1
|
Perillo ML, Gupta B, Siegenthaler JR, Christensen IE, Kepros B, Mitul A, Han M, Rechenberg R, Becker MF, Li W, Purcell EK. Evaluation of In Vitro Serotonin-Induced Electrochemical Fouling Performance of Boron Doped Diamond Microelectrode Using Fast-Scan Cyclic Voltammetry. BIOSENSORS 2024; 14:352. [PMID: 39056628 PMCID: PMC11274679 DOI: 10.3390/bios14070352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024]
Abstract
Fast-scan cyclic voltammetry (FSCV) is an electrochemical sensing technique that can be used for neurochemical sensing with high spatiotemporal resolution. Carbon fiber microelectrodes (CFMEs) are traditionally used as FSCV sensors. However, CFMEs are prone to electrochemical fouling caused by oxidative byproducts of repeated serotonin (5-HT) exposure, which makes them less suitable as chronic 5-HT sensors. Our team is developing a boron-doped diamond microelectrode (BDDME) that has previously been shown to be relatively resistant to fouling caused by protein adsorption (biofouling). We sought to determine if this BDDME exhibits resistance to electrochemical fouling, which we explored on electrodes fabricated with either femtosecond laser cutting or physical cleaving. We recorded the oxidation current response after 25 repeated injections of 5-HT in a flow-injection cell and compared the current drop from the first with the last injection. The 5-HT responses were compared with dopamine (DA), a neurochemical that is known to produce minimal fouling oxidative byproducts and has a stable repeated response. Physical cleaving of the BDDME yielded a reduction in fouling due to 5-HT compared with the CFME and the femtosecond laser cut BDDME. However, the femtosecond laser cut BDDME exhibited a large increase in sensitivity over the cleaved BDDME. An extended stability analysis was conducted for all device types following 5-HT fouling tests. This analysis demonstrated an improvement in the long-term stability of boron-doped diamond over CFMEs, as well as a diminishing sensitivity of the laser-cut BDDME over time. This work reports the electrochemical fouling performance of the BDDME when it is repeatedly exposed to DA or 5-HT, which informs the development of a chronic, diamond-based electrochemical sensor for long-term neurotransmitter measurements in vivo.
Collapse
Affiliation(s)
- Mason L. Perillo
- Department of Biomedical Engineering, Institute for Quantitative Health Science and Engineering, East Lansing, MI 48824, USA; (M.L.P.); (I.E.C.).; (W.L.)
| | - Bhavna Gupta
- Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA;
| | - James R. Siegenthaler
- Fraunhofer USA Center Midwest, Coatings and Diamond Technologies Division, East Lansing, MI 48824, USA; (J.R.S.); (B.K.); (R.R.); (M.F.B.)
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824, USA; (A.M.); (M.H.)
| | - Isabelle E. Christensen
- Department of Biomedical Engineering, Institute for Quantitative Health Science and Engineering, East Lansing, MI 48824, USA; (M.L.P.); (I.E.C.).; (W.L.)
| | - Brandon Kepros
- Fraunhofer USA Center Midwest, Coatings and Diamond Technologies Division, East Lansing, MI 48824, USA; (J.R.S.); (B.K.); (R.R.); (M.F.B.)
| | - Abu Mitul
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824, USA; (A.M.); (M.H.)
| | - Ming Han
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824, USA; (A.M.); (M.H.)
| | - Robert Rechenberg
- Fraunhofer USA Center Midwest, Coatings and Diamond Technologies Division, East Lansing, MI 48824, USA; (J.R.S.); (B.K.); (R.R.); (M.F.B.)
| | - Michael F. Becker
- Fraunhofer USA Center Midwest, Coatings and Diamond Technologies Division, East Lansing, MI 48824, USA; (J.R.S.); (B.K.); (R.R.); (M.F.B.)
| | - Wen Li
- Department of Biomedical Engineering, Institute for Quantitative Health Science and Engineering, East Lansing, MI 48824, USA; (M.L.P.); (I.E.C.).; (W.L.)
- Fraunhofer USA Center Midwest, Coatings and Diamond Technologies Division, East Lansing, MI 48824, USA; (J.R.S.); (B.K.); (R.R.); (M.F.B.)
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824, USA; (A.M.); (M.H.)
| | - Erin K. Purcell
- Department of Biomedical Engineering, Institute for Quantitative Health Science and Engineering, East Lansing, MI 48824, USA; (M.L.P.); (I.E.C.).; (W.L.)
- Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA;
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824, USA; (A.M.); (M.H.)
| |
Collapse
|
2
|
Witt CE, Mena S, Holmes J, Hersey M, Buchanan AM, Parke B, Saylor R, Honan LE, Berger SN, Lumbreras S, Nijhout FH, Reed MC, Best J, Fadel J, Schloss P, Lau T, Hashemi P. Serotonin is a common thread linking different classes of antidepressants. Cell Chem Biol 2023; 30:1557-1570.e6. [PMID: 37992715 DOI: 10.1016/j.chembiol.2023.10.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 09/07/2023] [Accepted: 10/12/2023] [Indexed: 11/24/2023]
Abstract
Depression pathology remains elusive. The monoamine hypothesis has placed much focus on serotonin, but due to the variable clinical efficacy of monoamine reuptake inhibitors, the community is looking for alternative therapies such as ketamine (neurogenesis theory of antidepressant action). There is evidence that different classes of antidepressants may affect serotonin levels; a notion we test here. We measure hippocampal serotonin in mice with voltammetry and study the effects of acute challenges of escitalopram, fluoxetine, reboxetine, and ketamine. We find that pseudo-equivalent doses of these drugs similarly raise ambient serotonin levels, despite their differing pharmacodynamics because of differences in Uptake 1 and 2, rapid SERT trafficking, and modulation of serotonin by histamine. These antidepressants have different pharmacodynamics but have strikingly similar effects on extracellular serotonin. Our findings suggest that serotonin is a common thread that links clinically effective antidepressants, synergizing different theories of depression (synaptic plasticity, neurogenesis, and the monoamine hypothesis).
Collapse
Affiliation(s)
- Colby E Witt
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA
| | - Sergio Mena
- Department of Bioengineering, Imperial College London, London, UK
| | - Jordan Holmes
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA
| | - Melinda Hersey
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA; Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Anna Marie Buchanan
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA; Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Brenna Parke
- Department of Bioengineering, Imperial College London, London, UK
| | - Rachel Saylor
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA
| | - Lauren E Honan
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA
| | - Shane N Berger
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA
| | - Sara Lumbreras
- Department of Psychiatry and Psychotherapy, Biochemical Laboratory, Central Institute of Mental Health, Medical Faculty, Mannheim, Heidelberg University, Mannheim, Germany
| | | | - Michael C Reed
- Department of Mathematics, Duke University, Durham, NC, USA
| | - Janet Best
- Department of Mathematics, The Ohio State University, Columbus, OH, USA
| | - James Fadel
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Patrick Schloss
- Department of Psychiatry and Psychotherapy, Biochemical Laboratory, Central Institute of Mental Health, Medical Faculty, Mannheim, Heidelberg University, Mannheim, Germany
| | - Thorsten Lau
- Department of Psychiatry and Psychotherapy, Biochemical Laboratory, Central Institute of Mental Health, Medical Faculty, Mannheim, Heidelberg University, Mannheim, Germany; Department of Neuroanatomy, Mannheim Centre for Translational Neuroscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Parastoo Hashemi
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA; Department of Bioengineering, Imperial College London, London, UK.
| |
Collapse
|
3
|
Agramunt J, Parke B, Mena S, Ubels V, Jimenez F, Williams G, Rhodes ADY, Limbu S, Hexter M, Knight L, Hashemi P, Kozlov AS, Higgins CA. Mechanical stimulation of human hair follicle outer root sheath cultures activates adjacent sensory neurons. SCIENCE ADVANCES 2023; 9:eadh3273. [PMID: 37889977 PMCID: PMC10610912 DOI: 10.1126/sciadv.adh3273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023]
Abstract
Mechanical stimuli, such as stroking or pressing on the skin, activate mechanoreceptors transmitting information to the sensory nervous system and brain. It is well accepted that deflection of the hair fiber that occurs with a light breeze or touch directly activates the sensory neurons surrounding the hair follicle, facilitating transmission of mechanical information. Here, we hypothesized that hair follicle outer root sheath cells act as transducers of mechanical stimuli to sensory neurons surrounding the hair follicle. Using electrochemical analysis on human hair follicle preparations in vitro, we were able to show that outer root sheath cells release ATP and the neurotransmitters serotonin and histamine in response to mechanical stimulation. Using calcium imaging combined with pharmacology in a coculture of outer root sheath cells with sensory neurons, we found that the release of these three molecules from hair follicle cells leads to activation of sensory neurons.
Collapse
Affiliation(s)
- Julià Agramunt
- Department of Bioengineering, Imperial College London, London, UK
| | - Brenna Parke
- Department of Bioengineering, Imperial College London, London, UK
| | - Sergio Mena
- Department of Bioengineering, Imperial College London, London, UK
| | - Victor Ubels
- Department of Bioengineering, Imperial College London, London, UK
| | - Francisco Jimenez
- Mediteknia Clinic, Las Palmas, Gran Canaria, Spain
- University Fernando Pessoa Canarias, Gran Canaria, Spain
| | | | - Anna DY Rhodes
- Department of Bioengineering, Imperial College London, London, UK
| | - Summik Limbu
- Department of Bioengineering, Imperial College London, London, UK
| | - Melissa Hexter
- Department of Bioengineering, Imperial College London, London, UK
| | | | - Parastoo Hashemi
- Department of Bioengineering, Imperial College London, London, UK
| | - Andriy S. Kozlov
- Department of Bioengineering, Imperial College London, London, UK
| | | |
Collapse
|
4
|
Gupta B, Perillo ML, Siegenthaler JR, Christensen IE, Welch MP, Rechenberg R, Banna GMHU, Galstyan D, Becker MF, Li W, Purcell EK. In Vitro Biofouling Performance of Boron-Doped Diamond Microelectrodes for Serotonin Detection Using Fast-Scan Cyclic Voltammetry. BIOSENSORS 2023; 13:576. [PMID: 37366941 DOI: 10.3390/bios13060576] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/10/2023] [Accepted: 05/23/2023] [Indexed: 06/28/2023]
Abstract
Neurotransmitter release is important to study in order to better understand neurological diseases and treatment approaches. Serotonin is a neurotransmitter known to play key roles in the etiology of neuropsychiatric disorders. Fast-scan cyclic voltammetry (FSCV) has enabled the detection of neurochemicals, including serotonin, on a sub-second timescale via the well-established carbon fiber microelectrode (CFME). However, poor chronic stability and biofouling, i.e., the adsorption of interferent proteins to the electrode surface upon implantation, pose challenges in the natural physiological environment. We have recently developed a uniquely designed, freestanding, all-diamond boron-doped diamond microelectrode (BDDME) for electrochemical measurements. Key potential advantages of the device include customizable electrode site layouts, a wider working potential window, improved stability, and resistance to biofouling. Here, we present a first report on the electrochemical behavior of the BDDME in comparison with CFME by investigating in vitro serotonin (5-HT) responses with varying FSCV waveform parameters and biofouling conditions. While the CFME delivered lower limits of detection, we also found that BDDMEs showed more sustained 5-HT responses to increasing or changing FSCV waveform-switching potential and frequency, as well as to higher analyte concentrations. Biofouling-induced current reductions were significantly less pronounced at the BDDME when using a "Jackson" waveform compared to CFMEs. These findings are important steps towards the development and optimization of the BDDME as a chronically implanted biosensor for in vivo neurotransmitter detection.
Collapse
Affiliation(s)
- Bhavna Gupta
- Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA
| | - Mason L Perillo
- Department of Biomedical Engineering and Institute for Quantitative Health Science and Engineering, East Lansing, MI 48824, USA
| | - James R Siegenthaler
- Fraunhofer USA Center Midwest, Coatings and Diamond Technologies Division, East Lansing, MI 48824, USA
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Isabelle E Christensen
- Department of Biomedical Engineering and Institute for Quantitative Health Science and Engineering, East Lansing, MI 48824, USA
| | - Matthew P Welch
- Department of Biomedical Engineering and Institute for Quantitative Health Science and Engineering, East Lansing, MI 48824, USA
| | - Robert Rechenberg
- Fraunhofer USA Center Midwest, Coatings and Diamond Technologies Division, East Lansing, MI 48824, USA
| | - G M Hasan Ul Banna
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Davit Galstyan
- Fraunhofer USA Center Midwest, Coatings and Diamond Technologies Division, East Lansing, MI 48824, USA
| | - Michael F Becker
- Fraunhofer USA Center Midwest, Coatings and Diamond Technologies Division, East Lansing, MI 48824, USA
| | - Wen Li
- Department of Biomedical Engineering and Institute for Quantitative Health Science and Engineering, East Lansing, MI 48824, USA
- Fraunhofer USA Center Midwest, Coatings and Diamond Technologies Division, East Lansing, MI 48824, USA
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Erin K Purcell
- Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA
- Department of Biomedical Engineering and Institute for Quantitative Health Science and Engineering, East Lansing, MI 48824, USA
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
5
|
Hexter M, van Batenburg-Sherwood J, Hashemi P. Novel Experimental and Analysis Strategies for Fast Voltammetry: 2. A Troubleshoot-Free Flow Cell for FSCV Calibrations. ACS MEASUREMENT SCIENCE AU 2023; 3:120-126. [PMID: 37090258 PMCID: PMC10120031 DOI: 10.1021/acsmeasuresciau.2c00059] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 05/03/2023]
Abstract
Fast scan cyclic voltammetry (FSCV) at carbon fiber microelectrodes (CFMs) is a method traditionally used for real-time quantification of neurotransmitters in biological systems. Reliable calibration of CFMs is essential for converting FSCV signals to analyte concentrations and generally employs flow injection analysis (FIA) performed with flow cells fabricated in-house. Such FSCV FIA cells often require significant and ongoing troubleshooting with pulsing, leaking, flow inconsistencies and dead volume being major causes of common challenges. In this work, we address these issues by creating a robust, plug-and-play FSCV flow cell. This novel design permits reproducible, high-precision, and stable flow injection profiles using low-cost materials to improve FSCV calibration. The ready-to-print computer-aided designs and hardware list are provided.
Collapse
|
6
|
Witt CE, Mena S, Holmes J, Hersey M, Buchanan AM, Parke B, Saylor R, Honan LE, Berger SN, Lumbreras S, Nijhout FH, Reed MC, Best J, Fadel J, Schloss P, Lau T, Hashemi P. Serotonin is a Common Thread Linking Different Classes of Antidepressants. RESEARCH SQUARE 2023:rs.3.rs-2741902. [PMID: 37034599 PMCID: PMC10081366 DOI: 10.21203/rs.3.rs-2741902/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
Depression pathology remains elusive. The monoamine hypothesis has placed much focus on serotonin, but due to the variable clinical efficacy of monoamine reuptake inhibitors, the community is looking for alternative therapies such as ketamine (synaptic plasticity and neurogenesis theory of antidepressant action). There is evidence that different classes of antidepressants may affect serotonin levels; a notion we test here. We measure hippocampal serotonin in mice with voltammetry and study the effects of acute challenges of antidepressants. We find that pseudo-equivalent doses of these drugs similarly raise ambient serotonin levels, despite their differing pharmacodynamics because of differences in Uptake 1 and 2, rapid SERT trafficking and modulation of serotonin by histamine. These antidepressants have different pharmacodynamics but have strikingly similar effects on extracellular serotonin. Our findings suggest that serotonin is a common thread that links clinically effective antidepressants, synergizing different theories of depression (synaptic plasticity, neurogenesis and the monoamine hypothesis).
Collapse
Affiliation(s)
- Colby E. Witt
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA
| | - Sergio Mena
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Jordan Holmes
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA
| | - Melinda Hersey
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Anna Marie Buchanan
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Brenna Parke
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Rachel Saylor
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA
| | - Lauren E. Honan
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA
| | - Shane N. Berger
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA
| | - Sara Lumbreras
- Department of Psychiatry and Psychotherapy, Biochemical Laboratory, Central Institute of Mental Health, Medical Faculty, Mannheim, Heidelberg University, Mannheim, Germany
| | | | | | - Janet Best
- Department of Mathematics, The Ohio State University, Columbus, OH, USA
| | - James Fadel
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Patrick Schloss
- Department of Psychiatry and Psychotherapy, Biochemical Laboratory, Central Institute of Mental Health, Medical Faculty, Mannheim, Heidelberg University, Mannheim, Germany
| | - Thorsten Lau
- Department of Psychiatry and Psychotherapy, Biochemical Laboratory, Central Institute of Mental Health, Medical Faculty, Mannheim, Heidelberg University, Mannheim, Germany
- Department of Neuroanatomy, Mannheim Centre for Translational Neuroscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Parastoo Hashemi
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA
- Department of Bioengineering, Imperial College London, London, United Kingdom
| |
Collapse
|
7
|
Berger SN, Baumberger B, Samaranayake S, Hersey M, Mena S, Bain I, Duncan W, Reed MC, Nijhout HF, Best J, Hashemi P. An In Vivo Definition of Brain Histamine Dynamics Reveals Critical Neuromodulatory Roles for This Elusive Messenger. Int J Mol Sci 2022; 23:14862. [PMID: 36499189 PMCID: PMC9738190 DOI: 10.3390/ijms232314862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 12/05/2022] Open
Abstract
Histamine is well known for mediating peripheral inflammation; however, this amine is also found in high concentrations in the brain where its roles are much less known. In vivo chemical dynamics are difficult to measure, thus fundamental aspects of histamine's neurochemistry remain undefined. In this work, we undertake the first in-depth characterization of real time in vivo histamine dynamics using fast electrochemical tools. We find that histamine release is sensitive to pharmacological manipulation at the level of synthesis, packaging, autoreceptors and metabolism. We find two breakthrough aspects of histamine modulation. First, differences in H3 receptor regulation between sexes show that histamine release in female mice is much more tightly regulated than in male mice under H3 or inflammatory drug challenge. We hypothesize that this finding may contribute to hormone-mediated neuroprotection mechanisms in female mice. Second, a high dose of a commonly available antihistamine, the H1 receptor inverse agonist diphenhydramine, rapidly decreases serotonin levels. This finding highlights the sheer significance of pharmaceuticals on neuromodulation. Our study opens the path to better understanding and treating histamine related disorders of the brain (such as neuroinflammation), emphasizing that sex and modulation (of serotonin) are critical factors to consider when studying/designing new histamine targeting therapeutics.
Collapse
Affiliation(s)
- Shane N. Berger
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | | | - Srimal Samaranayake
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Melinda Hersey
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
- Department of Physiology, Pharmacology & Neuroscience, University of South Carolina School of Medicine, Columbia, SC 29209, USA
| | - Sergio Mena
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
| | - Ian Bain
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - William Duncan
- Department of Mathematics, Montana State University, Bozeman, MT 59717, USA
| | - Michael C. Reed
- Department of Mathematics, Duke University, Durham, NC 27710, USA
| | | | - Janet Best
- Department of Mathematics, Ohio State University, Columbus, OH 43210, USA
| | - Parastoo Hashemi
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
8
|
Robbins EM, Castagnola E, Cui XT. Accurate and stable chronic in vivo voltammetry enabled by a replaceable subcutaneous reference electrode. iScience 2022; 25:104845. [PMID: 35996579 PMCID: PMC9391596 DOI: 10.1016/j.isci.2022.104845] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 06/16/2022] [Accepted: 07/22/2022] [Indexed: 01/12/2023] Open
Abstract
In vivo sensing of neurotransmitters has provided valuable insight into both healthy and diseased brain. However, chronically implanted Ag/AgCl reference electrodes suffer from degradationgradation, resulting in errors in the potential at the working electrode. Here, we report a simple, effective way to protect in vivo sensing measurements from reference polarization with a replaceable subcutaneously implanted reference. We compared a brain-implanted reference and a subcutaneous reference and observed no difference in impedance or dopamine redox peak separation in an acute preparation. Chronically, peak background potential and dopamine oxidation potential shifts were eliminated for three weeks. Scanning electron microscopy shows changes in surface morphology and composition of chronically implanted Ag/AgCl electrodes, and postmortem histology reveals extensive cell death and gliosis in the surrounding tissue. As accurate reference potentials are critical to in vivo electrochemistry applications, this simple technique can improve a wide and diverse assortment of in vivo preparations.
Collapse
Affiliation(s)
- Elaine Marie Robbins
- Department of Bioengineering, University of Pittsburgh, 5057 Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, PA 15260, USA
| | - Elisa Castagnola
- Department of Bioengineering, University of Pittsburgh, 5057 Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, PA 15260, USA
| | - Xinyan Tracy Cui
- Department of Bioengineering, University of Pittsburgh, 5057 Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, PA 15260, USA
- Center for Neural Basis of Cognition, Pittsburgh, PA, USA
- McGowan Institute for Regenerative Medicine, Pittsburgh, PA, USA
- Corresponding author
| |
Collapse
|
9
|
Hersey M, Reneaux M, Berger SN, Mena S, Buchanan AM, Ou Y, Tavakoli N, Reagan LP, Clopath C, Hashemi P. A tale of two transmitters: serotonin and histamine as in vivo biomarkers of chronic stress in mice. J Neuroinflammation 2022; 19:167. [PMID: 35761344 PMCID: PMC9235270 DOI: 10.1186/s12974-022-02508-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 06/01/2022] [Indexed: 12/12/2022] Open
Abstract
Background Stress-induced mental illnesses (mediated by neuroinflammation) pose one of the world’s most urgent public health challenges. A reliable in vivo chemical biomarker of stress would significantly improve the clinical communities’ diagnostic and therapeutic approaches to illnesses, such as depression. Methods Male and female C57BL/6J mice underwent a chronic stress paradigm. We paired innovative in vivo serotonin and histamine voltammetric measurement technologies, behavioral testing, and cutting-edge mathematical methods to correlate chemistry to stress and behavior. Results Inflammation-induced increases in hypothalamic histamine were co-measured with decreased in vivo extracellular hippocampal serotonin in mice that underwent a chronic stress paradigm, regardless of behavioral phenotype. In animals with depression phenotypes, correlations were found between serotonin and the extent of behavioral indices of depression. We created a high accuracy algorithm that could predict whether animals had been exposed to stress or not based solely on the serotonin measurement. We next developed a model of serotonin and histamine modulation, which predicted that stress-induced neuroinflammation increases histaminergic activity, serving to inhibit serotonin. Finally, we created a mathematical index of stress, Si and predicted that during chronic stress, where Si is high, simultaneously increasing serotonin and decreasing histamine is the most effective chemical strategy to restoring serotonin to pre-stress levels. When we pursued this idea pharmacologically, our experiments were nearly identical to the model’s predictions. Conclusions This work shines the light on two biomarkers of chronic stress, histamine and serotonin, and implies that both may be important in our future investigations of the pathology and treatment of inflammation-induced depression. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02508-9.
Collapse
Affiliation(s)
- Melinda Hersey
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA.,Department of Pharmacology, Physiology, & Neuroscience, University of South Carolina School of Medicine, Columbia, SC, 29209, USA
| | - Melissa Reneaux
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | - Shane N Berger
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Sergio Mena
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | - Anna Marie Buchanan
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Yangguang Ou
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Navid Tavakoli
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Lawrence P Reagan
- Department of Pharmacology, Physiology, & Neuroscience, University of South Carolina School of Medicine, Columbia, SC, 29209, USA.,Columbia VA Health Care Systems, Columbia, SC, 29208, USA
| | - Claudia Clopath
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | - Parastoo Hashemi
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA. .,Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
10
|
Tjahjono N, Jin Y, Hsu A, Roukes M, Tian L. Letting the little light of mind shine: Advances and future directions in neurochemical detection. Neurosci Res 2022; 179:65-78. [PMID: 34861294 PMCID: PMC9508992 DOI: 10.1016/j.neures.2021.11.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022]
Abstract
Synaptic transmission via neurochemical release is the fundamental process that integrates and relays encoded information in the brain to regulate physiological function, cognition, and emotion. To unravel the biochemical, biophysical, and computational mechanisms of signal processing, one needs to precisely measure the neurochemical release dynamics with molecular and cell-type specificity and high resolution. Here we reviewed the development of analytical, electrochemical, and fluorescence imaging approaches to detect neurotransmitter and neuromodulator release. We discussed the advantages and practicality in implementation of each technology for ease-of-use, flexibility for multimodal studies, and challenges for future optimization. We hope this review will provide a versatile guide for tool engineering and applications for recording neurochemical release.
Collapse
Affiliation(s)
- Nikki Tjahjono
- Biomedical Engineering Graduate Group, University of California, Davis, Davis, CA, 95616, USA
| | - Yihan Jin
- Neuroscience Graduate Group, University of California, Davis, Davis, CA, 95618, USA
| | - Alice Hsu
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Michael Roukes
- Department of Physics, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Lin Tian
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Davis, CA, 95616, USA.
| |
Collapse
|
11
|
Holmes J, Witt CE, Keen D, Buchanan AM, Batey L, Hersey M, Hashemi P. Glutamate Electropolymerization on Carbon Increases Analytical Sensitivity to Dopamine and Serotonin: An Auspicious In Vivo Phenomenon in Mice? Anal Chem 2021; 93:10762-10771. [PMID: 34328714 DOI: 10.1021/acs.analchem.0c04316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Carbon is the material of choice for electroanalysis of biological systems, being particularly applicable to neurotransmitter analysis as carbon fiber microelectrodes (CFMs). CFMs are most often applied to dopamine detection; however, the scope of CFM analysis has rapidly expanded over the last decade with our laboratory's focus being on improving serotonin detection at CFMs, which we achieved in the past via Nafion modification. We began this present work by seeking to optimize this modification to gain increased analytical sensitivity toward serotonin under the assumption that exposure of bare carbon to the in vivo environment rapidly deteriorates analytical performance. However, we were unable to experimentally verify this assumption and found that electrodes that had been exposed to the in vivo environment were more sensitive to evoked and ambient dopamine. We hypothesized that high in vivo concentrations of ambient extracellular glutamate could polymerize with a negative charge onto CFMs and facilitate response to dopamine. We verified this polymerization electrochemically and characterized the mechanisms of deposition with micro- and nano-imaging. Importantly, we identified that the application of 1.3 V as a positive upper waveform limit is a crucial factor for facilitating glutamate polymerization, thus improving analytical performance. Critically, information gained from these dopamine studies were extended to an in vivo environment where a 2-fold increase in sensitivity to evoked serotonin was achieved. Thus, we present here the novel finding that innate aspects of the in vivo environment are auspicious for detection of dopamine and serotonin at carbon fibers, offering a solution to our goal of an improved fast-scan cyclic voltammetry serotonin detection paradigm.
Collapse
Affiliation(s)
- Jordan Holmes
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, 29208 United States
| | - Colby E Witt
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, 29208 United States
| | - Deanna Keen
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, 29208 United States
| | - Anna Marie Buchanan
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, 29208 United States.,Department of Pharmacology, Physiology, & Neuroscience, University of South Carolina SOM, Columbia, South Carolina, 29209 United States
| | - Lauren Batey
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, 29208 United States.,Department of Bioengineering, Imperial College, London, SW7 2AZ UK
| | - Melinda Hersey
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, 29208 United States.,Department of Pharmacology, Physiology, & Neuroscience, University of South Carolina SOM, Columbia, South Carolina, 29209 United States
| | - Parastoo Hashemi
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, 29208 United States.,Department of Bioengineering, Imperial College, London, SW7 2AZ UK
| |
Collapse
|
12
|
Inflammation-Induced Histamine Impairs the Capacity of Escitalopram to Increase Hippocampal Extracellular Serotonin. J Neurosci 2021; 41:6564-6577. [PMID: 34083254 DOI: 10.1523/jneurosci.2618-20.2021] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 01/11/2023] Open
Abstract
Commonly prescribed selective serotonin reuptake inhibitors (SSRIs) inhibit the serotonin transporter to correct a presumed deficit in extracellular serotonin signaling during depression. These agents bring clinical relief to many who take them; however, a significant and growing number of individuals are resistant to SSRIs. There is emerging evidence that inflammation plays a significant role in the clinical variability of SSRIs, though how SSRIs and inflammation intersect with synaptic serotonin modulation remains unknown. In this work, we use fast in vivo serotonin measurement tools to investigate the nexus between serotonin, inflammation, and SSRIs. Upon acute systemic lipopolysaccharide (LPS) administration in male and female mice, we find robust decreases in extracellular serotonin in the mouse hippocampus. We show that these decreased serotonin levels are supported by increased histamine activity (because of inflammation), acting on inhibitory histamine H3 heteroreceptors on serotonin terminals. Importantly, under LPS-induced histamine increase, the ability of escitalopram to augment extracellular serotonin is impaired because of an off-target action of escitalopram to inhibit histamine reuptake. Finally, we show that a functional decrease in histamine synthesis boosts the ability of escitalopram to increase extracellular serotonin levels following LPS. This work reveals a profound effect of inflammation on brain chemistry, specifically the rapidity of inflammation-induced decreased extracellular serotonin, and points the spotlight at a potentially critical player in the pathology of depression, histamine. The serotonin/histamine homeostasis thus, may be a crucial new avenue in improving serotonin-based treatments for depression.SIGNIFICANCE STATEMENT Acute LPS-induced inflammation (1) increases CNS histamine, (2) decreases CNS serotonin (via inhibitory histamine receptors), and (3) prevents a selective serotonin reuptake inhibitor (SSRI) from effectively increasing extracellular serotonin. A targeted depletion of histamine recovers SSRI-induced increases in extracellular hippocampal serotonin.
Collapse
|
13
|
Rafi H, Zestos AG. Review-Recent Advances in FSCV Detection of Neurochemicals via Waveform and Carbon Microelectrode Modification. JOURNAL OF THE ELECTROCHEMICAL SOCIETY 2021; 168:057520. [PMID: 34108735 PMCID: PMC8186302 DOI: 10.1149/1945-7111/ac0064] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Fast scan cyclic voltammetry (FSCV) is an analytical technique that was first developed over 30 years ago. Since then, it has been extensively used to detect dopamine using carbon fiber microelectrodes (CFMEs). More recently, electrode modifications and waveform refinement have enabled the detection of a wider variety of neurochemicals including nucleosides such as adenosine and guanosine, neurotransmitter metabolites of dopamine, and neuropeptides such as enkephalin. These alterations have facilitated the selectivity of certain biomolecules over others to enhance the measurement of the analyte of interest while excluding interferants. In this review, we detail these modifications and how specializing CFME sensors allows neuro-analytical researchers to develop tools to understand the neurochemistry of the brain in disease states and provide groundwork for translational work in clinical settings.
Collapse
Affiliation(s)
- Harmain Rafi
- Department of Chemistry, American University, Washington, DC 20016, United States of America
- Center for Neuroscience and Behavior, American University, Washington, DC 20016, United States of America
| | - Alexander G. Zestos
- Department of Chemistry, American University, Washington, DC 20016, United States of America
- Center for Neuroscience and Behavior, American University, Washington, DC 20016, United States of America
| |
Collapse
|
14
|
Tan C, Robbins EM, Wu B, Cui XT. Recent Advances in In Vivo Neurochemical Monitoring. MICROMACHINES 2021; 12:208. [PMID: 33670703 PMCID: PMC7922317 DOI: 10.3390/mi12020208] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/11/2021] [Accepted: 02/14/2021] [Indexed: 12/20/2022]
Abstract
The brain is a complex network that accounts for only 5% of human mass but consumes 20% of our energy. Uncovering the mysteries of the brain's functions in motion, memory, learning, behavior, and mental health remains a hot but challenging topic. Neurochemicals in the brain, such as neurotransmitters, neuromodulators, gliotransmitters, hormones, and metabolism substrates and products, play vital roles in mediating and modulating normal brain function, and their abnormal release or imbalanced concentrations can cause various diseases, such as epilepsy, Alzheimer's disease, and Parkinson's disease. A wide range of techniques have been used to probe the concentrations of neurochemicals under normal, stimulated, diseased, and drug-induced conditions in order to understand the neurochemistry of drug mechanisms and develop diagnostic tools or therapies. Recent advancements in detection methods, device fabrication, and new materials have resulted in the development of neurochemical sensors with improved performance. However, direct in vivo measurements require a robust sensor that is highly sensitive and selective with minimal fouling and reduced inflammatory foreign body responses. Here, we review recent advances in neurochemical sensor development for in vivo studies, with a focus on electrochemical and optical probes. Other alternative methods are also compared. We discuss in detail the in vivo challenges for these methods and provide an outlook for future directions.
Collapse
Affiliation(s)
- Chao Tan
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, USA; (C.T.); (E.M.R.); (B.W.)
| | - Elaine M. Robbins
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, USA; (C.T.); (E.M.R.); (B.W.)
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Bingchen Wu
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, USA; (C.T.); (E.M.R.); (B.W.)
- Center for Neural Basis of Cognition, Pittsburgh, PA 15213, USA
| | - Xinyan Tracy Cui
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, USA; (C.T.); (E.M.R.); (B.W.)
- Center for Neural Basis of Cognition, Pittsburgh, PA 15213, USA
- McGowan Institute for Regenerative Medicine, Pittsburgh, PA 15219, USA
| |
Collapse
|
15
|
Naganuma F, Yoshikawa T. Organic Cation Transporters in Brain Histamine Clearance: Physiological and Psychiatric Implications. Handb Exp Pharmacol 2021; 266:169-185. [PMID: 33641029 DOI: 10.1007/164_2021_447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Histamine acts as a neurotransmitter in the central nervous system and is involved in numerous physiological functions. Recent studies have identified the causative role of decreased histaminergic systems in various neurological disorders. Thus, the brain histamine system has attracted attention as a therapeutic target to improve brain function. Neurotransmitter clearance is one of the most important processes for the regulation of neuronal activity and is an essential target for diverse drugs. Our previous study has shown the importance of histamine N-methyltransferase for the inactivation of brain histamine and the intracellular localization of this enzyme; the study indicated that the transport system for the movement of positively charged histamine from the extracellular to intracellular space is a prerequisite for histamine inactivation. Several studies on in vitro astrocytic histamine transport have indicated the contribution of organic cation transporter 3 (OCT3) and plasma membrane monoamine transporter (PMAT) in histamine uptake, although the importance of these transporters in in vivo histamine clearance remains unknown. Immunohistochemical analyses have revealed the expression of OCT3 and PMAT on neurons, emphasizing the importance of investigating neuronal histamine uptake. Further studies using knockout mice or fast-scan cyclic voltammetry will accelerate the research on histamine transporters. In this review article, we summarize histamine transport assays and describe the candidate transporters responsible for histamine transport in the brain.
Collapse
Affiliation(s)
- Fumito Naganuma
- Department of Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan.,Division of Pharmacology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Takeo Yoshikawa
- Department of Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan.
| |
Collapse
|
16
|
Madhurantakam S, Karnam JB, Brabazon D, Takai M, Ahad IU, Balaguru Rayappan JB, Krishnan UM. "Nano": An Emerging Avenue in Electrochemical Detection of Neurotransmitters. ACS Chem Neurosci 2020; 11:4024-4047. [PMID: 33285063 DOI: 10.1021/acschemneuro.0c00355] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The growing importance of nanomaterials toward the detection of neurotransmitter molecules has been chronicled in this review. Neurotransmitters (NTs) are chemicals that serve as messengers in synaptic transmission and are key players in brain functions. Abnormal levels of NTs are associated with numerous psychotic and neurodegenerative diseases. Therefore, their sensitive and robust detection is of great significance in clinical diagnostics. For more than three decades, electrochemical sensors have made a mark toward clinical detection of NTs. The superiority of these electrochemical sensors lies in their ability to enable sensitive, simple, rapid, and selective determination of analyte molecules while remaining relatively inexpensive. Additionally, these sensors are capable of being integrated in robust, portable, and miniaturized devices to establish point-of-care diagnostic platforms. Nanomaterials have emerged as promising materials with significant implications for electrochemical sensing due to their inherent capability to achieve high surface coverage, superior sensitivity, and rapid response in addition to simple device architecture and miniaturization. Considering the enormous significance of the levels of NTs in biological systems and the advances in sensing ushered in with the integration of nanotechnology in electrochemistry, the analysis of NTs by employing nanomaterials as interface materials in various matrices has emerged as an active area of research. This review explores the advancements made in the field of electrochemical sensors for the sensitive and selective determination of NTs which have been described in the past two decades with a distinctive focus on extremely innovative attributes introduced by nanotechnology.
Collapse
Affiliation(s)
- Sasya Madhurantakam
- Department of Molecular Physiology, Niigata University School of Medicine, Niigata 951-8510, Japan
| | - Jayanth Babu Karnam
- School of Electrical and Electronics Engineering, SASTRA Deemed University, Thanjavur 613401, India
- Centre for Nanotechnology and Advanced Biomaterials (CeNTAB), SASTRA Deemed University, Thanjavur 613401, India
| | - Dermot Brabazon
- I-Form, Advanced Manufacturing Research Centre, Advanced Processing Technology Research Centre, Dublin City University, Dublin, Ireland
| | - Madoka Takai
- Department of Bioengineering, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Inam Ul Ahad
- I-Form, Advanced Manufacturing Research Centre, Advanced Processing Technology Research Centre, Dublin City University, Dublin, Ireland
| | | | - Uma Maheswari Krishnan
- Centre for Nanotechnology and Advanced Biomaterials (CeNTAB), SASTRA Deemed University, Thanjavur 613401, India
- School of Arts, Science & Humanities, SASTRA Deemed University, Thanjavur 613401, India
| |
Collapse
|
17
|
Best J, Duncan W, Sadre-Marandi F, Hashemi P, Nijhout HF, Reed M. Autoreceptor control of serotonin dynamics. BMC Neurosci 2020; 21:40. [PMID: 32967609 PMCID: PMC7509944 DOI: 10.1186/s12868-020-00587-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 08/29/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Serotonin is a neurotransmitter that has been linked to a wide variety of behaviors including feeding and body-weight regulation, social hierarchies, aggression and suicidality, obsessive compulsive disorder, alcoholism, anxiety, and affective disorders. Full understanding involves genomics, neurochemistry, electrophysiology, and behavior. The scientific issues are daunting but important for human health because of the use of selective serotonin reuptake inhibitors and other pharmacological agents to treat disorders. This paper presents a new deterministic model of serotonin metabolism and a new systems population model that takes into account the large variation in enzyme and transporter expression levels, tryptophan input, and autoreceptor function. RESULTS We discuss the steady state of the model and the steady state distribution of extracellular serotonin under different hypotheses on the autoreceptors and we show the effect of tryptophan input on the steady state and the effect of meals. We use the deterministic model to interpret experimental data on the responses in the hippocampus of male and female mice, and to illustrate the short-time dynamics of the autoreceptors. We show there are likely two reuptake mechanisms for serotonin and that the autoreceptors have long-lasting influence and compare our results to measurements of serotonin dynamics in the substantia nigra pars reticulata. We also show how histamine affects serotonin dynamics. We examine experimental data that show very variable response curves in populations of mice and ask how much variation in parameters in the model is necessary to produce the observed variation in the data. Finally, we show how the systems population model can potentially be used to investigate specific biological and clinical questions. CONCLUSIONS We have shown that our new models can be used to investigate the effects of tryptophan input and meals and the behavior of experimental response curves in different brain nuclei. The systems population model incorporates individual variation and can be used to investigate clinical questions and the variation in drug efficacy. The codes for both the deterministic model and the systems population model are available from the authors and can be used by other researchers to investigate the serotonergic system.
Collapse
Affiliation(s)
- Janet Best
- Department of Mathematics, The Ohio State University, 231 W 18th Ave., Columbus, OH 43210 USA
| | - William Duncan
- Department of Mathematics, Duke University, Durham, NC 27708 USA
| | | | - Parastoo Hashemi
- Department of Bioengineering, Imperial College, London, SW7 2AZ UK
| | | | - Michael Reed
- Department of Mathematics, Duke University, Durham, NC 27708 USA
| |
Collapse
|
18
|
Hidalgo S, Fuenzalida-Uribe N, Molina-Mateo D, Escobar AP, Oliva C, España RA, Andrés ME, Campusano JM. Study of the release of endogenous amines in Drosophila brain in vivo in response to stimuli linked to aversive olfactory conditioning. J Neurochem 2020; 156:337-351. [PMID: 32596813 DOI: 10.1111/jnc.15109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 11/27/2022]
Abstract
A highly challenging question in neuroscience is to understand how aminergic neural circuits contribute to the planning and execution of behaviors, including the generation of olfactory memories. In this regard, electrophysiological techniques like Local Field Potential or imaging methods have been used to answer questions relevant to cell and circuit physiology in different animal models, such as the fly Drosophila melanogaster. However, these techniques do not provide information on the neurochemical identity of the circuits of interest. Different approaches including fast scan cyclic voltammetry, allow researchers to identify and quantify in a timely fashion the release of endogenous neuroactive molecules, but have been only used in in vitro Drosophila brain preparations. Here, we report a procedure to record for the first time the release of endogenous amines -dopamine, serotonin and octopamine- in adult fly brain in vivo, by fast scan cyclic voltammetry. As a proof of principle, we carried out recordings in the calyx region of the Mushroom Bodies, the brain area mainly associated to the generation of olfactory memories in flies. By using principal component regression in normalized training sets for in vivo recordings, we detect an increase in octopamine and serotonin levels in response to electric shock and olfactory cues respectively. This new approach allows the study of dynamic changes in amine neurotransmission that underlie complex behaviors in Drosophila and shed new light on the contribution of these amines to olfactory processing in this animal model.
Collapse
Affiliation(s)
- Sergio Hidalgo
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,School of Physiology, Pharmacology and Ncxeuroscience, Faculty of Life Sciences, University of Bristol, Bristol, UK
| | - Nicolás Fuenzalida-Uribe
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Daniela Molina-Mateo
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Angélica P Escobar
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carlos Oliva
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Rodrigo A España
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Maria Estela Andrés
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jorge M Campusano
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro Interdisciplinario de Neurociencia UC, Santiago, Chile
| |
Collapse
|
19
|
Meunier CJ, Denison JD, McCarty GS, Sombers LA. Interpreting Dynamic Interfacial Changes at Carbon Fiber Microelectrodes Using Electrochemical Impedance Spectroscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:4214-4223. [PMID: 32216254 PMCID: PMC7336537 DOI: 10.1021/acs.langmuir.9b03941] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Carbon-fiber microelectrodes are instrumental tools in neuroscience used for the electroanalysis of neurochemical dynamics and recordings of neural activity. However, performance is variable and dependent on fabrication strategies, the biological response to implantation, and the physical and chemical composition of the recording environment. This presents an analytical challenge, as electrode performance is difficult to quantitatively assess in situ, especially when electrodes are permanently implanted or cemented in place. We previously reported that electrode impedance directly impacts electrochemical performance for molecular sensing. In this work, we investigate the impacts of individual components of the electrochemical system on impedance. Equivalent circuit models for glass- and silica-insulated carbon-fiber microelectrodes were determined using electrochemical impedance spectroscopy (EIS). The models were validated based on the ability to assign individual circuit elements to physical properties of the electrochemical system. Investigations were performed to evaluate the utility of the models in providing feedback on how changes in ionic strength and carbon fiber material alter impedance properties. Finally, EIS measurements were used to investigate the electrode/solution interface prior to, during, and following implantation in live brain tissue. A significant increase in impedance and decrease in capacitance occur during tissue exposure and persist following implantation. Electrochemical conditioning, which occurs continually during fast-scan cyclic voltammetry recordings, etches and renews the carbon surface, mitigating these effects. Overall, the results establish EIS as a powerful method for characterization of carbon-fiber microelectrodes, providing unprecedented insight into how real-world factors affect the electrode/solution interface.
Collapse
|
20
|
Su Y, Bian S, Sawan M. Real-time in vivo detection techniques for neurotransmitters: a review. Analyst 2020; 145:6193-6210. [DOI: 10.1039/d0an01175d] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Functional synapses in the central nervous system depend on a chemical signal exchange process that involves neurotransmitter delivery between neurons and receptor cells in the neuro system.
Collapse
Affiliation(s)
- Yi Su
- Zhejiang university
- Hangzhou, 310058
- China
- CENBRAIN Lab
- School of Engineering
| | - Sumin Bian
- CENBRAIN Lab
- School of Engineering
- Westlake University
- Hangzhou
- China
| | - Mohamad Sawan
- CENBRAIN Lab
- School of Engineering
- Westlake University
- Hangzhou
- China
| |
Collapse
|
21
|
Zeng J, Sun F, Wan J, Feng J, Li Y. New optical methods for detecting monoamine neuromodulators. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2019; 12:68-74. [PMID: 39651402 PMCID: PMC11623207 DOI: 10.1016/j.cobme.2019.09.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Monoamine neuromodulators such as dopamine, norepinephrine, serotonin (5-HT), octopamine, and tyramine are signaling molecules in the nervous system, where they play critical roles in both health and disease. Given the complex spatiotemporal dynamics, similar structural features, and multiple receptors, studying their dynamics has been limited using conventional methods such as microdialysis and electrochemistry. However, recent advances in optics have facilitated the development of imaging-based detection methods. In this review, we summarize current detecting approaches for specific monoamines, emphasizing their design strategies, detection properties, applications, and limitations. We highlight the genetically encoded GPCR-based sensors for DA and NE, which have high signal-to-noise ratio, selectivity and can be used in vivo in different living organisms. Finally, we discuss the potential for using this approach to generate new neuromodulator sensors with nonoverlapping spectra, which will ultimately pave the way for studying the interplay among various neuromodulators and neurotransmitters.
Collapse
Affiliation(s)
- Jianzhi Zeng
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, 100871, China
- Peking-Tsinghua Center for Life Sciences, Beijing, 100871, China
| | - Fangmiao Sun
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, 100871, China
| | - Jinxia Wan
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, 100871, China
| | - Jiesi Feng
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, 100871, China
- Peking-Tsinghua Center for Life Sciences, Beijing, 100871, China
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, 100871, China
- Peking-Tsinghua Center for Life Sciences, Beijing, 100871, China
- Chinese Institute for Brain Research, Beijing, 100871, China
| |
Collapse
|
22
|
Denton AR, Samaranayake SA, Kirchner KN, Roscoe RF, Berger SN, Harrod SB, Mactutus CF, Hashemi P, Booze RM. Selective monoaminergic and histaminergic circuit dysregulation following long-term HIV-1 protein exposure. J Neurovirol 2019; 25:540-550. [PMID: 31102184 PMCID: PMC6750960 DOI: 10.1007/s13365-019-00754-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 04/06/2019] [Accepted: 04/15/2019] [Indexed: 12/21/2022]
Abstract
Between 30 and 60% of HIV-seropositive individuals develop symptoms of clinical depression and/or apathy. Dopamine and serotonin are associated with motivational alterations; however, histamine is less well studied. In the present study, we used fast-scan cyclic voltammetry in HIV-1 transgenic (Tg) rats to simultaneously analyze the kinetics of nucleus accumbens dopamine (DA), prefrontal cortical serotonin (5-HT), and hypothalamic histamine (HA). For voltammetry, subjects were 15 HIV-1 Tg (7 male, 8 female) and 20 F344/N (11 male, 9 female) adult rats. Both serotonergic and dopaminergic release and reuptake kinetics were decreased in HIV-1 Tg animals relative to controls. In contrast, rates of histamine release and reuptake increased in HIV-1 Tg rats. Additionally, we used immunohistochemical (IHC) methods to identify histaminergic neurons in the tuberomammillary nucleus (TMN) of the hypothalamus. For IHC, subjects were 9 HIV-1 Tg (5 male, 4 female) and 9 F344/N (5 male, 4 female) adult rats. Although the total number of TMN histaminergic cells did not differ between HIV-1 Tg rats and F344/N controls, a significant sex effect was found, with females having an increased number of histaminergic neurons, relative to males. Collectively, these findings illustrate neurochemical alterations that potentially underlie or exacerbate the pathogenesis of clinical depression and/or apathy in HIV-1.
Collapse
Affiliation(s)
- Adam R Denton
- Behavioral Neuroscience Laboratory, Department of Psychology, University of South Carolina, Columbia, SC, USA
| | | | - Kristin N Kirchner
- Behavioral Neuroscience Laboratory, Department of Psychology, University of South Carolina, Columbia, SC, USA
| | - Robert F Roscoe
- Behavioral Neuroscience Laboratory, Department of Psychology, University of South Carolina, Columbia, SC, USA
| | - Shane N Berger
- Department of Chemistry, University of South Carolina, Columbia, SC, USA
| | - Steven B Harrod
- Behavioral Neuroscience Laboratory, Department of Psychology, University of South Carolina, Columbia, SC, USA
| | - Charles F Mactutus
- Behavioral Neuroscience Laboratory, Department of Psychology, University of South Carolina, Columbia, SC, USA
| | - Parastoo Hashemi
- Department of Chemistry, University of South Carolina, Columbia, SC, USA
| | - Rosemarie M Booze
- Behavioral Neuroscience Laboratory, Department of Psychology, University of South Carolina, Columbia, SC, USA.
| |
Collapse
|
23
|
Puthongkham P, Lee ST, Venton BJ. Mechanism of Histamine Oxidation and Electropolymerization at Carbon Electrodes. Anal Chem 2019; 91:8366-8373. [PMID: 31194511 DOI: 10.1021/acs.analchem.9b01178] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Histamine plays an important role in neuromodulation and the biological immune response. Although many electrochemical methods have been developed for histamine detection, the mechanism of its redox reaction has not been directly investigated. Here, we studied the mechanism of histamine oxidation at carbon electrodes and used that mechanistic information to design better fast-scan cyclic voltammetry (FSCV) methods for histamine. Using amperometry, cyclic voltammetry (CV), and X-ray photoelectron spectroscopy (XPS), we demonstrate that histamine oxidation requires a potential of at least +1.1 V vs Ag/AgCl. We propose that histamine undergoes one-electron oxidation on an imidazole nitrogen that produces a radical. The radical species dimerize and continue to undergo oxidation, leading to electropolymerization, which fouls the electrode. CV shows a peak at 1.3 V that is pH dependent, consistent with a one-proton, one-electron oxidation reaction. This mechanism is confirmed using 1- and 3-methylhistamine, which do not electropolymerize, compared to Nα-methylhistamine, which does. XPS also revealed a nitrogen-containing product adsorbed on the electrode surface after histamine oxidation. For FSCV detection of histamine at carbon-fiber microelectrodes, histamine oxidation was adsorption-controlled, and the anodic peak was observed at +1.2 V on the backward scan because of the rapid scan rate. However, the oxidation fouled the electrode and convoluted the FSCV temporal response; therefore, we implemented Nafion coating to alleviate the electrode fouling and preserve the time response of FSCV. Knowing the mechanism of histamine oxidation will facilitate design of better electrochemical methods for real-time monitoring of histamine.
Collapse
Affiliation(s)
- Pumidech Puthongkham
- Department of Chemistry , University of Virginia , Charlottesville , Virginia 22904 , United States
| | - Scott T Lee
- Department of Chemistry , University of Virginia , Charlottesville , Virginia 22904 , United States
| | - B Jill Venton
- Department of Chemistry , University of Virginia , Charlottesville , Virginia 22904 , United States
| |
Collapse
|
24
|
Holmes J, Pathirathna P, Hashemi P. Novel frontiers in voltammetric trace metal analysis: Towards real time, on-site, in situ measurements. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2018.11.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
25
|
Hersey M, Berger SN, Holmes J, West A, Hashemi P. Recent Developments in Carbon Sensors for At-Source Electroanalysis. Anal Chem 2018; 91:27-43. [PMID: 30481001 DOI: 10.1021/acs.analchem.8b05151] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
26
|
Carbon Nanoelectrodes for the Electrochemical Detection of Neurotransmitters. INTERNATIONAL JOURNAL OF ELECTROCHEMISTRY 2018; 2018. [PMID: 34306762 PMCID: PMC8301601 DOI: 10.1155/2018/3679627] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Carbon-based electrodes have been developed for the detection of neurotransmitters over the past 30 years using voltammetry and amperometry. The traditional electrode for neurotransmitter detection is the carbon fiber microelectrode (CFME). The carbon-based electrode is suitable for in vivo neurotransmitter detection due to the fact that it is biocompatible and relatively small in surface area. The advent of nanoscale electrodes is in high demand due to smaller surface areas required to target specific brain regions that are also minimally invasive and cause relatively low tissue damage when implanted into living organisms. Carbon nanotubes (CNTs), carbon nanofibers, carbon nanospikes, and carbon nanopetals among others have all been utilized for this purpose. Novel electrode materials have also required novel insulations such as glass, epoxy, and polyimide coated fused silica capillaries for their construction and usage. Recent research developments have yielded a wide array of carbon nanoelectrodes with superior properties and performances in comparison to traditional electrode materials. These electrodes have thoroughly enhanced neurotransmitter detection allowing for the sensing of biological compounds at lower limits of detection, fast temporal resolution, and without surface fouling. This will allow for greater understanding of several neurological disease states based on the detection of neurotransmitters.
Collapse
|
27
|
West A, Best J, Abdalla A, Nijhout HF, Reed M, Hashemi P. Voltammetric evidence for discrete serotonin circuits, linked to specific reuptake domains, in the mouse medial prefrontal cortex. Neurochem Int 2018; 123:50-58. [PMID: 30031052 DOI: 10.1016/j.neuint.2018.07.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 06/22/2018] [Accepted: 07/13/2018] [Indexed: 12/19/2022]
Abstract
The medial prefrontal cortex (mPFC) is an important brain region, that controls a variety of behavioral and functional outputs. As an important step in characterizing mPFC functionality, in this paper we focus on chemically defining serotonin transmission in this area. We apply cutting-edge analytical methods, fast-scan cyclic voltammetry (FSCV) and fast-scan controlled adsorption cyclic voltammetry (FSCAV), pioneered in our laboratory, for the first real-time in vivo analysis of serotonin in the mPFC. In prior in vivo work in the substantia nigra, pars reticulata, we found that our sub-second measurements of a single evoked serotonin release were subject to two clearance mechanisms. These mechanisms were readily modeled via Uptake 1, mediated by the serotonin transporters (SERTs), and Uptake 2, mediated by monoamine transporters (dopamine transporters (DATs), norepinephrine transporters (NETs), and organic cation transporters (OCTs)). Here in the mPFC, for the first time to our knowledge, we observe two release events in response to a single stimulation of the medial forebrain bundle (MFB). Of particular note is that each response is tied to a discrete reuptake profile comprising both Uptake 1 and 2. We hypothesize that two distinct populations of serotonin axons traverse the MFB and terminate in different domains with specific reuptake profiles. We test and confirm this hypothesis using a multifaceted pharmacological, histological and mathematical approach. We thus present evidence for a highly elaborate biochemical organization that regulates serotonin chemistry in the mPFC. This knowledge provides a solid foundation on which to base future studies of the involvement of the mPFC in brain function and behavior.
Collapse
Affiliation(s)
- Alyssa West
- Department of Chemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Janet Best
- Department of Mathematics, The Ohio State University, Columbus, OH, 43210, USA
| | - Aya Abdalla
- Department of Chemistry, University of South Carolina, Columbia, SC, 29208, USA
| | | | - Michael Reed
- Department of Mathematics, Duke University, Durham, NC, 27708, USA
| | - Parastoo Hashemi
- Department of Chemistry, University of South Carolina, Columbia, SC, 29208, USA.
| |
Collapse
|
28
|
Cabay MR, McRay A, Featherstone DE, Shippy SA. Development of μ-Low-Flow-Push-Pull Perfusion Probes for Ex Vivo Sampling from Mouse Hippocampal Tissue Slices. ACS Chem Neurosci 2018; 9:252-259. [PMID: 29077383 DOI: 10.1021/acschemneuro.7b00277] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
This work demonstrates a reduced tip μ-low-flow-push-pull perfusion technique for ex vivo sampling of the extracellular space of mouse hippocampal brain slices. Concentric fused-silica capillary probes are pulled by an in-house gravity puller with a butane flame producing probe tips averaging an overall outer diameter of 30.3 ± 8 μm. The 10-30 nL/min perfusion flow rate through the probe generates an average recovery of 90%. Sampling was performed with mouse brain tissue slices to characterize basal neurotransmitter content in this model system. Samples were collected from hippocampal tissue slices at a volume of 200 nL per sample. Sample arginine, histamine, lysine, glycine, glutamate, and aspartate content was quantified by micellar electrokinetic chromatography with LED-induced fluorescence detection. Primary amine content was sampled over several hours to determine evidence for tissue damage and loss of extracellular content from the tissue slice. Overall, all amino acid concentrations trended lower as an effect of time relative to tissue slicing. There were significant concentration decreases seen for histamine, lysine, and aspartate between time points 0-2 and 2-6 h (p < 0.05) relative to tissue slicing. Analysis of averaged sampling experiments does not appear to reveal significant probe-insertion-related amino acid changes. The work presented shows the applicability of an 80% reduction of probe tip size relative to previous designs for the collection of extracellular content from thin tissue slices.
Collapse
Affiliation(s)
- Marissa R. Cabay
- Department of Chemistry, ‡Department of Biological Sciences, and §Laboratory of Integrative Neuroscience, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Alyssa McRay
- Department of Chemistry, ‡Department of Biological Sciences, and §Laboratory of Integrative Neuroscience, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - David E. Featherstone
- Department of Chemistry, ‡Department of Biological Sciences, and §Laboratory of Integrative Neuroscience, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Scott A. Shippy
- Department of Chemistry, ‡Department of Biological Sciences, and §Laboratory of Integrative Neuroscience, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| |
Collapse
|
29
|
Best J, Nijhout HF, Samaranayake S, Hashemi P, Reed M. A mathematical model for histamine synthesis, release, and control in varicosities. Theor Biol Med Model 2017; 14:24. [PMID: 29228949 PMCID: PMC5725884 DOI: 10.1186/s12976-017-0070-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Accepted: 10/27/2017] [Indexed: 12/24/2022] Open
Abstract
Background Histamine (HA), a small molecule that is synthesized from the amino acid histidine, plays an important role in the immune system where it is associated with allergies, inflammation, and T-cell regulation. In the brain, histamine is stored in mast cells and other non-neuronal cells and also acts as a neurotransmitter. The histamine neuron cell bodies are in the tuberomammillary (TM) nucleus of the hypothalamus and these neurons send projections throughout the central nervous system (CNS), in particular to the cerebral cortex, amygdala, basal ganglia, hippocampus, thalamus, retina, and spinal cord. HA neurons make few synapses, but release HA from the cell bodies and from varicosities when the neurons fire. Thus the HA neural system seems to modulate and control the HA concentration in projection regions. It is known that high HA levels in the extracellular space inhibit serotonin release, so HA may play a role in the etiology of depression. Results We compare model predictions to classical physiological experiments on HA half-life, the concentration of brain HA after histidine loading, and brain HA after histidine is dramatically increased or decreased in the diet. The model predictions are also consistent with in vivo experiments in which extracellular HA is measured, using Fast Scan Cyclic Voltammetry, in the premammillary nucleus (PM) after a 2 s antidromic stimulation of the TM, both without and in the presence of the H3 autoreceptor antagonist thioperamide. We show that the model predicts well the temporal behavior of HA in the extracellular space over 30 s in both experiments. Conclusions Our ability to measure in vivo histamine dynamics in the extracellular space after stimulation presents a real opportunity to understand brain function and control. The observed extracellular dynamics depends on synthesis, storage, neuronal firing, release, reuptake, glial cells, and control by autoreceptors, as well as the behavioral state of the animal (for example, depression) or the presence of neuroinflammation. In this complicated situation, the mathematical model will be useful for interpreting data and conducting in silico experiments to understand causal mechanisms. And, better understanding can suggest new therapeutic drug targets.
Collapse
Affiliation(s)
- Janet Best
- Department of Mathematics, Ohio State University, 231 W 18th Ave, MW 614, Columbus, 43210, OH, USA.
| | - H F Nijhout
- Department of Biology, Duke University, Durham, 27708, NC, USA
| | - Srimal Samaranayake
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, 29208, SC, USA
| | - Parastoo Hashemi
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, 29208, SC, USA
| | - Michael Reed
- Department of Mathematics, Duke University, Durham, 27708, NC, USA
| |
Collapse
|
30
|
Electrochemical detection of neurotransmitters: Toward synapse-based neural interfaces. Biomed Eng Lett 2017. [DOI: 10.1007/s13534-016-0230-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|
31
|
Abdalla A, Atcherley CW, Pathirathna P, Samaranayake S, Qiang B, Peña E, Morgan SL, Heien ML, Hashemi P. In Vivo Ambient Serotonin Measurements at Carbon-Fiber Microelectrodes. Anal Chem 2017; 89:9703-9711. [PMID: 28795565 DOI: 10.1021/acs.analchem.7b01257] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The mechanisms that control extracellular serotonin levels in vivo are not well-defined. This shortcoming makes it very challenging to diagnose and treat the many psychiatric disorders in which serotonin is implicated. Fast-scan cyclic voltammetry (FSCV) can measure rapid serotonin release and reuptake events but cannot report critically important ambient serotonin levels. In this Article, we use fast-scan controlled adsorption voltammetry (FSCAV), to measure serotonin's steady-state, extracellular chemistry. We characterize the "Jackson" voltammetric waveform for FSCAV and show highly stable, selective, and sensitive ambient serotonin measurements in vitro. In vivo, we report basal serotonin levels in the CA2 region of the hippocampus as 64.9 ± 2.3 nM (n = 15 mice, weighted average ± standard error). We electrochemically and pharmacologically verify the selectivity of the serotonin signal. Finally, we develop a statistical model that incorporates the uncertainty in in vivo measurements, in addition to electrode variability, to more critically analyze the time course of pharmacological data. Our novel method is a uniquely powerful analysis tool that can provide deeper insights into the mechanisms that control serotonin's extracellular levels.
Collapse
Affiliation(s)
- Aya Abdalla
- Department of Chemistry and Biochemistry, University of South Carolina , 631 Sumter Street, Columbia, South Carolina 29208, United States
| | | | - Pavithra Pathirathna
- Department of Chemistry and Biochemistry, University of South Carolina , 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Srimal Samaranayake
- Department of Chemistry and Biochemistry, University of South Carolina , 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Beidi Qiang
- Department of Statistics, University of South Carolina , 1523 Greene Street, Columbia, South Carolina 29208, United States
| | - Edsel Peña
- Department of Statistics, University of South Carolina , 1523 Greene Street, Columbia, South Carolina 29208, United States
| | - Stephen L Morgan
- Department of Chemistry and Biochemistry, University of South Carolina , 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Michael L Heien
- Department of Chemistry and Biochemistry, University of Arizona , 1306 East University Blvd., Tucson, Arizona 85721, United States
| | - Parastoo Hashemi
- Department of Chemistry and Biochemistry, University of South Carolina , 631 Sumter Street, Columbia, South Carolina 29208, United States
| |
Collapse
|
32
|
Borman RP, Wang Y, Nguyen MD, Ganesana M, Lee ST, Venton BJ. Automated Algorithm for Detection of Transient Adenosine Release. ACS Chem Neurosci 2017; 8:386-393. [PMID: 28196418 DOI: 10.1021/acschemneuro.6b00262] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Spontaneous adenosine release events have been discovered in the brain that last only a few seconds. The identification of these adenosine events from fast-scan cyclic voltammetry (FSCV) data is difficult due to the random nature of adenosine release. In this study, we develop an algorithm that automatically identifies and characterizes adenosine transient features, including event time, concentration, and duration. Automating the data analysis reduces analysis time from 10 to 18 h to about 40 min per experiment. The algorithm identifies adenosine based on its two oxidation peaks, the time delay between them, and their current vs time peak ratios. In order to validate the program, four data sets from three independent researchers were analyzed by the algorithm and then compared to manual identification by an analyst. The algorithm resulted in 10 ± 4% false negatives and 9 ± 3% false positives. The specificity of the algorithm was verified by comparing calibration data for adenosine triphosphate (ATP), histamine, hydrogen peroxide, and pH changes and these analytes were not identified as adenosine. Stimulated histamine release in vivo was also not identified as adenosine. The code is modular in design and could be easily adjusted to detect features of spontaneous dopamine or other neurochemical transients in FSCV data.
Collapse
Affiliation(s)
- Ryan P. Borman
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Ying Wang
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Michael D. Nguyen
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | | | - Scott T. Lee
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - B. Jill Venton
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| |
Collapse
|
33
|
Ganesana M, Lee ST, Wang Y, Venton BJ. Analytical Techniques in Neuroscience: Recent Advances in Imaging, Separation, and Electrochemical Methods. Anal Chem 2017; 89:314-341. [PMID: 28105819 PMCID: PMC5260807 DOI: 10.1021/acs.analchem.6b04278] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | | | | | - B. Jill Venton
- Department of Chemistry, PO Box 400319, University of Virginia, Charlottesville, VA 22904
| |
Collapse
|
34
|
A pipette-based calibration system for fast-scan cyclic voltammetry with fast response times. Biotechniques 2016; 61:269-271. [PMID: 27839513 DOI: 10.2144/000114476] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 09/20/2016] [Indexed: 11/23/2022] Open
Abstract
Fast-scan cyclic voltammetry (FSCV) is an electrochemical technique that utilizes the oxidation and/or reduction of an analyte of interest to infer rapid changes in concentrations. In order to calibrate the resulting oxidative or reductive current, known concentrations of an analyte must be introduced under controlled settings. Here, I describe a simple and cost-effective method, using a Petri dish and pipettes, for the calibration of carbon fiber microelectrodes (CFMs) using FSCV.
Collapse
|
35
|
Samaranayake S, Abdalla A, Robke R, Nijhout HF, Reed MC, Best J, Hashemi P. A voltammetric and mathematical analysis of histaminergic modulation of serotonin in the mouse hypothalamus. J Neurochem 2016; 138:374-83. [PMID: 27167463 DOI: 10.1111/jnc.13659] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 04/12/2016] [Accepted: 05/06/2016] [Indexed: 12/01/2022]
Abstract
Histamine and serotonin are neuromodulators which facilitate numerous, diverse neurological functions. Being co-localized in many brain regions, these two neurotransmitters are thought to modulate one another's chemistry and are often implicated in the etiology of disease. Thus, it is desirable to interpret the in vivo chemistry underlying neurotransmission of these two molecules to better define their roles in health and disease. In this work, we describe a voltammetric approach to monitoring serotonin and histamine simultaneously in real time. Via electrical stimulation of the axonal bundles in the medial forebrain bundle, histamine release was evoked in the mouse premammillary nucleus. We found that histamine release was accompanied by a rapid, potent inhibition of serotonin in a concentration-dependent manner. We developed mathematical models to capture the experimental time courses of histamine and serotonin, which necessitated incorporation of an inhibitory receptor on serotonin neurons. We employed pharmacological experiments to verify that this serotonin inhibition was mediated by H3 receptors. Our novel approach provides fundamental mechanistic insights that can be used to examine the full extent of interconnectivity between histamine and serotonin in the brain. Histamine and serotonin are co-implicated in many of the brain's functions. In this paper, we develop a novel voltammetric method for simultaneous real-time monitoring of histamine and serotonin in the mouse premammillary nucleus. Electrical stimulation of the medial forebrain bundle evokes histamine and inhibits serotonin release. We show voltammetrically, mathematically, and pharmacologically that this serotonin inhibition is H3 receptor mediated.
Collapse
Affiliation(s)
- Srimal Samaranayake
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, USA
| | - Aya Abdalla
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, USA
| | - Rhiannon Robke
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, USA
| | | | - Michael C Reed
- Department of Mathematics, Duke University, Durham, North Carolina, USA
| | - Janet Best
- Department of Mathematics, The Ohio State University, Columbus, Ohio, USA
| | - Parastoo Hashemi
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, USA
| |
Collapse
|
36
|
Denno ME, Privman E, Borman RP, Wolin DC, Venton BJ. Quantification of Histamine and Carcinine in Drosophila melanogaster Tissues. ACS Chem Neurosci 2016; 7:407-14. [PMID: 26765065 DOI: 10.1021/acschemneuro.5b00326] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Histamine is a neurotransmitter crucial to the visual processing of Drosophila melanogaster. It is inactivated by metabolism to carcinine, a β-alanyl derivative, and the same enzyme that controls that process also converts dopamine to N-β-alanyl-dopamine. Direct detection of histamine and carcinine has not been reported in single Drosophila brains. Here, we quantify histamine, carcinine, dopamine, and N-β-alanyl-dopamine in Drosophila tissues by capillary electrophoresis coupled to fast-scan cyclic voltammetry (CE-FSCV). Limits of detection were low, 4 ± 1 pg for histamine, 10 ± 4 pg for carcinine, 2.8 ± 0.3 pg for dopamine, and 9 ± 3 pg for N-β-alanyl-dopamine. Tissue content was compared in the brain, eyes, and cuticle from wild-type (Canton S) and mutant (tan(3) and ebony(1)) strains. In tan(3) mutants, the enzyme that produces histamine from carcinine is nonfunctional, whereas in ebony(1) mutants, the enzyme that produces carcinine from histamine is nonfunctional. In all fly strains, the neurotransmitter content was highest in the eyes and there were no strain differences for tissue content in the cuticle. The main finding was that carcinine levels changed significantly in the mutant flies, whereas histamine levels did not. In particular, tan(3) flies had significantly higher carcinine levels in the eyes and brain than Canton S or ebony(1) flies. N-β-Alanyl-dopamine was detected in tan(3) mutants but not in other strains. These results show the utility of CE-FSCV for sensitive detection of histamine and carcinine, which allows a better understanding of their content and metabolism in different types of tissues to be obtained.
Collapse
Affiliation(s)
- Madelaine E. Denno
- Department
of Chemistry, ‡Neuroscience Graduate Program, §Medical Scientist Training Program, ∥Department of Biology, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Eve Privman
- Department
of Chemistry, ‡Neuroscience Graduate Program, §Medical Scientist Training Program, ∥Department of Biology, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Ryan P. Borman
- Department
of Chemistry, ‡Neuroscience Graduate Program, §Medical Scientist Training Program, ∥Department of Biology, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Danielle C. Wolin
- Department
of Chemistry, ‡Neuroscience Graduate Program, §Medical Scientist Training Program, ∥Department of Biology, University of Virginia, Charlottesville, Virginia 22904, United States
| | - B. Jill Venton
- Department
of Chemistry, ‡Neuroscience Graduate Program, §Medical Scientist Training Program, ∥Department of Biology, University of Virginia, Charlottesville, Virginia 22904, United States
| |
Collapse
|