1
|
Rani A, Pulukuri AJ, Wei J, Dhull A, Dar AI, Sharma R, Mesbahi N, Savoy EA, Yoon H, Wu BJ, Berkman CE, Sharma A. PSMA-Targeted 2-Deoxyglucose-Based Dendrimer Nanomedicine for the Treatment of Prostate Cancer. Biomacromolecules 2024; 25:6164-6180. [PMID: 39164913 DOI: 10.1021/acs.biomac.4c00878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Prostate cancer (PC) is the fifth leading cause of cancer-related deaths among men worldwide. Prostate-specific membrane antigen (PSMA), a molecular target of PC, is clinically used for the treatment and diagnosis of PC using radioligand approaches. However, no PSMA-based chemotherapies have yet been approved by the FDA. Here, we present a novel therapeutic approach using PSMA-targeted 2-deoxyglucose-dendrimer (PSMA-2DG-D) for targeted delivery of a potent tyrosine kinase inhibitor, cabozantinib (Cabo), selectively to PC cells. PSMA-2DG-D demonstrates intracellular localization in PSMA (+) PC cells through PSMA-mediated internalization. This PSMA-specific targeting translates to enhanced efficacy of Cabo compared to the free drug when conjugated to PSMA-2DG-D. Furthermore, systemically administered fluorescently labeled PSMA-2DG-D-Cy5 specifically targets PSMA (+) tumors with minimal off-target accumulation in the PC3-PIP tumor xenograft mouse model. This demonstrates that the PSMA-2DG-D platform is a promising new delivery system for potent chemotherapeutics, where systemic side effects are a significant concern.
Collapse
Affiliation(s)
- Anu Rani
- Department of Chemistry, College of Arts and Sciences, Washington State University, Pullman, Washington 99164, United States
| | - Anunay James Pulukuri
- Department of Chemistry, College of Arts and Sciences, Washington State University, Pullman, Washington 99164, United States
| | - Jing Wei
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington 99202, United States
| | - Anubhav Dhull
- Department of Chemistry, College of Arts and Sciences, Washington State University, Pullman, Washington 99164, United States
| | - Aqib Iqbal Dar
- Department of Chemistry, College of Arts and Sciences, Washington State University, Pullman, Washington 99164, United States
| | - Rishi Sharma
- Department of Chemistry, College of Arts and Sciences, Washington State University, Pullman, Washington 99164, United States
| | - Nooshin Mesbahi
- Department of Chemistry, College of Arts and Sciences, Washington State University, Pullman, Washington 99164, United States
| | - Emily A Savoy
- Department of Chemistry, College of Arts and Sciences, Washington State University, Pullman, Washington 99164, United States
| | - Hosog Yoon
- Department of Chemistry, College of Arts and Sciences, Washington State University, Pullman, Washington 99164, United States
| | - Boyang Jason Wu
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington 99202, United States
| | - Clifford E Berkman
- Department of Chemistry, College of Arts and Sciences, Washington State University, Pullman, Washington 99164, United States
| | - Anjali Sharma
- Department of Chemistry, College of Arts and Sciences, Washington State University, Pullman, Washington 99164, United States
| |
Collapse
|
2
|
Sharma A, Sah N, Sharma R, Vyas P, Liyanage W, Kannan S, Kannan RM. Development of a novel glucose-dendrimer based therapeutic targeting hyperexcitable neurons in neurological disorders. Bioeng Transl Med 2024; 9:e10655. [PMID: 39553433 PMCID: PMC11561801 DOI: 10.1002/btm2.10655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 02/07/2024] [Accepted: 02/12/2024] [Indexed: 11/19/2024] Open
Abstract
Neuronal hyperexcitability and excitotoxicity lies at the core of debilitating brain disorders such as epilepsy and traumatic brain injury, culminating in neuronal death and compromised brain function. Overcoming this challenge requires a unique approach that selectively restores normal neuronal activity and rescues neurons from impending damage. However, delivering drugs selectively to hyperexcitable neurons has been a challenge, even upon local administration. Here, we demonstrate the remarkable ability of a novel, scalable, generation-two glucose-dendrimer (GD2) made primarily of glucose and ethylene glycol building blocks, to specifically target hyperexcitable neurons in primary culture, ex vivo acute brain slices, and in vivo mouse models of acute seizures. Pharmacology experiments in ex vivo brain slices suggest GD2 uptake in neurons is mediated through glucose transporters (GLUT and SGLT). Inspired by these findings, we conjugated GD2 with a potent anti-epileptic drug, valproic acid (GD2-VPA), for efficacy studies in the pilocarpine-mouse model of seizure. When delivered intranasally, GD2-VPA significantly decreased the seizure-severity. In summary, our findings demonstrate the unique selectivity of glucose dendrimers in targeting hyperexcitable neurons, even upon intranasal delivery, laying the foundation for neuron-specific therapies for the precise protection and restoration of neuronal function, for targeted neuroprotection.
Collapse
Affiliation(s)
- Anjali Sharma
- Center for Nanomedicine at the Wilmer Eye InstituteJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Present address:
Department of ChemistryWashington State UniversityPullmanWashingtonUSA
| | - Nirnath Sah
- Anesthesiology and Critical Care MedicineJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Rishi Sharma
- Center for Nanomedicine at the Wilmer Eye InstituteJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Present address:
Department of ChemistryWashington State UniversityPullmanWashingtonUSA
| | - Preeti Vyas
- Anesthesiology and Critical Care MedicineJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Wathsala Liyanage
- Center for Nanomedicine at the Wilmer Eye InstituteJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Sujatha Kannan
- Anesthesiology and Critical Care MedicineJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Rangaramanujam M. Kannan
- Center for Nanomedicine at the Wilmer Eye InstituteJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| |
Collapse
|
3
|
Mroziak M, Kozłowski G, Kołodziejczyk W, Pszczołowska M, Walczak K, Beszłej JA, Leszek J. Dendrimers-Novel Therapeutic Approaches for Alzheimer's Disease. Biomedicines 2024; 12:1899. [PMID: 39200363 PMCID: PMC11351976 DOI: 10.3390/biomedicines12081899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/10/2024] [Accepted: 08/13/2024] [Indexed: 09/02/2024] Open
Abstract
Dendrimers are covalently bonded globular nanostructures that may be used in the treatment of Alzheimer's disease (AD). Nowadays, AD therapies are focused on improving cognitive functioning and not causal treatment. However, this may change with the use of dendrimers, which are being investigated as a drug-delivery system or as a drug per se. With their ability to inhibit amyloid formation and their anti-tau properties, they are a promising therapeutic option for AD patients. Studies have shown that dendrimers may inhibit amyloid formation in at least two ways: by blocking fibril growth and by breaking already existing fibrils. Neurofibrillary tangles (NFTs) are abnormal filaments built by tau proteins that can be accumulated in the cell, which leads to the loss of cytoskeletal microtubules and tubulin-associated proteins. Cationic phosphorus dendrimers, with their anti-tau properties, can induce the aggregation of tau into amorphous structures. Drug delivery to mitochondria is difficult due to poor transport across biological barriers, such as the inner mitochondrial membrane, which is highly negatively polarized. Dendrimers may be potential nanocarriers and increase mitochondria targeting. Another considered use of dendrimers in AD treatment is as a drug-delivery system, for example, carbamazepine (CBZ) or tacrine. They can also be used to transport siRNA into neuronal tissue and to carry antioxidants and anti-inflammatory drugs to act protectively on the nervous system.
Collapse
Affiliation(s)
- Magdalena Mroziak
- Faculty of Medicine, Wrocław Medical University, 50-367 Wrocław, Poland
| | - Gracjan Kozłowski
- Faculty of Medicine, Wrocław Medical University, 50-367 Wrocław, Poland
| | | | | | - Kamil Walczak
- Faculty of Medicine, Wrocław Medical University, 50-367 Wrocław, Poland
| | - Jan Aleksander Beszłej
- Clinic of Psychiatry, Department of Psychiatry, Medical Department, Wrocław Medical University, 50-367 Wrocław, Poland
| | - Jerzy Leszek
- Clinic of Psychiatry, Department of Psychiatry, Medical Department, Wrocław Medical University, 50-367 Wrocław, Poland
| |
Collapse
|
4
|
El Riz A, Tchoumi Neree A, Mousavifar L, Roy R, Chorfi Y, Mateescu MA. Metallo-Glycodendrimeric Materials against Enterotoxigenic Escherichia coli. Microorganisms 2024; 12:966. [PMID: 38792795 PMCID: PMC11124148 DOI: 10.3390/microorganisms12050966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/02/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Conjugation of carbohydrates to nanomaterials has been extensively studied and recognized as an alternative in the biomedical field. Dendrimers synthesized with mannose at the end group and with entrapped zero-valent copper/silver could be a potential candidate against bacterial proliferation. This study is aimed at investigating the bactericidal activity of metal-glycodendrimers. The Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) reaction was used to synthesize a new mannosylated dendrimer containing 12 mannopyranoside residues in the periphery. The enterotoxigenic Escherichia coli fimbriae 4 (ETEC:F4) viability, measured at 600 nm, showed the half-inhibitory concentration (IC50) of metal-free glycodendrimers (D), copper-loaded glycodendrimers (D:Cu) and silver-loaded glycodendrimers (D:Ag) closed to 4.5 × 101, 3.5 × 101 and to 1.0 × 10-2 µg/mL, respectively, and minimum inhibitory concentration (MIC) of D, D:Cu and D:Ag of 2.0, 1.5 and 1.0 × 10-4 µg/mL, respectively. The release of bacteria contents onto broth and the inhibition of ETEC:F4 biofilm formation increased with the number of metallo-glycodendrimer materials, with a special interest in silver-containing nanomaterial, which had the highest activity, suggesting that glycodendrimer-based materials interfered with bacteria-bacteria or bacteria-polystyrene interactions, with bacteria metabolism and can disrupt bacteria cell walls. Our findings identify metal-mannose-dendrimers as potent bactericidal agents and emphasize the effect of entrapped zero-valent metal against ETEC:F4.
Collapse
Affiliation(s)
- Aly El Riz
- Department of Chemistry, Université du Québec à Montréal, Succ. Centre-Ville, P.O. Box 8888, Montréal, QC H3C 3P8, Canada; (A.E.R.); (L.M.); (R.R.)
| | - Armelle Tchoumi Neree
- Department of Veterinary Biomedicine Sciences, Faculty of Veterinary Medicine, Université de Montréal, St-Hyacinthe, QC J2S 2M2, Canada; (A.T.N.); (Y.C.)
- Centre de recherche en infectiologie porcine et avicole (CRIPA), Université de Montréal, St-Hyacinthe, QC J2S 2M2, Canada
| | - Leila Mousavifar
- Department of Chemistry, Université du Québec à Montréal, Succ. Centre-Ville, P.O. Box 8888, Montréal, QC H3C 3P8, Canada; (A.E.R.); (L.M.); (R.R.)
| | - René Roy
- Department of Chemistry, Université du Québec à Montréal, Succ. Centre-Ville, P.O. Box 8888, Montréal, QC H3C 3P8, Canada; (A.E.R.); (L.M.); (R.R.)
| | - Younes Chorfi
- Department of Veterinary Biomedicine Sciences, Faculty of Veterinary Medicine, Université de Montréal, St-Hyacinthe, QC J2S 2M2, Canada; (A.T.N.); (Y.C.)
- Centre de recherche en infectiologie porcine et avicole (CRIPA), Université de Montréal, St-Hyacinthe, QC J2S 2M2, Canada
| | - Mircea Alexandru Mateescu
- Department of Chemistry, Université du Québec à Montréal, Succ. Centre-Ville, P.O. Box 8888, Montréal, QC H3C 3P8, Canada; (A.E.R.); (L.M.); (R.R.)
- Centre de recherche en infectiologie porcine et avicole (CRIPA), Université de Montréal, St-Hyacinthe, QC J2S 2M2, Canada
| |
Collapse
|
5
|
Azzouz A, Roy R. Innovative Strategy for Truly Reversible Capture of Polluting Gases-Application to Carbon Dioxide. Int J Mol Sci 2023; 24:16463. [PMID: 38003653 PMCID: PMC10671383 DOI: 10.3390/ijms242216463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/12/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
This paper consists of a deep analysis and data comparison of the main strategies undertaken for achieving truly reversible capture of carbon dioxide involving optimized gas uptakes while affording weakest retention strength. So far, most strategies failed because the estimated amount of CO2 produced by equivalent energy was higher than that captured. A more viable and sustainable approach in the present context of a persistent fossil fuel-dependent economy should be based on a judicious compromise between effective CO2 capture with lowest energy for adsorbent regeneration. The most relevant example is that of so-called promising technologies based on amino adsorbents which unavoidably require thermal regeneration. In contrast, OH-functionalized adsorbents barely reach satisfactory CO2 uptakes but act as breathing surfaces affording easy gas release even under ambient conditions or in CO2-free atmospheres. Between these two opposite approaches, there should exist smart approaches to tailor CO2 retention strength even at the expense of the gas uptake. Among these, incorporation of zero-valent metal and/or OH-enriched amines or amine-enriched polyol species are probably the most promising. The main findings provided by the literature are herein deeply and systematically analysed for highlighting the main criteria that allow for designing ideal CO2 adsorbent properties.
Collapse
Affiliation(s)
- Abdelkrim Azzouz
- Nanoqam, Department of Chemistry, University of Quebec at Montreal, Montreal, QC H3C 3P8, Canada;
- École de Technologie Supérieure, Montreal, QC H3C 1K3, Canada
| | - René Roy
- Nanoqam, Department of Chemistry, University of Quebec at Montreal, Montreal, QC H3C 3P8, Canada;
- Glycosciences and Nanomaterials Laboratory, Department of Chemistry, University of Quebec at Montreal, Montreal, QC H3C 3P8, Canada
- Weihai CY Dendrimer Technology Co., Ltd., No. 369-13, Caomiaozi Town, Lingang District, Weihai 264211, China
| |
Collapse
|
6
|
Dey K, Jayaraman N. Synthesis and Studies of Pyridoneimine-Functionalized PETIM Dendrimers. ACS OMEGA 2023; 8:35929-35936. [PMID: 37810657 PMCID: PMC10552491 DOI: 10.1021/acsomega.3c03720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 08/22/2023] [Indexed: 10/10/2023]
Abstract
Pyridinoimine-functionalized poly(ether imine) (PETIM) dendrimers of 1-3 generations, possessing 4-16 moieties at the peripheries, are synthesized. Chloride-functionalized dendrimers are reacted with N-methylamino pyridine, under basic conditions, which led to functionalization of the peripheries of a dendrimer with pyridoneimine moieties. Variable-temperature 1H NMR studies are performed to assess the contributing resonance forms of pyridoneimine in the dendrimers. Solvatochromism and 15N NMR studies aid further the assessment of the contributing resonance forms. Comparison with derivatives that possess 1 and 2 pyridoneimines illustrates the contributing resonance forms between nonaromatic pyridoneimine and zwitter ionic aromatic imidopyridinium species.
Collapse
Affiliation(s)
- Kalyan Dey
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560 012, India
| | | |
Collapse
|
7
|
Goyard D, Ortiz AMS, Boturyn D, Renaudet O. Multivalent glycocyclopeptides: conjugation methods and biological applications. Chem Soc Rev 2022; 51:8756-8783. [PMID: 36193815 PMCID: PMC9575389 DOI: 10.1039/d2cs00640e] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Indexed: 11/21/2022]
Abstract
Click chemistry was extensively used to decorate synthetic multivalent scaffolds with glycans to mimic the cell surface glycocalyx and to develop applications in glycosciences. Conjugation methods such as oxime ligation, copper(I)-catalyzed alkyne-azide cycloaddition, thiol-ene coupling, squaramide coupling or Lansbury aspartylation proved particularly suitable to achieve this purpose. This review summarizes the synthetic strategies that can be used either in a stepwise manner or in an orthogonal one-pot approach, to conjugate multiple copies of identical or different glycans to cyclopeptide scaffolds (namely multivalent glycocyclopeptides) having different size, valency, geometry and molecular composition. The second part of this review will describe the potential of these structures to interact with various carbohydrate binding proteins or to stimulate immunity against tumor cells.
Collapse
Affiliation(s)
- David Goyard
- Univ. Grenoble Alpes, CNRS, DCM UMR 5250, F-38000 Grenoble, France.
| | | | - Didier Boturyn
- Univ. Grenoble Alpes, CNRS, DCM UMR 5250, F-38000 Grenoble, France.
| | - Olivier Renaudet
- Univ. Grenoble Alpes, CNRS, DCM UMR 5250, F-38000 Grenoble, France.
| |
Collapse
|
8
|
Poudel DP, Taylor RT. Thiol-Ene Click-Inspired Late-Stage Modification of Long-Chain Polyurethane Dendrimers. REACTIONS 2021; 3:12-29. [DOI: 10.3390/reactions3010002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
Abstract
The construction of well-defined polyurethane dendrimers is challenging due to the high reactivity of externally added or in situ formed isocyanates leading to the formation of side products. With a primary focus of dendrimer research being the interaction of the periphery and the core, we report the synthesis of a common polyurethane dendron, which allows for the late-stage variation of both the periphery and the core. The periphery can be varied simply by installing a clickable unit in the dendron and then attaching to the core and vice-versa. Thus, a common dendron allows for varying periphery and core in the final two steps. To accomplish this, a protecting group-free, one-pot multicomponent Curtius reaction was utilized to afford a robust and versatile AB2 type polyurethane dendron employing commercially available simple molecules: 5-hydroxyisophthalic acid, 11-bromoundecanol, and 4-penten-1-ol. Subsequent late-stage modifications of either dendrons or dendrimers via a thiol-ene click reaction gave surface-functionalized alternating aromatic-aliphatic polyurethane homodendrimers to generation-three (G3). The dendrons and the dendrimers were characterized by NMR, mass spectrometry, and FT-IR analysis. A bifunctional AB2 type dendritic monomer demonstrated this approach’s versatility that can either undergo a thiol-ene click or attachment to the core. This approach enables the incorporation of functionalities at the periphery and the core that may not withstand the dendrimer growth for the synthesis of polyurethane dendrimers and other dendritic macromolecules.
Collapse
Affiliation(s)
- Dhruba P. Poudel
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | - Richard T. Taylor
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| |
Collapse
|
9
|
Goyard D, Roubinet B, Vena F, Landemarre L, Renaudet O. Homo- and Heterovalent Neoglycoproteins as Ligands for Bacterial Lectins. Chempluschem 2021; 87:e202100481. [PMID: 34931469 DOI: 10.1002/cplu.202100481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/03/2021] [Indexed: 11/11/2022]
Abstract
Click chemistry gives access to unlimited set of multivalent glycoconjugates to explore carbohydrate-protein interactions and discover high affinity ligands. In this study, we have created supramolecular systems based on a carrier protein that was grafted by Cu(I)-catalyzed azide-alkyne cycloaddition with tetravalent glycodendrons presenting αGal, βGal and/or αFuc. Binding studies of the homo- (4 a-c) and heterovalent (5) neoglycoproteins (neoGPs) with the LecA and LecB lectins from P. aeruginosa has first confirmed the interest of the multivalent presentation of glycodendrons by the carrier protein (IC50 up to 2.8 nM). Moreover, these studies have shown that the heterovalent display of glycans (5) allows the interaction with both lectins (IC50 of 10 nM) despite the presence of unspecific moieties, and even with similar efficiency for LecB. These results demonstrate the potential of multivalent and multispecific neoGPs as a promising strategy to fight against resistant pathogens.
Collapse
Affiliation(s)
- David Goyard
- Univ. Grenoble Alpes, CNRS, DCM UMR 5250, 38000, Grenoble, France
| | | | | | | | - Olivier Renaudet
- Univ. Grenoble Alpes, CNRS, DCM UMR 5250, 38000, Grenoble, France
| |
Collapse
|
10
|
Agrahari AK, Jaiswal MK, Yadav MS, Tiwari VK. CuAAC mediated synthesis of cyclen cored glycodendrimers of high sugar tethers at low generation. Carbohydr Res 2021; 508:108403. [PMID: 34329845 DOI: 10.1016/j.carres.2021.108403] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/12/2021] [Accepted: 07/19/2021] [Indexed: 02/08/2023]
Abstract
Glycodendrimers are receiving considerable attention to mimic a number of imperative features of cell surface glycoconjugate and acquired excellent relevance to a wide domain of investigations including medicine, pharmaceutics, catalysis, nanotechnology, carbohydrate-protein interaction, and moreover in drug delivery systems. Toward this end, an expeditious, modular, and regioselective triazole-forming CuAAC click approach along with double stage convergent synthetic method was chosen to develop a variety of novel chlorine-containing cyclen cored glycodendrimers of high sugar tethers at low generation of promising therapeutic potential. We developed a novel chlorine-containing hypercore unit with 12 alkynyl functionality originated from cyclen scaffold which was confirmed by its single crystal X-ray data analysis. Further, the modular CuAAC technique was utilized to produce a variety of novel 12-sugar coated (G0) glycodendrimers 12-15 adorn with β-Glc-, β-Man-, β-Gal-, β-Lac, along with 36-galactose coated (G1) glycodendrimer 18 in good-to-high yield. The structures of the developed glycodendrimer architectures have been well elucidated by extensive spectral analysis including NMR (1H & 13CNMR), HRMS, MALDI-TOF MS, UV-Vis, IR, and SEC (Size Exclusion Chromatogram) data.
Collapse
Affiliation(s)
- Anand K Agrahari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Manoj K Jaiswal
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Mangal S Yadav
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Vinod K Tiwari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
11
|
Sharma R, Liaw K, Sharma A, Jimenez A, Chang M, Salazar S, Amlani I, Kannan S, Kannan RM. Glycosylation of PAMAM dendrimers significantly improves tumor macrophage targeting and specificity in glioblastoma. J Control Release 2021; 337:179-192. [PMID: 34274384 PMCID: PMC8600682 DOI: 10.1016/j.jconrel.2021.07.018] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/14/2021] [Accepted: 07/13/2021] [Indexed: 12/22/2022]
Abstract
Glioblastoma is among the most aggressive forms of cancers, with a median survival of just 15-20 months for patients despite maximum clinical intervention. The majority of conventional anti-cancer therapies fail due to associated off-site toxicities which can be addressed by developing target-specific drug delivery systems. Advances in nanotechnology have provided targeted systems to overcome drug delivery barriers associated with brain and other types of cancers. Dendrimers have emerged as promising vehicles for targeted drug and gene delivery. Dendrimer-mediated targeting strategies can be further enhanced through the addition of targeting ligands to enable receptor-specific interactions. Here, we explore the sugar moieties as ligands conjugated to hydroxyl-terminated polyamidoamine dendrimers to leverage altered metabolism in cancer and immune targeting. Using a highly facile click chemistry approach, we modified the surface of dendrimers with glucose, mannose, or galactose moieties in a well-defined manner, to target upregulated sugar transporters in the context of glioblastoma. We show that glucose modification significantly enhanced targeting of tumor-associated macrophages (TAMs) and microglia by increasing brain penetration and cellular internalization, while galactose modification shifts targeting away from TAMs towards galectins on glioblastoma tumor cells. Mannose modification did not alter TAMs and microglia targeting of these dendrimers, but did alter their kinetics of accumulation within the GBM tumor. The whole body biodistribution was largely similar between the systems. These results demonstrate that dendrimers are versatile delivery vehicles that can be modified to tailor their targeting for the treatment of glioblastoma and other cancers.
Collapse
Affiliation(s)
- Rishi Sharma
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Kevin Liaw
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Anjali Sharma
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Ambar Jimenez
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Michelle Chang
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Sebastian Salazar
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Imaan Amlani
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Sujatha Kannan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Hugo W. Moser Research Institute at Kennedy Krieger, Inc., Baltimore, MD 21205, USA
| | - Rangaramanujam M Kannan
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA; Hugo W. Moser Research Institute at Kennedy Krieger, Inc., Baltimore, MD 21205, USA.
| |
Collapse
|
12
|
Sharma R, Porterfield JE, An HT, Jimenez AS, Lee S, Kannan S, Sharma A, Kannan RM. Rationally Designed Galactose Dendrimer for Hepatocyte-Specific Targeting and Intracellular Drug Delivery for the Treatment of Liver Disorders. Biomacromolecules 2021; 22:3574-3589. [PMID: 34324818 DOI: 10.1021/acs.biomac.1c00649] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Over two million people die of liver disorders every year globally. Hepatocytes are the key cells affected in several acute and chronic liver diseases. The current clinical outcomes of liver-targeted nanoparticles are limited, necessitating the need to develop smart hepatocyte-targeted drug delivery systems. Here, we present the rational design and development of a hepatocyte-targeting glycodendrimer (GAL-24) built from biocompatible building blocks, using expedite and facile chemical methodology. GAL-24 is designed to inherently target asialoglycoprotein receptor 1 (ASGP-R) on hepatocytes and shows significant accumulation in the liver (20% of injected dose), just 1 h after systemic administration. This is highly specific to hepatocytes, with over 80% of hepatocytes showing GAL-24-Cy5 signal at 24 h. GAL-24-Cy5 maintains hepatocyte-targeting capabilities in both a mouse model of severe acetaminophen poisoning-induced hepatic necrosis and a rat model of nonalcoholic steatohepatitis (NASH). This GAL-24 nanoplatform holds great promise for improved drug delivery to hepatocytes to combat many liver disorders.
Collapse
Affiliation(s)
- Rishi Sharma
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| | - Joshua E Porterfield
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States.,Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Hyoung-Tae An
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States.,Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
| | - Ambar Scarlet Jimenez
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| | - Seulki Lee
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States.,Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
| | - Sujatha Kannan
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States.,Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States.,Hugo W. Moser Research Institute at Kennedy Krieger, Inc., Baltimore, Maryland 21205, United States
| | - Anjali Sharma
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| | - Rangaramanujam M Kannan
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States.,Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States.,Hugo W. Moser Research Institute at Kennedy Krieger, Inc., Baltimore, Maryland 21205, United States
| |
Collapse
|
13
|
Agrahari AK, Bose P, Jaiswal MK, Rajkhowa S, Singh AS, Hotha S, Mishra N, Tiwari VK. Cu(I)-Catalyzed Click Chemistry in Glycoscience and Their Diverse Applications. Chem Rev 2021; 121:7638-7956. [PMID: 34165284 DOI: 10.1021/acs.chemrev.0c00920] [Citation(s) in RCA: 180] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Copper(I)-catalyzed 1,3-dipolar cycloaddition between organic azides and terminal alkynes, commonly known as CuAAC or click chemistry, has been identified as one of the most successful, versatile, reliable, and modular strategies for the rapid and regioselective construction of 1,4-disubstituted 1,2,3-triazoles as diversely functionalized molecules. Carbohydrates, an integral part of living cells, have several fascinating features, including their structural diversity, biocompatibility, bioavailability, hydrophilicity, and superior ADME properties with minimal toxicity, which support increased demand to explore them as versatile scaffolds for easy access to diverse glycohybrids and well-defined glycoconjugates for complete chemical, biochemical, and pharmacological investigations. This review highlights the successful development of CuAAC or click chemistry in emerging areas of glycoscience, including the synthesis of triazole appended carbohydrate-containing molecular architectures (mainly glycohybrids, glycoconjugates, glycopolymers, glycopeptides, glycoproteins, glycolipids, glycoclusters, and glycodendrimers through regioselective triazole forming modular and bio-orthogonal coupling protocols). It discusses the widespread applications of these glycoproducts as enzyme inhibitors in drug discovery and development, sensing, gelation, chelation, glycosylation, and catalysis. This review also covers the impact of click chemistry and provides future perspectives on its role in various emerging disciplines of science and technology.
Collapse
Affiliation(s)
- Anand K Agrahari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Priyanka Bose
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Manoj K Jaiswal
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Sanchayita Rajkhowa
- Department of Chemistry, Jorhat Institute of Science and Technology (JIST), Jorhat, Assam 785010, India
| | - Anoop S Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Srinivas Hotha
- Department of Chemistry, Indian Institute of Science and Engineering Research (IISER), Pune, Maharashtra 411021, India
| | - Nidhi Mishra
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Vinod K Tiwari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| |
Collapse
|
14
|
Click chemistry strategies for the accelerated synthesis of functional macromolecules. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210126] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
15
|
Mousavifar L, Roy R. Design, Synthetic Strategies, and Therapeutic Applications of Heterofunctional Glycodendrimers. Molecules 2021; 26:2428. [PMID: 33921945 PMCID: PMC8122629 DOI: 10.3390/molecules26092428] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/12/2021] [Accepted: 04/15/2021] [Indexed: 12/11/2022] Open
Abstract
Glycodendrimers have attracted considerable interest in the field of dendrimer sciences owing to their plethora of implications in biomedical applications. This is primarily due to the fact that cell surfaces expose a wide range of highly diversified glycan architectures varying by the nature of the sugars, their number, and their natural multiantennary structures. This particular situation has led to cancer cell metastasis, pathogen recognition and adhesion, and immune cell communications that are implicated in vaccine development. The diverse nature and complexity of multivalent carbohydrate-protein interactions have been the impetus toward the syntheses of glycodendrimers. Since their inception in 1993, chemical strategies toward glycodendrimers have constantly evolved into highly sophisticated methodologies. This review constitutes the first part of a series of papers dedicated to the design, synthesis, and biological applications of heterofunctional glycodendrimers. Herein, we highlight the most common synthetic approaches toward these complex molecular architectures and present modern applications in nanomolecular therapeutics and synthetic vaccines.
Collapse
Affiliation(s)
| | - René Roy
- Glycosciences and Nanomaterial Laboratory, Université du Québec à Montréal, P.O. Box 8888, Succ. Centre-Ville, Montréal, QC H3C 3P8, Canada;
| |
Collapse
|
16
|
Milenin SA, Cherkaev GV, Demchenko NV, Serkova ES, Krasnova IY, Selezneva EV, Buzin MI, Bakirov AV, Vasil’ev VG, Shifrina ZB, Chvalun SN, Muzafarov AM. Influence of the Growing Flexible Shell on the Molecular Behavior of Hybrid Dendrimers. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01453] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Sergey A. Milenin
- N.S. Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences, 70 Profsouznaya St., Moscow 117393, Russia
| | - Georgy V. Cherkaev
- N.S. Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences, 70 Profsouznaya St., Moscow 117393, Russia
| | - Nina V. Demchenko
- N.S. Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences, 70 Profsouznaya St., Moscow 117393, Russia
| | - Elena S. Serkova
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov St., Moscow 119991, Russia
| | - Irina Yu. Krasnova
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov St., Moscow 119991, Russia
| | - Elizaveta V. Selezneva
- N.S. Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences, 70 Profsouznaya St., Moscow 117393, Russia
| | - Mikhail I. Buzin
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov St., Moscow 119991, Russia
| | - Artem V. Bakirov
- N.S. Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences, 70 Profsouznaya St., Moscow 117393, Russia
- National Research Center “Kurchatov Institute”, Akademika Kurchatova pl., 1, Moscow 123182, Russia
| | - Viktor G. Vasil’ev
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov St., Moscow 119991, Russia
| | - Zinaida B. Shifrina
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov St., Moscow 119991, Russia
| | - Sergey N. Chvalun
- National Research Center “Kurchatov Institute”, Akademika Kurchatova pl., 1, Moscow 123182, Russia
| | - Aziz M. Muzafarov
- N.S. Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences, 70 Profsouznaya St., Moscow 117393, Russia
| |
Collapse
|
17
|
Agrahari AK, Singh AS, Mukherjee R, Tiwari VK. An expeditious click approach towards the synthesis of galactose coated novel glyco-dendrimers and dentromers utilizing a double stage convergent method. RSC Adv 2020; 10:31553-31562. [PMID: 35520637 PMCID: PMC9056565 DOI: 10.1039/d0ra05289b] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 08/10/2020] [Indexed: 11/29/2022] Open
Abstract
The primary motive behind this article is to bring to the forefront a unique kind of dendrimer which has remained a dark horse since its discovery, namely dentromer. We herein report the synthesis of glycodendrimers and glycodentromers crowned with galactose units by harnessing an expeditious synthesis of dendrimer core 18 and dentromer core 19, divergently with branching directionality (1 → 2) and (1 → 3), respectively. A competent, double stage convergent synthetic path was chosen to facilitate ease of refining and spectroscopic elucidations. By exploiting a Cu(i)-catalyzed azide-alkyne cycloaddition (CuAAC) reaction strategy, we successfully developed a new series of galactosylated dendrimers 20, 21, 22, and 24 containing 6, 12, 18, and 18 peripheral galactose units, respectively. We are first to report the practical synthesis of 9-peripheral galactose coated glycodentromer 23 (0th generation) and 27-peripheral galactose coated glycodentromer 25 (1st generation). These synthesized scaffolds were characterized by spectral studies such as 1H, 13C NMR, FT-IR, MALDI-TOF MS, HRMS and SEC analysis. Additionally, gel permeation chromatography depicted the regular progression in size from 6 to 27-peripheral galactose coated glycodendrimers along with glycodentromers, with their high monodispersity. Also, the glyco-dendrimers and dentromers synthesized from two different hypercore units i.e. dendrimers core (18) and dentromer core (19), have been supported by their UV-visible absorbance and emission spectroscopy.
Collapse
Affiliation(s)
- Anand K Agrahari
- Department of Chemistry, Centre of Advanced Study, Institute of Science, Banaras Hindu University Varanasi-221005 India
| | - Anoop S Singh
- Department of Chemistry, Centre of Advanced Study, Institute of Science, Banaras Hindu University Varanasi-221005 India
| | - Rishav Mukherjee
- Department of Chemistry, Centre of Advanced Study, Institute of Science, Banaras Hindu University Varanasi-221005 India
| | - Vinod K Tiwari
- Department of Chemistry, Centre of Advanced Study, Institute of Science, Banaras Hindu University Varanasi-221005 India
| |
Collapse
|
18
|
Skwarecki AS, Nowak MG, Milewska MJ. Synthetic strategies in construction of organic macromolecular carrier-drug conjugates. Org Biomol Chem 2020; 18:5764-5783. [PMID: 32677650 DOI: 10.1039/d0ob01101k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Many metabolic inhibitors, considered potential antimicrobial or anticancer drug candidates, exhibit very limited ability to cross the biological membranes of target cells. The restricted cellular penetration of those molecules is often due to their highhydrophilicity. One of the possible solutions to this problem is a conjugation of an inhibitor with a molecular organic nanocarrier. The conjugate thus formed should be able to penetrate the membrane(s) by direct translocation, endocytosis or active transport mechanisms and once internalized, the active component could reach its intracellular target, either after release from the conjugate or in an intact form. Several such nanocarriers have been proposed so far, including macromolecular systems, carbon nanotubes and dendrimers. Herein, we present a comprehensive review of the current status of rational design and synthesis of macromolecular organic nanocarrier-drug conjugates, with special attention focused on the mode of coupling of a nanocarrier moiety with a "cargo" molecule through linking fragments of non-cleavable or cleavable type.
Collapse
Affiliation(s)
- Andrzej S Skwarecki
- Department of Pharmaceutical Technology and Biochemistry, Gdańsk University of Technology, 11/12 Gabriela Narutowicza Street, 80-233 Gdańsk, Poland.
| | - Michał G Nowak
- Department of Organic Chemistry, Gdańsk University of Technology, 11/12 Gabriela Narutowicza Street, 80-233 Gdańsk, Poland
| | - Maria J Milewska
- Department of Organic Chemistry, Gdańsk University of Technology, 11/12 Gabriela Narutowicza Street, 80-233 Gdańsk, Poland
| |
Collapse
|
19
|
García-Gallego S, Andrén OCJ, Malkoch M. Accelerated Chemoselective Reactions to Sequence-Controlled Heterolayered Dendrimers. J Am Chem Soc 2020; 142:1501-1509. [PMID: 31895981 DOI: 10.1021/jacs.9b11726] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Chemoselective reactions are a highly desirable approach to generate well-defined functional macromolecules. Their extraordinary efficiency and selectivity enable the development of flawless structures, such as dendrimers, with unprecedented structure-to-property capacity but with typically tedious synthetic protocols. Here we demonstrate the potency of chemoselective reactions to accomplish sequence-controlled heterolayered dendrimers. An accurate accelerated design of bis-MPA monomers with orthogonally complementary moieties and a wisely selected chemical toolbox generated highly complex monodisperse dendrimers through simplified protocols. The versatility of the strategy was proved by obtaining different dendritic families with different properties after altering the order of addition of the monomers. Moreover, we evaluated the feasibility of the one-pot approach toward these heterolayered dendrimers as proof-of-concept.
Collapse
Affiliation(s)
- Sandra García-Gallego
- Royal Institute of Technology , School of Chemical Science and Engineering, Fiber and Polymer Technology , Teknikringen 56-58 , SE-100 44 Stockholm , Sweden.,Department of Organic and Inorganic Chemistry and Research Institute in Chemistry "Andrés M. del Río" (IQAR) , University of Alcalá , 28805 Madrid , Spain
| | - Oliver C J Andrén
- Royal Institute of Technology , School of Chemical Science and Engineering, Fiber and Polymer Technology , Teknikringen 56-58 , SE-100 44 Stockholm , Sweden
| | - Michael Malkoch
- Royal Institute of Technology , School of Chemical Science and Engineering, Fiber and Polymer Technology , Teknikringen 56-58 , SE-100 44 Stockholm , Sweden
| |
Collapse
|
20
|
Sharma A, Sharma R, Zhang Z, Liaw K, Kambhampati SP, Porterfield JE, Lin KC, DeRidder LB, Kannan S, Kannan RM. Dense hydroxyl polyethylene glycol dendrimer targets activated glia in multiple CNS disorders. SCIENCE ADVANCES 2020; 6:eaay8514. [PMID: 32010790 PMCID: PMC6976300 DOI: 10.1126/sciadv.aay8514] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 11/20/2019] [Indexed: 05/23/2023]
Abstract
Poor transport of neuropharmaceutics through central nervous system (CNS) barriers limits the development of effective treatments for CNS disorders. We present the facile synthesis of a novel neuroinflammation-targeting polyethylene glycol-based dendrimer (PEGOL-60) using an efficient click chemistry approach. PEGOL-60 reduces synthetic burden by achieving high hydroxyl surface density at low generation, which plays a key role in brain penetration and glia targeting of dendrimers in CNS disorders. Systemically administered PEGOL-60 crosses impaired CNS barriers and specifically targets activated microglia/macrophages at the injured site in diverse animal models for cerebral palsy, glioblastoma, and age-related macular degeneration, demonstrating its potential to overcome impaired blood-brain, blood-tumor-brain, and blood-retinal barriers and target key cells in the CNS. PEGOL-60 also exhibits powerful intrinsic anti-oxidant and anti-inflammatory effects in inflamed microglia in vitro. Therefore, PEGOL-60 is an effective vehicle to specifically deliver therapies to sites of CNS injury for enhanced therapeutic outcomes in a range of neuroinflammatory diseases.
Collapse
Affiliation(s)
- Anjali Sharma
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Rishi Sharma
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Zhi Zhang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Kevin Liaw
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore MD 21218, USA
| | - Siva P. Kambhampati
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Joshua E. Porterfield
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore MD 21218, USA
| | - Ku Chien Lin
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore MD 21218, USA
| | - Louis B. DeRidder
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore MD 21218, USA
| | - Sujatha Kannan
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Hugo W. Moser Research Institute at Kennedy Krieger Inc., Baltimore, MD 21205, USA
| | - Rangaramanujam M. Kannan
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore MD 21218, USA
- Hugo W. Moser Research Institute at Kennedy Krieger Inc., Baltimore, MD 21205, USA
| |
Collapse
|
21
|
Dias AP, da Silva Santos S, da Silva JV, Parise-Filho R, Igne Ferreira E, Seoud OE, Giarolla J. Dendrimers in the context of nanomedicine. Int J Pharm 2019; 573:118814. [PMID: 31759101 DOI: 10.1016/j.ijpharm.2019.118814] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/17/2019] [Accepted: 10/18/2019] [Indexed: 01/23/2023]
Abstract
Dendrimers are globular structures, presenting an initiator core, repetitive layers starting radially from the core and terminal groups on the surface, resembling tree architecture. These structures have been studied in many biological applications, as drug, DNA, RNA and proteins delivery, as well as imaging and radiocontrast agents. With reference to that, this review focused in providing examples of dendrimers used in nanomedicine. Although most studies emphasize cancer, there are others which reveal action in the neurosystem, reducing either neuroinflammation or protein aggregation. Dendrimers can carry bioactive compounds by covalent bond (dendrimer prodrug), or by ionic interaction or adsortion in the internal space of the nanostructure. Additionally, dendrimers can be associated with other polymers, as PEG (polyethylene glycol), and with targeting structures as aptamers, antibodies, folic acid and carbohydrates. Their products in preclinical/clinical trial and those in the market are also discussed, with a total of six derivatives in clinical trials and seven products available in the market.
Collapse
Affiliation(s)
- Ana Paula Dias
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo - USP, São Paulo, SP 05508-900, Brazil
| | - Soraya da Silva Santos
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo - USP, São Paulo, SP 05508-900, Brazil
| | - João Vitor da Silva
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo - USP, São Paulo, SP 05508-900, Brazil
| | - Roberto Parise-Filho
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo - USP, São Paulo, SP 05508-900, Brazil
| | - Elizabeth Igne Ferreira
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo - USP, São Paulo, SP 05508-900, Brazil
| | - Omar El Seoud
- Department of Organic Chemistry, Institute of Chemistry, University of São Paulo - USP, São Paulo, SP, Brazil
| | - Jeanine Giarolla
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo - USP, São Paulo, SP 05508-900, Brazil.
| |
Collapse
|
22
|
Frayne SH, Stolz RM, Northrop BH. Dendritic architectures by orthogonal thiol-maleimide “click” and furan-maleimide dynamic covalent chemistries. Org Biomol Chem 2019; 17:7878-7883. [DOI: 10.1039/c9ob01459d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Branched monomers containing a focal thiol and furan-protected maleimides provide a “mix and match” approach to layered dendrimers.
Collapse
|
23
|
Sehad C, Shiao TC, Sallam LM, Azzouz A, Roy R. Effect of Dendrimer Generation and Aglyconic Linkers on the Binding Properties of Mannosylated Dendrimers Prepared by a Combined Convergent and Onion Peel Approach. Molecules 2018; 23:E1890. [PMID: 30060568 PMCID: PMC6222628 DOI: 10.3390/molecules23081890] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 07/24/2018] [Accepted: 07/25/2018] [Indexed: 12/22/2022] Open
Abstract
An efficient study of carbohydrate-protein interactions was achieved using multivalent glycodendrimer library. Different dendrimers with varied peripheral sugar densities and linkers provided an arsenal of potential novel therapeutic agents that could be useful for better specific action and greater binding affinities against their cognate protein receptors. Highly effective click chemistry represents the basic method used for the synthesis of mannosylated dendrimers. To this end, we used propargylated scaffolds of varying sugar densities ranging from 2 to 18 for the attachment of azido mannopyranoside derivatives using copper catalyzed click cycloaddition. Mannopyranosides with short and pegylated aglycones were used to evaluate their effects on the kinetics of binding. The mannosylated dendrons were built using varied scaffolds toward the accelerated and combined "onion peel" strategy These carbohydrates have been designed to fight E. coli urinary infections, by inhibiting the formation of bacterial biofilms, thus neutralizing the adhesion of FimH type 1 lectin present at the tip of their fimbriae against the natural multiantennary oligomannosides of uroplakin 1a receptors expressed on uroepithelial tissues. Preliminary DLS studies of the mannosylated dendrimers to cross- link the leguminous lectin Con A used as a model showed their high potency as candidates to fight the E. coli adhesion and biofilm formation.
Collapse
Affiliation(s)
- Celia Sehad
- Department of Chemistry, University of Québec a Montréal, P.O. Box 8888, Succ. Centre-Ville, Montréal, QC H3C 3P8, Canada.
| | - Tze Chieh Shiao
- Department of Chemistry, University of Québec a Montréal, P.O. Box 8888, Succ. Centre-Ville, Montréal, QC H3C 3P8, Canada.
| | - Lamyaa M Sallam
- Department of Chemistry, University of Québec a Montréal, P.O. Box 8888, Succ. Centre-Ville, Montréal, QC H3C 3P8, Canada.
| | - Abdelkrim Azzouz
- Department of Chemistry, University of Québec a Montréal, P.O. Box 8888, Succ. Centre-Ville, Montréal, QC H3C 3P8, Canada.
| | - René Roy
- Department of Chemistry, University of Québec a Montréal, P.O. Box 8888, Succ. Centre-Ville, Montréal, QC H3C 3P8, Canada.
- Glycovax Pharma Inc., 424 Guy, Suite 202, Montreal, QC H3J 1S6, Canada.
| |
Collapse
|
24
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2013-2014. MASS SPECTROMETRY REVIEWS 2018; 37:353-491. [PMID: 29687922 DOI: 10.1002/mas.21530] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 11/29/2016] [Indexed: 06/08/2023]
Abstract
This review is the eighth update of the original article published in 1999 on the application of Matrix-assisted laser desorption/ionization mass spectrometry (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2014. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation, and arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly- saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Much of this material is presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. © 2018 Wiley Periodicals, Inc. Mass Spec Rev 37:353-491, 2018.
Collapse
Affiliation(s)
- David J Harvey
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom
| |
Collapse
|
25
|
Latxague L, Gaubert A, Barthélémy P. Recent Advances in the Chemistry of Glycoconjugate Amphiphiles. Molecules 2018; 23:E89. [PMID: 29301326 PMCID: PMC6017060 DOI: 10.3390/molecules23010089] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 12/22/2017] [Accepted: 12/28/2017] [Indexed: 11/23/2022] Open
Abstract
Glyconanoparticles essentially result from the (covalent or noncovalent) association of nanometer-scale objects with carbohydrates. Such glyconanoparticles can take many different forms and this mini review will focus only on soft materials (colloids, liposomes, gels etc.) with a special emphasis on glycolipid-derived nanomaterials and the chemistry involved for their synthesis. Also this contribution presents Low Molecular Weight Gels (LMWGs) stabilized by glycoconjugate amphiphiles. Such soft materials are likely to be of interest for different biomedical applications.
Collapse
Affiliation(s)
- Laurent Latxague
- ARNA Laboratory, Inserm U1212, CNRS UMR 5320, Université de Bordeaux, F-33000 Bordeaux, France.
| | - Alexandra Gaubert
- ARNA Laboratory, Inserm U1212, CNRS UMR 5320, Université de Bordeaux, F-33000 Bordeaux, France.
| | - Philippe Barthélémy
- ARNA Laboratory, Inserm U1212, CNRS UMR 5320, Université de Bordeaux, F-33000 Bordeaux, France.
| |
Collapse
|
26
|
Abstract
Skin-mediated therapeutic delivery is a potential alternative to traditional drug delivery approaches. However, dermal drug delivery is limited to the molecules with optimal physico-chemical properties. To overcome this barrier for delivering ‘nonideal’ drug molecules across the skin, different drug carriers and penetration enhancement methods have been investigated. Conventional chemical and physical approaches for dermal drug delivery are limited by their skin irritation potential, complexity of application and poor patient compliance. In recent years, dendritic polymers have shown potential in improving the dermal delivery of various molecules. With minimal skin irritation potential and high drug loading capacity, dendrimers offer multiple advantages for improving delivery of drugs across the skin. The current review aims to provide an overview of dendritic polymers for dermal (topical and transdermal) drug delivery. [Formula: see text]
Collapse
|
27
|
Sharma R, Kim SY, Sharma A, Zhang Z, Kambhampati SP, Kannan S, Kannan RM. Activated Microglia Targeting Dendrimer-Minocycline Conjugate as Therapeutics for Neuroinflammation. Bioconjug Chem 2017; 28:2874-2886. [PMID: 29028353 PMCID: PMC6023550 DOI: 10.1021/acs.bioconjchem.7b00569] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Brain-related disorders have outmatched cancer and cardiovascular diseases worldwide as the leading cause of morbidity and mortality. The lack of effective therapies and the relatively dry central nervous system (CNS) drug pipeline pose formidable challenge. Superior, targeted delivery of current clinically approved drugs may offer significant potential. Minocycline has shown promise for the treatment of neurological diseases owing to its ability to penetrate the blood-brain barrier (BBB) and potency. Despite its potential in the clinic and in preclinical models, the high doses needed to affect a positive therapeutic response have led to side effects. Targeted delivery of minocycline to the injured site and injured cells in the brain can be highly beneficial. Systemically administered hydroxyl poly(amidoamine) (PAMAM) generation-6 (G6) dendrimers have a longer blood circulation time and have been shown to cross the impaired BBB. We have successfully prepared and characterized the in vitro efficacy and in vivo targeting ability of hydroxyl-G6 PAMAM dendrimer-9-amino-minocycline conjugate (D-mino). Minocycline is a challenging drug to carry out chemical transformations due to its inherent instability. We used a combination of a highly efficient and mild copper catalyzed azide-alkyne click reaction (CuAAC) along with microwave energy to conjugate 9-amino-minocycline (mino) to the dendrimer surface via enzyme responsive linkages. D-mino was further evaluated for anti-inflammatory and antioxidant activity in lipopolysaccharides-activated murine microglial cells. D-mino conjugates enhanced the intracellular availability of the drug due to their rapid uptake, suppressed inflammatory cytokine tumor necrosis factor α (TNF-α) production, and reduced oxidative stress by suppressing nitric oxide production, all significantly better than the free drug. Fluorescently labeled dendrimer conjugate (Cy5-D-mino) was systematically administered (intravenous, 55 mg/kg) on postnatal day 1 to rabbit kits with a clinically relevant phenotype of cerebral palsy. The in vivo imaging study indicates that Cy5-D-mino crossed the impaired blood-brain barrier and co-localized with activated microglia at the periventricular white matter areas, including the corpus callosum and the angle of the lateral ventricle, with significant implications for positive therapeutic outcomes. The enhanced efficacy of D-mino, when combined with the inherent neuroinflammation-targeting capability of the PAMAM dendrimers, may provide new opportunities for targeted drug delivery to treat neurological disorders.
Collapse
Affiliation(s)
- Rishi Sharma
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| | - Soo-Young Kim
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| | - Anjali Sharma
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| | - Zhi Zhang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
| | - Siva Pramodh Kambhampati
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| | - Sujatha Kannan
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
- Hugo W. Moser Research Institute at Kennedy Krieger, Inc., Baltimore, Maryland 21205, United States
- Kennedy Krieger Institute, Johns Hopkins University for Cerebral Palsy Research Excellence, Baltimore, Maryland 21218, United States
| | - Rangaramanujam M. Kannan
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Hugo W. Moser Research Institute at Kennedy Krieger, Inc., Baltimore, Maryland 21205, United States
- Kennedy Krieger Institute, Johns Hopkins University for Cerebral Palsy Research Excellence, Baltimore, Maryland 21218, United States
| |
Collapse
|
28
|
Bagul RS, Hosseini MM, Shiao TC, Roy R. “Onion peel” glycodendrimer syntheses using mixed triazine and cyclotriphosphazene scaffolds. CAN J CHEM 2017. [DOI: 10.1139/cjc-2017-0220] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
An expeditious synthetic protocol for the construction of glycodendrimers is illustrated using the newly discovered “onion peel” strategy. The onion peel approach and orthogonal coupling strategies were accomplished with rationally design sequential modifications of cyanuric acid. Carefully chosen building blocks and their effective attachment by chemoselective atom economical click reactions, namely Cu (I) azide–alkyne cycloaddition reaction (CuAAC) and photocatalyzed thiol-ene reaction (TEC), allowed rapid build-up of glycodendrimers in contrast to traditional dendrimers syntheses that are based on the repetitive use of identical building blocks to form each layer. The newly formed glycodendrimers were evaluated for their capacity to cross-link carbohydrate-lectin interactions using dynamic light scattering (DLS). Rapid increase in particle size was observed as a function of time when compared to their monomer counterparts resulting from the multivalent lectin cross-linking ability of the new glycodendrimers.
Collapse
Affiliation(s)
- Rahul S. Bagul
- Pharmaqam and Nanoqam, Department of Chemistry, University du Québec à Montréal, P.O. Box 8888, Succ. Centre-ville, Montréal, QC H3C 3P8, Canada
- Pharmaqam and Nanoqam, Department of Chemistry, University du Québec à Montréal, P.O. Box 8888, Succ. Centre-ville, Montréal, QC H3C 3P8, Canada
| | - Maryam M. Hosseini
- Pharmaqam and Nanoqam, Department of Chemistry, University du Québec à Montréal, P.O. Box 8888, Succ. Centre-ville, Montréal, QC H3C 3P8, Canada
- Pharmaqam and Nanoqam, Department of Chemistry, University du Québec à Montréal, P.O. Box 8888, Succ. Centre-ville, Montréal, QC H3C 3P8, Canada
| | - Tze Chieh Shiao
- Pharmaqam and Nanoqam, Department of Chemistry, University du Québec à Montréal, P.O. Box 8888, Succ. Centre-ville, Montréal, QC H3C 3P8, Canada
- Pharmaqam and Nanoqam, Department of Chemistry, University du Québec à Montréal, P.O. Box 8888, Succ. Centre-ville, Montréal, QC H3C 3P8, Canada
| | - René Roy
- Pharmaqam and Nanoqam, Department of Chemistry, University du Québec à Montréal, P.O. Box 8888, Succ. Centre-ville, Montréal, QC H3C 3P8, Canada
- Pharmaqam and Nanoqam, Department of Chemistry, University du Québec à Montréal, P.O. Box 8888, Succ. Centre-ville, Montréal, QC H3C 3P8, Canada
| |
Collapse
|
29
|
Nousir S, Yemelong G, Bouguedoura S, Chabre YM, Shiao TC, Roy R, Azzouz A. Improved carbon dioxide storage over clay-supported perhydroxylated glucodendrimer. CAN J CHEM 2017. [DOI: 10.1139/cjc-2017-0219] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Low-cost biosourced hybrid microporous adsorbents with improved affinity towards carbon dioxyde (CO2) were prepared through the incorporation of various amounts of glucosylated dendrimer into bentonite- and montmorillonite-rich composite materials. Characterization by nitrogen adsorption–desorption isotherms, surface specific and pore size analyses (BET and BJH), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD) revealed changes in the interlayer spacing and textural structure of the materials. Thermal programmed desorption measurements (TPD) showed significant improvements of the retention capacity of CO2 (CRC) and water (WRC). This was explained in terms of enhancement of both surface basicity and hydrophilic character due to the incorporation of terminal polyhydroxyl groups. The CRC was found to vary according to the previous saturation time with CO2 and the carrier gas throughput. CO2 was totally released upon temperature not exceeding 80 °C or even at room temperature upon strong carrier gas stream, thus providing evidence that CO2 capture involves almost exclusively physical interaction with the OH groups of the dendrimer. This result opens promising prospects for the reversible capture of carbon dioxide with easy release without thermal regeneration, more particularly when extending this concept to biosourced dendrimers.
Collapse
Affiliation(s)
- Saadia Nousir
- Nanoqam, Department of Chemistry, University of Quebec at Montreal, Montreal, QC H3C 3P8, Canada
- Nanoqam, Department of Chemistry, University of Quebec at Montreal, Montreal, QC H3C 3P8, Canada
| | - Gerlainde Yemelong
- Nanoqam, Department of Chemistry, University of Quebec at Montreal, Montreal, QC H3C 3P8, Canada
- Nanoqam, Department of Chemistry, University of Quebec at Montreal, Montreal, QC H3C 3P8, Canada
| | - Sameh Bouguedoura
- Nanoqam, Department of Chemistry, University of Quebec at Montreal, Montreal, QC H3C 3P8, Canada
- Nanoqam, Department of Chemistry, University of Quebec at Montreal, Montreal, QC H3C 3P8, Canada
| | - Yoann M. Chabre
- Nanoqam, Department of Chemistry, University of Quebec at Montreal, Montreal, QC H3C 3P8, Canada
- Nanoqam, Department of Chemistry, University of Quebec at Montreal, Montreal, QC H3C 3P8, Canada
| | - Tze Chieh Shiao
- Nanoqam, Department of Chemistry, University of Quebec at Montreal, Montreal, QC H3C 3P8, Canada
- Nanoqam, Department of Chemistry, University of Quebec at Montreal, Montreal, QC H3C 3P8, Canada
| | - René Roy
- Nanoqam, Department of Chemistry, University of Quebec at Montreal, Montreal, QC H3C 3P8, Canada
- Nanoqam, Department of Chemistry, University of Quebec at Montreal, Montreal, QC H3C 3P8, Canada
| | - Abdelkrim Azzouz
- Nanoqam, Department of Chemistry, University of Quebec at Montreal, Montreal, QC H3C 3P8, Canada
- Nanoqam, Department of Chemistry, University of Quebec at Montreal, Montreal, QC H3C 3P8, Canada
| |
Collapse
|
30
|
Chen J, Banaszak Holl MM. Dendrimer and dendrimer–conjugate protein complexes and protein coronas. CAN J CHEM 2017; 95:903-906. [DOI: 10.1139/cjc-2017-0198] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Dendrimers and dendrimer conjugates are widely employed for biological applications such as bio-imaging and drug delivery. Understanding the interaction between dendrimers and their biological environment is key to evaluating the efficacy and safety of these materials. Proteins can form an adsorbed layer, termed a “protein corona”, on dendrimers in either a non-specific or specific fashion. A tight-binding, non-exchangeable corona is defined as a “hard” corona, whereas a loosely bound, highly exchangeable corona is called a “soft” corona. Recent research indicates that small molecules conjugated to the polymer surface can induce protein structural change, leading to tighter protein–dendrimer binding and further protein aggregation. This “triggered” corona formation on dendrimer and dendrimer conjugates is reviewed and discussed along with the existing hard or soft corona model. This review describes the triggered corona model to further the understanding of protein corona formation.
Collapse
Affiliation(s)
- Junjie Chen
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Mark M. Banaszak Holl
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
31
|
Dosekova E, Filip J, Bertok T, Both P, Kasak P, Tkac J. Nanotechnology in Glycomics: Applications in Diagnostics, Therapy, Imaging, and Separation Processes. Med Res Rev 2017; 37:514-626. [PMID: 27859448 PMCID: PMC5659385 DOI: 10.1002/med.21420] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 09/08/2016] [Accepted: 09/21/2016] [Indexed: 12/14/2022]
Abstract
This review comprehensively covers the most recent achievements (from 2013) in the successful integration of nanomaterials in the field of glycomics. The first part of the paper addresses the beneficial properties of nanomaterials for the construction of biosensors, bioanalytical devices, and protocols for the detection of various analytes, including viruses and whole cells, together with their key characteristics. The second part of the review focuses on the application of nanomaterials integrated with glycans for various biomedical applications, that is, vaccines against viral and bacterial infections and cancer cells, as therapeutic agents, for in vivo imaging and nuclear magnetic resonance imaging, and for selective drug delivery. The final part of the review describes various ways in which glycan enrichment can be effectively done using nanomaterials, molecularly imprinted polymers with polymer thickness controlled at the nanoscale, with a subsequent analysis of glycans by mass spectrometry. A short section describing an active glycoprofiling by microengines (microrockets) is covered as well.
Collapse
Affiliation(s)
- Erika Dosekova
- Department of Glycobiotechnology, Institute of ChemistrySlovak Academy of SciencesDubravska cesta 9845 38BratislavaSlovakia
| | - Jaroslav Filip
- Center for Advanced MaterialsQatar UniversityP.O. Box 2713DohaQatar
| | - Tomas Bertok
- Department of Glycobiotechnology, Institute of ChemistrySlovak Academy of SciencesDubravska cesta 9845 38BratislavaSlovakia
| | - Peter Both
- School of Chemistry, Manchester Institute of BiotechnologyThe University of Manchester131 Princess StreetManchesterM1 7DNUK
| | - Peter Kasak
- Center for Advanced MaterialsQatar UniversityP.O. Box 2713DohaQatar
| | - Jan Tkac
- Department of Glycobiotechnology, Institute of ChemistrySlovak Academy of SciencesDubravska cesta 9845 38BratislavaSlovakia
| |
Collapse
|
32
|
Harnoy AJ, Buzhor M, Tirosh E, Shaharabani R, Beck R, Amir RJ. Modular Synthetic Approach for Adjusting the Disassembly Rates of Enzyme-Responsive Polymeric Micelles. Biomacromolecules 2017; 18:1218-1228. [PMID: 28267318 DOI: 10.1021/acs.biomac.6b01906] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Self-assembled nanostructures and their stimuli-responsive degradation have been recently explored to meet the increasing need for advanced biocompatible and biodegradable materials for various biomedical applications. Incorporation of enzymes as triggers that can stimulate the degradation and disassembly of polymeric assemblies may be highly advantageous owing to their high selectivity and natural abundance in all living organisms. One of the key factors to consider when designing enzyme-responsive polymers is the ability to fine-tune the sensitivity of the platform toward its target enzyme in order to control the disassembly rate. In this work, a series of enzyme-responsive amphiphilic PEG-dendron hybrids with increasing number of hydrophobic cleavable end-groups was synthesized, characterized, and compared. These hybrids were shown to self-assemble in aqueous media into nanosized polymeric micelles, which could encapsulate small hydrophobic guests in their cores and release them upon enzymatic stimulus. Utilization of dendritic scaffolds as the responsive blocks granted ultimate control over the number of enzymatically cleavable end-groups. Remarkably, as we increased the number of end-groups, the micellar stability increased significantly and the range of enzymatic sensitivity spanned from highly responsive micelles to practically nondegradable ones. The reported results highlight the remarkable role of hydrophobicity in determining the micellar stability toward enzymatic degradation and its great sensitivity to small structural changes of the hydrophobic block, which govern the accessibility of the cleavable hydrophobic groups to the activating enzyme.
Collapse
Affiliation(s)
- Assaf J Harnoy
- Department of Organic Chemistry, School of Chemistry, Faculty of Exact Sciences, ‡Tel-Aviv University Center for Nanoscience and Nanotechnology, §Department of Physical Chemistry, School of Chemistry, Faculty of Exact Sciences, ∥School of Physics and Astronomy, Faculty of Exact Sciences, and ⊥Blavatnik Center for Drug Discovery, Tel-Aviv University , Tel-Aviv 6997801, Israel
| | - Marina Buzhor
- Department of Organic Chemistry, School of Chemistry, Faculty of Exact Sciences, ‡Tel-Aviv University Center for Nanoscience and Nanotechnology, §Department of Physical Chemistry, School of Chemistry, Faculty of Exact Sciences, ∥School of Physics and Astronomy, Faculty of Exact Sciences, and ⊥Blavatnik Center for Drug Discovery, Tel-Aviv University , Tel-Aviv 6997801, Israel
| | - Einat Tirosh
- Department of Organic Chemistry, School of Chemistry, Faculty of Exact Sciences, ‡Tel-Aviv University Center for Nanoscience and Nanotechnology, §Department of Physical Chemistry, School of Chemistry, Faculty of Exact Sciences, ∥School of Physics and Astronomy, Faculty of Exact Sciences, and ⊥Blavatnik Center for Drug Discovery, Tel-Aviv University , Tel-Aviv 6997801, Israel
| | - Rona Shaharabani
- Department of Organic Chemistry, School of Chemistry, Faculty of Exact Sciences, ‡Tel-Aviv University Center for Nanoscience and Nanotechnology, §Department of Physical Chemistry, School of Chemistry, Faculty of Exact Sciences, ∥School of Physics and Astronomy, Faculty of Exact Sciences, and ⊥Blavatnik Center for Drug Discovery, Tel-Aviv University , Tel-Aviv 6997801, Israel
| | - Roy Beck
- Department of Organic Chemistry, School of Chemistry, Faculty of Exact Sciences, ‡Tel-Aviv University Center for Nanoscience and Nanotechnology, §Department of Physical Chemistry, School of Chemistry, Faculty of Exact Sciences, ∥School of Physics and Astronomy, Faculty of Exact Sciences, and ⊥Blavatnik Center for Drug Discovery, Tel-Aviv University , Tel-Aviv 6997801, Israel
| | - Roey J Amir
- Department of Organic Chemistry, School of Chemistry, Faculty of Exact Sciences, ‡Tel-Aviv University Center for Nanoscience and Nanotechnology, §Department of Physical Chemistry, School of Chemistry, Faculty of Exact Sciences, ∥School of Physics and Astronomy, Faculty of Exact Sciences, and ⊥Blavatnik Center for Drug Discovery, Tel-Aviv University , Tel-Aviv 6997801, Israel
| |
Collapse
|
33
|
Li N, Tsoi TH, Lo WS, Gu YJ, Wan HY, Wong WT. An efficient approach to synthesize glycerol dendrimers via thiol–yne “click” chemistry and their application in stabilization of gold nanoparticles with X-ray attenuation properties. Polym Chem 2017. [DOI: 10.1039/c7py01436h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We report an efficient synthesis of glycerol dendrimers via thiol–yne chemistry for stabilization of AuNPs with X-ray attenuation properties.
Collapse
Affiliation(s)
- Na Li
- Department of Applied Biology and Chemical Technology
- The Hong Kong Polytechnic University
- Hung Hom
- China
| | - Tik-Hung Tsoi
- Department of Applied Biology and Chemical Technology
- The Hong Kong Polytechnic University
- Hung Hom
- China
| | - Wai-Sum Lo
- Department of Applied Biology and Chemical Technology
- The Hong Kong Polytechnic University
- Hung Hom
- China
| | - Yan-Juan Gu
- Department of Applied Biology and Chemical Technology
- The Hong Kong Polytechnic University
- Hung Hom
- China
| | - Hoi-Ying Wan
- Department of Applied Biology and Chemical Technology
- The Hong Kong Polytechnic University
- Hung Hom
- China
| | - Wing-Tak Wong
- Department of Applied Biology and Chemical Technology
- The Hong Kong Polytechnic University
- Hung Hom
- China
| |
Collapse
|
34
|
Bagul RS, Hosseini M, Shiao TC, Saadeh NK, Roy R. Heterolayered hybrid dendrimers with optimized sugar head groups for enhancing carbohydrate–protein interactions. Polym Chem 2017. [DOI: 10.1039/c7py01044c] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Novel heterolayered (“onion peel”) hybrid glycodendrimers containing optimised sugar head groups with galactoside and mannoside units with affinities for two different lectins.
Collapse
Affiliation(s)
| | | | | | | | - René Roy
- Pharmaqam
- Université du Québec à Montréal
- Montréal
- Canada
| |
Collapse
|
35
|
Pifferi C, Goyard D, Gillon E, Imberty A, Renaudet O. Synthesis of Mannosylated Glycodendrimers and Evaluation against BC2L-A Lectin from Burkholderia Cenocepacia. Chempluschem 2016; 82:390-398. [PMID: 31962032 DOI: 10.1002/cplu.201600569] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Indexed: 01/29/2023]
Abstract
Chronic colonization of lungs by opportunist bacteria is the major cause of mortality for cystic fibrosis patients. Among these pathogens, Burkholderia cenocepacia is responsible for cepacia syndrome, a deadly exacerbation of infection that is the main cause of poor outcomes of lung transplantation. This bacterium contains three soluble carbohydrate-binding proteins, including the B. cenocepacia lectin A (BC2L-A), which is proposed to bind to oligomannose-type N-glycan structures to adhere to host tissues. In this work, several mannosylated glycoclusters and glycodendrimers with valencies ranging from four to 24 were prepared and their interactions with BC2L-A were thermodynamically characterized by isothermal titration calorimetry. The results show that a 24-valent structure binds to BC2L-A at nanomolar concentration, which makes this compound the highest affinity monodisperse ligand for this lectin.
Collapse
Affiliation(s)
- Carlo Pifferi
- Université Grenoble Alpes, CNRS, DCM UMR 5250, 38000, Grenoble, France
| | - David Goyard
- Université Grenoble Alpes, CNRS, DCM UMR 5250, 38000, Grenoble, France
| | - Emilie Gillon
- CERMAV, UPR5301, CNRS, and Université Grenoble Alpes, 601 rue de la Chimie, BP 53, 38041, Grenoble, France
| | - Anne Imberty
- CERMAV, UPR5301, CNRS, and Université Grenoble Alpes, 601 rue de la Chimie, BP 53, 38041, Grenoble, France
| | - Olivier Renaudet
- Université Grenoble Alpes, CNRS, DCM UMR 5250, 38000, Grenoble, France.,Institut Universitaire de France, 103 boulevard Saint-Michel, 75005, Paris, France
| |
Collapse
|
36
|
Cyclotriphosphazene, an old compound applied to the synthesis of smart dendrimers with tailored properties. PURE APPL CHEM 2016. [DOI: 10.1515/pac-2016-0711] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractThe versatile reactivity of hexachlorocyclotriphosphazene (N3P3Cl6) has been developed for the synthesis of specifically engineered dendrimers. Dendrimers are hyperbranched macromolecules built by concentric layers constituted of associated monomeric units. Many of the properties of dendrimers depend on the type of their surface (terminal) functions, which are generally all identical. For some specific purposes, it is desirable to have one function that is different at the level of the core. Hexachlorocyclotriphosphazene offers the possibility to differentiate the reactivity of one (or more) Cl from the others, for producing specifically engineered dendritic tools. These specific reactions on N3P3Cl6 have produced highly dense dendrimers, Janus dendrimers (two faces), tools for functionalizing materials, with uses as catalysts, as chemical sensors, for trapping CO2, for the culture of cells, or for imaging biological events. These properties will be emphasized in this review.
Collapse
|
37
|
Katir N, El Brahmi N, Marcotte N, Majoral JP, Bousmina M, El Kadib A. Orthogonal Synthesis of Covalent Polydendrimer Frameworks by Fusing Classical and Onion-Peel Phosphorus-Based Dendritic Units. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b01365] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Nadia Katir
- Euromed
Research Center, Engineering Division, Euro-Mediterranean University of Fes (UEMF), Fès-Shore, Route de Sidi Hrazem, 30070 Fès, Morocco
| | - Nabil El Brahmi
- Euromed
Research Center, Engineering Division, Euro-Mediterranean University of Fes (UEMF), Fès-Shore, Route de Sidi Hrazem, 30070 Fès, Morocco
| | - Nathalie Marcotte
- Institut
Charles Gerhardt UMR 5253, CNRS/ENSCM/UM, 8 rue de l’Ecole Normale, Montpellier F-34295 Cedex, France
| | - Jean Pierre Majoral
- Laboratoire
de Chimie de Coordination (LCC), CNRS, 205 route de Narbonne, 31077 Toulouse, France
| | - Mosto Bousmina
- Euromed
Research Center, Engineering Division, Euro-Mediterranean University of Fes (UEMF), Fès-Shore, Route de Sidi Hrazem, 30070 Fès, Morocco
| | - Abdelkrim El Kadib
- Euromed
Research Center, Engineering Division, Euro-Mediterranean University of Fes (UEMF), Fès-Shore, Route de Sidi Hrazem, 30070 Fès, Morocco
| |
Collapse
|
38
|
He XP, Zeng YL, Zang Y, Li J, Field RA, Chen GR. Carbohydrate CuAAC click chemistry for therapy and diagnosis. Carbohydr Res 2016; 429:1-22. [DOI: 10.1016/j.carres.2016.03.022] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 03/22/2016] [Accepted: 03/23/2016] [Indexed: 12/12/2022]
|
39
|
Multivalent Carbohydrate-Lectin Interactions: How Synthetic Chemistry Enables Insights into Nanometric Recognition. Molecules 2016; 21:molecules21050629. [PMID: 27187342 PMCID: PMC6274006 DOI: 10.3390/molecules21050629] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 05/02/2016] [Accepted: 05/10/2016] [Indexed: 12/15/2022] Open
Abstract
Glycan recognition by sugar receptors (lectins) is intimately involved in many aspects of cell physiology. However, the factors explaining the exquisite selectivity of their functional pairing are not yet fully understood. Studies toward this aim will also help appraise the potential for lectin-directed drug design. With the network of adhesion/growth-regulatory galectins as therapeutic targets, the strategy to recruit synthetic chemistry to systematically elucidate structure-activity relationships is outlined, from monovalent compounds to glyco-clusters and glycodendrimers to biomimetic surfaces. The versatility of the synthetic procedures enables to take examining structural and spatial parameters, alone and in combination, to its limits, for example with the aim to produce inhibitors for distinct galectin(s) that exhibit minimal reactivity to other members of this group. Shaping spatial architectures similar to glycoconjugate aggregates, microdomains or vesicles provides attractive tools to disclose the often still hidden significance of nanometric aspects of the different modes of lectin design (sequence divergence at the lectin site, differences of spatial type of lectin-site presentation). Of note, testing the effectors alone or in combination simulating (patho)physiological conditions, is sure to bring about new insights into the cooperation between lectins and the regulation of their activity.
Collapse
|
40
|
Shiao TC, Rej R, Rose M, Pavan GM, Roy R. Synthesis of Dense and Chiral Dendritic Polyols Using Glyconanosynthon Scaffolds. Molecules 2016; 21:448. [PMID: 27049377 PMCID: PMC6274151 DOI: 10.3390/molecules21040448] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 03/24/2016] [Accepted: 03/28/2016] [Indexed: 12/31/2022] Open
Abstract
Most classical dendrimers are frequently built-up from identical repeating units of low valency (usually AB2 monomers). This strategy necessitates several generations to achieve a large number of surface functionalities. In addition, these typical monomers are achiral. We propose herein the use of sugar derivatives consisting of several and varied functionalities with their own individual intrinsic chirality as both scaffolds/core as well as repeating units. This approach allows the construction of chiral, dense dendrimers with a large number of surface groups at low dendrimer generations. Perpropargylated β-d-glucopyranoside, serving as an A5 core, together with various derivatives, such as 2-azidoethyl tetra-O-allyl-β-d-glucopyranoside, serving as an AB4 repeating moiety, were utilized to construct chiral dendrimers using “click chemistry” (CuAAC reaction). These were further modified by thiol-ene and thiol-yne click reactions with alcohols to provide dendritic polyols. Molecular dynamic simulation supported the assumption that the resulting polyols have a dense structure.
Collapse
Affiliation(s)
- Tze Chieh Shiao
- Pharmaqam and Nanoqam, Department of Chemistry, University of Québec a Montréal, P.O. Box 8888, Succ. Centre-Ville, Montréal, QC H3C 3P8, Canada.
| | - Rabindra Rej
- Pharmaqam and Nanoqam, Department of Chemistry, University of Québec a Montréal, P.O. Box 8888, Succ. Centre-Ville, Montréal, QC H3C 3P8, Canada.
| | - Mariécka Rose
- Pharmaqam and Nanoqam, Department of Chemistry, University of Québec a Montréal, P.O. Box 8888, Succ. Centre-Ville, Montréal, QC H3C 3P8, Canada.
| | - Giovanni M Pavan
- Department of Innovative Technologies, University of Applied Sciences and Arts of Southern Switzerland, Galleria 2, Manno CH-6928, Switzerland.
| | - René Roy
- Pharmaqam and Nanoqam, Department of Chemistry, University of Québec a Montréal, P.O. Box 8888, Succ. Centre-Ville, Montréal, QC H3C 3P8, Canada.
| |
Collapse
|
41
|
Sharma R, Zhang I, Shiao TC, Pavan GM, Maysinger D, Roy R. Low generation polyamine dendrimers bearing flexible tetraethylene glycol as nanocarriers for plasmids and siRNA. NANOSCALE 2016; 8:5106-5119. [PMID: 26868181 DOI: 10.1039/c5nr06757j] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Low G1 generation polyamine dendrimers built around programmable, flexible, and short tetraethyleneglycol branches were readily prepared in a divergent manner using a combination of orthogonal AB3 or AB5 units and highly efficient chemical transformations based on Cu(i) catalyzed alkyne-azide cycloaddition (CUAAC) and thiol-ene click reactions. The constructs showed that the G1 polyamines with only twelve and eighteen amine surface groups can successfully deliver siRNA in human cells, with transfection efficiency comparable to that of Lipofectamine 2000®. Measurements of cell viability following transfection of plasmid DNA and siRNA showed that the dendritic polyamines are less cytotoxic than Lipofectamine 2000® and are thus preferable for biological applications.
Collapse
Affiliation(s)
- Rishi Sharma
- Pharmaqam, Department of Chemistry, Université du Québec à Montréal, P.O. Box 8888, Succ. Centre-ville, Montréal, Canada H3C 3P8.
| | - Issan Zhang
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, Montreal, Quebec H3G 1Y6, Canada.
| | - Tze Chieh Shiao
- Pharmaqam, Department of Chemistry, Université du Québec à Montréal, P.O. Box 8888, Succ. Centre-ville, Montréal, Canada H3C 3P8.
| | - Giovanni M Pavan
- Department of Innovative Technologies, University of Applied Sciences and Arts of Southern Switzerland, Galleria 2, 6928 Manno, Switzerland
| | - Dusica Maysinger
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, Montreal, Quebec H3G 1Y6, Canada.
| | - René Roy
- Pharmaqam, Department of Chemistry, Université du Québec à Montréal, P.O. Box 8888, Succ. Centre-ville, Montréal, Canada H3C 3P8.
| |
Collapse
|
42
|
Thomas B, Pifferi C, Daskhan GC, Fiore M, Berthet N, Renaudet O. Divergent and convergent synthesis of GalNAc-conjugated dendrimers using dual orthogonal ligations. Org Biomol Chem 2015; 13:11529-38. [PMID: 26464062 DOI: 10.1039/c5ob01870f] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis of glycodendrimers remains a challenging task. In this paper we propose a protocol based on both oxime ligation (OL) to combine cyclopeptide repeating units as the dendritic core and the copper(i)-catalyzed azide-alkyne cycloaddition (CuAAC) to conjugate peripheral α and β propargylated GalNAc. By contrast with the oxime-based iterative protocol reported in our group, our current strategy can be used in both divergent and convergent routes with similar efficiency and the resulting hexadecavalent glycodendrimers can be easily characterized compared to oxime-linked analogues. A series of glycoconjugates displaying four or sixteen copies of both α and β GalNAc have been prepared and their ability to inhibit the adhesion of the soybean agglutinin (SBA) lectin to polymeric-GalNAc immobilized on microtiter plates has been evaluated. As was anticipated, the higher inhibitory effect (IC50 = 0.46 μM) was measured with the structure displaying αGalNAc with the higher valency (compound 13), which demonstrates that the binding properties of these glycoconjugates are strongly dependent on the orientation and distribution of the GalNAc units.
Collapse
|
43
|
Sharma A, Kakkar A. Designing Dendrimer and Miktoarm Polymer Based Multi-Tasking Nanocarriers for Efficient Medical Therapy. Molecules 2015; 20:16987-7015. [PMID: 26393546 PMCID: PMC6332070 DOI: 10.3390/molecules200916987] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 09/09/2015] [Accepted: 09/11/2015] [Indexed: 11/28/2022] Open
Abstract
To address current complex health problems, there has been an increasing demand for smart nanocarriers that could perform multiple complimentary biological tasks with high efficacy. This has provoked the design of tailor made nanocarriers, and the scientific community has made tremendous effort in meeting daunting challenges associated with synthetically articulating multiple functions into a single scaffold. Branched and hyper-branched macromolecular architectures have offered opportunities in enabling carriers with capabilities including location, delivery, imaging etc. Development of simple and versatile synthetic methodologies for these nanomaterials has been the key in diversifying macromolecule based medical therapy and treatment. This review highlights the advancement from conventional "only one function" to multifunctional nanomedicine. It is achieved by synthetic elaboration of multivalent platforms in miktoarm polymers and dendrimers by physical encapsulation, covalent linking and combinations thereof.
Collapse
Affiliation(s)
- Anjali Sharma
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, QC H3A 0B8, Canada.
| | - Ashok Kakkar
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, QC H3A 0B8, Canada.
| |
Collapse
|
44
|
Buzhor M, Harnoy AJ, Tirosh E, Barak A, Schwartz T, Amir RJ. Supramolecular Translation of Enzymatically Triggered Disassembly of Micelles into Tunable Fluorescent Responses. Chemistry 2015; 21:15633-8. [PMID: 26366522 DOI: 10.1002/chem.201502988] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Indexed: 01/22/2023]
Abstract
The need for advanced fluorescent imaging and delivery platforms has motivated the development of smart probes that change their fluorescence in response to external stimuli. Here a new molecular design of fluorescently labeled PEG-dendron hybrids that self-assemble into enzyme-responsive micelles with tunable fluorescent responses is reported. In the assembled state, the fluorescence of the dyes is quenched or shifted due to intermolecular interactions. Upon enzymatic cleavage of the hydrophobic end-groups, the labeled polymeric hybrids become hydrophilic, and the micelles disassemble. This supramolecular change is translated into a spectral response as the dye-dye interactions are eliminated and the intrinsic fluorescence is regained. We demonstrate the utilization of this molecular design to generate both Turn-On and spectral shift responses by adjusting the type of the labeling dye. This approach enables transformation of non-responsive labeling dyes into smart fluorescent probes.
Collapse
Affiliation(s)
- Marina Buzhor
- Department of Organic Chemistry, School of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 69978 (Israel).,Tel Aviv University Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, 69978 (Israel)
| | - Assaf J Harnoy
- Department of Organic Chemistry, School of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 69978 (Israel).,Tel Aviv University Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, 69978 (Israel)
| | - Einat Tirosh
- Department of Physical Chemistry, School of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 69978 (Israel).,Tel Aviv University Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, 69978 (Israel)
| | - Ayana Barak
- Department of Physical Chemistry, School of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 69978 (Israel).,Tel Aviv University Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, 69978 (Israel)
| | - Tal Schwartz
- Department of Physical Chemistry, School of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 69978 (Israel).,Tel Aviv University Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, 69978 (Israel)
| | - Roey J Amir
- Department of Organic Chemistry, School of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 69978 (Israel). .,Tel Aviv University Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, 69978 (Israel).
| |
Collapse
|
45
|
Synthesis of poly(aminoester) dendrimers via ‘click’ chemistry in combination with the divergent and convergent strategies. Tetrahedron Lett 2015. [DOI: 10.1016/j.tetlet.2015.05.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
46
|
Arseneault M, Wafer C, Morin JF. Recent advances in click chemistry applied to dendrimer synthesis. Molecules 2015; 20:9263-94. [PMID: 26007183 PMCID: PMC6272213 DOI: 10.3390/molecules20059263] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 05/12/2015] [Indexed: 11/16/2022] Open
Abstract
Dendrimers are monodisperse polymers grown in a fractal manner from a central point. They are poised to become the cornerstone of nanoscale devices in several fields, ranging from biomedicine to light-harvesting. Technical difficulties in obtaining these molecules has slowed their transfer from academia to industry. In 2001, the arrival of the "click chemistry" concept gave the field a major boost. The flagship reaction, a modified Hüisgen cycloaddition, allowed researchers greater freedom in designing and building dendrimers. In the last five years, advances in click chemistry saw a wider use of other click reactions and a notable increase in the complexity of the reported structures. This review covers key developments in the click chemistry field applied to dendrimer synthesis from 2010 to 2015. Even though this is an expert review, basic notions and references have been included to help newcomers to the field.
Collapse
Affiliation(s)
- Mathieu Arseneault
- Chimie, Université Laval, 1045 avenue de la Médecine, Pavillon Alexandre-Vachon, QC G1V 0A6, Canada.
| | - Caroline Wafer
- Chimie, Université Laval, 1045 avenue de la Médecine, Pavillon Alexandre-Vachon, QC G1V 0A6, Canada.
| | - Jean-François Morin
- Chimie, Université Laval, 1045 avenue de la Médecine, Pavillon Alexandre-Vachon, QC G1V 0A6, Canada.
| |
Collapse
|
47
|
Liu S, Dicker KT, Jia X. Modular and orthogonal synthesis of hybrid polymers and networks. Chem Commun (Camb) 2015; 51:5218-37. [PMID: 25572255 PMCID: PMC4359094 DOI: 10.1039/c4cc09568e] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Biomaterials scientists strive to develop polymeric materials with distinct chemical make-up, complex molecular architectures, robust mechanical properties and defined biological functions by drawing inspirations from biological systems. Salient features of biological designs include (1) repetitive presentation of basic motifs; and (2) efficient integration of diverse building blocks. Thus, an appealing approach to biomaterials synthesis is to combine synthetic and natural building blocks in a modular fashion employing novel chemical methods. Over the past decade, orthogonal chemistries have become powerful enabling tools for the modular synthesis of advanced biomaterials. These reactions require building blocks with complementary functionalities, occur under mild conditions in the presence of biological molecules and living cells and proceed with high yield and exceptional selectivity. These chemistries have facilitated the construction of complex polymers and networks in a step-growth fashion, allowing facile modulation of materials properties by simple variations of the building blocks. In this review, we first summarize features of several types of orthogonal chemistries. We then discuss recent progress in the synthesis of step growth linear polymers, dendrimers and networks that find application in drug delivery, 3D cell culture and tissue engineering. Overall, orthogonal reactions and modulular synthesis have not only minimized the steps needed for the desired chemical transformations but also maximized the diversity and functionality of the final products. The modular nature of the design, combined with the potential synergistic effect of the hybrid system, will likely result in novel hydrogel matrices with robust structures and defined functions.
Collapse
Affiliation(s)
- Shuang Liu
- Department of Materials Science and Engineering, University of Delaware, 201 DuPont Hall, Newark, DE 19716, USA.
| | | | | |
Collapse
|
48
|
Katir N, El Brahmi N, El Kadib A, Mignani S, Caminade AM, Bousmina M, Majoral JP. Synthesis of onion-peel nanodendritic structures with sequential functional phosphorus diversity. Chemistry 2015; 21:6400-8. [PMID: 25754619 DOI: 10.1002/chem.201500138] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Indexed: 12/27/2022]
Abstract
The preparation of novel families of phosphorus-based macromolecular architectures called "onion peel" phosphorus nanodendritic systems is reported. This construct is based on the versatility of methods of synthesis using several building blocks and on the capability of these systems to undergo regioselective reactions within the cascade structure. Sustainable metal-free routes such as the Staudinger reaction or Schiff-base condensation, involving only water and nitrogen as byproducts, allow access to several dendritic macromolecules bearing up to seven different phosphorus units in their backbone, each of them featuring specific reactivity. The presence of the highly aurophilic P=N-P=S fragment enables selective ligation of Au(I) within the dendritic framework.
Collapse
Affiliation(s)
- Nadia Katir
- Euromed Research Institute, Engineering Division, Euro-Mediterranean University of Fes (UEMF), Fès-Shore, Route de Sidi Hrazem, 30070 Fès (Morocco)
| | | | | | | | | | | | | |
Collapse
|
49
|
Wu LP, Ficker M, Christensen JB, Trohopoulos PN, Moghimi SM. Dendrimers in Medicine: Therapeutic Concepts and Pharmaceutical Challenges. Bioconjug Chem 2015; 26:1198-211. [PMID: 25654320 DOI: 10.1021/acs.bioconjchem.5b00031] [Citation(s) in RCA: 171] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Dendrimers are three-dimensional macromolecular structures originating from a central core molecule and surrounded by successive addition of branching layers (generation). These structures exhibit a high degree of molecular uniformity, narrow molecular weight distribution, tunable size and shape characteristics, as well as multivalency. Collectively, these physicochemical characteristics together with advancements in design of biodegradable backbones have conferred many applications to dendrimers in formulation science and nanopharmaceutical developments. These have included the use of dendrimers as pro-drugs and vehicles for solubilization, encapsulation, complexation, delivery, and site-specific targeting of small-molecule drugs, biopharmaceuticals, and contrast agents. We briefly review these advances, paying particular attention to attributes that make dendrimers versatile for drug formulation as well as challenging issues surrounding the future development of dendrimer-based medicines.
Collapse
Affiliation(s)
- Lin-Ping Wu
- †Centre for Pharmaceutical Nanotechnology and Nanotoxicology, Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark
| | - Mario Ficker
- ‡Department of Chemistry, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | - Jørn B Christensen
- ‡Department of Chemistry, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | | | - Seyed Moein Moghimi
- †Centre for Pharmaceutical Nanotechnology and Nanotoxicology, Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark.,∥NanoScience Centre, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
| |
Collapse
|
50
|
Rosenbaum I, Harnoy AJ, Tirosh E, Buzhor M, Segal M, Frid L, Shaharabani R, Avinery R, Beck R, Amir RJ. Encapsulation and covalent binding of molecular payload in enzymatically activated micellar nanocarriers. J Am Chem Soc 2015; 137:2276-84. [PMID: 25607219 DOI: 10.1021/ja510085s] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The high selectivity and often-observed overexpression of specific disease-associated enzymes make them extremely attractive for triggering the release of hydrophobic drug or probe molecules from stimuli-responsive micellar nanocarriers. Here we utilized highly modular amphiphilic polymeric hybrids, composed of a linear hydrophilic polyethylene glycol (PEG) and an esterase-responsive hydrophobic dendron, to prepare and study two diverse strategies for loading of enzyme-responsive micelles. In the first type of micelles, hydrophobic coumarin-derived dyes were encapsulated noncovalently inside the hydrophobic core of the micelle, which was composed of lipophilic enzyme-responsive dendrons. In the second type of micellar nanocarrier the hydrophobic molecular cargo was covalently linked to the end-groups of the dendron through enzyme-cleavable bonds. These amphiphilic hybrids self-assembled into micellar nanocarriers with their cargo covalently encapsulated within the hydrophobic core. Both types of micelles were highly responsive toward the activating enzyme and released their molecular cargo upon enzymatic stimulus. Importantly, while faster release was observed with noncovalent encapsulation, higher loading capacity and slower release rate were achieved with covalent encapsulation. Our results clearly indicate the great potential of enzyme-responsive micellar delivery platforms due to the ability to tune their payload capacities and release rates by adjusting the loading strategy.
Collapse
Affiliation(s)
- Ido Rosenbaum
- Department of Organic Chemistry, School of Chemistry, Faculty of Exact Sciences, ‡Department of Physical Chemistry, School of Chemistry, Faculty of Exact Sciences, §Tel Aviv University Center for Nanoscience and Nanotechnology, and ∥School of Physics and Astronomy, Faculty of Exact Sciences, Tel-Aviv University , Tel-Aviv 69978, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|