1
|
Chen R, Luo S, Zhang Y, Mao L, Diao J, Cheng S, Zou Z, Chen C, Qin X, Jiang X, Zhang J. LC3B-regulated autophagy mitigates zinc oxide nanoparticle-induced epithelial cell dysfunction and acute lung injury. Toxicol Sci 2025; 203:105-117. [PMID: 39509325 DOI: 10.1093/toxsci/kfae146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024] Open
Abstract
Zinc oxide nanoparticles (ZnONPs) are widely utilized across various industries, raising concerns about their potential toxicity, especially in the respiratory system. This study explores the role of autophagy, regulated by microtubule-associated protein 1A/1B-light chain 3B (LC3B), in ZnONPs-induced toxicity using both in vivo (LC3B knockout mice) and in vitro (BEAS-2B cells) models. Our findings demonstrate that LC3B-regulated autophagy mitigates ZnONPs-induced epithelial cell dysfunction and acute lung injury. In the absence of LC3B, oxidative stress, inflammation, and intracellular zinc accumulation are exacerbated, resulting in mitochondrial dysfunction and epithelial cell death. In vitro, LC3B knockdown disrupted zinc ion transporter expression and impaired mitophagic flux in BEAS-2B cells. Treatment with zinc ion chelators alleviated these toxic effects, confirming that free zinc ions play a critical role in driving ZnONPs toxicity. These findings highlight that targeting autophagy and maintaining zinc homeostasis could offer therapeutic strategies to reduce ZnONPs-induced lung damage.
Collapse
Affiliation(s)
- Ruonan Chen
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Sen Luo
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Yunxiao Zhang
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Lejiao Mao
- Molecular Biology Laboratory of Respiratory Disease, Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing 400016, People's Republic of China
| | - Jun Diao
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Shuqun Cheng
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Zhen Zou
- Molecular Biology Laboratory of Respiratory Disease, Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing 400016, People's Republic of China
| | - Chengzhi Chen
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China
- Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Xia Qin
- Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Xuejun Jiang
- Center of Experimental Teaching for Public Health, Experimental Teaching and Management Center, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Jun Zhang
- Molecular Biology Laboratory of Respiratory Disease, Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing 400016, People's Republic of China
| |
Collapse
|
2
|
Dong L, Yin L, Li R, Xu L, Xu Y, Han X, Qi Y. Dioscin alleviates lung ischemia/reperfusion injury by regulating FXR-mediated oxidative stress, apoptosis, and inflammation. Eur J Pharmacol 2021; 908:174321. [PMID: 34252440 DOI: 10.1016/j.ejphar.2021.174321] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 06/28/2021] [Accepted: 07/07/2021] [Indexed: 12/15/2022]
Abstract
Dioscin showed various pharmacological effects in our previous studies; however, the effects and mechanisms against lung ischemia/reperfusion injury (LI/RI) have not been reported. Hypoxia/reoxygenation (H/R) models were established using A549 and primary AEC-II cells, while LI/RI models were established in rats and mice. The effects of dioscin on oxidative stress, inflammation and apoptosis in vivo and in vitro were investigated. The mechanisms were investigated focus on dioscin regulating FXR/LKB1 signaling pathway. Dioscin improved cell viability and mitochondrial membrane potential, reduced reactive oxygen species level, and inhibited H/R-mediated cell apoptosis. It also significantly decreased the lung wet/dry weight ratio, ameliorated levels of oxidative stress indicators, and enhanced the mitochondrial membrane potential and inhibited cell apoptosis in vivo. The results of mechanism research showed that dioscin activated FXR/LKB1 signals by increasing the expression of p-LKB1 and p-AMPKα, promoting the nuclear translocation of Nrf2, up-regulating the levels of HO-1, NQO1 and GCLC, expressed against oxidative stress. Furthermore, dioscin reduced Cyt C released, decreased the expression levels of Caspase-9 and Caspase-3 during apoptosis. Dioscin suppressed inflammation by inhibiting NF-κB translocation, reducing the expression levels of NF-κB, HMGB1, COX-2, IL-1β, IL-6 and TNF-α. The transfection of FXR or LKB1 siRNA further confirmed that the protective effect of dioscin against LI/RI was attributable to the regulation of FXR/LKB1 signaling pathway. Our research showed that dioscin exhibited potent activity against LI/RI, by adjusting the levels of FXR/LKB1-mediated oxidative stress, apoptosis, and inflammation, and should be considered as a new candidate for treating LI/RI.
Collapse
Affiliation(s)
- Lile Dong
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian, 116044, China
| | - Lianhong Yin
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian, 116044, China
| | - Ruomiao Li
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian, 116044, China
| | - Lina Xu
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian, 116044, China
| | - Youwei Xu
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian, 116044, China
| | - Xu Han
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian, 116044, China
| | - Yan Qi
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian, 116044, China.
| |
Collapse
|
3
|
Makvandi P, Chen M, Sartorius R, Zarrabi A, Ashrafizadeh M, Dabbagh Moghaddam F, Ma J, Mattoli V, Tay FR. Endocytosis of abiotic nanomaterials and nanobiovectors: Inhibition of membrane trafficking. NANO TODAY 2021; 40:101279. [PMID: 34518771 PMCID: PMC8425779 DOI: 10.1016/j.nantod.2021.101279] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 08/05/2021] [Accepted: 08/19/2021] [Indexed: 05/04/2023]
Abstract
Humans are exposed to nanoscopical nanobiovectors (e.g. coronavirus SARS-CoV-2) as well as abiotic metal/carbon-based nanomaterials that enter cells serendipitously or intentionally. Understanding the interactions of cell membranes with these abiotic and biotic nanostructures will facilitate scientists to design better functional nanomaterials for biomedical applications. Such knowledge will also provide important clues for the control of viral infections and the treatment of virus-induced infectious diseases. In the present review, the mechanisms of endocytosis are reviewed in the context of how nanomaterials are uptaken into cells. This is followed by a detailed discussion of the attributes of man-made nanomaterials (e.g. size, shape, surface functional groups and elasticity) that affect endocytosis, as well as the different human cell types that participate in the endocytosis of nanomaterials. Readers are then introduced to the concept of viruses as nature-derived nanoparticles. The mechanisms in which different classes of viruses interact with various cell types to gain entry into the human body are reviewed with examples published over the last five years. These basic tenets will enable the avid reader to design advanced drug delivery and gene transfer nanoplatforms that harness the knowledge acquired from endocytosis to improve their biomedical efficacy. The review winds up with a discussion on the hurdles to be addressed in mimicking the natural mechanisms of endocytosis in nanomaterials design.
Collapse
Affiliation(s)
- Pooyan Makvandi
- Istituto Italiano di Tecnologia, Centre for Materials Interfaces, Viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa, Italy
| | - Meiling Chen
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rossella Sartorius
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Naples 80131, Italy
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul 34956, Turkey
| | - Milad Ashrafizadeh
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul 34956, Turkey
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956 Istanbul, Turkey
| | - Farnaz Dabbagh Moghaddam
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran
| | - Jingzhi Ma
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Virgilio Mattoli
- Istituto Italiano di Tecnologia, Centre for Materials Interfaces, Viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa, Italy
| | - Franklin R Tay
- The Graduate School, Augusta University, Augusta, GA 30912, United States
| |
Collapse
|
4
|
Michaeloudes C, Seiffert J, Chen S, Ruenraroengsak P, Bey L, Theodorou IG, Ryan M, Cui X, Zhang J, Shaffer M, Tetley T, Porter AE, Chung KF. Effect of silver nanospheres and nanowires on human airway smooth muscle cells: role of sulfidation. NANOSCALE ADVANCES 2020; 2:5635-5647. [PMID: 34381958 PMCID: PMC8330518 DOI: 10.1039/d0na00745e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 10/09/2020] [Indexed: 06/12/2023]
Abstract
Background: The toxicity of inhaled silver nanoparticles on contractile and pro-inflammatory airway smooth muscle cells (ASMCs) that control airway calibre is unknown. We explored the oxidative activities and sulfidation processes of the toxic-inflammatory response. Method: Silver nanospheres (AgNSs) of 20 nm and 50 nm diameter and silver nanowires (AgNWs), short S-AgNWs, 1.5 μm and long L-AgNWs, 10 μm, both 72 nm in diameter were manufactured. We measured their effects on cell proliferation, mitochondrial reactive oxygen species (ROS) release and membrane potential, and also performed electron microscopic studies. Main results and findings: The greatest effects were observed for the smallest particles with the highest specific surface area and greatest solubility that were avidly internalised. ASMCs exposed to 20 nm AgNSs (25 μg mL-1) for 72 hours exhibited a significant decrease in DNA incorporation (-72.4%; p < 0.05), whereas neither the 50 nm AgNSs nor the s-AgNWs altered DNA synthesis or viability. There was a small reduction in ASMC proliferation for the smaller AgNS, although Ag+ at 25 μL mL-1 reduced DNA synthesis by 93.3% (p < 0.001). Mitochondrial potential was reduced by both Ag+ (25 μg mL-1) by 47.1% and 20 nm Ag NSs (25 μg mL-1) by 40.1% (*both at p < 0.05), but was not affected by 50 nm AgNSs and the AgNWs. None of the samples showed a change in ROS toxicity. However, malondialdehyde release, associated with greater total ROS, was observed for all AgNPs, to an extent following the geometric size (20 nm AgNS: 213%, p < 0.01; 50 nm AgNS: 179.5%, p < 0.01 and L-AgNWs by 156.2%, p < 0.05). The antioxidant, N-acetylcysteine, prevented the reduction in mitochondrial potential caused by 20 nm AgNSs. The smaller nanostructures were internalised and dissolved within the ASMCs with the formation of non-reactive silver sulphide (Ag2S) on their surface, but with very little uptake of L-AgNWs. When ASMCs were incubated with H2S-producing enzyme inhibitors, the spatial extent of Ag2S formation was much greater. Conclusion: The intracellular toxicity of AgNPs in ASMCs is determined by the solubility of Ag+ released and the sulfidation process, effects related to particle size and geometry. Passivation through sulfidation driven by biogenic H2S can outcompete dissolution, thus reducing the toxicity of the smaller intracellular Ag nanostructures.
Collapse
Affiliation(s)
| | - Joanna Seiffert
- National Heart & Lung Institute, Imperial College London Dovehouse St London SW3 6LY UK
| | - Shu Chen
- Department of Materials, London Centre for Nanotechnology, Imperial College London SW3 UK
| | - Pakatip Ruenraroengsak
- Department of Materials, London Centre for Nanotechnology, Imperial College London SW3 UK
- Faculty of Pharmacy, Mahidol University Bangkok 10400 Thailand
| | - Leo Bey
- Department of Materials, London Centre for Nanotechnology, Imperial College London SW3 UK
- Faculty of Medicine, University of Malaya Kuala Lumpur 50603 Malaysia
| | - Ioannis G Theodorou
- Department of Materials, London Centre for Nanotechnology, Imperial College London SW3 UK
| | - Mary Ryan
- Department of Materials, London Centre for Nanotechnology, Imperial College London SW3 UK
| | - Xiaoxing Cui
- Nicholas School of Environment, Duke Global Health Institute, Duke University Durham USA
| | - Jim Zhang
- Nicholas School of Environment, Duke Global Health Institute, Duke University Durham USA
| | - Milo Shaffer
- Department of Materials, London Centre for Nanotechnology, Imperial College London SW3 UK
| | - Terry Tetley
- National Heart & Lung Institute, Imperial College London Dovehouse St London SW3 6LY UK
| | - Alexandra E Porter
- Department of Materials, London Centre for Nanotechnology, Imperial College London SW3 UK
| | - Kian Fan Chung
- National Heart & Lung Institute, Imperial College London Dovehouse St London SW3 6LY UK
| |
Collapse
|
5
|
Radiom M, Sarkis M, Brookes O, Oikonomou EK, Baeza-Squiban A, Berret JF. Pulmonary surfactant inhibition of nanoparticle uptake by alveolar epithelial cells. Sci Rep 2020; 10:19436. [PMID: 33173147 PMCID: PMC7655959 DOI: 10.1038/s41598-020-76332-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 10/20/2020] [Indexed: 02/04/2023] Open
Abstract
Pulmonary surfactant forms a sub-micrometer thick fluid layer that covers the surface of alveolar lumen and inhaled nanoparticles therefore come in to contact with surfactant prior to any interaction with epithelial cells. We investigate the role of the surfactant as a protective physical barrier by modeling the interactions using silica-Curosurf-alveolar epithelial cell system in vitro. Electron microscopy displays that the vesicles are preserved in the presence of nanoparticles while nanoparticle-lipid interaction leads to formation of mixed aggregates. Fluorescence microscopy reveals that the surfactant decreases the uptake of nanoparticles by up to two orders of magnitude in two models of alveolar epithelial cells, A549 and NCI-H441, irrespective of immersed culture on glass or air-liquid interface culture on transwell. Confocal microscopy corroborates the results by showing nanoparticle-lipid colocalization interacting with the cells. Our work thus supports the idea that pulmonary surfactant plays a protective role against inhaled nanoparticles. The effect of surfactant should therefore be considered in predictive assessment of nanoparticle toxicity or drug nanocarrier uptake. Models based on the one presented in this work may be used for preclinical tests with engineered nanoparticles.
Collapse
Affiliation(s)
- M Radiom
- UMR CNRS 7057, Laboratoire Matière Et Systèmes Complexes, Université de Paris, Paris, France.
- Institute for Food, Nutrition and Health, D-HEST, ETH Zürich, Zürich, Switzerland.
| | - M Sarkis
- UMR CNRS 7057, Laboratoire Matière Et Systèmes Complexes, Université de Paris, Paris, France
| | - O Brookes
- UMR CNRS 8251, Unité de Biologie Fonctionnelle et Adaptative, Université de Paris, Paris, France
| | - E K Oikonomou
- UMR CNRS 7057, Laboratoire Matière Et Systèmes Complexes, Université de Paris, Paris, France
| | - A Baeza-Squiban
- UMR CNRS 8251, Unité de Biologie Fonctionnelle et Adaptative, Université de Paris, Paris, France
| | - J-F Berret
- UMR CNRS 7057, Laboratoire Matière Et Systèmes Complexes, Université de Paris, Paris, France.
| |
Collapse
|
6
|
Zhang Y, Xu J, Yang Y, Sun B, Wang K, Zhu L. Impacts of Proteins on Dissolution and Sulfidation of Silver Nanowires in an Aquatic Environment: Importance of Surface Charges. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:5560-5568. [PMID: 32259435 DOI: 10.1021/acs.est.0c00461] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
With increasing utilization of silver nanomaterials, growing concerns are raised on their deleterious effects to the environment. Once discharged in an aquatic environment, the interactions between silver nanowires (AgNWs) and proteins may significantly affect the environmental behaviors, fate, and toxicities of AgNWs. In the present study, three representative model proteins, including ovalbumin (OVA), bovine serum albumin (BSA), and lysozyme (LYZ), were applied to investigate the impacts of the interactions between proteins and AgNWs on the transformations (oxidative dissolution and sulfidation) of AgNWs in an aquatic environment. Fluorescence spectroscopy and isothermal titration calorimetry analyses indicated that there was very weak interaction between OVA or BSA and AgNWs, but there was a strong interaction between the positively charged LYZ and the negatively charged AgNWs. The presence of LYZ not only reversed the surface charge of AgNWs but also resulted in the breakup of the nanowire structure and increased the reactive surface area. The positively charged surface of AgNWs in the presence of LYZ favored the access of sulfide ions. As a consequence, the kinetics of oxidative dissolution and sulfidation of AgNWs were not affected by OVA and BSA but were significantly facilitated by LYZ. The results shed light on the important roles of electrostatic interactions between AgNWs and proteins, which may have important implications for evaluating the fate and effects of silver nanomaterials in complicated environments.
Collapse
Affiliation(s)
- Yinqing Zhang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Jinliang Xu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Yi Yang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Binbin Sun
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Kunkun Wang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Lingyan Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| |
Collapse
|
7
|
De Mori A, Jones RS, Cretella M, Cerri G, Draheim RR, Barbu E, Tozzi G, Roldo M. Evaluation of Antibacterial and Cytotoxicity Properties of Silver Nanowires and Their Composites with Carbon Nanotubes for Biomedical Applications. Int J Mol Sci 2020; 21:ijms21072303. [PMID: 32225118 PMCID: PMC7178261 DOI: 10.3390/ijms21072303] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 03/25/2020] [Accepted: 03/25/2020] [Indexed: 02/07/2023] Open
Abstract
In this work, we prepared silver nanowires (AgNWs) via the polyol method in the presence or absence of single wall carbon nanotubes (CNTs) and tested their physicochemical, antibacterial and cytotoxic properties. Results showed that the introduction of CNTs lead to the formation of AgNWs at lower temperature, but the final product characteristics of AgNWs and AgNWs-CNT were not significantly different. AgNWs exhibited antibacterial properties against all the studied bacterial species via the formation of oxygen reactive species (ROS) and membrane damage. Furthermore, AgNWs exhibited a dose-dependent and time-dependent toxicity at concentrations ≥ 10 µg/mL. Fibroblasts appeared to be more resistant than human colorectal adenocarcinoma (Caco-2) and osteoblasts to the toxicity of AgNWs. The cytotoxicity of AgNWs was found to be related to the formation of ROS, but not to membrane damage. Overall, these results suggest that AgNWs are potential antibacterial agents against E. coli, S. aureus, MRSA and S. saprophyticus, but their dosage needs to be adjusted according to the route of administration.
Collapse
Affiliation(s)
- Arianna De Mori
- School of Pharmacy and Biomedical Science, University of Portsmouth, St Michael’s Building, White Swan Road, PO1 2DT, Portsmouth, UK; (A.D.M.); (R.S.J.); (M.C.); (R.R.D.); (E.B.)
| | - Richard S. Jones
- School of Pharmacy and Biomedical Science, University of Portsmouth, St Michael’s Building, White Swan Road, PO1 2DT, Portsmouth, UK; (A.D.M.); (R.S.J.); (M.C.); (R.R.D.); (E.B.)
| | - Matteo Cretella
- School of Pharmacy and Biomedical Science, University of Portsmouth, St Michael’s Building, White Swan Road, PO1 2DT, Portsmouth, UK; (A.D.M.); (R.S.J.); (M.C.); (R.R.D.); (E.B.)
| | - Guido Cerri
- Department of Architecture, Design and Urban Planning—GeoMaterials Lab, University of Sassari, Via Piandanna 4, 07100 Sassari, Italy;
| | - Roger R. Draheim
- School of Pharmacy and Biomedical Science, University of Portsmouth, St Michael’s Building, White Swan Road, PO1 2DT, Portsmouth, UK; (A.D.M.); (R.S.J.); (M.C.); (R.R.D.); (E.B.)
| | - Eugen Barbu
- School of Pharmacy and Biomedical Science, University of Portsmouth, St Michael’s Building, White Swan Road, PO1 2DT, Portsmouth, UK; (A.D.M.); (R.S.J.); (M.C.); (R.R.D.); (E.B.)
| | - Gianluca Tozzi
- Zeiss Global Centre, School of Engineering, University of Portsmouth, Anglesea Building, Anglesea Road, PO1 3DJ Portsmouth, UK;
| | - Marta Roldo
- School of Pharmacy and Biomedical Science, University of Portsmouth, St Michael’s Building, White Swan Road, PO1 2DT, Portsmouth, UK; (A.D.M.); (R.S.J.); (M.C.); (R.R.D.); (E.B.)
- Correspondence:
| |
Collapse
|
8
|
Mousseau F, Oikonomou EK, Vacher A, Airiau M, Mornet S, Berret JF. Revealing the pulmonary surfactant corona on silica nanoparticles by cryo-transmission electron microscopy. NANOSCALE ADVANCES 2020; 2:642-647. [PMID: 36133230 PMCID: PMC9416877 DOI: 10.1039/c9na00779b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 01/06/2020] [Indexed: 06/11/2023]
Abstract
When inhaled, nanoparticles (NPs) deposit in alveoli and transit through the pulmonary surfactant (PS), a biofluid made of proteins and phospholipid vesicles. They form a corona reflecting the PS-nanomaterial interaction. Since the corona determines directly the NPs' biological fate, the question of its nature and structure is central. Here, we report on the corona architecture formed after incubation of positive or negative silica particles with Curosurf®, a biomimetic pulmonary surfactant of porcine origin. Using optical, electron and cryo-electron microscopy (cryo-TEM), we determine the pulmonary surfactant corona structure at different scales of observation. Contrary to common belief, the PS corona is not only constituted by phospholipid bilayers surrounding NPs but also by multiple hybrid structures derived from NP-vesicle interaction. Statistical analysis of cryo-TEM images provides interesting highlights about the nature of the corona depending on the particle charge. The influence of Curosurf® pre- or post-treatment is also investigated and demonstrates the need for protocol standardization.
Collapse
Affiliation(s)
- Fanny Mousseau
- Laboratoire Matière et Systèmes Complexes 10 Rue Alice Domon et Léonie Duquet 75205 Paris Cedex France
| | - Evdokia K Oikonomou
- Laboratoire Matière et Systèmes Complexes 10 Rue Alice Domon et Léonie Duquet 75205 Paris Cedex France
| | - Annie Vacher
- Solvay Research & Innovation Center Paris 52 Rue de La Haie Coq 93306 Aubervilliers Cedex France
| | - Marc Airiau
- Solvay Research & Innovation Center Paris 52 Rue de La Haie Coq 93306 Aubervilliers Cedex France
| | - Stéphane Mornet
- Institut de Chimie de La Matière Condensée de Bordeaux, UPR CNRS 9048, Université Bordeaux 1 87 Avenue Du Docteur A. Schweitzer Pessac Cedex F-33608 France
| | - Jean-François Berret
- Laboratoire Matière et Systèmes Complexes 10 Rue Alice Domon et Léonie Duquet 75205 Paris Cedex France
| |
Collapse
|
9
|
Wang F, Wang Y, Qu G, Yao X, Ma C, Song M, Wang H, Jiang G. Ultralong AgNWs-induced toxicity in A549 cells and the important roles of ROS and autophagy. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 186:109742. [PMID: 31593826 DOI: 10.1016/j.ecoenv.2019.109742] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 09/24/2019] [Accepted: 09/28/2019] [Indexed: 06/10/2023]
Abstract
Safety concerns have been raised with regard to silver nanowires (AgNWs) because of their extensive applications. Recently, ultralong AgNWs have shown physical properties superior to those of short AgNWs. However, little is known about their toxicity and potential risks. In this study, we demonstrated a series of ultralong AgNWs-induced biological effects in human lung cancer epithelial cells (A549). Ultralong AgNWs treatments induced ROS generation, mitochondria-mediated apoptosis, and self-protective autophagy at nonlethal concentrations. In contrast to some previous reports, apoptosis was found not to correlate with the reduction of intracellular ROS. Measuring the processing of ROS generation, apoptosis and autophagy, we demonstrated that ROS not only enhance mitochondrial damage, but also raise protective autophagic flux in ultralong AgNW-treated cells. Moreover, ultralong AgNWs were found to be internalized into the cytoplasm of the epithelial cells. This study not only investigates ultralong AgNWs-induced cytotoxicity but also pinpoints ROS as a key signal in mechanisms of their toxicity.
Collapse
Affiliation(s)
- Fengbang Wang
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuanyuan Wang
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guangbo Qu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Xinglei Yao
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Chunyan Ma
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Maoyong Song
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Hailin Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| |
Collapse
|
10
|
Zellnitz S, Roblegg E, Pinto J, Fröhlich E. Delivery of Dry Powders to the Lungs: Influence of Particle Attributes from a Biological and Technological Point of View. Curr Drug Deliv 2019; 16:180-194. [PMID: 30360739 DOI: 10.2174/1567201815666181024143249] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 09/21/2018] [Accepted: 10/18/2018] [Indexed: 12/19/2022]
Abstract
Dry powder inhalers are medical devices used to deliver powder formulations of active pharmaceutical ingredients via oral inhalation to the lungs. Drug particles, from a biological perspective, should reach the targeted site, dissolve and permeate through the epithelial cell layer in order to deliver a therapeutic effect. However, drug particle attributes that lead to a biological activity are not always consistent with the technical requirements necessary for formulation design. For example, small cohesive drug particles may interact with neighbouring particles, resulting in large aggregates or even agglomerates that show poor flowability, solubility and permeability. To circumvent these hurdles, most dry powder inhalers currently on the market are carrier-based formulations. These formulations comprise drug particles, which are blended with larger carrier particles that need to detach again from the carrier during inhalation. Apart from blending process parameters, inhaler type used and patient's inspiratory force, drug detachment strongly depends on the drug and carrier particle characteristics such as size, shape, solid-state and morphology as well as their interdependency. This review discusses critical particle characteristics. We consider size of the drug (1-5 µm in order to reach the lung), solid-state (crystalline to guarantee stability versus amorphous to improve dissolution), shape (spherical drug particles to avoid macrophage clearance) and surface morphology of the carrier (regular shaped smooth or nano-rough carrier surfaces for improved drug detachment.) that need to be considered in dry powder inhaler development taking into account the lung as biological barrier.
Collapse
Affiliation(s)
- Sarah Zellnitz
- Research Center Pharmaceutical Engineering GmbH, Graz, Austria
| | - Eva Roblegg
- Research Center Pharmaceutical Engineering GmbH, Graz, Austria.,Department of Pharmaceutical Technology and Biopharmacy, Institute of Pharmaceutical Sciences, University of Graz, Graz, Austria
| | - Joana Pinto
- Research Center Pharmaceutical Engineering GmbH, Graz, Austria.,Department of Pharmaceutical Technology and Biopharmacy, Institute of Pharmaceutical Sciences, University of Graz, Graz, Austria
| | - Eleonore Fröhlich
- Research Center Pharmaceutical Engineering GmbH, Graz, Austria.,Center for Medical Research, Medical University of Graz, Graz, Austria
| |
Collapse
|
11
|
Fizeșan I, Cambier S, Moschini E, Chary A, Nelissen I, Ziebel J, Audinot JN, Wirtz T, Kruszewski M, Pop A, Kiss B, Serchi T, Loghin F, Gutleb AC. In vitro exposure of a 3D-tetraculture representative for the alveolar barrier at the air-liquid interface to silver particles and nanowires. Part Fibre Toxicol 2019; 16:14. [PMID: 30940208 PMCID: PMC6444883 DOI: 10.1186/s12989-019-0297-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 03/06/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The present study aimed to evaluate the potential differences in the biological effects of two types of spherical silver particles of 20 and 200 nm (Ag20 and Ag200), and of PVP-coated silver nanowires (AgNWs) with a diameter of 50 nm and length up to 50 μm, using a complex 3D model representative for the alveolar barrier cultured at air-liquid interface (ALI). The alveolar model was exposed to 0.05, 0.5 and 5 μg/cm2 of test compounds at ALI using a state-of-the-art exposure system (Vitrocell™Cloud System). Endpoints related to the oxidative stress induction, anti-oxidant defence mechanisms, pro-inflammatory responses and cellular death were selected to evaluate the biocompatibility of silver particles and nanowires (AgNMs) and to further ascribe particular biological effects to the different morphologic properties between the three types of AgNMs evaluated. RESULTS Significant cytotoxic effect was observed for all three types of AgNMs at the highest tested doses. The increased mRNA levels of the pro-apoptotic gene CASP7 suggests that apoptosis may occur after exposure to AgNWs. All three types of AgNMs increased the mRNA level of the anti-oxidant enzyme HMOX-1 and of the metal-binding anti-oxidant metallothioneins (MTs), with AgNWs being the most potent inducer. Even though all types of AgNMs induced the nuclear translocation of NF-kB, only AgNWs increased the mRNA level of pro-inflammatory mediators. The pro-inflammatory response elicited by AgNWs was further confirmed by the increased secretion of the 10 evaluated interleukins. CONCLUSION In the current study, we demonstrated that the direct exposure of a complex tetra-culture alveolar model to different types of AgNMs at ALI induces shape- and size-specific biological responses. From the three AgNMs tested, AgNWs were the most potent in inducing biological alterations. Starting from 50 ng/cm2, a dose representative for an acute exposure in a high exposure occupational setting, AgNWs induced prominent changes indicative for a pro-inflammatory response. Even though the acute responses towards a dose representative for a full-lifetime exposure were also evaluated, chronic exposure scenarios at low dose are still unquestionably needed to reveal the human health impact of AgNMs during realistic conditions.
Collapse
Affiliation(s)
- Ionel Fizeșan
- Toxicology Department, Faculty of Pharmacy, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Sébastien Cambier
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology, Belvaux, Luxembourg
| | - Elisa Moschini
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology, Belvaux, Luxembourg
| | - Aline Chary
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology, Belvaux, Luxembourg
| | - Inge Nelissen
- Health Unit, Flemish Institute for Technological Research (VITO NV), Mol, Belgium
| | - Johanna Ziebel
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology, Belvaux, Luxembourg
| | - Jean-Nicolas Audinot
- Material Research and Technology (MRT) Department, Luxembourg Institute of Science and Technology, Belvaux, Luxembourg
| | - Tom Wirtz
- Material Research and Technology (MRT) Department, Luxembourg Institute of Science and Technology, Belvaux, Luxembourg
| | - Marcin Kruszewski
- Faculty of Medicine, University of Information Technology and Management in Rzeszow, Sucharskiego 2, Rzeszow, Poland
- Centre for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, Dorodna 16, Warszawa, Poland
| | - Anca Pop
- Toxicology Department, Faculty of Pharmacy, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Béla Kiss
- Toxicology Department, Faculty of Pharmacy, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Tommaso Serchi
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology, Belvaux, Luxembourg
| | - Felicia Loghin
- Toxicology Department, Faculty of Pharmacy, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Arno C. Gutleb
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology, Belvaux, Luxembourg
| |
Collapse
|
12
|
Wang F, Chen Y, Wang Y, Yin Y, Qu G, Song M, Wang H. Ultra-long silver nanowires induced mitotic abnormalities and cytokinetic failure in A549 cells. Nanotoxicology 2019; 13:543-557. [DOI: 10.1080/17435390.2019.1571645] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Fengbang Wang
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Ying Chen
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Yuanyuan Wang
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Yongguang Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Guangbo Qu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Maoyong Song
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Hailin Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
13
|
Ellis T, Chiappi M, García-Trenco A, Al-Ejji M, Sarkar S, Georgiou TK, Shaffer MSP, Tetley TD, Schwander S, Ryan MP, Porter AE. Multimetallic Microparticles Increase the Potency of Rifampicin against Intracellular Mycobacterium tuberculosis. ACS NANO 2018; 12:5228-5240. [PMID: 29767993 DOI: 10.1021/acsnano.7b08264] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Mycobacterium tuberculosis ( M.tb) has the extraordinary ability to adapt to the administration of antibiotics through the development of resistance mechanisms. By rapidly exporting drugs from within the cytosol, these pathogenic bacteria diminish antibiotic potency and drive the presentation of drug-tolerant tuberculosis (TB). The membrane integrity of M.tb is pivotal in retaining these drug-resistant traits. Silver (Ag) and zinc oxide (ZnO) nanoparticles (NPs) are established antimicrobial agents that effectively compromise membrane stability, giving rise to increased bacterial permeability to antibiotics. In this work, biodegradable multimetallic microparticles (MMPs), containing Ag NPs and ZnO NPs, were developed for use in pulmonary delivery of antituberculous drugs to the endosomal system of M.tb-infected macrophages. Efficient uptake of MMPs by M.tb-infected THP1 cells was demonstrated using an in vitro macrophage infection model, with direct interaction between MMPs and M.tb visualized with the use of electron FIB-SEM tomography. The release of Ag NPs and ZnO NPs within the macrophage endosomal system increased the potency of the model antibiotic rifampicin by as much as 76%, realized through an increase in membrane disorder of intracellular M.tb. MMPs were effective at independently driving membrane destruction of extracellular bacilli located at the exterior face of THP1 macrophages. This MMP system presents as an effective drug delivery vehicle that could be used for the transport of antituberculous drugs such as rifampicin to infected alveolar macrophages, while increasing drug potency. By increasing M.tb membrane permeability, such a system may prove effectual in improving treatment of drug-susceptible TB in addition to M.tb strains considered drug-resistant.
Collapse
Affiliation(s)
- Timothy Ellis
- Department of Materials and London Centre for Nanotechnology , Imperial College London , London SW7 2AZ , U.K
| | - Michele Chiappi
- National Heart & Lung Institute , Imperial College London , London SW7 2AZ , U.K
| | - Andrés García-Trenco
- Department of Chemistry and London Centre for Nanotechnology , Imperial College London , London SW7 2AZ , U.K
| | - Maryam Al-Ejji
- Department of Materials and London Centre for Nanotechnology , Imperial College London , London SW7 2AZ , U.K
| | - Srijata Sarkar
- Department of Environmental and Occupational Health , Rutgers School of Public Health , Piscataway , New Jersey 08854 , United States
| | - Theoni K Georgiou
- Department of Materials and London Centre for Nanotechnology , Imperial College London , London SW7 2AZ , U.K
| | - Milo S P Shaffer
- Department of Chemistry and London Centre for Nanotechnology , Imperial College London , London SW7 2AZ , U.K
| | - Teresa D Tetley
- National Heart & Lung Institute , Imperial College London , London SW7 2AZ , U.K
| | - Stephan Schwander
- Department of Environmental and Occupational Health , Rutgers School of Public Health , Piscataway , New Jersey 08854 , United States
- Office for Global Public Health Affairs , Rutgers School of Public Health , Piscataway , New Jersey 08854 , United States
| | - Mary P Ryan
- Department of Materials and London Centre for Nanotechnology , Imperial College London , London SW7 2AZ , U.K
| | - Alexandra E Porter
- Department of Materials and London Centre for Nanotechnology , Imperial College London , London SW7 2AZ , U.K
| |
Collapse
|
14
|
Silver Nanowires: Synthesis, Antibacterial Activity and Biomedical Applications. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8050673] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
15
|
In Vitro Dermal Safety Assessment of Silver Nanowires after Acute Exposure: Tissue vs. Cell Models. NANOMATERIALS 2018; 8:nano8040232. [PMID: 29641466 PMCID: PMC5923562 DOI: 10.3390/nano8040232] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 03/23/2018] [Accepted: 04/03/2018] [Indexed: 12/12/2022]
Abstract
Silver nanowires (AgNW) are attractive materials that are anticipated to be incorporated into numerous consumer products such as textiles, touchscreen display, and medical devices that could be in direct contact with skin. There are very few studies on the cellular toxicity of AgNW and no studies that have specifically evaluated the potential toxicity from dermal exposure. To address this question, we investigated the dermal toxicity after acute exposure of polymer-coated AgNW with two sizes using two models, human primary keratinocytes and human reconstructed epidermis. In keratinocytes, AgNW are rapidly and massively internalized inside cells leading to dose-dependent cytotoxicity that was not due to Ag⁺ release. Analysing our data with different dose metrics, we propose that the number of NW is the most appropriate dose-metric for studies of AgNW toxicity. In reconstructed epidermis, the results of a standard in vitro skin irritation assay classified AgNW as non-irritant to skin and we found no evidence of penetration into the deeper layer of the epidermis. The findings show that healthy and intact epidermis provides an effective barrier for AgNW, although the study does not address potential transport through follicles or injured skin. The combined cell and tissue model approach used here is likely to provide an important methodology for assessing the risks for skin exposure to AgNW from consumer products.
Collapse
|
16
|
Li Z, Jiang W, Wu G, Ju X, Wang Y, Liu W. miR-16 inhibits hyperoxia-induced cell apoptosis in human alveolar epithelial cells. Mol Med Rep 2018; 17:5950-5957. [PMID: 29484411 DOI: 10.3892/mmr.2018.8636] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 11/13/2017] [Indexed: 11/05/2022] Open
Abstract
The identification and development of novel therapeutic strategies for acute lung injury is urgently required. It has been previously demonstrated that microRNA (miR)‑16 suppresses the level of transforming growth factor (TGF)‑β in acute lung injury (ALI). Therefore, the present study investigated the role of miR‑16 in the phenotype, cell proliferation and apoptosis, and the involvement of TGF‑β/Smad family member 2 (Smad2) and JAK/signal transducer and activator of transcription (STAT)3 signaling, of primary human alveolar type II epithelial cells (AECII). Following transfection with miR‑16 mimics, AECII cells were exposed to hyperoxia for 24 h. Subsequently, immunofluorescence staining of surfactant protein‑A (SP‑A) was performed, and cell proliferation and apoptosis were investigated by Cell Counting Kit‑8 assays and annexin V‑fluorescein isothiocyanate/propidium iodide staining, respectively. Furthermore, the expression levels of miR‑16, TGF‑β, Smad2, phosphorylated‑Smad2, JAK and STAT3 were detected by western blotting and/or reverse transcription‑quantitative polymerase chain reaction. The results demonstrated that miR‑16 levels and SP‑A fluorescence were markedly inhibited by hyperoxia. Furthermore, transfection of AECII cells with miR‑16 mimics increased SP‑A fluorescence in hyperoxia‑treated AECII cells, significantly reversed hyperoxia‑induced reductions in cell proliferation and inhibited hyperoxia‑induced apoptosis. Finally, miR‑16 mimics modulated the mRNA and protein expression of components of the TGF‑β/Smad2 and JAK/STAT3 pathways in AECII cells following hyperoxia. In conclusion, the results of the present study indicate that overexpression of miR‑16 may exert a protective effect in AECII cells against cell apoptosis and ALI, which may be associated with TGF‑β/Smad2 and JAK/STAT3 signaling pathways. This may also represent a promising target for novel therapeutic strategies for acute lung injury.
Collapse
Affiliation(s)
- Zhixi Li
- Department of Pediatric Surgery, Hospital of The University of Electronic Science and Technology of China and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, P.R. China
| | - Wenjun Jiang
- Department of Pediatric Surgery, Hospital of The University of Electronic Science and Technology of China and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, P.R. China
| | - Gang Wu
- Department of Hepatobiliary Surgery, Hospital of The University of Electronic Science and Technology of China and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, P.R. China
| | - Xueming Ju
- Department of Ultrasound, Hospital of The University of Electronic Science and Technology of China and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, P.R. China
| | - Youyu Wang
- Department of Thoracic Surgery, Hospital of The University of Electronic Science and Technology of China and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, P.R. China
| | - Wenying Liu
- Department of Pediatric Surgery, Hospital of The University of Electronic Science and Technology of China and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, P.R. China
| |
Collapse
|
17
|
Ji M, Zhang Y, Li N, Wang C, Xia R, Zhang Z, Wang SL. Nicotine Component of Cigarette Smoke Extract (CSE) Decreases the Cytotoxicity of CSE in BEAS-2B Cells Stably Expressing Human Cytochrome P450 2A13. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:ijerph14101221. [PMID: 29027939 PMCID: PMC5664722 DOI: 10.3390/ijerph14101221] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 10/06/2017] [Accepted: 10/09/2017] [Indexed: 11/16/2022]
Abstract
Cytochrome P450 2A13 (CYP2A13), an extrahepatic enzyme mainly expressed in the human respiratory system, has been reported to mediate the metabolism and toxicity of cigarette smoke. We previously found that nicotine inhibited 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) metabolism by CYP2A13, but its influence on other components of cigarette smoke remains unclear. The nicotine component of cigarette smoke extract (CSE) was separated, purified, and identified using high-performance liquid chromatography (HPLC) and ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS), splitting CSE into a nicotine section (CSE-N) and nicotine-free section (CSE-O). Cell viability and apoptosis by Cell Counting Kit-8 (CCK-8) and flow cytometry assays were conducted on immortalized human bronchial epithelial (BEAS-2B) cells stably expressing CYP2A13 (B-2A13) or vector (B-V), respectively. Interestingly, CSE and CSE-O were toxic to BEAS-2B cells whereas CSE-N showed less cytotoxicity. CSE-O was more toxic to B-2A13 cells than to B-V cells (IC50 of 2.49% vs. 7.06%), which was flatted by 8-methoxypsoralen (8-MOP), a CYP inhibitor. CSE-O rather than CSE or CSE-N increased apoptosis of B-2A13 cells rather than B-V cells. Accordingly, compared to CSE-N and CSE, CSE-O significantly changed the expression of three pairs of pro- and anti-apoptotic proteins, Bcl-2 Associated X Protein/B cell lymphoma-2 (Bax/Bcl-2), Cleaved Poly (Adenosine Diphosphate-Ribose) Polymerase/Poly (Adenosine Diphosphate-Ribose) Polymerase (C-PARP/PARP), and C-caspase-3/caspase-3, in B-2A13 cells. In addition, recombination of CSE-N and CSE-O (CSE-O/N) showed similar cytotoxicity and apoptosis to the original CSE. These results demonstrate that the nicotine component decreases the metabolic activation of CYP2A13 to CSE and aids in understanding the critical role of CYP2A13 in human respiratory diseases caused by cigarette smoking.
Collapse
Affiliation(s)
- Minghui Ji
- Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China.
- State Key Lab of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China.
- School of Nursing, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China.
| | - Yudong Zhang
- Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China.
| | - Na Li
- Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China.
| | - Chao Wang
- Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China.
- State Key Lab of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China.
| | - Rong Xia
- Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China.
| | - Zhan Zhang
- Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China.
- State Key Lab of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China.
| | - Shou-Lin Wang
- Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China.
- State Key Lab of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China.
| |
Collapse
|
18
|
Mousseau F, Puisney C, Mornet S, Borgne RL, Vacher A, Airiau M, Baeza-Squiban A, Berret JF. Supported pulmonary surfactant bilayers on silica nanoparticles: formulation, stability and impact on lung epithelial cells. NANOSCALE 2017; 9:14967-14978. [PMID: 28953277 DOI: 10.1039/c7nr04574c] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Studies have shown that following exposure to particulate matter, ultrafine fractions (<100 nm) may deposit along the respiratory tract down to the alveolar region. To assess the effects of nanoparticles on the lungs, it is essential to address the question of their biophysicochemical interaction with the different pulmonary environments, including the lung lining fluids and the epithelia. Here we examine one of these interactive scenarios and study the role of supported lipid bilayers (SLB) in the effect of 40 nm fluorescent silica particles on living cells. We first study the particle phase behavior in the presence of Curosurf®, a pulmonary surfactant substitute used in replacement therapies. It is found that Curosurf® vesicles interact strongly with the nanoparticles, but do not spontaneously form SLBs. To achieve this goal, we use sonication to reshape the vesicular membranes and induce lipid fusion around the particles. Centrifugal sedimentation and electron microscopy are carried out to determine the optimum coating conditions and layer thickness. We then explore the impact of surfactant SLBs on the cytotoxic potential and interactions towards a malignant epithelial cell line. All in vitro assays indicate that SLBs mitigate the particle toxicity and internalization rates. In the cytoplasm, the particle localization is also strongly coating dependent. It is concluded that SLBs profoundly affect cellular interactions and functions in vitro and could represent an alternative strategy for particle coating. The current data also shed some light on the potential mechanisms pertaining to the particle or pathogen transport through the air-blood barrier.
Collapse
Affiliation(s)
- F Mousseau
- Matière et Systèmes Complexes, UMR 7057 CNRS Université Denis Diderot Paris-VII, Bâtiment Condorcet, 10 rue Alice Domon et Léonie Duquet, 75205 Paris, France.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Theodorou IG, Müller KH, Chen S, Goode AE, Yufit V, Ryan MP, Porter AE. Silver Nanowire Particle Reactivity with Human Monocyte-Derived Macrophage Cells: Intracellular Availability of Silver Governs Their Cytotoxicity. ACS Biomater Sci Eng 2017; 3:2336-2347. [PMID: 33445292 DOI: 10.1021/acsbiomaterials.7b00479] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Silver nanowires (AgNWs) are increasingly being used in the production of optoelectronic devices, with manufacturing processes posing a risk for occupational exposures via inhalation. Although some studies have explored the environmental effects of AgNWs, few data exist on human health effects. Alveolar macrophages are central in the clearance of inhaled fibers from the lungs, with frustrated phagocytosis often stated as a key determinant for the onset of inflammatory reactions. However, the mechanisms through which fully ingested AgNWs interact with, degrade, and transform within primary macrophages over time, and whether the reactivity of the AgNWs arises due to ionic or particulate effects, or both, are poorly understood. Here, a combination of elemental quantification, 3D tomography, analytical transmission electron microscopy (TEM), and confocal microscopy were employed to monitor the uptake, intracellular Ag+ availability, and processing of AgNWs of two different lengths (1 and 10 μm) inside human monocyte-derived macrophages (HMMs). Using AgNO3 and spherical silver nanoparticles (AgNPs) as a comparison, the amount of total bioavailable/intracellular Ag highly correlated to the cytotoxicity of AgNWs. The 10 μm AgNWs were completely internalized in HMMs, with numerous lysosomal vesicles observed in close vicinity to the AgNWs. Following cellular uptake, AgNWs dissolved and transformed intracellularly, with precipitation of AgCl as well as Ag2S. These transformation processes were likely due to AgNW degradation in the acidic environment of lysosomes, leading to the release of Ag+ ions that rapidly react with Cl- and SH- species of the cell microenvironment. Our data suggest that, in HMMs, not only frustrated phagocytosis but also the extent of intracellular uptake and dissolution of AgNWs dictates their cytotoxicity.
Collapse
Affiliation(s)
- Ioannis G Theodorou
- Department of Materials and London Centre for Nanotechnology, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| | - Karin H Müller
- Cambridge Advanced Imaging Centre, Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, United Kingdom
| | - Shu Chen
- Department of Biological Sciences and Institute of Structural and Molecular Biology (ISMB), Birkbeck College, University of London, Malet Street, London, WC1E 7HX, United Kingdom
| | - Angela E Goode
- Department of Materials and London Centre for Nanotechnology, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| | - Vladimir Yufit
- Department of Earth Science & Engineering, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| | - Mary P Ryan
- Department of Materials and London Centre for Nanotechnology, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| | - Alexandra E Porter
- Department of Materials and London Centre for Nanotechnology, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| |
Collapse
|
20
|
Chung KF, Seiffert J, Chen S, Theodorou IG, Goode AE, Leo BF, McGilvery CM, Hussain F, Wiegman C, Rossios C, Zhu J, Gong J, Tariq F, Yufit V, Monteith AJ, Hashimoto T, Skepper JN, Ryan MP, Zhang J, Tetley T, Porter AE. Inactivation, Clearance, and Functional Effects of Lung-Instilled Short and Long Silver Nanowires in Rats. ACS NANO 2017; 11:2652-2664. [PMID: 28221763 PMCID: PMC5371928 DOI: 10.1021/acsnano.6b07313] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Accepted: 02/21/2017] [Indexed: 05/25/2023]
Abstract
There is a potential for silver nanowires (AgNWs) to be inhaled, but there is little information on their health effects and their chemical transformation inside the lungs in vivo. We studied the effects of short (S-AgNWs; 1.5 μm) and long (L-AgNWs; 10 μm) nanowires instilled into the lungs of Sprague-Dawley rats. S- and L-AgNWs were phagocytosed and degraded by macrophages; there was no frustrated phagocytosis. Interestingly, both AgNWs were internalized in alveolar epithelial cells, with precipitation of Ag2S on their surface as secondary Ag2S nanoparticles. Quantitative serial block face three-dimensional scanning electron microscopy showed a small, but significant, reduction of NW lengths inside alveolar epithelial cells. AgNWs were also present in the lung subpleural space where L-AgNWs exposure resulted in more Ag+ve macrophages situated within the pleura and subpleural alveoli, compared with the S-AgNWs exposure. For both AgNWs, there was lung inflammation at day 1, disappearing by day 21, but in bronchoalveolar lavage fluid (BALF), L-AgNWs caused a delayed neutrophilic and macrophagic inflammation, while S-AgNWs caused only acute transient neutrophilia. Surfactant protein D (SP-D) levels in BALF increased after S- and L-AgNWs exposure at day 7. L-AgNWs induced MIP-1α and S-AgNWs induced IL-18 at day 1. Large airway bronchial responsiveness to acetylcholine increased following L-AgNWs, but not S-AgNWs, exposure. The attenuated response to AgNW instillation may be due to silver inactivation after precipitation of Ag2S with limited dissolution. Our findings have important consequences for the safety of silver-based technologies to human health.
Collapse
Affiliation(s)
- Kian Fan Chung
- Airways Disease, National Heart
and Lung Institute, Department of Materials and London
Centre for Nanotechnology, and Department of Earth Science, Imperial College, London SW7 2AZ, United Kingdom
| | - Joanna Seiffert
- Airways Disease, National Heart
and Lung Institute, Department of Materials and London
Centre for Nanotechnology, and Department of Earth Science, Imperial College, London SW7 2AZ, United Kingdom
| | - Shu Chen
- Airways Disease, National Heart
and Lung Institute, Department of Materials and London
Centre for Nanotechnology, and Department of Earth Science, Imperial College, London SW7 2AZ, United Kingdom
| | - Ioannis G. Theodorou
- Airways Disease, National Heart
and Lung Institute, Department of Materials and London
Centre for Nanotechnology, and Department of Earth Science, Imperial College, London SW7 2AZ, United Kingdom
| | - Angela Erin Goode
- Airways Disease, National Heart
and Lung Institute, Department of Materials and London
Centre for Nanotechnology, and Department of Earth Science, Imperial College, London SW7 2AZ, United Kingdom
| | - Bey Fen Leo
- Airways Disease, National Heart
and Lung Institute, Department of Materials and London
Centre for Nanotechnology, and Department of Earth Science, Imperial College, London SW7 2AZ, United Kingdom
- Nanotechnology
and Catalysis Research Centre (NANOCAT), University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Catriona M. McGilvery
- Airways Disease, National Heart
and Lung Institute, Department of Materials and London
Centre for Nanotechnology, and Department of Earth Science, Imperial College, London SW7 2AZ, United Kingdom
| | - Farhana Hussain
- Airways Disease, National Heart
and Lung Institute, Department of Materials and London
Centre for Nanotechnology, and Department of Earth Science, Imperial College, London SW7 2AZ, United Kingdom
| | - Coen Wiegman
- Airways Disease, National Heart
and Lung Institute, Department of Materials and London
Centre for Nanotechnology, and Department of Earth Science, Imperial College, London SW7 2AZ, United Kingdom
| | - Christos Rossios
- Airways Disease, National Heart
and Lung Institute, Department of Materials and London
Centre for Nanotechnology, and Department of Earth Science, Imperial College, London SW7 2AZ, United Kingdom
| | - Jie Zhu
- Airways Disease, National Heart
and Lung Institute, Department of Materials and London
Centre for Nanotechnology, and Department of Earth Science, Imperial College, London SW7 2AZ, United Kingdom
| | - Jicheng Gong
- Nicholas
School of Environment and Duke Global Health Institute, Duke University, Durham, North Carolina 27708, United States
| | - Farid Tariq
- Airways Disease, National Heart
and Lung Institute, Department of Materials and London
Centre for Nanotechnology, and Department of Earth Science, Imperial College, London SW7 2AZ, United Kingdom
| | - Vladimir Yufit
- Airways Disease, National Heart
and Lung Institute, Department of Materials and London
Centre for Nanotechnology, and Department of Earth Science, Imperial College, London SW7 2AZ, United Kingdom
| | - Alexander J. Monteith
- Department
of Biological Sciences, Oxford Brookes University, Oxford OX3 OBP, United Kingdom
| | - Teruo Hashimoto
- The
School of Materials, The University of Manchester, Oxford Road, Manchester M13 9PL, United
Kingdom
| | - Jeremy N. Skepper
- Cambridge
Advanced Imaging Centre, Department of Anatomy, University of Cambridge, Tennis Court Road, Cambridge CB2 3DY United Kingdom
| | - Mary P. Ryan
- Airways Disease, National Heart
and Lung Institute, Department of Materials and London
Centre for Nanotechnology, and Department of Earth Science, Imperial College, London SW7 2AZ, United Kingdom
| | - Junfeng Zhang
- Nicholas
School of Environment and Duke Global Health Institute, Duke University, Durham, North Carolina 27708, United States
| | - Teresa
D. Tetley
- Airways Disease, National Heart
and Lung Institute, Department of Materials and London
Centre for Nanotechnology, and Department of Earth Science, Imperial College, London SW7 2AZ, United Kingdom
| | - Alexandra E. Porter
- Airways Disease, National Heart
and Lung Institute, Department of Materials and London
Centre for Nanotechnology, and Department of Earth Science, Imperial College, London SW7 2AZ, United Kingdom
| |
Collapse
|
21
|
Sannicolo T, Lagrange M, Cabos A, Celle C, Simonato JP, Bellet D. Metallic Nanowire-Based Transparent Electrodes for Next Generation Flexible Devices: a Review. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:6052-6075. [PMID: 27753213 DOI: 10.1002/smll.201602581] [Citation(s) in RCA: 212] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 09/16/2016] [Indexed: 05/02/2023]
Abstract
Transparent electrodes attract intense attention in many technological fields, including optoelectronic devices, transparent film heaters and electromagnetic applications. New generation transparent electrodes are expected to have three main physical properties: high electrical conductivity, high transparency and mechanical flexibility. The most efficient and widely used transparent conducting material is currently indium tin oxide (ITO). However the scarcity of indium associated with ITO's lack of flexibility and the relatively high manufacturing costs have a prompted search into alternative materials. With their outstanding physical properties, metallic nanowire (MNW)-based percolating networks appear to be one of the most promising alternatives to ITO. They also have several other advantages, such as solution-based processing, and are compatible with large area deposition techniques. Estimations of cost of the technology are lower, in particular thanks to the small quantities of nanomaterials needed to reach industrial performance criteria. The present review investigates recent progress on the main applications reported for MNW networks of any sort (silver, copper, gold, core-shell nanowires) and points out some of the most impressive outcomes. Insights into processing MNW into high-performance transparent conducting thin films are also discussed according to each specific application. Finally, strategies for improving both their stability and integration into real devices are presented.
Collapse
Affiliation(s)
- Thomas Sannicolo
- Univ. Grenoble Alpes, CEA, LITEN, F-38054, Grenoble, France
- Univ. Grenoble Alpes, CNRS, LMGP, F-38000, Grenoble, France
| | | | - Anthony Cabos
- Univ. Grenoble Alpes, CEA, LITEN, F-38054, Grenoble, France
| | - Caroline Celle
- Univ. Grenoble Alpes, CEA, LITEN, F-38054, Grenoble, France
| | | | - Daniel Bellet
- Univ. Grenoble Alpes, CNRS, LMGP, F-38000, Grenoble, France
| |
Collapse
|
22
|
Theodorou IG, Ruenraroengsak P, Gow A, Schwander S, Zhang JJ, Chung KF, Tetley TD, Ryan MP, Porter AE. Effect of pulmonary surfactant on the dissolution, stability and uptake of zinc oxide nanowires by human respiratory epithelial cells. Nanotoxicology 2016; 10:1351-62. [PMID: 27441789 DOI: 10.1080/17435390.2016.1214762] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Inhaled nanoparticles (NPs) have high-deposition rates in the alveolar region of the lung but the effects of pulmonary surfactant (PS) on nanoparticle bioreactivity are unclear. Here, the impact of PS on the stability and dissolution of ZnO nanowires (ZnONWs) was investigated, and linked with their bioreactivity in vitro with human alveolar epithelial type 1-like cells (TT1). Pre-incubation of ZnONWs with Curosurf® (a natural porcine PS) decreased their dissolution at acidic pH, through the formation of a phospholipid corona. Confocal live cell microscopy confirmed that Curosurf® lowered intracellular dissolution, thus delaying the onset of cell death compared to bare ZnONWs. Despite reducing dissolution, Curosurf® significantly increased the uptake of ZnONWs within TT1 cells, ultimately increasing their toxicity after 24 h. Although serum improved ZnONW dispersion in suspension similar to Curosurf®, it had no effect on ZnONW internalization and toxicity, indicating a unique role of PS in promoting particle uptake. In the absence of PS, ZnONW length had no effect on dissolution kinetics or degree of cellular toxicity, indicating a less important role of length in determining ZnONW bioreactivity. This work provides unique findings on the effects of PS on the stability and toxicity of ZnONWs, which could be important in the study of pulmonary toxicity and epithelial-endothelial translocation of nanoparticles in general.
Collapse
Affiliation(s)
| | - Pakatip Ruenraroengsak
- a Department of Materials and London Centre for Nanotechnology , and.,b National Heart and Lung Institute, Imperial College London , Exhibition Road , London , United Kingdom
| | - Andrew Gow
- c Department of Pharmacology and Toxicology , Rutgers University , Piscataway , NJ , USA
| | - Stephan Schwander
- d Department of Environmental and Occupational Health , Rutgers University, School of Public Health , Hoes LaneWest, Piscataway, NJ , USA , and
| | - Junfeng Jim Zhang
- e Nicholas School of the Environment and Duke Global Health Institute, Duke University , Durham , NC , USA
| | - Kian Fan Chung
- b National Heart and Lung Institute, Imperial College London , Exhibition Road , London , United Kingdom
| | - Teresa D Tetley
- b National Heart and Lung Institute, Imperial College London , Exhibition Road , London , United Kingdom
| | - Mary P Ryan
- a Department of Materials and London Centre for Nanotechnology , and
| | | |
Collapse
|
23
|
Sweeney S, Leo BF, Chen S, Abraham-Thomas N, Thorley AJ, Gow A, Schwander S, Zhang JJ, Shaffer MSP, Chung KF, Ryan MP, Porter AE, Tetley TD. Pulmonary surfactant mitigates silver nanoparticle toxicity in human alveolar type-I-like epithelial cells. Colloids Surf B Biointerfaces 2016; 145:167-175. [PMID: 27182651 DOI: 10.1016/j.colsurfb.2016.04.040] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 04/04/2016] [Accepted: 04/19/2016] [Indexed: 01/01/2023]
Abstract
Accompanying increased commercial applications and production of silver nanomaterials is an increased probability of human exposure, with inhalation a key route. Nanomaterials that deposit in the pulmonary alveolar region following inhalation will interact firstly with pulmonary surfactant before they interact with the alveolar epithelium. It is therefore critical to understand the effects of human pulmonary surfactant when evaluating the inhalation toxicity of silver nanoparticles. In this study, we evaluated the toxicity of AgNPs on human alveolar type-I-like epithelial (TT1) cells in the absence and presence of Curosurf(®) (a natural pulmonary surfactant substitute), hypothesising that the pulmonary surfactant would act to modify toxicity. We demonstrated that 20nm citrate-capped AgNPs induce toxicity in human alveolar type I-like epithelial cells and, in agreement with our hypothesis, that pulmonary surfactant acts to mitigate this toxicity, possibly through reducing AgNP dissolution into cytotoxic Ag(+) ions. For example, IL-6 and IL-8 release by TT1 cells significantly increased 10.7- and 35-fold, respectively (P<0.01), 24h after treatment with 25μg/ml AgNPs. In contrast, following pre-incubation of AgNPs with Curosurf(®), this effect was almost completely abolished. We further determined that the mechanism of this toxicity is likely associated with Ag(+) ion release and lysosomal disruption, but not with increased reactive oxygen species generation. This study provides a critical understanding of the toxicity of AgNPs in target human alveolar type-I-like epithelial cells and the role of pulmonary surfactant in mitigating this toxicity. The observations reported have important implications for the manufacture and application of AgNPs, in particular for applications involving use of aerosolised AgNPs.
Collapse
Affiliation(s)
- Sinbad Sweeney
- Lung Cell Biology, Airways Disease, National Heart & Lung Institute, Imperial College London, London, UK
| | - Bey Fen Leo
- Department of Materials and London Centre for Nanotechnology, Imperial College London, London, UK; Department of Mechanical Engineering, University of Malaya, Kuala Lumpur, Malaysia
| | - Shu Chen
- Department of Chemistry and London Centre for Nanotechnology, Imperial College London, London, UK
| | - Nisha Abraham-Thomas
- Lung Cell Biology, Airways Disease, National Heart & Lung Institute, Imperial College London, London, UK
| | - Andrew J Thorley
- Lung Cell Biology, Airways Disease, National Heart & Lung Institute, Imperial College London, London, UK
| | - Andrew Gow
- Department of Toxicology, Ernst Mario School of Pharmacy, Rutgers University, Piscataway, NJ, USA
| | - Stephan Schwander
- Department of Environmental and Occupational Health, School of Public Health, Rutgers University, Piscataway, NJ, USA
| | - Junfeng Jim Zhang
- Division of Environmental Sciences & Policy, Nicholas School of the Environment and Duke Global Health Institute,, Duke University, Durham, USA
| | - Milo S P Shaffer
- Department of Chemistry and London Centre for Nanotechnology, Imperial College London, London, UK
| | - Kian Fan Chung
- Respiratory Medicine and Experimental Studies Unit, Airways Disease, National Heart & Lung Institute, Imperial College London, London, UK
| | - Mary P Ryan
- Department of Materials and London Centre for Nanotechnology, Imperial College London, London, UK
| | - Alexandra E Porter
- Department of Materials and London Centre for Nanotechnology, Imperial College London, London, UK
| | - Teresa D Tetley
- Lung Cell Biology, Airways Disease, National Heart & Lung Institute, Imperial College London, London, UK.
| |
Collapse
|