1
|
Kiran M, Haq F, Ullah M, Ullah N, Chinnam S, Ashique S, Mishra N, Wani AW, Farid A. Starch-based bio-membrane for water purification, biomedical waste, and environmental remediation. Int J Biol Macromol 2024:137033. [PMID: 39488302 DOI: 10.1016/j.ijbiomac.2024.137033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 10/12/2024] [Accepted: 10/27/2024] [Indexed: 11/04/2024]
Abstract
This review article explores the utilization of starch-based materials as smart materials for the removal of dyes and heavy metals from wastewater, highlighting their cost-effectiveness, biodegradability, and biocompatibility. It addresses the critical need for clean water, emphasizing the contamination caused by industrial activities, such as printing, textile, cosmetic, and leather tanning industries. Starch and its derivatives demonstrate significant potential in water purification technology, effectively removing toxicants through hydrogen bonding, electrostatic interactions, and complexation. The review also discusses the application of starch-based materials in the biomedical field, particularly as drug carriers. Starch-based microspheres, hydrogels, nano-spheres, and nano-composites exhibit sustained drug-release properties and are effective in transporting various drugs, including DOX, quercetin, 5-Fluorouracil, glycyrrhizic acid, paclitaxel, tetracycline hydrochloride, amoxicillin, ciprofloxacin, and moxifloxacin. These materials show good antimicrobial activity against a range of pathogens, including C. albicans, E. coli, S. aureus, C. neoformance, B. subtilis, A. niger, A. fumigatus, and A. terreus. While highlighting the significant achievements of starch-based materials, the review also discusses current limitations and areas for future development. Key weaknesses include the need for enhanced adsorption capacities and the challenge of scaling up production for industrial applications. The review concludes by identifying development directions, such as improving functionalization techniques and exploring new applications in water purification and drug delivery systems. This article aims to assist researchers in advancing the field of starch-based materials for environmental and biomedical applications.
Collapse
Affiliation(s)
- Mehwish Kiran
- Faculty of Agriculture, Gomal University, D. I. Khan 29050, Pakistan
| | - Fazal Haq
- Institute of Chemical Sciences, Gomal University, D.I. Khan 29050, Pakistan
| | - Midrar Ullah
- Department of Biotechnology, Shaheed Benazir Bhutto University, Sheringal, Dir Upper, Khyber Pakhtunkhwa, Pakistan
| | - Naveed Ullah
- Faculty of Agriculture, Gomal University, D. I. Khan 29050, Pakistan
| | - Sampath Chinnam
- Department of Chemistry, M.S. Ramaiah Institute of Technology (Affiliated to Visvesvaraya Techno-logical University, Belgaum), Bengaluru, Karnataka 560054, India
| | - Sumel Ashique
- Department of Pharmaceutical Sciences, Bengal College of Pharmaceutical Sciences & Research, Durgapur 713212, West Bengal, India
| | - Neeraj Mishra
- Amity Institute of Pharmacy, Amity University, Gwalior, Madhya Pradesh 474005, India
| | - Ab Waheed Wani
- Department of Horticulture, Lovely Professional University, Punjab 144411, India
| | - Arshad Farid
- Gomal Center of Biochemistry and Biotechnology, Gomal University, D.I.Khan 29050, Pakistan.
| |
Collapse
|
2
|
Hamidon TS, Garba ZN, Zango ZU, Hussin MH. Biopolymer-based beads for the adsorptive removal of organic pollutants from wastewater: Current state and future perspectives. Int J Biol Macromol 2024; 269:131759. [PMID: 38679272 DOI: 10.1016/j.ijbiomac.2024.131759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/13/2024] [Accepted: 04/20/2024] [Indexed: 05/01/2024]
Abstract
Among biopolymer-based adsorbents, composites in the form of beads have shown promising results in terms of high adsorption capacity and ease of separation from the effluents. This review addresses the potential of biopolymer-based beads to remediate wastewaters polluted with emerging organic contaminants, for instance dyes, active pharmaceutical ingredients, pesticides, phenols, oils, polyaromatic hydrocarbons, and polychlorinated biphenyls. High adsorption capacities up to 2541.76 mg g-1 for dyes, 392 mg g-1 for pesticides and phenols, 1890.3 mg g-1 for pharmaceuticals, and 537 g g-1 for oils and organic solvents have been reported. The review also attempted to convey to its readers the significance of wastewater treatment through adsorption by providing an overview on decontamination technologies of organic water contaminants. Various preparation methods of biopolymer-based gel beads and adsorption mechanisms involved in the process of decontamination have been summarized and analyzed. Therefore, we believe there is an urge to discuss the current state of the application of biopolymer-based gel beads for the adsorption of organic pollutants from wastewater and future perspectives in this regard since it is imperative to treat wastewater before releasing into freshwater bodies.
Collapse
Affiliation(s)
- Tuan Sherwyn Hamidon
- Materials Technology Research Group (MaTReC), School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia.
| | | | - Zakariyya Uba Zango
- Department of Chemistry, Faculty of Science, Al-Qalam University Katsina, Katsina 820101, Nigeria
| | - M Hazwan Hussin
- Materials Technology Research Group (MaTReC), School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia.
| |
Collapse
|
3
|
Zamani-Babgohari F, Irannejad A, Kalantari Pour M, Khayati GR. Synthesis of carboxymethyl starch co (polyacrylamide/ polyacrylic acid) hydrogel for removing methylene blue dye from aqueous solution. Int J Biol Macromol 2024; 269:132053. [PMID: 38704075 DOI: 10.1016/j.ijbiomac.2024.132053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/13/2024] [Accepted: 05/01/2024] [Indexed: 05/06/2024]
Abstract
Natural polysaccharides, notably starch, have garnered attention for their accessibility, cost-effectiveness, and biodegradability. Modifying starch to carboxymethyl starch enhances its solubility, swelling capacity, and adsorption efficiency. This research examines the synthesis of an effective hydrogel adsorbent based on carboxymethyl starch for the elimination of methylene blue from aqueous solutions. The hydrogel was synthesized using polyacrylamide and polyacrylic acid as monomers, ammonium persulfate as the initiator, and N,N'-methylenebisacrylamide as the cross-linker. Through FESEM, swelling morphology was evaluated in both distilled water and methylene blue dye. The adsorption data elucidated that the adsorption capacity of the hydrogel significantly depends on the dosage of the adsorbent, pH, and concentration of the MB dye. At a pH of 7 and a dye concentration of 250 mg/L, the hydrogel exhibited an impressive 95 % removal rate for methylene blue. The results indicate that the adsorption process follows pseudo-second-order kinetics and conforms well to the Langmuir adsorption isotherm, indicating a maximum adsorption capacity of 1700 mg/g. According to the pseudo-second-order kinetic model and FTIR analysis, methylene blue chemisorbs to the adsorbent material. Hydrogel absorbents regulate adsorption through both intra-particle diffusion and liquid film diffusion. These results highlight the potential of the new hydrogel absorber for water purification.
Collapse
Affiliation(s)
- Fatemeh Zamani-Babgohari
- Department of Materials Engineering and Metallurgy, Faculty of Engineering, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Ahmad Irannejad
- Department of Materials Engineering and Metallurgy, Faculty of Engineering, Shahid Bahonar University of Kerman, Kerman, Iran.
| | - Maryam Kalantari Pour
- Department of Chemistry, Faculty of Science, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Gholam Reza Khayati
- Department of Materials Engineering and Metallurgy, Faculty of Engineering, Shahid Bahonar University of Kerman, Kerman, Iran
| |
Collapse
|
4
|
Dong Y, Ghasemzadeh M, Khorsandi Z, Sheibani R, Nasrollahzadeh M. Starch-based hydrogels for environmental applications: A review. Int J Biol Macromol 2024; 269:131956. [PMID: 38692526 DOI: 10.1016/j.ijbiomac.2024.131956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 04/19/2024] [Accepted: 04/27/2024] [Indexed: 05/03/2024]
Abstract
Water sources have become extremely scarce and contaminated by organic and inorganic industrial and agricultural pollutants as well as household wastes. Poisoning water resources by dyes and metals is a problem because contaminated water can leak into subsurface and surface sources, causing serious contamination and health problems. Therefore, developing wastewater treatment technologies is valuable. Today, hydrogels have attracted considerable attention owing to their broad applications. Hydrogels are polymeric network compositions with significant water-imbibing capacity. Hydrogels have potential applications in diverse fields such as biomedical, personal care products, pharmaceuticals, cosmetics, and biosensors. They can be prepared by using natural (biopolymers) and synthetic polymers. Synthetic polymer-based hydrogels obtained from petrochemicals are not environmentally benign; thus, abundant plant-based polysaccharides are found as more suitable compounds for making biodegradable hydrogels. Polysaccharides with many advantages such as non-toxicity, biodegradability, availability, inexpensiveness, etc. are widely employed for the preparation of environmentally friendly hydrogels. Polysaccharides-based hydrogels containing chitin, chitosan, gum, starch (St), etc. are employed to remove pollutants, metals, and dyes. Among these, St has attracted a lot of attention. St can be mixed with other compounds to make hydrogels, which remove dyes and metal ions to variable degrees of efficiency. Although St has numerous advantages, it suffers from drawbacks such as low stability, low water solubility, and fast degradability in water which limit its application as an environmental adsorbent. As an effective way to overcome these weaknesses, various modification approaches to form starch-based hydrogels (SBHs) employing different compounds have been reported. The preparation methods and applications of SBH adsorbents in organic dyes, hazardous materials, and toxic ions elimination from water resources have been comprehensively discussed in this review.
Collapse
Affiliation(s)
- Yahao Dong
- Henan Key Laboratory of Green Chemistry, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, PR China.
| | | | - Zahra Khorsandi
- Department of Chemistry, Faculty of Science, University of Qom, Qom 37185-359, Iran
| | - Reza Sheibani
- Amirkabir University of Technology-Mahshahr Campus, University St., Nahiyeh san'ati, Mahshahr, Khouzestan, Iran
| | | |
Collapse
|
5
|
Stanciu MC, Teacă CA. Natural Polysaccharide-Based Hydrogels Used for Dye Removal. Gels 2024; 10:243. [PMID: 38667662 PMCID: PMC11049453 DOI: 10.3390/gels10040243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 03/29/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024] Open
Abstract
Removal of contaminants from discharge water is vital and demands urgent assistance with the goal to keep clean water. Adsorption is one of the most common, efficient, and low-priced methods used in water treatment. Various polysaccharide-based gels have been used as efficient dye adsorbents from wastewater. This review summarizes cutting-edge research of the last decade of different hydrogels based on natural polysaccharides (chitin, chitosan, cellulose, starch, pullulan, and dextran) concerning their dye adsorption efficiency. Beyond their natural abundance, attributes of polysaccharides such as biocompatibility, biodegradability, and low cost make them not only efficient, but also environmentally sustainable candidates for water purification. The synthesis and dye removal performance together with the effect of diverse factors on gels retaining ability, kinetic, and isotherm models encountered in adsorption studies, are introduced. Thermodynamic parameters, sorbent recycling capacity along with conclusions and future prospects are also presented.
Collapse
Affiliation(s)
- Magdalena-Cristina Stanciu
- Natural Polymers, Bioactive and Biocompatible Materials Department, “Petru Poni” Institute of Macromolecular Chemistry, 41A, Gr. Ghica-Voda Alley, 700487 Iasi, Romania
| | - Carmen-Alice Teacă
- Center for Advanced Research in Bionanoconjugates and Biopolymers, “Petru Poni” Institute of Macromolecular Chemistry, 41A, Gr. Ghica-Voda Alley, 700487 Iasi, Romania
| |
Collapse
|
6
|
Kjidaa B, Mchich Z, Aziz K, Saffaj N, Saffaj T, Mamouni R. Flexible Synthesis of Bio-Hydroxyapatite/Chitosan Hydrogel Beads for Highly Efficient Orange G Dye Removal: Batch and Recirculating Fixed-Bed Column Study. ACS OMEGA 2024; 9:8543-8556. [PMID: 38405537 PMCID: PMC10883016 DOI: 10.1021/acsomega.3c10054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 02/27/2024]
Abstract
The use of fish waste as a source material for the development of functional beads has significant potential applications in the fields of materials science and environmental sustainability. In this study, a biomaterial bead of chitosan was cross-linked with bio-hydroxyapatite (Bio-Hap/Cs) through the encapsulation process to create a stable and durable material. The beads are characterized using scanning electron microscopy combined with energy dispersive X-ray spectrometry, Fourier transform infrared spectroscopy, and X-ray diffraction techniques. The adsorption efficiency of Bio-Hap/Cs hydrogel beads was evaluated by using Orange G (OG) dye in both batch and recirculating column systems, and the effect of various parameters on the adsorption capacity was investigated. In the batch study, it was found that OG removal increased with an increasing pH and adsorbent dose. However, in the recirculating column system, a higher bed height and lower flow rate led to increased removal of the OG dye. The kinetic study indicated that the pseudo-second-order model provided a good description of OG adsorption onto Bio-Hap/Cs beads in both batch and recirculating processes, with a high coefficient correlation. The maximum adsorbed amounts are found to be 19.944 mg g-1 and 9.472 mg g-1 in batch and recirculating processes, respectively. Therefore, Bio-Hap/Cs hydrogel beads have demonstrated an effective and reusable material for OG dye remediation from aqueous solutions using recirculating adsorption processes.
Collapse
Affiliation(s)
- Bouthayna Kjidaa
- Team
of Biotechnology, Materials and Environment, Faculty of Sciences, Ibn Zohr University, Agadir 80000, Morocco
| | - Zaineb Mchich
- Team
of Biotechnology, Materials and Environment, Faculty of Sciences, Ibn Zohr University, Agadir 80000, Morocco
| | - Khalid Aziz
- Team
of Biotechnology, Materials and Environment, Faculty of Sciences, Ibn Zohr University, Agadir 80000, Morocco
| | - Nabil Saffaj
- Team
of Biotechnology, Materials and Environment, Faculty of Sciences, Ibn Zohr University, Agadir 80000, Morocco
| | - Taoufiq Saffaj
- Laboratory
of Applied Organic Chemistry, Faculty of Sciences and Techniques of
Fez, University Sidi Mohamed Ben Abdellah, Fez 30000, Morocco
| | - Rachid Mamouni
- Team
of Biotechnology, Materials and Environment, Faculty of Sciences, Ibn Zohr University, Agadir 80000, Morocco
| |
Collapse
|
7
|
Khoo PS, Ilyas RA, Uda MNA, Hassan SA, Nordin AH, Norfarhana AS, Ab Hamid NH, Rani MSA, Abral H, Norrrahim MNF, Knight VF, Lee CL, Rafiqah SA. Starch-Based Polymer Materials as Advanced Adsorbents for Sustainable Water Treatment: Current Status, Challenges, and Future Perspectives. Polymers (Basel) 2023; 15:3114. [PMID: 37514503 PMCID: PMC10385024 DOI: 10.3390/polym15143114] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Over the past three decades, chemical and biological water contamination has become a major concern, particularly in the industrialized world. Heavy metals, aromatic compounds, and dyes are among the harmful substances that contribute to water pollution, which jeopardies the human health. For this reason, it is of the utmost importance to locate methods for the cleanup of wastewater that are not genuinely effective. Owing to its non-toxicity, biodegradability, and biocompatibility, starch is a naturally occurring polysaccharide that scientists are looking into as a possible environmentally friendly material for sustainable water remediation. Starch could exhibit significant adsorption capabilities towards pollutants with the substitution of amide, amino, carboxyl, and other functional groups for hydroxyl groups. Starch derivatives may effectively remove contaminants such as oil, organic solvents, pesticides, heavy metals, dyes, and pharmaceutical pollutants by employing adsorption techniques at a rate greater than 90%. The maximal adsorption capacities of starch-based adsorbents for oil and organic solvents, pesticides, heavy metal ions, dyes, and pharmaceuticals are 13,000, 66, 2000, 25,000, and 782 mg/g, respectively. Although starch-based adsorbents have demonstrated a promising future for environmental wastewater treatment, additional research is required to optimize the technique before the starch-based adsorbent can be used in large-scale in situ wastewater treatment.
Collapse
Affiliation(s)
- Pui San Khoo
- Centre for Advanced Composite Materials, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia
| | - R A Ilyas
- Centre for Advanced Composite Materials, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia
- Institute of Tropical Forest and Forest Products (INTROP), Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia
- Centre of Excellence for Biomass Utilization, Universiti Malaysia Perlis, Arau 02600, Perlis, Malaysia
| | - M N A Uda
- Centre of Excellence for Biomass Utilization, Universiti Malaysia Perlis, Arau 02600, Perlis, Malaysia
- Faculty of Mechanical Engineering and Technology, Universiti Malaysia Perlis, Arau 02600, Perlis, Malaysia
| | - Shukur Abu Hassan
- Centre for Advanced Composite Materials, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia
- Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia
| | - A H Nordin
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia
| | - A S Norfarhana
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia
| | - N H Ab Hamid
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia
| | - M S A Rani
- Institute of Tropical Forest and Forest Products (INTROP), Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia
- Department of Physics, Faculty of Science, Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia
| | - Hairul Abral
- Laboratory of Nanoscience and Technology, Department of Mechanical Engineering, Andalas University, Padang 25163, Indonesia
- Research Collaboration Center for Nanocellulose, BRIN-Andalas University, Padang 25163, Indonesia
| | - M N F Norrrahim
- Research Centre for Chemical Defence, Universiti Pertahanan Nasional Malaysia, Kem Perdana Sungai Besi, Kuala Lumpur 57000, Malaysia
| | - V F Knight
- Research Centre for Chemical Defence, Universiti Pertahanan Nasional Malaysia, Kem Perdana Sungai Besi, Kuala Lumpur 57000, Malaysia
| | - Chuan Li Lee
- Institute of Tropical Forest and Forest Products (INTROP), Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia
| | - S Ayu Rafiqah
- Institute of Tropical Forest and Forest Products (INTROP), Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia
| |
Collapse
|
8
|
Sun J, Jin Z, Wang J, Wang H, Zhang Q, Gao H, Jin Z, Zhang J, Wang Z. Application of Ionic Liquid Crosslinked Hydrogel for Removing Heavy Metal Ions from Water: Different Concentration Ranges with Different Adsorption Mechanisms. Polymers (Basel) 2023; 15:2784. [PMID: 37447430 DOI: 10.3390/polym15132784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/14/2023] [Accepted: 06/18/2023] [Indexed: 07/15/2023] Open
Abstract
Heavy metal wastewater poses a significant environmental challenge due to its harmful effect on organisms and difficult biodegradation. To address this issue, hydrogel has been used as a promising solution for the adsorption of heavy metal ions in water, offering advantages such as low cost, simple design, and environmental friendliness. In this study, we synthetized a novel poly-acrylamide/acrylic acid/vinyl imidazole bromide (PAM/AA/[Vim]Br2) hydrogel as an effective adsorbent for the removal of NiII, CuII, ZnII, and CrIII from water. The structure of the hydrogel was characterized by using techniques such as Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). By exploring various parameters such as monomer ratio, neutralization degree, crosslinking agent addition amount, and initiator addition amount, the highest swelling ratio of the PAM/AA/[Vim]Br2 hydrogel reached 40,012%. One of the notable aspects of this study lay in the investigation of the adsorption behavior of the hydrogel towards heavy metal ions at different concentrations. The adsorption isotherm calculations and X-ray photoelectron spectroscopy (XPS) analysis revealed distinct adsorption mechanisms. At low concentrations, the hydrogel exhibits a multilayer physical adsorption mechanism, with heavy metal ion removal rates exceeding 80%; while at high concentrations, it demonstrates a monolayer chemical adsorption mechanism, with heavy metal ion removal rates above 90%. This dual mechanism approach distinguishes our study from previous reports on the removal of heavy metal ions using hydrogels and shows good ion adsorption efficiency at both high and low concentrations. To the best of our knowledge, this is the first report to explore the removal of heavy metal ions from water using hydrogels with such intriguing dual mechanisms. Overall, the utilization of the PAM/PAA/[Vim]Br2 hydrogel as an adsorbent for heavy metal ion removal presents a promising and innovative approach, contributing to the development of environmentally friendly solutions for heavy metal wastewater treatment.
Collapse
Affiliation(s)
- Jian Sun
- Institute of Petrochemical Technology, Jilin Institute of Chemical Technology, Jilin 132022, China
| | - Ziqi Jin
- Institute of Petrochemical Technology, Jilin Institute of Chemical Technology, Jilin 132022, China
| | - Jiyang Wang
- Institute of Petrochemical Technology, Jilin Institute of Chemical Technology, Jilin 132022, China
| | - Hong Wang
- Institute of Petrochemical Technology, Jilin Institute of Chemical Technology, Jilin 132022, China
| | - Qian Zhang
- Shandong Chambroad HoldingGroup Co., Ltd., Binzhou 256599, China
| | - Huajing Gao
- Institute of Petrochemical Technology, Jilin Institute of Chemical Technology, Jilin 132022, China
| | - Zhaohui Jin
- Institute of Petrochemical Technology, Jilin Institute of Chemical Technology, Jilin 132022, China
| | - Jianlin Zhang
- Shandong Efirm Biochemistry and Environmental Protection Co., Ltd., Binzhou 256500, China
| | - Zhiwei Wang
- Key Laboratory of Clean Pulp & Papermaking and Pollution Control of Guangxi, College of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, China
| |
Collapse
|
9
|
Renani N, Etesami N, Behzad T. Synthesis and Characterization of Novel Magnetic Nano-Biocomposite Hydrogels Based on Starch- g-poly(acrylic acid) Reinforced by Cellulose Nanofibers for Cu 2+ Ion Removal. ACS OMEGA 2023; 8:21929-21940. [PMID: 37360432 PMCID: PMC10285959 DOI: 10.1021/acsomega.3c01655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/23/2023] [Indexed: 06/28/2023]
Abstract
One of the crucial challenges of the adsorption process is to recapture the adsorbent from the solution, especially for adsorbents in powder form. This study synthesized a novel magnetic nano-biocomposite hydrogel adsorbent to successfully remove Cu2+ ions, followed by convenient recovery and reusability of the adsorbent. The Cu2+ adsorption capacity of starch-g-poly(acrylic acid)/cellulose nanofibers (St-g-PAA/CNFs) composite hydrogel and magnetic composite hydrogel (M-St-g-PAA/CNFs) was investigated and compared in both bulk and powder forms. Results showed that Cu2+ removal kinetics and swelling rate were improved by grinding the bulk hydrogel into powder form. The kinetic data and adsorption isotherm were best correlated with the pseudo-second-order and Langmuir models, respectively. The maximum monolayer adsorption capacity values of M-St-g-PAA/CNFs hydrogels loaded with 2 and 8 wt % Fe3O4 nanoparticles in 600 mg/L Cu2+ solution were found to be 333.33 and 555.56 mg/g, respectively, compared to 322.58 mg/g for the St-g-PAA/CNFs hydrogel. Vibrating sample magnetometry (VSM) results demonstrate that the magnetic hydrogel that included 2 and 8 wt % magnetic nanoparticles exhibited paramagnetic behavior with the magnetization of 0.6-0.66 and 1-1.04 emu/g at the plateau, respectively, which showed a proper magnetic property and good magnetic attraction in the magnetic field for separating the adsorbent from the solution. Also, the synthesized compounds were characterized by scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), and Fourier transform infrared spectroscopy (FTIR). Finally, the magnetic bioadsorbent was successfully regenerated and reused for four treatment cycles.
Collapse
|
10
|
Phonlakan K, Khamsuk B, Soontonhong N, Panawong C, Kongseng P, Chantarak S, Budsombat S. Composite beads from chitosan and zeolitic imidazolate framework-8 for the adsorption and photocatalytic degradation of reactive red 141. RSC Adv 2023; 13:12295-12308. [PMID: 37091605 PMCID: PMC10114064 DOI: 10.1039/d3ra01187a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/10/2023] [Indexed: 04/25/2023] Open
Abstract
This study describes the fabrication of composite beads comprising chitosan and zeolitic imidazolate framework-8 (ZIF-8) as a natural biodegradable dye adsorbent and support for ZnO photocatalyst. Chitosan beads were cross-linked with trisodium citrate dihydrate to enhance the adsorption capacity for the reactive red 141 dye (RR141). The ability was further improved by adding ZIF-8. The optimum loading was 2.5%, and the adsorption equilibrium was reached within 2 h. The maximum adsorption capacity of the composite beads was 6.51 mg g-1 at pH 4 when an initial concentration of 1000 mg L-1 was used. The pseudo-second-order kinetics model and the Langmuir isotherm model best described the adsorption process. The composite beads could also adsorb dyes like reactive black, Congo red, direct yellow, reactive orange, rhodamine B, crystal violet, and methylene blue (MB). Thermal stability was significantly improved after coating the surface of the 2.5% ZIF beads with a ZnO photocatalyst. After UV irradiation for 5 h, the photocatalytic beads containing 2.59 weight percent of ZnO could decolorize 99% of MB and 90% of RR141 dyes with a degradation rate of 0.6032 h-1 and 0.3198 h-1, respectively. Furthermore, the photocatalytic beads remained effective for at least ten consecutive cycles.
Collapse
Affiliation(s)
- Kunlarat Phonlakan
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Materials Chemistry Research Center, Faculty of Science, Khon Kaen University Khon Kaen 40002 Thailand
| | - Benjawan Khamsuk
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Materials Chemistry Research Center, Faculty of Science, Khon Kaen University Khon Kaen 40002 Thailand
| | - Natthanicha Soontonhong
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Materials Chemistry Research Center, Faculty of Science, Khon Kaen University Khon Kaen 40002 Thailand
| | - Chonnakarn Panawong
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Materials Chemistry Research Center, Faculty of Science, Khon Kaen University Khon Kaen 40002 Thailand
| | - Piyawan Kongseng
- Division of Physical Science, Faculty of Science, Prince of Songkla University Hat Yai Songkhla 90110 Thailand
| | - Sirinya Chantarak
- Division of Physical Science, Faculty of Science, Prince of Songkla University Hat Yai Songkhla 90110 Thailand
| | - Surangkhana Budsombat
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Materials Chemistry Research Center, Faculty of Science, Khon Kaen University Khon Kaen 40002 Thailand
| |
Collapse
|
11
|
Controlled 5‐FU Release from P(NIPAM‐co‐VIm)‐g‐PEG Dual Responsive Hydrogels. ChemistrySelect 2023. [DOI: 10.1002/slct.202203522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
|
12
|
Bhat SA, Zafar F, Mirza AU, Singh P, Mondal AH, Nishat N. Nanovertenergie: Bactericidal polymer nanocomposite beads for carcinogenic dye removal from aqueous solution. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
13
|
Ahmed M, Nasar A. Decolorization of Methylene Blue Solution by Employing Magnetized Artocarpus heterophyllus Fruit Peel as a Novel Adsorbent. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2023. [DOI: 10.1007/s13369-023-07673-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
14
|
Park HG, Son YK, Kim J, Lee JS. Dual-effect-assisted cross-linkable poly(N-allyl-vinylimidazolium) ·TFSI− as alternative electrode binder of lithium-ion battery. KOREAN J CHEM ENG 2023. [DOI: 10.1007/s11814-022-1260-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
15
|
Peng X, Liu S, Luo Z, Yu X, Liang W. Selective Removal of Hexavalent Chromium by Novel Nitrogen and Sulfur Containing Cellulose Composite: Role of Counter Anions. MATERIALS (BASEL, SWITZERLAND) 2022; 16:ma16010184. [PMID: 36614522 PMCID: PMC9821927 DOI: 10.3390/ma16010184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/19/2022] [Accepted: 12/23/2022] [Indexed: 05/27/2023]
Abstract
Exploiting an adsorbent with superb selectivity is of utmost importance for the remediation of Cr (VI)-laden wastewater. In this work, a novel nitrogen and sulfur functionalized 3D macroporous cellulose material (MPS) was prepared by homogeneous cross-link cellulose and polyvinylimidazole, followed by ion exchange with MoS42-. MPS exhibited high removal efficiency at a broad pH range (1.0-8.0) and large adsorption capacity (379.78 mg/g) toward Cr (VI). Particularly, outstanding selectivity with an enormous partition coefficient (1.01 × 107 mL/g) was achieved on MPS. Replacing MoS42- with Cl- and MoO42- led to a sharp decline in adsorption selectivity, demonstrating that MoS42- contributed substantially to the selectivity. Results of FTIR, XPS, and apparent kinetic analysis revealed that Cr (VI) was first pre-enriched on the MPS surface via electrostatic and dispersion forces, and then reacted with MoS42- to generate Cr (III), which deposited on MPS by forming Cr(OH)3 and chromium(III) sulfide. This study provides a new idea for designing adsorbents with a superior selectivity for removing Cr (VI) from sewage.
Collapse
Affiliation(s)
- Xiong Peng
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Shujun Liu
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Zhijia Luo
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Xiwen Yu
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China
| | - Wanwen Liang
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
16
|
Elgamal AM, Abd El‐Ghany NA, Saad GR. Highly reactive adsorbent based on carboxymethyl xanthan gum‐g‐poly(4‐vinylpyridine) copolymer for the potential removal of Acid Orange 10 dye and Cr(
VI
) ions for water treatment. J Appl Polym Sci 2022. [DOI: 10.1002/app.53179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ahmed M. Elgamal
- Chemistry Department, Faculty of Science Cairo University Cairo Egypt
| | | | - Gamal R. Saad
- Chemistry Department, Faculty of Science Cairo University Cairo Egypt
| |
Collapse
|
17
|
Wang Z, Tang Z, Xie X, Xi M, Zhao J. Salt template synthesis of hierarchical porous carbon adsorbents for Congo red removal. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
Qin Y, Liu Z, Tao C, Shu J, Xiong X. Multifunctional β-Cyclodextrin Polymer for Simultaneous and Effective Removal of Organic Micropollutants, Heavy Metals, and Detrimental Microorganisms from Water. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yibie Qin
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
- Chongqing Key Laboratory of Chemical Process for Clean Energy and Resource Utilization, Chongqing University, Chongqing 400044, China
| | - Zuohua Liu
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
- Chongqing Key Laboratory of Chemical Process for Clean Energy and Resource Utilization, Chongqing University, Chongqing 400044, China
| | - Changyuan Tao
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
- Chongqing Key Laboratory of Chemical Process for Clean Energy and Resource Utilization, Chongqing University, Chongqing 400044, China
| | - Jiancheng Shu
- Key Laboratory of Solid Waste Treatment and Resource Recycle (SWUST), Ministry of Education, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang 621010, China
| | - Xia Xiong
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
- Chongqing Key Laboratory of Chemical Process for Clean Energy and Resource Utilization, Chongqing University, Chongqing 400044, China
| |
Collapse
|
19
|
Plant-mediated synthesis of iron oxide nanoparticles/ polyvinyl alcohol nanocomposite and exploring their potential adsorption properties against selected heavy metals. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04387-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
20
|
Focus on the removal of lead and cadmium ions from aqueous solutions using starch derivatives: A review. Carbohydr Polym 2022; 290:119463. [DOI: 10.1016/j.carbpol.2022.119463] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/31/2022] [Accepted: 04/02/2022] [Indexed: 11/20/2022]
|
21
|
Fang K, Deng L, Yin J, Yang T, Li J, He W. Recent advances in starch-based magnetic adsorbents for the removal of contaminants from wastewater: A review. Int J Biol Macromol 2022; 218:909-929. [PMID: 35914554 DOI: 10.1016/j.ijbiomac.2022.07.175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/03/2022] [Accepted: 07/22/2022] [Indexed: 02/09/2023]
Abstract
Considerable concern exists regarding water contamination by various pollutants, such as conventional pollutants (e.g., heavy metals and organics) and emerging micropollutants (e.g., consumer care products and interfering endocrine-related compounds). Currently, academics are continuously exploring sustainability-related materials and technologies to remove contaminants from wastewater. Magnetic starch-based adsorbents (MSAs) can combine the advantages of starch and magnetic nanoparticles, which exhibit unique critical features such as availability, cost-effectiveness, size, shape, crystallinity, magnetic properties, stability, adsorption properties, and excellent surface properties. However, limited reviews on MSAs' preparations, characterizations, applications, and adsorption mechanisms could be available nowadays. Hence, this review not only focuses on their activation and preparation methods, including physical (e.g., mechanical activation treatment, microwave radiation treatment, sonication, and extrusion), chemical (e.g., grafting, cross-linking, oxidation and esterification), and enzymatic modifications to enhance their adsorption properties, but also offers an all-round state-of-the-art analysis of the full range of its characterization methods, the adsorption of various contaminants, and the underlying adsorption mechanisms. Eventually, this review focuses on the recycling and reclamation performance and highlights the main gaps in the areas where further studies are warranted. We hope that this review will spark an interdisciplinary discussion and bring about a revolution in the applications of MSAs.
Collapse
Affiliation(s)
- Kun Fang
- School of Chemistry and Chemical Engineering, School of Resources, Environment and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metallic and Featured Materials Guangxi University, Nanning 530004, Guangxi, China; College of Light Industry and Food Engineering, the Collaborative Innovation Center for Guangxi Sugar Industry, Nanning 530004, Guangxi, China
| | - Ligao Deng
- College of Light Industry and Food Engineering, the Collaborative Innovation Center for Guangxi Sugar Industry, Nanning 530004, Guangxi, China
| | - Jiangyu Yin
- College of Light Industry and Food Engineering, the Collaborative Innovation Center for Guangxi Sugar Industry, Nanning 530004, Guangxi, China
| | - Tonghan Yang
- School of Chemistry and Chemical Engineering, School of Resources, Environment and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metallic and Featured Materials Guangxi University, Nanning 530004, Guangxi, China
| | - Jianbin Li
- College of Light Industry and Food Engineering, the Collaborative Innovation Center for Guangxi Sugar Industry, Nanning 530004, Guangxi, China.
| | - Wei He
- School of Chemistry and Chemical Engineering, School of Resources, Environment and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metallic and Featured Materials Guangxi University, Nanning 530004, Guangxi, China.
| |
Collapse
|
22
|
Abdelhamid AE, Kandil H. Facile approach to synthesis super-adsorptive hydrogel based on hyperbranched polymer for water remediation from methylene blue. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
23
|
Ihsanullah I, Bilal M, Jamal A. Recent Developments in the Removal of Dyes from Water by Starch-Based Adsorbents. CHEM REC 2022; 22:e202100312. [PMID: 35102677 DOI: 10.1002/tcr.202100312] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/13/2022] [Indexed: 12/24/2022]
Abstract
Starch-based adsorbents have demonstrated excellent potential for the removal of various noxious dyes from wastewater. This review critically evaluates the recent progress in applications of starch-based adsorbents for the removal of dyes from water. The synthesis methods of starch-based composites and their effects on physicochemical characteristics of produced adsorbents are discussed. The removal of various dyes by starch-based adsorbents are described in detail, with emphasis on the effect of key parameters, adsorption mechanism and their reusability potential. The key challenges related to the synthesis and applications of starch-based adsorbents in water purification are highlighted. Based on the research gaps, recommendations for future research are made. The evaluation of starch-based adsorbents would contribute to the development of sustainable water treatment options in near future.
Collapse
Affiliation(s)
- Ihsanullah Ihsanullah
- Center for Environment and Water, Research Institute, King Fahd, University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Muhammad Bilal
- Department of Chemical Engineering, University of Engineering and Technology, Peshawar, 25120, Pakistan
| | - Arshad Jamal
- Department of Civil Engineering, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
24
|
Viscusi G, Lamberti E, Gorrasi G. Design of sodium alginate/soybean extract beads loaded with hemp hurd and halloysite as novel and sustainable systems for methylene blue adsorption. POLYM ENG SCI 2022. [DOI: 10.1002/pen.25839] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Gianluca Viscusi
- Department of Industrial Engineering University of Salerno Fisciano Italy
| | - Elena Lamberti
- Department of Industrial Engineering University of Salerno Fisciano Italy
| | - Giuliana Gorrasi
- Department of Industrial Engineering University of Salerno Fisciano Italy
| |
Collapse
|
25
|
Torres FG, De-la-Torre GE. Synthesis, characteristics, and applications of modified starch nanoparticles: A review. Int J Biol Macromol 2022; 194:289-305. [PMID: 34863968 DOI: 10.1016/j.ijbiomac.2021.11.187] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/03/2021] [Accepted: 11/27/2021] [Indexed: 12/11/2022]
Abstract
Nowadays, starch nanoparticles (SNPs) are drawing attention to the scientific community due to their versatility and wide range of applications. Although several works have extensively addressed the SNP production routes, not much is discussed about the SNPs modification techniques, as well as the use of modified SNPs in typical and unconventional applications. Here, we focused on the SNP modification strategies and characteristics and performance of the resulting products, as well as their practical applications, while pointing out the main limitations and recommendations. We aim to guide researchers by identifying the next steps in this emerging line of research. SNPs esterification and oxidation are preferred chemical modifications, which result in changes in the functional groups. Moreover, additional polymers are incorporated into the SNP surface through copolymer grafting. Physical modification of starch has demonstrated similar changes in the functional groups without the need for toxic chemicals. Modified SNPs rendered differentiated properties, such as size, shape, crystallinity, hydrophobicity, and Zeta-potential. For multiple applications, tailoring the aforementioned properties is key to the performance of nanoparticle-based systems. However, the number of studies focusing on emerging applications is fairly limited, while their applications as drug delivery systems lack in vivo studies. The main challenges and prospects were discussed.
Collapse
Affiliation(s)
- Fernando G Torres
- Department of Mechanical Engineering, Pontificia Universidad Católica del Perú, Av. Universitaria 1801, Lima 15088, Peru.
| | | |
Collapse
|
26
|
Zhao J, Wen X, Xu H, Weng Y, Chen Y. Fabrication of recyclable magnetic biosorbent from eggshell membrane for efficient adsorption of dye. ENVIRONMENTAL TECHNOLOGY 2021; 42:4380-4392. [PMID: 32323613 DOI: 10.1080/09593330.2020.1760355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 04/18/2020] [Indexed: 06/11/2023]
Abstract
Magnetic eggshell membrane powder (MESM-P) were synthesized and used to remove Congo red (CR) dye from wastewater. The biosorption performance were evaluated at varying operating conditions, including initial pH, dye concentrations, contact time, and temperatures. Thekinetics studies revealed that the adsorption process can be better described by the pseudo-second-order model. The adsorption process conformed better to the Langmuir model with a maximum biosorption capacity of 1037.02 mg g-1 . An ethanol-water system was employed as a fast, effective and harmless desorptionsolvent for the regeneration of biosorbent. The system of 70% ethanol-30%water atpH 13 presented the maximum desorption efficiency up to 96.16%. The MESM-P could be easily regenerated and remained a high adsorption efficiency of 79.55% after ten reusing cycles. Therefore, the prepared MESM-P biosorbent could be a promising candidate for the removal of dye pollution from wastewater.
Collapse
Affiliation(s)
- Junfeng Zhao
- School of Chemistry and Materials Engineering, Changshu Institute of Technology, Changshu, P. R. People's Republic of China
| | - Xuemin Wen
- School of Chemistry and Materials Engineering, Changshu Institute of Technology, Changshu, P. R. People's Republic of China
| | - Huashan Xu
- School of Chemistry and Materials Engineering, Changshu Institute of Technology, Changshu, P. R. People's Republic of China
| | - Yuancui Weng
- School of Chemistry and Materials Engineering, Changshu Institute of Technology, Changshu, P. R. People's Republic of China
| | - Yanqiu Chen
- School of Chemistry and Materials Engineering, Changshu Institute of Technology, Changshu, P. R. People's Republic of China
| |
Collapse
|
27
|
Kulal P, Krishnappa PB, Badalamoole V. Development of gum acacia based magnetic nanocomposite adsorbent for wastewater treatment. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-021-03909-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
28
|
Al Sharabati M, Abokwiek R, Al-Othman A, Tawalbeh M, Karaman C, Orooji Y, Karimi F. Biodegradable polymers and their nano-composites for the removal of endocrine-disrupting chemicals (EDCs) from wastewater: A review. ENVIRONMENTAL RESEARCH 2021; 202:111694. [PMID: 34274334 DOI: 10.1016/j.envres.2021.111694] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/08/2021] [Accepted: 07/12/2021] [Indexed: 06/13/2023]
Abstract
Endocrine-disrupting chemicals (EDCs) target the endocrine system by interfering with the natural hormones in the body leading to adverse effects on human and animal health. These chemicals have been identified as major polluting agents in wastewater effluents. Pharmaceuticals, personal care products, industrial compounds, pesticides, dyes, and heavy metals are examples of substances that could be considered endocrine active chemicals. In humans, these chemicals could cause obesity, cancer, Alzheimer's disease, autism, reproductive abnormalities, and thyroid problems. While in wildlife, dysfunctional gene expression could lead to the feminization of some aquatic organisms, metabolic diseases, cardiovascular risk, and problems in the reproductive system as well as its levels of hatchability and vitellogenin. EDCs could be effectively removed from wastewater using advanced technologies such as reverse osmosis, membrane treatment, ozonation, advanced oxidation, filtration, and biodegradation. However, adsorption has been proposed as a more promising and sustainable method for water treatment than any other reported technique. Increased attention has been paid to biodegradable polymers and their nano-composites as promising adsorbents for the removal of EDCs from wastewater. These polymers could be either natural, synthetic, or a combination of both. This review presents a summary of the most relevant cases where natural and synthetic biodegradable polymers have been used for the successful removal of EDCs from wastewater. It demonstrates the effectiveness of these polymers as favorable adsorbents for novel wastewater treatment technologies. Hitherto, very limited work has been published on the use of both natural and synthetic biodegradable polymers to remove EDCs from wastewater, as most of the studies focused on the utilization of only one type, either natural or synthetic. Therefore, this review could pave the way for future exploration of biodegradable polymers as promising and sustainable adsorbents for the removal of various types of pollutants from wastewater.
Collapse
Affiliation(s)
- Miral Al Sharabati
- Materials Science and Engineering PhD Program, American University of Sharjah, Sharjah, 26666, United Arab Emirates
| | - Raed Abokwiek
- Materials Science and Engineering PhD Program, American University of Sharjah, Sharjah, 26666, United Arab Emirates
| | - Amani Al-Othman
- Department of Chemical Engineering, American University of Sharjah, Sharjah, 26666, United Arab Emirates
| | - Muhammad Tawalbeh
- Department of Sustainable and Renewable Energy Engineering, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Ceren Karaman
- Department of Electricity and Energy, Akdeniz University, Antalya, 07070, Turkey.
| | - Yasin Orooji
- College of Materials Science and Engineering, Nanjing Forestry University, 159 Longpan Road, Nanjing, 210037, PR China
| | - Fatemeh Karimi
- Deparment of Chemical Engineering, Quchan University of Technology, Quchan, Iran.
| |
Collapse
|
29
|
Mashile PP, Nomngongo PN. Magnetic Cellulose-Chitosan Nanocomposite for Simultaneous Removal of Emerging Contaminants: Adsorption Kinetics and Equilibrium Studies. Gels 2021; 7:gels7040190. [PMID: 34842666 PMCID: PMC8628732 DOI: 10.3390/gels7040190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 11/16/2022] Open
Abstract
The presence of pharmaceuticals in water systems threatens both terrestrial and aquatic life across the globe. Some of such contaminants are β-blockers and anticonvulsants, which have been constantly detected in different water systems. Various methodologies have been introduced for the removal of these emerging pollutants from different waters. Among them, adsorption using nanomaterials has proved to be an efficient and cost-effective process for the removal of pharmaceuticals from contaminated water. In this this study, a firsthand/time approach applying a recyclable magnetic cellulose-chitosan nanocomposite for effective simultaneous removal of two β-blockers (atenolol (ATN)) and propranolol (PRP) and an anticonvulsant (carbamazepine (CBZ)) is reported. A detailed characterization of the eco-friendly, biocompatible cellulose-chitosan nanocomposite with magnetic properties was performed at various rates of synthesis using X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET), and Fourier transform infrared (FTIR) spectroscopy. A N2c adsorption-desorption test showed that the prepared nanocomposite is mesoporous, with a BET area of 112 m2 g-1. The BET isotherms results showed that the magnetic cellulose-chitosan nanocomposite has a pore size of 24.1 nm. The adsorption equilibrium of PRP and CBZ fitted with the Langmuir isotherm was consistent with the highest coefficient of determination (R2 = 0.9945) and (R2 = 0.9942), respectively, while the Sips model provided a better fit for ATN, with a coefficient of determination R2 = 0.9956. The adsorption rate was accompanied by a pseudo-second-order kinetics. Moreover, the swelling test showed that up to 100 percent swelling of the magnetic cellulose-chitosan nanocomposite was achieved.
Collapse
Affiliation(s)
- Phodiso Prudence Mashile
- Department of Chemical Sciences, Doornfontein Campus, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa;
- Department of Science and Innovation-National Research Foundation South African Research Chair Initiative (DSI-NRF SARChI), Nanotechnology for Water, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa
| | - Philiswa Nosizo Nomngongo
- Department of Chemical Sciences, Doornfontein Campus, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa;
- Department of Science and Innovation-National Research Foundation South African Research Chair Initiative (DSI-NRF SARChI), Nanotechnology for Water, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa
- Correspondence:
| |
Collapse
|
30
|
Singh R, Munya V, Are VN, Nayak D, Chattopadhyay S. A Biocompatible, pH-Sensitive, and Magnetically Separable Superparamagnetic Hydrogel Nanocomposite as an Efficient Platform for the Removal of Cationic Dyes in Wastewater Treatment. ACS OMEGA 2021; 6:23139-23154. [PMID: 34549115 PMCID: PMC8444210 DOI: 10.1021/acsomega.1c02720] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/20/2021] [Indexed: 06/13/2023]
Abstract
A series of environment-friendly cationic dye adsorbents, namely, pH-sensitive superparamagnetic hydrogel nanocomposite AA-VSA-P/SPIONs systems with different concentrations of superparamagnetic iron oxide nanoparticles (SPIONs; 1.2, 3.2, and 5.2 wt %), was synthesized by free-radical polymerization reaction using two pH-sensitive monomers, acrylic acid (AA) and vinylsulfonic acid (VSA), in an optimum ratio, in the presence of presynthesized SPIONs. The structural properties, thermal stability, and chemical configuration of AA-VSA-P/SPIONs systems with different weight percentages of SPIONs were characterized by XRD, TGA, Raman spectroscopy, and FTIR spectroscopy. The systems show substantial efficiency as dye adsorbents for removing cationic dyes (MB dye) from aqueous solution in neutral to alkaline medium. Further, these systems exhibit easy magnetic separation capabilities from aqueous solutions after dye adsorption, even for a very low weight percentage of SPIONs. The adsorption kinetics, mechanism, and isotherms of these systems were evaluated. The study suggests consistency with the pseudo-second-order kinetic model, following an intraparticle diffusion mechanism, where the heterogeneous surface of the system having different activation energies for adsorption plays the crucial role in dye adsorption via chemisorption for higher pH medium, which was further substantiated by excellent data fit with the Freundlich isotherm model. Biocompatibility and regeneration-ability studies establish the environment-friendliness and cost effectivity of the system.
Collapse
Affiliation(s)
- Rinki Singh
- Department
of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, India
| | - Vikas Munya
- Department
of Physics, Indian Institute of Technology
Indore, Simrol, Indore 453552, India
| | - Venkata Narayana Are
- Department
of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, India
| | - Debasis Nayak
- Department
of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, India
| | - Sudeshna Chattopadhyay
- Department
of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, India
- Department
of Physics, Indian Institute of Technology
Indore, Simrol, Indore 453552, India
- Department
of Metallurgy Engineering and Materials Science, Indian Institute of Technology Indore, Simrol, Indore 453552, India
| |
Collapse
|
31
|
Synthesis of super-absorbent poly(AN)-g-starch composite hydrogel and its modelling for aqueous sorption of cadmium ions. KOREAN J CHEM ENG 2021. [DOI: 10.1007/s11814-021-0856-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
32
|
Valizadeh K, Heydarinasab A, Hosseini SS, Bazgir S. Preparation of modified membrane of polyvinylidene fluoride (PVDF) and evaluation of anti-fouling features and high capability in water/oil emulsion separation. J Taiwan Inst Chem Eng 2021. [DOI: 10.1016/j.jtice.2021.07.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
33
|
Niknezhad M, Mansour Lakouraj M. Development of pH-sensitive hydrogel nanocomposite based on acrylic acid/ graphene oxide/acryloyl tetra ammonium thiacalix[4]arene for separation of cationic dyes. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02510-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
34
|
Chang YJ, Zhou Q, Hou WH, Liang YH, Ren L, Sun DH, Ren LQ. Design and Preparation of Magnetism-Driven Intelligent Hydrogel Actuators. INT POLYM PROC 2021. [DOI: 10.1515/ipp-2020-3904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Novel kinds of magnetism-driven poly N,N-dimethylacrylamide bilayer intelligent hydrogels with various nanofibrillated cellulose (NFC) contents were prepared successfully via one-step insitu free radical polymerization. The bilayer hydrogels possessed high mechanical strength, efficient swelling and steady magnetic response. With the increase of nanofibrillated cellulose content, the crosslinking density of the hydrogels increased, leading to the decrease of swelling rate and increase of mechanical strength and swelling bending degree of hydrogel actuators, respectively. Fe3O4 particles existed tightly on the micropore surfaces of the hydrogels, which built the function base of magnetic response of hydrogel actuators. The addition of Fe3O4 was irrelevant to the variation of crosslinking density. The bilayer structure exhibited high bonding strength. Based on intelligent responsive properties, bilayer hydrogels were designed as soft magnetism-driven actuators, realizing capture and transportation properties and provided material candidates for soft robots.
Collapse
Affiliation(s)
- Y.-J. Chang
- State Key Laboratory of Automotive Simulation and Control, Jilin University , Changchun , PRC
- College of Food Science and Engineering, Jilin University , Changchun , PRC
| | - Q. Zhou
- Cadre’s Ward, The First Hospital of Jilin University , Changchun , PRC
| | - W.-H. Hou
- State Key Laboratory of Automotive Simulation and Control, Jilin University , Changchun , PRC
| | - Y.-H. Liang
- State Key Laboratory of Automotive Simulation and Control, Jilin University , Changchun , PRC
| | - L. Ren
- School of Mechanical, Aerospace and Civil Engineering, University of Manchester , Manchester , UK
| | - D.-H. Sun
- College of Science, Changchun Institute of Technology , Changchun , PRC
| | - L.-Q. Ren
- State Key Laboratory of Automotive Simulation and Control, Jilin University , Changchun , PRC
| |
Collapse
|
35
|
Cruz H, Yap Gabon M, Salehin S, Seviour T, Laycock B, Pikaar I. Magnetic poly(acrylic acid)-based hydrogels for rapid ammonium sorption and efficient sorbent separation from sewage. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2021; 6:100097. [PMID: 36159177 PMCID: PMC9488083 DOI: 10.1016/j.ese.2021.100097] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 06/16/2023]
Abstract
Ammonium sorption and recovery processes typically take place in conventional packed columns, with a configuration that enables maximum sorption by the sorbents. However, batch or semi-continuous operations in packed columns have associated issues such as scaling and frequent backwashing requirements, which are economically prohibitive. As an alternative, ammonium sorption could occur in well-mixed continuously stirred tanks, which would allow for the ammonium sorption process to be retrofitted in existing wastewater treatment plants, provided that efficient sorbent separation can be achieved. This study demonstrates, for the first time, the preparation of magnetic poly(acrylic acid)-based (PAA) ammonium sorbents through the incorporation of magnetic (Fe3O4) nanoparticles (MNP) produced via scalable and cost-effective electrochemical synthesis. The MNP and PAA hydrogels were synthesized independently and the MNPs subsequently integrated into the PAA hydrogel network by particle diffusion and physical entrapment. No adverse effects on swelling and ammonium sorption following immersion in either synthetic or real sewage were observed after MNPs were incorporated into the hydrogels. Importantly, PAA-MNP hydrogels demonstrated high ammonium sorption efficiencies (80-93%) in real sewage and achieved rapid ammonium recovery of 73 ± 1.1% within 15 min of mild acid washing (pH 4) 15 min at a maximum recovery.
Collapse
Affiliation(s)
- Heidy Cruz
- School of Civil Engineering, The University of Queensland, Brisbane, Queensland, 4072, Australia
- Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore, 117576, Singapore
| | - Miriam Yap Gabon
- School of Civil Engineering, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Sirajus Salehin
- School of Civil Engineering, The University of Queensland, Brisbane, Queensland, 4072, Australia
- Advanced Water Management Center, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Thomas Seviour
- WATEC Aarhus University Centre for Water Technology, Nørrebrogade 44, Bldg 1783, 8000, Aarhus, Denmark
| | - Bronwyn Laycock
- School of Chemical Engineering, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Ilje Pikaar
- School of Civil Engineering, The University of Queensland, Brisbane, Queensland, 4072, Australia
| |
Collapse
|
36
|
Maijan P, Junlapong K, Arayaphan J, Khaokong C, Chantarak S. Synthesis and characterization of highly elastic superabsorbent natural rubber/polyacrylamide hydrogel. Polym Degrad Stab 2021. [DOI: 10.1016/j.polymdegradstab.2021.109499] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
37
|
Darama SE, Gürkan EH, Terzi Ö, Çoruh S. Leaching Performance and Zinc Ions Removal from Industrial Slag Leachate Using Natural and Biochar Walnut Shell. ENVIRONMENTAL MANAGEMENT 2021; 67:498-505. [PMID: 33191464 DOI: 10.1007/s00267-020-01390-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 10/28/2020] [Indexed: 06/11/2023]
Abstract
This study aims to investigate leaching characteristics of zinc slag according to leaching tests, including; TCLP (Toxicity Characteristic Leaching Procedure), SPLP (Synthetic Precipitation Leaching Procedure), ASTM-D3987 (American Society for Testing and Materials), and TS EN-12457-4 (Turkish Standards Institute) tests methods. The present study describes the adsorption potential of natural and biochar walnut shells for removing ions from the zinc leachate. TCLP leachate, with a value of 38.575 mg/L, has a high zinc (Zn+2) concentration compared to other methods. Therefore, TCLP leachate was used in the adsorption experiments. Adsorption experiments were carried out at different adsorbent dosages, pH values, and contact time conditions. In the dosage study, the highest removal efficiency was obtained as 84% and 92% in natural and biochar walnut shell adsorbents, respectively. As a result of pH study, it was observed that adsorption under alkaline conditions had a much higher removal efficiency. Moreover, adsorption studies performed against contact time were applied to four different kinetic models and both adsorbents were found to be fit with the pseudo-second-order model. This kinetic model showed that the Zn+2 adsorption mechanism of natural and biochar walnut shells is chemical adsorption. With this study, it was shown that a very high 96% zinc removal can be achieved under optimum adsorption conditions. This may be the first study of zinc removal after leaching from industrial slag in the literature. This study has shown that high removal efficiencies can be obtained by an economical adsorbent.
Collapse
Affiliation(s)
- Sevda Esma Darama
- Department of Environmental Engineering, Faculty of Engineering, Ondokuz Mayıs University, Samsun, Turkey.
| | - Elif Hatice Gürkan
- Department of Chemical Engineering, Faculty of Engineering, Ondokuz Mayıs University, Samsun, Turkey
| | - Özlem Terzi
- Department of Public Health, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Semra Çoruh
- Department of Environmental Engineering, Faculty of Engineering, Ondokuz Mayıs University, Samsun, Turkey
| |
Collapse
|
38
|
Recent trends in the application of modified starch in the adsorption of heavy metals from water: A review. Carbohydr Polym 2021; 269:117763. [PMID: 34294282 DOI: 10.1016/j.carbpol.2021.117763] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 02/02/2021] [Accepted: 02/02/2021] [Indexed: 10/22/2022]
Abstract
The presence of polyfunctional ligands on the bio-macromolecules acts as an efficient adsorbent for heavy metal ions. Starch is one of the most abundant, easily available and cheap biopolymer of plant origin. However, native starch exhibits significantly low adsorption capacity due to the absence of some essential functional groups like carboxyl, amino or ester groups and is thus modified using various reaction routes like grafting, cross-linking, esterification, oxidation and irradiation for addition of functional groups to increase its adsorption capacity. The present review provides a comprehensive discussion on the above mentioned modification schemes of starch over the last 10-15 years highlighting their preparation methods, physico-chemical characteristics along with their adsorption capacities and mechanisms of heavy metal ions from water.
Collapse
|
39
|
Nasrollahzadeh M, Sajjadi M, Iravani S, Varma RS. Starch, cellulose, pectin, gum, alginate, chitin and chitosan derived (nano)materials for sustainable water treatment: A review. Carbohydr Polym 2021; 251:116986. [PMID: 33142558 PMCID: PMC8648070 DOI: 10.1016/j.carbpol.2020.116986] [Citation(s) in RCA: 244] [Impact Index Per Article: 81.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 08/20/2020] [Accepted: 08/21/2020] [Indexed: 12/12/2022]
Abstract
Natural biopolymers, polymeric organic molecules produced by living organisms and/or renewable resources, are considered greener, sustainable, and eco-friendly materials. Natural polysaccharides comprising cellulose, chitin/chitosan, starch, gum, alginate, and pectin are sustainable materials owing to their outstanding structural features, abundant availability, and nontoxicity, ease of modification, biocompatibility, and promissing potentials. Plentiful polysaccharides have been utilized for making assorted (nano)catalysts in recent years; fabrication of polysaccharides-supported metal/metal oxide (nano)materials is one of the effective strategies in nanotechnology. Water is one of the world's foremost environmental stress concerns. Nanomaterial-adorned polysaccharides-based entities have functioned as novel and more efficient (nano)catalysts or sorbents in eliminating an array of aqueous pollutants and contaminants, including ionic metals and organic/inorganic pollutants from wastewater. This review encompasses recent advancements, trends and challenges for natural biopolymers assembled from renewable resources for exploitation in the production of starch, cellulose, pectin, gum, alginate, chitin and chitosan-derived (nano)materials.
Collapse
Affiliation(s)
| | - Mohaddeseh Sajjadi
- Department of Chemistry, Faculty of Science, University of Qom, Qom, 37185-359, Iran
| | - Siavash Iravani
- Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Rajender S Varma
- Chemical Methods and Treatment Branch, Water Infrastructure Division, Center for Environmental Solutions and Emergency Response, U. S. Environmental Protection Agency, 26 West Martin Luther King Drive, Cincinnati, OH, 45268, USA; Regional Centre of Advanced Technologies and Materials, Palacký University in Olomouc, Šlechtitelů 27, 783 71, Olomouc, Czech Republic.
| |
Collapse
|
40
|
Kulal P, Badalamoole V. Hybrid nanocomposite of kappa-carrageenan and magnetite as adsorbent material for water purification. Int J Biol Macromol 2020; 165:542-553. [PMID: 33002532 DOI: 10.1016/j.ijbiomac.2020.09.202] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/19/2020] [Accepted: 09/22/2020] [Indexed: 01/13/2023]
Abstract
A novel polysaccharide based hydrogel; kappa-carrageenan grafted with N-hydroxyethylacrylamide (κC-g-PHEAA) was synthesized via microwave assisted free radical polymerization process. A hybrid nanocomposite has also been made by incorporation of Fe3O4 nanoparticles into the κC-g-PHEAA network. The materials were characterized by FTIR, TGA, XRD, SEM, BET and VSM techniques. The nanocomposite exhibited super-paramagnetic behavior. The κC-g-PHEAA and κC-g-PHEAA/Fe3O4 presented significant adsorption capacity towards cationic dyes, methylene blue (MB) and rhodamine 6G (R6G); and metal ions, Cu(II) and Hg(II) from aqueous solution. The magnetite nanoparticles enhance the adsorption characteristics of the hydrogel and enables easy separation of the adsorbent with an external magnetic field. Adsorption process is observed to follow both Langmuir and Freundlich isotherm models for R6G and Freundlich isotherm model for MB, Cu(II) and Hg(II). The adsorption was found to be a pseudo first order process for MB and pseudo second order process for R6G, Cu(II) and Hg(II). Thermodynamic studies have shown the adsorption of dyes and metal ions to be spontaneous and endothermic in nature. The desorption studies revealed the efficient recovery of adsorbate species. The study indicates that the synthesized adsorbents have potential applications for the removal of dyes and metal ions from wastewater.
Collapse
Affiliation(s)
- Prajwal Kulal
- Department of Post-Graduate Studies and Research in Chemistry, Mangalore University, Mangalagangothri 574199, (D.K.), Karnataka, India
| | - Vishalakshi Badalamoole
- Department of Post-Graduate Studies and Research in Chemistry, Mangalore University, Mangalagangothri 574199, (D.K.), Karnataka, India.
| |
Collapse
|
41
|
Khan RU, Yu H, Wang L, Teng L, Zain‐ul‐Abdin, Nazir A, Fahad S, Elshaarani T, Haq F, Shen D. Synthesis of amino‐cosubstituted polyorganophosphazenes and fabrication of their nanoparticles for anticancer drug delivery. J Appl Polym Sci 2020. [DOI: 10.1002/app.49424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Rizwan Ullah Khan
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological EngineeringZhejiang University Hangzhou People's Republic of China
| | - Haojie Yu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological EngineeringZhejiang University Hangzhou People's Republic of China
| | - Li Wang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological EngineeringZhejiang University Hangzhou People's Republic of China
| | - Lisong Teng
- Oncological Surgery and Cancer Center, the First Affiliated HospitalZhejiang University Hangzhou People's Republic of China
| | - Zain‐ul‐Abdin
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological EngineeringZhejiang University Hangzhou People's Republic of China
| | - Ahsan Nazir
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological EngineeringZhejiang University Hangzhou People's Republic of China
| | - Shah Fahad
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological EngineeringZhejiang University Hangzhou People's Republic of China
| | - Tarig Elshaarani
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological EngineeringZhejiang University Hangzhou People's Republic of China
| | - Fazal Haq
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological EngineeringZhejiang University Hangzhou People's Republic of China
| | - Di Shen
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological EngineeringZhejiang University Hangzhou People's Republic of China
| |
Collapse
|
42
|
Ruiz C, Vera M, Rivas BL, Sánchez S, Urbano BF. Magnetic methacrylated gelatin- g-polyelectrolyte for methylene blue sorption. RSC Adv 2020; 10:43799-43810. [PMID: 35519716 PMCID: PMC9058399 DOI: 10.1039/d0ra08188d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 11/23/2020] [Indexed: 12/21/2022] Open
Abstract
The presence of organic dyes in wastewater is a problem of growing interest due to its effect on the environment and human health. The aim of this work was to obtain magnetic hydrogels of methacrylated gelatin-g-polyelectrolyte to be used for the removal of methylene blue (MB) used as a model contaminant dye. Grafted gelatins with two degrees of functionalization (48% and 76%) were obtained and subsequently crosslinked using 2-acrylamido-2-methyl-1-propansulfonic acid (AMPS) and sodium 4-vinylbenzenesulfonate (SSNa) monomers. Magnetic nanoparticles were formed by an in situ precipitation method to easily remove the hydrogel from the adsorption medium. Our data show that the hydrogel with a low degree of methacrylation displayed a high degree of swelling and decreased stiffness due to its less connected polymer network. MB adsorption experiments showed that neither the low degree of methacrylation nor the presence of the aromatic group in the PSSNa polyelectrolyte generated an increase in the adsorption capacity of the hydrogel. However, a significant increase in the adsorption capacity was observed when dry hydrogels were combined compared to that of previously swollen hydrogel. The experimental data were non-linearly fitted to the pseudo-first and pseudo-second order models and in both cases, the highest qe values were obtained for the GelMA-HF/PAMPS and GelMA-LF/PAMPS hydrogels. The Freundlich isotherm model was the one with the best correlation with the data (r2 > 0.9700). Higher kf values were obtained for the GelMA-HF/PAMPS and GelMA-LF/PAMPS hydrogels at 20 °C. The results obtained from this study demonstrated that magnetic polyelectrolyte-grafted gelatins are an efficient option for the removal of contaminant dyes from aqueous solutions. Magnetic methacrylated gelatin grafted with anionic polyelectrolytes hydrogels removes methylene blue efficiently and easily separate with a magnet.![]()
Collapse
Affiliation(s)
- Carla Ruiz
- Departmento de Polímeros, Facultad de Ciencias Químicas, Universidad de Concepción Concepción Chile
| | - Myleidi Vera
- Departmento de Polímeros, Facultad de Ciencias Químicas, Universidad de Concepción Concepción Chile
| | - Bernabé L Rivas
- Departmento de Polímeros, Facultad de Ciencias Químicas, Universidad de Concepción Concepción Chile
| | - Susana Sánchez
- Departmento de Polímeros, Facultad de Ciencias Químicas, Universidad de Concepción Concepción Chile
| | - Bruno F Urbano
- Departmento de Polímeros, Facultad de Ciencias Químicas, Universidad de Concepción Concepción Chile
| |
Collapse
|
43
|
Synthesis of photodegradable cassava starch-based double network hydrogel with high mechanical stability for effective removal of methylene blue. Int J Biol Macromol 2020; 168:875-886. [PMID: 33249146 DOI: 10.1016/j.ijbiomac.2020.11.166] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 10/27/2020] [Accepted: 11/23/2020] [Indexed: 11/20/2022]
Abstract
Synthetic hydrogel has been widely used in several applications, but poor mechanical stability and biodegradability limit their applications and raise environmental concerns. Here, a biodegradable hydrogel was developed via simple free-radical polymerization of poly(acrylic acid) (PAA) in the presence of cassava starch (CS) and poly(vinyl alcohol). The hydrogel showed exceptional mechanical and physical properties. The structural morphology changed at higher CS content from a dense fiber-like porous network to larger pores with thicker cell walls. Due to the formation of a double network structure via physical entanglement, the compressive modulus significantly increased from 27 kPa (CS 0 wt%) to 127 kPa (CS 50 wt%). Reducing synthetic content (PAA) to 25 wt% and increasing CS content to 50 wt% did not reduce the removal efficiency of the hydrogel toward methylene blue (MB). The maximum adsorption capacity of the CS50 hydrogel was 417.0 mg/g. Data fitting to theoretical models indicated monolayer adsorption of MB on a homogeneous surface via chemisorption. Removal efficiency was higher than 70% at the 5th cycle of adsorption-desorption. The biodegradability and photodegradability of the hydrogel were improved by grafting with CS. The developed hydrogel represents an alternative biodegradable adsorbent for a sustainable system of wastewater treatment.
Collapse
|
44
|
Zhang H, Wang P, Zhang Y, Cheng B, Zhu R, Li F. Synthesis of a novel arginine-modified starch resin and its adsorption of dye wastewater. RSC Adv 2020; 10:41251-41263. [PMID: 35519183 PMCID: PMC9057786 DOI: 10.1039/d0ra05727d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/08/2020] [Indexed: 11/21/2022] Open
Abstract
In this work, corn starch (St) was firstly grafted with polyacrylamide (PAM) to obtain StAM, which was subsequently immobilized with arginine to obtain a guanidine-containing starch-based resin, StAM–Arg. The synthesized products were characterized via Fourier transform infrared spectroscopy (FT-IR), 13C-NMR nuclear magnetic resonance (13C-NMR), scanning electron microscopy (SEM), X-ray diffraction (XRD), gel permeation chromatography (GPC), X-ray photoelectron spectroscopy (XPS) and thermogravimetric analysis (TGA). StAM–Arg exhibited a significantly enhanced adsorption capacity for acid fuchsin (AF), acid orange G (AOG), and acid blue 80 (AB80) compared with zeolite, diatomite, St and StAM, and it also exhibited broad-spectrum adsorption for different dyes. Weak acidic conditions were favorable for the resin to adsorb acid dyes. The decolorization rate (DR) by StAM–Arg for mixed wastewater reached 82.49%, which was higher than that of activated carbon (DR = 58.09%). StAM–Arg showed high resistance to microbial degradation, resulting in significantly improved structural stability for the resin. Its antibacterial rate (AR) for E. coli was up to 99.73%. After 7 days in simulated natural water, the weight loss ratio (WR) of StAM–Arg was 14.5%, which was much lower than that of St (WR = 66.53%). The introduced guanidine groups were considered to be the major reason for the observed improvements. Furthermore, the cationic guanidine could trap the acid dyes via ion-exchange reactions, while effectively inhibiting or eliminating the growth of bacteria on the adsorbent surface. The above advantages, including good dyestuff adsorption properties, high structural stability and prolonged service life, make StAM–Arg overcome the inherent drawbacks of the existing natural polymer adsorbents and have good application prospect in the treatment of textile wastewater. In the side reaction, the two aldehyde groups in the glutaraldehyde molecules should undergo an aldol condensation reaction with the hydroxyl group in the starch molecule, which has been corrected.![]()
Collapse
Affiliation(s)
- Hao Zhang
- School of Textile Science and Engineering, Tiangong University 300387 Tianjin China .,Tianjin Key Science and Technology Program Foundation Tianjin 300387 China
| | - Panlei Wang
- School of Textile Science and Engineering, Tiangong University 300387 Tianjin China .,Tianjin Key Science and Technology Program Foundation Tianjin 300387 China
| | - Yi Zhang
- School of Textile Science and Engineering, Tiangong University 300387 Tianjin China
| | - Bowen Cheng
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University 300387 China
| | - Ruoying Zhu
- School of Textile Science and Engineering, Tiangong University 300387 Tianjin China
| | - Fan Li
- School of Textile Science and Engineering, Tiangong University 300387 Tianjin China
| |
Collapse
|
45
|
|
46
|
Jiao C, Zhang J, Liu T, Peng X, Wang H. Mechanically Strong, Tough, and Shape Deformable Poly(acrylamide- co-vinylimidazole) Hydrogels Based on Cu 2+ Complexation. ACS APPLIED MATERIALS & INTERFACES 2020; 12:44205-44214. [PMID: 32871067 DOI: 10.1021/acsami.0c13654] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Shape deformable hydrogels have drawn great attention due to their wide applications as soft actuators. Here we report a novel kind of mechanically strong, tough, and shape deformable poly(acrylamide-co-vinylimidazole) [poly(AAm-co-VI)] hydrogel prepared by photoinitiated copolymerization and the followed immersing in a Cu2+ aqueous solution. Strong Cu2+ complexation with imidazole groups dramatically enhances the mechanical properties of the hydrogels, whose tensile strength, elastic modulus, toughness, and fracture energy reach up to 7.7 ± 0.76 MPa, 15.4 ± 1.2 MPa, 23.2 ± 2.5 MJ m-3, and 22.1 ± 2.3 kJ m-2, respectively. More impressively, shape deformation (bending) can be easily achieved by coating Cu2+ solution on one side of hydrogel strips. Furthermore, precise control of the shape deformation from 1D to 2D and 2D to 3D can be achieved by adjusting Cu2+ concentration, coating time, region, and one or two side(s) of hydrogel samples. The Cu2+ complexation provides a simple way to simultaneously improve the mechanical properties of hydrogels and enable them with shape deformability. The mechanically strong, tough, and shape deformable hydrogels might be a promising candidate for soft actuators.
Collapse
Affiliation(s)
- Chen Jiao
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
- Leibniz-Institute für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany
| | - Jianan Zhang
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Tianqi Liu
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Xin Peng
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Huiliang Wang
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| |
Collapse
|
47
|
Kaur S, Jindal R. Exploring the heavy metal ion sequestration ability of gum copal‐collagen hybrid based interpenetrating polymer network: Kinetics, isotherms, and biodegradation studies. ACTA ACUST UNITED AC 2020. [DOI: 10.1002/pls2.10007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Savneet Kaur
- Department of Chemistry Dr. B.R. Ambedkar National Institute of Technology Jalandhar Punjab India
| | - Rajeev Jindal
- Department of Chemistry Dr. B.R. Ambedkar National Institute of Technology Jalandhar Punjab India
| |
Collapse
|
48
|
Liu H, Yang J, Yin Y, Qi H. A Facile Strategy to Fabricate
Polysaccharide‐Based
Magnetic Hydrogel Based on Enamine Bond
†. CHINESE J CHEM 2020. [DOI: 10.1002/cjoc.201900523] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Hongchen Liu
- College of Textiles, Zhongyuan University of Technology, Zhengzhou Henan 450007 China
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology Guangzhou Guangdong 510640 China
| | - Jingru Yang
- College of Textiles, Zhongyuan University of Technology, Zhengzhou Henan 450007 China
| | - Yunlei Yin
- College of Textiles, Zhongyuan University of Technology, Zhengzhou Henan 450007 China
| | - Haisong Qi
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology Guangzhou Guangdong 510640 China
| |
Collapse
|
49
|
Abdullah Issa M, Z. Abidin Z. Sustainable Development of Enhanced Luminescence Polymer-Carbon Dots Composite Film for Rapid Cd 2+ Removal from Wastewater. Molecules 2020; 25:E3541. [PMID: 32756377 PMCID: PMC7436165 DOI: 10.3390/molecules25153541] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 11/18/2022] Open
Abstract
As a remedy for environmental pollution, a versatile synthetic approach has been developed to prepare polyvinyl alcohol (PVA)/nitrogen-doped carbon dots (CDs) composite film (PVA-CDs) for removal of toxic cadmium ions. The CDs were first synthesized using carboxymethylcellulose (CMC) of oil palms empty fruit bunch wastes with the addition of polyethyleneimine (PEI) and then the CDs were embedded with PVA. The PVA-CDs film possess synergistic functionalities through increasing the content of hydrogen bonds for chemisorption compared to the pure CDs. Optical analysis of PVA-CDs film was performed by ultraviolet-visible and fluorescence spectroscopy. Compared to the pure CDs, the solid-state PVA-CDs displayed a bright blue color with a quantum yield (QY) of 47%; they possess excitation-independent emission and a higher Cd2+ removal efficiency of 91.1%. The equilibrium state was achieved within 10 min. It was found that adsorption data fit well with the pseudo-second-order kinetic and Langmuir isotherm models. The maximum adsorption uptake was 113.6 mg g-1 at an optimal pH of 7. Desorption experiments showhe that adsorbent can be reused fruitfully for five adsorption-desorption cycles using 0.1 HCl elution. The film was successfully applied to real water samples with a removal efficiency of 95.34% and 90.9% for tap and drinking water, respectively. The fabricated membrane is biodegradable and its preparation follows an ecofriendly green route.
Collapse
Affiliation(s)
- Mohammed Abdullah Issa
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia
| | - Zurina Z. Abidin
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia
| |
Collapse
|
50
|
Maijan P, Amornpitoksuk P, Chantarak S. Synthesis and characterization of poly(vinyl alcohol-g-acrylamide)/SiO2@ZnO photocatalytic hydrogel composite for removal and degradation of methylene blue. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122771] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|