1
|
Zhang S, Nie Q, Sun Y, Zuo S, Chen C, Li S, Yang J, Hu J, Zhou X, Yu Y, Huang P, Lian L, Xie M, Nie S. Bacteroides uniformis degrades β-glucan to promote Lactobacillus johnsonii improving indole-3-lactic acid levels in alleviating colitis. MICROBIOME 2024; 12:177. [PMID: 39300532 DOI: 10.1186/s40168-024-01896-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 07/30/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND Intake of dietary fiber is associated with a reduced risk of inflammatory bowel disease. β-Glucan (BG), a bioactive dietary fiber, has potential health-promoting effects on intestinal functions; however, the underlying mechanism remains unclear. Here, we explore the role of BG in ameliorating colitis by modulating key bacteria and metabolites, confirmed by multiple validation experiments and loss-of-function studies, and reveal a novel bacterial cross-feeding interaction. RESULTS BG intervention ameliorates colitis and reverses Lactobacillus reduction in colitic mice, and Lactobacillus abundance was significantly negatively correlated with the severity of colitis. It was confirmed by further studies that Lactobacillus johnsonii was the most significantly enriched Lactobacillus spp. Multi-omics analysis revealed that L. johnsonii produced abundant indole-3-lactic acid (ILA) leading to the activation of aryl hydrocarbon receptor (AhR) responsible for the mitigation of colitis. Interestingly, L. johnsonii cannot utilize BG but requires a cross-feeding with Bacteroides uniformis, which degrades BG and produces nicotinamide (NAM) to promote the growth of L. johnsonii. A proof-of-concept study confirmed that BG increases L. johnsonii and B. uniformis abundance and ILA levels in healthy individuals. CONCLUSIONS These findings demonstrate the mechanism by which BG ameliorates colitis via L. johnsonii-ILA-AhR axis and reveal the important cross-feeding interaction between L. johnsonii and B. uniformis. Video Abstract.
Collapse
Affiliation(s)
- Shanshan Zhang
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology, Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| | - Qixing Nie
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology, Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| | - Yonggan Sun
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology, Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| | - Sheng Zuo
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology, Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| | - Chunhua Chen
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology, Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| | - Song Li
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology, Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| | - Jingrui Yang
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology, Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| | - Jielun Hu
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology, Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| | - Xingtao Zhou
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology, Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| | - Yongkang Yu
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology, Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| | - Ping Huang
- Department of Nutrition, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Lu Lian
- Department of Nutrition, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Mingyong Xie
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology, Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China.
| | - Shaoping Nie
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology, Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China.
| |
Collapse
|
2
|
Xia P, Li R, Chen M, Zeng F, Zhou W, Hou T. Proanthocyanidins and β-Glucan Synergistically Regulate Intestinal Inflammation in Dextran Sulfate Sodium-Induced Colitis Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:19366-19377. [PMID: 39178327 DOI: 10.1021/acs.jafc.4c03544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2024]
Abstract
Proanthocyanidins (PA) have been proven to have an anti-inflammation effect in multiple models by regulating oxidative stress. β-glucan (BG) could alleviate colitis from the perspectives of intestinal permeability and gut microbiota. In the present study, the synergistic anti-inflammatory function of PA and BG was explored from multiple aspects including immune response, intestinal barrier, gut microbiota, and differential metabolites. The results showed that the supplementation of PA and BG improved the colitis symptoms including atrophy of the colon, body weight loss, and organ index increase. Additionally, inflammatory cytokine levels and oxidative stress status were significantly regulated with the intake of PA and BG. Moreover, PA and BG intervention improved intestinal permeability and promoted the expression of barrier proteins. The microbiome and metabolic profile of cecal contents showed that PA and BG supplementation increased the abundance of anti-inflammatory bacteria and decreased the abundance of pro-inflammatory bacteria. Furthermore, some beneficial metabolites involved in amino acid metabolism, carbohydrate metabolism, and biosynthesis of other secondary metabolite pathways were increased. Overall, these findings have demonstrated the regulation of the inflammatory response and remodel of metabolite profiles by PA and BG complexes, indicating that it may serve as a new strategy for inflammatory bowel disease treatment in the future.
Collapse
Affiliation(s)
- Pengkui Xia
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong 524001, China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ruyi Li
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong 524001, China
| | - Mianhong Chen
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong 524001, China
| | - Fanke Zeng
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong 524001, China
| | - Wei Zhou
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong 524001, China
| | - Tao Hou
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
3
|
Zhang D, Jiang L, Yu F, Yan P, Liu Y, Wu Y, Yang X. PepT1-targeted nanodrug based on co-assembly of anti-inflammatory peptide and immunosuppressant for combined treatment of acute and chronic DSS-induced ColitiS. Front Pharmacol 2024; 15:1442876. [PMID: 39211778 PMCID: PMC11357942 DOI: 10.3389/fphar.2024.1442876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
Introduction Inflammatory bowel disease (IBD), as a chronic and recurrent inflammatory bowel diseases with limited therapeutic outcomes, is characterized by immune disorders and intestinal barrier dysfunction. Currently, the most medications used to cure IBD in clinic just temporarily induce and maintain remission with poor response rates and limited outcomes. Therefore, it is urgently necessary to develop an appropriate therapeutic candidate with preferable efficacy and less adverse reaction for curing IBD. Methods Five groups of mice were utilized: control that received saline, DSS group (mice received 2.5% DSS or 4% DSS), KPV group (mice received KPV), FK506 group (mice received FK506) and NPs groups (mice received NPs). The effect of NP on the inflammatory factors of macrophage was evaluated using CCK-8, quantitative polymerase chain reaction (PCR), Elisa and Western blot (WB). Immunofluorescent staining revealed the targeting relationship between NP and Petp-1. Immunohistochemistry staining showed the effect of NP on tight junction proteins. Moreover, in vivo animal experiments confirmed that NPs reduced inflammatory levels in IBD. Results and Discussion After administering with NPs, mice with DSS-induced acute or chronic colitis exhibited significant improvement in body weight, colon length, and disease activity index, decreased the level of the factors associated with oxidative stress (MPO, NO and ROS) and the inflammatory cytokines (TNF-α, IL-1β and IL-6), which implied that NPs could ameliorate murine colitis effectively. Furthermore, treating by NPs revealed a notable reduction of the expressions of CD68 and CD3, restoring the expression levels of tight junction proteins (Claudin-5, Occludin-1, and ZO-1) were significantly restored, surpassing those observed in the KPV and FK506 groups. which indicated that NPs can reduce inflammation and enhance epithelial barrier integrity by decreasing the infiltration of macrophages and T-lymphocytes. Collectively, those results demonstrated the effectively therapeutic outcome after using NPs in both acute and chronic colitis, suggesting that the newly co-assembled of NPs can be as a potential therapeutic candidate for colitis.
Collapse
Affiliation(s)
- Daifang Zhang
- Department of Cardiovascular Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Longqi Jiang
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Vascular Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Fengxu Yu
- Department of Cardiovascular Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Pijun Yan
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Yong Liu
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Vascular Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Ya Wu
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Vascular Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Xi Yang
- Department of Vascular Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| |
Collapse
|
4
|
Mao J, Tan L, Tian C, Wang W, Zou Y, Zhu Z, Li Y. Systematically investigate the mechanism underlying the therapeutic effect of Astragalus membranaceus in ulcerative colitis. Am J Med Sci 2024:S0002-9629(24)01355-7. [PMID: 39009282 DOI: 10.1016/j.amjms.2024.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 07/09/2024] [Accepted: 07/09/2024] [Indexed: 07/17/2024]
Abstract
BACKGROUND Whether Astragalus membranaceus is an effective drug in treatment of ulcerative colitis (UC) and how it exhibit activity effect on UC is unclear. METHODS TCMSP, GeneCards, String, and DAVID database were used to screening target genes construct PPI network and performed for GO and KEGG pathway enrichment analysis respectively. Molecular docking and animal experiment were performed. The body weight and disease activity index (DAI) of mice were recorded. ELISA kits were used to detect the levels of CAT, SOD, MDA and IL-6, IL-10, TNF-α in the blood of mice. Western blot kits were utilized to measured the expressions of MAPK14, RB1, MAPK1, JUN, ATK1, and IL2 proteins. RESULTS The active components of Astragalus membranaceus mainly including 7-O-methylisomucronulatol, quercetin, kaempferol, formononetin and isrhamnetin. Astragalus membranaceus may inhibited the expression of TNF-α, IL-6, MDA, and promoted the expression of CAT, SOD, IL-10. The expression levels of MAPK14, RB1, MAPK1, JUN and ATK1 proteins were significantly decreased while IL2 protein increased administrated with Astragalus membranaceus. CONCLUSIONS Astragalus membranaceus is an effective drug in treatment of UC according to related to above targets that may exhibits the anti-UC effect via its antioxidant pathway and regulating the balance of pro-inflammatory and anti-inflammatory factors.
Collapse
Affiliation(s)
- Jingxin Mao
- Department of Science and Technology Industry, Chongqing Medical and Pharmaceutical College, Chongqing 400030, China; College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Lihong Tan
- Department of Science and Technology Industry, Chongqing Medical and Pharmaceutical College, Chongqing 400030, China; Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery System, Chongqing Medical and Pharmaceutical College, Chongqing 400030, China
| | - Cheng Tian
- Department of Science and Technology Industry, Chongqing Medical and Pharmaceutical College, Chongqing 400030, China; Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery System, Chongqing Medical and Pharmaceutical College, Chongqing 400030, China
| | - Wenxiang Wang
- College of pharmacy, Chongqing Three Gorges Medical College, Chongqing 404120, China
| | - YanLin Zou
- College of pharmacy, Chongqing Three Gorges Medical College, Chongqing 404120, China
| | - Zhaojing Zhu
- Department of Science and Technology Industry, Chongqing Medical and Pharmaceutical College, Chongqing 400030, China; Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery System, Chongqing Medical and Pharmaceutical College, Chongqing 400030, China
| | - Yan Li
- Department of Science and Technology Industry, Chongqing Medical and Pharmaceutical College, Chongqing 400030, China; Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery System, Chongqing Medical and Pharmaceutical College, Chongqing 400030, China.
| |
Collapse
|
5
|
Paudel D, Nair DVT, Joseph G, Castro R, Tiwari AK, Singh V. Gastrointestinal microbiota-directed nutritional and therapeutic interventions for inflammatory bowel disease: opportunities and challenges. Gastroenterol Rep (Oxf) 2024; 12:goae033. [PMID: 38690290 PMCID: PMC11057942 DOI: 10.1093/gastro/goae033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/01/2024] [Accepted: 03/08/2024] [Indexed: 05/02/2024] Open
Abstract
Evidence-based research has confirmed the role of gastrointestinal microbiota in regulating intestinal inflammation. These data have generated interest in developing microbiota-based therapies for the prevention and management of inflammatory bowel disease (IBD). Despite in-depth understanding of the etiology of IBD, it currently lacks a cure and requires ongoing management. Accumulating data suggest that an aberrant gastrointestinal microbiome, often referred to as dysbiosis, is a significant environmental instigator of IBD. Novel microbiome-targeted interventions including prebiotics, probiotics, fecal microbiota transplant, and small molecule microbiome modulators are being evaluated as therapeutic interventions to attenuate intestinal inflammation by restoring a healthy microbiota composition and function. In this review, the effectiveness and challenges of microbiome-centered interventions that have the potential to alleviate intestinal inflammation and improve clinical outcomes of IBD are explored.
Collapse
Affiliation(s)
- Devendra Paudel
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Divek V T Nair
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Grace Joseph
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Rita Castro
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Amit K Tiwari
- College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Vishal Singh
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
6
|
Wei X, Dai J, Liu R, Wan G, Gu S, Du Y, Yang X, Wang L, Huang Y, Chen P, Chen X, Yang X, Wang Q. S/O/W Emulsion with CAPE Ameliorates DSS-Induced Colitis by Regulating NF-κB Pathway, Gut Microbiota and Fecal Metabolome in C57BL/6 Mice. Nutrients 2024; 16:1145. [PMID: 38674835 PMCID: PMC11054280 DOI: 10.3390/nu16081145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Inflammatory bowel disease (IBD) has attracted much attention worldwide due to its prevalence. In this study, the effect of a solid-in-oil-in-water (S/O/W) emulsion with Caffeic acid phenethyl ester (CAPE, a polyphenolic active ingredient in propolis) on dextran sulfate sodium (DSS)-induced colitis in C57BL/6 mice was evaluated. The results showed that CAPE-emulsion could significantly alleviate DSS-induced colitis through its effects on colon length, reduction in the disease activity index (DAI), and colon histopathology. The results of ELISA and Western blot analysis showed that CAPE-emulsion can down-regulate the excessive inflammatory cytokines in colon tissue and inhibit the expression of p65 in the NF-κB pathway. Furthermore, CAPE-emulsion promoted short-chain fatty acids production in DSS-induced colitis mice. High-throughput sequencing results revealed that CAPE-emulsion regulates the imbalance of gut microbiota by enhancing diversity, restoring the abundance of beneficial bacteria (such as Odoribacter), and suppressing the abundance of harmful bacteria (such as Afipia, Sphingomonas). The results of fecal metabolome showed that CAPE-emulsion restored the DSS-induced metabolic disorder by affecting metabolic pathways related to inflammation and cholesterol metabolism. These research results provide a scientific basis for the use of CPAE-emulsions for the development of functional foods for treating IBD.
Collapse
Affiliation(s)
- Xuelin Wei
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China; (X.W.); (R.L.); (G.W.); (S.G.); (Y.D.); (X.Y.); (L.W.); (Y.H.); (P.C.); (X.C.)
| | - Juan Dai
- School of Laboratory Medicine, Chengdu Medical College, Chengdu 610500, China;
| | - Ruijia Liu
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China; (X.W.); (R.L.); (G.W.); (S.G.); (Y.D.); (X.Y.); (L.W.); (Y.H.); (P.C.); (X.C.)
| | - Guochao Wan
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China; (X.W.); (R.L.); (G.W.); (S.G.); (Y.D.); (X.Y.); (L.W.); (Y.H.); (P.C.); (X.C.)
| | - Shiyu Gu
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China; (X.W.); (R.L.); (G.W.); (S.G.); (Y.D.); (X.Y.); (L.W.); (Y.H.); (P.C.); (X.C.)
| | - Yuwei Du
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China; (X.W.); (R.L.); (G.W.); (S.G.); (Y.D.); (X.Y.); (L.W.); (Y.H.); (P.C.); (X.C.)
| | - Xinyue Yang
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China; (X.W.); (R.L.); (G.W.); (S.G.); (Y.D.); (X.Y.); (L.W.); (Y.H.); (P.C.); (X.C.)
| | - Lijun Wang
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China; (X.W.); (R.L.); (G.W.); (S.G.); (Y.D.); (X.Y.); (L.W.); (Y.H.); (P.C.); (X.C.)
| | - Yukun Huang
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China; (X.W.); (R.L.); (G.W.); (S.G.); (Y.D.); (X.Y.); (L.W.); (Y.H.); (P.C.); (X.C.)
| | - Pengfei Chen
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China; (X.W.); (R.L.); (G.W.); (S.G.); (Y.D.); (X.Y.); (L.W.); (Y.H.); (P.C.); (X.C.)
| | - Xianggui Chen
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China; (X.W.); (R.L.); (G.W.); (S.G.); (Y.D.); (X.Y.); (L.W.); (Y.H.); (P.C.); (X.C.)
- Chongqing Key Laboratory of Specialty Food Co-Built by Sichuan and Chongqing, Chengdu 610039, China
| | - Xiao Yang
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China; (X.W.); (R.L.); (G.W.); (S.G.); (Y.D.); (X.Y.); (L.W.); (Y.H.); (P.C.); (X.C.)
- Chongqing Key Laboratory of Specialty Food Co-Built by Sichuan and Chongqing, Chengdu 610039, China
| | - Qin Wang
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
7
|
Khan J, Gul P, Rashid MT, Li Q, Liu K. Composition of Whole Grain Dietary Fiber and Phenolics and Their Impact on Markers of Inflammation. Nutrients 2024; 16:1047. [PMID: 38613080 PMCID: PMC11013088 DOI: 10.3390/nu16071047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/28/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
Inflammation is an important biological response to any tissue injury. The immune system responds to any stimulus, such as irritation, damage, or infection, by releasing pro-inflammatory cytokines. The overproduction of pro-inflammatory cytokines can lead to several diseases, e.g., cardiovascular diseases, joint disorders, cancer, and allergies. Emerging science suggests that whole grains may lower the markers of inflammation. Whole grains are a significant source of dietary fiber and phenolic acids, which have an inverse association with the risk of inflammation. Both cereals and pseudo-cereals are rich in dietary fiber, e.g., arabinoxylan and β-glucan, and phenolic acids, e.g., hydroxycinnamic acids and hydroxybenzoic acids, which are predominantly present in the bran layer. However, the biological mechanisms underlying the widely reported association between whole grain consumption and a lower risk of disease are not fully understood. The modulatory effects of whole grains on inflammation are likely to be influenced by several mechanisms including the effect of dietary fiber and phenolic acids. While some of these effects are direct, others involve the gut microbiota, which transforms important bioactive substances into more beneficial metabolites that modulate the inflammatory signaling pathways. Therefore, the purpose of this review is twofold: first, it discusses whole grain dietary fiber and phenolic acids and highlights their potential; second, it examines the health benefits of these components and their impacts on subclinical inflammation markers, including the role of the gut microbiota. Overall, while there is promising evidence for the anti-inflammatory properties of whole grains, further research is needed to understand their effects fully.
Collapse
Affiliation(s)
- Jabir Khan
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; (J.K.); (P.G.); (M.T.R.); (Q.L.)
| | - Palwasha Gul
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; (J.K.); (P.G.); (M.T.R.); (Q.L.)
| | - Muhammad Tayyab Rashid
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; (J.K.); (P.G.); (M.T.R.); (Q.L.)
| | - Qingyun Li
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; (J.K.); (P.G.); (M.T.R.); (Q.L.)
| | - Kunlun Liu
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; (J.K.); (P.G.); (M.T.R.); (Q.L.)
- School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou 450001, China
| |
Collapse
|
8
|
Cheng J, Zhang G, Liu L, Luo J, Peng X. Anti-inflammatory activity of β-glucans from different sources before and after fermentation by fecal bacteria in vitro. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:1116-1131. [PMID: 37740718 DOI: 10.1002/jsfa.12997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 04/17/2023] [Accepted: 09/23/2023] [Indexed: 09/25/2023]
Abstract
BACKGROUND β-Glucans are widely sourced and have various physiological effects, including anti-inflammatory effects. However, the strength of the anti-inflammatory activity of β-glucans from different sources remains unknown due to the lack of rapid and effective biomarkers. This study therefore aimed to screen out the β-glucans with strong anti-inflammatory activity from five different sources and to further screen out possible biomarkers in metabolites after fermenting the β-glucans with gut microorganisms. RESULTS The results showed that all five β-glucans inhibited the production of lipopolysaccharide (LPS)-induced pro-inflammatory mediators and suppressed the mRNA expression level of TLR4/MyD88. Their anti-inflammatory mechanisms involved the inhibition of intracellular reactive oxygen species (ROS) production and suppression of mRNA expression of the NF-κB pathway and JNK pathway. Among them, barley β-glucan exhibited the strongest anti-inflammatory effect, followed by Ganoderma lucidum β-glucan. Enhanced anti-inflammatory activity of β-glucan was found after fermentation and may be related to the increased abundance of metabolites such as vanillin, dihydroxyphenylacetic acid, caffeic acid, acetic acid, butyric acid, and lactic acid. They were strongly positively correlated to the abundance of beneficial bacteria such as Blautia, suggesting that the production of those metabolites may be responsible for the flourishing of the beneficial bacteria. CONCLUSION In conclusion, barley was a preferred raw material for the preparation of β-glucans with strong anti-inflammatory activity. Vanillin, dihydroxyphenylacetic acid, caffeic acid, acetic acid, butyric acid, and lactic acid were the possible biomarkers that could be utilized to evaluate the anti-inflammatory effect of β-glucans. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jing Cheng
- Department of Food Science and Engineering, Jinan University, Guangzhou, China
| | - Guangwen Zhang
- Department of Food Science and Engineering, Jinan University, Guangzhou, China
| | - Liu Liu
- Department of Food Science and Engineering, Jinan University, Guangzhou, China
| | - Jianming Luo
- Department of Food Science and Engineering, Jinan University, Guangzhou, China
| | - Xichun Peng
- Department of Food Science and Engineering, Jinan University, Guangzhou, China
| |
Collapse
|
9
|
Ji ZH, Xie WY, Zhao PS, Wu HY, Ren WZ, Hu JP, Gao W, Yuan B. Oat Peptides Alleviate Dextran Sulfate Sodium Salt-Induced Colitis by Maintaining the Intestinal Barrier and Modulating the Keap1-Nrf2 Axis. Nutrients 2023; 15:5055. [PMID: 38140314 PMCID: PMC10746067 DOI: 10.3390/nu15245055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/06/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
The prevalence of inflammatory bowel disease (IBD) is progressively rising each year, emphasizing the significance of implementing rational dietary interventions for disease prevention. Oats, being a staple agricultural product, are abundant in protein content. This study aimed to investigate the protective effects and underlying mechanisms of oat peptides (OPs) in a mouse model of acute colitis induced by dextran sulfate sodium salt (DSS) and a Caco-2 cell model. The findings demonstrated that intervention with OPs effectively mitigated the symptoms associated with DSS-induced colitis. The physicochemical characterization analysis demonstrated that the molecular weight of the OPs was predominantly below 5 kDa, with a predominant composition of 266 peptides. This study provides further evidence of the regulatory impact of OPs on the Keap1-Nrf2 signaling axis and elucidates the potential role of WGVGVRAERDA as the primary bioactive peptide responsible for the functional effects of OPs. Ultimately, the results of this investigation demonstrate that OPs effectively mitigate DSS-induced colitis by preserving the integrity of the intestinal barrier and modulating the Keap1-Nrf2 axis. Consequently, these findings establish a theoretical foundation for the utilization of OPs as dietary supplements to prevent the onset of IBD.
Collapse
Affiliation(s)
- Zhong-Hao Ji
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China; (Z.-H.J.); (W.-Y.X.); (P.-S.Z.); (H.-Y.W.); (W.-Z.R.); (J.-P.H.)
- Department of Basic Medicine, Changzhi Medical College, Changzhi 046000, China
| | - Wen-Yin Xie
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China; (Z.-H.J.); (W.-Y.X.); (P.-S.Z.); (H.-Y.W.); (W.-Z.R.); (J.-P.H.)
| | - Pei-Sen Zhao
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China; (Z.-H.J.); (W.-Y.X.); (P.-S.Z.); (H.-Y.W.); (W.-Z.R.); (J.-P.H.)
| | - Hong-Yu Wu
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China; (Z.-H.J.); (W.-Y.X.); (P.-S.Z.); (H.-Y.W.); (W.-Z.R.); (J.-P.H.)
- Jilin Academy of Agricultural Sciences, Jilin 132101, China
| | - Wen-Zhi Ren
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China; (Z.-H.J.); (W.-Y.X.); (P.-S.Z.); (H.-Y.W.); (W.-Z.R.); (J.-P.H.)
| | - Jin-Ping Hu
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China; (Z.-H.J.); (W.-Y.X.); (P.-S.Z.); (H.-Y.W.); (W.-Z.R.); (J.-P.H.)
| | - Wei Gao
- Changchun National Experimental Animal Center, Jilin University, Changchun 130062, China
| | - Bao Yuan
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China; (Z.-H.J.); (W.-Y.X.); (P.-S.Z.); (H.-Y.W.); (W.-Z.R.); (J.-P.H.)
| |
Collapse
|
10
|
Selvarani R, Van Michelle Nguyen H, Thadathil N, Wolf RF, Freeman WM, Wiley CD, Deepa SS, Richardson A. Characterization of novel mouse models to study the role of necroptosis in aging and age-related diseases. GeroScience 2023; 45:3241-3256. [PMID: 37792157 PMCID: PMC10643444 DOI: 10.1007/s11357-023-00955-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 09/20/2023] [Indexed: 10/05/2023] Open
Abstract
To study the impact of necroptosis-induced chronic inflammation on age-related diseases and aging, two knockin mouse models (Ripk3-KI and Mlkl-KI) were generated that overexpress two genes involved in necroptosis (Ripk3 or Mlkl) when crossed to Cre transgenic mice. Crossing Ripk3-KI or Mlkl-KI mice to albumin-Cre transgenic mice produced hepatocyte specific hRipk3-KI or hMlkl-KI mice, which express the two transgenes only in the liver. Ripk3 and Mlkl proteins were overexpressed 10- and fourfold, respectively, in the livers of the hRipk3-KI or hMlkl-KI mice. Treating young (2-month) hRipk3-KI or hMlkl-KI mice with carbon tetrachloride (CCl4), a chemical inducer of oxidative stress, resulted in increased necroptosis (Mlkl-oligomers) and inflammation in the liver compared to control mice receiving CCl4. Mlkl-oligomerization also was significantly increased in old (18-month) hRipk3-KI and hMlkl-KI mice compared to old control (Cre negative, Ripk3-KI and Mlkl-KI) mice. The increase in necroptosis was associated with an increase in inflammation, e.g., inflammatory cytokines (TNFα, IL-6) and macrophage markers (F4/80, CD68). Importantly, steatosis (triglycerides) and fibrosis (e.g., picrosirius red staining, hydroxyproline levels, and transcripts for TGFβ, Col1α1, and Col3α1) that increase with age were significantly higher in the livers of the old hRipk3-KI or hMlkl-KI mice compared to old control mice. In addition, markers of cellular senescence were significantly increased in the livers of the old hRipk3-KI and hMlkl-KI mice. Thus, the first mouse models have been developed that allow researchers to study the impact of inducing necroptosis in specific cells/tissues on chronic inflammation in aging and age-related diseases.
Collapse
Affiliation(s)
- Ramasamy Selvarani
- Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | | | - Nidheesh Thadathil
- Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Roman F Wolf
- Okalahoma Veteran Affairs Medical Center, Oklahoma City, OK, USA
| | - Willard M Freeman
- Okalahoma Veteran Affairs Medical Center, Oklahoma City, OK, USA
- Okalahoma Medical Research Foundation, Oklahoma City, OK, USA
| | | | - Sathyaseelan S Deepa
- Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, Oklahoma City, OK, USA
| | - Arlan Richardson
- Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Okalahoma Veteran Affairs Medical Center, Oklahoma City, OK, USA.
| |
Collapse
|
11
|
Xu M, Ling F, Li J, Chen Y, Li S, Cheng Y, Zhu L. Oat beta-glucan reduces colitis by promoting autophagy flux in intestinal epithelial cells via EPHB6-TFEB axis. Front Pharmacol 2023; 14:1189229. [PMID: 37441529 PMCID: PMC10333523 DOI: 10.3389/fphar.2023.1189229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a group of chronic inflammatory disorders of the gastrointestinal tract, mainly including Crohn's disease and ulcerative colitis. Epidemiological findings suggest that inadequate dietary fibers intake may be a risk factor for IBD. Oat beta-glucan is a type of fermentable dietary fiber and has been proved to reduce experimental colitis. However, the mechanism remains unclear. The aim of this study was to explore the role and possible mechanism of oat beta-glucan in reducing experimental colitis. We used a dextran sulfate sodium (DSS)-induced mice acute colitis model to explore the potential mechanism of oat beta-glucan in reducing experimental colitis. As a result, oat beta-glucan upregulated the expressions of Erythropoietin-producing hepatocyte receptor B6 (EPHB6) and transcription factor EB (TFEB), promoted autophagy flux and downregulated the expressions of interleukin 1 beta (IL-1β), interleukin 6 (IL-6) and tumor necrosis factor alpha (TNF-α) in intestinal epithelial cells (IECs). The role of the EPHB6-TFEB axis was explored using a lipopolysaccharide-induced HT-29 cells inflammation model. The results revealed that EPHB6 regulated the expression of TFEB, and knockdown of EPHB6 decreased the protein level of TFEB. When EPHB6 or TFEB was knocked down, autophagy flux was inhibited, and the anti-inflammatory effect of sodium butyrate, a main metabolite of oat beta-glucan in the gut, was blocked. In summary, our findings demonstrated that oat beta-glucan reduced DSS-induced acute colitis in mice, promoted autophagy flux via EPHB6-TFEB axis and downregulated the expressions of IL-1β, IL-6 and TNF-α in IECs, and this effect may be mediated by butyrate.
Collapse
|
12
|
Lu H, Shen M, Chen Y, Yu Q, Chen T, Xie J. Alleviative effects of natural plant polysaccharides against DSS-induced ulcerative colitis via inhibiting inflammation and modulating gut microbiota. Food Res Int 2023; 167:112630. [PMID: 37087227 DOI: 10.1016/j.foodres.2023.112630] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 01/04/2023] [Accepted: 02/21/2023] [Indexed: 03/07/2023]
Abstract
Ulcerative colitis (UC) treatment usually involves either drug therapy or surgery. Natural food polysaccharides have showed great potential for preventing UC. In this study, the therapeutic effects of Cyclocarya paliurus (Batal.) Iljinskaja polysaccharide (CP) and Chinese yam polysaccharide (CYP) on dextran sodium sulfate (DSS)-induced mice UC model and their underlying mechanisms were explored. The results suggested that CP and CYP could improve colitis symptoms in DSS-induced mice, enhance the production of IL-10, inhibit cytokines (IL-1β, TNF-α) and reduce MPO activity. Furthermore, they maintained the integrity of intestine by improving the expression of mucin MUC-2, ZO-1 and occludin, which in turn reduced the contents of lipopolysaccharide binding protein (LBP) and endotoxin (ET) in serum and oxidative stress in liver. Finally, they modulated the composition and metabolism of gut microbiota. Notably, Alistipes and Bacteroides were the specific genera in CP and CYP groups, respectively. These findings indicated that polysaccharides might alleviate the development of colitis and inform other relevant studies.
Collapse
|
13
|
Zhao P, Li N, Chen L, Guo Y, Huang Y, Tong L, Wang L, Fan B, Wang F, Liu L. Effects of Oat β-Glucan on the Textural and Sensory Properties of Low-Fat Set Type Pea Protein Yogurt. Molecules 2023; 28:molecules28073067. [PMID: 37049830 PMCID: PMC10096348 DOI: 10.3390/molecules28073067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/26/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
This study investigated the effect of oat β-glucan as a fat substitute on the structure formation, texture, and sensory properties of pea protein yogurt. The results showed that the incorporation of 0.5% β-glucan significantly accelerated the lactic acid bacteria-induced fermentation, with the time for reaching the target pH of 4.6 shortened from 3.5 h to 3 h (p < 0.05); increased the plastic module (G′) from 693 Pa to 764 Pa when fermenting 3 h (p < 0.05); and enhanced the water-holding capacity from 77.29% to 82.15% (p < 0.05). The identification of volatile organic compounds (VOCs) in low-fat pea protein yogurt by GC-IMS revealed a significant decrease in aldehydes and a significant increase in alcohols, ketones and acids in the pea yogurt after fermentation (p < 0.05). Among them, the levels of acetic acid, acetone, 2,3-butanedione, 3-hydroxy-2-butanone, and ethyl acetate all significantly increased with the addition of oat β-glucan (p < 0.05), thereby providing prominent fruity, sweet, and creamy flavors, respectively. Combined with the results of sensory analysis, the quality characteristics of pea protein yogurt with 1% oil by adding 1% oat β-glucan were comparable to the control sample with 3% oil. Therefore, oat β-glucan has a good potential for fat replacement in pea protein yogurt.
Collapse
|
14
|
Karimi R, Homayoonfal M, Malekjani N, Kharazmi MS, Jafari SM. Interaction between β-glucans and gut microbiota: a comprehensive review. Crit Rev Food Sci Nutr 2023; 64:7804-7835. [PMID: 36975759 DOI: 10.1080/10408398.2023.2192281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Gut microbiota (GMB) in humans plays a crucial role in health and diseases. Diet can regulate the composition and function of GMB which are associated with different human diseases. Dietary fibers can induce different health benefits through stimulation of beneficial GMB. β-glucans (BGs) as dietary fibers have gained much interest due to their various functional properties. They can have therapeutic roles on gut health based on modulation of GMB, intestinal fermentation, production of different metabolites, and so on. There is an increasing interest in food industries in commercial application of BG as a bioactive substance into food formulations. The aim of this review is considering the metabolizing of BGs by GMB, effects of BGs on the variation of GMB population, influence of BGs on the gut infections, prebiotic effects of BGs in the gut, in vivo and in vitro fermentation of BGs and effects of processing on BG fermentability.
Collapse
Affiliation(s)
- Reza Karimi
- Department of Food Science and Technology, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
| | - Mina Homayoonfal
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Narjes Malekjani
- Department of Food Science and Technology, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
| | | | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
- Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, Nutrition and Bromatology Group, Ourense, Spain
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| |
Collapse
|
15
|
Chudan S, Ishibashi R, Nishikawa M, Tabuchi Y, Nagai Y, Ikushiro S, Furusawa Y. Effect of soluble oat fiber on intestinal microenvironment and TNBS-induced colitis. Food Funct 2023; 14:2188-2199. [PMID: 36756938 DOI: 10.1039/d2fo03396h] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Soluble oat fibers, including β-glucan, have been shown to alter the gut microbiome composition and ameliorate DSS-induced colitis; however, the beneficial effect of soluble oat fiber on colonic inflammation is not yet fully understood. In this study, we demonstrated that soluble oat fibers ameliorate T cell-dependent colitis through the induction of peripherally induced regulatory T cells (pTregs). Soluble oat fibers elevated colonic butyrate production dose-dependently, which coincided with the overrepresentation of Faecalibaculum rodentium (an analog of butyrate-producing Holdemanella biformis) in the gut microbiome. Soluble oat fibers promoted the growth of F. rodentium and H. biformis even in vitro, and increased the concentration of butyrate in the culture supernatant. These results indicate that soluble oat fibers are an energy source for butyrate-producing bacteria and are a fermentation substrate. Soluble oat fibers increased the percentage of colonic pTregs and ameliorated the weight loss and inflammation in acute 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced colitis; this may in part be mediated by the increase in IL-10-producing T cells. In conclusion, our results suggest that the administration of soluble oat fibers is a promising prebiotic treatment for the prevention of colitis mediated via altered gut microbiota composition and elevated butyrate production.
Collapse
Affiliation(s)
- Seita Chudan
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, Kurokawa, Toyama 939-0398, Japan
| | - Riko Ishibashi
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Toyama 939-0398, Japan.
| | - Miyu Nishikawa
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, Kurokawa, Toyama 939-0398, Japan
| | - Yoshiaki Tabuchi
- Division of Molecular Genetics Research, Life Science Research Center, University of Toyama, Sugitani, Toyama 930-0194, Japan
| | - Yoshinori Nagai
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Toyama 939-0398, Japan.
| | - Shinichi Ikushiro
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, Kurokawa, Toyama 939-0398, Japan
| | - Yukihiro Furusawa
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Toyama 939-0398, Japan. .,Division of Molecular Genetics Research, Life Science Research Center, University of Toyama, Sugitani, Toyama 930-0194, Japan
| |
Collapse
|
16
|
Xie Y, Shao F, Duan X, Ding J, Ning Y, Sun X, Xia L, Pan J, Chen J, He S, Shen D, Qi C. Whole β-glucan particle attenuates AOM/DSS-induced colorectal tumorigenesis in mice via inhibition of intestinal inflammation. Front Pharmacol 2023; 14:1017475. [PMID: 36713833 PMCID: PMC9877317 DOI: 10.3389/fphar.2023.1017475] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 01/03/2023] [Indexed: 01/14/2023] Open
Abstract
Yeast β-glucan is a polysaccharide purified from the Saccharomyces cerevisiae cell wall, and its multiple biological activities are essential for immune regulation. However, the effect of β-glucan on the intestinal immune response during colitis-associated colorectal cancer (CAC) is unclear. Here, we explore the possible role of β-glucan in the development of CAC. Wild type (WT) mice with CAC induced by azoxmethane (AOM) and dextran sodium sulfate (DSS) had fewer tumors than untreated mice after oral β-glucan because of increased antitumor dendritic cells (DCs) in the tumor microenvironment, resulting in more CD8+ T cells and the production of related cytokines. β-glucan also increased resistance to DSS-induced chronic colitis by reshaping the inflammatory microenvironment. These data suggest that β-glucan improves experimental intestinal inflammation and delays the development of CAC. Therefore, β-glucan is feasible for treating chronic colitis and CAC in clinical practice.
Collapse
Affiliation(s)
- Yewen Xie
- Medical Research Center, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, China,Oncology Institute, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, China
| | - Fang Shao
- Medical Research Center, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, China,Oncology Institute, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, China
| | - Xuehan Duan
- Medical Research Center, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, China
| | - Jun Ding
- Medical Research Center, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, China,Oncology Institute, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, China
| | - Yongling Ning
- Medical Research Center, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, China,Oncology Institute, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, China
| | - Xiao Sun
- Medical Research Center, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, China
| | - Lei Xia
- Medical Research Center, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, China
| | - Jie Pan
- Medical Research Center, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, China
| | - Jie Chen
- Medical Research Center, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, China
| | - Shuyan He
- Department of Oncology, The Affiliated Jiangyin Hospital of Nantong University, Jiangyin, Jiangsu, China
| | - Dong Shen
- Department of Oncology, The Affiliated Jiangyin Hospital of Nantong University, Jiangyin, Jiangsu, China,*Correspondence: Chunjian Qi, ; Dong Shen,
| | - Chunjian Qi
- Medical Research Center, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, China,Oncology Institute, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, China,*Correspondence: Chunjian Qi, ; Dong Shen,
| |
Collapse
|
17
|
Khorasaniha R, Olof H, Voisin A, Armstrong K, Wine E, Vasanthan T, Armstrong H. Diversity of fibers in common foods: Key to advancing dietary research. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
18
|
Ferenc K, Jarmakiewicz-Czaja S, Filip R. Components of the Fiber Diet in the Prevention and Treatment of IBD-An Update. Nutrients 2022; 15:nu15010162. [PMID: 36615818 PMCID: PMC9823509 DOI: 10.3390/nu15010162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 01/01/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a group of diseases with a chronic course, characterized by periods of exacerbation and remission. One of the elements that could potentially predispose to IBD is, among others, a low-fiber diet. Dietary fiber has many functions in the human body. One of the most important is its influence on the composition of the intestinal microflora. Intestinal dysbiosis, as well as chronic inflammation that occurs, are hallmarks of IBD. Individual components of dietary fiber, such as β-glucan, pectin, starch, inulin, fructooligosaccharides, or hemicellulose, can significantly affect preventive effects in IBD by modulating the composition of the intestinal microbiota or sealing the intestinal barrier, among other things. The main objective of the review is to provide information on the effects of individual fiber components of the diet on the risk of IBD, including, among other things, altering the composition of the intestinal microbiota.
Collapse
Affiliation(s)
- Katarzyna Ferenc
- Institute of Medicine, Medical College of Rzeszow University, 35-959 Rzeszow, Poland
| | | | - Rafał Filip
- Institute of Medicine, Medical College of Rzeszow University, 35-959 Rzeszow, Poland
- Department of Gastroenterology with IBD Unit, Clinical Hospital No. 2, 35-301 Rzeszow, Poland
- Correspondence:
| |
Collapse
|
19
|
Wang W, Wu Y, Wang Y, Wang R, Deng C, Yi L, Wang L, He M, Zhou W, Xie Y, Jin Q, Chen Y, Gao T, Zhang L, Xie M. Orally Administrable Aggregation-Induced Emission-Based Bionic Probe for Imaging and Ameliorating Dextran Sulfate Sodium-Induced Inflammatory Bowel Diseases. Adv Healthc Mater 2022; 12:e2202420. [PMID: 36575111 DOI: 10.1002/adhm.202202420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/12/2022] [Indexed: 12/29/2022]
Abstract
As macrophage infiltration is significantly related to the progression of inflammatory bowel disease (IBD), monitoring the macrophages is a valuable strategy for IBD diagnosis. However, owing to the harsh physiological environment of the gastrointestinal tract and enzymatic degradation, the development of orally administrable imaging probes for tracking macrophages remains a considerable challenge. Accordingly, herein, an orally administrable aggregation-induced emission biomimetic probe (HBTTPIP/β-glucan particles [GPs]) is developed for tracing macrophages; HBTTPIP/GPs can diagnose and alleviate dextran sulfate sodium (DSS)-induced colonic inflammation and self-report the treatment efficiency. The fluorophore HBTTPIP can effectively aggregate in GPs, restricting intramolecular rotation and activating the fluorescence of HBTTPIP. After being orally administrated, HBTTPIP/GPs are phagocytosed by intestinal macrophages, which then migrate to colonic lesions, enabling non-invasive monitoring of the severity of IBD via in vivo fluorescence imaging. Notably, oral HBTTPIP/GPs ameliorate DSS-induced IBD by inhibiting the expressions of pro-inflammatory factors and improving colonic mucosal barrier function. Furthermore, these HBTTPIP/GPs realize self-feedback of the therapeutic effects of GPs on DSS-induced colitis. The oral biomimetic probe HBTTPIP/GPs reported herein provide a novel theranostic platform for IBD, integrating non-invasive diagnosis of IBD in situ and the corresponding treatment.
Collapse
Affiliation(s)
- Wenyuan Wang
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Hubei Province Clinical Research Center for Medical Imaging, Wuhan, 430022, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Ya Wu
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China.,Department of Vascular Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Yihui Wang
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Hubei Province Clinical Research Center for Medical Imaging, Wuhan, 430022, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Rui Wang
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Hubei Province Clinical Research Center for Medical Imaging, Wuhan, 430022, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Cheng Deng
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Hubei Province Clinical Research Center for Medical Imaging, Wuhan, 430022, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Luyang Yi
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Hubei Province Clinical Research Center for Medical Imaging, Wuhan, 430022, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Lufang Wang
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Hubei Province Clinical Research Center for Medical Imaging, Wuhan, 430022, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Mengrong He
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Hubei Province Clinical Research Center for Medical Imaging, Wuhan, 430022, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Wuqi Zhou
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Hubei Province Clinical Research Center for Medical Imaging, Wuhan, 430022, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Yuji Xie
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Hubei Province Clinical Research Center for Medical Imaging, Wuhan, 430022, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Qiaofeng Jin
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Hubei Province Clinical Research Center for Medical Imaging, Wuhan, 430022, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Yihan Chen
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Hubei Province Clinical Research Center for Medical Imaging, Wuhan, 430022, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Tang Gao
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Hubei Province Clinical Research Center for Medical Imaging, Wuhan, 430022, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Li Zhang
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Hubei Province Clinical Research Center for Medical Imaging, Wuhan, 430022, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Mingxing Xie
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Hubei Province Clinical Research Center for Medical Imaging, Wuhan, 430022, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| |
Collapse
|
20
|
Li Z, Zhang S, Xu L, Fang X, Wan Y, Yu D, Guo Y. A tetrapeptide from maize combined with probiotics exerted strong anti-inflammatory effects and modulated gut microbiota in DSS-induced colitis mice. Food Funct 2022; 13:12602-12618. [PMID: 36373867 DOI: 10.1039/d2fo02678c] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Ulcerative colitis (UC) is a chronic inflammatory bowel disease characterized by recurrent gastrointestinal inflammation caused by abnormal immune response, and patients usually have intestinal flora imbalance. At present, the pathogenesis of UC is not well understood, and it appears that there is chronic activation of the immune and inflammatory cascade in genetically susceptible individuals. Some food supplements such as specific peptides and probiotics have been investigated and shown the potential for the treatment of UC. The purpose of this study is to investigate the therapeutic effect and potential mechanism of tetrapeptide from maize (TPM) and probiotic treatment on dextran sulfate sodium (DSS)-induced UC in C57BL/6J mice. Our results indicated that the therapeutic effects of TPM and probiotics are positively associated with a reduction in pro-inflammatory cytokine levels and restoration of the gut microbiota. Treatment with TPM or probiotics effectively alleviated the adverse effects of UC, including weight loss, shortened colon length, and colon and kidney tissue damage in mice. Additionally, both TPM and probiotics significantly reduced pro-inflammatory cytokine levels and oxidative stress in UC mice, and the effect was more pronounced when both were used together. Moreover, co-treatment with TPM and probiotics increased the diversity of gut microbes in UC mice, reduced the ratio of Firmicutes to Bacteroidetes (F/B) and increased the abundance of bacterial species, including Muribaculaceae, Alistipes, Ligilactobacillus and Lactobacillus, and has been shown to be beneficial for a variety of pathological conditions.
Collapse
Affiliation(s)
- Zhiguo Li
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China.
| | - Shan Zhang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China.
| | - Li Xu
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China.
| | - Xuexun Fang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China.
| | - Youzhong Wan
- China-Japan Union Hospital of Jilin University, Jilin University, Changchun, China 130033, P. R. China
| | - Dahai Yu
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China.
| | - Yi Guo
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China.
| |
Collapse
|
21
|
Zeng X, Li X, Yue Y, Wang X, Chen H, Gu Y, Jia H, He Y, Yuan Y, Yue T. Ameliorative Effect of Saccharomyces cerevisiae JKSP39 on Fusobacterium nucleatum and Dextran Sulfate Sodium-Induced Colitis Mouse Model. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:14179-14192. [PMID: 36260319 DOI: 10.1021/acs.jafc.2c05338] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The aim of this study was to evaluate the ability of the Saccharomyces cerevisiae strain with probiotic properties isolated from Tibetan kefir grains to ameliorate Fusobacterium nucleatum (Fn) infection and dextran sulfate sodium (DSS) treatment-induced murine model of colitis. The tolerance to simulated gastrointestinal conditions, hydrophobicity test, autoaggregation assay, and the antioxidant effect of strains was used to screen one strain with colonization and probiotic potential. The murine model of colitis was established by giving 109 cfu Fn 3 weeks by intragastric administration and 3% DSS in water 1 week before sacrifice. The results indicated that S. cerevisiae JKSP39 (SC) possessed optimal probiotic characteristics in vitro. Supplementation with SC increased the body weight and the expression of anti-inflammatory cytokines (IL-4 and IL-10), while decreasing the disease activity index score and expression of proinflammatory cytokines (TNF-α, IL-6, and IL-17F) in mice undergoing experimental colitis as compared with the colitis model group. Additionally, tight junction proteins and the number of goblet cells per crypt were significantly increased in the SC group, which indicated that the gut barrier was well repaired. The mechanism of SC ameliorating Fn-DSS-induced colitis could be related to the decreased levels of reactive oxygen species (myeloperoxidase, total superoxide dismutase, catalase, H2O2, and malondialdehyde) in the colon, the inhibition of endoplasmic reticulum stress, and the regulation of gut microbiota.
Collapse
Affiliation(s)
- Xuejun Zeng
- College of Food Science and Engineering, Northwest A & F University, Yangling712100, China
- Laboratory of Quality & Safety Risk Assessment for Agri-Products (Yangling), Ministry of Agriculture, Yangling712100, China
| | - Xuejiao Li
- College of Food Science and Engineering, Northwest A & F University, Yangling712100, China
- Laboratory of Quality & Safety Risk Assessment for Agri-Products (Yangling), Ministry of Agriculture, Yangling712100, China
| | - Yuan Yue
- Xi'an Gaoxin No.1 High School, Xi'an710065, China
| | - Xin Wang
- College of Food Science and Engineering, Northwest A & F University, Yangling712100, China
- Laboratory of Quality & Safety Risk Assessment for Agri-Products (Yangling), Ministry of Agriculture, Yangling712100, China
| | - Hong Chen
- College of Food Science and Engineering, Northwest A & F University, Yangling712100, China
- Laboratory of Quality & Safety Risk Assessment for Agri-Products (Yangling), Ministry of Agriculture, Yangling712100, China
| | - Yuanyuan Gu
- College of Food Science and Engineering, Northwest A & F University, Yangling712100, China
| | - Hang Jia
- College of Food Science and Engineering, Northwest A & F University, Yangling712100, China
- Laboratory of Quality & Safety Risk Assessment for Agri-Products (Yangling), Ministry of Agriculture, Yangling712100, China
| | - Yining He
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD4072, Australia
| | - Yahong Yuan
- College of Food Science and Engineering, Northwest A & F University, Yangling712100, China
- Laboratory of Quality & Safety Risk Assessment for Agri-Products (Yangling), Ministry of Agriculture, Yangling712100, China
- College of Food Science and Technology, Northwest University, Xi'an710069, China
| | - Tianli Yue
- College of Food Science and Engineering, Northwest A & F University, Yangling712100, China
- Laboratory of Quality & Safety Risk Assessment for Agri-Products (Yangling), Ministry of Agriculture, Yangling712100, China
- College of Food Science and Technology, Northwest University, Xi'an710069, China
| |
Collapse
|
22
|
Mucoadhesive carriers for oral drug delivery. J Control Release 2022; 351:504-559. [PMID: 36116580 PMCID: PMC9960552 DOI: 10.1016/j.jconrel.2022.09.024] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 09/10/2022] [Accepted: 09/12/2022] [Indexed: 12/24/2022]
Abstract
Among the various dosage forms, oral medicine has extensive benefits including ease of administration and patients' compliance, over injectable, suppositories, ocular and nasal. Despite of extensive demand and emerging advantages, over 50% of therapeutic molecules are not available in oral form due to their physicochemical properties. More importantly, most of the biologics, proteins, peptide, and large molecular drugs are mostly available in injectable form. Conventional oral drug delivery system has limitation such as degradation and lack of stability within stomach due to presence of highly acidic gastric fluid, hinders their therapeutic efficacy and demand more frequent and higher dosing. Hence, formulation for controlled, sustained, and targeted drug delivery, need to be designed with feasibility to target the specific region of gastrointestinal (GI) tract such as stomach, small intestine, intestine lymphatic, and colon is challenging. Among various oral delivery approaches, mucoadhesive vehicles are promising and has potential for improving oral drug retention and controlled absorption to treat local diseases within the GI tract, as well systemic diseases. This review provides the overview about the challenges and opportunities to design mucoadhesive formulation for oral delivery of therapeutics in a way to target the specific region of the GI tract. Finally, we have concluded with future perspective and potential of mucoadhesive formulations for oral local and systemic delivery.
Collapse
|
23
|
Inflammatory Bowel Disease and Customized Nutritional Intervention Focusing on Gut Microbiome Balance. Nutrients 2022; 14:nu14194117. [PMID: 36235770 PMCID: PMC9572914 DOI: 10.3390/nu14194117] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/24/2022] [Accepted: 09/30/2022] [Indexed: 11/05/2022] Open
Abstract
Inflammatory bowel disease (IBD) represents a chronic relapsing–remitting condition affecting the gastrointestinal system. The specific triggering IBD elements remain unknown: genetic variability, environmental factors, and alterations in the host immune system seem to be involved. An unbalanced diet and subsequent gut dysbiosis are risk factors, too. This review focuses on the description of the impact of pro- and anti-inflammatory food components on IBD, the role of different selected regimes (such as Crohn’s Disease Exclusion Diet, Immunoglobulin Exclusion Diet, Specific Carbohydrate Diet, LOFFLEX Diet, Low FODMAPs Diet, Mediterranean Diet) in the IBD management, and their effects on the gut microbiota (GM) composition and balance. The purpose is to investigate the potential positive action on IBD inflammation, which is associated with the exclusion or addition of certain foods or nutrients, to more consciously customize the nutritional intervention, taking also into account GM fluctuations during both disease flare-up and remission.
Collapse
|
24
|
A Potential Role of Plant/Macrofungi/Algae-Derived Non-Starch Polysaccharide in Colitis Curing: Review of Possible Mechanisms of Action. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196467. [PMID: 36235004 PMCID: PMC9573148 DOI: 10.3390/molecules27196467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/23/2022] [Accepted: 09/23/2022] [Indexed: 11/09/2022]
Abstract
Multiple in vitro and in vivo model investigations have suggested a broad spectrum of potential mechanisms by which plant/macrofungi-derived non-starch polysaccharides may play a role in the treatment of inflammatory bowel disease (IBD). This article reviews the in vivo and in vitro evidence of different plant-derived polysaccharides for IBD therapy. Their underlying mechanisms, particularly the molecular mechanisms associated with protective effects in the treatment and prevention of IDB, have been well summarized, including anti-inflammatory, epithelial barrier repair, and the regulation of intestinal flora. Emerging studies have observed the potent role of probiotics in IBD, particularly its ability to modulate gut microbiota, a well-known key factor for IBD. In summary, plant/macrofungi-derived polysaccharides have the potential to be a promising agent for the adjuvant treatment and prevention of IBD and will contribute to the design of well-designed clinical intervention trials that will ultimately improve the therapy of IBD.
Collapse
|
25
|
Stavely R, Rahman AA, Sahakian L, Prakash MD, Robinson AM, Hassanzadeganroudsari M, Filippone RT, Fraser S, Eri R, Bornstein JC, Apostolopoulos V, Nurgali K. Divergent Adaptations in Autonomic Nerve Activity and Neuroimmune Signaling Associated With the Severity of Inflammation in Chronic Colitis. Inflamm Bowel Dis 2022; 28:1229-1243. [PMID: 35380670 DOI: 10.1093/ibd/izac060] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND The autonomic nervous system (ANS) is thought to play a critical role in the anti-inflammatory reflex pathway in acute colitis via its interaction with the spleen and colon. Inflammation in the intestine is associated with a blunting of vagal signaling and increased sympathetic activity. As a corollary, methods to restore sympatho-vagal balance are being investigated as therapeutic strategies for the treatment of intestinal inflammation. Nevertheless, it is indefinite whether these autonomic signaling adaptations in colitis are detrimental or beneficial to controlling intestinal inflammation. In this study, models of moderate and severe chronic colitis are utilized to resolve the correlations between sympatho-vagal signaling and the severity of intestinal inflammation. METHODS Spleens and colons were collected from Winnie (moderate colitis), Winnie-Prolapse (severe colitis), and control C57BL/6 mice. Changes to the size and histomorphology of spleens were evaluated. Flow cytometry was used to determine the expression of adrenergic and cholinergic signaling proteins in splenic B and T lymphocytes. The inflammatory profile of the spleen and colon was determined using a RT-PCR gene array. Blood pressure, heart rate, splanchnic sympathetic nerve and vagus nerve activity were recorded. RESULTS Spleens and colons from Winnie and Winnie-Prolapse mice exhibited gross abnormalities by histopathology. Genes associated with a pro-inflammatory response were upregulated in the colons from Winnie and further augmented in colons from Winnie-Prolapse mice. Conversely, many pro-inflammatory markers were downregulated in the spleens from Winnie-Prolapse mice. Heightened activity of the splanchnic nerve was observed in Winnie but not Winnie-Prolapse mice. Conversely, vagal nerve activity was greater in Winnie-Prolapse mice compared with Winnie mice. Splenic lymphocytes expressing α1 and β2 adrenoreceptors were reduced, but those expressing α7 nAChR and producing acetylcholine were increased in Winnie and Winnie-Prolapse mice. CONCLUSIONS Sympathetic activity may correlate with an adaptive mechanism to reduce the severity of chronic colitis. The Winnie and Winnie-Prolapse mouse models of moderate and severe chronic colitis are well suited to examine the pathophysiology of progressive chronic intestinal inflammation.
Collapse
Affiliation(s)
- Rhian Stavely
- Institute for Health and Sport, Victoria University, Western Centre for Health Research and Education, Sunshine Hospital, Melbourne, Victoria, Australia.,Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ahmed A Rahman
- Institute for Health and Sport, Victoria University, Western Centre for Health Research and Education, Sunshine Hospital, Melbourne, Victoria, Australia.,Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Lauren Sahakian
- Institute for Health and Sport, Victoria University, Western Centre for Health Research and Education, Sunshine Hospital, Melbourne, Victoria, Australia
| | - Monica D Prakash
- Institute for Health and Sport, Victoria University, Western Centre for Health Research and Education, Sunshine Hospital, Melbourne, Victoria, Australia.,School of Health and Biomedical Sciences, RMIT University, Melbourne, Victoria, Australia
| | - Ainsley M Robinson
- Institute for Health and Sport, Victoria University, Western Centre for Health Research and Education, Sunshine Hospital, Melbourne, Victoria, Australia
| | - Majid Hassanzadeganroudsari
- Institute for Health and Sport, Victoria University, Western Centre for Health Research and Education, Sunshine Hospital, Melbourne, Victoria, Australia
| | - Rhiannon T Filippone
- Institute for Health and Sport, Victoria University, Western Centre for Health Research and Education, Sunshine Hospital, Melbourne, Victoria, Australia
| | - Sarah Fraser
- Institute for Health and Sport, Victoria University, Western Centre for Health Research and Education, Sunshine Hospital, Melbourne, Victoria, Australia
| | - Rajaraman Eri
- School of Health Sciences, The University of Tasmania, Launceston, Tasmania, Australia
| | - Joel C Bornstein
- Department of Physiology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Western Centre for Health Research and Education, Sunshine Hospital, Melbourne, Victoria, Australia
| | - Kulmira Nurgali
- Institute for Health and Sport, Victoria University, Western Centre for Health Research and Education, Sunshine Hospital, Melbourne, Victoria, Australia.,Department of Medicine Western Health, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Victoria, Australia.,Regenerative Medicine and Stem Cells Program, Australian Institute of Musculoskeletal Science (AIMSS), Melbourne, Victoria, Australia
| |
Collapse
|
26
|
Wang YJ, Li QM, Zha XQ, Luo JP. Intervention and potential mechanism of non-starch polysaccharides from natural resources on ulcerative colitis: A review. Int J Biol Macromol 2022; 210:545-564. [PMID: 35513106 DOI: 10.1016/j.ijbiomac.2022.04.208] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/08/2022] [Accepted: 04/27/2022] [Indexed: 12/12/2022]
Abstract
Ulcerative colitis (UC) is a chronic inflammatory bowel disease of unknown etiology that affects the colon and rectum. It has evolved into a global burden due to the high incidence in developed countries and the highly-increased incidence in developing countries. Non-starch polysaccharides (NSPs) from natural resources, as a type of functional carbohydrates, have a significant therapeutic effect on UC because of their good anti-inflammatory and immunomodulatory activities. Based on the etiology and pathogenesis of UC, this review summarizes the intervention effects and mechanisms of NSPs in the prevention and treatment of UC. The results showed that NSPs can improve UC by protecting the intestinal mucosal barrier, regulating the immune response of the intestinal mucosa, and remodeling the intestinal flora and metabolites. These contents provide theoretical basis for the application of polysaccharides in the prevention and treatment of UC.
Collapse
Affiliation(s)
- Yu-Jing Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Qiang-Ming Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Xue-Qiang Zha
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Jian-Ping Luo
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China.
| |
Collapse
|
27
|
Dietary polysaccharides from guavira pomace, a co-product from the fruit pulp industry, display therapeutic application in gut disorders. Food Res Int 2022; 156:111291. [DOI: 10.1016/j.foodres.2022.111291] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 12/22/2022]
|
28
|
Li S, Yang S, Zhang Y, Huang K, Liang T, Chen Y, Guan Y, Shang R, Guan T, Wu J, Chen Y, Guan X. Amino acid-balanced diets improved DSS-induced colitis by alleviating inflammation and regulating gut microbiota. Eur J Nutr 2022; 61:3531-3543. [PMID: 35618921 DOI: 10.1007/s00394-022-02906-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/05/2022] [Indexed: 01/05/2023]
Abstract
PURPOSE Inflammatory bowel disease (IBD) is a multifactorial chronic disease of the gastrointestinal tract. Dietary intervention in the treatment of IBD has gradually attracted more attention. In this study, amino acid-balanced diets (AABD) based on grains were developed and their influences on the regulation of IBD were investigated. METHODS Dextran sodium sulfate (DSS)-induced acute colitis mice model was employed to evaluate the effects of AABD. Pathological symptoms, intestinal inflammation, gut barrier proteins and gut microbiota were determined after AABD intake. RESULTS It was shown that AABD alleviated the symptoms of colitis by reducing the histological scores of mice colon, suppressing the expression of pro-inflammatory cytokines (IL-1β, IL-6 and TNF-α) and upregulating the expression of tight junction proteins. Analysis of gut microbiota revealed that AABD altered the structure of gut microbiota by decreasing the abundance and richness of harmful bacteria induced by DSS (Escherichia-Shigella, Parasutterella, etc.) and increasing that of beneficial bacteria (Akkermansia, etc.). Correlation analysis indicated that the alterations of pro-inflammatory factors were related with the change of microbiota, suggesting that the inhibitory effects of AABD on inflammation might be due to its regulation gut microbiota. CONCLUSION The AABD could efficiently mitigate colitis, and this study indicated that AABD could be applied as a promising dietary regulation strategy of IBD.
Collapse
Affiliation(s)
- Sen Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516, Jungong Road, Shanghai, 200093, China.,National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai, 200093, China
| | - Shuya Yang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516, Jungong Road, Shanghai, 200093, China.,National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai, 200093, China
| | - Yu Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516, Jungong Road, Shanghai, 200093, China.,National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai, 200093, China
| | - Kai Huang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516, Jungong Road, Shanghai, 200093, China.,National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai, 200093, China
| | - Ting Liang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516, Jungong Road, Shanghai, 200093, China.,National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai, 200093, China
| | - Yu Chen
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516, Jungong Road, Shanghai, 200093, China.,National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai, 200093, China
| | - Yingjie Guan
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516, Jungong Road, Shanghai, 200093, China.,National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai, 200093, China
| | - Ruizhi Shang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516, Jungong Road, Shanghai, 200093, China.,National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai, 200093, China
| | - Tong Guan
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516, Jungong Road, Shanghai, 200093, China.,National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai, 200093, China
| | - Jiang Wu
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Yingwei Chen
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China.
| | - Xiao Guan
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516, Jungong Road, Shanghai, 200093, China. .,National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai, 200093, China.
| |
Collapse
|
29
|
Yu J, Xia J, Yang C, Pan D, Xu D, Sun G, Xia H. Effects of Oat Beta-Glucan Intake on Lipid Profiles in Hypercholesterolemic Adults: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutrients 2022; 14:2043. [PMID: 35631184 PMCID: PMC9147392 DOI: 10.3390/nu14102043] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/08/2022] [Accepted: 05/09/2022] [Indexed: 02/04/2023] Open
Abstract
(1) Background: hyperlipidemia is one of the cardiovascular diseases which becomes a great threat to the health of people worldwide. Oat beta-glucan is reported to have a beneficial effect on lowering blood lipids. To probe the effect of oat beta-glucan consumption on serum lipid profiles (total cholesterol, total triglyceride, high-density lipoprotein-cholesterol, and low-density lipoprotein-cholesterol), we carried out a systematic search on randomized controlled trials of oat beta-glucan intervention on hypercholesterolemic individuals. (2) Methods: the pieces of literature were obtained from PubMed, Scopus, Cochrane Library, Web of Science, and the Embase from inception to 28 February 2022. The results were presented with the weighted mean difference (WMD) with a 95% CI. The random-effects or fixed-effects model was applied according to the heterogeneity. The subgroup analysis and meta-regression were used to identify the source of heterogeneity. (3) Results: thirteen trials with 927 participants were included in our meta-analysis. Overall, oat beta-glucan supplementation significantly reduced levels of TC (pooled WMD = -0.24 mmol/L; 95%CI: -0.28 to -0.20 mmol/L), LDL-c (pooled WMD = -0.27 mmol/L; 95%CI: -0.35 to -0.20 mmol/L). Furthermore, beta-glucan consumption did not show significant effects on TG (pooled WMD = -0.04 mmol/L; 95%CI: -0.13 to 0.05 mmol/L), HDL-c (pooled WMD = 0.00 mmol/L; 95%CI: -0.05 to 0.05 mmol/L). Subgroup analysis indicated that critical factors, such as disease severity of participants, the daily intervention of oat beta-glucan, source of oat beta-glucan, and duration of intervention had impacts on outcomes. (4) Conclusions: oat beta-glucan intake may significantly decrease the level of TC and LDL-c while no significant changes in TG and HDL-c were observed. This meta-analysis supports the health benefits of oat beta-glucan, especially for its cholesterol-lowering features, although it has some inevitable limitations.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hui Xia
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China; (J.Y.); (J.X.); (C.Y.); (D.P.); (D.X.); (G.S.)
| |
Collapse
|
30
|
Hiengrach P, Visitchanakun P, Finkelman MA, Chancharoenthana W, Leelahavanichkul A. More Prominent Inflammatory Response to Pachyman than to Whole-Glucan Particle and Oat-β-Glucans in Dextran Sulfate-Induced Mucositis Mice and Mouse Injection through Proinflammatory Macrophages. Int J Mol Sci 2022; 23:4026. [PMID: 35409384 PMCID: PMC8999416 DOI: 10.3390/ijms23074026] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/28/2022] [Accepted: 04/01/2022] [Indexed: 02/07/2023] Open
Abstract
(1→3)-β-D-glucans (BG) (the glucose polymers) are recognized as pathogen motifs, and different forms of BGs are reported to have various effects. Here, different BGs, including Pachyman (BG with very few (1→6)-linkages), whole-glucan particles (BG with many (1→6)-glycosidic bonds), and Oat-BG (BG with (1→4)-linkages), were tested. In comparison with dextran sulfate solution (DSS) alone in mice, DSS with each of these BGs did not alter the weight loss, stool consistency, colon injury (histology and cytokines), endotoxemia, serum BG, and fecal microbiome but Pachyman-DSS-treated mice demonstrated the highest serum cytokine elicitation (TNF-α and IL-6). Likewise, a tail vein injection of Pachyman together with intraperitoneal lipopolysaccharide (LPS) induced the highest levels of these cytokines at 3 h post-injection than LPS alone or LPS with other BGs. With bone marrow-derived macrophages, BG induced only TNF-α (most prominent with Pachyman), while LPS with BG additively increased several cytokines (TNF-α, IL-6, and IL-10); inflammatory genes (iNOS, IL-1β, Syk, and NF-κB); and cell energy alterations (extracellular flux analysis). In conclusion, Pachyman induced the highest LPS proinflammatory synergistic effect on macrophages, followed by WGP, possibly through Syk-associated interactions between the Dectin-1 and TLR-4 signal transduction pathways. Selection of the proper form of BGs for specific clinical conditions might be beneficial.
Collapse
Affiliation(s)
- Pratsanee Hiengrach
- Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Department of Microbiology, Chulalongkorn University, Bangkok 10330, Thailand; (P.H.); (P.V.)
| | - Peerapat Visitchanakun
- Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Department of Microbiology, Chulalongkorn University, Bangkok 10330, Thailand; (P.H.); (P.V.)
| | | | - Wiwat Chancharoenthana
- Tropical Nephrology Research Unit, Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
- Tropical Immunology and Translational Research Unit, Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Asada Leelahavanichkul
- Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Department of Microbiology, Chulalongkorn University, Bangkok 10330, Thailand; (P.H.); (P.V.)
- Nephrology Unit, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
31
|
He Y, Peng X, Liu Y, Wu Q, Zhou Q, Huang Y, Liu S, Hu L, Fang Z, Lin Y, Xu S, Feng B, Li J, Jiang X, Zhuo Y, Wu D, Che L. Long-term maternal intake of inulin exacerbated the intestinal damage and inflammation of offspring rats in a DSS-induced colitis model. Food Funct 2022; 13:4047-4060. [PMID: 35315466 DOI: 10.1039/d1fo03675k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study aimed to investigate the effects of long-term maternal intake of inulin on intestinal morphology, permeability, inflammation and microbiota of offspring rats treated with dextran sulfate sodium (DSS). Sixteen female adult Sprague-Dawley rats were assigned to two groups receiving the fiber-free diet (FFD) or inulin diet (INU, 5% inulin) for three parities. The offspring weaned rats (third-parity) were fed with the same diet for four weeks until receiving 6% DSS for 7 days; the four groups were as follows: FFD, FFD + DSS, INU and INU + DSS. The results showed that maternal intake of inulin increased the histopathology score and activity of diamine oxidase (DAO) in serum, and the highest histopathology scores and activity of DAO were observed in INU + DSS rats. Maternal intake of inulin increased the activity of myeloperoxidase (MPO), mRNA expressions of inflammatory factors and protein expression of IL-1β in colonic tissues. Likewise, INU + DSS rats had the highest activity of MPO and mRNA expressions of inflammatory factors in colonic tissues. Maternal intake of inulin increased the abundances of Bacteroidetes, Bacteroides and Parasutterella, which were the highest enriched in INU + DSS rats. The level of acetate in the colonic digesta of INU + DSS rats was lower than that in FFD and INU rats. These results indicated that long-term maternal intake of inulin exacerbated the intestinal damage and inflammation of DSS-induced offspring rats, associated with the decreased level of acetate and altered intestinal microbiota.
Collapse
Affiliation(s)
- Ying He
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China.
| | - Xie Peng
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China.
| | - Yang Liu
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China.
| | - Qing Wu
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China.
| | - Qiang Zhou
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China.
| | - Yingyan Huang
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China.
| | - Shiya Liu
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China.
| | - Liang Hu
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China.
| | - Zhengfeng Fang
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China.
| | - Yan Lin
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China.
| | - Shengyu Xu
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China.
| | - Bin Feng
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China.
| | - Jian Li
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China.
| | - Xuemei Jiang
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China.
| | - Yong Zhuo
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China.
| | - De Wu
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China.
| | - Lianqiang Che
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
32
|
Qiao Y, Ye X, Zhong L, Xia C, Zhang L, Yang F, Li Y, Fang X, Fu L, Huang Y, Cao H, Li Z, Cui Z. Yeast β-1,3-glucan production by an outer membrane β-1,6-glucanase: process optimization, structural characterization and immunomodulatory activity. Food Funct 2022; 13:3917-3930. [PMID: 35289343 DOI: 10.1039/d1fo02832d] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The β-glucan from Saccharomyces cerevisiae is a potent adjuvant that exhibits a broad spectrum of biological activities and health benefits, and different processes have been established to prepare active β-glucan from yeast. However, studies concerning the effect of β-1,6-glucanase enzymolysis on the structure and immunomodulatory activity of yeast β-1,3-glucan are scarce. In this study, we aim to develop a novel enzymatic process for the preparation of immunologically active β-glucan (BYG) from baker's yeast using a β-1,6-glucanase GluM. The β-1,6-glucan in fungal cell wall was specifically hydrolyzed by GluM, and resulted in cell wall decomposition and β-glucan release. Batch production of BYG was realized with 17.8% yield, 85.3% purity and 75.4% recovery rate. Structural characterization indicated that BYG exhibits rod-like structures with natural triplex and nanoparticle-like substructures compared with the commercial Glucan 300. BYG ameliorated inflammation in a DSS-induced mouse model of colitis through inhibiting oxidative stress (NO, MDA and MPO), inflammatory mediators (NLRP3, ASC, caspase-1, iNOS and COX-2), and pro-inflammatory cytokines (IL-1β, IL-6, TNF-α, IFN-γ), increasing the expression levels of tight junction proteins (ZO-1, occludin and claudin-1) and modulating the production of gut microbiota-synthesized SCFAs compared to the control. Our results showed that yeast β-1,3-glucan prepared with β-1,6-glucanase exhibits structural integrity that is responsible for its favorable immunomodulatory activity.
Collapse
Affiliation(s)
- Yan Qiao
- Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, China.
| | - Xianfeng Ye
- Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, China.
| | - Lingli Zhong
- Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, China.
| | - Chengyao Xia
- Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, China.
| | - Lei Zhang
- Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, China.
| | - Fan Yang
- Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, China.
| | - Yongkai Li
- Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, China.
| | - Xiaodong Fang
- Guangzhou Hanyun Pharmaceutical Technology Co. Ltd, Guangzhou, China
| | - Lei Fu
- Nanjing Institute for Comprehensive Utilization of Wild Plants, Nanjing 211111, China
| | - Yan Huang
- Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, China.
| | - Hui Cao
- Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, China.
| | - Zhoukun Li
- Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, China.
| | - Zhongli Cui
- Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, China. .,Key Laboratory of Biological Interactions and Crop Health, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
33
|
Huo J, Wu Z, Sun W, Wang Z, Wu J, Huang M, Wang B, Sun B. Protective Effects of Natural Polysaccharides on Intestinal Barrier Injury: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:711-735. [PMID: 35078319 DOI: 10.1021/acs.jafc.1c05966] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Owing to their minimal side effects and effective protection from oxidative stress, inflammation, and malignant growth, natural polysaccharides (NPs) are a potential adjuvant therapy for several diseases caused by intestinal barrier injury (IBI). More studies are accumulating on the protective effects of NPs with respect to IBI, but the underlying mechanisms remain unclear. Thus, this review aims to represent current studies that investigate the protective effects of NPs on IBI by directly maintaining intestinal epithelial barrier integrity (inhibiting oxidative stress, regulating inflammatory cytokine expression, and increasing tight junction protein expression) and indirectly regulating intestinal immunity and microbiota. Furthermore, the mechanisms underlying IBI development are briefly introduced, and the structure-activity relationships of polysaccharides with intestinal barrier protection effects are discussed. Potential developments and challenges associated with NPs exhibiting protective effects against IBI have also been highlighted to guide the application of NPs in the treatment of intestinal diseases caused by IBI.
Collapse
Affiliation(s)
- Jiaying Huo
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, People's Republic of China
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, People's Republic of China
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, People's Republic of China
| | - Ziyan Wu
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, People's Republic of China
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, People's Republic of China
| | - Weizheng Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, People's Republic of China
| | - Zhenhua Wang
- Center for Mitochondria and Healthy Aging, College of Life Science, Yantai University, Yantai, Shandong 264005, People's Republic of China
| | - Jihong Wu
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, People's Republic of China
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, People's Republic of China
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, People's Republic of China
| | - Mingquan Huang
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, People's Republic of China
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, People's Republic of China
| | - Bowen Wang
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, People's Republic of China
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, People's Republic of China
| | - Baoguo Sun
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, People's Republic of China
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, People's Republic of China
| |
Collapse
|
34
|
Li B, Zhang H, Shi L, Li R, Luo Y, Deng Y, Li S, Li R, Liu Z. Saccharomyces boulardii alleviates DSS-induced intestinal barrier dysfunction and inflammation in humanized mice. Food Funct 2022; 13:102-112. [PMID: 34878454 DOI: 10.1039/d1fo02752b] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Recent clinical studies have demonstrated a beneficial effect of Saccharomyces boulardii (S. boulardii) in inflammatory bowel disease (IBD). However, the underlying mechanisms remain poorly defined. In this study, we investigated the modulating effect of S. boulardii on the intestinal microbiota in humanized mice with dextran sulfate sodium (DSS)-induced colitis. The mice were fed an S. boulardii-supplement diet for 16 days before DSS treatment. The results showed that feeding S. boulardii significantly ameliorated the colon damage and regulated inflammatory responses by modulating the cytokine profile. These changes were found to be associated with an altered microbiome composition and short-chain fatty acid (SCFA) metabolism. Further analysis demonstrated that S. boulardii-derived polysaccharides and polypeptides promoted the growth of certain probiotics and increased the microbial metabolite SCFAs levels. Overall, these findings demonstrated the role of S. boulardii as a potential gut microbiota modulator to prevent and treat IBD.
Collapse
Affiliation(s)
- Bei Li
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, P. R. China.
| | - Haibo Zhang
- Hubei Provincial Key Laboratory of Yeast Function, Yichang, P. R. China
| | - Linlin Shi
- Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment, Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital (College of Clinical Medicine) of Henan University of Science and Technology, Luoyang, P. R. China
| | - Rong Li
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, P. R. China.
| | - Yanan Luo
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, P. R. China.
| | - Yun Deng
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, P. R. China.
| | - Shihan Li
- Department of Children Healthcare, Wuhan Children's Hospital, Wuhan Maternal and Child Healthcare Hospital, Tongji Medical College Huazhong University of Science and Technology, Wuhan, P. R. China.
| | - Ruizhen Li
- Department of Children Healthcare, Wuhan Children's Hospital, Wuhan Maternal and Child Healthcare Hospital, Tongji Medical College Huazhong University of Science and Technology, Wuhan, P. R. China.
| | - Zhi Liu
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, P. R. China.
| |
Collapse
|
35
|
Liu J, Zhao W, Li C, Wu T, Han L, Hu Z, Li X, Zhou J, Chen X. Terazosin Stimulates Pgk1 to Remedy Gastrointestinal Disorders. Int J Mol Sci 2021; 23:416. [PMID: 35008842 PMCID: PMC8745693 DOI: 10.3390/ijms23010416] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/28/2021] [Accepted: 12/28/2021] [Indexed: 12/19/2022] Open
Abstract
Gastrointestinal disease is the most common health concern that occurs due to environmental, infectious, immunological, psychological, and genetic stress. Among them, the most frequent diseases are gastric ulcer (GU) and ulcerative colitis (UC). DSS-induced UC and ethanol-stimulated GU models resemble the pathophysiology of human gastrointestinal disease. The current study was designed to explore the anti-oxidation, anti-inflammation, anti-cell death properties of terazosin, an α-adrenergic receptor antagonist, in vivo and in vitro. Our results indicate that terazosin dramatically activates Pgk1, and upregulates glycose metabolism, evidenced by the enhanced ATP production and higher LDH enzymatic activity. Also, terazosin significantly enhances p-AKT expression and inhibits NF-κB p65 activation through abrogating the phosphorylation of IKBα, as well as lowers Caspase-1 and GSDMD expression. The findings in this study demonstrate that terazosin exhibits anti-inflammatory effects by downregulating NF-κB-GSDMD signal pathway, along with enhancing glycolysis for gastrointestinal disease treatment. Meanwhile, we also find terazosin ameliorates ethanol-induced gastric mucosal damage in mice. Collectively, as a clinical drug, terazosin should be translated into therapeutics for gastrointestinal disease soon.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Xinping Chen
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China; (J.L.); (W.Z.); (C.L.); (T.W.); (L.H.); (Z.H.); (X.L.); (J.Z.)
| |
Collapse
|
36
|
Zhou Y, Hu Z, Ye F, Guo T, Luo Y, Zhou W, Qin D, Tang Y, Cao F, Luo F, Lin Q. Mogroside V exerts anti-inflammatory effect via MAPK-NF-κB/AP-1 and AMPK-PI3K/Akt/mTOR pathways in ulcerative colitis. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104807] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
37
|
Taylor HB, Vasu C. Impact of Prebiotic β-glucan Treatment at Juvenile Age on the Gut Microbiota Composition and the Eventual Type 1 Diabetes Onset in Non-obese Diabetic Mice. Front Nutr 2021; 8:769341. [PMID: 34805251 PMCID: PMC8595985 DOI: 10.3389/fnut.2021.769341] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/12/2021] [Indexed: 12/12/2022] Open
Abstract
Complex dietary polysaccharides such as β-glucans are widely used for their anti-inflammatory properties. We reported before that oral administration of Yeast β-glucan (YBG) in adult mice can help delay type 1 diabetes (T1D) onset and suppress gut inflammation through modulation of the structure and function of gut microbiota. Since juvenile age is characterized by profoundly changing immature gut microbiota, we examined the impact of oral treatment with YBG in non-obese diabetic (NOD) mice at this age. Juvenile mice that received daily oral administration of YBG starting at 15 days of age for 7 or 30 days were examined for changes in gut microbiota, immune characteristics, and T1D incidence. Mice that received YBG for 30 days but not 7 days, showed considerable changes in the composition and diversity of fecal microbiota as compared to controls. Predictive functional analysis, based on 16S rDNA sequences, revealed overrepresentation of glycan biosynthesis and metabolism, energy metabolism, and fatty acid biosynthesis pathways in mice that received YBG for 30 days. Immune phenotype of the colon showed skewing toward immune regulatory and Th17 cytokines with increases in IL-10, IL-17, and IL-21 and a decrease in TNF-α, although increases in some pro-inflammatory cytokines (IL-1b, IFN-γ) were observed. Most importantly, mice that received YBG treatment for 30 days showed significantly suppressed insulitis and delayed onset of hyperglycemia compared to controls. Overall, this study suggests that oral consumption of YBG beginning at pre-diabetic juvenile ages could have positive maturational changes to gut microbiota and immune functions and could result in a delay in the disease onset in those who are pre-disposed to T1D.
Collapse
Affiliation(s)
| | - Chenthamarakshan Vasu
- Department of Microbiology and Immunology, College of Medicine, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
38
|
Paudel D, Dhungana B, Caffe M, Krishnan P. A Review of Health-Beneficial Properties of Oats. Foods 2021; 10:2591. [PMID: 34828872 PMCID: PMC8625765 DOI: 10.3390/foods10112591] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/28/2021] [Accepted: 10/23/2021] [Indexed: 12/31/2022] Open
Abstract
Oat is among the food crops and ancient grains cultivated and consumed worldwide. It is gaining in popularity owing to its nutritional composition and multifunctional benefits of select bioactive compounds. Beta-glucan is an important component of dietary fiber found in oat grains. It is the major active compound in oats with proven cholesterol-lowering and antidiabetic effects. Oats also provide substantial levels of other bioactive compounds such as phenolic acids, tocols, sterols, avenacosides, and avenanthramides. The consumption of oats has been determined to be beneficial for human health by promoting immunomodulation and improving gut microbiota. In addition, oat consumption assists in preventing diseases such as atherosclerosis, dermatitis, and some forms of cancer. While much has been published in relation to oat nutrients and oat fibers and their impact on major diseases, the oat industries and consumers may benefit from greater knowledge and understanding of clinical effects, range of occurrence, distribution, therapeutic doses and food functional attributes of other oat bioactives such as avenanthramides and saponins as well as other anti-inflammatory agents found in the cereal. This review focuses on the various studies relevant to the contribution of the consumption of oats and oat-based products in preventing human diseases and promoting human health.
Collapse
Affiliation(s)
- Devendra Paudel
- Dairy and Food Science Department, South Dakota State University, Brookings, SD 57007, USA;
| | - Bandana Dhungana
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD 57007, USA; (B.D.); (M.C.)
| | - Melanie Caffe
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD 57007, USA; (B.D.); (M.C.)
| | - Padmanaban Krishnan
- Dairy and Food Science Department, South Dakota State University, Brookings, SD 57007, USA;
| |
Collapse
|
39
|
Rehman S, Gora AH, Siriyappagouder P, Brugman S, Fernandes JMO, Dias J, Kiron V. Zebrafish intestinal transcriptome highlights subdued inflammatory responses to dietary soya bean and efficacy of yeast β-glucan. JOURNAL OF FISH DISEASES 2021; 44:1619-1637. [PMID: 34237181 DOI: 10.1111/jfd.13484] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 06/13/2023]
Abstract
Anti-nutritional factors in dietary components can have a negative impact on the intestinal barrier. Here, we present soya bean-induced changes in the intestine of juvenile zebrafish and the effect of yeast β-glucan through a transcriptomic approach. The inclusion of soya bean meal affected the expression of several intestinal barrier function-related genes like arl4ca, rab25b, rhoub, muc5ac, muc5d, clcn2c and cltb in zebrafish. Several metabolic genes like cyp2x10.2, cyp2aa2, aldh3a2b, crata, elovl4, elovl6, slc51a, gpat2 and ATP-dependent peptidase activity (lonrf, clpxb) were altered in the intestinal tissue. The expression of immune-related genes like nlrc3, nlrp12, gimap8, prdm1 and tph1a, and genes related to cell cycle, DNA damage and DNA repair (e.g. spo11, rad21l1, nabp1b, spata22, tdrd9) were also affected in the soya bean fed group. Furthermore, our study suggests the plausible effect of yeast β-glucan through the modulation of several genes that regulate immune responses and barrier integrity. Our findings indicate a subdued inflammation in juvenile zebrafish fed soya bean meal and the efficacy of β-glucan to counter these subtle inflammatory responses.
Collapse
Affiliation(s)
- Saima Rehman
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Adnan H Gora
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | | | - Sylvia Brugman
- Department of Animal Sciences, Wageningen University, Wageningen, The Netherlands
| | | | | | - Viswanath Kiron
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| |
Collapse
|
40
|
Chen M, Tian S, Li S, Pang X, Sun J, Zhu X, Lv F, Lu Z, Li X. β-Glucan Extracted from Highland Barley Alleviates Dextran Sulfate Sodium-Induced Ulcerative Colitis in C57BL/6J Mice. Molecules 2021; 26:5812. [PMID: 34641356 PMCID: PMC8510048 DOI: 10.3390/molecules26195812] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/20/2021] [Accepted: 09/20/2021] [Indexed: 12/26/2022] Open
Abstract
Inflammatory bowel disease (IBD), which significantly affects human health, has two primary presentations: Crohn's disease and ulcerative colitis (UC). Highland barley is the most common food crop for Tibetans and contains much more β-glucan than any other crop. Highland barley β-glucan (HBBG) can relieve the gastrointestinal dysfunction and promote intestines health. This study aimed to evaluate whether HBBG can relieve UC in mice. A mouse model of UC was established by adding 2% dextran sulfate sodium (DSS) to drinking water for 1 week. UC was alleviated after the introduction of the HBBG diet, as indicated by reductions in the disease activity index (DAI) score, histopathological damage, and the concentration of colonic myeloperoxidase (MPO), along with an improvement in colonic atrophy. Furthermore, we found that HBBG can increase the relative transcriptional levels of genes encoding ZO-1, claudin-1, occludin, and mucin2 (MUC2), thereby reducing intestinal permeability. Additionally, HBBG maintained the balance of proinflammatory and anti-inflammatory cytokines and modulated the structure of the intestinal flora.
Collapse
Affiliation(s)
- Minjie Chen
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (M.C.); (S.L.); (X.Z.)
| | - Shuhua Tian
- Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China; (S.T.); (X.P.); (J.S.)
| | - Shichao Li
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (M.C.); (S.L.); (X.Z.)
| | - Xinyi Pang
- Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China; (S.T.); (X.P.); (J.S.)
| | - Jing Sun
- Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China; (S.T.); (X.P.); (J.S.)
| | - Xiaoyu Zhu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (M.C.); (S.L.); (X.Z.)
| | - Fengxia Lv
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (M.C.); (S.L.); (X.Z.)
| | - Zhaoxin Lu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (M.C.); (S.L.); (X.Z.)
| | - Xiangfei Li
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (M.C.); (S.L.); (X.Z.)
- Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China; (S.T.); (X.P.); (J.S.)
| |
Collapse
|
41
|
Vu V, Muthuramalingam K, Singh V, Hyun C, Kim YM, Unno T, Cho M. Effects of β-glucan, probiotics, and synbiotics on obesity-associated colitis and hepatic manifestations in C57BL/6J mice. Eur J Nutr 2021; 61:793-807. [PMID: 34561722 DOI: 10.1007/s00394-021-02668-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/31/2021] [Indexed: 01/08/2023]
Abstract
PURPOSE Probiotics and prebiotics are commonly used to improve the gut microbiota. Since prebiotics can support the growth of probiotics, co-administration of these is called synbiotics. It has been demonstrated that obesity-induced gut dysbiosis can worsen inflammatory bowel disease symptoms. This study evaluated how modulation of gut microbiota with Schizophyllum commune-derived β-glucan (BG), probiotics (PRO), and synbiotics containing both BG and PRO (SYN) could improve the symptoms of obesity-associated colitis and hepatic manifestation. METHODS Mice were fed a normal diet (ND), high-fat diet (HFD), and HFD with different additives (BG, PRO, and SYN) for 12 weeks, followed by 5 days of colitis induction. Mice were sacrificed before and after colitis induction. During the experiment, body weight, food and water consumption, and rectal bleeding were monitored. Proteins from the colon were subjected to western blotting, and serum biomarkers such as alanine transaminase, alkaline phosphatase, triglycerides, and total cholesterol were analyzed. Colon and liver samples were sectioned for histological analysis. The fecal microbiota was analyzed based on partial 16S rRNA gene sequences. RESULTS Although BG and PRO secured intestinal tight junctions, these two treatments did not modulate inflammatory cell infiltration and inflammatory markers (i.e., IL-6 and TNF-α). In contrast, SYN demonstrated stronger and broader effects in reducing colonic inflammation. While BG treatment increased the abundance of indigenous Lactobacillus, PRO treatment decreased bacterial diversity by suppressing the growth of several species of bacteria. SYN treatment groups, however, supported the growth of both indigenous and supplemented bacteria while maintaining bacterial diversity. CONCLUSION Obesity-associated colitis can be improved by modulating gut bacteria with β-glucan and probiotics. The co-administration of both outperformed β-glucan and probiotic treatment alone by fostering both indigenous and supplemented probiotic strains.
Collapse
Affiliation(s)
- Vuong Vu
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju, 63241, Republic of Korea
| | - Karthika Muthuramalingam
- Department of Biochemistry, School of Medicine, Jeju National University, Jeju, 63243, Republic of Korea
| | - Vineet Singh
- Faculty of Biotechnology, School of Life Sciences, SARI, Jeju National University, Jeju, 63243, Republic of Korea
| | - Changlim Hyun
- Department of Pathology, School of Medicine, Jeju National University, Jeju, 690-756, South Korea
| | - Young Mee Kim
- Department of Biochemistry, School of Medicine, Jeju National University, Jeju, 63243, Republic of Korea
| | - Tatsuya Unno
- Faculty of Biotechnology, School of Life Sciences, SARI, Jeju National University, Jeju, 63243, Republic of Korea. .,Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju, 63243, Republic of Korea.
| | - Moonjae Cho
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju, 63241, Republic of Korea. .,Department of Biochemistry, School of Medicine, Jeju National University, Jeju, 63243, Republic of Korea. .,Institute of Medical Science, Jeju National University, Jeju, 63241, Republic of Korea.
| |
Collapse
|
42
|
Kim IS, Hwang CW, Yang WS, Kim CH. Multiple Antioxidative and Bioactive Molecules of Oats ( Avena sativa L.) in Human Health. Antioxidants (Basel) 2021; 10:antiox10091454. [PMID: 34573086 PMCID: PMC8471765 DOI: 10.3390/antiox10091454] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 02/06/2023] Open
Abstract
Oats (Avena sativa L.) are rich in protein, fiber, calcium, vitamins (B, C, E, and K), amino acids, and antioxidants (beta-carotene, polyphenols, chlorophyll, and flavonoids). β-glucan and avenanthramides improve the immune system, eliminate harmful substances from the body, reduce blood cholesterol, and help with dietary weight loss by enhancing the lipid profile and breaking down fat in the body. β-glucan regulates insulin secretion, preventing diabetes. Progladins also lower cholesterol levels, suppress the accumulation of triglycerides, reduce blood sugar levels, suppress inflammation, and improve skin health. Saponin-based avanacosidase and functional substances of flavone glycoside improve the immune function, control inflammation, and prevent infiltration in the skin. Moreover, lignin and phytoestrogen prevent hormone-related cancer and improve the quality of life of postmenopausal women. Sprouted oats are rich in saponarin in detoxifying the liver. The literatures have been reviewed and the recent concepts and prospects have been summarized with figures and tables. This review discusses recent trends in research on the functionality of oats rather than their nutritional value with individual immunity for self-medication. The oat and its acting components have been revisited for the future prospect and development of human healthy and functional sources.
Collapse
Affiliation(s)
- Il-Sup Kim
- Advanced Bio-Resource Research Center, Kyungpook National University, Daegu 41566, Korea;
| | - Cher-Won Hwang
- Global Leadership School, Handong Global University, Pohang 37554, Gyeongsangbuk-Do, Korea
- Correspondence: (C.-W.H.); (W.-S.Y.); (C.-H.K.)
| | - Woong-Suk Yang
- Nodaji Co., Ltd., Pohang 37927, Gyeongsangbuk-Do, Korea
- Correspondence: (C.-W.H.); (W.-S.Y.); (C.-H.K.)
| | - Cheorl-Ho Kim
- Department of Biological Sciences, SungKyunKwan University, Suwon 16419, Gyunggi-Do, Korea
- Samsung Advanced Institute of Health Science and Technology (SAIHST), Sungkyunkwan University, Seoul 06351, Korea
- Correspondence: (C.-W.H.); (W.-S.Y.); (C.-H.K.)
| |
Collapse
|
43
|
Bai J, Zhao J, Al-Ansi W, Wang J, Xue L, Liu J, Wang Y, Fan M, Qian H, Li Y, Wang L. Oat β-glucan alleviates DSS-induced colitis via regulating gut microbiota metabolism in mice. Food Funct 2021; 12:8976-8993. [PMID: 34382058 DOI: 10.1039/d1fo01446c] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ulcerative colitis (UC) is one of the most prevalent inflammatory bowel diseases (IBD) worldwide, while oat β-glucan has been shown to suppress the progress of colitis in UC mice. However, the underlying mechanism of oat β-glucan in ameliorating colitis is unclear and the role of gut microbiota in the protective effect of oat β-glucan against colitis remains unknown. In the present study, we aim to investigate the effect of oat β-glucan on gut microbiota in colitis mice and explore the health effect related mechanism. Dextran sulfate sodium (DSS) was used to induce the colitis model in mice. The results showed that β-glucan treatment attenuated hematochezia, splenomegaly and colon shortening in colitis mice. Histological evaluation of H&E and TUNEL staining showed that β-glucan treatment suppressed DSS-induced colonic inflammatory infiltration and reduced cell apoptosis levels of colon tissues. mRNA expression levels of the pro-inflammatory factors were also significantly reduced in the β-glucan group. Moreover, β-glucan treatment increased the protein and mRNA expression levels of tight junction proteins. Analysis of gut microbiota community showed that β-glucan treatment modulated gut microbial composition and structure at the OTU level in colitis mice. Further analysis of gut microbial metabolism revealed that β-glucan treatment significantly increased acetate, propionate and butyrate concentrations, and affected microbial metabolome in colitis mice. Notably, the increased acetate and propionate concentrations could directly affect pro-inflammatory factor expression levels and tight junction protein levels. In contrast, the changes in metabolic profiles affected pro-inflammatory factor levels and thus affected tight junction protein levels. Overall, our study revealed that oat β-glucan ameliorated DSS-induced colitis in mice simultaneously through regulating gut-derived short-chain fatty acids (SCFAs) and microbial metabolic biomarkers. Our study demonstrated that oat β-glucan could be an effective nutritional intervention strategy towards targeting gut microbiota metabolism for ameliorating colitis.
Collapse
Affiliation(s)
- Junying Bai
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Jiajia Zhao
- College of Cooking Science and Technology, Jiangsu College of Tourism, Yangzhou 225000, China
| | - Waleed Al-Ansi
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China. and Department of Food Science and Technology, Faculty of Agriculture, Sana'a University, Sana'a, Yemen
| | - Jing Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Lamei Xue
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Jinxin Liu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Yu Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Mingcong Fan
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Haifeng Qian
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Yan Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Li Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
44
|
do Amaral LA, da Silva Fleming de Almeida T, Oliveira de Souza GH, Baranoski A, Souza Maris R, Bittencourt Junior FF, Murino Rafacho BP, Duenhas Monreal AC, Leite Kassuya CA, Milan Brochado Antoniolli-Silva AC, Freitas dos Santos E, Oliveira RJ. The Use of Natural Fiber-Rich Food Product Is Safe and Reduces Aberrant Crypt Foci in a Pre-Clinical Model. Nutrients 2021; 13:2708. [PMID: 34444868 PMCID: PMC8401268 DOI: 10.3390/nu13082708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/05/2021] [Accepted: 07/10/2021] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Colorectal cancer is a highly prevalent disease, requiring effective strategies for prevention and treatment. The present research aimed to formulate a natural fiber-rich food product (NFRFP) and to evaluate its safety, toxicogenetics, and effects on aberrant crypt foci induced by 1,2-dimethyl-hydrazine in a preclinical model. METHODS A total of 78 male Wistar rats were distributed in six experimental groups: negative control, positive control (1,2-Dimethylhydrazine-40 mg/Kg), and four groups fed with 10% NFRFP: NFRFP, pre-treatment protocol, simultaneous treatment, and post-treatment protocol. RESULTS The NFRFP was shown to be a good source of fibers and did not change biometric, biochemical, hematological, and inflammatory parameters, and did not induce signs of toxicity and genotoxicity/carcinogenicity. NFRFP exhibited a chemopreventive effect, in all protocols, with damage reduction (% DR) of 75% in the comet test. NFRFP reduced the incidence of aberrant crypt outbreaks by 49.36% in the post-treatment protocol. CONCLUSIONS The results suggest the applicability of NFRFP in the human diet due to potential production at an industrial scale and easy technological application in different products, since it could be incorporated in food without altering or causing small changes in final product sensory characteristics.
Collapse
Affiliation(s)
- Luane Aparecida do Amaral
- Center for Studies in Stem Cells, Cell Therapy and Toxicological Genetics–CeTroGen, University Hospital Maria Aparecida Pedrossian, Federal University of Mato Grosso do Sul, Campo Grande 79080-190, Brazil; (L.A.d.A.); (A.B.); (A.C.M.B.A.-S.)
- Postgraduate Program in Health and Development in the Midwest Region, Medical School, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil;
| | - Taina da Silva Fleming de Almeida
- Postgraduate Program in Biotechnology, Faculty of Pharmaceutical Sciences, Food and Nutrition, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil; (T.d.S.F.d.A.); (B.P.M.R.)
| | | | - Adrivanio Baranoski
- Center for Studies in Stem Cells, Cell Therapy and Toxicological Genetics–CeTroGen, University Hospital Maria Aparecida Pedrossian, Federal University of Mato Grosso do Sul, Campo Grande 79080-190, Brazil; (L.A.d.A.); (A.B.); (A.C.M.B.A.-S.)
- Postgraduate Program in Health and Development in the Midwest Region, Medical School, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil;
| | - Rafael Souza Maris
- Clinical Analysis Laboratory, University Center of Grande Dourados, Dourados 79824-900, Brazil; (R.S.M.); (F.F.B.J.)
| | | | - Bruna Paola Murino Rafacho
- Postgraduate Program in Biotechnology, Faculty of Pharmaceutical Sciences, Food and Nutrition, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil; (T.d.S.F.d.A.); (B.P.M.R.)
- Faculty of Pharmaceutical Sciences, Food and Nutrition, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil;
- Postgraduate Program in Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Food and Nutrition, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil
| | | | | | - Andréia Conceição Milan Brochado Antoniolli-Silva
- Center for Studies in Stem Cells, Cell Therapy and Toxicological Genetics–CeTroGen, University Hospital Maria Aparecida Pedrossian, Federal University of Mato Grosso do Sul, Campo Grande 79080-190, Brazil; (L.A.d.A.); (A.B.); (A.C.M.B.A.-S.)
- Postgraduate Program in Health and Development in the Midwest Region, Medical School, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil;
| | - Elisvânia Freitas dos Santos
- Postgraduate Program in Health and Development in the Midwest Region, Medical School, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil;
- Postgraduate Program in Biotechnology, Faculty of Pharmaceutical Sciences, Food and Nutrition, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil; (T.d.S.F.d.A.); (B.P.M.R.)
- Faculty of Pharmaceutical Sciences, Food and Nutrition, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil;
| | - Rodrigo Juliano Oliveira
- Center for Studies in Stem Cells, Cell Therapy and Toxicological Genetics–CeTroGen, University Hospital Maria Aparecida Pedrossian, Federal University of Mato Grosso do Sul, Campo Grande 79080-190, Brazil; (L.A.d.A.); (A.B.); (A.C.M.B.A.-S.)
- Postgraduate Program in Health and Development in the Midwest Region, Medical School, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil;
- Postgraduate Program in Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Food and Nutrition, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil
| |
Collapse
|
45
|
Liu B, Tang Y, Song Z, Ge J. Polygonatum sibiricum F. Delaroche polysaccharide ameliorates HFD‑induced mouse obesity via regulation of lipid metabolism and inflammatory response. Mol Med Rep 2021; 24:501. [PMID: 33982779 PMCID: PMC8134871 DOI: 10.3892/mmr.2021.12140] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 02/16/2021] [Indexed: 12/12/2022] Open
Abstract
The present study sought to elucidate the role of Polygonatum sibiricum F. Delaroche polysaccharide (PSP) in high‑fat diet (HFD)‑induced mouse obesity and investigated the primary molecular mechanism underlaying these effects. An obese mouse model was established by feeding HFD and three doses of PSP were administered intragastrically. Changes in body weight, serum lipids and parameters were recorded and the mechanism was explored by reverse transcription‑quantitative PCR and western blotting. Body weight, blood lipids, blood glucose, insulin, resistin, adiponectin, liver weight and abdominal fat pads weight were reduced by PSP and abnormal expression levels of inflammatory factors such as TNF‑α, IL‑6, IL‑1β and iNOS and lipid metabolism genes such as FAS, SREBP‑1, PPARα and CPT‑1were also reversed by PSP. The 5' adenosine monophosphate‑activated protein kinase (AMPK) signaling pathway was activated in PSP mouse liver, leading to lipid‑lowering and anti‑inflammatory effects. The results therefore suggested that PSP exhibited lipid‑lowering and anti‑inflammatory effects by activating the AMPK signaling pathway.
Collapse
Affiliation(s)
- Bo Liu
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, P.R. China
- Central South Food Science Institute of Grain and Oil Co., Ltd., Changsha, Hunan 410100, P.R. China
- Hunan Grain Group Co., Ltd., Changsha, Hunan 410100, P.R. China
| | - Yuan Tang
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, P.R. China
| | - Zhenyan Song
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, P.R. China
| | - Jinwen Ge
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, P.R. China
- Medical College, Shaoyang University, Shaoyang, Hunan 422000, P.R. China
| |
Collapse
|
46
|
Effect of sulfated modification on rheological and physiological properties of oat β-glucan oligosaccharides prepared by acid or oxidative degradation. J Cereal Sci 2021. [DOI: 10.1016/j.jcs.2021.103209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
47
|
Żyła E, Dziendzikowska K, Kamola D, Wilczak J, Sapierzyński R, Harasym J, Gromadzka-Ostrowska J. Anti-Inflammatory Activity of Oat Beta-Glucans in a Crohn's Disease Model: Time- and Molar Mass-Dependent Effects. Int J Mol Sci 2021; 22:4485. [PMID: 33923129 PMCID: PMC8123447 DOI: 10.3390/ijms22094485] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/17/2021] [Accepted: 04/23/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND The incidence of Crohn's disease (CD) is increasing worldwide, and it has currently become a serious public health issue in society. The treatment of CD continues throughout a patient's lifetime, and therefore, it is necessary to develop new, effective treatment methods, including dietotherapy. The present study aimed to determine the effects of consumption of oat beta-glucans with different molar mass on colon inflammation (colitis) in the early stages of 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced CD in an animal model. METHODS Sprague-Dawley rats (control and TNBS-induced CD) were divided into three dietary groups and fed for 3 days (reflecting acute inflammation) or 7 days (reflecting remission) with a feed containing 1% low (βGl) or high (βGh) molar mass oat beta-glucan or a feed without this polysaccharide. The level of colon inflammatory markers and the expression of cytokines and their receptor genes were measured by ELISA and RT-PCR methods, respectively. RESULTS Acute inflammation or remission (3 or 7 days after TNBS administration, respectively) stages of experimentally induced CD were characterized by an increase in the level of inflammatory markers (IL-1, IL-6, IL-10, IL-12, TNF-α, CRP, MPO, COX, and PGE2) and the disruption of some cytokine signaling pathways as well as macro- and microscopic changes of colon tissue. The consumption of oat beta-glucans reduced the level of inflammatory markers and recovered the signaling pathways and histological changes, with stronger effects of βGl after 7 days of colitis. CONCLUSIONS Dietary oat beta-glucans can reduce colitis at the molecular and organ level and accelerate CD remission.
Collapse
Affiliation(s)
- Ewa Żyła
- Department of Dietetics, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, Nowoursynowska 159c, 02-776 Warsaw, Poland; (E.Ż.); (J.G.-O.)
| | - Katarzyna Dziendzikowska
- Department of Dietetics, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, Nowoursynowska 159c, 02-776 Warsaw, Poland; (E.Ż.); (J.G.-O.)
| | - Dariusz Kamola
- Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland; (D.K.); (J.W.)
| | - Jacek Wilczak
- Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland; (D.K.); (J.W.)
| | - Rafał Sapierzyński
- Department of Pathology and Veterinary Diagnostics, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland;
| | - Joanna Harasym
- Adaptive Food Systems Accelerator—Research Centre, Wrocław University of Economics, Komandorska 118/120, 53-345 Wrocław, Poland;
- Department of Biotechnology and Food Analysis, Wrocław University of Economics, Komandorska 118/120, 53-345 Wrocław, Poland
| | - Joanna Gromadzka-Ostrowska
- Department of Dietetics, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, Nowoursynowska 159c, 02-776 Warsaw, Poland; (E.Ż.); (J.G.-O.)
| |
Collapse
|
48
|
Rahman S, Davids M, van Hamersveld PHP, Welting O, Rahaoui H, Schuren F, Meijer SL, van den Wijngaard RM, Hakvoort TBM, de Jonge WJ, Heinsbroek SEM. Dietary Curdlan Enhances Bifidobacteria and Reduces Intestinal Inflammation in Mice. Nutrients 2021; 13:1305. [PMID: 33920960 PMCID: PMC8071228 DOI: 10.3390/nu13041305] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 04/12/2021] [Indexed: 12/12/2022] Open
Abstract
β-glucan consumption is known for its beneficial health effects, but the mode of action is unclear. While humans and mice lack the required enzymes to digest β-glucans, certain intestinal microbes can digest β-glucans, triggering gut microbial changes. Curdlan, a particulate β-glucan isolated from Alcaligenes faecalis, is used as a food additive. In this study we determined the effect of curdlan intake in mice on the intestinal microbiota and dextran sodium sulfate (DSS)-induced intestinal inflammation. The effect of curdlan on the human intestinal microbiota was assessed using i-screen, an assay for studying anaerobic microbial interactions. Mice received oral gavage with vehicle or curdlan for 14 days followed by DSS for 7 days. The curdlan-fed group showed reduced weight loss and colonic inflammation compared to the vehicle-fed group. Curdlan intake did not induce general microbiota community changes, although a specific Bifidobacterium, closely related to Bifidobacterium choerinum, was observed to be 10- to 100-fold more prevalent in the curdlan-fed group under control and colitis conditions, respectively. When tested in i-screen, curdlan induced a global change in the microbial composition of the healthy intestinal microbiota from a human. Overall, these results suggest that dietary curdlan induces microbiota changes that could reduce intestinal inflammation.
Collapse
Affiliation(s)
- Shafaque Rahman
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology and Metabolism, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, 1105 BK Amsterdam, The Netherlands; (S.R.); (P.H.P.v.H.); (O.W.); (R.M.v.d.W.); (T.B.M.H.); (W.J.d.J.)
| | - Mark Davids
- Department of Vascular Medicine, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands;
| | - Patricia H. P. van Hamersveld
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology and Metabolism, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, 1105 BK Amsterdam, The Netherlands; (S.R.); (P.H.P.v.H.); (O.W.); (R.M.v.d.W.); (T.B.M.H.); (W.J.d.J.)
| | - Olaf Welting
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology and Metabolism, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, 1105 BK Amsterdam, The Netherlands; (S.R.); (P.H.P.v.H.); (O.W.); (R.M.v.d.W.); (T.B.M.H.); (W.J.d.J.)
| | - Hakim Rahaoui
- The Netherlands Organization for Applied Scientific Research (TNO), 3704 HE Zeist, The Netherlands; (H.R.); (F.S.)
| | - Frank Schuren
- The Netherlands Organization for Applied Scientific Research (TNO), 3704 HE Zeist, The Netherlands; (H.R.); (F.S.)
| | - Sybren L. Meijer
- Department of Pathology, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands;
| | - René M. van den Wijngaard
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology and Metabolism, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, 1105 BK Amsterdam, The Netherlands; (S.R.); (P.H.P.v.H.); (O.W.); (R.M.v.d.W.); (T.B.M.H.); (W.J.d.J.)
| | - Theodorus B. M. Hakvoort
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology and Metabolism, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, 1105 BK Amsterdam, The Netherlands; (S.R.); (P.H.P.v.H.); (O.W.); (R.M.v.d.W.); (T.B.M.H.); (W.J.d.J.)
| | - Wouter J. de Jonge
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology and Metabolism, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, 1105 BK Amsterdam, The Netherlands; (S.R.); (P.H.P.v.H.); (O.W.); (R.M.v.d.W.); (T.B.M.H.); (W.J.d.J.)
- Department of Surgery, University of Bonn, 53113 Bonn, Germany
| | - Sigrid E. M. Heinsbroek
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology and Metabolism, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, 1105 BK Amsterdam, The Netherlands; (S.R.); (P.H.P.v.H.); (O.W.); (R.M.v.d.W.); (T.B.M.H.); (W.J.d.J.)
| |
Collapse
|
49
|
Food and Food Groups in Inflammatory Bowel Disease (IBD): The Design of the Groningen Anti-Inflammatory Diet (GrAID). Nutrients 2021; 13:nu13041067. [PMID: 33806061 PMCID: PMC8064481 DOI: 10.3390/nu13041067] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 12/19/2022] Open
Abstract
Diet plays a pivotal role in the onset and course of inflammatory bowel disease (IBD). Patients are keen to know what to eat to reduce symptoms and flares, but dietary guidelines are lacking. To advice patients, an overview of the current evidence on food (group) level is needed. This narrative review studies the effects of food (groups) on the onset and course of IBD and if not available the effects in healthy subjects or animal and in vitro IBD models. Based on this evidence the Groningen anti-inflammatory diet (GrAID) was designed and compared on food (group) level to other existing IBD diets. Although on several foods conflicting results were found, this review provides patients a good overview. Based on this evidence, the GrAID consists of lean meat, eggs, fish, plain dairy (such as milk, yoghurt, kefir and hard cheeses), fruit, vegetables, legumes, wheat, coffee, tea and honey. Red meat, other dairy products and sugar should be limited. Canned and processed foods, alcohol and sweetened beverages should be avoided. This comprehensive review focuses on anti-inflammatory properties of foods providing IBD patients with the best evidence on which foods they should eat or avoid to reduce flares. This was used to design the GrAID.
Collapse
|
50
|
Vrzáčková N, Ruml T, Zelenka J. Postbiotics, Metabolic Signaling, and Cancer. Molecules 2021; 26:molecules26061528. [PMID: 33799580 PMCID: PMC8000401 DOI: 10.3390/molecules26061528] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/05/2021] [Accepted: 03/09/2021] [Indexed: 12/19/2022] Open
Abstract
Postbiotics are health-promoting microbial metabolites delivered as a functional food or a food supplement. They either directly influence signaling pathways of the body or indirectly manipulate metabolism and the composition of intestinal microflora. Cancer is the second leading cause of death worldwide and even though the prognosis of patients is improving, it is still poor in the substantial part of the cases. The preventable nature of cancer and the importance of a complex multi-level approach in anticancer therapy motivate the search for novel avenues of establishing the anticancer environment in the human body. This review summarizes the principal findings demonstrating the usefulness of both natural and synthetic sources of postbotics in the prevention and therapy of cancer. Specifically, the effects of crude cell-free supernatants, the short-chain fatty acid butyrate, lactic acid, hydrogen sulfide, and β-glucans are described. Contradictory roles of postbiotics in healthy and tumor tissues are highlighted. In conclusion, the application of postbiotics is an efficient complementary strategy to combat cancer.
Collapse
|