de Biologie Physico-Chimique, 13 Rue Pierre et Marie Curie, F-75005 Paris, France
- Paris Sciences and Lettres Research University, Institut de Biologie Physico-Chimique, 13 Rue Pierre et Marie Curie, F-75005 Paris, France
| | - Khadija Essafi-Benkhadir
- Laboratory of Molecular Epidemiology and Experimental Pathology (LR11IPT04/LR16IPT04)/Laboratory of Epidemiology and Ecology of Parasites, Institut Pasteur de Tunis—University Tunis El Manar, Tunis 1002, Tunisia
| | - Michael Nilges
- Structural Bioinformatics Unit, Institut Pasteur, F-75015 Paris, France
| | - Arnaud Blondel
- Structural Bioinformatics Unit, Institut Pasteur, F-75015 Paris, France
| | - N. Kyle Tanner
- Université de Paris Cité & CNRS, Expression Génétique Microbienne, Institut de Biologie Physico-Chimique, 13 Rue Pierre et Marie Curie, F-75005 Paris, France
- Paris Sciences and Lettres Research University, Institut de Biologie Physico-Chimique, 13 Rue Pierre et Marie Curie, F-75005 Paris, France
| | - Ikram Guizani
- Laboratory of Molecular Epidemiology and Experimental Pathology (LR11IPT04/LR16IPT04)/Laboratory of Epidemiology and Ecology of Parasites, Institut Pasteur de Tunis—University Tunis El Manar, Tunis 1002, Tunisia
- Correspondence: (Y.Z.A.); (I.G.)
| |
Collapse
|
17
|
Xia MJ, Zhang M, Li SW, Cai ZF, Zhao TS, Liu AH, Luo J, Zhang HY, Li J, Guo YW, Wang B, Mao SC. Anti-inflammatory and PTP1B inhibitory sesquiterpenoids from the twigs and leaves of Aglaia lawii. Fitoterapia 2022; 162:105260. [PMID: 35931289 DOI: 10.1016/j.fitote.2022.105260] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/30/2022] [Accepted: 07/30/2022] [Indexed: 11/04/2022]
Abstract
Twelve sesquiterpenoids with seven different carbon skeletons, including four isodaucanes (1-4), an aromadendrane (5), a guaiane (6), a cadalane (7), two eudesmanes (8 and 9), two bisabolanes (10 and 11), and a megastigmane (12), were isolated from the twigs and leaves of Aglaia lawii (Wight) C. J. Saldanha et Ramamorthy. Of these compounds, amouanglienoids A (1) and B (2) are new isodaucane sesquiterpenoids. This is the first report of isodaucanes from the genus Aglaia, and amouanglienoid A (1) represents the first isodaucane containing a Δ7(8) double bond. Their structures were discerned from extensive spectroscopic analyses, single-crystal X-ray diffraction, and comparison of the experimental and calculated ECD data. In in vitro bioassays, compounds 1, 10, and 11 showed potent inhibitory effects against lipopolysaccharide (LPS)-induced inflammation in BV-2 microglial cells, while compound 11 exhibited considerable inhibition of PTP1B with an IC50 value of 16.05 ± 1.09 μM.
Collapse
Affiliation(s)
- Ming-Jun Xia
- School of Pharmacy, Nanchang University, 461 Bayi Road, Nanchang 330006, People's Republic of China
| | - Meng Zhang
- School of Pharmacy, Nanchang University, 461 Bayi Road, Nanchang 330006, People's Republic of China
| | - Song-Wei Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China
| | - Zhe-Fei Cai
- School of Pharmacy, Nanchang University, 461 Bayi Road, Nanchang 330006, People's Republic of China
| | - Tian-Sheng Zhao
- School of Pharmacy, Nanchang University, 461 Bayi Road, Nanchang 330006, People's Republic of China
| | - Ai-Hong Liu
- Center of Analysis and Testing, Nanchang University, Nanchang 330047, People's Republic of China
| | - Jun Luo
- Key Laboratory of Oral Biomedicine of Jiangxi Province, Department of Orthodontics, Affiliated Stomatological Hospital of Nanchang University, Nanchang 330006, People's Republic of China.
| | - Hai-Yan Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China
| | - Jia Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China
| | - Yue-Wei Guo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China
| | - Bin Wang
- School of Pharmacy, Nanchang University, 461 Bayi Road, Nanchang 330006, People's Republic of China.
| | - Shui-Chun Mao
- School of Pharmacy, Nanchang University, 461 Bayi Road, Nanchang 330006, People's Republic of China.
| |
Collapse
|
18
|
Phang YL, Liu S, Zheng C, Xu H. Recent advances in the synthesis of natural products containing the phloroglucinol motif. Nat Prod Rep 2022; 39:1766-1802. [PMID: 35762867 DOI: 10.1039/d1np00077b] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Covering: June 2009 to 2021Natural products containing a phloroglucinol motif include simple and oligomeric phloroglucinols, polycyclic polyprenylated acylphloroglucinols, phloroglucinol-terpenes, xanthones, flavonoids, and coumarins. These compounds represent a major class of secondary metabolites which exhibit a wide range of biological activities such as antimicrobial, anti-inflammatory, antioxidant and hypoglycaemic properties. A number of these compounds have been authorized for therapeutic use or are currently being studied in clinical trials. Their structural diversity and utility in both traditional and conventional medicine have made them popular synthetic targets over the years. In this review, we compile and summarise the recent synthetic approaches to the natural products bearing a phloroglucinol motif. Focus has been given on ingenious strategies to functionalize the phloroglucinol moiety at multiple positions. The isolation and bioactivities of the compounds are also provided.
Collapse
Affiliation(s)
- Yee Lin Phang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China. .,Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, China
| | - Song Liu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China. .,Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, China
| | - Changwu Zheng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China. .,Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, China
| | - Hongxi Xu
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
19
|
Stereodivergent total synthesis of rocaglaol initiated by synergistic dual-metal-catalyzed asymmetric allylation of benzofuran-3(2H)-one. Chem 2022. [DOI: 10.1016/j.chempr.2022.04.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
20
|
Wu PF, Liu J, Li YN, Ding R, Tan R, Yang XM, Yu Y, Hao XJ, Yuan CM, Yi P. Three New Aglain Derivatives from Aglaia odorata Lour. and Their Cytotoxic Activities. Chem Biodivers 2022; 19:e202101008. [PMID: 35194923 DOI: 10.1002/cbdv.202101008] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/22/2022] [Indexed: 01/03/2023]
Abstract
Three new aglain derivatives (1-3), one known aglain derivative (4), two known rocaglamide derivatives (5 and 6), four known triterpenoids (7-10), and three steroids (11-13) were isolated from Aglaia odorata Lour. Their structures were established through the analysis of detailed spectroscopic data and electronic circular dichroism calculations. Five compounds (1 and 4-7) exhibited cytotoxic activities on human leukemia cells (HEL) and human breast cancer cells with IC50 values in the range of 0.03-8.40 μM. In particular, the cytotoxicity of compound 5 was six times stronger than that of the positive control (adriamycin) in HEL cell lines.
Collapse
Affiliation(s)
- Pan-Feng Wu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, P. R. China.,The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, 550014, P. R. China
| | - Juan Liu
- Graduate School, Guizhou Medical University, University Town, Guian New District, Guiyang, 550025, P. R. China
| | - Ya-Nan Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, P. R. China.,The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, 550014, P. R. China
| | - Ru Ding
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, P. R. China.,The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, 550014, P. R. China
| | - Rong Tan
- Pharmacy Affiliated Hospital of Guizhou Medical University, Guiyang, 550001, P. R. China
| | - Xiao-Meng Yang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, P. R. China.,The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, 550014, P. R. China
| | - Yan Yu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, P. R. China.,The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, 550014, P. R. China
| | - Xiao-Jiang Hao
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, P. R. China.,The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, 550014, P. R. China
| | - Chun-Mao Yuan
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, P. R. China.,The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, 550014, P. R. China
| | - Ping Yi
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, P. R. China.,The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, 550014, P. R. China
| |
Collapse
|
21
|
Aldrich LN, Burdette JE, de Blanco EC, Coss CC, Eustaquio AS, Fuchs JR, Kinghorn AD, MacFarlane A, Mize B, Oberlies NH, Orjala J, Pearce CJ, Phelps MA, Rakotondraibe LH, Ren Y, Soejarto DD, Stockwell BR, Yalowich JC, Zhang X. Discovery of Anticancer Agents of Diverse Natural Origin. JOURNAL OF NATURAL PRODUCTS 2022; 85:702-719. [PMID: 35213158 PMCID: PMC9034850 DOI: 10.1021/acs.jnatprod.2c00036] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Research progress from mainly over the last five years is described for a multidisciplinary collaborative program project directed toward the discovery of potential anticancer agents from a broad range of taxonomically defined organisms. Selected lead compounds with potential as new antitumor agents that are representative of considerable structural diversity have continued to be obtained from each of tropical plants, terrestrial and aquatic cyanobacteria, and filamentous fungi. Recently, a new focus has been on the investigation of the constituents of U.S. lichens and their fungal mycobionts. A medicinal chemistry and pharmacokinetics component of the project has optimized structurally selected lead natural products, leading to enhanced cytotoxic potencies against selected cancer cell lines. Biological testing has shown several compounds to have in vivo activity, and relevant preliminary structure-activity relationship and mechanism of action studies have been performed. Several promising lead compounds worthy of further investigation have been identified from the most recent collaborative work performed.
Collapse
Affiliation(s)
- Leslie N. Aldrich
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Joanna E. Burdette
- College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | | | - Christopher C. Coss
- College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Alessandra S. Eustaquio
- College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - James R. Fuchs
- College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - A. Douglas Kinghorn
- College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Amanda MacFarlane
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
| | - Brittney Mize
- College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Nicholas H. Oberlies
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina 24702, United States
| | - Jimmy Orjala
- College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Cedric J. Pearce
- Mycosynthetix, Inc., Hillsborough, North Carolina 27278, United States
| | - Mitch A. Phelps
- College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | | | - Yulin Ren
- College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Djaja Doel Soejarto
- College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
- Field Museum of Natural History, Chicago, Illinois 60605, United States
| | - Brent R. Stockwell
- Department of Biological Sciences, Columbia University, New York, New York 10027, United States
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Jack C. Yalowich
- College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Xiaoli Zhang
- College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
22
|
Tabassum S, Ghosh MK. DEAD-box RNA helicases with special reference to p68: Unwinding their biology, versatility, and therapeutic opportunity in cancer. Genes Dis 2022. [DOI: 10.1016/j.gendis.2022.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
23
|
Abstract
This review deals with the synthesis of naturally occurring alkaloids containing partially or completely saturated pyrimidine nuclei. The interest in these compounds is associated with their structural diversity, high biological activity and toxicity. The review is divided into four parts, each of which describes a number of synthetic methodologies toward structurally different naturally occurring alkaloids containing saturated cyclic six-membered amidine, guanidine, aminal and urea (thiourea) moieties, respectively. The development of various synthetic strategies for the preparation of these compounds has remarkably increased during the past few decades. This is primarily due to the fact that some of these compounds are isolated only in limited quantities, which makes it practically impossible to study their full structural characteristics and biological activity.
Collapse
|
24
|
Dai C, Zhou X, Wang L, Tan R, Wang W, Yang B, Zhang Y, Shi H, Chen D, Wei L, Chen Z. Rocaglamide Prolonged Allograft Survival by Inhibiting Differentiation of Th1/Th17 Cells in Cardiac Transplantation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2048095. [PMID: 35087613 PMCID: PMC8787457 DOI: 10.1155/2022/2048095] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/13/2021] [Indexed: 11/17/2022]
Abstract
BACKGROUND Aglaia (Meliaceae) species are used for treating autoimmune disorders and allergic diseases in Asian countries. Rocaglamide, an extract obtained from Aglaia species, exhibits suppressive effect by regulating the T cell subset balance and cytokine network in cancer. However, whether it can be used in organ transplantation is unknown. In this study, we investigated the antirejection effect and mechanism of action of rocaglamide in a mouse cardiac allograft model. METHODS Survival studies were performed by administering mice with phosphate-buffered saline (PBS) (n = 6) and rocaglamide (n = 8). Heart grafts were monitored until they stopped beating. After grafting, the mice were sacrificed on day 7 for histological, mixed lymphocyte reaction (MLR), enzyme-linked immunosorbent assay (ELISA), and flow cytometric analyses. RESULTS Rocaglamide administration significantly prolonged the median survival of the grafts from 7 to 25 days compared with PBS treatment (P < 0.001). On posttransplantation day 7, the rocaglamide-treated group showed a significant decrease in the percentage of Th1 cells (7.9 ± 0.9% vs. 1.58 ± 0.5%, P < 0.001) in the lymph nodes and spleen (8.0 ± 2.5% vs. 2.4 ± 1.3%, P < 0.05). Rocaglamide treatment also significantly inhibited the production of Th17 cells (6.4 ± 1.0% vs. 1.8 ± 0.4%, P < 0.01) in the lymph nodes and spleen (5.9 ± 0.3% vs. 2.9 ± 0.8%, P < 0.01). Furthermore, the prolonged survival of the grafts was associated with a significant decrease in IFN-γ and IL-17 levels. Our results also showed that NF-AT activation was inhibited by rocaglamide, which also induced p38 and Jun N-terminal kinase (JNK) phosphorylation in Jurkat T cells. Furthermore, by using inhibitors that suppressed p38 and JNK phosphorylation, rocaglamide-mediated reduction in NF-AT protein levels was prevented. CONCLUSION We identified a new immunoregulatory property of rocaglamide, wherein it was found to regulate oxidative stress response and reduce inflammatory cell infiltration and organ injury, which have been associated with the inhibition of NF-AT activation in T cells.
Collapse
Affiliation(s)
- Chen Dai
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China 430030
| | - Xi Zhou
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China 430030
| | - Lu Wang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China 430030
| | - Rumeng Tan
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China 430030
| | - Wei Wang
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China 430030
| | - Bo Yang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China 430030
| | - Yucong Zhang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China 430030
| | - Huibo Shi
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China 430030
| | - Dong Chen
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China 430030
| | - Lai Wei
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China 430030
| | - Zhishui Chen
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China 430030
| |
Collapse
|
25
|
Greger H. Comparative phytochemistry of flavaglines (= rocaglamides), a group of highly bioactive flavolignans from Aglaia species (Meliaceae). PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2022; 21:725-764. [PMID: 34104125 PMCID: PMC8176878 DOI: 10.1007/s11101-021-09761-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 05/17/2021] [Indexed: 05/07/2023]
Abstract
Flavaglines are formed by cycloaddition of a flavonoid nucleus with a cinnamic acid moiety representing a typical chemical character of the genus Aglaia of the family Meliaceae. Based on biosynthetic considerations 148 derivatives are grouped together into three skeletal types representing 77 cyclopenta[b]benzofurans, 61 cyclopenta[bc]benzopyrans, and 10 benzo[b]oxepines. Apart from different hydroxy, methoxy, and methylenedioxy groups of the aromatic rings, important structural variation is created by different substitutions and stereochemistries of the central cyclopentane ring. Putrescine-derived bisamides constitute important building blocks occurring as cyclic 2-aminopyrrolidines or in an open-chained form, and are involved in the formation of pyrimidinone flavaglines. Regarding the central role of cinnamic acid in the formation of the basic skeleton, rocagloic acid represents a biosynthetic precursor from which aglafoline- and rocaglamide-type cyclopentabenzofurans can be derived, while those of the rocaglaol-type are the result of decarboxylation. Broad-based comparison revealed characteristic substitution trends which contribute as chemical markers to natural delimitation and grouping of taxonomically problematic Aglaia species. A wide variety of biological activities ranges from insecticidal, antifungal, antiprotozoal, and anti-inflammatory properties, especially to pronounced anticancer and antiviral activities. The high insecticidal activity of flavaglines is comparable with that of the well-known natural insecticide azadirachtin. Comparative feeding experiments informed about structure-activity relationships and exhibited different substitutions of the cyclopentane ring essential for insecticidal activity. Parallel studies on the antiproliferative activity of flavaglines in various tumor cell lines revealed similar structural prerequisites that let expect corresponding molecular mechanisms. An important structural modification with very high cytotoxic potency was found in the benzofuran silvestrol characterized by an unusual dioxanyloxy subunit. It possessed comparable cytotoxicity to that of the natural anticancer compounds paclitaxel (Taxol®) and camptothecin without effecting normal cells. The primary effect was the inhibition of protein synthesis by binding to the translation initiation factor eIF4A, an ATP-dependent DEAD-box RNA helicase. Flavaglines were also shown to bind to prohibitins (PHB) responsible for regulation of important signaling pathways, and to inhibit the transcriptional factor HSF1 deeply involved in metabolic programming, survival, and proliferation of cancer cells. Flavaglines were shown to be not only promising anticancer agents but gained now also high expectations as agents against emerging RNA viruses like SARS-CoV-2. Targeting the helicase eIF4A with flavaglines was recently described as pan-viral strategy for minimizing the impact of future RNA virus pandemics.
Collapse
Affiliation(s)
- Harald Greger
- Chemodiversity Research Group, Faculty of Life Sciences, University of Vienna, Rennweg 14, 1030 Wien, Austria
| |
Collapse
|
26
|
Belser M, Walker DW. Role of Prohibitins in Aging and Therapeutic Potential Against Age-Related Diseases. Front Genet 2021; 12:714228. [PMID: 34868199 PMCID: PMC8636131 DOI: 10.3389/fgene.2021.714228] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 09/21/2021] [Indexed: 12/16/2022] Open
Abstract
A decline in mitochondrial function has long been associated with age-related health decline. Several lines of evidence suggest that interventions that stimulate mitochondrial autophagy (mitophagy) can slow aging and prolong healthy lifespan. Prohibitins (PHB1 and PHB2) assemble at the mitochondrial inner membrane and are critical for mitochondrial homeostasis. In addition, prohibitins (PHBs) have diverse roles in cell and organismal biology. Here, we will discuss the role of PHBs in mitophagy, oxidative phosphorylation, cellular senescence, and apoptosis. We will also discuss the role of PHBs in modulating lifespan. In addition, we will review the links between PHBs and diseases of aging. Finally, we will discuss the emerging concept that PHBs may represent an attractive therapeutic target to counteract aging and age-onset disease.
Collapse
Affiliation(s)
- Misa Belser
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, United States
| | - David W. Walker
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, United States
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
27
|
Amaravathi A, Oblinger JL, Welling DB, Kinghorn AD, Chang LS. Neurofibromatosis: Molecular Pathogenesis and Natural Compounds as Potential Treatments. Front Oncol 2021; 11:698192. [PMID: 34604034 PMCID: PMC8485038 DOI: 10.3389/fonc.2021.698192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 09/01/2021] [Indexed: 12/22/2022] Open
Abstract
The neurofibromatosis syndromes, including NF1, NF2, and schwannomatosis, are tumor suppressor syndromes characterized by multiple nervous system tumors, particularly Schwann cell neoplasms. NF-related tumors are mainly treated by surgery, and some of them have been treated by but are refractory to conventional chemotherapy. Recent advances in molecular genetics and genomics alongside the development of multiple animal models have provided a better understanding of NF tumor biology and facilitated target identification and therapeutic evaluation. Many targeted therapies have been evaluated in preclinical models and patients with limited success. One major advance is the FDA approval of the MEK inhibitor selumetinib for the treatment of NF1-associated plexiform neurofibroma. Due to their anti-neoplastic, antioxidant, and anti-inflammatory properties, selected natural compounds could be useful as a primary therapy or as an adjuvant therapy prior to or following surgery and/or radiation for patients with tumor predisposition syndromes, as patients often take them as dietary supplements and for health enhancement purposes. Here we review the natural compounds that have been evaluated in NF models. Some have demonstrated potent anti-tumor effects and may become viable treatments in the future.
Collapse
Affiliation(s)
- Anusha Amaravathi
- Center for Childhood Cancer and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States.,Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States
| | - Janet L Oblinger
- Center for Childhood Cancer and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States
| | - D Bradley Welling
- Department of Otolaryngology Head & Neck Surgery, Harvard Medical School, Massachusetts Eye and Ear, and Massachusetts General Hospital, Boston, MA, United States
| | - A Douglas Kinghorn
- Division of Medicinal Chemistry and Pharmacognosy, The Ohio State University College of Pharmacy, Columbus, OH, United States
| | - Long-Sheng Chang
- Center for Childhood Cancer and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, United States.,Department of Otolaryngology-Head & Neck Surgery, The Ohio State University College of Medicine, Columbus, OH, United States
| |
Collapse
|
28
|
Agarwal G, Chang LS, Soejarto DD, Kinghorn AD. Update on Phytochemical and Biological Studies on Rocaglate Derivatives from Aglaia Species. PLANTA MEDICA 2021; 87:937-948. [PMID: 33784769 PMCID: PMC8481333 DOI: 10.1055/a-1401-9562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
With about 120 species, Aglaia is one of the largest genera of the plant family Meliaceae (the mahogany plants). It is native to the tropical rainforests of the Indo-Australian region, ranging from India and Sri Lanka eastward to Polynesia and Micronesia. Various Aglaia species have been investigated since the 1960s for their phytochemical constituents and biological properties, with the cyclopenta[b]benzofurans (rocaglates or flavaglines) being of particular interest. Phytochemists, medicinal chemists, and biologists have conducted extensive research in establishing these secondary metabolites as potential lead compounds with antineoplastic and antiviral effects, among others. The varied biological properties of rocaglates can be attributed to their unusual structures and their ability to act as inhibitors of the eukaryotic translation initiation factor 4A (eIF4A), affecting protein translation. The present review provides an update on the recently reported phytochemical constituents of Aglaia species, focusing on rocaglate derivatives. Furthermore, laboratory work performed on investigating the biological activities of these chemical constituents is also covered.
Collapse
Affiliation(s)
- Garima Agarwal
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio, United States
| | - Long-Sheng Chang
- Center for Childhood Cancer and Blood Diseases, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, Ohio, United States
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, United States
- Department of Otolaryngology-Head and Neck Surgery, The Ohio State University College of Medicine, Columbus, Ohio, United States
- Department of Pathology, The Ohio State University College of Medicine, Columbus, Ohio, United States
| | - Djaja Doel Soejarto
- College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois, United States
- Science and Education, Field Museum, Chicago, Illinois, United States
| | - A. Douglas Kinghorn
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio, United States
| |
Collapse
|
29
|
Sieber-Frank J, Stark HJ, Kalteis S, Prigge ES, Köhler R, Andresen C, Henkel T, Casari G, Schubert T, Fischl W, Li-Weber M, Krammer PH, von Knebel Doeberitz M, Kopitz J, Kloor M, Ahadova A. Treatment resistance analysis reveals GLUT-1-mediated glucose uptake as a major target of synthetic rocaglates in cancer cells. Cancer Med 2021; 10:6807-6822. [PMID: 34546000 PMCID: PMC8495295 DOI: 10.1002/cam4.4212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/15/2021] [Accepted: 07/21/2021] [Indexed: 12/19/2022] Open
Abstract
Rocaglates are natural compounds that have been extensively studied for their ability to inhibit translation initiation. Rocaglates represent promising drug candidates for tumor treatment due to their growth‐inhibitory effects on neoplastic cells. In contrast to natural rocaglates, synthetic analogues of rocaglates have been less comprehensively characterized, but were also shown to have similar effects on the process of protein translation. Here, we demonstrate an enhanced growth‐inhibitory effect of synthetic rocaglates when combined with glucose anti‐metabolite 2‐deoxy‐D‐glucose (2DG) in different cancer cell lines. Moreover, we unravel a new aspect in the mechanism of action of synthetic rocaglates involving reduction of glucose uptake mediated by downregulation or abrogation of glucose transporter GLUT‐1 expression. Importantly, cells with genetically induced resistance to synthetic rocaglates showed substantially less pronounced treatment effect on glucose metabolism and did not demonstrate GLUT‐1 downregulation, pointing at the crucial role of this mechanism for the anti‐tumor activity of the synthetic rocaglates. Transcriptome profiling revealed glycolysis as one of the major pathways differentially regulated in sensitive and resistant cells. Analysis of synthetic rocaglate efficacy in a 3D tissue context with a co‐culture of tumor and normal cells demonstrated a selective effect on tumor cells and substantiated the mechanistic observations obtained in cancer cell lines. Increased glucose uptake and metabolism is a universal feature across different tumor types. Therefore, targeting this feature by synthetic rocaglates could represent a promising direction for exploitation of rocaglates in novel anti‐tumor therapies.
Collapse
Affiliation(s)
- Julia Sieber-Frank
- Department of Applied Tumor Biology, Institute of Pathology, University of Heidelberg, Heidelberg, Germany.,Collaboration Unit Applied Tumor Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Hans-Jürgen Stark
- Department of Applied Tumor Biology, Institute of Pathology, University of Heidelberg, Heidelberg, Germany.,Collaboration Unit Applied Tumor Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Simon Kalteis
- Department of Applied Tumor Biology, Institute of Pathology, University of Heidelberg, Heidelberg, Germany.,Collaboration Unit Applied Tumor Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Elena-Sophie Prigge
- Department of Applied Tumor Biology, Institute of Pathology, University of Heidelberg, Heidelberg, Germany.,Collaboration Unit Applied Tumor Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Richard Köhler
- Department of Applied Tumor Biology, Institute of Pathology, University of Heidelberg, Heidelberg, Germany.,Collaboration Unit Applied Tumor Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Carolin Andresen
- Department of Applied Tumor Biology, Institute of Pathology, University of Heidelberg, Heidelberg, Germany.,Collaboration Unit Applied Tumor Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | | | | | | | - Min Li-Weber
- Tumor Immunology Program, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Peter H Krammer
- Tumor Immunology Program, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Magnus von Knebel Doeberitz
- Department of Applied Tumor Biology, Institute of Pathology, University of Heidelberg, Heidelberg, Germany.,Collaboration Unit Applied Tumor Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jürgen Kopitz
- Department of Applied Tumor Biology, Institute of Pathology, University of Heidelberg, Heidelberg, Germany.,Collaboration Unit Applied Tumor Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Matthias Kloor
- Department of Applied Tumor Biology, Institute of Pathology, University of Heidelberg, Heidelberg, Germany.,Collaboration Unit Applied Tumor Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Aysel Ahadova
- Department of Applied Tumor Biology, Institute of Pathology, University of Heidelberg, Heidelberg, Germany.,Collaboration Unit Applied Tumor Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
30
|
Nishida Y, Zhao R, Heese LE, Akiyama H, Patel S, Jaeger AM, Jacamo RO, Kojima K, Ma MCJ, Ruvolo VR, Chachad D, Devine W, Lindquist S, Davis RE, Porco JA, Whitesell L, Andreeff M, Ishizawa J. Inhibition of translation initiation factor eIF4a inactivates heat shock factor 1 (HSF1) and exerts anti-leukemia activity in AML. Leukemia 2021; 35:2469-2481. [PMID: 34127794 PMCID: PMC8764661 DOI: 10.1038/s41375-021-01308-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 04/01/2021] [Accepted: 05/21/2021] [Indexed: 01/31/2023]
Abstract
Eukaryotic initiation factor 4A (eIF4A), the enzymatic core of the eIF4F complex essential for translation initiation, plays a key role in the oncogenic reprogramming of protein synthesis, and thus is a putative therapeutic target in cancer. As important component of its anticancer activity, inhibition of translation initiation can alleviate oncogenic activation of HSF1, a stress-inducible transcription factor that enables cancer cell growth and survival. Here, we show that primary acute myeloid leukemia (AML) cells exhibit the highest transcript levels of eIF4A1 compared to other cancer types. eIF4A inhibition by the potent and specific compound rohinitib (RHT) inactivated HSF1 in these cells, and exerted pronounced in vitro and in vivo anti-leukemia effects against progenitor and leukemia-initiating cells, especially those with FLT3-internal tandem duplication (ITD). In addition to its own anti-leukemic activity, genetic knockdown of HSF1 also sensitized FLT3-mutant AML cells to clinical FLT3 inhibitors, and this synergy was conserved in FLT3 double-mutant cells carrying both ITD and tyrosine kinase domain mutations. Consistently, the combination of RHT and FLT3 inhibitors was highly synergistic in primary FLT3-mutated AML cells. Our results provide a novel therapeutic rationale for co-targeting eIF4A and FLT3 to address the clinical challenge of treating FLT3-mutant AML.
Collapse
Affiliation(s)
- Yuki Nishida
- Department of Leukemia, Section of Molecular Hematology and Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ran Zhao
- Department of Leukemia, Section of Molecular Hematology and Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lauren E. Heese
- Department of Leukemia, Section of Molecular Hematology and Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hiroki Akiyama
- Department of Leukemia, Section of Molecular Hematology and Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shreya Patel
- Department of Leukemia, Section of Molecular Hematology and Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alex M. Jaeger
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Rodrigo O. Jacamo
- Department of Leukemia, Section of Molecular Hematology and Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kensuke Kojima
- Department of Leukemia, Section of Molecular Hematology and Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA,Department of Hematology, Kochi Medical School, Kochi University, Nankoku, Kochi, Japan
| | - Man Chun John Ma
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vivian R. Ruvolo
- Department of Leukemia, Section of Molecular Hematology and Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dhruv Chachad
- Department of Leukemia, Section of Molecular Hematology and Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - William Devine
- Department of Chemistry, Center for Molecular Discovery (BU-CMD), Boston University, Boston, MA, USA
| | - Susan Lindquist
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - R. Eric Davis
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - John A. Porco
- Department of Chemistry, Center for Molecular Discovery (BU-CMD), Boston University, Boston, MA, USA
| | - Luke Whitesell
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA,Present address: Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Michael Andreeff
- Department of Leukemia, Section of Molecular Hematology and Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jo Ishizawa
- Department of Leukemia, Section of Molecular Hematology and Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
31
|
1-Aminomethyl SAR in a novel series of flavagline-inspired eIF4A inhibitors: Effects of amine substitution on cell potency and in vitro PK properties. Bioorg Med Chem Lett 2021; 47:128111. [PMID: 34353608 DOI: 10.1016/j.bmcl.2021.128111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 05/02/2021] [Accepted: 05/08/2021] [Indexed: 11/22/2022]
Abstract
Flavaglines such as silvestrol (1) and rocaglamide (2) constitute an interesting class of natural products with promising anticancer activities. Their mode of action is based on inhibition of eukaryotic initiation factor 4A (eIF4A) dependent translation through formation of a stable ternary complex with eIF4A and mRNA, thus blocking ribosome scanning. Herein we describe initial SAR studies in a novel series of 1-aminomethyl substituted flavagline-inspired eIF4A inhibitors. We discovered that a variety of N-substitutions at the 1-aminomethyl group are tolerated, making this position pertinent for property and ADME profile tuning. The findings presented herein are relevant to future drug design efforts towards novel eIF4A inhibitors with drug-like properties.
Collapse
|
32
|
Suppression of mitochondrial ROS by prohibitin drives glioblastoma progression and therapeutic resistance. Nat Commun 2021; 12:3720. [PMID: 34140524 PMCID: PMC8211793 DOI: 10.1038/s41467-021-24108-6] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 06/02/2021] [Indexed: 01/01/2023] Open
Abstract
Low levels of reactive oxygen species (ROS) are crucial for maintaining cancer stem cells (CSCs) and their ability to resist therapy, but the ROS regulatory mechanisms in CSCs remains to be explored. Here, we discover that prohibitin (PHB) specifically regulates mitochondrial ROS production in glioma stem-like cells (GSCs) and facilitates GSC radiotherapeutic resistance. We find that PHB is upregulated in GSCs and is associated with malignant gliomas progression and poor prognosis. PHB binds to peroxiredoxin3 (PRDX3), a mitochondrion-specific peroxidase, and stabilizes PRDX3 protein through the ubiquitin-proteasome pathway. Knockout of PHB dramatically elevates ROS levels, thereby inhibiting GSC self-renewal. Importantly, deletion or pharmacological inhibition of PHB potently slows tumor growth and sensitizes tumors to radiotherapy, thus providing significant survival benefits in GSC-derived orthotopic tumors and glioblastoma patient-derived xenografts. These results reveal a selective role of PHB in mitochondrial ROS regulation in GSCs and suggest that targeting PHB improves radiotherapeutic efficacy in glioblastoma. How ROS levels are regulated in cancer stem cells and their contribution to cancer resistance is currently not clear. Here, the authors show that prohibitin regulates mitochondrial ROS production stabilizing the peroxidase PRDX3 and this accounts for radiotherapy resistance in glioma stem-like cells.
Collapse
|
33
|
Hong HJ, Guevara MG, Lin E, O'Leary SE. Single-Molecule Dynamics of SARS-CoV-2 5' Cap Recognition by Human eIF4F. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021. [PMID: 34075378 DOI: 10.1101/2021.05.26.445185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Coronaviruses initiate translation through recognition of the viral RNA 5' m 7 GpppA m cap by translation factor eIF4F. eIF4F is a heterotrimeric protein complex with cap-binding, RNA-binding, and RNA helicase activities. Modulating eIF4F function through cellular regulation or small-molecule inhibition impacts coronavirus replication, including for SARS-CoV-2. Translation initiation involves highly coordinated dynamics of translation factors with messenger or viral RNA. However, how the eIF4F subunits coordinate on the initiation timescale to define cap-binding efficiency remains incompletely understood. Here we report that translation supported by the SARS-CoV-2 5'-UTR is highly sensitive to eIF4A inhibition by rocaglamide. Through a single-molecule fluorescence approach that reports on eIF4E-cap interaction, we dissect how eIF4F subunits contribute to cap-recognition efficiency on the SARS-CoV-2 5' UTR. We find that free eIF4A enhances cap accessibility for eIF4E binding, but eIF4G alone does not change the kinetics of eIF4E-RNA interaction. Conversely, formation of the full eIF4F complex significantly alters eIF4E-cap interaction, suggesting that coordinated eIF4E and eIF4A activities establish the net eIF4F-cap recognition efficiency. Moreover, the eIF4F complex formed with phosphomimetic eIF4E(S209D) binds the viral UTR more efficiently than with wild-type eIF4E. These results highlight a dynamic interplay of eIF4F subunits and mRNA that determines cap-recognition efficiency.
Collapse
|
34
|
Balunas MJ, Cragg GM, Gibbons S, Mata R. Professor A. Douglas Kinghorn. A Lifetime Career Dedicated to Outstanding Service to Natural Product Sciences. JOURNAL OF NATURAL PRODUCTS 2021; 84:549-552. [PMID: 33765769 DOI: 10.1021/acs.jnatprod.0c01371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Affiliation(s)
- Marcy J Balunas
- University of Connecticut, Storrs, Connecticut, United States
| | - Gordon M Cragg
- NIH Special Volunteer, Gaithersburg, Maryland, United States
| | - Simon Gibbons
- University of East Anglia, Norwich Research Park, Norwich, U.K
| | - Rachel Mata
- National Autonomous University of Mexico, Mexico City, Mexico
| |
Collapse
|
35
|
Knowles CM, McIntyre KM, Panepinto JC. Tools for Assessing Translation in Cryptococcus neoformans. J Fungi (Basel) 2021; 7:jof7030159. [PMID: 33668175 PMCID: PMC7995980 DOI: 10.3390/jof7030159] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/17/2021] [Accepted: 02/20/2021] [Indexed: 12/16/2022] Open
Abstract
Cryptococcus neoformans is a ubiquitous environmental fungus capable of establishing an infection in a human host. Rapid changes in environments and exposure to the host immune system results in a significant amount of cellular stress, which is effectively combated at the level of translatome reprogramming. Repression of translation following stress allows for the specific reallocation of limited resources. Understanding the mechanisms involved in regulating translation in C. neoformans during host infection is critical in the development of new antifungal drugs. In this review, we discuss the main tools available for assessing changes in translation state and translational output during cellular stress.
Collapse
|
36
|
Maezono SMB, Khanal HD, Chaudhary P, Devkota S, Lee YR. Construction of Diverse Dihydrodibenzofuranones by Migration/Intramolecular Arylation of Iodonium Ylides. B KOREAN CHEM SOC 2021. [DOI: 10.1002/bkcs.12209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Hari Datta Khanal
- School of Chemical Engineering Yeungnam University Gyeongsan 712‐749 Republic of Korea
| | - Priyanka Chaudhary
- School of Chemical Engineering Yeungnam University Gyeongsan 712‐749 Republic of Korea
| | - Shreedhar Devkota
- School of Chemical Engineering Yeungnam University Gyeongsan 712‐749 Republic of Korea
| | - Yong Rok Lee
- School of Chemical Engineering Yeungnam University Gyeongsan 712‐749 Republic of Korea
| |
Collapse
|
37
|
The rocaglate CR-31-B (-) inhibits SARS-CoV-2 replication at non-cytotoxic, low nanomolar concentrations in vitro and ex vivo. Antiviral Res 2021; 186:105012. [PMID: 33422611 PMCID: PMC7791309 DOI: 10.1016/j.antiviral.2021.105012] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/28/2020] [Accepted: 01/04/2021] [Indexed: 12/17/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of COVID-19, a severe respiratory disease with varying clinical presentations and outcomes, and responsible for a major pandemic that started in early 2020. With no vaccines or effective antiviral treatments available, the quest for novel therapeutic solutions remains an urgent priority. Rocaglates, a class of plant-derived cyclopenta[b]benzofurans, exhibit broad-spectrum antiviral activity against multiple RNA viruses including coronaviruses. Specifically, rocaglates inhibit eukaryotic initiation factor 4A (eIF4A)-dependent mRNA translation initiation, resulting in strongly reduced viral RNA translation. Here, we assessed the antiviral activity of the synthetic rocaglate CR-31-B (-) against SARS-CoV-2 using both in vitro and ex vivo cell culture models. In Vero E6 cells, CR-31-B (-) inhibited SARS-CoV-2 replication with an EC50 of ~1.8 nM. In primary human airway epithelial cells, CR-31-B (-) reduced viral titers to undetectable levels at a concentration of 100 nM. Reduced virus reproduction was accompanied by substantially reduced viral protein accumulation and replication/transcription complex formation. The data reveal a potent anti-SARS-CoV-2 activity by CR-31-B (-), corroborating previous results obtained for other coronaviruses and supporting the idea that rocaglates may be used in first-line antiviral intervention strategies against novel and emerging RNA virus outbreaks.
Collapse
|
38
|
Abdelkrim YZ, Banroques J, Kyle Tanner N. Known Inhibitors of RNA Helicases and Their Therapeutic Potential. Methods Mol Biol 2021; 2209:35-52. [PMID: 33201461 DOI: 10.1007/978-1-0716-0935-4_3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
RNA helicases are proteins found in all kingdoms of life, and they are associated with all processes involving RNA from transcription to decay. They use NTP binding and hydrolysis to unwind duplexes, to remodel RNA structures and protein-RNA complexes, and to facilitate the unidirectional metabolism of biological processes. Viral, bacterial, and eukaryotic parasites have an intimate need for RNA helicases in their reproduction. Moreover, various disorders, like cancers, are often associated with a perturbation of the host's helicase activity. Thus, RNA helicases provide a rich source of targets for the development of therapeutic or prophylactic drugs. In this review, we provide an overview of the different targeting strategies against helicases, the different types of compounds explored, the proposed inhibitory mechanisms of the compounds on the proteins, and the therapeutic potential of these compounds in the treatment of various disorders.
Collapse
Affiliation(s)
- Yosser Zina Abdelkrim
- Expression Génétique Microbienne, UMR8261 CNRS, Institut de Biologie Physico-Chimique, Université de Paris, Paris, France.,Molecular Epidemiology and Experimental Pathology (LR16IPT04), Institut Pasteur de Tunis/Université de Tunis el Manar, Tunis-Belvédère, Tunisia
| | - Josette Banroques
- Expression Génétique Microbienne, UMR8261 CNRS, Institut de Biologie Physico-Chimique, Université de Paris, Paris, France.,PSL Research University, Paris, France
| | - N Kyle Tanner
- Expression Génétique Microbienne, UMR8261 CNRS, Institut de Biologie Physico-Chimique, Université de Paris, Paris, France.
| |
Collapse
|
39
|
Harneti D, Supratman U. Phytochemistry and biological activities of Aglaia species. PHYTOCHEMISTRY 2021; 181:112540. [PMID: 33130371 DOI: 10.1016/j.phytochem.2020.112540] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 10/08/2020] [Accepted: 10/08/2020] [Indexed: 05/13/2023]
Abstract
Aglaia is the largest genus in the Meliaceae family (also known as Mahagoni in Indonesia), consisting of over 150 species, of which 65 are indigenous to Indonesia. These species spread through the tropical regions, especially Southeast Asia as well as the Nothern part of Australia, and have been used in traditional medicine for the treatment of several diseases. However, preliminary chemical researches commenced in 1965, where dammarane-type triterpenoids, aglaiol was isolated, and the structure was determined by chemical reaction and spectroscopic methods. Several studies have been carried out on the stembark, bark, leaves, seeds and leaves in the last fifty five years, and about 291 metabolites have been isolated from the sesquiterpenoid, diterpenoid, triterpenoid, limonoid, steroid, lignan, and alkaloid groups, as well as flavagline, which known to be the largest. This specifically amounts to 34% of Aglaia species, reported to show cytotoxic and insecticidal potentials, and also the tendency for use as chemical markers for this species. The extracts and compounds obtained from Aglaia species are evaluated for potential biological activities, including cytotoxicity, insecticidal, anti-inflammatory, antifungal, molluscicidal, antituberculosis and antiviral effects. In addition, flavagline (rocaglamide) derivatives have been confirmed to exhibit exceptional cytotoxicity, and are, thus, considered lead compounds for further development. Therefore, the results support the concept of utilizing Aglaia species as a potential source for the production of biologically active compounds.
Collapse
Affiliation(s)
- Desi Harneti
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor, 45363, Sumedang, West Java, Indonesia
| | - Unang Supratman
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor, 45363, Sumedang, West Java, Indonesia; Central Laboratory, Universitas Padjadjaran, Jatinangor, 45363, Sumedang, West Java, Indonesia.
| |
Collapse
|
40
|
Xu F, Hui Y. Recent Advances in Metal-Catalyzed Heterocyclic C-P Bond Formation. Curr Org Synth 2020; 18:377-387. [PMID: 33371836 DOI: 10.2174/1570179417999201228214930] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/26/2020] [Accepted: 11/10/2020] [Indexed: 11/22/2022]
Abstract
The phosphorus-containing heterocycles are an important class of compounds in organic chemistry. Because of their potential application in many fields, especially, the synthetic pesticides, medicine and catalyst, the phosphorus-containing heterocycles have attracted continuous attention from organic synthesis scientists. The development of efficient and low-cost catalytic systems is of great interest for the construction of heterocycles C-P bond. Usually, the phosphorus-containing heterocycles is prepared via direct carbon-hydrogen (C-H) bond activation or pre-functionalized of heterocycles with phosphorus-hydrogen (P-H) bond of phosphorus compounds reaction by metal-catalyzed. This review summarizes recent progress in the heterocycles C-P bond formation reactions by metal-catalyzed, which mainly focus on the discussion of the reaction mechanism. It aims to provide efficient methods for the future synthesis and application in this field.
Collapse
Affiliation(s)
- Feng Xu
- School of Mathematics and Information Science, Guiyang University, Guiyang 550005, China
| | - Yu Hui
- Chaotic Matter Science Research Center, Jiangxi University of Science and Technology Nanchang Campus, Nanchang 330013, China
| |
Collapse
|
41
|
Steinberger J, Shen L, J Kiniry S, Naineni SK, Cencic R, Amiri M, Aboushawareb SAE, Chu J, Maïga RI, Yachnin BJ, Robert F, Sonenberg N, Baranov PV, Pelletier J. Identification and characterization of hippuristanol-resistant mutants reveals eIF4A1 dependencies within mRNA 5' leader regions. Nucleic Acids Res 2020; 48:9521-9537. [PMID: 32766783 PMCID: PMC7515738 DOI: 10.1093/nar/gkaa662] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/22/2020] [Accepted: 07/28/2020] [Indexed: 02/06/2023] Open
Abstract
Hippuristanol (Hipp) is a natural product that selectively inhibits protein synthesis by targeting eukaryotic initiation factor (eIF) 4A, a DEAD-box RNA helicase required for ribosome recruitment to mRNA templates. Hipp binds to the carboxyl-terminal domain of eIF4A, locks it in a closed conformation, and inhibits its RNA binding. The dependencies of mRNAs for eIF4A during initiation is contingent on the degree of secondary structure within their 5′ leader region. Interest in targeting eIF4A therapeutically in cancer and viral-infected settings stems from the dependencies that certain cellular (e.g. pro-oncogenic, pro-survival) and viral mRNAs show towards eIF4A. Using a CRISPR/Cas9-based variomics screen, we identify functional EIF4A1 Hipp-resistant alleles, which in turn allowed us to link the translation-inhibitory and cytotoxic properties of Hipp to eIF4A1 target engagement. Genome-wide translational profiling in the absence or presence of Hipp were undertaken and our validation studies provided insight into the structure-activity relationships of eIF4A-dependent mRNAs. We find that mRNA 5′ leader length, overall secondary structure and cytosine content are defining features of Hipp-dependent mRNAs.
Collapse
Affiliation(s)
- Jutta Steinberger
- Department of Biochemistry, McGill University, Montreal H3G 1Y6, Canada
| | - Leo Shen
- Department of Biochemistry, McGill University, Montreal H3G 1Y6, Canada
| | - Stephen J Kiniry
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Sai Kiran Naineni
- Department of Biochemistry, McGill University, Montreal H3G 1Y6, Canada
| | - Regina Cencic
- Department of Biochemistry, McGill University, Montreal H3G 1Y6, Canada
| | - Mehdi Amiri
- Department of Biochemistry, McGill University, Montreal H3G 1Y6, Canada
| | | | - Jennifer Chu
- Department of Biochemistry, McGill University, Montreal H3G 1Y6, Canada
| | | | - Brahm J Yachnin
- Department of Chemistry & Chemical Biology & the Institute for Quantitative Biomedicine, Rutgers The State University of New Jersey, Piscataway 08854, NJ
| | - Francis Robert
- Department of Biochemistry, McGill University, Montreal H3G 1Y6, Canada
| | - Nahum Sonenberg
- Department of Biochemistry, McGill University, Montreal H3G 1Y6, Canada.,Rosalind and Morris Goodman Cancer Research Center, McGill University, Montreal H3A 1A3, Canada
| | - Pavel V Baranov
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland.,Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia
| | - Jerry Pelletier
- Department of Biochemistry, McGill University, Montreal H3G 1Y6, Canada.,Rosalind and Morris Goodman Cancer Research Center, McGill University, Montreal H3A 1A3, Canada.,Department of Oncology, McGill University, Montreal H3G 1Y6, Canada
| |
Collapse
|
42
|
Nebigil CG, Moog C, Vagner S, Benkirane-Jessel N, Smith DR, Désaubry L. Flavaglines as natural products targeting eIF4A and prohibitins: From traditional Chinese medicine to antiviral activity against coronaviruses. Eur J Med Chem 2020; 203:112653. [PMID: 32693294 PMCID: PMC7362831 DOI: 10.1016/j.ejmech.2020.112653] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 12/19/2022]
Abstract
Flavaglines are cyclopenta[b]benzofurans found in plants of the genus Aglaia, several species of which are used in traditional Chinese medicine. These compounds target the initiation factor of translation eIF4A and the scaffold proteins prohibitins-1 and 2 (PHB1/2) to exert various pharmacological activities, including antiviral effects against several types of viruses, including coronaviruses. This review is focused on the antiviral effects of flavaglines and their therapeutic potential against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).
Collapse
Affiliation(s)
- Canan G Nebigil
- INSERM U 1260, Regenerative Nanomedicine (RNM), FMTS, 11 Rue Humann, 67000, Strasbourg, France
| | - Christiane Moog
- INSERM U1109, LabEx TRANSPLANTEX, Fédération Hospitalo-Universitaire (FHU) OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), University of Strasbourg, Strasbourg, France
| | - Stéphan Vagner
- Institut Curie, PSL Research University, CNRS UMR 3348, INSERM U1278, Orsay, France; Université Paris-Sud, Université Paris-Saclay, CNRS UMR 3348, INSERM U1278, Orsay, France
| | - Nadia Benkirane-Jessel
- INSERM U 1260, Regenerative Nanomedicine (RNM), FMTS, 11 Rue Humann, 67000, Strasbourg, France; Université de Strasbourg, Faculté de Chirurgie Dentaire, Hôpitaux Universitaires de Strasbourg, 8 Rue de Ste Elisabeth, 67000, Strasbourg, France
| | - Duncan R Smith
- Institute of Molecular Biosciences, Mahidol University, Salaya, 73170, Thailand
| | - Laurent Désaubry
- INSERM U 1260, Regenerative Nanomedicine (RNM), FMTS, 11 Rue Humann, 67000, Strasbourg, France.
| |
Collapse
|
43
|
Boozari M, Hosseinzadeh H. Natural products for
COVID
‐19 prevention and treatment regarding to previous coronavirus infections and novel studies. Phytother Res 2020; 35:864-876. [DOI: 10.1002/ptr.6873] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 08/18/2020] [Accepted: 08/24/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Motahareh Boozari
- Department of Pharmacognosy, School of Pharmacy Mashhad University of Medical Sciences Mashhad Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy Mashhad University of Medical Sciences Mashhad Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute Mashhad University of Medical Sciences Mashhad Iran
| |
Collapse
|
44
|
Nilewski C, Michels TD, Xiang AX, Packard GK, Sprengeler PA, Eam B, Fish S, Thompson PA, Wegerski CJ, Ernst JT, Reich SH. Strategic Diastereoselective C1 Functionalization in the Aza-Rocaglamide Scaffold toward Natural Product-Inspired eIF4A Inhibitors. Org Lett 2020; 22:6257-6261. [DOI: 10.1021/acs.orglett.0c01944] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Christian Nilewski
- eFFECTOR Therapeutics, 11180 Roselle Street, Suite A, San Diego, California 92121, United States
| | - Theodore D. Michels
- eFFECTOR Therapeutics, 11180 Roselle Street, Suite A, San Diego, California 92121, United States
| | - Alan X. Xiang
- eFFECTOR Therapeutics, 11180 Roselle Street, Suite A, San Diego, California 92121, United States
| | - Garrick K. Packard
- eFFECTOR Therapeutics, 11180 Roselle Street, Suite A, San Diego, California 92121, United States
| | - Paul A. Sprengeler
- eFFECTOR Therapeutics, 11180 Roselle Street, Suite A, San Diego, California 92121, United States
| | - Boreth Eam
- eFFECTOR Therapeutics, 11180 Roselle Street, Suite A, San Diego, California 92121, United States
| | - Sarah Fish
- eFFECTOR Therapeutics, 11180 Roselle Street, Suite A, San Diego, California 92121, United States
| | - Peggy A. Thompson
- eFFECTOR Therapeutics, 11180 Roselle Street, Suite A, San Diego, California 92121, United States
| | - Christopher J. Wegerski
- eFFECTOR Therapeutics, 11180 Roselle Street, Suite A, San Diego, California 92121, United States
| | - Justin T. Ernst
- eFFECTOR Therapeutics, 11180 Roselle Street, Suite A, San Diego, California 92121, United States
| | - Siegfried H. Reich
- eFFECTOR Therapeutics, 11180 Roselle Street, Suite A, San Diego, California 92121, United States
| |
Collapse
|
45
|
Schulz G, Victoria C, Kirschning A, Steinmann E. Rocaglamide and silvestrol: a long story from anti-tumor to anti-coronavirus compounds. Nat Prod Rep 2020; 38:18-23. [PMID: 32699874 DOI: 10.1039/d0np00024h] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Covering: up to the beginning of 2020Many natural substances have been transformed again and again with regard to their pharmaceutical-medical potential, including new members of a growing class of natural products, the flavaglines. Important representatives are rocaglamide and silvestrol, isolated from the Aglaia species, which are highlighted here. These products started as potential anti-tumor agents five decades ago and have recently proved to be very promising antiviral agents, especially against RNA viruses. Today they are discussed as potential starting compounds for developing drug candidates and therapeutics.
Collapse
Affiliation(s)
- Göran Schulz
- Institute of Organic Chemistry, Leibniz University Hannover, Schneiderberg 1B, 30167 Hannover, Germany.
| | | | | | | |
Collapse
|
46
|
An FL, Xu WJ, Yang MH, Luo J, Kong LY. Anti-inflammatory flavagline glycosides and putrescine bisamides from Aglaia perviridis leaves. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
47
|
Ernst JT, Thompson PA, Nilewski C, Sprengeler PA, Sperry S, Packard G, Michels T, Xiang A, Tran C, Wegerski CJ, Eam B, Young NP, Fish S, Chen J, Howard H, Staunton J, Molter J, Clarine J, Nevarez A, Chiang GG, Appleman JR, Webster KR, Reich SH. Design of Development Candidate eFT226, a First in Class Inhibitor of Eukaryotic Initiation Factor 4A RNA Helicase. J Med Chem 2020; 63:5879-5955. [PMID: 32470302 DOI: 10.1021/acs.jmedchem.0c00182] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Dysregulation of protein translation is a key driver for the pathogenesis of many cancers. Eukaryotic initiation factor 4A (eIF4A), an ATP-dependent DEAD-box RNA helicase, is a critical component of the eIF4F complex, which regulates cap-dependent protein synthesis. The flavagline class of natural products (i.e., rocaglamide A) has been shown to inhibit protein synthesis by stabilizing a translation-incompetent complex for select messenger RNAs (mRNAs) with eIF4A. Despite showing promising anticancer phenotypes, the development of flavagline derivatives as therapeutic agents has been hampered because of poor drug-like properties as well as synthetic complexity. A focused effort was undertaken utilizing a ligand-based design strategy to identify a chemotype with optimized physicochemical properties. Also, detailed mechanistic studies were undertaken to further elucidate mRNA sequence selectivity, key regulated target genes, and the associated antitumor phenotype. This work led to the design of eFT226 (Zotatifin), a compound with excellent physicochemical properties and significant antitumor activity that supports clinical development.
Collapse
Affiliation(s)
- Justin T Ernst
- Inception Therapeutics, 6175 Nancy Ridge Drive, San Diego, California 92121, United States
| | - Peggy A Thompson
- eFFECTOR Therapeutics, 11180 Roselle Street, San Diego, California 92121, United States
| | - Christian Nilewski
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Paul A Sprengeler
- eFFECTOR Therapeutics, 11180 Roselle Street, San Diego, California 92121, United States
| | - Samuel Sperry
- eFFECTOR Therapeutics, 11180 Roselle Street, San Diego, California 92121, United States
| | - Garrick Packard
- Inception Therapeutics, 6175 Nancy Ridge Drive, San Diego, California 92121, United States
| | - Theodore Michels
- GossamerBio., 3013 Science Park Road, San Diego, California 92121, United States
| | - Alan Xiang
- WuXi AppTec, 6114 Nancy Ridge Drive, San Diego, California 92121, United States
| | - Chinh Tran
- eFFECTOR Therapeutics, 11180 Roselle Street, San Diego, California 92121, United States
| | | | - Boreth Eam
- Calporta Therapeutics, 11099 North Torrey Poines Rd., La Jolla, California 92037, United States
| | - Nathan P Young
- Casma Therapeutics, 400 Technology Square, Cambridge, California 02139, United States
| | - Sarah Fish
- Plexium, Inc., 11585 Sorrento Valley Rd., San Diego, California 92121, United States
| | - Joan Chen
- eFFECTOR Therapeutics, 11180 Roselle Street, San Diego, California 92121, United States
| | - Haleigh Howard
- Providence Portland Medical Center, 4805 NE Glisan Street, Portland, Oregon 97213, United States
| | - Jocelyn Staunton
- eFFECTOR Therapeutics, 11180 Roselle Street, San Diego, California 92121, United States
| | - Jolene Molter
- eFFECTOR Therapeutics, 11180 Roselle Street, San Diego, California 92121, United States
| | - Jeff Clarine
- GossamerBio., 3013 Science Park Road, San Diego, California 92121, United States
| | - Andres Nevarez
- Escient Pharmaceuticals, 10578 Science Center Dr., San Diego, California 92121, United States
| | - Gary G Chiang
- eFFECTOR Therapeutics, 11180 Roselle Street, San Diego, California 92121, United States
| | - Jim R Appleman
- Primmune Therapeutics, 3210 Merryfield Row, San Diego, California 92121, United States
| | - Kevin R Webster
- Frontier Medicines Corp., 151 Oyster Point Blvd., South San Francisco, California 94080, United States
| | - Siegfried H Reich
- eFFECTOR Therapeutics, 11180 Roselle Street, San Diego, California 92121, United States
| |
Collapse
|
48
|
Cherian SS, Agrawal M, Basu A, Abraham P, Gangakhedkar RR, Bhargava B. Perspectives for repurposing drugs for the coronavirus disease 2019. Indian J Med Res 2020; 151:160-171. [PMID: 32317408 PMCID: PMC7357399 DOI: 10.4103/ijmr.ijmr_585_20] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The newly emerged 2019 novel coronavirus (CoV), named as severe acute respiratory syndrome CoV-2 (SARS-CoV-2), like SARS-CoV (now, SARS-CoV-1) and Middle East respiratory syndrome CoV (MERS-CoV), has been associated with high infection rates with over 36,405 deaths. In the absence of approved marketed drugs against coronaviruses, the treatment and management of this novel CoV disease (COVID-19) worldwide is a challenge. Drug repurposing that has emerged as an effective drug discovery approach from earlier approved drugs could reduce the time and cost compared to de novo drug discovery. Direct virus-targeted antiviral agents target specific nucleic acid or proteins of the virus while host-based antivirals target either the host innate immune responses or the cellular machineries that are crucial for viral infection. Both the approaches necessarily interfere with viral pathogenesis. Here we summarize the present status of both virus-based and host-based drug repurposing perspectives for coronaviruses in general and the SARS-CoV-2 in particular.
Collapse
Affiliation(s)
- Sarah S Cherian
- Bioinformatic Group, ICMR-National Institute of Virology, Pune, Maharashtra, India
| | - Megha Agrawal
- Bioinformatic Group, ICMR-National Institute of Virology, Pune, Maharashtra, India
| | - Atanu Basu
- Electron Microscopy & Histopathology Group, ICMR-National Institute of Virology, Pune, Maharashtra, India
| | - Priya Abraham
- ICMR-National Institute of Virology, Pune, Maharashtra, India
| | - Raman R Gangakhedkar
- Division of Epidemiology & Communicable Diseases, Indian Council of Medical Research & Family Welfare, New Delhi, India
| | - Balram Bhargava
- Department of Health Research (ICMR), Ministry of Health & Family Welfare, New Delhi, India
| |
Collapse
|
49
|
Laham-Karam N, Pinto GP, Poso A, Kokkonen P. Transcription and Translation Inhibitors in Cancer Treatment. Front Chem 2020; 8:276. [PMID: 32373584 PMCID: PMC7186406 DOI: 10.3389/fchem.2020.00276] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 03/20/2020] [Indexed: 12/12/2022] Open
Abstract
Transcription and translation are fundamental cellular processes that govern the protein production of cells. These processes are generally up regulated in cancer cells, to maintain the enhanced metabolism and proliferative state of these cells. As such cancerous cells can be susceptible to transcription and translation inhibitors. There are numerous druggable proteins involved in transcription and translation which make lucrative targets for cancer drug development. In addition to proteins, recent years have shown that the "undruggable" transcription factors and RNA molecules can also be targeted to hamper the transcription or translation in cancer. In this review, we summarize the properties and function of the transcription and translation inhibitors that have been tested and developed, focusing on the advances of the last 5 years. To complement this, we also discuss some of the recent advances in targeting oncogenes tightly controlling transcription including transcription factors and KRAS. In addition to natural and synthetic compounds, we review DNA and RNA based approaches to develop cancer drugs. Finally, we conclude with the outlook to the future of the development of transcription and translation inhibitors.
Collapse
Affiliation(s)
- Nihay Laham-Karam
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Gaspar P. Pinto
- International Clinical Research Center, St. Anne University Hospital, Brno, Czechia
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Brno, Czechia
| | - Antti Poso
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
- University Hospital Tübingen, Department of Internal Medicine VIII, University of Tübingen, Tübingen, Germany
| | - Piia Kokkonen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
50
|
Chang LS, Oblinger JL, Burns SS, Huang J, Anderson LW, Hollingshead MG, Shen R, Pan L, Agarwal G, Ren Y, Roberts RD, O'Keefe BR, Kinghorn AD, Collins JM. Targeting Protein Translation by Rocaglamide and Didesmethylrocaglamide to Treat MPNST and Other Sarcomas. Mol Cancer Ther 2020; 19:731-741. [PMID: 31848295 PMCID: PMC7056570 DOI: 10.1158/1535-7163.mct-19-0809] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 12/02/2019] [Accepted: 12/13/2019] [Indexed: 01/30/2023]
Abstract
Malignant peripheral nerve sheath tumors (MPNST) frequently overexpress eukaryotic initiation factor 4F components, and the eIF4A inhibitor silvestrol potently suppresses MPNST growth. However, silvestrol has suboptimal drug-like properties, including a bulky structure, poor oral bioavailability (<2%), sensitivity to MDR1 efflux, and pulmonary toxicity in dogs. We compared ten silvestrol-related rocaglates lacking the dioxanyl ring and found that didesmethylrocaglamide (DDR) and rocaglamide (Roc) had growth-inhibitory activity comparable with silvestrol. Structure-activity relationship analysis revealed that the dioxanyl ring present in silvestrol was dispensable for, but may enhance, cytotoxicity. Both DDR and Roc arrested MPNST cells at G2-M, increased the sub-G1 population, induced cleavage of caspases and PARP, and elevated the levels of the DNA-damage response marker γH2A.X, while decreasing the expression of AKT and ERK1/2, consistent with translation inhibition. Unlike silvestrol, DDR and Roc were not sensitive to MDR1 inhibition. Pharmacokinetic analysis confirmed that Roc had 50% oral bioavailability. Importantly, Roc, when administered intraperitoneally or orally, showed potent antitumor effects in an orthotopic MPNST mouse model and did not induce pulmonary toxicity in dogs as found with silvestrol. Treated tumors displayed degenerative changes and had more cleaved caspase-3-positive cells, indicative of increased apoptosis. Furthermore, Roc effectively suppressed the growth of osteosarcoma, Ewing sarcoma, and rhabdomyosarcoma cells and patient-derived xenografts. Both Roc- and DDR-treated sarcoma cells showed decreased levels of multiple oncogenic kinases, including insulin-like growth factor-1 receptor. The more favorable drug-like properties of DDR and Roc and the potent antitumor activity of Roc suggest that these rocaglamides could become viable treatments for MPNST and other sarcomas.
Collapse
Affiliation(s)
- Long-Sheng Chang
- Center for Childhood Cancer and Blood Diseases, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio.
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio
- Department of Otolaryngology-Head and Neck Surgery, The Ohio State University College of Medicine, Columbus, Ohio
- Department of Pathology, The Ohio State University College of Medicine, Columbus, Ohio
| | - Janet L Oblinger
- Center for Childhood Cancer and Blood Diseases, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio
| | - Sarah S Burns
- Center for Childhood Cancer and Blood Diseases, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio
| | - Jie Huang
- Center for Childhood Cancer and Blood Diseases, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio
| | - Larry W Anderson
- Division of Cancer Treatment and Diagnosis, Center for Cancer Research, National Cancer Institute, NIH, Frederick, Maryland
| | - Melinda G Hollingshead
- Division of Cancer Treatment and Diagnosis, Center for Cancer Research, National Cancer Institute, NIH, Frederick, Maryland
| | - Rulong Shen
- Department of Pathology, The Ohio State University College of Medicine, Columbus, Ohio
| | - Li Pan
- Division of Medicinal Chemistry and Pharmacognosy, The Ohio State University College of Pharmacy, Columbus, Ohio
| | - Garima Agarwal
- Division of Medicinal Chemistry and Pharmacognosy, The Ohio State University College of Pharmacy, Columbus, Ohio
| | - Yulin Ren
- Division of Medicinal Chemistry and Pharmacognosy, The Ohio State University College of Pharmacy, Columbus, Ohio
| | - Ryan D Roberts
- Center for Childhood Cancer and Blood Diseases, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio
| | - Barry R O'Keefe
- Division of Cancer Treatment and Diagnosis, Center for Cancer Research, National Cancer Institute, NIH, Frederick, Maryland
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, NIH, Frederick, Maryland
| | - A Douglas Kinghorn
- Division of Medicinal Chemistry and Pharmacognosy, The Ohio State University College of Pharmacy, Columbus, Ohio
| | - Jerry M Collins
- Division of Cancer Treatment and Diagnosis, Center for Cancer Research, National Cancer Institute, NIH, Frederick, Maryland
| |
Collapse
|