1
|
Wang J, Wang X, Li M, Wang H, Gao H, Zheng X, Liu G, Niu C, Liu Q, Hu Z, Zhou Y, Zhao Z, Yang J, Liu L. Stimuli-responsive AIEgens with an ultra acidochromic scope for self-reporting soft actuators. Biosens Bioelectron 2024; 263:116582. [PMID: 39038401 DOI: 10.1016/j.bios.2024.116582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/23/2024] [Accepted: 07/16/2024] [Indexed: 07/24/2024]
Abstract
This study develops a series of NBI-based acidochromic AIEgens engineered for ultra-wide acidochromic scope in self-reporting soft actuators, establishing the relationship between the photophysical properties and structural configurations of the AIEgens, further investigating their acidochromic behavior and fabricating acidity monitoring chips. The acidochromic behaviors were thoroughly investigated, and high-precision acidity monitoring chips were fabricated. We confirmed the protonation order of nitrogen atoms within the molecules and elucidated the acidochromic mechanisms through DFT and 1H NMR analyses. Utilizing these findings, we designed acid-driven hydrogel-based biomimetic actuators that can self-report and control the release of heavy loads under acidic conditions. These actuators hold significant potential for applications in targeted drug delivery within acidic biological environments, controlled release systems, and specialized transportation of heavy loads under acidic conditions.
Collapse
Affiliation(s)
- Jinjin Wang
- College of Science, Henan Agricultural University, 63 Agricultural Road, Zhengzhou, Henan, 450002, China
| | - Xingxiao Wang
- College of Science, Henan Agricultural University, 63 Agricultural Road, Zhengzhou, Henan, 450002, China
| | - Mengzhen Li
- College of Science, Henan Agricultural University, 63 Agricultural Road, Zhengzhou, Henan, 450002, China
| | - Haoran Wang
- Faculty of Materials Science, Shenzhen MSU-BIT University, Shenzhen, 518115, China
| | - Haoyu Gao
- College of Science, Henan Agricultural University, 63 Agricultural Road, Zhengzhou, Henan, 450002, China
| | - Xin Zheng
- College of Science, Henan Agricultural University, 63 Agricultural Road, Zhengzhou, Henan, 450002, China
| | - Guoxing Liu
- College of Science, Henan Agricultural University, 63 Agricultural Road, Zhengzhou, Henan, 450002, China
| | - Caoyuan Niu
- College of Science, Henan Agricultural University, 63 Agricultural Road, Zhengzhou, Henan, 450002, China
| | - Qian Liu
- Department of Urology, Tianjin First Central Hospital, Tianjin 300192, China
| | - Zhiyuan Hu
- Henan Engineering Research Center of Green Synthesis for Pharmaceuticals, School of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, China
| | - Yuanyuan Zhou
- School of Materials Science and Engineering, Henan Engineering Research Center of Design and Recycle for Advanced Electrochemical Energy Storage Materials, Henan Normal University, Xinxiang, 453007, China
| | - Zheng Zhao
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong Shenzhen (CUHK-Shenzhen), Guangdong, 518172, China.
| | - Jinglei Yang
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, China.
| | - Lijie Liu
- College of Science, Henan Agricultural University, 63 Agricultural Road, Zhengzhou, Henan, 450002, China; Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, China.
| |
Collapse
|
2
|
Kuddushi M, Xu BB, Malek N, Zhang X. Review of ionic liquid and ionogel-based biomaterials for advanced drug delivery. Adv Colloid Interface Sci 2024; 331:103244. [PMID: 38959813 DOI: 10.1016/j.cis.2024.103244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/19/2024] [Accepted: 06/23/2024] [Indexed: 07/05/2024]
Abstract
Ionic liquids (ILs) play a crucial role in the design of novel materials. The ionic nature of ILs provides numerous advantages in drug delivery, acting as a green solvent or active ingredient to enhance the solubility, permeability, and binding efficiency of drugs. They could also function as a structuring agent in the development of nano/micro particles for drug delivery, including micelles, vesicles, gels, emulsion, and more. This review summarize the ILs and IL-based gel structures with their advanced drug delivery applications. The first part of review focuses on the role of ILs in drug formulation and the applications of ILs in drug delivery. The second part of review offers a comprehensive overview of recent drug delivery applications of IL-based gel. It aims to offer new perspectives and attract more attention to open up new avenues in the biomedical applications of ILs and IL-based gels.
Collapse
Affiliation(s)
- Muzammil Kuddushi
- Department of Chemical and Materials Engineering, University of Alberta, Alberta T6G 1H9, Canada
| | - Ben Bin Xu
- Mechanical and Construction Engineering, Faculty of Engineering and Environment, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK
| | - Naved Malek
- Ionic Liquid Research Laboratory, Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat 07, India
| | - Xuehua Zhang
- Department of Chemical and Materials Engineering, University of Alberta, Alberta T6G 1H9, Canada.
| |
Collapse
|
3
|
Chen Y, Wang H, Wan Y, Li S, Zhang L, Xing Z, Zhang Q, Xia L. Poly(ionic liquid)s-Based Thermal-Responsive Microgel for Use as SERS Substrates with "ON-OFF" Switchable Effect. Macromol Rapid Commun 2024; 45:e2400028. [PMID: 38593331 DOI: 10.1002/marc.202400028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/11/2024] [Indexed: 04/11/2024]
Abstract
A temperature-responsive surface-enhanced Raman scattering (SERS) substrate with "ON-OFF" switching based on poly(ionic liquid)s (PILs) block copolymer microgels have been designed and synthesized. The PIL units act as a joint component to anchor the gold nanoparticles (AuNPs) and analytes onto poly(N-isopropylacrylamide) (PNIPAm). This anchor allows the analytes to be fixed at the formed hot spots under temperature stimulus. Owing to the regulation of the PNIPAm segment, the SERS substrates exhibit excellent thermally responsive SERS activity with a reversible "ON-OFF" effect. Additionally, because of the anion exchange of PILs, microgels can introduce new analytes, which offers more flexibility for the system. The substrate shows excellent reversibility, controllability, and flexibility of SERS activity, which is expected to have a broad application in the field of practical SERS sensors.
Collapse
Affiliation(s)
- Yaxian Chen
- College of Chemistry, Liaoning University, Shenyang, 110036, China
| | - Huiting Wang
- College of Chemistry, Liaoning University, Shenyang, 110036, China
| | - Yu Wan
- College of Chemistry, Liaoning University, Shenyang, 110036, China
| | - Shun Li
- College of Chemistry, Liaoning University, Shenyang, 110036, China
| | - Ling Zhang
- College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang, 110034, China
| | - Zhiqiang Xing
- College of Chemistry, Liaoning University, Shenyang, 110036, China
| | - Qian Zhang
- College of Chemistry, Liaoning University, Shenyang, 110036, China
| | - Lixin Xia
- College of Chemistry, Liaoning University, Shenyang, 110036, China
- Liaoning Key Lab Chem Addit Synth & Separat, Yingkou Institute of Technology, Yingkou, 115014, China
| |
Collapse
|
4
|
Ou X, Pan J, Liu Q, Niu Y, Zhou Y, Yan F. High-Toughness CO 2-Sourced Ionic Polyurea Adhesives. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312906. [PMID: 38207115 DOI: 10.1002/adma.202312906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/24/2023] [Indexed: 01/13/2024]
Abstract
Polyurea (PUa) adhesives are renowned for their exceptional adhesion to diverse substrates even in harsh environments. However, the presence of quadruple bidentate intermolecular hydrogen bonds in the polymer chains creates a trade-off between cohesive energy and interfacial adhesive energy. To overcome this challenge, a series of CO2-sourced ionic PUa adhesives with ultratough adhesion to various substrates are developed. The incorporated ionic segments within the adhesive serve to partially mitigate the intermolecular hydrogen bonding interactions while conferring unique electrostatic interactions, leading to both high cohesive energy and interfacial adhesive energy. The maximum adhesive strength of 10.9 MPa can be attained by ionizing the CO2-sourced PUa using bromopropane and subsequently exchanging the anion with lithium bis(trifluoromethylsulfonyl)imide. Additionally, these ionic PUa adhesives demonstrate several desirable properties such as low-temperature stability (-80 °C), resistance to organic solvents and water, high flame retardancy, antibacterial activity, and UV-fluorescence, thereby expanding their potential applications. This study presents a general and effective approach for designing high-strength adhesives suitable for a wide array of uses.
Collapse
Affiliation(s)
- Xu Ou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Ji Pan
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Qinbo Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Yajuan Niu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Yingjie Zhou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Feng Yan
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| |
Collapse
|
5
|
Kumar V, Siraj SA, Satapathy DK. Multivapor-Responsive Controlled Actuation of Starch-Based Soft Actuators. ACS APPLIED MATERIALS & INTERFACES 2024; 16:3966-3977. [PMID: 38224457 DOI: 10.1021/acsami.3c15065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Multivapor-responsive biocompatible soft actuators have immense potential for applications in soft robotics and medical technology. We report fast, fully reversible, and multivapor-responsive controlled actuation of a pure cassava-starch-based film. Notably, this starch-based actuator sustains its actuated state for over 60 min with a continuous supply of water vapor. The durability of the film and repeatability of the actuation performance have been established upon subjecting the film to more than 1400 actuation cycles in the presence of water vapor. The starch-based actuators exhibit intriguing antagonistic actuation characteristics when exposed to different solvent vapors. In particular, they bend upward in response to water vapor and downward when exposed to ethanol vapor. This fascinating behavior opens up new possibilities for controlling the magnitude and direction of actuation by manipulating the ratio of water to ethanol in the binary solution. Additionally, the control of the bending axis of the starch-based actuator, when exposed to water vapor, is achieved by imprinting-orientated patterns on the surface of the starch film. The effect of microstructure, postsynthesis annealing, and pH of the starch solution on the actuation performance of the starch film is studied in detail. Our starch-based actuator can lift 10 times its own weight upon exposure to ethanol vapor. It can generate force ∼4.2 mN upon exposure to water vapor. To illustrate the vast potential of our cassava-starch-based actuators, we have showcased various proof-of-concept applications, ranging from biomimicry to crawling robots, locomotion near perspiring human skin, bidirectional electric switches, ventilation in the presence of toxic vapors, and smart lifting systems. These applications significantly broaden the practical uses of these starch-based actuators in the field of soft robotics.
Collapse
Affiliation(s)
- Vipin Kumar
- Soft Materials Laboratory, Department of Physics, IIT Madras, Chennai 600036, Tamil Nadu, India
- Center for Soft and Biological Matter, IIT Madras, Chennai 600036, Tamil Nadu, India
| | - Sarah Ahmad Siraj
- Soft Materials Laboratory, Department of Physics, IIT Madras, Chennai 600036, Tamil Nadu, India
- Center for Soft and Biological Matter, IIT Madras, Chennai 600036, Tamil Nadu, India
| | - Dillip K Satapathy
- Soft Materials Laboratory, Department of Physics, IIT Madras, Chennai 600036, Tamil Nadu, India
- Center for Soft and Biological Matter, IIT Madras, Chennai 600036, Tamil Nadu, India
| |
Collapse
|
6
|
Bretel G, Tran DT, Morandi G, Lapinte V, Marais S, Hespel L. Synthesis of an original oxazoline based monomer containing a photosensitive azobenzene moiety and investigation of the behavior in solid state, in aqueous and vapor media of a photo and thermo-responsive polyoxazoline copolymer. POLYMER 2023. [DOI: 10.1016/j.polymer.2023.125812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
|
7
|
Wang J, Pan Z, Liu J, Shao Q, Liang Y, Huang S, Jin W, Li Z, Zhang Z, Ye C, Chen Y, Wei P, Wang Y, He Y, Xia Y. Thermoresponsive homo-polymeric ionic liquid as molecular transporters via tailoring interchain π-π interactions and its unique Temp-resistance behavior during ions pairing. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
8
|
Hu H, Wang B, Chen B, Deng X, Gao G. Swellable poly(ionic liquid)s: Synthesis, structure-property relationships and applications. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
9
|
Zunita M, Hastuti R, Alamsyah A, Kadja GT, Khoiruddin K, Kurnia KA, Yuliarto B, Wenten I. Polyionic liquid membrane: Recent development and perspective. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.06.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
10
|
Zhao S, Jia R, Yang J, Dai L, Ji N, Xiong L, Sun Q. Development of chitosan/tannic acid/corn starch multifunctional bilayer smart films as pH-responsive actuators and for fruit preservation. Int J Biol Macromol 2022; 205:419-429. [PMID: 35217075 DOI: 10.1016/j.ijbiomac.2022.02.101] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 12/22/2021] [Accepted: 02/16/2022] [Indexed: 01/07/2023]
Abstract
The design of intelligent films for pH-responsive actuators fully constructed from natural biopolymers remains challenging. This study used natural biopolymers to develop a new type of smart and multifunctional chitosan/tannic acid/corn starch (CHT/TA/CS) bilayer films, which can be used for pH-responsive actuators and fruit preservation. We studied the microstructural morphology, physicochemical, antioxidant, antimicrobial properties of the films. Compared with the CHT film, the water vapor permeability (WVP) values of the CHT/TA/CS bilayer films were reduced by 3.1 times, and the tensile strength was increased by 4.6 times. The CHT/TA/CS bilayer films also exhibited high 1,1-diphenyl-2-picrylhydrazyl (DPPH) (94.6%) and hydroxyl (OH) (97.5%) radical scavenging activity. The bilayer films had good antimicrobial activity. The CHT/TA/CS bilayer films exhibited different directional deformation behaviors in acid-base solutions and could be used as pH-responsive actuators. By changing the solution's pH, the bilayer films could grab and release heavy objects 21 times heavier than themselves. Furthermore, the CHT/TA/CS bilayer coating prolonged the bananas' storage time from three to six days, and its weight loss was reduced by 14%. The developed CHT/TA/CS bilayer films have potential application in degradable materials, soft robotics fields, and food packaging materials.
Collapse
Affiliation(s)
- Shuangshuang Zhao
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China; Qingdao Special Food Research Institute, Qingdao 266109, China
| | - Ruoyu Jia
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China; Qingdao Special Food Research Institute, Qingdao 266109, China
| | - Jie Yang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China; Qingdao Special Food Research Institute, Qingdao 266109, China
| | - Lei Dai
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China; Qingdao Special Food Research Institute, Qingdao 266109, China
| | - Na Ji
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China; Qingdao Special Food Research Institute, Qingdao 266109, China
| | - Liu Xiong
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China
| | - Qingjie Sun
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China; Qingdao Special Food Research Institute, Qingdao 266109, China.
| |
Collapse
|
11
|
Liu C, Raza F, Qian H, Tian X. Recent advances in poly(ionic liquid)s for biomedical application. Biomater Sci 2022; 10:2524-2539. [PMID: 35411889 DOI: 10.1039/d2bm00046f] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Poly(ionic liquid)s (PILs) are polymers containing ions in their side-chain or backbone, and the designability and outstanding physicochemical properties of PILs have attracted widespread attention from researchers. PILs have specific characteristics, including negligible vapor pressure, high thermal and chemical stability, non-flammability, and self-assembly capabilities. PILs can be well combined with advanced analytical instruments and technology and have made outstanding contributions to the development of biomedicine aiding in the continuous advancement of science and technology. Here we reviewed the advances of PILs in the biomedical field in the past five years with a focus on applications in proteomics, drug delivery, and development. This paper aims to engage pharmaceutical and biomedical scientists to full understand PILs and accelerate the progress from laboratory research to industrialization.
Collapse
Affiliation(s)
- Chunxia Liu
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China. .,Henan Key Laboratory of Precision Clinical Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Faisal Raza
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan, Road, Shanghai, 200240, China
| | - Hai Qian
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China.
| | - Xin Tian
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China. .,Henan Key Laboratory of Precision Clinical Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
12
|
Li Y, Li H, Liu Y, Xu Z. Reversible luminescence tuning behavior in a thermal-stimuli-responsive anthracene-based coordination polymer. CrystEngComm 2022. [DOI: 10.1039/d2ce00496h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new coordination complex presented a series of structural changes accompanied by photo-fluorescence (PL) changes under different temperature stimuli.
Collapse
Affiliation(s)
- Yanli Li
- Department of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, P. R. China
| | - Huijun Li
- Department of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, P. R. China
| | - Yicheng Liu
- Department of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, P. R. China
| | - Zhouqing Xu
- Department of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, P. R. China
| |
Collapse
|
13
|
Affiliation(s)
- Jiangna Guo
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 China
| | - Zhe Sun
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 China
| | - Yingjie Zhou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University Shanghai 201620 China
| | - Feng Yan
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 China
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University Shanghai 201620 China
| |
Collapse
|
14
|
Dong Y, Ramey-Ward AN, Salaita K. Programmable Mechanically Active Hydrogel-Based Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2006600. [PMID: 34309076 PMCID: PMC8595730 DOI: 10.1002/adma.202006600] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/20/2020] [Indexed: 05/14/2023]
Abstract
Programmable mechanically active materials (MAMs) are defined as materials that can sense and transduce external stimuli into mechanical outputs or conversely that can detect mechanical stimuli and respond through an optical change or other change in the appearance of the material. Programmable MAMs are a subset of responsive materials and offer potential in next generation robotics and smart systems. This review specifically focuses on hydrogel-based MAMs because of their mechanical compliance, programmability, biocompatibility, and cost-efficiency. First, the composition of hydrogel MAMs along with the top-down and bottom-up approaches used for programming these materials are discussed. Next, the fundamental principles for engineering responsivity in MAMS, which includes optical, thermal, magnetic, electrical, chemical, and mechanical stimuli, are considered. Some advantages and disadvantages of different responsivities are compared. Then, to conclude, the emerging applications of hydrogel-based MAMs from recently published literature, as well as the future outlook of MAM studies, are summarized.
Collapse
Affiliation(s)
- Yixiao Dong
- Department of Chemistry, Emory University, Atlanta, GA, United States, 30322
| | - Allison N. Ramey-Ward
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta, GA, United States
| | - Khalid Salaita
- Department of Chemistry, Emory University, Atlanta, GA, United States, 30322
| |
Collapse
|
15
|
Gayathri V, Jaisankar SN, Samanta D. Temperature and pH responsive polymers: sensing applications. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2021. [DOI: 10.1080/10601325.2021.1988636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Varnakumar Gayathri
- Polymer Science & Technology division, CSIR-Central Leather Research Institute, Chennai, India
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, India
| | - Sellamuthu Nagappan Jaisankar
- Polymer Science & Technology division, CSIR-Central Leather Research Institute, Chennai, India
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, India
| | - Debasis Samanta
- Polymer Science & Technology division, CSIR-Central Leather Research Institute, Chennai, India
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
16
|
Durmaz EN, Sahin S, Virga E, de Beer S, de Smet LCPM, de Vos WM. Polyelectrolytes as Building Blocks for Next-Generation Membranes with Advanced Functionalities. ACS APPLIED POLYMER MATERIALS 2021; 3:4347-4374. [PMID: 34541543 PMCID: PMC8438666 DOI: 10.1021/acsapm.1c00654] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/10/2021] [Indexed: 05/06/2023]
Abstract
The global society is in a transition, where dealing with climate change and water scarcity are important challenges. More efficient separations of chemical species are essential to reduce energy consumption and to provide more reliable access to clean water. Here, membranes with advanced functionalities that go beyond standard separation properties can play a key role. This includes relevant functionalities, such as stimuli-responsiveness, fouling control, stability, specific selectivity, sustainability, and antimicrobial activity. Polyelectrolytes and their complexes are an especially promising system to provide advanced membrane functionalities. Here, we have reviewed recent work where advanced membrane properties stem directly from the material properties provided by polyelectrolytes. This work highlights the versatility of polyelectrolyte-based membrane modifications, where polyelectrolytes are not only applied as single layers, including brushes, but also as more complex polyelectrolyte multilayers on both porous membrane supports and dense membranes. Moreover, free-standing membranes can also be produced completely from aqueous polyelectrolyte solutions allowing much more sustainable approaches to membrane fabrication. The Review demonstrates the promise that polyelectrolytes and their complexes hold for next-generation membranes with advanced properties, while it also provides a clear outlook on the future of this promising field.
Collapse
Affiliation(s)
- Elif Nur Durmaz
- Membrane
Science and Technology, MESA+ Institute for Nanotechnology, Faculty
of Science and Technology, University of
Twente, Enschede 7500 AE, The Netherlands
| | - Sevil Sahin
- Laboratory
of Organic Chemistry, Wageningen University, 6708 WE Wageningen, The Netherlands
| | - Ettore Virga
- Membrane
Science and Technology, MESA+ Institute for Nanotechnology, Faculty
of Science and Technology, University of
Twente, Enschede 7500 AE, The Netherlands
- Wetsus, European
Centre of Excellence for Sustainable Water
Technology, Oostergoweg
9, 8911 MA Leeuwarden, The Netherlands
| | - Sissi de Beer
- Sustainable
Polymer Chemistry Group, Department of Molecules and Materials MESA+
Institute for Nanotechnology, University
of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Louis C. P. M. de Smet
- Laboratory
of Organic Chemistry, Wageningen University, 6708 WE Wageningen, The Netherlands
| | - Wiebe M. de Vos
- Membrane
Science and Technology, MESA+ Institute for Nanotechnology, Faculty
of Science and Technology, University of
Twente, Enschede 7500 AE, The Netherlands
| |
Collapse
|
17
|
Hou S, Meng M, Liu D, Zhang P. Mechanochemical Process to Construct Porous Ionic Polymers by Menshutkin Reaction. CHEMSUSCHEM 2021; 14:3059-3063. [PMID: 34213075 DOI: 10.1002/cssc.202101093] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/29/2021] [Indexed: 06/13/2023]
Abstract
The synthesis of porous ionic polymers (PIPs) via the Menshutkin reaction is intriguing because the reaction works smoothly in catalyst-free condition with 100 % atom utilization. However, the rotation of methane site, nonrigid knots, and charge interaction all may cause collapses of the channel, which is detrimental to the synthesis PIP in solid-state conditions. In this work, an inorganic salt (NaBr, NaCl: pollution-free and easy to recycle) was rationally chosen as the hard template and effectively prevented the intermolecular packing. Moreover, the increased surface area dramatically promoted the catalytic activity of PIP for cyclic carbonate synthesis. This work provides a green and efficient strategy to construct PIPs via the Menshutkin reaction.
Collapse
Affiliation(s)
- Shengtai Hou
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Minshan Meng
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Dandan Liu
- Key Laboratory for Advanced Materials and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Pengfei Zhang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
18
|
Zhang H, Gao T, Zhang S, Zhang P, Li R, Ma N, Wei H, Zhang X. Conductive and Tough Smart Poly(
N
‐isopropylacrylamide) Hydrogels Hybridized by Green Deep Eutectic Solvent. MACROMOL CHEM PHYS 2020. [DOI: 10.1002/macp.202000301] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Hangjing Zhang
- College of Materials Science and Chemical Engineering Harbin Engineering University Harbin 150001 China
| | - Tianyuan Gao
- College of Materials Science and Chemical Engineering Harbin Engineering University Harbin 150001 China
| | - Shuai Zhang
- College of Materials Science and Chemical Engineering Harbin Engineering University Harbin 150001 China
| | - Peng Zhang
- College of Materials Science and Chemical Engineering Harbin Engineering University Harbin 150001 China
| | - Rui Li
- College of Materials Science and Chemical Engineering Harbin Engineering University Harbin 150001 China
| | - Ning Ma
- College of Materials Science and Chemical Engineering Harbin Engineering University Harbin 150001 China
| | - Hao Wei
- College of Materials Science and Chemical Engineering Harbin Engineering University Harbin 150001 China
| | - Xinyue Zhang
- College of Materials Science and Chemical Engineering Harbin Engineering University Harbin 150001 China
| |
Collapse
|
19
|
Fan Y, Huang Y, Linthicum W, Liu F, Beringhs AO, Dang Y, Xu Z, Chang SY, Ling J, Huey BD, Suib SL, Ma AWK, Gao PX, Lu X, Lei Y, Shaw MT, Li B. Toward Long-Term Accurate and Continuous Monitoring of Nitrate in Wastewater Using Poly(tetrafluoroethylene) (PTFE)-Solid-State Ion-Selective Electrodes (S-ISEs). ACS Sens 2020; 5:3182-3193. [PMID: 32933249 DOI: 10.1021/acssensors.0c01422] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Long-term accurate and continuous monitoring of nitrate (NO3-) concentration in wastewater and groundwater is critical for determining treatment efficiency and tracking contaminant transport. Current nitrate monitoring technologies, including colorimetric, chromatographic, biometric, and electrochemical sensors, are not feasible for continuous monitoring. This study addressed this challenge by modifying NO3- solid-state ion-selective electrodes (S-ISEs) with poly(tetrafluoroethylene) (PTFE, (C2F4)n). The PTFE-loaded S-ISE membrane polymer matrix reduces water layer formation between the membrane and electrode/solid contact, while paradoxically, the even more hydrophobic PTFE-loaded S-ISE membrane prevents bacterial attachment despite the opposite approach of hydrophilic modifications in other antifouling sensor designs. Specifically, an optimal ratio of 5% PTFE in the S-ISE polymer matrix was determined by a series of characterization tests in real wastewater. Five percent of PTFE alleviated biofouling to the sensor surface by enhancing the negative charge (-4.5 to -45.8 mV) and lowering surface roughness (Ra: 0.56 ± 0.02 nm). It simultaneously mitigated water layer formation between the membrane and electrode by increasing hydrophobicity (contact angle: 104°) and membrane adhesion and thus minimized the reading (mV) drift in the baseline sensitivity ("data drifting"). Long-term accuracy and durability of 5% PTFE-loaded NO3- S-ISEs were well demonstrated in real wastewater over 20 days, an improvement over commercial sensor longevity.
Collapse
Affiliation(s)
- Yingzheng Fan
- Department of Civil & Environmental Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Yuankai Huang
- Department of Civil & Environmental Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Will Linthicum
- Department of Materials Science & Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Fangyuan Liu
- Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
| | | | - Yanliu Dang
- Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Zhiheng Xu
- Department of Civil & Environmental Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Shing-Yun Chang
- Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
- Department of Chemical and Biomedical Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Jing Ling
- Department of Civil & Environmental Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Bryan D. Huey
- Department of Materials Science & Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Steven L. Suib
- Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Anson W. K. Ma
- Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
- Department of Chemical and Biomedical Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Pu-Xian Gao
- Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Xiuling Lu
- School of Pharmacy, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Yu Lei
- Department of Chemical and Biomedical Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Montgomery T. Shaw
- Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Baikun Li
- Department of Civil & Environmental Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| |
Collapse
|
20
|
Banerjee P, Anas M, Jana S, Mandal TK. Recent developments in stimuli-responsive poly(ionic liquid)s. JOURNAL OF POLYMER RESEARCH 2020. [DOI: 10.1007/s10965-020-02091-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
21
|
Influence of Tethered Ions on Electric Polarization and Electrorheological Property of Polymerized Ionic Liquids. Molecules 2020; 25:molecules25122896. [PMID: 32586055 PMCID: PMC7356505 DOI: 10.3390/molecules25122896] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/14/2020] [Accepted: 06/19/2020] [Indexed: 11/17/2022] Open
Abstract
Polymerized ionic liquids (PILs) show potential to be used as new water-free polyelectrolyte-based electrorheological (ER) material. To direct ER material design at the molecular level, unveiling structure-property relationships is essential. While a few studies compare the mobile ions in PILs there is still a limited understanding of how the structure of tethered counterions on backbone influences ER property. In this study, three PILs with same mobile anions but different tethered countercations (e.g., poly(dimethyldiallylammonium) P[DADMA]+, poly(benzylethyl) trimethylammonium P[VBTMA]+, and poly(1-ethyl-4-vinylimidazolium hexafluorophosphate) P[C2VIm]+) are prepared and the influence of tethered countercations on the ER property of PILs is investigated. It shows that among these PILs, P[DADMA]+ PILs have the strongest ER property and P[C2VIm]+ PILs have the weakest one. By combining dielectric spectra analysis with DFT calculation and activation energy measurement, it can clarify that the influence of tethered counterions on ER property is mainly associated with ion-pair interaction energy that is affecting ionic conductivity and interfacial polarization induced by ion motion. P[DADMA]+ has the smallest ion-pair interaction energy with mobile ions, which can result in the highest ionic conductivity and the fastest interfacial polarization rate for its strongest ER property.
Collapse
|
22
|
Potaufeux JE, Odent J, Notta-Cuvier D, Lauro F, Raquez JM. A comprehensive review of the structures and properties of ionic polymeric materials. Polym Chem 2020. [DOI: 10.1039/d0py00770f] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This review focuses on the mechanistic approach, the structure–property relationship and applications of ionic polymeric materials.
Collapse
Affiliation(s)
- Jean-Emile Potaufeux
- Laboratory of Polymeric and Composite Materials (LPCM)
- Center of Innovation and Research in Materials and Polymers (CIRMAP)
- University of Mons (UMONS)
- Mons
- Belgium
| | - Jérémy Odent
- Laboratory of Polymeric and Composite Materials (LPCM)
- Center of Innovation and Research in Materials and Polymers (CIRMAP)
- University of Mons (UMONS)
- Mons
- Belgium
| | - Delphine Notta-Cuvier
- Laboratory of Industrial and Human Automatic Control and Mechanical Engineering (LAMIH)
- UMR CNRS 8201
- University Polytechnique Hauts-De-France (UPHF)
- Le Mont Houy
- France
| | - Franck Lauro
- Laboratory of Industrial and Human Automatic Control and Mechanical Engineering (LAMIH)
- UMR CNRS 8201
- University Polytechnique Hauts-De-France (UPHF)
- Le Mont Houy
- France
| | - Jean-Marie Raquez
- Laboratory of Polymeric and Composite Materials (LPCM)
- Center of Innovation and Research in Materials and Polymers (CIRMAP)
- University of Mons (UMONS)
- Mons
- Belgium
| |
Collapse
|
23
|
|
24
|
Thermally responsive ionic liquids and polymeric ionic liquids: emerging trends and possibilities. Curr Opin Chem Eng 2019. [DOI: 10.1016/j.coche.2019.07.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
25
|
Liu Y, Zhao J, He F, Zheng C, Zhao X, Yin J. Influence of alkyl spacer length on ion transport, polarization and electro-responsive electrorheological effect of self-crosslinked poly(ionic liquid)s. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.03.053] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
26
|
Yang Y, Li D, Shen Y. Inchworm-Inspired Soft Robot With Light-Actuated Locomotion. IEEE Robot Autom Lett 2019. [DOI: 10.1109/lra.2019.2896917] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
27
|
Yang F, Fan X, Zhang M, Wang C, Zhao W, Zhao C. A template-hatched method towards poly(acrylic acid) hydrogel spheres with ultrahigh ion exchange capacity and robust adsorption of environmental toxins. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2018.10.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
28
|
Lei Q, Zheng C, He F, Zhao J, Liu Y, Zhao X, Yin J. Enhancing Electroresponsive Electrorheological Effect and Temperature Dependence of Poly(ionic liquid) Particles by Hard Core Confinement. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:15827-15838. [PMID: 30500198 DOI: 10.1021/acs.langmuir.8b03508] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Monodisperse core-shell-structured SiO2@poly(ionic liquid) (SiO2@PIL) particles are prepared by the polymerization of ionic liquid monomer on the surface of methacryloxypropyltrimethoxysilane-modified SiO2 particles. The electroresponsive electrorheological (ER) effect of SiO2@PIL particles when dispersed in insulating carrier liquid is investigated and compared with that of pure poly(ionic liquid) (PIL) particles based on temperature-modulated rheology under electric fields. It is demonstrated that hard SiO2 core not only enhances the ER effect of PIL particles but also improves the temperature dependence of ER effect. By dielectric spectroscopy analysis, the mechanism behind the property enhancement was discussed. It indicates that the hard SiO2 core can not only increase the interfacial polarization strength of SiO2@PIL particles by core-shell architecture but also restrain the segment relaxation or softening of the PIL shell and influence the ion dynamics above the calorimetric glass transition of PILs by the so called "substrate confinement effect", and this should be responsible for the enhanced electroresponsive ER effect and temperature stability of the SiO2@PIL particles.
Collapse
Affiliation(s)
- Qi Lei
- Smart Materials Laboratory, Department of Applied Physics , Northwestern Polytechnical University , Xi'an 710129 , P. R. China
| | - Chen Zheng
- Smart Materials Laboratory, Department of Applied Physics , Northwestern Polytechnical University , Xi'an 710129 , P. R. China
| | - Fang He
- Smart Materials Laboratory, Department of Applied Physics , Northwestern Polytechnical University , Xi'an 710129 , P. R. China
| | - Jia Zhao
- Smart Materials Laboratory, Department of Applied Physics , Northwestern Polytechnical University , Xi'an 710129 , P. R. China
| | - Yang Liu
- Smart Materials Laboratory, Department of Applied Physics , Northwestern Polytechnical University , Xi'an 710129 , P. R. China
| | - Xiaopeng Zhao
- Smart Materials Laboratory, Department of Applied Physics , Northwestern Polytechnical University , Xi'an 710129 , P. R. China
| | - Jianbo Yin
- Smart Materials Laboratory, Department of Applied Physics , Northwestern Polytechnical University , Xi'an 710129 , P. R. China
| |
Collapse
|
29
|
Nulwala H, Mirjafari A, Zhou X. Ionic liquids and poly(ionic liquid)s for 3D printing – A focused mini-review. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.09.023] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
30
|
Wei R, Yang F, Gu R, Liu Q, Zhou J, Zhang X, Zhao W, Zhao C. Design of Robust Thermal and Anion Dual-Responsive Membranes with Switchable Response Temperature. ACS APPLIED MATERIALS & INTERFACES 2018; 10:36443-36455. [PMID: 30277384 DOI: 10.1021/acsami.8b12887] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this study, poly(ionic liquids/ N-isopropylacrylamide) (PIL/NIPAM) modified poly(ether sulfone) microporous membranes were prepared using a pore-filling method. Due to the anion-sensitive wettability of the PIL and the thermal-sensitive phase transformation of PNIPAM, the permeability of the modified membranes showed robust anion and thermal dual-responsive behaviors. In addition, the response temperature of the membranes could be adjusted precisely from 30 to 55 °C by anion exchange, which was attributed to the cooperative interaction of the PIL and PNIPAM. The switchable response temperature and the dual-responsive performances of the membranes were demonstrated by measuring the water fluxes under various conditions. The results indicated that the membrane permeabilities increased when exchanging the counteranions (CAs) from hydrophilic to hydrophobic ones; the thermal response behaviors were also obvious, and the sensitivity increased when increasing the hydrophobicity of the CA (the fluxes could be adjusted from 0 to 3800 mL/m2 mmHgh by controlling the temperature and CAs). At last, filtration tests were designed with the membranes, and the results indicated that by controlling the temperature and/or CA species, three different poly(ethylene glycol) molecules could be easily separated according to their molecule sizes in a single step.
Collapse
Affiliation(s)
- Ran Wei
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering , Sichuan University , Chengdu 610065 , People's Republic of China
| | - Fan Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering , Sichuan University , Chengdu 610065 , People's Republic of China
| | - Ruixue Gu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering , Sichuan University , Chengdu 610065 , People's Republic of China
| | - Qian Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering , Sichuan University , Chengdu 610065 , People's Republic of China
| | - Jukai Zhou
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering , Sichuan University , Chengdu 610065 , People's Republic of China
| | - Xiang Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering , Sichuan University , Chengdu 610065 , People's Republic of China
| | - Weifeng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering , Sichuan University , Chengdu 610065 , People's Republic of China
| | - Changsheng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering , Sichuan University , Chengdu 610065 , People's Republic of China
| |
Collapse
|
31
|
Zheng C, Liu Y, Dong Y, He F, Zhao X, Yin J. Low-Temperature Interfacial Polymerization and Enhanced Electro-Responsive Characteristic of Poly(ionic liquid)s@polyaniline Core-shell Microspheres. Macromol Rapid Commun 2018; 40:e1800351. [PMID: 30085361 DOI: 10.1002/marc.201800351] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/21/2018] [Indexed: 11/07/2022]
Abstract
The synthesis of monodisperse poly(ionic liquid)s (PILs) microspheres coated with semiconducting polyaniline (PANI) shell is reported, which shows enhanced electro-responsive electrorheological (ER) effect but decreased power consumption compared to neat PIL microspheres. The monodisperse PIL microspheres are first prepared via dispersion polymerization and then PANI is coated via low-temperature interfacial polymerization of aniline on the surface of hydrophobic PIL microspheres without additional modification. The stimulus-responsive ER effect of the core-shell microspheres when dispersing in insulating oil are investigated under electric fields. The power-law of yield stress versus electric field strength and the dielectric relaxation spectroscopy are analyzed to understand the ER effect and the origin of property enhancement. It demonstrates that the semiconducting PANI shell can well limit the irreversible ion leakage of PIL microspheres and improve the particle polarizability, resulting in decreased power consumption but enhanced electro-responsive ER effect.
Collapse
Affiliation(s)
- Chen Zheng
- Smart Materials Laboratory, Department of Applied Physics, Northwestern Polytechnical University, Xi'an, 710129, P.R. China
| | - Yang Liu
- Smart Materials Laboratory, Department of Applied Physics, Northwestern Polytechnical University, Xi'an, 710129, P.R. China
| | - Yuezhen Dong
- Smart Materials Laboratory, Department of Applied Physics, Northwestern Polytechnical University, Xi'an, 710129, P.R. China
| | - Fang He
- Smart Materials Laboratory, Department of Applied Physics, Northwestern Polytechnical University, Xi'an, 710129, P.R. China
| | - Xiaopeng Zhao
- Smart Materials Laboratory, Department of Applied Physics, Northwestern Polytechnical University, Xi'an, 710129, P.R. China
| | - Jianbo Yin
- Smart Materials Laboratory, Department of Applied Physics, Northwestern Polytechnical University, Xi'an, 710129, P.R. China
| |
Collapse
|
32
|
Zhao J, Liu Y, Zheng C, Lei Q, Dong Y, Zhao X, Yin J. Pickering emulsion polymerization of poly(ionic liquid)s encapsulated nano-SiO2 composite particles with enhanced electro-responsive characteristic. POLYMER 2018. [DOI: 10.1016/j.polymer.2018.05.030] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
33
|
Sun JK, Zhang W, Guterman R, Lin HJ, Yuan J. Porous polycarbene-bearing membrane actuator for ultrasensitive weak-acid detection and real-time chemical reaction monitoring. Nat Commun 2018; 9:1717. [PMID: 29712899 PMCID: PMC5928224 DOI: 10.1038/s41467-018-03938-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 03/23/2018] [Indexed: 01/17/2023] Open
Abstract
Soft actuators with integration of ultrasensitivity and capability of simultaneous interaction with multiple stimuli through an entire event ask for a high level of structure complexity, adaptability, and/or multi-responsiveness, which is a great challenge. Here, we develop a porous polycarbene-bearing membrane actuator built up from ionic complexation between a poly(ionic liquid) and trimesic acid (TA). The actuator features two concurrent structure gradients, i.e., an electrostatic complexation (EC) degree and a density distribution of a carbene-NH3 adduct (CNA) along the membrane cross-section. The membrane actuator performs the highest sensitivity among the state-of-the-art soft proton actuators toward acetic acid at 10-6 mol L-1 (M) level in aqueous media. Through competing actuation of the two gradients, it is capable of monitoring an entire process of proton-involved chemical reactions that comprise multiple stimuli and operational steps. The present achievement constitutes a significant step toward real-life application of soft actuators in chemical sensing and reaction technology.
Collapse
Affiliation(s)
- Jian-Ke Sun
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Potsdam, D-14424, Germany
| | - Weiyi Zhang
- Department of Chemistry and Biomolecular Science, and Center for Advanced Materials Processing, Clarkson University, 8 Clarkson Avenue, Potsdam, NY, 13699, USA
| | - Ryan Guterman
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Potsdam, D-14424, Germany
| | - Hui-Juan Lin
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Potsdam, D-14424, Germany
| | - Jiayin Yuan
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Potsdam, D-14424, Germany.
- Department of Chemistry and Biomolecular Science, and Center for Advanced Materials Processing, Clarkson University, 8 Clarkson Avenue, Potsdam, NY, 13699, USA.
- Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrheniusväg 16C, Stockholm, 10691, Sweden.
| |
Collapse
|
34
|
|
35
|
Lee K, Kim HJ, Jung D, Oh Y, Lee H, Han C, Chang JY, Kim H. Rapid Accessible Fabrication and Engineering of Bilayered Hydrogels: Revisiting the Cross-Linking Effect on Superabsorbent Poly(acrylic acid). ACS OMEGA 2018; 3:3096-3103. [PMID: 31458571 PMCID: PMC6641435 DOI: 10.1021/acsomega.8b00079] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 03/05/2018] [Indexed: 05/20/2023]
Abstract
Superabsorbent hydrogels are significant not only in materials science but also in industries and daily life, being used in diapers or soil conditioners as typical examples. The main feature of these materials is their capacity to hold considerable amount of water, which is strongly dependent on the cross-linking density. This study focuses on the preparation of hydrogels by reweighing the effect of cross-linking density on physical properties, which provides green fabrication of bilayered hydrogels that consist of homogeneous structural motifs but show programmed responses via sequential radical polymerization. In particular, when two hydrogel layers containing different cross-linking densities are joined together, an integrated linear bilayer shows heterogeneous deformation triggered by water. We monitor the linear hydrogel bilayer bending into a circle and engineer it by incorporating disperse dyes, changing colors as well as physical properties. In addition, we demonstrate an electric circuit switch using a patterned hydrogel. Anisotropic shape change of the polyelectrolyte switch closes an open circuit and lights a light-emitting diode in red. This proposed fabrication and engineering can be expanded to other superabsorbent systems and create smart responses in cross-linked systems for biomedical or environmental applications.
Collapse
Affiliation(s)
- Kyoung
Min Lee
- School
of Polymer Science and Engineering, Chonnam
National University, Gwangju 61186, Korea
- Department
of Materials Science and Engineering, College of Engineering, Seoul National University, Seoul 08826, Korea
| | - Hea Ji Kim
- School
of Polymer Science and Engineering, Chonnam
National University, Gwangju 61186, Korea
| | - Doyoung Jung
- School
of Polymer Science and Engineering, Chonnam
National University, Gwangju 61186, Korea
| | - Yuree Oh
- School
of Polymer Science and Engineering, Chonnam
National University, Gwangju 61186, Korea
| | - Hyemin Lee
- Basic
Materials and Chemicals R&D, LG Chem, Ltd, R&D Campus Daejeon, 188 Moonji-ro, Yuseong-gu, Daejeon 34122, Korea
| | - Changsun Han
- Basic
Materials and Chemicals R&D, LG Chem, Ltd, R&D Campus Daejeon, 188 Moonji-ro, Yuseong-gu, Daejeon 34122, Korea
| | - Ji Young Chang
- Department
of Materials Science and Engineering, College of Engineering, Seoul National University, Seoul 08826, Korea
| | - Hyungwoo Kim
- School
of Polymer Science and Engineering, Chonnam
National University, Gwangju 61186, Korea
| |
Collapse
|
36
|
Qian W, Texter J, Yan F. Frontiers in poly(ionic liquid)s: syntheses and applications. Chem Soc Rev 2018; 46:1124-1159. [PMID: 28180218 DOI: 10.1039/c6cs00620e] [Citation(s) in RCA: 514] [Impact Index Per Article: 85.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We review recent works on the synthesis and application of poly(ionic liquid)s (PILs). Novel chemical structures, different synthetic strategies and controllable morphologies are introduced as a supplement to PIL systems already reported. The primary properties determining applications, such as ionic conductivity, aqueous solubility, thermodynamic stability and electrochemical/chemical durability, are discussed. Furthermore, the near-term applications of PILs in multiple fields, such as their use in electrochemical energy materials, stimuli-responsive materials, carbon materials, and antimicrobial materials, in catalysis, in sensors, in absorption and in separation materials, as well as several special-interest applications, are described in detail. We also discuss the limitations of PIL applications, efforts to improve PIL physics, and likely future developments.
Collapse
Affiliation(s)
- Wenjing Qian
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China.
| | - John Texter
- School of Engineering Technology, Eastern Michigan University, Ypsilanti, MI 48197, USA
| | - Feng Yan
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China.
| |
Collapse
|
37
|
Li Z, Yuan X, Feng Y, Chen Y, Zhao Y, Wang H, Xu Q, Wang J. A reversible conductivity modulation of azobenzene-based ionic liquids in aqueous solutions using UV/vis light. Phys Chem Chem Phys 2018; 20:12808-12816. [DOI: 10.1039/c8cp01617h] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The conductivity of azobenzene-based ionic liquids in water can be reversibly and efficiently modulated using UV/vis light irradiation.
Collapse
Affiliation(s)
- Zhiyong Li
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Henan Normal University
| | - Xiaoqing Yuan
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Henan Normal University
| | - Ying Feng
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Henan Normal University
| | - Yongkui Chen
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Henan Normal University
| | - Yuling Zhao
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Henan Normal University
| | - Huiyong Wang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Henan Normal University
| | - Qingli Xu
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Henan Normal University
| | - Jianji Wang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Henan Normal University
| |
Collapse
|
38
|
Yin J, Lei Q, Dong Y, Zhao X. Stimuli Responsive Smart Fluids Based on Ionic Liquids and Poly(ionic liquid)s. POLYMERIZED IONIC LIQUIDS 2017. [DOI: 10.1039/9781788010535-00180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Owing to their robust and tunable properties compared to molecular compounds, ionic liquids and their high molecular weight counterparts, polymeric ionic liquids, have provided suitable compounds for the development of smart materials with high physical and chemical stability and strongly stimulus-responsive characteristics. By functionalizing ionic liquids themselves or incorporating ionic liquids into traditional materials, many new kinds of stimuli-responsive materials have been developed. In this chapter, we specifically focus on the recent advances in electro-responsive electrorheological smart fluids with ionic liquids and polymeric ionic liquids as either active components or additives. The goal is to highlight the potential of incorporating ionic liquids into traditional electrorheological materials and using polymeric ionic liquids as new electrorheological active materials to overcome the problems of present electrorheological fluids for real applications.
Collapse
Affiliation(s)
- Jianbo Yin
- Smart Materials Laboratory, Department of Applied Physics, Northwestern Polytechnical University Xi’an 710129 P. R. China
| | - Qi Lei
- Smart Materials Laboratory, Department of Applied Physics, Northwestern Polytechnical University Xi’an 710129 P. R. China
| | - Yuezhen Dong
- Smart Materials Laboratory, Department of Applied Physics, Northwestern Polytechnical University Xi’an 710129 P. R. China
| | - Xiaopeng Zhao
- Smart Materials Laboratory, Department of Applied Physics, Northwestern Polytechnical University Xi’an 710129 P. R. China
| |
Collapse
|
39
|
Zhang X, Xu S, Zhou J, Zhao W, Sun S, Zhao C. Anion-Responsive Poly(ionic liquid)s Gating Membranes with Tunable Hydrodynamic Permeability. ACS APPLIED MATERIALS & INTERFACES 2017; 9:32237-32247. [PMID: 28857540 DOI: 10.1021/acsami.7b08740] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Novel anion-responsive "intelligent" membranes with functional gates are fabricated by filling polyethersulfone microporous membranes with poly(ionic liquid)s (PILs) gels. The wetting properties of the PILs could be controlled by changing their counteranions (CAs), and thus, the filled PILs gel gates in the membrane pores could spontaneously switch from the "closed" state to the "open" one by recognizing the hydrophilic CAs in the environment and vice versa. As a result, the fluxes of the "intelligent" membranes could be tuned from a very low level (0 mL/m2·mmHg for Cl-, Br-, and BF4-) to a relatively high one (430 mL/m2·mmHg for TFSI). The anion-responsive gating behavior of the PILs filled membranes is fast, reversible, and reproducible. In addition, the "intelligent" membranes are sensitive to contact time and ion concentrations of the hydrophobic CA species. The proposed anion-responsive "intelligent" membranes are highly attractive for ion-recognizable chemical/biomedical separations and purifications.
Collapse
Affiliation(s)
- Xiang Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University , Chengdu 610065, People's Republic of China
| | - Sheng Xu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University , Chengdu 610065, People's Republic of China
| | - Jukai Zhou
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University , Chengdu 610065, People's Republic of China
| | - Weifeng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University , Chengdu 610065, People's Republic of China
| | - Shudong Sun
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University , Chengdu 610065, People's Republic of China
| | - Changsheng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University , Chengdu 610065, People's Republic of China
- National Engineering Research Center for Biomaterials, Sichuan University , Chengdu 610064, People's Republic of China
| |
Collapse
|
40
|
Zhang X, Zhou J, Wei R, Zhao W, Sun S, Zhao C. Design of anion species/strength responsive membranes via in-situ cross-linked copolymerization of ionic liquids. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2017.04.044] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
41
|
Ren Y, Zhang J, Guo J, Chen F, Yan F. Porous Poly(Ionic Liquid) Membranes as Efficient and Recyclable Absorbents for Heavy Metal Ions. Macromol Rapid Commun 2017; 38. [DOI: 10.1002/marc.201700151] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 04/12/2017] [Indexed: 01/28/2023]
Affiliation(s)
- Yongyuan Ren
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; Department of Polymer Science and Engineering; College of Chemistry; Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 China
| | - Jiandong Zhang
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; Department of Polymer Science and Engineering; College of Chemistry; Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 China
| | - Jiangna Guo
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; Department of Polymer Science and Engineering; College of Chemistry; Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 China
| | - Fei Chen
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; Department of Polymer Science and Engineering; College of Chemistry; Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 China
| | - Feng Yan
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; Department of Polymer Science and Engineering; College of Chemistry; Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 China
| |
Collapse
|
42
|
|
43
|
Obadia MM, Jourdain A, Serghei A, Ikeda T, Drockenmuller E. Cationic and dicationic 1,2,3-triazolium-based poly(ethylene glycol ionic liquid)s. Polym Chem 2017. [DOI: 10.1039/c6py02030e] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
We report the synthesis and in-depth characterization of two novel poly(ionic liquid)s having poly(ethylene glycol) main chains and side chains having either one or two 1,2,3-triazolium cations with triethylene glycol spacers and bis(trifluoromethylsulfonyl)imide counter anion(s).
Collapse
Affiliation(s)
- Mona M. Obadia
- Univ Lyon
- Université Lyon 1
- CNRS
- Ingénierie des Matériaux Polymères
- UMR 5223
| | - Antoine Jourdain
- Univ Lyon
- Université Lyon 1
- CNRS
- Ingénierie des Matériaux Polymères
- UMR 5223
| | - Anatoli Serghei
- Univ Lyon
- Université Lyon 1
- CNRS
- Ingénierie des Matériaux Polymères
- UMR 5223
| | - Taichi Ikeda
- Research Center for Functional Materials
- National Institute for Materials Science (NIMS)
- Tsukuba
- Japan
| | - Eric Drockenmuller
- Univ Lyon
- Université Lyon 1
- CNRS
- Ingénierie des Matériaux Polymères
- UMR 5223
| |
Collapse
|
44
|
Jourdain A, Antoniuk I, Serghei A, Espuche E, Drockenmuller E. 1,2,3-Triazolium-based linear ionic polyurethanes. Polym Chem 2017. [DOI: 10.1039/c7py00406k] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the synthesis and detailed characterization of a series of ionic polyurethanes issued from the polyaddition of a 1,2,3-triazolium-functionalized diol monomer having a bis(trifluoromethylsulfonyl)imide counter-anion with four aliphatic, cycloaliphatic or aromatic commercial diisocyanates.
Collapse
Affiliation(s)
- Antoine Jourdain
- Univ Lyon
- Université Lyon 1
- CNRS
- Ingénierie des Matériaux Polymères
- UMR 5223
| | - Iurii Antoniuk
- Univ Lyon
- Université Lyon 1
- CNRS
- Ingénierie des Matériaux Polymères
- UMR 5223
| | - Anatoli Serghei
- Univ Lyon
- Université Lyon 1
- CNRS
- Ingénierie des Matériaux Polymères
- UMR 5223
| | - Eliane Espuche
- Univ Lyon
- Université Lyon 1
- CNRS
- Ingénierie des Matériaux Polymères
- UMR 5223
| | - Eric Drockenmuller
- Univ Lyon
- Université Lyon 1
- CNRS
- Ingénierie des Matériaux Polymères
- UMR 5223
| |
Collapse
|
45
|
Chen F, Ren Y, Guo J, Yan F. Thermo- and electro-dual responsive poly(ionic liquid) electrolyte based smart windows. Chem Commun (Camb) 2017; 53:1595-1598. [DOI: 10.1039/c6cc08924k] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
A thermo- and electro-dual responsive poly(ionic liquid) electrolyte based smart window system shows both tunable transparency and electrochromic properties.
Collapse
Affiliation(s)
- Fei Chen
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Yongyuan Ren
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Jiangna Guo
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Feng Yan
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| |
Collapse
|
46
|
Weng XD, Bao XJ, Jiang HD, Chen L, Ji YL, An QF, Gao CJ. pH-responsive nanofiltration membranes containing carboxybetaine with tunable ion selectivity for charge-based separations. J Memb Sci 2016. [DOI: 10.1016/j.memsci.2016.08.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
47
|
Zhou T, Lei Y, Zhang H, Zhang P, Yan C, Zheng Z, Chen Y, Yu Y. Visible-Light Photolabile, Charge-Convertible Poly(ionic liquid) for Light-degradable Films and Carbon-Based Electronics. ACS APPLIED MATERIALS & INTERFACES 2016; 8:23431-23436. [PMID: 27579478 DOI: 10.1021/acsami.6b09048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We report for the first time an innovative visible-light photolabile poly(ionic liquid) (VP-PIL). The as-prepared VP-PIL features low Tg (47 °C), good thermal stability (Td ≈ 284 °C) and solubility in ranges of polar solvents. Upon blue light irradiation (∼452 nm), C-O bonds of picolinuim units are photocleaved, and the charges of PILs are simultaneously converted from positive to negative. Taking full advantages of these excellent properties of VP-PIL, a visible light degradable film for the first time is fabricated. Moreover, to demonstrate its applications in electronics, we prepared high-quality VP-PIL-containing conductive ink for flexible interconnects and graphene electrodes for supercapacitors.
Collapse
Affiliation(s)
- Tongtong Zhou
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University , Xi'an 710069 China
| | - Yuan Lei
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University , Xi'an 710069 China
| | - Hanzhi Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University , Xi'an 710069 China
| | - Ping Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University , Xi'an 710069 China
| | - Casey Yan
- Nanotechnology Center, Institute of Textiles and Clothing, The Hong Kong Polytechnic University , Hong Kong, China
| | - Zijian Zheng
- Nanotechnology Center, Institute of Textiles and Clothing, The Hong Kong Polytechnic University , Hong Kong, China
| | - Yongming Chen
- School of Chemistry and Chemical Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-Sen University , Guangzhou 510275, China
| | - You Yu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University , Xi'an 710069 China
| |
Collapse
|
48
|
Dong YS, Xiong XH, Lu XW, Wu ZQ, Chen H. Antibacterial surfaces based on poly(cationic liquid) brushes: switchability between killing and releasing via anion counterion switching. J Mater Chem B 2016; 4:6111-6116. [PMID: 32263499 DOI: 10.1039/c6tb01464j] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The development of a smart antibacterial surface that can both kill attached live bacteria and release dead bacteria is reported. The surface consists of counterion-responsive poly(cationic liquid) brushes of poly(1-(2-methacryloyloxyhexyl)-3-methylimidazolium bromide) (PIL(Br)), the properties of which can be switched repeatedly between bacterial killing and bacterial release. Upon counter-anion exchange of PIL(Br) chains using lithium bis(trifluoromethanesulfonyl) amide (LiTf2N) to yield PIL(Tf2N), the wettability of the surface changes from hydrophilic (water contact angle ∼52°) to hydrophobic (∼97°). The PIL(Br) chains adopt an extended conformation with bactericidal properties. Counter-anion switching to PIL(Tf2N) gives a collapsed chain conformation allowing the release of killed bacteria. The switchable killing and releasing actions of the surface were maintained over three cycles. Thus it is concluded that PIL(Br) layers provide a viable approach for the fabrication of "smart" antibacterial surfaces.
Collapse
Affiliation(s)
- Yi-Shi Dong
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-ai Road, Suzhou 215123, P. R. China.
| | | | | | | | | |
Collapse
|
49
|
Dou Q, Liow SS, Weng W, Loh XJ. Dual-responsive reversible photo/thermogelling polymers exhibiting high modulus change. ACTA ACUST UNITED AC 2016. [DOI: 10.1002/pola.28191] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Qingqing Dou
- Institute of Materials Research and Engineering (IMRE); 2 Fusionopolis Way. Innovis, #08-03 138634 Singapore
| | - Sing Shy Liow
- Institute of Materials Research and Engineering (IMRE); 2 Fusionopolis Way. Innovis, #08-03 138634 Singapore
| | - Wengui Weng
- Department of Chemistry, College of Chemistry and Engineering; Xiamen University; Xiamen Fujian People's Republic of China
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE); 2 Fusionopolis Way. Innovis, #08-03 138634 Singapore
- Department of Materials Science and Engineering; National University of Singapore; 9 Engineering Drive 1 117576 Singapore
- Singapore Eye Research Institute; 11 Third Hospital Avenue 168751 Singapore
| |
Collapse
|
50
|
Guterman R, Ambrogi M, Yuan J. Harnessing Poly(ionic liquid)s for Sensing Applications. Macromol Rapid Commun 2016; 37:1106-15. [DOI: 10.1002/marc.201600172] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 04/28/2016] [Indexed: 12/17/2022]
Affiliation(s)
- Ryan Guterman
- Department of Colloid Chemistry; Max Planck Institute of Colloids and Interfaces; Am Mühlenberg 1 OT Golm D-14476 Potsdam Germany
| | - Martina Ambrogi
- Department of Colloid Chemistry; Max Planck Institute of Colloids and Interfaces; Am Mühlenberg 1 OT Golm D-14476 Potsdam Germany
| | - Jiayin Yuan
- Department of Colloid Chemistry; Max Planck Institute of Colloids and Interfaces; Am Mühlenberg 1 OT Golm D-14476 Potsdam Germany
| |
Collapse
|