1
|
Liu J, Xie Y, Ma J, Chu H. New Ca 2+ based anticancer nanomaterials trigger multiple cell death targeting Ca 2+ homeostasis for cancer therapy. Chem Biol Interact 2024; 393:110948. [PMID: 38479714 DOI: 10.1016/j.cbi.2024.110948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/20/2023] [Accepted: 03/07/2024] [Indexed: 03/22/2024]
Abstract
Calcium ion (Ca2+) is a necessary element for human and Ca2+ homeostasis plays important roles in various cellular process and functions. Recent reaches have targeted on inducing Ca2+ overload (both intracellular and transcellular) for tumor therapy. With the development of nanotechnology, nanoplatform-mediated Ca2+ overload has been safe theranostic model for cancer therapy, and defined a special calcium overload-induced tumor cell death as "calcicoptosis". However, the underlying mechanism of calcicoptosis in cancer cells remains further identification. In this review, we summarized multiple cell death types due to Ca2+ overload that induced by novel anticancer nanomaterials in tumor cells, including apoptosis, autophagy, pyroptosis, and ferroptosis. We reviewed the roles of these anticancer nanomaterials on Ca2+ homeostasis, including transcellular Ca2+ influx and efflux, and intracellular Ca2+ change in the cytosolic and organelles, and connection of Ca2+ overload with other metal ions. This review provides the knowledge of these nano-anticancer materials-triggered calcicoptosis accompanied with multiple cell death by regulating Ca2+ homeostasis, which could not only enhance their efficiency and specificity, but also enlighten to design new cancer therapeutic strategies and biomedical applications.
Collapse
Affiliation(s)
- Junjie Liu
- Department of Urology, Yixing Hospital of Traditional Chinese Medicine, Yixing, Jiangsu, 214200, China
| | - Yimin Xie
- Department of Urology, Affiliated Hospital of Jiangsu University-Yixing Hospital, Yixing, Jiangsu, 214200, China
| | - Jun Ma
- Department of Urology, Yixing Hospital of Traditional Chinese Medicine, Yixing, Jiangsu, 214200, China
| | - Hezhen Chu
- Department of Urology, Yixing Hospital of Traditional Chinese Medicine, Yixing, Jiangsu, 214200, China.
| |
Collapse
|
2
|
Yong J, Wu M, Carroll BJ, Xu ZP, Zhang R. Enhancing plant biotechnology by nanoparticle delivery of nucleic acids. Trends Genet 2024; 40:352-363. [PMID: 38320883 DOI: 10.1016/j.tig.2024.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/12/2024] [Accepted: 01/12/2024] [Indexed: 02/08/2024]
Abstract
Plant biotechnology plays a crucial role in developing modern agriculture and plant science research. However, the delivery of exogenous genetic material into plants has been a long-standing obstacle. Nanoparticle-based delivery systems are being established to address this limitation and are proving to be a feasible, versatile, and efficient approach to facilitate the internalization of functional RNA and DNA by plants. The nanoparticle-based delivery systems can also be designed for subcellular delivery and controlled release of the biomolecular cargo. In this review, we provide a concise overview of the recent advances in nanocarriers for the delivery of biomolecules into plants, with a specific focus on applications to enhance RNA interference, foreign gene transfer, and genome editing in plants.
Collapse
Affiliation(s)
- Jiaxi Yong
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia; Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Miaomiao Wu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Bernard J Carroll
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Zhi Ping Xu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia; Institute of Biomedical Health Technology and Engineering and Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, P. R. China 518107
| | - Run Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia; Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Indooroopilly, Queensland 4068, Australia.
| |
Collapse
|
3
|
Liu Y, Huang Q, He M, Chen T, Chu X. A nano-bioconjugate modified with anti-SIRPα antibodies and antisense oligonucleotides of mTOR for anti-atherosclerosis therapy. Acta Biomater 2024; 176:356-366. [PMID: 38160854 DOI: 10.1016/j.actbio.2023.12.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/02/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
Atherosclerosis is the main cause of a series of fatal cardiovascular diseases, characterized by pathological accumulation of apoptotic cells and lipids. Pro-phagocytic antibody-based or pro-autophagy gene-based therapies are currently being explored to stimulate the phagocytic clearance of apoptotic cells and lipid metabolism; however, monotherapies are only moderately effective or require high doses with unacceptable side effects. Herein, we engineered a specific nano-bioconjugate loaded with antisense oligonucleotides (ASOs) of mammalian target of rapamycin (mTOR) and modified with anti-signal-regulated protein-α antibody (aSIRPα) for macrophage-mediated atherosclerosis therapy. The specific nano-bioconjugate utilized acid-responsive calcium phosphate (CaP) as a carrier to load mTOR ASOs, coated with lipid on the surface of CaP nanoparticles (ASOs@CaP), and subsequently modified with aSIRPα. The resulting nano-bioconjugates could accumulate within atherosclerotic plaques, target to macrophages and reactivate lesional phagocytosis through blocking the CD47-SIRPα signaling axis. In addition, efficient delivery of mTOR ASOs inhibited mTOR expression, which significantly restored impaired autophagy. The combined action of mTOR ASOs and aSIRPα reduced apoptotic cells and lipids accumulation. This nanotherapy significantly reduced plaque burden and inhibited progression of atherosclerotic lesions. These results show the potential of specific nano-bioconjugates for the prevention of atherosclerotic cardiovascular disease. STATEMENT OF SIGNIFICANCE: Atherosclerosis is the main cause of a series of fatal cardiovascular diseases. Pro-phagocytic antibody-based or pro-autophagy gene-based therapies are currently being explored to stimulate the phagocytic clearance of apoptotic cells and lipid metabolism; however, monotherapies are only moderately effective or require high doses with unacceptable side effects. Herein, we engineered a specific nano-bioconjugate loaded with antisense oligonucleotides (ASOs) of mammalian target of rapamycin (mTOR) and modified with anti-signal-regulated protein-α antibody (aSIRPα) for macrophage-mediated atherosclerosis therapy. Our study demonstrated that the combined action of mTOR ASOs and aSIRPα reduced apoptotic cells and lipids accumulation. This nanotherapy significantly reduced plaque burden and inhibited progression of atherosclerotic lesions. These results show the potential of specific nano-bioconjugates for the prevention of atherosclerotic cardiovascular disease.
Collapse
Affiliation(s)
- Yi Liu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Qian Huang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Mengyun He
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Tingting Chen
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Xia Chu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China.
| |
Collapse
|
4
|
Khalifeh M, Badiee A, Ramezanian N, Sahebkar A, Farahpour A, Kazemi Oskuee R. Lactosylated lipid calcium phosphate-based nanoparticles: A promising approach for efficient DNA delivery to hepatocytes. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2024; 27:952-958. [PMID: 38911238 PMCID: PMC11193503 DOI: 10.22038/ijbms.2024.76683.16602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/16/2024] [Indexed: 06/25/2024]
Abstract
Objectives For safe and effective gene therapy, the ability to deliver the therapeutic nucleic acid to the target sites is crucial. In this study, lactosylated lipid phosphate calcium nanoparticles (lac-LCP) were developed for targeted delivery of pDNA to the hepatocyte cells. The lac-LCP formulation contained lactose-modified cholesterol (CHL), a ligand that binds to the asialoglycoprotein receptor (ASGR) expressed on hepatocytes, and polyethyleneimine (PEI) in the core. Materials and Methods Fourier transform infrared spectroscopy (FT-IR) and nuclear magnetic resonance (NMR) were used to monitor the chemical modification, and the physicochemical properties of NPs were studied using dynamic light scattering (DLS) and transmission electron microscopy (TEM). To evaluate transfection efficiency, cellular uptake and GFP expression were assessed using fluorescence microscopy and flow cytometry. Results The results revealed that lactose-targeted particles (lac-LCP) had a significant increase in cellular uptake by hepatocytes. The inclusion of a low molecular weight PEI (1.8 KDa) with a low PEI/pDNA ratio of 1 in the core of LCP, elicited high degrees of GFP protein expression (by 5 and 6-fold), which exhibited significantly higher efficiency than PEI 1.8 KDa and Lipofectamine. Conclusion The successful functionalization and nuclear delivery of LCP NPs described here indicate its promise as an efficient delivery vector to hepatocyte nuclei.
Collapse
Affiliation(s)
- Masoomeh Khalifeh
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Badiee
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Navid Ramezanian
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Atena Farahpour
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Reza Kazemi Oskuee
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Targeted Drug Delivery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
5
|
Yang L, Wang T, Zhang D, Huang X, Dong Y, Gao W, Ye Y, Ren K, Zhao W, Qiao H, Jia L. Black Phosphorus Nanosheets Assist Nanoerythrosomes for Efficient mRNA Vaccine Delivery and Immune Activation. Adv Healthc Mater 2023; 12:e2300935. [PMID: 37363954 DOI: 10.1002/adhm.202300935] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/06/2023] [Indexed: 06/28/2023]
Abstract
Messenger RNA (mRNA)-based vaccines have enormous potential in infectious disease prevention and tumor neoantigen application. However, developing an advanced delivery system for efficient mRNA delivery and intracellular release for protein translation remains a challenge. Herein, a biocompatible biomimetic system is designed using red blood cell-derived nanoerythrosomes (NER) and black phosphorus nanosheets (BP) for mRNA delivery. BP is covalently modified with polyethyleneimine (PEI), serving as a core to efficiently condense mRNA via electrostatic interactions. To facilitate the spleen targeting of the mRNA-loaded BP (BPmRNA ), NER is co-extruded with BPmRNA to construct a stable "core-shell" nanovaccine (NER@BPmRNA ). The mRNA nanovaccine exhibits efficient protein expression and immune activation via BP-mediated adjuvant effect and enhanced lysosomal escape. In vivo evaluation demonstrates that the system delivery of mRNA encoding coronavirus receptor-binding domain (RBD) significantly increases the antibody titer and pseudovirus neutralization effect compared with that of NER without BP assistance. Furthermore, the mRNA extracted from mouse melanoma tissues is utilized to simulate tumor neoantigen delivered by NER@BPmRNA . In the vaccinated mice, BP-assisted NER for the delivery of melanoma mRNA can induce more antibodies that specifically recognize tumor antigens. Thus, BP-assisted NER can serve as a safe and effective delivery vehicle in mRNA-based therapy.
Collapse
Affiliation(s)
- Lixin Yang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Tengqi Wang
- Central Lab, Bayannur Hospital, Bayannur, 015000, China
| | - Dexin Zhang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Xin Huang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Yuqin Dong
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Wen Gao
- Central Lab, Bayannur Hospital, Bayannur, 015000, China
| | - Youqing Ye
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Ke Ren
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, 610500, China
| | - Wei Zhao
- Department of Pathology, China Pharmaceutical University Nanjing First Hospital, Nanjing, 210012, China
| | - Haishi Qiao
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Lizhou Jia
- Central Lab, Bayannur Hospital, Bayannur, 015000, China
| |
Collapse
|
6
|
Kiaie SH, Salehi-Shadkami H, Sanaei MJ, Azizi M, Shokrollahi Barough M, Nasr MS, Sheibani M. Nano-immunotherapy: overcoming delivery challenge of immune checkpoint therapy. J Nanobiotechnology 2023; 21:339. [PMID: 37735656 PMCID: PMC10512572 DOI: 10.1186/s12951-023-02083-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/26/2023] [Indexed: 09/23/2023] Open
Abstract
Immune checkpoint (ICP) molecules expressed on tumor cells can suppress immune responses against tumors. ICP therapy promotes anti-tumor immune responses by targeting inhibitory and stimulatory pathways of immune cells like T cells and dendritic cells (DC). The investigation into the combination therapies through novel immune checkpoint inhibitors (ICIs) has been limited due to immune-related adverse events (irAEs), low response rate, and lack of optimal strategy for combinatorial cancer immunotherapy (IMT). Nanoparticles (NPs) have emerged as powerful tools to promote multidisciplinary cooperation. The feasibility and efficacy of targeted delivery of ICIs using NPs overcome the primary barrier, improve therapeutic efficacy, and provide a rationale for more clinical investigations. Likewise, NPs can conjugate or encapsulate ICIs, including antibodies, RNAs, and small molecule inhibitors. Therefore, combining the drug delivery system (DDS) with ICP therapy could provide a profitable immunotherapeutic strategy for cancer treatment. This article reviews the significant NPs with controlled DDS using current data from clinical and pre-clinical trials on mono- and combination IMT to overcome ICP therapeutic limitations.
Collapse
Affiliation(s)
- Seyed Hossein Kiaie
- Department of Formulation Development, ReNAP Therapeutics, Tehran, Iran.
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Hossein Salehi-Shadkami
- Department of Formulation Development, ReNAP Therapeutics, Tehran, Iran
- Department of Medical Science, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Javad Sanaei
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, 8815713471, Iran
| | - Marzieh Azizi
- Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | | | - Mohammad Sadegh Nasr
- Department of Computer Science and Engineering Multi-Interprofessional Center for Health Informatics (MICHI), The University of Texas at Arlington, Arlington, TX, USA
| | - Mohammad Sheibani
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Razi Drug Research Center, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Zhang Q, Song Q, Yu R, Wang A, Jiang G, Huang Y, Chen J, Xu J, Wang D, Chen H, Gao X. Nano-Brake Halts Mitochondrial Dysfunction Cascade to Alleviate Neuropathology and Rescue Alzheimer's Cognitive Deficits. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204596. [PMID: 36703613 PMCID: PMC9982524 DOI: 10.1002/advs.202204596] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 01/02/2023] [Indexed: 06/18/2023]
Abstract
Mitochondrial dysfunction has been recognized as the key pathogenesis of most neurodegenerative diseases including Alzheimer's disease (AD). The dysregulation of mitochondrial calcium ion (Ca2+ ) homeostasis and the mitochondrial permeability transition pore (mPTP), is a critical upstream signaling pathway that contributes to the mitochondrial dysfunction cascade in AD pathogenesis. Herein, a "two-hit braking" therapeutic strategy to synergistically halt mitochondrial Ca2+ overload and mPTP opening to put the mitochondrial dysfunction cascade on a brake is proposed. To achieve this goal, magnesium ion (Mg2+ ), a natural Ca2+ antagonist, and siRNA to the central mPTP regulator cyclophilin D (CypD), are co-encapsulated into the designed nano-brake; A matrix metalloproteinase 9 (MMP9) activatable cell-penetrating peptide (MAP) is anchored on the surface of nano-brake to overcome the blood-brain barrier (BBB) and realize targeted delivery to the mitochondrial dysfunction cells of the brain. Nano-brake treatment efficiently halts the mitochondrial dysfunction cascade in the cerebrovascular endothelial cells, neurons, and microglia and powerfully alleviates AD neuropathology and rescues cognitive deficits. These findings collectively demonstrate the potential of advanced design of nanotherapeutics to halt the key upstream signaling pathways of mitochondrial dysfunction to provide a powerful strategy for AD modifying therapy.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Pharmacology and Chemical BiologyState Key Laboratory of Oncogenes and Related GenesShanghai Universities Collaborative Innovation Center for Translational MedicineShanghai Jiao Tong University School of Medicine280 South Chongqing RoadShanghai200025China
| | - Qingxiang Song
- Department of Pharmacology and Chemical BiologyState Key Laboratory of Oncogenes and Related GenesShanghai Universities Collaborative Innovation Center for Translational MedicineShanghai Jiao Tong University School of Medicine280 South Chongqing RoadShanghai200025China
| | - Renhe Yu
- Department of Pharmacology and Chemical BiologyState Key Laboratory of Oncogenes and Related GenesShanghai Universities Collaborative Innovation Center for Translational MedicineShanghai Jiao Tong University School of Medicine280 South Chongqing RoadShanghai200025China
| | - Antian Wang
- Department of Pharmacology and Chemical BiologyState Key Laboratory of Oncogenes and Related GenesShanghai Universities Collaborative Innovation Center for Translational MedicineShanghai Jiao Tong University School of Medicine280 South Chongqing RoadShanghai200025China
| | - Gan Jiang
- Department of Pharmacology and Chemical BiologyState Key Laboratory of Oncogenes and Related GenesShanghai Universities Collaborative Innovation Center for Translational MedicineShanghai Jiao Tong University School of Medicine280 South Chongqing RoadShanghai200025China
| | - Yukun Huang
- Department of Pharmacology and Chemical BiologyState Key Laboratory of Oncogenes and Related GenesShanghai Universities Collaborative Innovation Center for Translational MedicineShanghai Jiao Tong University School of Medicine280 South Chongqing RoadShanghai200025China
| | - Jun Chen
- School of PharmacyShanghai Pudong Hospital & Department of PharmaceuticsFudan UniversityLane 826, Zhangheng RoadShanghai201203China
| | - Jianrong Xu
- Academy of Integrative MedicineShanghai University of Traditional Chinese Medicine1200 Cailun RoadShanghai201203China
| | - Dayuan Wang
- Department of Pharmacology and Chemical BiologyState Key Laboratory of Oncogenes and Related GenesShanghai Universities Collaborative Innovation Center for Translational MedicineShanghai Jiao Tong University School of Medicine280 South Chongqing RoadShanghai200025China
| | - Hongzhuan Chen
- Institute of Interdisciplinary Integrative Biomedical ResearchShuguang HospitalShanghai University of Traditional Chinese Medicine1200 Cailun RoadShanghai201203China
| | - Xiaoling Gao
- Department of Pharmacology and Chemical BiologyState Key Laboratory of Oncogenes and Related GenesShanghai Universities Collaborative Innovation Center for Translational MedicineShanghai Jiao Tong University School of Medicine280 South Chongqing RoadShanghai200025China
| |
Collapse
|
8
|
Ma Q, Mu Y, Gong L, Zhu C, Di S, Cheng M, Gao J, Shi J, Zhang L. Manganese-based nanoadjuvants for enhancement of immune effect of DNA vaccines. Front Bioeng Biotechnol 2022; 10:1053872. [PMID: 36338143 PMCID: PMC9633283 DOI: 10.3389/fbioe.2022.1053872] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 10/10/2022] [Indexed: 11/13/2022] Open
Abstract
As a highly pathogenic avian influenza virus, influenza A (H5N1) has been reported to infect humans, posing a major threat to both poultry industry and public health. It is an urgent need to develop a kind of effective vaccine to prevent death and reduce the incidence rate of H5N1 avian influenza. Compared with traditional inactivated or attenuated vaccines, deoxyribonucleic (DNA) vaccines have the advantages of continuously expressing plasmid-encoded antigens and inducing humoral and cellular immunity. However, the immune effect of DNA vaccines is limited to its poor immunogenicity. Using of nanoadjuvants with DNA vaccines holds a great promise to increase the transfection efficiency and immunogenicity of DNA vaccines. In this study, we developed a nano co-delivery system with a manganese-based liposome as adjuvant for delivery of a DNA vaccine. This system has been found to protect DNA vaccine, enhance phagocytosis as well as promote activation of antigen-presenting cells (APCs) and immune cells in draining lymph nodes. In addition, the effect of this nanovaccine has been evaluated in mouse models, where it induces highly potent hemagglutination inhibitory antibody (HI) and IgG antibodies, while activating both humoral and cellular immunity in the host. Overall, this strategy opens up a new prospect for manganese nanoadjuvants in increasing the immunogenicity of DNA vaccines.
Collapse
Affiliation(s)
- Qiang Ma
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Science, Northwest A & F University, Xianyang, China
| | - Yongxu Mu
- Department of Interventional, The First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, China
| | - Lidong Gong
- Institute of Systems Biomedicine, Department of Pharmacology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China
| | - Chuanda Zhu
- Institute of Systems Biomedicine, Department of Pharmacology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China
| | - Shiming Di
- Institute of Systems Biomedicine, Department of Pharmacology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China
| | - Ming Cheng
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jinming Gao
- College of Chemistry and Pharmacy, Northwest A & F University, Xianyang, China
- *Correspondence: Jinming Gao, ; Jihai Shi, ; Liang Zhang,
| | - Jihai Shi
- Department of Dermatology, The First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, China
- *Correspondence: Jinming Gao, ; Jihai Shi, ; Liang Zhang,
| | - Liang Zhang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Jinming Gao, ; Jihai Shi, ; Liang Zhang,
| |
Collapse
|
9
|
Ferrous ions doped calcium carbonate nanoparticles potentiate chemotherapy by inducing ferroptosis. J Control Release 2022; 348:346-356. [PMID: 35679965 DOI: 10.1016/j.jconrel.2022.06.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 05/13/2022] [Accepted: 06/02/2022] [Indexed: 01/05/2023]
Abstract
Ferroptosis is a recently identified regulated cell death pathway featured in iron prompted lipid peroxidation inside cells and found to be an effective approach to suppress tumor growth. Motived by the high efficacy of ferrous ions (Fe2+) in initiating intracellular lipid peroxidation via the Fenton reaction, this study herein prepares a pH-responsive Fe2+ delivery nanocarrier by coating calcium carbonate (CaCO3) nanoparticles with a metal-polyphenol coordination polymer composed of gallic acid (GA) and Fe2+. Together with simultaneous encapsulation of succinic acid conjugated cisplatin prodrugs (Pt(IV)-SA) and Fe2+, the yielded nanoparticles, coined as PGFCaCO3, are synthesized and exhibit uniform hollow structure. After PEGylation, the resulted PGFCaCO3-PEG shows increased physiological stability and pH-dependent decomposition, drug release and catalytic capability in initiating lipid peroxidation. After being endocytosed, PGFCaCO3-PEG effectively promoted intracellular generation of cytotoxic reactive oxygen species including lipid peroxide, thereby exhibited superior inhibition effect towards both murine 4T1 and CT26 cancer cells over Pt(IV)-SA and GFCaCO3-PEG. As a result, treatment with systemic administration of PGFCaCO3-PEG effectively suppressed 4T1 tumor growth via combined Fe2+ initiated ferroptosis and Pt(IV)-SA mediated chemotherapy. This work highlights that intracellular delivery of Fe2+ is a robust approach to enhance tumor chemotherapy by inducing ferroptosis.
Collapse
|
10
|
Movahedi F, Liu J, Sun B, Cao P, Sun L, Howard C, Gu W, Xu ZP. PD-L1-Targeted Co-Delivery of Two Chemotherapeutics for Efficient Suppression of Skin Cancer Growth. Pharmaceutics 2022; 14:pharmaceutics14071488. [PMID: 35890381 PMCID: PMC9318418 DOI: 10.3390/pharmaceutics14071488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/05/2022] [Accepted: 07/15/2022] [Indexed: 11/16/2022] Open
Abstract
To overcome the severe side effects of cancer chemotherapy, it is vital to develop targeting chemotherapeutic delivery systems with the potent inhibition of tumour growth, angiogenesis, invasion and migration at low drug dosages. For this purpose, we co-loaded a conventional antiworm drug, albendazole (ABZ), and a TOPK inhibitor, OTS964, into lipid-coated calcium phosphate (LCP) nanoparticles for skin cancer treatment. OTS- and ABZ-loaded LCP (OTS-ABZ-LCP) showed a synergistic cytotoxicity against skin cancer cells through their specific cancerous pathways, without obvious toxicity to healthy cell lines. Moreover, dual-targeting the programmed death ligand-1 (PD-L1) and folate receptor overexpressed on the surface of skin cancer cells completely suppressed the skin tumour growth at low doses of ABZ and OTS. In summary, ABZ and OTS co-loaded dual-targeting LCP NPs represent a promising platform with high potentials against complicated cancers where PD-L1/FA dual targeting appears as an effective approach for efficient and selective cancer therapy.
Collapse
|
11
|
Dick TA, Sone ED, Uludağ H. Mineralized vectors for gene therapy. Acta Biomater 2022; 147:1-33. [PMID: 35643193 DOI: 10.1016/j.actbio.2022.05.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 11/01/2022]
Abstract
There is an intense interest in developing materials for safe and effective delivery of polynucleotides using non-viral vectors. Mineralization of organic templates has long been used to produce complex materials with outstanding biocompatibility. However, a lack of control over mineral growth has limited the applicability of mineralized materials to a few in vitro applications. With better control over mineral growth and surface functionalization, mineralized vectors have advanced significantly in recent years. Here, we review the recent progress in chemical synthesis, physicochemical properties, and applications of mineralized materials in gene therapy, focusing on structure-function relationships. We contrast the classical understanding of the mineralization mechanism with recent ideas of mineralization. A brief introduction to gene delivery is summarized, followed by a detailed survey of current mineralized vectors. The vectors derived from calcium phosphate are articulated and compared to other minerals with unique features. Advanced mineral vectors derived from templated mineralization and specialty coatings are critically analyzed. Mineral systems beyond the co-precipitation are explored as more complex multicomponent systems. Finally, we conclude with a perspective on the future of mineralized vectors by carefully demarcating the boundaries of our knowledge and highlighting ambiguous areas in mineralized vectors. STATEMENT OF SIGNIFICANCE: Therapy by gene-based medicines is increasingly utilized to cure diseases that are not alleviated by conventional drug therapy. Gene medicines, however, rely on macromolecular nucleic acids that are too large and too hydrophilic for cellular uptake. Without tailored materials, they are not functional for therapy. One emerging class of nucleic acid delivery system is mineral-based materials. The fact that they can undergo controlled dissolution with minimal footprint in biological systems are making them attractive for clinical use, where safety is utmost importance. In this submission, we will review the emerging synthesis technology and the range of new generation minerals for use in gene medicines.
Collapse
|
12
|
Singh Y, Saxena A, Singh SP, Verma MK, Kumar A, Kumar A, Mrigesh M, Saxena MK. Calcium phosphate adjuvanted nanoparticles of outer membrane proteins of Salmonella Typhi as a candidate for vaccine development against Typhoid fever. J Med Microbiol 2022; 71. [PMID: 35476604 DOI: 10.1099/jmm.0.001529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Introduction. The conventional adjuvants used in vaccines have limitations like induction of an imbalanced Th1 and Th2 immune response. To overcome this limitation, novel adjuvants and newer forms of existing adjuvants like calcium phosphate nanoparticles are being tested.Hypothesis/Gap Statement. Calcium phosphate adjuvanted outer membrane proteins vaccine may work as an efficient, safe and cost effective vaccine against Salmonella Typhi.Aim. Our goals were to evaluate the potential of calcium phosphate nanoparticles as an adjuvant using outer membrane proteins (Omps) of Salmonella Typhi as antigens for immune response, with montanide (commercially available adjuvant) as control, and its toxicity in rats.Methodology. Calcium phosphate adjuvanted outer membrane proteins nanoparticles were synthesized and characterized. The efficacy of vaccine formulation in mice and toxicity assay were carried out in rats.Results. The calcium phosphate nanoparticles varying in size between 20-50 nm had entrapment efficiency of 41.5% and loading capacity of 54%. The calcium phosphate nanoparticle-Omps vaccine formulation (nanoparticle-Omps) induced a strong humoral immune response, which was significantly higher than the control group for the entire period of study. In the montanide-Omps group the initial very high immune response declined steeply and then remained steady. The immune response induced by nanoparticle-Omps did not change appreciably. The cell mediated immune response as measured by lymphocyte proliferation assay and delayed type hypersensitivity test showed a higher response (P<0.01) for the nanoparticles-Omps group as compared to montanide-Omps group. The bacterial clearance assay also showed higher clearance in the nanoparticles-Omps group as compared to montanide-Omps group (approx 1.4%). The toxicity analysis in rats showed no difference in the values of toxicity biomarkers and blood chemistry parameters, revealing vaccine formulation was non-toxic in rats.Conclusion. Calcium phosphate nanoparticles as adjuvant in vaccines is safe, have good encapsulation and loading capacity and induce a strong cell mediated, humoral and protective immune response.
Collapse
Affiliation(s)
- Yashpal Singh
- Department of Molecular Biology & Genetic Engineering, College of Basic Sciences & Humanities, Pantnagar, Uttarakhand, India
| | - Anjani Saxena
- Department of Veterinary Pharmacology & Toxicology, College of Veterinary & Animal Sciences, Pantnagar, Uttarakhand, India
| | - S P Singh
- Department of Veterinary Pharmacology & Toxicology, College of Veterinary & Animal Sciences, Pantnagar, Uttarakhand, India
| | - Manish Kumar Verma
- Department of Veterinary Pharmacology & Toxicology, College of Veterinary & Animal Sciences, Pantnagar, Uttarakhand, India
| | - Arun Kumar
- Department of Veterinary Surgery and Radiology, College of Veterinary & Animal Sciences, Pantnagar, Uttarakhand, India
| | - Avadhesh Kumar
- Department of Veterinary & Animal Husbandry Extension Education, College of Veterinary & Animal Sciences, Pantnagar, Uttarakhand, India
| | - Meena Mrigesh
- Department of Veterinary Anatomy, College of Veterinary & Animal Sciences, Pantnagar, Uttarakhand, India
| | - Mumtesh Kumar Saxena
- Department of Animal Genetics & Breeding, College of Veterinary & Animal Sciences G.B. Pant University of Agriculture & Technology, Pantnagar, Uttarakhand, India
| |
Collapse
|
13
|
Recent advancements in lipid–mRNA nanoparticles as a treatment option for cancer immunotherapy. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2022; 52:415-426. [PMID: 35369363 PMCID: PMC8960215 DOI: 10.1007/s40005-022-00569-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 03/13/2022] [Indexed: 12/14/2022]
Abstract
Background Cancer remains a serious health concern worldwide, and different approaches are being developed for its treatment. The strategy to use the immune system as an approach for treating cancer has recently gained momentum. Messenger RNA (mRNA) has been assessed as an up-and-coming resource for the evolution of advanced cancer immunotherapies over the past decades. However, degradation in extracellular compartments and during endosomal escape remain obstacles for efficient mRNA delivery and limit the therapeutic applications of this approach. Area covered Lipid-based nanocarriers are gaining significant attention as non-viral mRNA vectors. Various lipid-based nanocarrier types have been developed to enhance the stability of mRNA molecules, facilitate their transfection, and ensure delivery to an intracellular compartment suitable for further processing. This review discusses the development of novel mRNA delivery systems using lipids for effective cancer immunotherapy. Expert opinion mRNAs are superior to other biomolecules for developing therapeutic drugs and vaccines with multiple medical applications that are currently being explored by researchers in various biomedical fields. Lipid-based mRNA nanoparticles can improve the potency of the mRNA by enhancing its stability, enabling its cellular uptake, and facilitating its endosomal escape. Targetability of these therapeutics can be increased by conjugating their surface with the desired ligands or targeting agents. Lipid–mRNA nanoparticles are increasingly being incorporated in cancer immunotherapy applications, including vaccines, monoclonal antibodies, and chimeric antigen receptor T-cell treatment, and several such nanoparticles are being assessed in clinical trials. Further research that assesses key variables for transfection efficiency of lipid–mRNA nanoparticles will expedite the development of improved therapeutics.
Collapse
|
14
|
Ho HM, Craig DQM, Day RM. Design of Experiment Approach to Modeling the Effects of Formulation and Drug Loading on the Structure and Properties of Therapeutic Nanogels. Mol Pharm 2022; 19:602-615. [PMID: 35061948 PMCID: PMC9097514 DOI: 10.1021/acs.molpharmaceut.1c00699] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 01/11/2022] [Accepted: 01/11/2022] [Indexed: 01/19/2023]
Abstract
The physical properties of nanoparticles may affect the uptake mechanism, biodistribution, stability, and other physicochemical properties of drug delivery systems. This study aimed to first develop a model exploring the factors controlling the nanogel physical properties using a single drug (propranolol), followed by an evaluation of whether these models can be applied more generally to a range of drugs. Size, polydispersity, ζ potential, and encapsulation efficiency were investigated using a design of experiment (DOE) approach to optimize formulations by systematically identifying the effects of, and interactions between, parameters associated with nanogel formulation and drug loading. Three formulation factors were selected, namely, chitosan concentration, the ratio between the chitosan and cross-linker─sodium triphosphate─and the ratio between the chitosan and drug. The results indicate that the DOE approach can be used not only to model but also to predict the size and polydispersity index (PDI). To explore the application of these prediction models with other drugs and to identify the relationship between the drug structure and nanogel properties, nanogels loaded with 12 structurally distinct drugs and 6 structurally similar drugs were fabricated at the optimal condition for propranolol in the model. The measured size, PDI, and ζ potential of the nanogels could not be modeled using distinct DOE parameters for dissimilar drugs, indicating that each drug requires a separate analysis. Nevertheless, for drugs with structural similarities, various linear and nonlinear trends were observed in the size, PDI, and ζ potential of nanogels against selected molecular descriptors, indicating that there are indeed relationships between the drug molecular structure and the performance outcomes, which may be modeled and predicted using the DOE approach. In conclusion, the study demonstrates that DOE models can be applied to model and predict the influence of formulation and drug loading on key performance parameters. While distinct models are required for structurally unrelated drugs, it was possible to establish correlations for the drug series investigated, which were based on polarity, hydrophobicity, and polarizability, thereby elucidating the importance of the interactions between the drug and the nanogels based on the nanogel properties and thus deepening the understanding of the drug-loading mechanisms in nanogels.
Collapse
Affiliation(s)
- Hei Ming
Kenneth Ho
- School
of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, U.K.
- Centre
for Precision Healthcare, UCL Division of Medicine, University College London, 5 University Street, London WC1E 6JF, U.K.
| | - Duncan Q. M. Craig
- School
of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, U.K.
| | - Richard M. Day
- Centre
for Precision Healthcare, UCL Division of Medicine, University College London, 5 University Street, London WC1E 6JF, U.K.
| |
Collapse
|
15
|
Xu ZPG. Strategy for Cytoplasmic Delivery Using Inorganic Particles. Pharm Res 2022; 39:1035-1045. [PMID: 35112228 PMCID: PMC9197872 DOI: 10.1007/s11095-022-03178-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 01/24/2022] [Indexed: 12/11/2022]
Abstract
Endosome escape is a key process for intracellular uptake of intact biomolecules and therapeutics, such as nucleic acids. Lysosome escape is a more common pathway during endocytosis, while some biomolecular, organic and inorganic materials are found to enhance the endosome escape, and several mechanisms have been proposed accordingly. Specifically, some inorganic nanomaterials show their unique mechanisms of action for enhanced endosome escape, including salt osmotic effect and gas blast effect. These inorganic nanomaterials are basically weakly alkaline and are naturally featured with the anti-acidification capacity, with limited solubility in neutral solutions. This review paper has briefly presented the strategies in the design of inorganic nanoparticle-based cellular delivery vehicles with endosome escapability and discussed a few typical inorganic nanomaterials that are currently widely examined for delivery purpose. A brief summary and prospect for this kind of inorganic nanomaterials are provided.
Collapse
Affiliation(s)
- Zhi Ping Gordon Xu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, 4072, Australia.
| |
Collapse
|
16
|
Amphiphilic Anionic Oligomer-Stabilized Calcium Phosphate Nanoparticles with Prospects in siRNA Delivery via Convection-Enhanced Delivery. Pharmaceutics 2022; 14:pharmaceutics14020326. [PMID: 35214058 PMCID: PMC8877163 DOI: 10.3390/pharmaceutics14020326] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/19/2022] [Accepted: 01/25/2022] [Indexed: 01/27/2023] Open
Abstract
Convection-enhanced delivery (CED) has been introduced as a concept in cancer treatment to generate high local concentrations of anticancer therapeutics and overcome the limited diffusional distribution, e.g., in the brain. RNA interference provides interesting therapeutic options to fight cancer cells but requires nanoparticulate (NP) carriers with a size below 100 nm as well as a low zeta potential for CED application. In this study, we investigated calcium phosphate NPs (CaP-NPs) as siRNA carriers for CED application. Since CaP-NPs tend to aggregate, we introduced a new terpolymer (o14PEGMA(1:1:2.5) NH3) for stabilization of CaP-NPs intended for delivery of siRNA to brain cancer cells. This small terpolymer provides PEG chains for steric stabilization, and a fat alcohol to improve interfacial activity, as well as maleic anhydrides that allow for both labeling and high affinity to Ca(II) in the hydrolyzed state. In a systematic approach, we varied the Ca/P ratio as well as the terpolymer concentration and successfully stabilized NPs with the desired properties. Labeling of the terpolymer with the fluorescent dye Cy5 revealed the terpolymer’s high affinity to CaP. Importantly, we also determined a high efficiency of siRNA binding to the NPs that caused very effective survivin siRNA silencing in F98 rat brain cancer cells. Cytotoxicity investigations with a standard cell line resulted in minor and transient effects; no adverse effects were observed in organotypic brain slice cultures. However, more specific cytotoxicity investigations are required. This study provides a systematic and mechanistic analysis characterizing the effects of the first oligomer of a new class of stabilizers for siRNA-loaded CaP-NPs.
Collapse
|
17
|
Shen W, Ning Y, Ge X, Fan G, Ao F, Wu S, Mao Y. Phosphoglyceride‐coated polylactic acid porous microspheres and its regulation of curcumin release behavior. J Appl Polym Sci 2022. [DOI: 10.1002/app.52118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Wen Shen
- School of Food and Biological Engineering Shaanxi University of Science & Technology Xi'an PR China
| | - Yuanlan Ning
- School of Food and Biological Engineering Shaanxi University of Science & Technology Xi'an PR China
| | - Xuemei Ge
- Department of Food Science and Technology, College of Light Industry Science and Engineering Nanjing Forestry University Nanjing PR China
| | - Guodong Fan
- College of Chemistry and Chemical Engineering Shaanxi University of Science & Technology Xi'an PR China
| | - Fen Ao
- School of Food and Biological Engineering Shaanxi University of Science & Technology Xi'an PR China
| | - Shang Wu
- School of Food and Biological Engineering Shaanxi University of Science & Technology Xi'an PR China
| | - Yueyang Mao
- School of Food and Biological Engineering Shaanxi University of Science & Technology Xi'an PR China
| |
Collapse
|
18
|
Souri M, Soltani M, Moradi Kashkooli F, Kiani Shahvandi M, Chiani M, Shariati FS, Mehrabi MR, Munn LL. Towards principled design of cancer nanomedicine to accelerate clinical translation. Mater Today Bio 2022; 13:100208. [PMID: 35198957 PMCID: PMC8841842 DOI: 10.1016/j.mtbio.2022.100208] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 02/08/2023] Open
Abstract
Nanotechnology in medical applications, especially in oncology as drug delivery systems, has recently shown promising results. However, although these advances have been promising in the pre-clinical stages, the clinical translation of this technology is challenging. To create drug delivery systems with increased treatment efficacy for clinical translation, the physicochemical characteristics of nanoparticles such as size, shape, elasticity (flexibility/rigidity), surface chemistry, and surface charge can be specified to optimize efficiency for a given application. Consequently, interdisciplinary researchers have focused on producing biocompatible materials, production technologies, or new formulations for efficient loading, and high stability. The effects of design parameters can be studied in vitro, in vivo, or using computational models, with the goal of understanding how they affect nanoparticle biophysics and their interactions with cells. The present review summarizes the advances and technologies in the production and design of cancer nanomedicines to achieve clinical translation and commercialization. We also highlight existing challenges and opportunities in the field.
Collapse
Key Words
- CFL, Cell-free layer
- CGMD, Coarse-grained molecular dynamic
- Clinical translation
- DPD, Dissipative particle dynamic
- Drug delivery
- Drug loading
- ECM, Extracellular matrix
- EPR, Permeability and retention
- IFP, Interstitial fluid pressure
- MD, Molecular dynamic
- MDR, Multidrug resistance
- MEC, Minimum effective concentration
- MMPs, Matrix metalloproteinases
- MPS, Mononuclear phagocyte system
- MTA, Multi-tadpole assemblies
- MTC, Minimum toxic concentration
- Nanomedicine
- Nanoparticle design
- RBC, Red blood cell
- TAF, Tumor-associated fibroblast
- TAM, Tumor-associated macrophage
- TIMPs, Tissue inhibitor of metalloproteinases
- TME, Tumor microenvironment
- Tumor microenvironment
Collapse
Affiliation(s)
- Mohammad Souri
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran
- Department of Nanobiotechnology, Pasteur Institute of Iran, Tehran, Iran
| | - M. Soltani
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran
- Department of Electrical and Computer Engineering, University of Waterloo, ON, Canada
- Centre for Biotechnology and Bioengineering (CBB), University of Waterloo, Waterloo, ON, Canada
- Advanced Bioengineering Initiative Center, Computational Medicine Center, K. N. Toosi University of Technology, Tehran, Iran
| | | | | | - Mohsen Chiani
- Department of Nanobiotechnology, Pasteur Institute of Iran, Tehran, Iran
| | | | | | - Lance L. Munn
- Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| |
Collapse
|
19
|
Rabiee N, Bagherzadeh M, Ghadiri AM, Kiani M, Ahmadi S, Jajarmi V, Fatahi Y, Aldhaher A, Tahriri M, Webster TJ, Mostafavi E. Calcium-based nanomaterials and their interrelation with chitosan: optimization for pCRISPR delivery. JOURNAL OF NANOSTRUCTURE IN CHEMISTRY 2022; 12:919-932. [PMID: 34580605 PMCID: PMC8457547 DOI: 10.1007/s40097-021-00446-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 09/03/2021] [Indexed: 05/17/2023]
Abstract
UNLABELLED There have been numerous advancements in the early diagnosis, detection, and treatment of genetic diseases. In this regard, CRISPR technology is promising to treat some types of genetic issues. In this study, the relationship between calcium (due to its considerable physicochemical properties) and chitosan (as a natural linear polysaccharide) was investigated and optimized for pCRISPR delivery. To achieve this, different forms of calcium, such as calcium nanoparticles (CaNPs), calcium phosphate (CaP), a binary blend of calcium and chitosan including CaNPs/Chitosan and CaP/Chitosan, as well as their tertiary blend including CaNPs-CaP/Chitosan, were prepared via both routine and green procedures using Salvia hispanica to reduce toxicity and increase nanoparticle stability (with a yield of 85%). Such materials were also applied to the human embryonic kidney (HEK-293) cell line for pCRISPR delivery. The results were optimized using different characterization techniques demonstrating acceptable binding with DNA (for both CaNPs/Chitosan and CaNPs-CaP/Chitosan) significantly enhancing green fluorescent protein (EGFP) (about 25% for CaP/Chitosan and more than 14% for CaNPs-CaP/Chitosan). SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s40097-021-00446-1.
Collapse
Affiliation(s)
- Navid Rabiee
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | | | | | - Mahsa Kiani
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | - Sepideh Ahmadi
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Vahid Jajarmi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yousef Fatahi
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 14155-6451 Iran
- Faculty of Pharmacy, Nanotechnology Research Center, Tehran University of Medical Sciences, Tehran, 14155-6451 Iran
- Universal Scientific Education and Research Network (USERN), Tehran, 15875-4413 Iran
| | - Abdullah Aldhaher
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | | | - Thomas J. Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115 USA
| | - Ebrahim Mostafavi
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115 USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305 USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305 USA
| |
Collapse
|
20
|
Vaneev A, Tikhomirova V, Chesnokova N, Popova E, Beznos O, Kost O, Klyachko N. Nanotechnology for Topical Drug Delivery to the Anterior Segment of the Eye. Int J Mol Sci 2021; 22:12368. [PMID: 34830247 PMCID: PMC8621153 DOI: 10.3390/ijms222212368] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/06/2021] [Accepted: 11/15/2021] [Indexed: 02/07/2023] Open
Abstract
Topical drug delivery is one of the most challenging aspects of eye therapy. Eye drops are the most prevalent drug form, especially for widely distributed anterior segment eye diseases (cataracts, glaucoma, dry eye syndrome, inflammatory diseases, etc.), because they are convenient and easy to apply by patients. However, conventional drug formulations are usually characterized by short retention time in the tear film, insufficient contact with epithelium, fast elimination, and difficulties in overcoming ocular tissue barriers. Not more than 5% of the total drug dose administered in eye drops reaches the interior ocular tissues. To overcome the ocular drug delivery barriers and improve drug bioavailability, various conventional and novel drug delivery systems have been developed. Among these, nanosize carriers are the most attractive. The review is focused on the different drug carriers, such as synthetic and natural polymers, as well as inorganic carriers, with special attention to nanoparticles and nanomicelles. Studies in vitro and in vivo have demonstrated that new formulations could help to improve the bioavailability of the drugs, provide sustained drug release, enhance and prolong their therapeutic action. Promising results were obtained with drug-loaded nanoparticles included in in situ gel.
Collapse
Affiliation(s)
- Alexander Vaneev
- Chemistry Faculty, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia; (A.V.); (V.T.); (E.P.); (O.K.)
- Research Laboratory of Biophysics, National University of Science and Technology “MISIS”, 119991 Moscow, Russia
| | - Victoria Tikhomirova
- Chemistry Faculty, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia; (A.V.); (V.T.); (E.P.); (O.K.)
| | - Natalia Chesnokova
- Department of Pathophysiology and Biochemistry, Helmholtz National Medical Research Center of Eye Diseases, 105062 Moscow, Russia; (N.C.); (O.B.)
| | - Ekaterina Popova
- Chemistry Faculty, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia; (A.V.); (V.T.); (E.P.); (O.K.)
| | - Olga Beznos
- Department of Pathophysiology and Biochemistry, Helmholtz National Medical Research Center of Eye Diseases, 105062 Moscow, Russia; (N.C.); (O.B.)
| | - Olga Kost
- Chemistry Faculty, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia; (A.V.); (V.T.); (E.P.); (O.K.)
| | - Natalia Klyachko
- Chemistry Faculty, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia; (A.V.); (V.T.); (E.P.); (O.K.)
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Research Institute “Nanotechnology and Nanomaterials”, G.R. Derzhavin Tambov State University, 392000 Tambov, Russia
| |
Collapse
|
21
|
Sriram V, Lee JY. Calcium phosphate-polymeric nanoparticle system for co-delivery of microRNA-21 inhibitor and doxorubicin. Colloids Surf B Biointerfaces 2021; 208:112061. [PMID: 34492599 DOI: 10.1016/j.colsurfb.2021.112061] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 08/13/2021] [Accepted: 08/21/2021] [Indexed: 12/15/2022]
Abstract
Targeted combination therapy has shown promise to achieve maximum therapeutic efficacy by overcoming drug resistance. MicroRNA-21 (miR-21) is frequently overexpressed in various cancer types including breast and non-small cell lung cancer and its functions can be inhibited by miR inhibitor (miR-21i). A combination of miR-21i and a chemo drug, doxorubicin (Dox), can provide synergistic effects. Here, we developed a calcium phosphate (CaP)-coated nanoparticle (NP) formulation to co-deliver miR-21i along with Dox. This NP design can be used to deliver the two agents with different physiochemical properties. The NP formulation was optimized for particle size, polydispersity, Dox loading, and miR-21i loading. The NP formulation was confirmed to downregulate miR-21 levels and upregulate tumor suppressor gene levels. The cytotoxic efficacy of the combined miR-21i and Dox-containing NPs was found to be higher than that of Dox. Therefore, the CaP-coated hybrid lipid-polymeric NPs hold potential for the delivery of miR-21i and Dox.
Collapse
Affiliation(s)
- Vishnu Sriram
- Chemical Engineering Program, Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH, 45221-0012, United States
| | - Joo-Youp Lee
- Chemical Engineering Program, Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH, 45221-0012, United States.
| |
Collapse
|
22
|
Zhang M, Jiang Y, Qi K, Song Y, Li L, Zeng J, Wang C, Zhao Z. Precise engineering of acorn-like Janus nanoparticles for cancer theranostics. Acta Biomater 2021; 130:423-434. [PMID: 34087438 DOI: 10.1016/j.actbio.2021.05.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/27/2021] [Accepted: 05/20/2021] [Indexed: 12/28/2022]
Abstract
The anisotropic Janus nanoparticles (JNPs) provide synergistic effects by concentrating multiple properties on a single carrier. Herein, we reported a novel and simple approach to fabricate acorn-like poly(acrylic acid)-mesoporous calcium phosphate/polydopamine (PAA-mCaP/PDA) JNPs, which were selectively functionalized with methoxy-poly(ethylene glycol)thiol (PEG-SH) on PDA domains to obtain superior stability, while the other mCaP sides served as a storage space and passage for the anti-cancer drug of doxorubicin (DOX). The unique acorn-like PAA-mCaP/PDA-PEG JNPs were utilized as novel theranostic agents for photoacoustic (PA) imaging-guided synergistic cancer chemo-phototherapy. More importantly, this synthetic strategy can be applied to synthesize various mesoporous Janus nanocarriers, paving the way toward designed synthesis of acorn-like JNPs in nanomedicine, biosensing and catalysis. STATEMENT OF SIGNIFICANCE: The distinct acorn-like poly(acrylic acid)-mesoporous calcium phosphate/polydopamine Janus nanoparticles (PAA-mCaP/PDA JNPs) with a spherical-shaped PAA-mCaP core and PDA half-shell were fabricated for the first time. To achieve superior stability, the acorn-like PAA-mCaP/PDA JNPs were selectively functionalized with methoxy-poly(ethylene glycol)thiol (PEG-SH) on PDA domains to obtain acorn-like PAA-mCaP/PDA-PEG JNPs. The resultant acorn-like PAA-mCaP/PDA-PEG JNPs own an excellent biocompatibility, high drug-loading contents, good photothermal conversion efficiency, photoacoustic (PA) imaging capacity and pH/NIR dual-responsive properties, enabling the acorn-like JNPs to be applied for PA imaging-guided synergistic cancer chemo-phototherapy. More importantly, the synthetic approach could be extended to prepare acorn-like mesoporous inorganic substances/PDA JNPs for specific applications.
Collapse
|
23
|
Wang L, Yan Y. A Review of pH-Responsive Organic-Inorganic Hybrid Nanoparticles for RNAi-Based Therapeutics. Macromol Biosci 2021; 21:e2100183. [PMID: 34160896 DOI: 10.1002/mabi.202100183] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/04/2021] [Indexed: 12/13/2022]
Abstract
RNA interference (RNAi) shows great potential in the treatment of varying cancer and genetic disorders. The lack of safe and effective delivery methods is an ongoing challenge to realize the full potential of RNAi-based therapeutics. pH-responsive hybrid nanoparticle is a promising non-virus platform for small interfering RNA (siRNA) delivery with unique properties including the robust response to the acidic microenvironment and the capability of theranostic and combined therapeutics. The mechanism of RNAi and the delivery barriers for RNAi-based therapeutics are first discussed. Then, the general patterns of pH-response and the typical construction of hybrid nanoparticles are demonstrated. The recent advances in pH-responsive organic-inorganic hybrid nanoparticles for siRNA delivery are highlighted, in particular, how pH-response of ionizable groups, acid-labile bonds, and decomposition of inorganic components affect the physicochemical properties of hybrid nanoparticles and benefit the cellular uptake and intracellular trafficking of siRNA payloads are discussed. At last, the remaining problems and the prospects for pH-responsive hybrid nanoparticles for siRNA delivery are analyzed.
Collapse
Affiliation(s)
- Lu Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Yunfeng Yan
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| |
Collapse
|
24
|
Movahedi F, Gu W, Soares CP, Xu ZP. Encapsulating Anti-Parasite Benzimidazole Drugs into Lipid-Coated Calcium Phosphate Nanoparticles to Efficiently Induce Skin Cancer Cell Apoptosis. FRONTIERS IN NANOTECHNOLOGY 2021. [DOI: 10.3389/fnano.2021.693837] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Benzimidazole (BMZ) family of anti-worm drugs has been now repurposed as anti-cancer drugs. However, offering a general reformulation method for these drugs is essential due to their hydrophobicity and low aqueous solubility. In this work, we developed a general approach to load typical BMZ drugs as tiny nanocrystals within lipid-coated calcium phosphate (LCP) nanoparticles. BMZ drug-loaded LCP nanoparticles increased their solubility in PBS by 100–200% and significantly enhanced the anti-cancer efficacy in the treatment of B16F0 melanoma cells. These drug-LCP nanoparticles induced much more cancer cell apoptosis, generated much more reactive oxygen species (ROS) and inhibited Bcl-2 expression of cancer cells. Moreover, BMZ drug-loaded LCP nanoparticles caused morphological change and extension disruption of cancer cells, and significantly reduced migration activity, representing high possibility for inhibition of tumor dissemination and metastasis. Very advantageously, BMZ drug-loaded LCP nanoparticles did not show any obvious toxicity, Bcl-2 inhibition and morphological changes in HEK293T healthy cells. In conclusion, BMZ drug-incorporated LCP nanoformulations may be a valuable nanomedicine that is able to inhibit primary tumors and prevent tumor dissemination with minimum side effects on healthy cells and tissues.
Collapse
|
25
|
Abstract
Calcium phosphate nanoparticles have a high biocompatibility and biodegradability due to their chemical similarity to human hard tissue, for example, bone and teeth. They can be used as efficient carriers for different kinds of biomolecules such as nucleic acids, proteins, peptides, antibodies, or drugs, which alone are not able to enter cells where their biological effect is required. They can be loaded with cargo molecules by incorporating them, unlike solid nanoparticles, and also by surface functionalization. This offers protection, for example, against nucleases, and the possibility for cell targeting. If such nanoparticles are functionalized with fluorescing dyes, they can be applied for imaging in vitro and in vivo. Synthesis, functionalization and cell uptake mechanisms of calcium phosphate nanoparticles are discussed together with applications in transfection, gene silencing, imaging, immunization, and bone substitution. Biodistribution data of calcium phosphate nanoparticles in vivo are reviewed.
Collapse
Affiliation(s)
- Viktoriya Sokolova
- Inorganic chemistryUniversity of Duisburg-EssenUniversitaetsstr. 5–745117EssenGermany
| | - Matthias Epple
- Inorganic chemistryUniversity of Duisburg-EssenUniversitaetsstr. 5–745117EssenGermany
| |
Collapse
|
26
|
Ginghină O, Hudiță A, Zaharia C, Tsatsakis A, Mezhuev Y, Costache M, Gălățeanu B. Current Landscape in Organic Nanosized Materials Advances for Improved Management of Colorectal Cancer Patients. MATERIALS (BASEL, SWITZERLAND) 2021; 14:2440. [PMID: 34066710 PMCID: PMC8125868 DOI: 10.3390/ma14092440] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/27/2021] [Accepted: 05/06/2021] [Indexed: 12/24/2022]
Abstract
Globally, colorectal cancer (CRC) ranks as one of the most prevalent types of cancers at the moment, being the second cause of cancer-related deaths. The CRC chemotherapy backbone is represented by 5-fluorouracil, oxaliplatin, irinotecan, and their combinations, but their administration presents several serious disadvantages, such as poor bioavailability, lack of tumor specificity, and susceptibility to multidrug resistance. To address these limitations, nanomedicine has arisen as a powerful tool to improve current chemotherapy since nanosized carriers hold great promise in improving the stability and solubility of the drug payload and enhancing the active concentration of the drug that reaches the tumor tissue, increasing, therefore, the safety and efficacy of the treatment. In this context, the present review offers an overview of the most recent advances in the development of nanosized drug-delivery systems as smart therapeutic tools in CRC management and highlights the emerging need for improving the existing in vitro cancer models to reduce animal testing and increase the success of nanomedicine in clinical trials.
Collapse
Affiliation(s)
- Octav Ginghină
- Department of Surgery, “Sf. Ioan” Emergency Clinical Hospital, 13 Vitan Barzesti Street, 042122 Bucharest, Romania;
- Department II, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy Bucharest, 17-21 Calea Plevnei Street, 010232 Bucharest, Romania
| | - Ariana Hudiță
- Department of Biochemistry and Molecular Biology, University of Bucharest, 91-95 Splaiul Independentei Street, 050095 Bucharest, Romania; (M.C.); (B.G.)
| | - Cătălin Zaharia
- Advanced Polymer Materials Group, Department of Bioresources and Polymer Science, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania;
| | - Aristidis Tsatsakis
- Department of Toxicology and Forensic Sciences, Faculty of Medicine, University of Crete, 71003 Heraklion, Greece;
| | - Yaroslav Mezhuev
- Center of Biomaterials, D Mendeleev University of Chemical Technology of Russia, Miusskaya Sq. 9, 125047 Moscow, Russia;
| | - Marieta Costache
- Department of Biochemistry and Molecular Biology, University of Bucharest, 91-95 Splaiul Independentei Street, 050095 Bucharest, Romania; (M.C.); (B.G.)
| | - Bianca Gălățeanu
- Department of Biochemistry and Molecular Biology, University of Bucharest, 91-95 Splaiul Independentei Street, 050095 Bucharest, Romania; (M.C.); (B.G.)
| |
Collapse
|
27
|
Lin Y, Villacanas MG, Zou H, Liu H, Carcedo IG, Wu Y, Sun B, Wu X, Prasadam I, Monteiro MJ, Li L, Xu ZP, Gu W. Calcium-bisphosphonate Nanoparticle Platform as a Prolonged Nanodrug and Bone-Targeted Delivery System for Bone Diseases and Cancers. ACS APPLIED BIO MATERIALS 2021; 4:2490-2501. [DOI: 10.1021/acsabm.0c01455] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yanling Lin
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Maria G. Villacanas
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Hong Zou
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
- Department of Pathology/Key Laboratories for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang 832002, China
| | - Hangrui Liu
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Ines G. Carcedo
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Yilun Wu
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Bing Sun
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Xiaoxin Wu
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Indira Prasadam
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Michael J. Monteiro
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Li Li
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Zhi Ping Xu
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Wenyi Gu
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
28
|
Rabiee N, Bagherzadeh M, Ghadiri AM, Salehi G, Fatahi Y, Dinarvand R. ZnAl nano layered double hydroxides for dual functional CRISPR/Cas9 delivery and enhanced green fluorescence protein biosensor. Sci Rep 2020; 10:20672. [PMID: 33244160 PMCID: PMC7693303 DOI: 10.1038/s41598-020-77809-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 11/17/2020] [Indexed: 12/11/2022] Open
Abstract
Evaluation of the effect of different parameters for designing a non-viral vector in gene delivery systems has great importance. In this manner, 2D crystals, precisely layered double hydroxides, have attracted the attention of scientists due to their significant adjustability and low-toxicity and low-cost preparation procedure. In this work, the relationship between different physicochemical properties of LDH, including pH, size, zeta potential, and synthesis procedure, was investigated and optimized for CRISPR/Cas9 delivery and reverse fluorescence response to the EGFP. In this manner, ZnAl LDH and ZnAl HMTA LDH were synthesized and characterized and applied in the HEK-293 cell line to deliver CRISPR/Cas9. The results were optimized by different characterizations as well as Gel Electrophoresis and showed acceptable binding ability with the DNA that could be considered as a promising and also new gold-standard for the delivery of CRISPR/Cas9. Also, the relationship of the presence of tertiary amines (in this case, hexamethylenetetramine (HMTA) as the templates) in the structure of the ZnAl LDH, as well as the gene delivery application, was evaluated. The results showed more than 79% of relative cell viability in most of the weight ratios of LDH to CRISPR/Cas9; fully quenching the fluorescence intensity of the EGFP/LDH in the presence of 15 µg mL-1 of the protoporphyrins along with the detection limit of below 2.1 µg mL-1, the transfection efficiency of around 33% of the GFP positive cell for ZnAl LDH and more than 38% for the ZnAl LDH in the presence of its tertiary amine template.
Collapse
Affiliation(s)
- Navid Rabiee
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | | | | | - Ghazal Salehi
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | - Yousef Fatahi
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Rassoul Dinarvand
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
29
|
Kukkar D, Kukkar P, Kumar V, Hong J, Kim KH, Deep A. Recent advances in nanoscale materials for antibody-based cancer theranostics. Biosens Bioelectron 2020; 173:112787. [PMID: 33190049 DOI: 10.1016/j.bios.2020.112787] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/08/2020] [Accepted: 10/30/2020] [Indexed: 02/07/2023]
Abstract
The quest for advanced management tools or options of various cancers has been on the rise to efficiently reduce their risks of mortality without the demerits of conventional treatments (e.g., undesirable side effects of the medications on non-target tissues, non-targeted distribution, slow clearance of the administered drugs, and the development of drug resistance over the duration of therapy). In this context, nanomaterials-antibody conjugates can offer numerous advantages in the development of cancer theranostics over conventional delivery systems (e.g., highly specific and enhanced biodistribution of the drug in targeted tissues, prolonged systemic circulation, low toxicity, and minimally invasive molecular imaging). This review comprehensively discusses and evaluates recent advances in the application of nanomaterial-antibody bioconjugates for cancer theranostics for the further advancement in the control of diverse cancerous diseases. Further, discussion is expanded to cover the various challenges and limitations associated with the design and development of nanomaterial-antibody conjugates applicable towards better management of cancer.
Collapse
Affiliation(s)
- Deepak Kukkar
- Department of Nanotechnology, Sri Guru Granth Sahib World University, Fatehgarh Sahib, Punjab, 140406, India
| | - Preeti Kukkar
- Department of Chemistry, Mata Gujri College, Fatehgarh Sahib, Punjab, 140406, India
| | - Vanish Kumar
- National Agri-Food Biotechnology Institute (NABI), S.A.S. Nagar, Punjab, 140306, India
| | - Jongki Hong
- College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul, 02447, Republic of Korea
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seoul, 04763 Republic of Korea.
| | - Akash Deep
- Central Scientific Instruments Organization (CSIR-CSIO), Sector 30 C, Chandigarh, 160030, India.
| |
Collapse
|
30
|
Yadav KS, Upadhya A, Misra A. Targeted drug therapy in nonsmall cell lung cancer: clinical significance and possible solutions-part II (role of nanocarriers). Expert Opin Drug Deliv 2020; 18:103-118. [PMID: 33017541 DOI: 10.1080/17425247.2021.1832989] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Nonsmall cell lung cancer (NSCLC) accounts for 80-85% of the cases of lung cancer. The conventional therapeutic effective dosage forms used to treat NSCLC are associated with rigid administration schedules, adverse effects, and may be associated with acquired resistance to therapy. Nanocarriers may provide a suitable alternative to regular formulations to overcome inherent drawbacks and provide better treatment modalities for the patient. AREAS COVERED The article explores the application of drug loaded nanocarriers for lung cancer treatment. Drug-loaded nanocarriers can be modified to achieve controlled delivery at the desired tumor infested site. The type of nanocarriers employed are diverse based on polymers, liposomes, metals and a combination of two or more different base materials (hybrids). These may be designed for systemic delivery or local delivery to the lung compartment (via inhalation). EXPERT OPINION Nanocarriers can improve pharmacokinetics of the drug payload by improving its delivery to the desired location and can reduce associated systemic toxicities. Through nanocarriers, a wide variety of therapeutics can be administered and targeted to the cancerous site. Some examples of the utilities of nanocarriers are codelivery of drugs, gene delivery, and delivery of other biologics. Overall, the nanocarriers have promising potential in improving therapeutic efficacy of drugs used in NSCLC.
Collapse
Affiliation(s)
- Khushwant S Yadav
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, Svkm's Nmims , Mumbai, India
| | - Archana Upadhya
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, Svkm's Nmims , Mumbai, India
| | - Ambikanandan Misra
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, Svkm's Nmims , Mumbai, India
| |
Collapse
|
31
|
Gan J, Du G, He C, Jiang M, Mou X, Xue J, Sun X. Tumor cell membrane enveloped aluminum phosphate nanoparticles for enhanced cancer vaccination. J Control Release 2020; 326:297-309. [DOI: 10.1016/j.jconrel.2020.07.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/03/2020] [Accepted: 07/07/2020] [Indexed: 02/07/2023]
|
32
|
Cao P, Han FY, Grøndahl L, Xu ZP, Li L. Enhanced Oral Vaccine Efficacy of Polysaccharide-Coated Calcium Phosphate Nanoparticles. ACS OMEGA 2020; 5:18185-18197. [PMID: 32743193 PMCID: PMC7392379 DOI: 10.1021/acsomega.0c01792] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 07/06/2020] [Indexed: 05/21/2023]
Abstract
Oral administration of vaccines has been limited due to low immune response compared to parenteral administration. Antigen degradation in the acidic gastrointestinal environment (GI), mucus barriers, and inefficient cellular uptake by immune cells are the major challenges for oral vaccine delivery. To solve these issues, the current study investigates calcium phosphate nanoparticles (CaP NPs) coated with polysaccharides as nanocarriers for oral protein antigen delivery. In this design, the CaP NP core had an optimized antigen encapsulation capacity of 90 mg (BSA-FITC)/g (CaP NPs). The polysaccharides chitosan and alginate were coated onto the CaP NPs to protect the antigens against acidic degradation in the GI environment and enhance the immune response in the small intestine. The antigen release profiles showed that alginate-chitosan-coated CaP NPs prevented antigen release in a simulated gastric fluid (pH 1.2), followed by sustained release in simulated intestinal (pH 6.8) and colonic (pH 7.4) fluids. Cellular uptake and macrophage stimulation data revealed that the chitosan coating enhanced antigen uptake by intestine epithelia cells (Caco-2) and macrophages and improved surface expression of costimulatory molecules on macrophages. In vivo test further demonstrated that oral administration of alginate-chitosan-coated CaP@OVA NPs significantly enhanced the mucosal IgA and serum IgG antibody responses as compared to naked OVA, indicating that the CaP-Chi-Alg nanoparticle can potentially be used as a promising oral vaccine delivery system.
Collapse
Affiliation(s)
- Pei Cao
- Australian
Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Felicity Y. Han
- Australian
Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
- School
of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Lisbeth Grøndahl
- Australian
Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
- School
of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Zhi Ping Xu
- Australian
Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Li Li
- Australian
Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
33
|
Movahedi F, Wu Y, Gu W, Xu ZP. Nanostructuring a Widely Used Antiworm Drug into the Lipid-Coated Calcium Phosphate Matrix for Enhanced Skin Tumor Treatment. ACS APPLIED BIO MATERIALS 2020; 3:4230-4238. [DOI: 10.1021/acsabm.0c00313] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Fatemeh Movahedi
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, QLD 4072, Australia
| | - Yilun Wu
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, QLD 4072, Australia
| | - Wenyi Gu
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, QLD 4072, Australia
| | - Zhi Ping Xu
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
34
|
Zhu N, Wang D, Xie F, Qin M, Lin Z, Wang Y. Fabrication and Characterization of Calcium-Phosphate Lipid System for Potential Dental Application. Front Chem 2020; 8:161. [PMID: 32269987 PMCID: PMC7111464 DOI: 10.3389/fchem.2020.00161] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 02/24/2020] [Indexed: 12/15/2022] Open
Abstract
Lipid has been widely studied as a vehicle and loading vector, but there have been no reports of any such related application in the dental field. The purpose of this research was to fabricate and characterize a nano-size calcium-phosphate lipid (CL) system as a potential vehicle in dental regeneration study, wherein the biocompatibility with dental pulp stem cells (DPSCs) was evaluated. The effect of CL on DPSCs proliferation was analyzed by a CCK-8 assay, and the anti-inflammatory effect was investigated by quantitative polymerase chain reaction (qPCR). Moreover, the effect of CL on odontogenic differentiation of inflamed DPSCs (iDPSCs) was studied by Alizarin red staining, tissue-non-specific alkaline phosphatase (TNAP) staining, qPCR, and western blot analyses. The results of this study showed that CL did not affect the proliferation of DPSCs, it down-regulated the inflammatory-associated markers (IL-1β, IL-6, TNF-α, COX-2) of DPSCs treated with Escherichia coli lipopolysaccharide (LPS), and enhanced the in-vitro odontogenic differentiation potential of iDPSCs. This novel biomaterial has a broad application prospect for its bioactivity and flexible physical property, and thus represents a promising pulpal regeneration material.
Collapse
Affiliation(s)
- Ningxin Zhu
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Peking University, Beijing, China
| | - Dan Wang
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Peking University, Beijing, China
| | - Fei Xie
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Peking University, Beijing, China
| | - Man Qin
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Peking University, Beijing, China
| | - Zhiqiang Lin
- Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Institute of Systems Biomedicine, Peking University Health Science Center, Beijing, China
| | - Yuanyuan Wang
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Peking University, Beijing, China
| |
Collapse
|
35
|
Wu Y, Liu J, Movahedi F, Gu W, Xu T, Xu ZP. Enhanced Prevention of Breast Tumor Metastasis by Nanoparticle-Delivered Vitamin E in Combination with Interferon-Gamma. Adv Healthc Mater 2020; 9:e1901706. [PMID: 32052565 DOI: 10.1002/adhm.201901706] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/16/2020] [Indexed: 12/15/2022]
Abstract
Preventing cancer metastasis is one of the remaining challenges in cancer therapy. As an efficient natural product, alpha-tocopheryl succinate (α-TOS), the most effective form of vitamin E, holds great anticancer potential. To improve its efficacy and bioavailability, lipid-coated calcium carbonate/phosphate (LCCP) nanoparticles (NPs) with folic acid and PEG modification are synthesized for efficient delivery of α-TOS to 4T1 cancer cells. The optimized LCCP-FA NPs (NP-TOS15) show an α-TOS loading efficiency of around 60%, and enhanced uptake by 4T1 metastatic cancer cells. Consequently, NP-TOS15 significantly enhance the anticancer effect in combination with interferon-gamma (IFN-γ) in terms of apoptosis facilitation and migration inhibition. Importantly, NP-TOS15 upregulate the anticancer immunity via downregulating program death ligand 1 (PD-L1) expression that is initially induced by IFN-γ, and remarkably prevent the lung metastasis, particularly in combination with IFN-γ. Further investigation reveals that this combination therapy also modulates the cytotoxic lymphocyte infiltration into the tumor microenvironment for tumor elimination. Taken together, the NP delivery of α-TOS in combination with IFN-γ provides an applicable strategy for cancer therapy.
Collapse
Affiliation(s)
- Yilun Wu
- Australian Institute for Bioengineering and Nanotechnology The University of Queensland St Lucia QLD 4072 Australia
| | - Jianping Liu
- Australian Institute for Bioengineering and Nanotechnology The University of Queensland St Lucia QLD 4072 Australia
| | - Fatemeh Movahedi
- Australian Institute for Bioengineering and Nanotechnology The University of Queensland St Lucia QLD 4072 Australia
| | - Wenyi Gu
- Australian Institute for Bioengineering and Nanotechnology The University of Queensland St Lucia QLD 4072 Australia
| | - Tiefeng Xu
- The First Affiliated Hospital of Hainan Medical University Cancer Institute of Hainan Medical University Haikou Hainan 570102 China
| | - Zhi Ping Xu
- Australian Institute for Bioengineering and Nanotechnology The University of Queensland St Lucia QLD 4072 Australia
| |
Collapse
|
36
|
Zhao Y, Zhang H, Wu P, Tan D, Zhao Y, Zhang C, Wang J, Bai B, An J, Shi C. Mediated Imaging and Improved Targeting of Farnesylthiosalicylic Acid Delivery for Pancreatic Cancer via Conjugation with Near-Infrared Fluorescence Heptamethine Carbocyanine Dye. ACS APPLIED BIO MATERIALS 2020; 3:1129-1138. [DOI: 10.1021/acsabm.9b01068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Ya Zhao
- Division of Cancer Biology, Laboratory Animal Center, The Fourth Military Medical University, Xi’an 710032, China
| | - He Zhang
- Division of Cancer Biology, Laboratory Animal Center, The Fourth Military Medical University, Xi’an 710032, China
| | - Pengpeng Wu
- Division of Cancer Biology, Laboratory Animal Center, The Fourth Military Medical University, Xi’an 710032, China
| | - Dengxu Tan
- Division of Cancer Biology, Laboratory Animal Center, The Fourth Military Medical University, Xi’an 710032, China
| | - Yong Zhao
- Division of Cancer Biology, Laboratory Animal Center, The Fourth Military Medical University, Xi’an 710032, China
| | - Caiqin Zhang
- Division of Cancer Biology, Laboratory Animal Center, The Fourth Military Medical University, Xi’an 710032, China
| | - Jie Wang
- Division of Cancer Biology, Laboratory Animal Center, The Fourth Military Medical University, Xi’an 710032, China
| | - Bing Bai
- Division of Cancer Biology, Laboratory Animal Center, The Fourth Military Medical University, Xi’an 710032, China
| | - Jiaze An
- Department of Hepatobiliary and Pancreaticosplenic Surgery, Xijing Hospital, The Fourth Military Medical University, Xi’an 710069, China
| | - Changhong Shi
- Division of Cancer Biology, Laboratory Animal Center, The Fourth Military Medical University, Xi’an 710032, China
| |
Collapse
|
37
|
Dorozhkin SV. Functionalized calcium orthophosphates (CaPO 4) and their biomedical applications. J Mater Chem B 2019; 7:7471-7489. [PMID: 31738354 DOI: 10.1039/c9tb01976f] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Due to the chemical similarity to natural calcified tissues (bones and teeth) of mammals, calcium orthophosphates (abbreviated as CaPO4) appear to be good biomaterials for creation of artificial bone grafts. However, CaPO4 alone have some restrictions, which limit their biomedical applications. Various ways have been developed to improve the properties of CaPO4 and their functionalization is one of them. Namely, since surfaces always form the interfaces between implanted grafts and surrounding tissues, the state of CaPO4 surfaces plays a crucial role in the survival of bone grafts. Although the biomedically relevant CaPO4 possess the required biocompatible properties, some of their properties could be better. For example, functionalization of CaPO4 to enhance cell attachment and cell material interactions has been developed. In addition, to prepare stable formulations from nanodimensional CaPO4 particles and prevent them from agglomerating, the surfaces of CaPO4 particles are often functionalized by sorption of special chemicals. Furthermore, there are functionalizations in which CaPO4 are exposed to various types of physical treatments. This review summarizes the available knowledge on CaPO4 functionalizations and their biomedical applications.
Collapse
|
38
|
Labruère R, Sona AJ, Turos E. Anti-Methicillin-Resistant Staphylococcus aureus Nanoantibiotics. Front Pharmacol 2019; 10:1121. [PMID: 31636560 PMCID: PMC6787278 DOI: 10.3389/fphar.2019.01121] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 08/30/2019] [Indexed: 01/08/2023] Open
Abstract
Nanoparticle-based antibiotic constructs have become a popular area of investigation in the biomedical sciences. Much of this work has pertained to human diseases, largely in the cancer therapy arena. However, considerable research has also been devoted to the nanochemistry for controlling infectious diseases. Among these are ones due to bacterial infections, which can cause serious illnesses leading to death. The onset of multi-drug-resistant (MDR) infections such as those caused by the human pathogen Staphylococcus aureus has created a dearth of problems such as surgical complications, persistent infections, and lack of available treatments. In this article, we set out to review the primary literature on the design and development of new nanoparticle materials for the potential treatment of S. aureus infections, and areas that could be further expanded upon to make nanoparticle antibiotics a mainstay in clinical settings.
Collapse
Affiliation(s)
- Raphaël Labruère
- Institut de Chimie Moléculaire et des Matériaux d’Orsay (ICMMO), CNRS, Univ Paris Sud, Université Paris-Saclay, Orsay, France
| | - A. J. Sona
- Center for Molecular Diversity in Drug Design, Discovery and Delivery, Department of Chemistry, University of South Florida, Tampa, FL, United States
| | - Edward Turos
- Center for Molecular Diversity in Drug Design, Discovery and Delivery, Department of Chemistry, University of South Florida, Tampa, FL, United States
| |
Collapse
|
39
|
Tang J, Li B, Howard CB, Mahler SM, Thurecht KJ, Wu Y, Huang L, Xu ZP. Multifunctional lipid-coated calcium phosphate nanoplatforms for complete inhibition of large triple negative breast cancer via targeted combined therapy. Biomaterials 2019; 216:119232. [DOI: 10.1016/j.biomaterials.2019.119232] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/24/2019] [Accepted: 05/28/2019] [Indexed: 11/25/2022]
|
40
|
Touny AH, Saleh MM, Abd El-Lateef HM, Saleh MM. Electrochemical methods for fabrication of polymers/calcium phosphates nanocomposites as hard tissue implants. APPLIED PHYSICS REVIEWS 2019; 6. [DOI: 10.1063/1.5045339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Developing and manipulating new biomaterials is an ongoing topic for their needs in medical uses. The evolution and development of new biomaterials, in both the academic and industrial sectors, have been encouraged due to the dramatic improvement in medicine and medical-related technologies. Due to the drawbacks associated with natural biomaterials, the use of synthetic biomaterials is preferential due to basic and applied aspects. Various techniques are involved in fabricating biomaterials. Among them are the electrochemical-based methods, which include electrodeposition and electrophoretic methods. Although electrospinning and electrospraying are not typical electrochemical methods, they are also reviewed in this article due to their importance. Many remarkable features can be acquired from this technique. Electrodeposition and electrophoretic deposition are exceptional and valuable processes for fabricating thin or thick coated films on a surface of metallic implants. Electrodeposition and electrophoretic deposition have some common positive features. They can be used at low temperatures, do not affect the structure of the implant, and can be applied to complex shapes, and they can produce superior properties, such as quick and uniform coating. Furthermore, they can possibly control the thickness and chemical composition of the coatings. Electrospinning is a potentially emerging and efficient process for producing materials with nanofibrous structures, which have exceptional characteristics such as mechanical properties, pore size, and superior surface area. These specialized characteristics induce these nanostructured materials to be used in different technologies.
Collapse
Affiliation(s)
- Ahmed H. Touny
- Department of Chemistry, Faculty of Science, King Faisal University 1 , Al-Hassa, Saudi Arabia
- Department of Chemistry, Faculty of Science, Helwan University 2 , Helwan, Egypt
| | - Mohamed M. Saleh
- Wake Forest Institute for Regenerative Medicine 3 , Winston Salem, North Carolina 27103, USA
| | - Hany M. Abd El-Lateef
- Department of Chemistry, Faculty of Science, King Faisal University 1 , Al-Hassa, Saudi Arabia
- Chemistry Department, College of Science, Sohag University 4 , Sohag, Egypt
| | - Mahmoud M. Saleh
- Department of Chemistry, Faculty of Science, Cairo University 5 , Cairo, Egypt
| |
Collapse
|
41
|
Qi C, Musetti S, Fu LH, Zhu YJ, Huang L. Biomolecule-assisted green synthesis of nanostructured calcium phosphates and their biomedical applications. Chem Soc Rev 2019; 48:2698-2737. [PMID: 31080987 DOI: 10.1039/c8cs00489g] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Calcium phosphates (CaPs) are ubiquitous in nature and vertebrate bones and teeth, and have high biocompatibility and promising applications in various biomedical fields. Nanostructured calcium phosphates (NCaPs) are recognized as promising nanocarriers for drug/gene/protein delivery owing to their high specific surface area, pH-responsive degradability, high drug/gene/protein loading capacity and sustained release performance. In order to control the structure and surface properties of NCaPs, various biomolecules with high biocompatibility such as nucleic acids, proteins, peptides, liposomes and phosphorus-containing biomolecules are used in the synthesis of NCaPs. Moreover, biomolecules play important roles in the synthesis processes, resulting in the formation of various NCaPs with different sizes and morphologies. At room temperature, biomolecules can play the following roles: (1) acting as a biocompatible organic phase to form biomolecule/CaP hybrid nanostructured materials; (2) serving as a biotemplate for the biomimetic mineralization of NCaPs; (3) acting as a biocompatible modifier to coat the surface of NCaPs, preventing their aggregation and increasing their colloidal stability. Under heating conditions, biomolecules can (1) control the crystallization process of NCaPs by forming biomolecule/CaP nanocomposites before heating; (2) prevent the rapid and disordered growth of NCaPs by chelating with Ca2+ ions to form precursors; (3) provide the phosphorus source for the controlled synthesis of NCaPs by using phosphorus-containing biomolecules. This review focuses on the important roles of biomolecules in the synthesis of NCaPs, which are expected to guide the design and controlled synthesis of NCaPs. Moreover, we will also summarize the biomedical applications of NCaPs in nanomedicine and tissue engineering, and discuss their current research trends and future prospects.
Collapse
Affiliation(s)
- Chao Qi
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China.
| | | | | | | | | |
Collapse
|
42
|
Wu Y, Gu W, Li J, Chen C, Xu ZP. Silencing PD-1 and PD-L1 with nanoparticle-delivered small interfering RNA increases cytotoxicity of tumor-infiltrating lymphocytes. Nanomedicine (Lond) 2019; 14:955-967. [PMID: 30901292 DOI: 10.2217/nnm-2018-0237] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
AIM To determine if silencing PD-1 on tumor-infiltrating lymphocytes (TILs) and its ligand-1 (PD-L1) on cancer cells will enhance the cytotoxicity of TILs. MATERIALS & METHODS Lipid-coated calcium phosphate nanoparticles were synthesized to deliver siRNAs against PD-1 and PD-L1 to TILs and breast cancer MCF-7 cells. The downregulation of PD-1/PD-L1 expressions was determined by real-time PCR and western blotting assays. The killing efficacy of TILs to MCF-7 cells was determined by cytotoxic T lymphocyte assay. RESULTS Lipid-coated calcium phosphate nanoparticles effectively delivered siRNAs and silenced PD-1 and PD-L1sh expression. The knockdown of either gene or both greatly improved the cytotoxicity of TILs. CONCLUSION Silencing PD-1 and PD-L1 is an effective approach to increase TIL cytotoxicity to cancer cells.
Collapse
Affiliation(s)
- Yanheng Wu
- Australian Institute for Bioengineering & Nanotechnology, University of Queensland, St Lucia, QLD 4072, Australia
| | - Wenyi Gu
- Australian Institute for Bioengineering & Nanotechnology, University of Queensland, St Lucia, QLD 4072, Australia
| | - Jiang Li
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University, Guangzhou, China
| | - Chen Chen
- School of Biomedical Sciences, Queensland Brain Institute, University of Queensland, St Lucia, QLD 4072, Australia
| | - Zhi Ping Xu
- Australian Institute for Bioengineering & Nanotechnology, University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
43
|
Zang X, Zhang X, Zhao X, Hu H, Qiao M, Deng Y, Chen D. Targeted Delivery of miRNA 155 to Tumor Associated Macrophages for Tumor Immunotherapy. Mol Pharm 2019; 16:1714-1722. [DOI: 10.1021/acs.molpharmaceut.9b00065] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Xinlong Zang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Xiaoxu Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Xiuli Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Haiyang Hu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Mingxi Qiao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Yihui Deng
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Dawei Chen
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| |
Collapse
|
44
|
Wu Y, Gu W, Li L, Chen C, Xu ZP. Enhancing PD-1 Gene Silence in T Lymphocytes by Comparing the Delivery Performance of Two Inorganic Nanoparticle Platforms. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E159. [PMID: 30696033 PMCID: PMC6410115 DOI: 10.3390/nano9020159] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/18/2019] [Accepted: 01/24/2019] [Indexed: 12/12/2022]
Abstract
Suitable carriers are crucial to RNAi applications for cancer genotherapy and T-cell immunotherapy. In this research, we selected two extensively-investigated biocompatible inorganic nanoparticle carriers, i.e., layered double hydroxide (LDH) and lipid-coated calcium phosphate (LCP) and then compared their efficacy for siRNA delivery in T cells, in order to understand which carrier is more efficient in delivering functional programmed cell death protein 1 siRNA (PD-1 siRNA) to suspended T lymphocytes. Both LDH and LCP nanoparticles quickly delivered gene segment to mouse T cell lines (EL4), while the LCP nanoparticles exhibited more cellular uptake and higher PD-1 gene silence efficiency. We further demonstrated that LCP nanoparticles successfully reduced the expression of PD-1 in human ex vivo tumor infiltrating lymphocytes (TILs). Thus, LCP nanoparticles can be used as a better nano-carrier for gene therapy in lymphocytes, especially in regards to TIL-related cancer immunotherapy.
Collapse
Affiliation(s)
- Yanheng Wu
- Australian Institute for Bioengineering and Nanotechnology, the University of Queensland, St. Lucia 4072, QLD, Australia.
| | - Wenyi Gu
- Australian Institute for Bioengineering and Nanotechnology, the University of Queensland, St. Lucia 4072, QLD, Australia.
| | - Li Li
- Australian Institute for Bioengineering and Nanotechnology, the University of Queensland, St. Lucia 4072, QLD, Australia.
| | - Chen Chen
- School of Biomedical Sciences, the University of Queensland, St. Lucia 4072, QLD, Australia.
| | - Zhi Ping Xu
- Australian Institute for Bioengineering and Nanotechnology, the University of Queensland, St. Lucia 4072, QLD, Australia.
| |
Collapse
|
45
|
Huang X, Li Z, Wu J, Hang Y, Wang H, Yuan L, Chen H. Small addition of Zn 2+ in Ca 2+@DNA results in elevated gene transfection by aminated PGMA-modified silicon nanowire arrays. J Mater Chem B 2019; 7:566-575. [PMID: 32254790 DOI: 10.1039/c8tb03045f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Gene therapy, a promising and effective treatment, has ignited new hope in overcoming difficult-to-cure diseases. The key question in gene therapy is how to efficiently and safely deliver exogenous nucleic acids into the nuclei of target cells. To achieve stable, efficient and safe gene transfer and to ensure efficiency of gene transfer into cell nuclei, a zinc ion-assisted gene delivery nanosystem was proposed in the present study by loading a low concentration of Zn2+ in Ca2+@DNA nanoparticles on ethanolamine-functionalized poly(glycidyl methacrylate) (PGEA)-modified SiNWAs (Zn2+/Ca2+@DNA + SN-PGEA). The results showed that with the help of Zn ions, this composite nanosystem could promote more DNA in the cell nuclei and thus dramatically increased the transfection efficiency by as much as 7-fold. The nanosystem with 0.2 mM Zn2+, 100 mM Ca2+ and PGEA modification on SiNWAs displayed the highest transfection efficiency and good biocompatibility. This new composite nanosystem will have great potential in gene transfection for biomedical research.
Collapse
Affiliation(s)
- Xuejin Huang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou 215123, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
46
|
Wu Y, Gu W, Xu ZP. Enhanced combination cancer therapy using lipid-calcium carbonate/phosphate nanoparticles as a targeted delivery platform. Nanomedicine (Lond) 2019; 14:77-92. [DOI: 10.2217/nnm-2018-0252] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Aim: Melanoma, the most life-threatening skin cancer, requires more effective therapies. Methodology: A new folic acid (FA) receptor-targeted lipid-coated calcium carbonate/phosphate (LCCP) nanoparticle was synthesized, incorporating two often-used therapeutics, cell death siRNA and α-tocopheryl succinate. Results: The nanoparticles were spherical, with an average size of 40 nm. The nanoparticles exhibited a high gene/drug loading efficiency (60%), with folic acid-enhanced cellular uptake. The nanoparticles with both therapeutics enhanced inhibition of B16F0 melanoma cell growth, showing a moderate synergistic effect. The mechanism of the inhibition is associated with induction of cell apoptosis and cell cycle arrest at G1 phase. Conclusion: Our data indicate that lipid-coated calcium carbonate/phosphate nanoparticles are a potential platform for targeted therapy for melanoma.
Collapse
Affiliation(s)
- Yilun Wu
- Australian Institute for Bioengineering & Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Wenyi Gu
- Australian Institute for Bioengineering & Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Zhi Ping Xu
- Australian Institute for Bioengineering & Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
47
|
Liu Y, Xu M, Zhao Y, Chen X, Zhu X, Wei C, Zhao S, Liu J, Qin X. Flower-like gold nanoparticles for enhanced photothermal anticancer therapy by the delivery of pooled siRNA to inhibit heat shock stress response. J Mater Chem B 2019; 7:586-597. [DOI: 10.1039/c8tb02418a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Surface modified gold nanoflowers were employed as synergistic therapeutics for photothermal ablation and gene silencing.
Collapse
Affiliation(s)
- Yanan Liu
- Department of Chemistry
- College of Chemistry and Materials Science
- Jinan University
- Guangzhou 510632
- China
| | - Meng Xu
- Department of Chemistry
- College of Chemistry and Materials Science
- Jinan University
- Guangzhou 510632
- China
| | - Yingyu Zhao
- Department of Chemistry
- College of Chemistry and Materials Science
- Jinan University
- Guangzhou 510632
- China
| | - Xu Chen
- Department of Chemistry
- College of Chemistry and Materials Science
- Jinan University
- Guangzhou 510632
- China
| | - Xufeng Zhu
- Department of Chemistry
- College of Chemistry and Materials Science
- Jinan University
- Guangzhou 510632
- China
| | - Chunfang Wei
- Department of Chemistry
- College of Chemistry and Materials Science
- Jinan University
- Guangzhou 510632
- China
| | - Shuang Zhao
- Department of Chemistry
- College of Chemistry and Materials Science
- Jinan University
- Guangzhou 510632
- China
| | - Jie Liu
- Department of Chemistry
- College of Chemistry and Materials Science
- Jinan University
- Guangzhou 510632
- China
| | - Xiuying Qin
- College of Pharmacy
- Guilin Medical University
- Guangxi Guilin
- China
| |
Collapse
|
48
|
Yin Y, Lee MS, Lee JE, Lim SY, Kim ES, Jeong J, Kim D, Kim J, Lee DS, Jeong JH. Effective systemic siRNA delivery using dual-layer protected long-circulating nanohydrogel containing an inorganic core. Biomater Sci 2019; 7:3297-3306. [DOI: 10.1039/c9bm00369j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PEG-dex-dopa nanohydrogel containing a CaP/siRNA core could achieve extended circulation with reduced RES accumulation, resulting in increased tumor accumulation.
Collapse
|
49
|
Trofimov AD, Ivanova AA, Zyuzin MV, Timin AS. Porous Inorganic Carriers Based on Silica, Calcium Carbonate and Calcium Phosphate for Controlled/Modulated Drug Delivery: Fresh Outlook and Future Perspectives. Pharmaceutics 2018; 10:E167. [PMID: 30257514 PMCID: PMC6321143 DOI: 10.3390/pharmaceutics10040167] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 09/12/2018] [Accepted: 09/19/2018] [Indexed: 12/13/2022] Open
Abstract
Porous inorganic nanostructured materials are widely used nowadays as drug delivery carriers due to their adventurous features: suitable architecture, large surface area and stability in the biological fluids. Among the different types of inorganic porous materials, silica, calcium carbonate, and calcium phosphate have received significant attention in the last decade. The use of porous inorganic materials as drug carriers for cancer therapy, gene delivery etc. has the potential to improve the life expectancy of the patients affected by the disease. The main goal of this review is to provide general information on the current state of the art of synthesis of the inorganic porous particles based on silica, calcium carbonate and calcium phosphate. Special focus is dedicated to the loading capacity, controllable release of drugs under internal biological stimuli (e.g., pH, redox, enzymes) and external noninvasive stimuli (e.g., light, magnetic field, and ultrasound). Moreover, the diverse compounds to deliver with silica, calcium carbonate and calcium phosphate particles, ranging from the commercial drugs to genetic materials are also discussed.
Collapse
Affiliation(s)
- Alexey D Trofimov
- Department of Nanophotonics and Metamaterials, Saint Petersburg National Research University of Information Technologies, ITMO University, 197101 St. Petersburg, Russia.
| | - Anna A Ivanova
- Research School of Chemical and Biomedical Engineering, National Research Tomsk Polytechnic University, Lenin Avenue 30, 634050 Tomsk, Russia.
| | - Mikhail V Zyuzin
- Department of Nanophotonics and Metamaterials, Saint Petersburg National Research University of Information Technologies, ITMO University, 197101 St. Petersburg, Russia.
| | - Alexander S Timin
- Research School of Chemical and Biomedical Engineering, National Research Tomsk Polytechnic University, Lenin Avenue 30, 634050 Tomsk, Russia.
- Department of Micro- and Nano-Encapsulation, First Pavlov State Medical University of St. Petersburg, Lev Tolstoy str. 6/8, 197022 Saint-Petersburg, Russia.
| |
Collapse
|
50
|
Dual-functionalized calcium nanocomplexes for transfection of cancerous and stem cells: Low molecular weight polycation-mediated colloidal stability and ATP-mediated endosomal release. J IND ENG CHEM 2018. [DOI: 10.1016/j.jiec.2018.03.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|