1
|
Zhou Y, Shaukat A, Seitsonen J, Rigoni C, Timonen JVI, Kostiainen MA. Protein Cage Directed Assembly of Binary Nanoparticle Superlattices. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2408416. [PMID: 39401426 PMCID: PMC11615748 DOI: 10.1002/advs.202408416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/20/2024] [Indexed: 12/06/2024]
Abstract
Inorganic nanoparticles can be assembled into superlattices with unique optical and magnetic properties arising from collective behavior. Protein cages can be utilized to guide this assembly by encapsulating nanoparticles and promoting their assembly into ordered structures. However, creating ordered multi-component structures with different protein cage types and sizes remains a challenge. Here, the co-crystallization of two different protein cages (cowpea chlorotic mottle virus and ferritin) characterized by opposing surface charges and unequal diameter is shown. Precise tuning of the electrostatic attraction between the cages enabled the preparation of binary crystals with dimensions up to several tens of micrometers. Additionally, binary metal nanoparticle superlattices are achieved by loading gold and iron oxide nanoparticles inside the cavities of the protein cages. The resulting structure adopts an AB2 FCC configuration that also impacts the dipolar coupling between the particles and hence the optical properties of the crystals, providing key insight for the future preparation of plasmonic and magnetic nanoparticle metamaterials.
Collapse
Affiliation(s)
- Yu Zhou
- Biohybrid MaterialsDepartment of Bioproducts and BiosystemsAalto UniversityAalto00076Finland
| | - Ahmed Shaukat
- Biohybrid MaterialsDepartment of Bioproducts and BiosystemsAalto UniversityAalto00076Finland
- School of Biological and Biomedical SciencesDurham UniversityDurhamDH13LEUK
| | | | - Carlo Rigoni
- Department of Applied PhysicsAalto University School of ScienceAalto UniversityAalto00076Finland
- Institute of Science and Technology AustriaAm Campus 1Klosterneuburg3400Austria
| | - Jaakko V. I. Timonen
- Department of Applied PhysicsAalto University School of ScienceAalto UniversityAalto00076Finland
| | - Mauri A. Kostiainen
- Biohybrid MaterialsDepartment of Bioproducts and BiosystemsAalto UniversityAalto00076Finland
| |
Collapse
|
2
|
Sowndharya CK, Mehnath S, Ponbharathi A, Jeyaraj M. Self-Adjuvanting Adenoviral Nanovaccine for Effective T-Cell-Mediated Immunity and Long-Lasting Memory Cell Activation against Tuberculosis. ACS Infect Dis 2024; 10:3939-3950. [PMID: 39463350 DOI: 10.1021/acsinfecdis.4c00619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
An enhanced vaccine is immediately required to swap the more than 100 year-old bacillus Calmette-Guerin (BCG) vaccine against tuberculosis. Here, trimethyl chitosan-loaded inactivated Mycobacterium smegmatis (MST), along with potent adenovirus hexon protein (AdHP), and toll-like receptor (TLR)-1/2 as a nanovaccine, was developed against tuberculosis (TB). The nanoformulation increased the bioavailability of MST and elicited the targeting ability. Nanovaccines have a size range of 183.5 ± 9.5 nm with a spherical morphology and uniform distribution. The nanovaccine exhibited a higher release of antigen in acidic pH, and this is mainly due to protonation of ionizable groups in polymeric materials. The nanovaccine facilitated the effective cellular uptake of bone-marrow-derived dendritic cells and progressive endosomal escape in a shorter period. In vitro analyses indicated that the nanovaccine activated cytokine and T-cell production and also assisted in humoral immunity by producing antibodies. The nanovaccine was able to induce more cellular and humoral memory cells and a better protective immune response. Nanomaterials effectively delivered the MST, AdHP, and TLR1/2 antigens to the major histocompatibility complex class I and II pathways to generate protective cytotoxic CD8+ and CD4+ T-cells. In vivo experiments, compared with free MST and BCG, showed that mice immunized with the nanovaccine induced more specific CD4+, CD8+, and memory T-cell activations. Overall, the fabricated nanovaccine was able to control the release of antigens and adjuvants and enhance memory cell activation and humoral immunity against TB.
Collapse
Affiliation(s)
| | - Sivaraj Mehnath
- National Centre for Nanoscience and Nanotechnology, University of Madras, Guindy Campus, Chennai 600 025, Tamil Nadu, India
| | - Arivalagan Ponbharathi
- National Centre for Nanoscience and Nanotechnology, University of Madras, Guindy Campus, Chennai 600 025, Tamil Nadu, India
| | - Murugaraj Jeyaraj
- National Centre for Nanoscience and Nanotechnology, University of Madras, Guindy Campus, Chennai 600 025, Tamil Nadu, India
| |
Collapse
|
3
|
Eom S, Jun H, Kim E, Min D, Kim H, Kang S. Developing Porous Protein Cage Nanoparticles as Cargo-Loadable and Ligand-Displayable Modular Delivery Nanoplatforms. ACS APPLIED MATERIALS & INTERFACES 2024; 16:58464-58476. [PMID: 39418329 DOI: 10.1021/acsami.4c14505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Protein cage nanoparticles, self-assembled from protein subunits, provide distinct exterior and interior spaces and can carry diagnostic and/or therapeutic cargo agents through chemical conjugation, in vitro disassembly/reassembly process, or assembly-mediated encapsulation. Here, we developed porous SpyCatcher-mi3 (SC-mi3) as modular delivery nanoplatforms, capable of loading cargos through pores and displaying targeting ligands using SpyCatchers (SC) as anchors for SpyTagged (ST) ligands. Fluorescent dyes (F5M and A647) and a pH-sensitive prodrug (Aldox) were conjugated to the interior surface cysteines of SC-mi3, forming F5M@SC-mi3, A647@SC-mi3, and Aldox@SC-mi3. Subsequently, EGFR-binding affibody molecules (EGFRAfb) were displayed on the exterior surface of F5M@SC-mi3 and Aldox@SC-mi3 using the SC/ST protein ligation system, forming F5M@mi3/EGFRAfb and Aldox@mi3/EGFRAfb, respectively. F5M@mi3/EGFRAfb selectively bound to EGFR-overexpressing MDA-MB-468 cells, visualizing the target cancer cells, while Aldox@mi3/EGFRAfb selectively delivered doxorubicin, leading to target-specific cancer cell death. To encapsulate large proteins within SC-mi3, biotins were initially conjugated to the interior surface (BPM@SC-mi3) and mSA2-fused protein cargo molecules (mSA2-HaloTag and mSA2-yCD) were successfully introduced through the pores and securely encapsulated, forming TMR-H@SC-mi3 and yCD@SC-mi3, respectively. Subsequent display of EGFRAfb on their surface allowed the visualization of target cancer cells using fluorescent HaloTag ligand labeling and facilitated the killing of target cancer cells by converting the prodrug 5-FC to the cytotoxic drug 5-FU. Modular functionalization of the two distinct spaces in porous SC-mi3 may offer opportunities for developing target-specific functional cargo-delivery nanoplatforms in biomedical fields.
Collapse
Affiliation(s)
- Soomin Eom
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Heejin Jun
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Eojin Kim
- Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Duyoung Min
- Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Hansol Kim
- Department of Pharmaceutical Engineering, INJE University, Gimhae 50834, Republic of Korea
| | - Sebyung Kang
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| |
Collapse
|
4
|
Sarkar S, Wu CQ, Manna S, Samanta D, Chen PPY, Rath SP. Probing substrate binding inside a paramagnetic cavity: a NMR spectroscopy toolbox for combined experimental and theoretical investigation. Chem Sci 2024:d4sc05432f. [PMID: 39364070 PMCID: PMC11446338 DOI: 10.1039/d4sc05432f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 09/18/2024] [Indexed: 10/05/2024] Open
Abstract
Protein cavities often rely on the paramagnetic metal present in their active site in order to catalyse various chemical transformations in biology. The selective detection and identification of the substrate is of fundamental importance in environmental monitoring and biological studies. Herein, a covalently linked Fe(iii)porphyrin dimer-based paramagnetic sensory cavity has been devised for the accurate detection and simultaneous identification of phenol (substrate) binding within the cavity that provides a unique spectroscopic signature with valuable structural and environmental information. These substrates within the paramagnetic cavity leave the fingerprints of the specific binding modes (exo vs. endo) which are well distinguished with the help of various spectroscopic studies viz. UV-vis, 1H, and 19F NMR and in their respective crystal structures also. The theoretical 19F NMR analysis plays a pivotal role in replicating the observed NMR trends with large chemical shifts of the phenolato species which in turn helps in deciphering the selective binding modes of the phenols and thereby recognizing the chemical environment within the cavity. These findings will help develop an excellent diagnostic tool for in situ monitoring of subtle conformational changes and transient interactions.
Collapse
Affiliation(s)
- Sabyasachi Sarkar
- Department of Chemistry, Indian Institute of Technology Kanpur Kanpur-208016 India
| | - Chang-Quan Wu
- Department of Chemistry, National Chung Hsing University 145 Xingda Rd. South Dist. Taichung City 402 Taiwan
| | - Santanu Manna
- Department of Chemistry, Indian Institute of Technology Kanpur Kanpur-208016 India
| | - Deepannita Samanta
- Department of Chemistry, Indian Institute of Technology Kanpur Kanpur-208016 India
| | - Peter P-Y Chen
- Department of Chemistry, National Chung Hsing University 145 Xingda Rd. South Dist. Taichung City 402 Taiwan
| | - Sankar Prasad Rath
- Department of Chemistry, Indian Institute of Technology Kanpur Kanpur-208016 India
| |
Collapse
|
5
|
Sun X, Lian Y, Tian T, Cui Z. Advancements in Functional Nanomaterials Inspired by Viral Particles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402980. [PMID: 39058214 DOI: 10.1002/smll.202402980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/27/2024] [Indexed: 07/28/2024]
Abstract
Virus-like particles (VLPs) are nanostructures composed of one or more structural proteins, exhibiting stable and symmetrical structures. Their precise compositions and dimensions provide versatile opportunities for modifications, enhancing their functionality. Consequently, VLP-based nanomaterials have gained widespread adoption across diverse domains. This review focuses on three key aspects: the mechanisms of viral capsid protein self-assembly into VLPs, design methods for constructing multifunctional VLPs, and strategies for synthesizing multidimensional nanomaterials using VLPs. It provides a comprehensive overview of the advancements in virus-inspired functional nanomaterials, encompassing VLP assembly, functionalization, and the synthesis of multidimensional nanomaterials. Additionally, this review explores future directions, opportunities, and challenges in the field of VLP-based nanomaterials, aiming to shed light on potential advancements and prospects in this exciting area of research.
Collapse
Affiliation(s)
- Xianxun Sun
- College of Life Science, Jiang Han University, Wuhan, 430056, China
| | - Yindong Lian
- College of Life Science, Jiang Han University, Wuhan, 430056, China
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Tao Tian
- College of Life Science, Jiang Han University, Wuhan, 430056, China
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Zongqiang Cui
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| |
Collapse
|
6
|
Hua Y, Qin Z, Gao L, Zhou M, Xue Y, Li Y, Xie J. Protein nanoparticles as drug delivery systems for cancer theranostics. J Control Release 2024; 371:429-444. [PMID: 38849096 DOI: 10.1016/j.jconrel.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/18/2024] [Accepted: 06/02/2024] [Indexed: 06/09/2024]
Abstract
Protein-based nanoparticles have garnered significant attention in theranostic applications due to their superior biocompatibility, exceptional biodegradability and ease of functionality. Compared to other nanocarriers, protein-based nanoparticles offer additional advantages, including biofunctionality and precise molecular recognition abilities, which make them highly effective in navigating complex biological environments. Moreover, proteins can serve as powerful tools with self-assembling structures and reagents that enhance cell penetration. And their derivation from abundant renewable sources and ability to degrade into harmless amino acids further enhance their suitability for biomedical applications. However, protein-based nanoparticles have so far not realized their full potential. In this review, we summarize recent advances in the use of protein nanoparticles in tumor diagnosis and treatment and outline typical methods for preparing protein nanoparticles. The review of protein nanoparticles may provide useful new insights into the development of biomaterial fabrication.
Collapse
Affiliation(s)
- Yue Hua
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China
| | - Zibo Qin
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology; Basic Medicine Research and Innovation Center of Ministry of Education; Department of Radiology, Zhongda Hospital, Medical School of Southeast University, 87 Dingjiaqiao Road, Nanjing 210009, China
| | - Lin Gao
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology; Basic Medicine Research and Innovation Center of Ministry of Education; Department of Radiology, Zhongda Hospital, Medical School of Southeast University, 87 Dingjiaqiao Road, Nanjing 210009, China
| | - Mei Zhou
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology; Basic Medicine Research and Innovation Center of Ministry of Education; Department of Radiology, Zhongda Hospital, Medical School of Southeast University, 87 Dingjiaqiao Road, Nanjing 210009, China
| | - Yonger Xue
- Center for BioDelivery Sciences, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai, 200240, PR China.
| | - Yue Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, 999078, Macau SAR, China.
| | - Jinbing Xie
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology; Basic Medicine Research and Innovation Center of Ministry of Education; Department of Radiology, Zhongda Hospital, Medical School of Southeast University, 87 Dingjiaqiao Road, Nanjing 210009, China.
| |
Collapse
|
7
|
Duque CM, Hall DM, Tyukodi B, Hagan MF, Santangelo CD, Grason GM. Limits of economy and fidelity for programmable assembly of size-controlled triply periodic polyhedra. Proc Natl Acad Sci U S A 2024; 121:e2315648121. [PMID: 38669182 PMCID: PMC11067059 DOI: 10.1073/pnas.2315648121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 03/11/2024] [Indexed: 04/28/2024] Open
Abstract
We propose and investigate an extension of the Caspar-Klug symmetry principles for viral capsid assembly to the programmable assembly of size-controlled triply periodic polyhedra, discrete variants of the Primitive, Diamond, and Gyroid cubic minimal surfaces. Inspired by a recent class of programmable DNA origami colloids, we demonstrate that the economy of design in these crystalline assemblies-in terms of the growth of the number of distinct particle species required with the increased size-scale (e.g., periodicity)-is comparable to viral shells. We further test the role of geometric specificity in these assemblies via dynamical assembly simulations, which show that conditions for simultaneously efficient and high-fidelity assembly require an intermediate degree of flexibility of local angles and lengths in programmed assembly. Off-target misassembly occurs via incorporation of a variant of disclination defects, generalized to the case of hyperbolic crystals. The possibility of these topological defects is a direct consequence of the very same symmetry principles that underlie the economical design, exposing a basic tradeoff between design economy and fidelity of programmable, size controlled assembly.
Collapse
Affiliation(s)
- Carlos M. Duque
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden01307, Germany
- Center for Systems Biology Dresden, Dresden01307, Germany
- Department of Physics, University of Massachusetts, Amherst, MA01003
| | - Douglas M. Hall
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, MA01003
| | - Botond Tyukodi
- Department of Physics, Babes-Bolyai University, Cluj-Napoca400084, Romania
- Martin A. Fisher School of Physics, Brandeis University, Waltham, MA02453
| | - Michael F. Hagan
- Martin A. Fisher School of Physics, Brandeis University, Waltham, MA02453
| | - Christian D. Santangelo
- Department of Physics, University of Massachusetts, Amherst, MA01003
- Department of Physics, Syracuse University, Syracuse, NY13210
| | - Gregory M. Grason
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, MA01003
| |
Collapse
|
8
|
Jia B, Zhang B, Li J, Qin J, Huang Y, Huang M, Ming Y, Jiang J, Chen R, Xiao Y, Du J. Emerging polymeric materials for treatment of oral diseases: design strategy towards a unique oral environment. Chem Soc Rev 2024; 53:3273-3301. [PMID: 38507263 DOI: 10.1039/d3cs01039b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Oral diseases are prevalent but challenging diseases owing to the highly movable and wet, microbial and inflammatory environment. Polymeric materials are regarded as one of the most promising biomaterials due to their good compatibility, facile preparation, and flexible design to obtain multifunctionality. Therefore, a variety of strategies have been employed to develop materials with improved therapeutic efficacy by overcoming physicobiological barriers in oral diseases. In this review, we summarize the design strategies of polymeric biomaterials for the treatment of oral diseases. First, we present the unique oral environment including highly movable and wet, microbial and inflammatory environment, which hinders the effective treatment of oral diseases. Second, a series of strategies for designing polymeric materials towards such a unique oral environment are highlighted. For example, multifunctional polymeric materials are armed with wet-adhesive, antimicrobial, and anti-inflammatory functions through advanced chemistry and nanotechnology to effectively treat oral diseases. These are achieved by designing wet-adhesive polymers modified with hydroxy, amine, quinone, and aldehyde groups to provide strong wet-adhesion through hydrogen and covalent bonding, and electrostatic and hydrophobic interactions, by developing antimicrobial polymers including cationic polymers, antimicrobial peptides, and antibiotic-conjugated polymers, and by synthesizing anti-inflammatory polymers with phenolic hydroxy and cysteine groups that function as immunomodulators and electron donors to reactive oxygen species to reduce inflammation. Third, various delivery systems with strong wet-adhesion and enhanced mucosa and biofilm penetration capabilities, such as nanoparticles, hydrogels, patches, and microneedles, are constructed for delivery of antibiotics, immunomodulators, and antioxidants to achieve therapeutic efficacy. Finally, we provide insights into challenges and future development of polymeric materials for oral diseases with promise for clinical translation.
Collapse
Affiliation(s)
- Bo Jia
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangdong, China
| | - Beibei Zhang
- Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China.
- Department of Polymeric Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Jianhua Li
- Department of Polymeric Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Jinlong Qin
- Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China.
- Department of Polymeric Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Yisheng Huang
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangdong, China
| | - Mingshu Huang
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangdong, China
| | - Yue Ming
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangdong, China
| | - Jingjing Jiang
- Department of Polymeric Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Ran Chen
- Department of Polymeric Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Yufen Xiao
- Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China.
- Department of Polymeric Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Jianzhong Du
- Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China.
- Department of Polymeric Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| |
Collapse
|
9
|
Herpoldt K, López CL, Sappington I, Pham MN, Srinivasan S, Netland J, Montgomery KS, Roy D, Prossnitz AN, Ellis D, Wargacki AJ, Pepper M, Convertine AJ, Stayton PS, King NP. Macromolecular Cargo Encapsulation via In Vitro Assembly of Two-Component Protein Nanoparticles. Adv Healthc Mater 2024; 13:e2303910. [PMID: 38180445 PMCID: PMC11468305 DOI: 10.1002/adhm.202303910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/19/2023] [Indexed: 01/06/2024]
Abstract
Self-assembling protein nanoparticles are a promising class of materials for targeted drug delivery. Here, the use of a computationally designed, two-component, icosahedral protein nanoparticle is reported to encapsulate multiple macromolecular cargoes via simple and controlled self-assembly in vitro. Single-stranded RNA molecules between 200 and 2500 nucleotides in length are encapsulated and protected from enzymatic degradation for up to a month with length-dependent decay rates. Immunogenicity studies of nanoparticles packaging synthetic polymers carrying a small-molecule TLR7/8 agonist show that co-delivery of antigen and adjuvant results in a more than 20-fold increase in humoral immune responses while minimizing systemic cytokine secretion associated with free adjuvant. Coupled with the precise control over nanoparticle structure offered by computational design, robust and versatile encapsulation via in vitro assembly opens the door to a new generation of cargo-loaded protein nanoparticles that can combine the therapeutic effects of multiple drug classes.
Collapse
Affiliation(s)
- Karla‐Luise Herpoldt
- Department of BiochemistryUniversity of WashingtonSeattleWA98195USA
- Institute for Protein DesignUniversity of WashingtonSeattleWA98195USA
- Present address:
2seventy BioSeattleWA98102USA
| | - Ciana L. López
- Department of BioengineeringUniversity of WashingtonSeattleWA98195USA
| | - Isaac Sappington
- Department of BiochemistryUniversity of WashingtonSeattleWA98195USA
- Institute for Protein DesignUniversity of WashingtonSeattleWA98195USA
| | - Minh N. Pham
- Department of BiochemistryUniversity of WashingtonSeattleWA98195USA
- Institute for Protein DesignUniversity of WashingtonSeattleWA98195USA
| | - Selvi Srinivasan
- Department of BioengineeringUniversity of WashingtonSeattleWA98195USA
| | - Jason Netland
- Department of ImmunologyUniversity of WashingtonSeattleWA98195USA
| | | | - Debashish Roy
- Department of BioengineeringUniversity of WashingtonSeattleWA98195USA
| | | | - Daniel Ellis
- Department of BiochemistryUniversity of WashingtonSeattleWA98195USA
- Institute for Protein DesignUniversity of WashingtonSeattleWA98195USA
| | - Adam J. Wargacki
- Department of BiochemistryUniversity of WashingtonSeattleWA98195USA
- Institute for Protein DesignUniversity of WashingtonSeattleWA98195USA
| | - Marion Pepper
- Department of ImmunologyUniversity of WashingtonSeattleWA98195USA
| | - Anthony J. Convertine
- Department of BioengineeringUniversity of WashingtonSeattleWA98195USA
- Present address:
Department of Material Science and EngineeringMissouri University of Science and TechnologyRollaMO65409USA
| | | | - Neil P. King
- Department of BiochemistryUniversity of WashingtonSeattleWA98195USA
- Institute for Protein DesignUniversity of WashingtonSeattleWA98195USA
| |
Collapse
|
10
|
Belluati A, Jimaja S, Chadwick RJ, Glynn C, Chami M, Happel D, Guo C, Kolmar H, Bruns N. Artificial cell synthesis using biocatalytic polymerization-induced self-assembly. Nat Chem 2024; 16:564-574. [PMID: 38049652 PMCID: PMC10997521 DOI: 10.1038/s41557-023-01391-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 10/30/2023] [Indexed: 12/06/2023]
Abstract
Artificial cells are biomimetic microstructures that mimic functions of natural cells, can be applied as building blocks for molecular systems engineering, and host synthetic biology pathways. Here we report enzymatically synthesized polymer-based artificial cells with the ability to express proteins. Artificial cells were synthesized using biocatalytic atom transfer radical polymerization-induced self-assembly, in which myoglobin synthesizes amphiphilic block co-polymers that self-assemble into structures such as micelles, worm-like micelles, polymersomes and giant unilamellar vesicles (GUVs). The GUVs encapsulate cargo during the polymerization, including enzymes, nanoparticles, microparticles, plasmids and cell lysate. The resulting artificial cells act as microreactors for enzymatic reactions and for osteoblast-inspired biomineralization. Moreover, they can express proteins such as a fluorescent protein and actin when fed with amino acids. Actin polymerizes in the vesicles and alters the artificial cells' internal structure by creating internal compartments. Thus, biocatalytic atom transfer radical polymerization-induced self-assembly-derived GUVs can mimic bacteria as they are composed of a microscopic reaction compartment that contains genetic information for protein expression upon induction.
Collapse
Affiliation(s)
- Andrea Belluati
- Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, Glasgow, UK.
- Department of Chemistry and Centre for Synthetic Biology, Technical University of Darmstadt, Darmstadt, Germany.
| | - Sètuhn Jimaja
- Adolphe Merkle Institute, University of Fribourg, Fribourg, Switzerland
| | - Robert J Chadwick
- Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, Glasgow, UK
| | - Christopher Glynn
- Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, Glasgow, UK
| | | | - Dominic Happel
- Department of Chemistry and Centre for Synthetic Biology, Technical University of Darmstadt, Darmstadt, Germany
| | - Chao Guo
- Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, Glasgow, UK
| | - Harald Kolmar
- Department of Chemistry and Centre for Synthetic Biology, Technical University of Darmstadt, Darmstadt, Germany
| | - Nico Bruns
- Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, Glasgow, UK.
- Department of Chemistry and Centre for Synthetic Biology, Technical University of Darmstadt, Darmstadt, Germany.
| |
Collapse
|
11
|
Wu Z, Bayón JL, Kouznetsova TB, Ouchi T, Barkovich KJ, Hsu SK, Craig SL, Steinmetz NF. Virus-like Particles Armored by an Endoskeleton. NANO LETTERS 2024; 24:2989-2997. [PMID: 38294951 DOI: 10.1021/acs.nanolett.3c03806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Many virus-like particles (VLPs) have good chemical, thermal, and mechanical stabilities compared to those of other biologics. However, their stability needs to be improved for the commercialization and use in translation of VLP-based materials. We developed an endoskeleton-armored strategy for enhancing VLP stability. Specifically, the VLPs of physalis mottle virus (PhMV) and Qβ were used to demonstrate this concept. We built an internal polymer "backbone" using a maleimide-PEG15-maleimide cross-linker to covalently interlink viral coat proteins inside the capsid cavity, while the native VLPs are held together by only noncovalent bonding between subunits. Endoskeleton-armored VLPs exhibited significantly improved thermal stability (95 °C for 15 min), increased resistance to denaturants (i.e., surfactants, pHs, chemical denaturants, and organic solvents), and enhanced mechanical performance. Single-molecule force spectroscopy demonstrated a 6-fold increase in rupture distance and a 1.9-fold increase in rupture force of endoskeleton-armored PhMV. Overall, this endoskeleton-armored strategy provides more opportunities for the development and applications of materials.
Collapse
Affiliation(s)
- Zhuohong Wu
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, United States
- Center for Nano-ImmunoEngineering, University of California, San Diego, La Jolla, California 92093, United States
- Moores Cancer Center, University of California, San Diego, La Jolla, California 92093, United States
- Shu and K. C. Chien and Peter Farrell Collaboratory, University of California, San Diego, La Jolla, California 92093, United States
| | - Jorge L Bayón
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, United States
- Center for Nano-ImmunoEngineering, University of California, San Diego, La Jolla, California 92093, United States
- Moores Cancer Center, University of California, San Diego, La Jolla, California 92093, United States
- Shu and K. C. Chien and Peter Farrell Collaboratory, University of California, San Diego, La Jolla, California 92093, United States
| | - Tatiana B Kouznetsova
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Tetsu Ouchi
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Krister J Barkovich
- Center for Nano-ImmunoEngineering, University of California, San Diego, La Jolla, California 92093, United States
- Moores Cancer Center, University of California, San Diego, La Jolla, California 92093, United States
- Shu and K. C. Chien and Peter Farrell Collaboratory, University of California, San Diego, La Jolla, California 92093, United States
- Department of Radiology, University of California, San Diego, La Jolla, California 92093, United States
| | - Sean K Hsu
- Center for Nano-ImmunoEngineering, University of California, San Diego, La Jolla, California 92093, United States
- Moores Cancer Center, University of California, San Diego, La Jolla, California 92093, United States
- Shu and K. C. Chien and Peter Farrell Collaboratory, University of California, San Diego, La Jolla, California 92093, United States
- Department of Molecular Biology, University of California, San Diego, La Jolla, California 92093, United States
| | - Stephen L Craig
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Nicole F Steinmetz
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, United States
- Center for Nano-ImmunoEngineering, University of California, San Diego, La Jolla, California 92093, United States
- Moores Cancer Center, University of California, San Diego, La Jolla, California 92093, United States
- Shu and K. C. Chien and Peter Farrell Collaboratory, University of California, San Diego, La Jolla, California 92093, United States
- Department of Radiology, University of California, San Diego, La Jolla, California 92093, United States
- Department of Molecular Biology, University of California, San Diego, La Jolla, California 92093, United States
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, United States
- Institute for Materials Discovery and Design, University of California, San Diego, La Jolla, California 92093, United States
- Center for Engineering in Cancer, Institute for Engineering in Medicine, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
12
|
Al-Faze R, Ahmed HA, El-Atawy MA, Zagloul H, Alshammari EM, Jaremko M, Emwas AH, Nabil GM, Hanna DH. Mitochondrial dysfunction route as a possible biomarker and therapy target for human cancer. Biomed J 2024; 48:100714. [PMID: 38452973 DOI: 10.1016/j.bj.2024.100714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/02/2024] [Accepted: 03/04/2024] [Indexed: 03/09/2024] Open
Abstract
Mitochondria are vital organelles found within living cells and have signalling, biosynthetic, and bioenergetic functions. Mitochondria play a crucial role in metabolic reprogramming, which is a characteristic of cancer cells and allows them to ensure a steady supply of proteins, nucleotides, and lipids to enable rapid proliferation and development. Their dysregulated activities have been associated with the growth and metastasis of different kinds of human cancer, particularly ovarian carcinoma. In this review, we briefly demonstrated the modified mitochondrial function in cancer, including mutations in mitochondrial DNA (mtDNA), reactive oxygen species (ROS) production, dynamics, apoptosis of cells, autophagy, and calcium excess to maintain cancer genesis, progression, and metastasis. Furthermore, the mitochondrial dysfunction pathway for some genomic, proteomic, and metabolomics modifications in ovarian cancer has been studied. Additionally, ovarian cancer has been linked to targeted therapies and biomarkers found through various alteration processes underlying mitochondrial dysfunction, notably targeting (ROS), metabolites, rewind metabolic pathways, and chemo-resistant ovarian carcinoma cells.
Collapse
Affiliation(s)
- Rawan Al-Faze
- Department of Chemistry, Faculty of Science, Taibah University, Almadinah Almunawarah, Saudi Arabia
| | - Hoda A Ahmed
- Chemistry Department, Faculty of Science at Yanbu, Taibah University, Yanbu, Saudi Arabia; Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Mohamed A El-Atawy
- Chemistry Department, Faculty of Science at Yanbu, Taibah University, Yanbu, Saudi Arabia; Chemistry Department, Faculty of Science, Alexandria University, Ibrahemia, Alexandria, Egypt
| | - Hayat Zagloul
- Chemistry Department, Faculty of Science at Yanbu, Taibah University, Yanbu, Saudi Arabia
| | - Eida M Alshammari
- Department of Chemistry, College of Sciences, University of Ha'il, Ha'il, Saudi Arabia
| | - Mariusz Jaremko
- Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Abdul-Hamid Emwas
- Core Labs., King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Gehan M Nabil
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Demiana H Hanna
- Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt.
| |
Collapse
|
13
|
Nair M, Chandra A, Krishnan A, Chandra A, Basha R, Orimoloye H, Raut S, Gayathri V, Mudgapalli VV, Vishwanatha JK. Protein and peptide nanoparticles for drug delivery applications. NANOSTRUCTURED MATERIALS FOR BIOMEDICAL APPLICATIONS 2024:339-404. [DOI: 10.1016/b978-0-323-90838-2.00011-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
14
|
Sun L, Niu J, Zhang J, Peng Y, Feng X, Huang F, Liu J, Li S, Chen Z. Thermostable T Cell Multiepitope Nanoparticle Antigens Inducing Potent Immune Responses against the Swine Fever Virus. ACS Infect Dis 2023; 9:2358-2368. [PMID: 37861250 DOI: 10.1021/acsinfecdis.3c00506] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
African swine fever (ASF) is caused by the African swine fever virus (ASFV) and is a highly contagious, acute, febrile disease that has high morbidity and mortality rates in domestic and wild swine. However, a safe and effective vaccine against ASF remains unavailable as single antigens fail to provide sufficient protection. Therefore, a combination of multiple antigens with an efficient delivery system might be an alternative strategy. Herein, a de novo-designed antigen with multiple T-cell epitopes (TEPs) of ASFV was conjugated for surface display on self-assembled nanoparticles (NPs) of Aquifex aeolicus lumazine synthase (AaLS) and Quasibacillus thermotolerans encapsulin (QT) through the SpyCatcher/SpyTag system to construct nanovaccines (TEP-Spy-NPs). TEP-Spy-NPs exhibited significantly more thermal, storage, and freeze-thaw stability in comparison to TEP monomers. TEP-Spy-NPs were highly immunogenic and induced strong polyclonal antibody responses in mice and pigs. The specific antibody titers against the TEP of the TEP-Spy-AaLS and TEP-Spy-QT groups were significantly higher than those of the TEP monomer immune group after the second booster immunization. The antibody titer against TEP of the TEP-Spy-QT group was approximately twice that of the TEP-Spy-AaLS group in mice. ELISpot analysis demonstrated that more IFN-γ- and IL-2-secreting splenic lymphocytes were produced by TEP-Spy-AaLS- and TEP-Spy-QT-immunized mice than by TEP monomer-immunized mice. TEP-Spy-NPs elicited stronger cellular immunity and in vivo immunity in immunized pigs than did TEP monomers. Thus, the TEP nanovaccine successfully induced strong humoral and cellular immune responses in mice and pigs, and TEP-Spy-NPs have the potential as candidate vaccines for ASFV.
Collapse
Affiliation(s)
- Lidan Sun
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe District, Shenyang, Liaoning 110866, China
- Department of Cell Engineering, Beijing Institute of Biotechnology, Beijing 100850, China
| | - Jingqi Niu
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe District, Shenyang, Liaoning 110866, China
| | - Jinsong Zhang
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yuanli Peng
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiangning Feng
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Fang Huang
- Department of Cell Engineering, Beijing Institute of Biotechnology, Beijing 100850, China
| | - Jinling Liu
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe District, Shenyang, Liaoning 110866, China
| | - Shanhu Li
- Department of Cell Engineering, Beijing Institute of Biotechnology, Beijing 100850, China
| | - Zeliang Chen
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe District, Shenyang, Liaoning 110866, China
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
- Key Laboratory of Zoonose Prevention and Control at Universities of Inner Mongolia Autonomous Region, Medical College, Inner Mongolia Minzu University, Tongliao 028000, China
| |
Collapse
|
15
|
Hamd-Ghadareh S, Salimi A, Vaziry A. Ultrasensitive Ratiometric Fluorescence Bioassay for Accurate Detection of Covid-19-Specific Nucleocapsid Protein in Clinical Serum Samples Using Modified Cleavable Mesoporous SiO 2 Satellite-Enriched Carbon Dots. ACS Biomater Sci Eng 2023; 9:5279-5292. [PMID: 37606622 DOI: 10.1021/acsbiomaterials.3c00391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Due to the presence of various autofluorescent compounds in biological samples like serum and the photobleaching of organic fluorophores, fluorescence sensing has limited practical applicability. This study describes the development of an improved ratiometric fluorescence assay to determine the nucleocapsid protein (N protein), one of the most conserved biomarkers of Covid-19 in spiked and serum samples using highly stable buffer-based near IR-dual emission carbon dots (CDs) encapsulated into the cavities of cleavable silica nanocapsule (SNCs) nanocomposite. The cavities of cleavable silica nanocapsules (SNCs) and the formed core-shell CDs@ SNCs were used as a superior reservoir of fluorescent markers produced by cohydrolyzing tetraethyl orthosilicate and diiminosilane linker, which held hundreds of CDs in silica shell frameworks. The SiO2 nanocomposite was modified with an N protein antibody that specifically paired to the receptor binding region of the Cov-19 spike protein subunit. CDs were taken out of SNCs by NaBH4 reduction, and the released CDs exhibited dual emission at 475 and 675 nm when excited at 400 nm. Ratiometric detection is completed over a binding-induced, concentration-dependent immuno-affinity of the N protein that drives the fluorescence quenching phenomenon between the CDs as fluorophore and the AuNPs as quencher. As the N protein concentration increased, the intensity of the red emission (675 nm) dropped, whereas the intensity of the green emission (475 nm) already remained constant, which is due to sandwich immunoassays of CDs around AuNPs. Using the exceptional fluorescent characteristics of CDs and the high selectivity of nanocomposite functionalized with N-protein antibody, the developed assay efficiently eliminates the autofluorescence background interference of serum samples. The fluorescence ratio (I475/I675) provides a limit of detection of 2 pg mL-1 over a linear range of 0.01 to 5 ng mL-1 and exhibits an amplified sensitivity of 54 times compared to conventional immunoassay using CDs as fluorescent labels. With one-step signal amplification and requiring small sample quantities (only 20 μL), this sensing platform can be effectively used for the accurate detection of N protein, and no cross-reactivity is detected in the presence of different interfering agents.
Collapse
Affiliation(s)
| | - Abdollah Salimi
- Department of Chemistry, University of Kurdistan, 66177-15175, Sanandaj-Iran
- Research Center for Nanotechnology, University of Kurdistan, 66177-15175 Sanandaj, Iran
| | - Asaad Vaziry
- Department of Animal Science, Faculty of Agriculture, University of Kurdistan, 66177-15175 Sanandaj, Iran
| |
Collapse
|
16
|
Chen T, Peng Y, Qiu M, Yi C, Xu Z. Protein-supported transition metal catalysts: Preparation, catalytic applications, and prospects. Int J Biol Macromol 2023; 230:123206. [PMID: 36638614 DOI: 10.1016/j.ijbiomac.2023.123206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/26/2022] [Accepted: 01/05/2023] [Indexed: 01/12/2023]
Abstract
The immobilization of transition metal catalysts onto supports enables their easier recycling and improves catalytic performance. Protein supports not only support and stabilize transition metal catalysts but also enable the incorporation of biocompatibility and enzymatic catalysis into these catalysts. Consequently, the engineering of protein-supported transition metal catalysts (PTMCs) has emerged as an effective approach to improving their catalytic performance and widening their catalytic applications. Here, we review the recent development of the preparation and applications of PTMCs. The preparation of PTMCs will be summarized and discussed in terms of the types of protein supports, including proteins, protein assemblies, protein-polymer conjugates, and cross-linked proteins. Then, their catalytic applications including organic synthesis, photocatalysis, polymerization, and biomedicine, will be surveyed and compared. Meanwhile, the established catalytic structures-function relationships will be summarized. Lastly, the remaining issues and prospects will be discussed. By surveying a wide range of PTMCs, we believe that this review will attract a broad readership and stimulate the development of PTMCs.
Collapse
Affiliation(s)
- Tianyou Chen
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China.
| | - Yan Peng
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Meishuang Qiu
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Changfeng Yi
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Zushun Xu
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China.
| |
Collapse
|
17
|
Essus VA, Souza Júnior GSE, Nunes GHP, Oliveira JDS, de Faria BM, Romão LF, Cortines JR. Bacteriophage P22 Capsid as a Pluripotent Nanotechnology Tool. Viruses 2023; 15:516. [PMID: 36851730 PMCID: PMC9962691 DOI: 10.3390/v15020516] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/15/2023] Open
Abstract
The Salmonella enterica bacteriophage P22 is one of the most promising models for the development of virus-like particle (VLP) nanocages. It possesses an icosahedral T = 7 capsid, assembled by the combination of two structural proteins: the coat protein (gp5) and the scaffold protein (gp8). The P22 capsid has the remarkable capability of undergoing structural transition into three morphologies with differing diameters and wall-pore sizes. These varied morphologies can be explored for the design of nanoplatforms, such as for the development of cargo internalization strategies. The capsid proteic nature allows for the extensive modification of its structure, enabling the addition of non-native structures to alter the VLP properties or confer them to diverse ends. Various molecules were added to the P22 VLP through genetic, chemical, and other means to both the capsid and the scaffold protein, permitting the encapsulation or the presentation of cargo. This allows the particle to be exploited for numerous purposes-for example, as a nanocarrier, nanoreactor, and vaccine model, among other applications. Therefore, the present review intends to give an overview of the literature on this amazing particle.
Collapse
Affiliation(s)
- Victor Alejandro Essus
- Laboratório de Virologia e Espectrometria de Massas (LAVEM), Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21590-902, Brazil
| | - Getúlio Silva e Souza Júnior
- Laboratório de Virologia e Espectrometria de Massas (LAVEM), Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21590-902, Brazil
| | - Gabriel Henrique Pereira Nunes
- Laboratório de Virologia e Espectrometria de Massas (LAVEM), Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21590-902, Brazil
| | - Juliana dos Santos Oliveira
- Laboratório de Virologia e Espectrometria de Massas (LAVEM), Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21590-902, Brazil
| | - Bruna Mafra de Faria
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, CCS, Bl. F026, Rio de Janeiro 21941-590, Brazil
| | - Luciana Ferreira Romão
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, CCS, Bl. F026, Rio de Janeiro 21941-590, Brazil
| | - Juliana Reis Cortines
- Laboratório de Virologia e Espectrometria de Massas (LAVEM), Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21590-902, Brazil
| |
Collapse
|
18
|
Liu Q, Shaukat A, Meng Z, Nummelin S, Tammelin T, Kontturi E, de Vries R, Kostiainen MA. Engineered Protein Copolymers for Heparin Neutralization and Detection. Biomacromolecules 2023; 24:1014-1021. [PMID: 36598935 PMCID: PMC9930113 DOI: 10.1021/acs.biomac.2c01464] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Heparin is a widely applied anticoagulant agent. However, in clinical practice, it is of vital importance to reverse its anticoagulant effect to restore the blood-clotting cascade and circumvent side effects. Inspired by protein cages that can encapsulate and protect their cargo from surroundings, we utilize three designed protein copolymers to sequester heparin into inert nanoparticles. In our design, a silk-like sequence provides cooperativity between proteins, generating a multivalency effect that enhances the heparin-binding ability. Protein copolymers complex heparin into well-defined nanoparticles with diameters below 200 nm. We also develop a competitive fluorescent switch-on assay for heparin detection, with a detection limit of 0.01 IU mL-1 in plasma that is significantly below the therapeutic range (0.2-8 IU mL-1). Moreover, moderate cytocompatibility is demonstrated by in vitro cell studies. Therefore, such engineered protein copolymers present a promising alternative for neutralizing and sensing heparin, but further optimization is required for in vivo applications.
Collapse
Affiliation(s)
- Qing Liu
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, Aalto00076, Finland.,Wenzhou Institute, University of Chinese Academy of Sciences (WIUCAS), Wenzhou325001, China
| | - Ahmed Shaukat
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, Aalto00076, Finland
| | - Zhuojun Meng
- Wenzhou Institute, University of Chinese Academy of Sciences (WIUCAS), Wenzhou325001, China.,Materials Chemistry of Cellulose, Department of Bioproducts and Biosystems, Aalto University, Aalto00076, Finland
| | - Sami Nummelin
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, Aalto00076, Finland
| | - Tekla Tammelin
- VTT Technical Research Centre of Finland Ltd, VTT, P.O. Box 1000, EspooFI-02044, Finland
| | - Eero Kontturi
- Materials Chemistry of Cellulose, Department of Bioproducts and Biosystems, Aalto University, Aalto00076, Finland
| | - Renko de Vries
- Physical Chemistry and Soft Matter, Wageningen University and Research Centre, Wageningen6708 WE, The Netherlands
| | - Mauri A Kostiainen
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, Aalto00076, Finland
| |
Collapse
|
19
|
Oh HJ, Jung Y. High order assembly of multiple protein cages with homogeneous sizes and shapes via limited cage surface engineering. Chem Sci 2023; 14:1105-1113. [PMID: 36756339 PMCID: PMC9891371 DOI: 10.1039/d2sc02772k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 12/29/2022] [Indexed: 01/01/2023] Open
Abstract
Protein cages are attractive building blocks to build high order materials such as 3D cage lattices, which offer accurately ordered bio-templates. However, controlling the size or valency of these cage-to-cage assemblies is extremely difficult due to highly multivalent and symmetric cage structures. Here, various high order cage assemblies with homogeneous sizes and geometries are constructed by developing an anisotropic ferritin cage with limitedly exposed binding modules, leucine zipper. The anisotropic ferritin is produced as expressed in cells without the need of complex in vitro cage fabrication by careful subunit manipulation. Ferritin cages with limitedly exposed zippers are assembled around a core ferritin with fully exposed opposing zippers, generating homogeneous high order structures, whereas two fully exposed ferritins are assembled into heterogeneous cage aggregates. Diverse fully exposed core cages are prepared by varying the zipper-ferritin fusion geometries and even by using larger cage structures. With these core cages and the anisotropic ferritin, a range of high order cage assemblies with diverse ferritin valencies (3 to over 12) and sizes (over 40 nm) are created. Cell surface binding and internalization of cage structures are greatly varied by assembly sizes, where high order ferritins are clearly more effective than monomeric ferritin.
Collapse
Affiliation(s)
- Hyeok Jin Oh
- Department of Chemistry, KAIST 291 Daehak-ro, Yuseong-gu Daejeon 34141 Republic of Korea +82-42-350-2810 +82-42-350-2817
| | - Yongwon Jung
- Department of Chemistry, KAIST 291 Daehak-ro, Yuseong-gu Daejeon 34141 Republic of Korea +82-42-350-2810 +82-42-350-2817
| |
Collapse
|
20
|
Maity B, Ueno T. A Generalized Method for Metal Fixation in Horse Spleen L-Ferritin Cage. Methods Mol Biol 2023; 2671:135-145. [PMID: 37308643 DOI: 10.1007/978-1-0716-3222-2_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The naturally occurring iron storage protein, ferritin, has been recognized as an important template for preparing inorganic nanomaterials by fixation of metal ions and metal complexes into the cage. Such ferritin-based biomaterials find applications in various fields like bioimaging, drug delivery, catalysis, and biotechnology. The unique structural features with exceptional stability at high temperature up to ca. 100 °C and a wide pH range of 2-11 enable to design the ferritin cage for such interesting applications. Infiltration of metals into ferritin is one of the key steps for preparing ferritin-based inorganic bionanomaterials. Metal-immobilized ferritin cage can be directly utilized for applications or act as a precursor for synthesizing monodisperse and water-soluble nanoparticles. Considering this, herein, we have described a general protocol on how to immobilize metal into a ferritin cage and crystallize the metal composite for structure determination.
Collapse
Affiliation(s)
- Basudev Maity
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Takafumi Ueno
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan.
- Living Systems Materialogy (LiSM) Research Group, International Research Frontiers Initiative (IRFI), Tokyo Institute of Technology, Yokohama, Japan.
| |
Collapse
|
21
|
Wu J, Qiao H. Medical Imaging Technology and Imaging Agents. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1199:15-38. [PMID: 37460725 DOI: 10.1007/978-981-32-9902-3_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Medical imaging is a technology that studies the interaction between human body and irradiations of X-ray, ultrasound, magnetic field, etc. and represents anatomical structures of human organs/tissues with the implication of irradiation attenuation in the form of grayscales. With these medical images, detailed information on health status and disease diagnosis may be judged by clinical physicians to determine an appropriate therapy approach. This chapter will give a systematic introduction on the modalities, classifications, basic principles, and biomedical applications of traditional medical imaging along with the types, construction, and major features of the corresponding contrast agents or imaging probes.
Collapse
Affiliation(s)
- Jieting Wu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Huanhuan Qiao
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China.
| |
Collapse
|
22
|
Bhullar AS, Zhang L, Burns N, Cheng X, Guo P. Voltage controlled shutter regulates channel size and motion direction of protein aperture as durable nano-electric rectifier-----An opinion in biomimetic nanoaperture. Biomaterials 2022; 291:121863. [PMID: 36356474 PMCID: PMC9766157 DOI: 10.1016/j.biomaterials.2022.121863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 09/30/2022] [Accepted: 10/15/2022] [Indexed: 11/09/2022]
Abstract
In optical devices such as camera or microscope, an aperture is used to regulate light intensity for imaging. Here we report the discovery and construction of a durable bio-aperture at nanometerscale that can regulate current at the pico-ampere scale. The nano-aperture is made of 12 identical protein subunits that form a 3.6-nm channel with a shutter and "one-way traffic" property. This shutter responds to electrical potential differences across the aperture and can be turned off for double stranded DNA translocation. This voltage enables directional control, and three-step regulation for opening and closing. The nano-aperture was constructed in vitro and purified into homogeneity. The aperture was stable at pH2-12, and a temperature of -85C-60C. When an electrical potential was held, three reproducible discrete steps of current flowing through the channel were recorded. Each step reduced 32% of the channel dimension evident by the reduction of the measured current flowing through the aperture. The current change is due to the change of the resistance of aperture size. The transition between these three distinct steps and the direction of the current was controlled via the polarity of the voltage applied across the aperture. When the C-terminal of the aperture was fused to an antigen, the antibody and antigen interaction resulted in a 32% reduction of the channel size. This phenomenon was used for disease diagnosis since the incubation of the antigen-nano-aperture with a specific cancer antibody resulted in a change of 32% of current. The purified truncated cone-shape aperture automatically self-assembled efficiently into a sheet of the tetragonal array via head-to-tail self-interaction. The nano-aperture discovery with a controllable shutter, discrete-step current regulation, formation of tetragonal sheet, and one-way current traffic provides a nanoscale electrical circuit rectifier for nanodevices and disease diagnosis.
Collapse
Affiliation(s)
- Abhjeet S Bhullar
- Center for RNA Nanobiotechnology and Nanomedicine; College of Pharmacy; College of Medicine; Dorothy M. Davis Heart and Lung Research Institute; And Comprehensive Cancer Center. The Ohio State University, Columbus, OH, 43210, USA; Biophysics Graduate Program, The Ohio State University, Columbus, OH, 43210, USA
| | - Long Zhang
- Center for RNA Nanobiotechnology and Nanomedicine; College of Pharmacy; College of Medicine; Dorothy M. Davis Heart and Lung Research Institute; And Comprehensive Cancer Center. The Ohio State University, Columbus, OH, 43210, USA
| | - Nicolas Burns
- Center for RNA Nanobiotechnology and Nanomedicine; College of Pharmacy; College of Medicine; Dorothy M. Davis Heart and Lung Research Institute; And Comprehensive Cancer Center. The Ohio State University, Columbus, OH, 43210, USA
| | - Xiaolin Cheng
- Biophysics Graduate Program, The Ohio State University, Columbus, OH, 43210, USA; College of Pharmacy, Translational Data Analytics Institute, The Ohio State University, Columbus, OH, 43210, USA
| | - Peixuan Guo
- Center for RNA Nanobiotechnology and Nanomedicine; College of Pharmacy; College of Medicine; Dorothy M. Davis Heart and Lung Research Institute; And Comprehensive Cancer Center. The Ohio State University, Columbus, OH, 43210, USA; Biophysics Graduate Program, The Ohio State University, Columbus, OH, 43210, USA; College of Pharmacy, Translational Data Analytics Institute, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
23
|
Ramya M, Senthil Kumar P, Rangasamy G, Uma Shankar V, Rajesh G, Nirmala K, Saravanan A, Krishnapandi A. A recent advancement on the applications of nanomaterials in electrochemical sensors and biosensors. CHEMOSPHERE 2022; 308:136416. [PMID: 36099991 DOI: 10.1016/j.chemosphere.2022.136416] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/28/2022] [Accepted: 09/07/2022] [Indexed: 06/15/2023]
Abstract
Industrialization and globalization, both on an international and local scale, have caused large quantities of toxic chemicals to be released into the environment. Thus, developing an environmental pollutant sensor platform that is sensitive, reliable, and cost-effective is extremely important. In current years, considerable progress has been made in the expansion of electrochemical sensors and biosensors to monitor the environment using nanomaterials. A large number of emerging biomarkers are currently in existence in the biological fluids, clinical, pharmaceutical and bionanomaterial-based electrochemical biosensor platforms have drawn much attention. Electrochemical systems have been used to detect biomarkers rapidly, sensitively, and selectively using biomaterials such as biopolymers, nucleic acids, proteins etc. In this current review, several recent trends have been identified in the growth of electrochemical sensor platforms using nanotechnology such as carbon nanomaterials, metal oxide nanomaterials, metal nanoparticles, biomaterials and polymers. The integration strategies, applications, specific properties and future projections of nanostructured materials for emerging progressive sensor platforms are also observed. The objective of this review is to provide a comprehensive overview of nanoparticles in the field of electrochemical sensors and biosensors.
Collapse
Affiliation(s)
- M Ramya
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India.
| | - Gayathri Rangasamy
- University Centre for Research and Development & Department of Civil Engineering, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India
| | - V Uma Shankar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India
| | - G Rajesh
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India
| | - K Nirmala
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India
| | - A Saravanan
- Department of Sustainable Engineering, Institute of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | | |
Collapse
|
24
|
On-demand therapeutic delivery of hydrogen sulfide aided by biomolecules. J Control Release 2022; 352:586-599. [PMID: 36328076 DOI: 10.1016/j.jconrel.2022.10.055] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/22/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022]
Abstract
Hydrogen sulfide (H2S), known as the third gasotransmitter, exerts various physiological functions including cardiac protection, angiogenesis, anti-inflammatory, and anti-cancer capability. Given its promising therapeutic potential as well as severe perniciousness if improper use, the sustained and tunable H2S delivery systems are highly required for H2S-based gas therapy with enhanced bioactivity and reduced side effects. To this end, a series of stimuli-responsive compounds capable of releasing H2S (termed H2S donors) have been designed over the past two decades to mimic the endogenous generation of H2S and elucidate the biological functions. Further to improve the stability of H2S donors and achieve the targeted delivery, various delivery systems have been constructed. In this review, we focus on the recent advances of an emerging subset, biomolecular-based H2S delivery systems, which combine H2S donors with biomolecular vectors including polysaccharide, peptide, and protein. We demonstrated their basic structures, building strategies, and therapeutic applications respectively to unfold their inherent merits endued by biomolecules including biocompatibility, biodegradability as well as expansibility. The varied development potentials of biomolecular-based H2S delivery systems based on their specific properties are also discussed. At the end, brief future outlooks and upcoming challenges are presented as well.
Collapse
|
25
|
Pokkiladathu H, Farissi S, Sakkarai A, Muthuchamy M. Degradation of bisphenol A: a contaminant of emerging concern, using catalytic ozonation by activated carbon impregnated nanocomposite-bimetallic catalyst. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:72417-72430. [PMID: 35292893 DOI: 10.1007/s11356-022-19513-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 02/25/2022] [Indexed: 06/14/2023]
Abstract
Rampant water pollution events and rising water demand caused by exponential population growth and depleting freshwater resources speak of an impending water crisis. The inability of conventional wastewater treatment systems to remove contaminants of emerging concern (CECs) such as bisphenol A (BPA) beckons for new and efficient technologies to remove them from wastewater and water sources. Advanced oxidation processes such as ozonation are primarily known for their capability to oxidize and degrade organic entities in water, but optimum mineralization levels were hard to achieve. In this study, we synthesized an activated carbon impregnated nanocomposite-bimetallic catalyst (AC/CeO2/ZnO) and used it along with ozonation to remove BPA from water. The catalyst was characterized using BET, XRD, FESEM, Raman spectra, and DLS studies. Catalytic ozonation achieved TOC removal 25% higher than non-catalytic ozonation process. The degradation pathway of BPA was proposed using LC-MS/LC-Q-TOF studies that found six main aromatic degradation byproducts. Catalytic ozonation and non-catalytic ozonation followed similar degradation pathways. The formation of persistent aliphatic acidic byproducts in the treated sample made total organic carbon (TOC) removal above 61% difficult.
Collapse
Affiliation(s)
- Hariprasad Pokkiladathu
- Department of Environmental Sciences, School of Life Sciences, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Salman Farissi
- Department of Environmental Science, School of Earth Science Systems, Central University of Kerala, Kasaragod, Kerala, India
| | - Anbazhagi Sakkarai
- Department of Environmental Science, School of Earth Science Systems, Central University of Kerala, Kasaragod, Kerala, India
| | - Muthukumar Muthuchamy
- Department of Environmental Sciences, School of Life Sciences, Bharathiar University, Coimbatore, Tamil Nadu, India.
- Department of Environmental Science, School of Earth Science Systems, Central University of Kerala, Kasaragod, Kerala, India.
| |
Collapse
|
26
|
Patterson D, Draper D, Anazia K, Hjorth C, Bird J, Fancher S, Azghani A. Encapsulation of Pseudomonas aeruginosa Elastase Inside the P22 Virus‐Like Particle for Controlling Enzyme‐Substrate Interactions. Biotechnol J 2022; 17:e2200015. [DOI: 10.1002/biot.202200015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/25/2022] [Accepted: 05/25/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Dustin Patterson
- Department of Chemistry and Biochemistry The University of Texas at Tyler Tyler Texas USA
| | - Derek Draper
- Department of Biology The University of Texas at Tyler Tyler Texas USA
| | - Kara Anazia
- Department of Chemistry and Biochemistry The University of Texas at Tyler Tyler Texas USA
| | - Christy Hjorth
- Department of Chemistry and Biochemistry The University of Texas at Tyler Tyler Texas USA
| | - Jessica Bird
- Department of Chemistry and Biochemistry The University of Texas at Tyler Tyler Texas USA
| | - Shandis Fancher
- Department of Biology The University of Texas at Tyler Tyler Texas USA
| | - Ali Azghani
- Department of Biology The University of Texas at Tyler Tyler Texas USA
| |
Collapse
|
27
|
Uchida M, Brunk NE, Hewagama ND, Lee B, Prevelige PE, Jadhao V, Douglas T. Multilayered Ordered Protein Arrays Self-Assembled from a Mixed Population of Virus-like Particles. ACS NANO 2022; 16:7662-7673. [PMID: 35549153 DOI: 10.1021/acsnano.1c11272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Biology shows many examples of spatially controlled assembly of cells and biomacromolecules into hierarchically organized structures, to which many of the complex biological functions are attributed. While such biological structures have inspired the design of synthetic materials, it is still a great challenge to control the spatial arrangement of individual building blocks when assembling multiple types of components into bulk materials. Here, we report self-assembly of multilayered, ordered protein arrays from mixed populations of virus-like particles (VLPs). We systematically tuned the magnitude of the surface charge of the VLPs via mutagenesis to prepare four different types of VLPs for mixing. A mixture of up to four types of VLPs selectively assembled into higher-order structures in the presence of oppositely charged dendrimers during a gradual lowering of the ionic strength of the solution. The assembly resulted in the formation of three-dimensional ordered VLP arrays with up to four distinct layers including a central core, with each layer comprising a single type of VLP. A coarse-grained computational model was developed and simulated using molecular dynamics to probe the formation of the multilayered, core-shell structure. Our findings establish a simple and versatile bottom-up strategy to synthesize multilayered, ordered materials by controlling the spatial arrangement of multiple types of nanoscale building blocks in a one-pot fabrication.
Collapse
Affiliation(s)
- Masaki Uchida
- Department of Chemistry and Biochemistry, California State University, Fresno, 2555 E. San Ramon Avenue, Fresno, California 93740, United States
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Nicholas E Brunk
- Intelligent Systems Engineering, Indiana University, 700 N. Woodlawn Avenue, Bloomington, Indiana 47408, United States
- Wolfram Research, 100 Trade Center Drive, Champaign, Illinois 61820, United States
- VeriSIM Life Inc., 1 Sansome Street, Suite 3500, San Francisco, California 94104, United States
| | - Nathasha D Hewagama
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Byeongdu Lee
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, United States
| | - Peter E Prevelige
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Vikram Jadhao
- Intelligent Systems Engineering, Indiana University, 700 N. Woodlawn Avenue, Bloomington, Indiana 47408, United States
| | - Trevor Douglas
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| |
Collapse
|
28
|
Kim BR, Yoon JW, Choi H, Kim D, Kang S, Kim JH. Application of periostin peptide-decorated self-assembled protein cage nanoparticles for therapeutic angiogenesis. BMB Rep 2022. [PMID: 34814976 PMCID: PMC9058470 DOI: 10.5483/bmbrep.2022.55.4.137] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Peptides are gaining substantial attention as therapeutics for human diseases. However, they have limitations such as low bioavailability and poor pharmacokinetics. Periostin, a matricellular protein, can stimulate the repair of ischemic tissues by promoting angiogenesis. We have previously reported that a novel angiogenic peptide (amino acids 142-151) is responsible for the pro-angiogenic activity of periostin. To improve the in vivo delivery efficiency of periostin peptide (PP), we used proteins self-assembled into a hollow cage-like structure as a drug delivery nanoplatform in the present study. The periostin peptide was genetically inserted into lumazine synthase (isolated from Aquifex aeolicus) consisting of 60 identical subunits with an icosahedral capsid architecture. The periostin peptide-bearing lumazine synthase protein cage nanoparticle with 60 periostin peptides multivalently displayed was expressed in Escherichia coli and purified to homogeneity. Next, we examined angiogenic activities of this periostin peptide-bearing lumazine synthase protein cage nanoparticle. AaLS-periostin peptide (AaLS-PP), but not AaLS, promoted migration, proliferation, and tube formation of human endothelial colony-forming cells in vitro. Intramuscular injection of PP and AaLS-PP increased blood perfusion and attenuated severe limb loss in the ischemic hindlimb. However, AaLS did not increase blood perfusion or alleviate tissue necrosis. Moreover, in vivo administration of AaLS-PP, but not AaLS, stimulated angiogenesis in the ischemic hindlimb. These results suggest that AaLS is a highly useful nanoplatform for delivering pro-angiogenic peptides such as PP.
Collapse
Affiliation(s)
- Ba Reun Kim
- Department of Physiology, School of Medicine, Pusan National University, Yangsan 50612, Korea
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas 75390-9071, TX, USA
| | - Jung Won Yoon
- Department of Physiology, School of Medicine, Pusan National University, Yangsan 50612, Korea
| | - Hyukjun Choi
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| | - Dasol Kim
- Department of Physiology, School of Medicine, Pusan National University, Yangsan 50612, Korea
| | - Sebyung Kang
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| | - Jae Ho Kim
- Department of Physiology, School of Medicine, Pusan National University, Yangsan 50612, Korea
- Research Institute of Convergence Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Korea
| |
Collapse
|
29
|
Zhu P, Wang S, Zhang Y, Li Y, Liu Y, Li W, Wang Y, Yan X, Luo D. Carbon Dots in Biomedicine: A Review. ACS APPLIED BIO MATERIALS 2022; 5:2031-2045. [PMID: 35442016 DOI: 10.1021/acsabm.1c01215] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Despite the rapid development of science and technology, the effective treatment of cancer still threatens human life and health. However, the success of cancer treatment is closely related to early diagnosis, identification, and effective treatment. In recent years, with the strengthening of the development and research of nanomaterials for cancer diagnosis and treatment, researchers have found that carbon dots (CDs) have the advantages of wide absorption, excellent biocompatibility, diverse imaging characteristics, and photostability and are widely used in various fields, such as sensing, imaging, and drug/gene transportation. Recently, researchers also discovered that CDs could be used as an effective photosensitizer to generate active oxygen or convert light energy into heat under the stimulation of the external lasers, making them have the effects of photothermal and photodynamic therapy for cancer. In this review, we first outline the single-modal and multimodal imaging analysis of CDs in cancer cells. After introducing diversified imaging functions, we focused on the design and the latest research progress of CDs in phototherapy and introduced in detail the strategies of CDs in phototherapy treatment and the challenges faced by clinical applications. We hope that this overview can provide important insights for researchers and accelerate the pace of research on CDs in imaging-guided phototherapy treatment.
Collapse
Affiliation(s)
- Peide Zhu
- Department of Laboratory Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital), Shenzhen 518000, China.,College of New Energy and Materials, China University of Petroleum-Beijing, Beijing 102249, China
| | - Siyang Wang
- College of New Energy and Materials, China University of Petroleum-Beijing, Beijing 102249, China
| | - Yuqi Zhang
- College of New Energy and Materials, China University of Petroleum-Beijing, Beijing 102249, China
| | - Yifan Li
- Department of Laboratory Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital), Shenzhen 518000, China
| | - Yinping Liu
- College of New Energy and Materials, China University of Petroleum-Beijing, Beijing 102249, China
| | - Wenjing Li
- Department of Laboratory Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital), Shenzhen 518000, China
| | - Yuying Wang
- Department of Oncology, the Fifth Medical Center, The Chinese PLA General Hospital, Beijing 100853, China
| | - Xiang Yan
- Department of Oncology, the Fifth Medical Center, The Chinese PLA General Hospital, Beijing 100853, China
| | - Dixian Luo
- Department of Laboratory Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital), Shenzhen 518000, China
| |
Collapse
|
30
|
Edwardson TGW, Levasseur MD, Tetter S, Steinauer A, Hori M, Hilvert D. Protein Cages: From Fundamentals to Advanced Applications. Chem Rev 2022; 122:9145-9197. [PMID: 35394752 DOI: 10.1021/acs.chemrev.1c00877] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Proteins that self-assemble into polyhedral shell-like structures are useful molecular containers both in nature and in the laboratory. Here we review efforts to repurpose diverse protein cages, including viral capsids, ferritins, bacterial microcompartments, and designed capsules, as vaccines, drug delivery vehicles, targeted imaging agents, nanoreactors, templates for controlled materials synthesis, building blocks for higher-order architectures, and more. A deep understanding of the principles underlying the construction, function, and evolution of natural systems has been key to tailoring selective cargo encapsulation and interactions with both biological systems and synthetic materials through protein engineering and directed evolution. The ability to adapt and design increasingly sophisticated capsid structures and functions stands to benefit the fields of catalysis, materials science, and medicine.
Collapse
Affiliation(s)
| | | | - Stephan Tetter
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Angela Steinauer
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Mao Hori
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Donald Hilvert
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
31
|
Kim BR, Yoon JW, Choi H, Kim D, Kang S, Kim JH. Application of periostin peptide-decorated self-assembled protein cage nanoparticles for therapeutic angiogenesis. BMB Rep 2022; 55:175-180. [PMID: 34814976 PMCID: PMC9058470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/14/2021] [Accepted: 11/10/2021] [Indexed: 09/17/2023] Open
Abstract
Peptides are gaining substantial attention as therapeutics for human diseases. However, they have limitations such as low bioavailability and poor pharmacokinetics. Periostin, a matricellular protein, can stimulate the repair of ischemic tissues by promoting angiogenesis. We have previously reported that a novel angiogenic peptide (amino acids 142-151) is responsible for the pro-angiogenic activity of periostin. To improve the in vivo delivery efficiency of periostin peptide (PP), we used proteins self-assembled into a hollow cage-like structure as a drug delivery nanoplatform in the present study. The periostin peptide was genetically inserted into lumazine synthase (isolated from Aquifex aeolicus) consisting of 60 identical subunits with an icosahedral capsid architecture. The periostin peptide-bearing lumazine synthase protein cage nanoparticle with 60 periostin peptides multivalently displayed was expressed in Escherichia coli and purified to homogeneity. Next, we examined angiogenic activities of this periostin peptide-bearing lumazine synthase protein cage nanoparticle. AaLS-periostin peptide (AaLS-PP), but not AaLS, promoted migration, proliferation, and tube formation of human endothelial colony-forming cells in vitro. Intramuscular injection of PP and AaLS-PP increased blood perfusion and attenuated severe limb loss in the ischemic hindlimb. However, AaLS did not increase blood perfusion or alleviate tissue necrosis. Moreover, in vivo administration of AaLS-PP, but not AaLS, stimulated angiogenesis in the ischemic hindlimb. These results suggest that AaLS is a highly useful nanoplatform for delivering pro-angiogenic peptides such as PP. [BMB Reports 2022; 55(4): 175-180].
Collapse
Affiliation(s)
- Ba Reun Kim
- Department of Physiology, School of Medicine, Pusan National University, Yangsan 50612, Korea, Yangsan 50612, Korea
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas 75390-9071, TX, USA, Yangsan 50612, Korea
| | - Jung Won Yoon
- Department of Physiology, School of Medicine, Pusan National University, Yangsan 50612, Korea, Yangsan 50612, Korea
| | - Hyukjun Choi
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| | - Dasol Kim
- Department of Physiology, School of Medicine, Pusan National University, Yangsan 50612, Korea, Yangsan 50612, Korea
| | - Sebyung Kang
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| | - Jae Ho Kim
- Department of Physiology, School of Medicine, Pusan National University, Yangsan 50612, Korea, Yangsan 50612, Korea
- Research Institute of Convergence Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Korea
| |
Collapse
|
32
|
Li Y, Bao Q, Yang S, Yang M, Mao C. Bionanoparticles in cancer imaging, diagnosis, and treatment. VIEW 2022. [DOI: 10.1002/viw.20200027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Yan Li
- Institute of Applied Bioresource Research College of Animal Science Zhejiang University Hangzhou Zhejiang China
| | - Qing Bao
- School of Materials Science and Engineering Zhejiang University Hangzhou Zhejiang China
| | - Shuxu Yang
- Department of Neurosurgery Sir Run Run Shaw Hospital School of Medicine Zhejiang University Hangzhou Zhejiang China
| | - Mingying Yang
- Institute of Applied Bioresource Research College of Animal Science Zhejiang University Hangzhou Zhejiang China
| | - Chuanbin Mao
- School of Materials Science and Engineering Zhejiang University Hangzhou Zhejiang China
- Department of Chemistry and Biochemistry Stephenson Life Science Research Center University of Oklahoma Norman Oklahoma USA
| |
Collapse
|
33
|
Shaukat A, Anaya‐Plaza E, Beyeh NK, Kostiainen MA. Simultaneous Organic and Inorganic Host‐Guest Chemistry within Pillararene‐Protein Cage Frameworks. Chemistry 2022; 28:e202104341. [PMID: 35043998 PMCID: PMC9305414 DOI: 10.1002/chem.202104341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Indexed: 11/21/2022]
Abstract
Supramolecular self‐assembly of biomolecules provides a powerful bottom‐up strategy to build functional nanostructures and materials. Among the different biomacromolecules, protein cages offer various advantages including uniform size, versatility, multi‐modularity, and high stability. Additionally, protein cage crystals present confined microenvironments with well‐defined dimensions. On the other hand, molecular hosts, such as cyclophanes, possess a defined cavity size and selective recognition of guest molecules. However, the successful combination of macrocycles and protein cages to achieve functional co‐crystals has remained limited. In this study, we demonstrate electrostatic binding between cationic pillar[5]arenes and (apo)ferritin cages that results in porous and crystalline frameworks. The electrostatically assembled crystals present a face‐centered cubic (FCC) lattice and have been characterized by means of small‐angle X‐ray scattering and cryo‐TEM. These hierarchical structures result in a multiadsorbent framework capable of hosting both organic and inorganic pollutants, such as dyes and toxic metals, with potential application in water‐remediation technologies.
Collapse
Affiliation(s)
- Ahmed Shaukat
- Department of Bioproducts and Biosystems Aalto University 02150 Espoo Finland
| | - Eduardo Anaya‐Plaza
- Department of Bioproducts and Biosystems Aalto University 02150 Espoo Finland
| | - Ngong Kodiah Beyeh
- Department of Chemistry Oakland University 146 Library Drive Rochester MI 48309-4479 USA
| | - Mauri A. Kostiainen
- Department of Bioproducts and Biosystems Aalto University 02150 Espoo Finland
| |
Collapse
|
34
|
Recent Advances in Ovarian Cancer: Therapeutic Strategies, Potential Biomarkers, and Technological Improvements. Cells 2022; 11:cells11040650. [PMID: 35203301 PMCID: PMC8870715 DOI: 10.3390/cells11040650] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 02/10/2022] [Accepted: 02/10/2022] [Indexed: 02/06/2023] Open
Abstract
Aggressive and recurrent gynecological cancers are associated with worse prognosis and a lack of effective therapeutic response. Ovarian cancer (OC) patients are often diagnosed in advanced stages, when drug resistance, angiogenesis, relapse, and metastasis impact survival outcomes. Currently, surgical debulking, radiotherapy, and/or chemotherapy remain the mainstream treatment modalities; however, patients suffer unwanted side effects and drug resistance in the absence of targeted therapies. Hence, it is urgent to decipher the complex disease biology and identify potential biomarkers, which could greatly contribute to making an early diagnosis or predicting the response to specific therapies. This review aims to critically discuss the current therapeutic strategies for OC, novel drug-delivery systems, and potential biomarkers in the context of genetics and molecular research. It emphasizes how the understanding of disease biology is related to the advancement of technology, enabling the exploration of novel biomarkers that may be able to provide more accurate diagnosis and prognosis, which would effectively translate into targeted therapies, ultimately improving patients’ overall survival and quality of life.
Collapse
|
35
|
Uchida M, Manzo E, Echeveria D, Jiménez S, Lovell L. Harnessing physicochemical properties of virus capsids for designing enzyme confined nanocompartments. Curr Opin Virol 2022; 52:250-257. [PMID: 34974380 PMCID: PMC8939255 DOI: 10.1016/j.coviro.2021.12.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 12/07/2021] [Accepted: 12/10/2021] [Indexed: 12/13/2022]
Abstract
Viruses have drawn significant scientific interest from a wide variety of disciplines beyond virology because of their elegant architectures and delicately balanced activities. A virus-like particle (VLP), a noninfectious protein cage derived from viruses or other cage-forming proteins, has been exploited as a nano-scale platform for bioinspired engineering and synthetic manipulation with a range of applications. Encapsulation of functional proteins, especially enzymes, is an emerging use of VLPs that is promising not only for developing efficient and robust catalytic materials, but also for providing fundamental insights into the effects of enzyme compartmentalization commonly observed in cells. This review highlights recent advances in employing VLPs as a container for confining enzymes. To accomplish larger and more controlled enzyme loading, various different enzyme encapsulation strategies have been developed; many of these strategies are inspired from assembly and genome loading mechanisms of viral capsids. Characterization of VLPs' physicochemical properties, such as porosity, could lead to rational manipulation and a better understanding of the catalytic behavior of the materials.
Collapse
Affiliation(s)
- Masaki Uchida
- Department of Chemistry and Biochemistry, California State University, Fresno, 2555 E. San Ramon Ave., Fresno, CA 93740, USA.
| | - Elia Manzo
- Department of Chemistry and Biochemistry, California State University, Fresno, 2555 E. San Ramon Ave., Fresno, CA 93740, USA
| | - Dustin Echeveria
- Department of Chemistry and Biochemistry, California State University, Fresno, 2555 E. San Ramon Ave., Fresno, CA 93740, USA
| | - Sophie Jiménez
- Department of Chemistry and Biochemistry, California State University, Fresno, 2555 E. San Ramon Ave., Fresno, CA 93740, USA
| | - Logan Lovell
- Department of Chemistry and Biochemistry, California State University, Fresno, 2555 E. San Ramon Ave., Fresno, CA 93740, USA
| |
Collapse
|
36
|
Ramos R, Bernard J, Ganachaud F, Miserez A. Protein‐Based Encapsulation Strategies: Toward Micro‐ and Nanoscale Carriers with Increased Functionality. SMALL SCIENCE 2022. [DOI: 10.1002/smsc.202100095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Ricardo Ramos
- Université de Lyon INSA Lyon CNRS IMP 5223 Villeurbanne Cedex 69621 France
- INSA-Lyon, IMP Villeurbanne F-69621 France
- CNRS, UMR 5223 Ingénierie des Matériaux Polymères Villeurbanne F-69621 France
| | - Julien Bernard
- Université de Lyon INSA Lyon CNRS IMP 5223 Villeurbanne Cedex 69621 France
- INSA-Lyon, IMP Villeurbanne F-69621 France
- CNRS, UMR 5223 Ingénierie des Matériaux Polymères Villeurbanne F-69621 France
| | - François Ganachaud
- Université de Lyon INSA Lyon CNRS IMP 5223 Villeurbanne Cedex 69621 France
- INSA-Lyon, IMP Villeurbanne F-69621 France
- CNRS, UMR 5223 Ingénierie des Matériaux Polymères Villeurbanne F-69621 France
| | - Ali Miserez
- Biological and Biomimetic Material Laboratory Center for Sustainable Materials (SusMat), School of Materials Science and Engineering Nanyang Technological University (NTU) 50 Nanyang Avenue Singapore 637 553 Singapore
- School of Biological Sciences NTU 59 Nanyang Drive Singapore 636921 Singapore
| |
Collapse
|
37
|
Das S, Yau M, Noble J, De Pascalis L, Finn MG. Transport of Molecular Cargo by Interaction with Virus‐Like Particle RNA. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202111687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Soumen Das
- School of Chemistry and Biochemistry School of Biological Sciences Georgia Institute of Technology 901 Atlantic Dr. Atlanta GA 30306 USA
| | - Mei‐Kwan Yau
- School of Chemistry and Biochemistry School of Biological Sciences Georgia Institute of Technology 901 Atlantic Dr. Atlanta GA 30306 USA
| | - Jeffery Noble
- School of Chemistry and Biochemistry School of Biological Sciences Georgia Institute of Technology 901 Atlantic Dr. Atlanta GA 30306 USA
| | - Lucrezia De Pascalis
- School of Chemistry and Biochemistry School of Biological Sciences Georgia Institute of Technology 901 Atlantic Dr. Atlanta GA 30306 USA
| | - M. G. Finn
- School of Chemistry and Biochemistry School of Biological Sciences Georgia Institute of Technology 901 Atlantic Dr. Atlanta GA 30306 USA
| |
Collapse
|
38
|
Das S, Yau MK, Noble J, De Pascalis L, Finn MG. Transport of Molecular Cargo by Interaction with Virus-Like Particle RNA. Angew Chem Int Ed Engl 2022; 61:e202111687. [PMID: 34717043 PMCID: PMC9280655 DOI: 10.1002/anie.202111687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Indexed: 01/12/2023]
Abstract
Virus-like particles (VLPs) derived from Leviviridae virions contain substantial amounts of cellular and plasmid-derived RNA. This encapsidated polynucleotide serves as a reservoir for the efficient binding of the intercalating dye thiazole orange (TO). Polyethylene glycol (PEG) molecules and oligopeptides of varying length, end-functionalized with TO, were loaded into VLPs up to approximately 50 % of the mass of the capsid protein (hundreds to thousands of cargo molecules per particle, depending on size). The kinetics of TO-PEG binding included a significant entropic cost for the reptation of long chains through the capsid pores. Cargo molecules were released over periods of 20-120 hours following simple reversible first-order kinetics in most cases. These observations define a simple general method for the noncovalent packaging, and subsequent release, of functional molecules inside nucleoprotein nanocages in a manner independent of modifications to the capsid protein.
Collapse
Affiliation(s)
- Soumen Das
- School of Chemistry and Biochemistry, School of Biological Sciences, Georgia Institute of Technology, 901 Atlantic Dr., Atlanta, GA, 30306, USA
| | - Mei-Kwan Yau
- School of Chemistry and Biochemistry, School of Biological Sciences, Georgia Institute of Technology, 901 Atlantic Dr., Atlanta, GA, 30306, USA
| | - Jeffery Noble
- School of Chemistry and Biochemistry, School of Biological Sciences, Georgia Institute of Technology, 901 Atlantic Dr., Atlanta, GA, 30306, USA
| | - Lucrezia De Pascalis
- School of Chemistry and Biochemistry, School of Biological Sciences, Georgia Institute of Technology, 901 Atlantic Dr., Atlanta, GA, 30306, USA
| | - M G Finn
- School of Chemistry and Biochemistry, School of Biological Sciences, Georgia Institute of Technology, 901 Atlantic Dr., Atlanta, GA, 30306, USA
| |
Collapse
|
39
|
Ribovski L, Hamelmann NM, Paulusse JMJ. Polymeric Nanoparticles Properties and Brain Delivery. Pharmaceutics 2021; 13:2045. [PMID: 34959326 PMCID: PMC8705716 DOI: 10.3390/pharmaceutics13122045] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/22/2021] [Accepted: 11/26/2021] [Indexed: 01/04/2023] Open
Abstract
Safe and reliable entry to the brain is essential for successful diagnosis and treatment of diseases, but it still poses major challenges. As a result, many therapeutic approaches to treating disorders associated with the central nervous system (CNS) still only show limited success. Nano-sized systems are being explored as drug carriers and show great improvements in the delivery of many therapeutics. The systemic delivery of nanoparticles (NPs) or nanocarriers (NCs) to the brain involves reaching the neurovascular unit (NVU), being transported across the blood-brain barrier, (BBB) and accumulating in the brain. Each of these steps can benefit from specifically controlled properties of NPs. Here, we discuss how brain delivery by NPs can benefit from careful design of the NP properties. Properties such as size, charge, shape, and ligand functionalization are commonly addressed in the literature; however, properties such as ligand density, linker length, avidity, protein corona, and stiffness are insufficiently discussed. This is unfortunate since they present great value against multiple barriers encountered by the NPs before reaching the brain, particularly the BBB. We further highlight important examples utilizing targeting ligands and how functionalization parameters, e.g., ligand density and ligand properties, can affect the success of the nano-based delivery system.
Collapse
Affiliation(s)
| | | | - Jos M. J. Paulusse
- Department of Molecules and Materials, MESA+ Institute for Nanotechnology and TechMed Institute for Health and Biomedical Technologies, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands; (L.R.); (N.M.H.)
| |
Collapse
|
40
|
Lu H, Xu S, Guo Z, Zhao M, Liu Z. Redox-Responsive Molecularly Imprinted Nanoparticles for Targeted Intracellular Delivery of Protein toward Cancer Therapy. ACS NANO 2021; 15:18214-18225. [PMID: 34664930 DOI: 10.1021/acsnano.1c07166] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Although protein therapeutics is of significance in therapeutic intervention of cancers, controlled delivery of therapeutic proteins still faces substantial challenges including susceptibility to degradation and denaturation and poor membrane permeability. Herein, we report a sialic acid (SA)-imprinted biodegradable silica nanoparticles (BS-NPs)-based protein delivery strategy for targeted cancer therapy. Cytotoxic ribonuclease A (RNase A) was effectively caged in the matrix of disulfide-hybridized silica NPs (encapsulation efficiency of ∼64%), which were further functionalized with cancer targeting capability via surface imprinting with SA as imprinting template. Such nanovectors could not only maintain high stability in physiological conditions but also permit redox-triggered biodegradation for both concomitant release of the loaded therapeutic cargo and in vivo clearance. In vitro experiments confirmed that the SA-imprinted RNase A@BS-NPs could selectively target SA-overexpressed tumor cells, promote cells uptake, and subsequently be cleaved by intracellular glutathione (GSH), resulting in rapid release kinetics and enhanced cell cytotoxicity. In vivo experiments further confirmed that the SA-imprinted RNase A@BS-NPs had specific tumor-targeting ability and high therapeutic efficacy of RNase A in xenograft tumor model. Due to the specific targeting and traceless GSH-stimulated intracellular protein release, the SA-imprinted BS-NPs provided a promising platform for the delivery of biomacromolecules in cancer therapy.
Collapse
Affiliation(s)
- Haifeng Lu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Shuxin Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Zhanchen Guo
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Menghuan Zhao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Zhen Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
41
|
Oxygen-vacancy-rich spinel CoFe2O4 nanocrystals anchored on cage-like carbon for high-performance oxygen electrocatalysis. KOREAN J CHEM ENG 2021. [DOI: 10.1007/s11814-021-0849-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
42
|
Liu Q, Shaukat A, Kyllönen D, Kostiainen MA. Polyelectrolyte Encapsulation and Confinement within Protein Cage-Inspired Nanocompartments. Pharmaceutics 2021; 13:1551. [PMID: 34683843 PMCID: PMC8537137 DOI: 10.3390/pharmaceutics13101551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 12/17/2022] Open
Abstract
Protein cages are nanocompartments with a well-defined structure and monodisperse size. They are composed of several individual subunits and can be categorized as viral and non-viral protein cages. Native viral cages often exhibit a cationic interior, which binds the anionic nucleic acid genome through electrostatic interactions leading to efficient encapsulation. Non-viral cages can carry various cargo, ranging from small molecules to inorganic nanoparticles. Both cage types can be functionalized at targeted locations through genetic engineering or chemical modification to entrap materials through interactions that are inaccessible to wild-type cages. Moreover, the limited number of constitutional subunits ease the modification efforts, because a single modification on the subunit can lead to multiple functional sites on the cage surface. Increasing efforts have also been dedicated to the assembly of protein cage-mimicking structures or templated protein coatings. This review focuses on native and modified protein cages that have been used to encapsulate and package polyelectrolyte cargos and on the electrostatic interactions that are the driving force for the assembly of such structures. Selective encapsulation can protect the payload from the surroundings, shield the potential toxicity or even enhance the intended performance of the payload, which is appealing in drug or gene delivery and imaging.
Collapse
Affiliation(s)
- Qing Liu
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, 00076 Aalto, Finland; (Q.L.); (A.S.); (D.K.)
| | - Ahmed Shaukat
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, 00076 Aalto, Finland; (Q.L.); (A.S.); (D.K.)
| | - Daniella Kyllönen
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, 00076 Aalto, Finland; (Q.L.); (A.S.); (D.K.)
| | - Mauri A. Kostiainen
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, 00076 Aalto, Finland; (Q.L.); (A.S.); (D.K.)
- HYBER Center, Department of Applied Physics, Aalto University, 00076 Aalto, Finland
| |
Collapse
|
43
|
Kumar M, Markiewicz-Mizera J, Janna Olmos JD, Wilk P, Grudnik P, Biela AP, Jemioła-Rzemińska M, Górecki A, Chakraborti S, Heddle JG. A single residue can modulate nanocage assembly in salt dependent ferritin. NANOSCALE 2021; 13:11932-11942. [PMID: 34195748 DOI: 10.1039/d1nr01632f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Cage forming proteins have numerous potential applications in biomedicine and biotechnology, where the iron storage ferritin is a widely used example. However, controlling ferritin cage assembly/disassembly remains challenging, typically requiring extreme conditions incompatible with many desirable cargoes, particularly for more fragile biopharmaceuticals. Recently, a ferritin from the hyperthermophile bacterium Thermotoga maritima (TmFtn) has been shown to have reversible assembly under mild conditions, offering greater potential biocompatibility in terms of cargo access and encapsulation. Like Archeoglobus fulgidus ferritin (AfFtn), TmFtn forms 24mer cages mediated by metal ions (Mg2+). We have solved the crystal structure of the wild type TmFtn and several mutants displaying different assembly/disassembly properties. These data combined with other biophysical studies allow us to suggest candidate interfacial amino acids crucial in controlling assembly. This work deepens our understanding of how these ferritin complexes assemble and is a useful step towards production of triggerable ferritins in which these properties can be finely designed and controlled.
Collapse
Affiliation(s)
- Mantu Kumar
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-392 Krakow, Poland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Stevens CA, Kaur K, Klok HA. Self-assembly of protein-polymer conjugates for drug delivery. Adv Drug Deliv Rev 2021; 174:447-460. [PMID: 33984408 DOI: 10.1016/j.addr.2021.05.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 04/22/2021] [Accepted: 05/03/2021] [Indexed: 01/07/2023]
Abstract
Protein-polymer conjugates are a class of molecules that combine the stability of polymers with the diversity, specificity, and functionality of biomolecules. These bioconjugates can result in hybrid materials that display properties not found in their individual components and can be particularly relevant for drug delivery applications. Engineering amphiphilicity into these bioconjugate materials can lead to phase separation and the assembly of high-order structures. The assembly, termed self-assembly, of these hierarchical structures entails multiple levels of organization: at each level, new properties emerge, which are, in turn, influenced by lower levels. Here, we provide a critical review of protein-polymer conjugate self-assembly and how these materials can be used for therapeutic applications and drug delivery. In addition, we discuss central bioconjugate design questions and propose future perspectives for the field of protein-polymer conjugate self-assembly.
Collapse
Affiliation(s)
- Corey A Stevens
- École Polytechnique Fédérale de Lausanne (EPFL), Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères, Bâtiment MXD, Station 12, CH-1015 Lausanne, Switzerland.
| | - Kuljeet Kaur
- École Polytechnique Fédérale de Lausanne (EPFL), Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères, Bâtiment MXD, Station 12, CH-1015 Lausanne, Switzerland
| | - Harm-Anton Klok
- École Polytechnique Fédérale de Lausanne (EPFL), Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères, Bâtiment MXD, Station 12, CH-1015 Lausanne, Switzerland
| |
Collapse
|
45
|
Choi H, Eom S, Kim HU, Bae Y, Jung HS, Kang S. Load and Display: Engineering Encapsulin as a Modular Nanoplatform for Protein-Cargo Encapsulation and Protein-Ligand Decoration Using Split Intein and SpyTag/SpyCatcher. Biomacromolecules 2021; 22:3028-3039. [PMID: 34142815 DOI: 10.1021/acs.biomac.1c00481] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Protein cage nanoparticles have a unique spherical hollow structure that provides a modifiable interior space and an exterior surface. For full application, it is desirable to utilize both the interior space and the exterior surface simultaneously with two different functionalities in a well-combined way. Here, we genetically engineered encapsulin protein cage nanoparticles (Encap) as modular nanoplatforms by introducing a split-C-intein (IntC) fragment and SpyTag into the interior and exterior surfaces, respectively. A complementary split-N-intein (IntN) was fused to various protein cargoes, such as NanoLuc luciferase (Nluc), enhanced green fluorescent protein (eGFP), and Nluc-miniSOG, individually, which led to their successful encapsulation into Encaps to form Cargo@Encap through split intein-mediated protein ligation during protein coexpression and cage assembly in bacteria. Conversely, the SpyCatcher protein was fused to various protein ligands, such as a glutathione binder (GST-SC), dimerizing ligands (FKBP12-SC and FRB-SC), and a cancer-targeting affibody (SC-EGFRAfb); subsequently, they were displayed on Cargo@Encaps through SpyTag/SpyCatcher ligation to form Cargo@Encap/Ligands in a mix-and-match manner. Nluc@Encap/glutathione-S-transferase (GST) was effectively immobilized on glutathione (GSH)-coated solid supports exhibiting repetitive and long-term usage of the encapsulated luciferases. We also established luciferase-embedded layer-by-layer (LbL) nanostructures by alternately depositing Nluc@Encap/FKBP12 and Nluc@Encap/FRB in the presence of rapamycin and applied enhanced green fluorescent protein (eGFP)@Encap/EGFRAfb as a target-specific fluorescent imaging probe to visualize specific cancer cells selectively. Modular functionalization of the interior space and the exterior surface of a protein cage nanoparticle may offer the opportunity to develop new protein-based nanostructured devices and nanomedical tools.
Collapse
Affiliation(s)
- Hyukjun Choi
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| | - Soomin Eom
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| | - Han-Ul Kim
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, 1, Kangwondaehak-gil, Chuncheon-si 24341, Gangwon-do, Korea
| | - Yoonji Bae
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| | - Hyun Suk Jung
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, 1, Kangwondaehak-gil, Chuncheon-si 24341, Gangwon-do, Korea
| | - Sebyung Kang
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| |
Collapse
|
46
|
Guo XQ, Zhou LP, Hu SJ, Cai LX, Cheng PM, Sun QF. Hexameric Lanthanide-Organic Capsules with Tertiary Structure and Emergent Functions. J Am Chem Soc 2021; 143:6202-6210. [PMID: 33871254 DOI: 10.1021/jacs.1c01168] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Biological macromolecules always function through a collective behavior of the aggregated constituents, which usually are self-assembled together via noncovalent interactions. Likewise, artificial supramolecular assemblies, whose properties and functions are mainly derived from their primary and secondary structures, may also aggregate into high-order architectures with emergent functions not available on the individual components. Here we report the first example of an insulin-like hexamerization of lanthanide triple helicates toward a 4 nm diameter hexameric capsule via consecutive metal-directed and anion-directed assembly processes. Hierarchical chiral-sorting self-assembly endows hexamers with aggregation-induced stability and emission enhancement. Furthermore, emergent guest-encapsulation function and enantioselectivity toward terpene drugs have been realized in the late-formed central cavity of the hexamers. This study not only provides a feasible strategy for constructing sophisticated and multifunctional lanthanide-organic materials but also sheds some light on the self-assembly processes in nature.
Collapse
Affiliation(s)
- Xiao-Qing Guo
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Li-Peng Zhou
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People's Republic of China
| | - Shao-Jun Hu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Li-Xuan Cai
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People's Republic of China
| | - Pei-Ming Cheng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People's Republic of China
| | - Qing-Fu Sun
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
47
|
Hagan MF, Grason GM. Equilibrium mechanisms of self-limiting assembly. REVIEWS OF MODERN PHYSICS 2021; 93:025008. [PMID: 35221384 PMCID: PMC8880259 DOI: 10.1103/revmodphys.93.025008] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Self-assembly is a ubiquitous process in synthetic and biological systems, broadly defined as the spontaneous organization of multiple subunits (e.g. macromolecules, particles) into ordered multi-unit structures. The vast majority of equilibrium assembly processes give rise to two states: one consisting of dispersed disassociated subunits, and the other, a bulk-condensed state of unlimited size. This review focuses on the more specialized class of self-limiting assembly, which describes equilibrium assembly processes resulting in finite-size structures. These systems pose a generic and basic question, how do thermodynamic processes involving non-covalent interactions between identical subunits "measure" and select the size of assembled structures? In this review, we begin with an introduction to the basic statistical mechanical framework for assembly thermodynamics, and use this to highlight the key physical ingredients that ensure equilibrium assembly will terminate at finite dimensions. Then, we introduce examples of self-limiting assembly systems, and classify them within this framework based on two broad categories: self-closing assemblies and open-boundary assemblies. These include well-known cases in biology and synthetic soft matter - micellization of amphiphiles and shell/tubule formation of tapered subunits - as well as less widely known classes of assemblies, such as short-range attractive/long-range repulsive systems and geometrically-frustrated assemblies. For each of these self-limiting mechanisms, we describe the physical mechanisms that select equilibrium assembly size, as well as potential limitations of finite-size selection. Finally, we discuss alternative mechanisms for finite-size assemblies, and draw contrasts with the size-control that these can achieve relative to self-limitation in equilibrium, single-species assemblies.
Collapse
Affiliation(s)
- Michael F Hagan
- Martin Fisher School of Physics, Brandeis University, Waltham, MA 02454, USA
| | - Gregory M Grason
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
48
|
Diaz D, Vidal X, Sunna A, Care A. Bioengineering a Light-Responsive Encapsulin Nanoreactor: A Potential Tool for In Vitro Photodynamic Therapy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:7977-7986. [PMID: 33586952 DOI: 10.1021/acsami.0c21141] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Encapsulins, a prokaryotic class of self-assembling protein nanocompartments, are being re-engineered to serve as "nanoreactors" for the augmentation or creation of key biochemical reactions. However, approaches that allow encapsulin nanoreactors to be functionally activated with spatial and temporal precision are lacking. We report the construction of a light-responsive encapsulin nanoreactor for "on demand" production of reactive oxygen species (ROS). Herein, encapsulins were loaded with the fluorescent flavoprotein mini-singlet oxygen generator (miniSOG), a biological photosensitizer that is activated by blue light to generate ROS, primarily singlet oxygen (1O2). We established that the nanocompartments stably encased miniSOG and in response to blue light were able to mediate the photoconversion of molecular oxygen into ROS. Using an in vitro model of lung cancer, we showed that ROS generated by the nanoreactor triggered photosensitized oxidation reactions which exerted a toxic effect on tumor cells, suggesting utility in photodynamic therapy. This encapsulin nanoreactor thus represents a platform for the light-controlled initiation and/or modulation of ROS-driven processes in biomedicine and biotechnology.
Collapse
Affiliation(s)
- Dennis Diaz
- Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Xavier Vidal
- Fraunhofer Institut für Angewandte Festkörperphysik (IAF), Tullastrasse 72, 79108 Freiburg, Germany
| | - Anwar Sunna
- Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
- ARC Centre of Excellence for Nanoscale BioPhotonics, Macquarie University, Sydney, NSW 2109, Australia
| | - Andrew Care
- ARC Centre of Excellence for Nanoscale BioPhotonics, Macquarie University, Sydney, NSW 2109, Australia
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW 2109, Australia
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| |
Collapse
|
49
|
Dubey NC, Tripathi BP. Nature Inspired Multienzyme Immobilization: Strategies and Concepts. ACS APPLIED BIO MATERIALS 2021; 4:1077-1114. [PMID: 35014469 DOI: 10.1021/acsabm.0c01293] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In a biological system, the spatiotemporal arrangement of enzymes in a dense cellular milieu, subcellular compartments, membrane-associated enzyme complexes on cell surfaces, scaffold-organized proteins, protein clusters, and modular enzymes have presented many paradigms for possible multienzyme immobilization designs that were adapted artificially. In metabolic channeling, the catalytic sites of participating enzymes are close enough to channelize the transient compound, creating a high local concentration of the metabolite and minimizing the interference of a competing pathway for the same precursor. Over the years, these phenomena had motivated researchers to make their immobilization approach naturally realistic by generating multienzyme fusion, cluster formation via affinity domain-ligand binding, cross-linking, conjugation on/in the biomolecular scaffold of the protein and nucleic acids, and self-assembly of amphiphilic molecules. This review begins with the discussion of substrate channeling strategies and recent empirical efforts to build it synthetically. After that, an elaborate discussion covering prevalent concepts related to the enhancement of immobilized enzymes' catalytic performance is presented. Further, the central part of the review summarizes the progress in nature motivated multienzyme assembly over the past decade. In this section, special attention has been rendered by classifying the nature-inspired strategies into three main categories: (i) multienzyme/domain complex mimic (scaffold-free), (ii) immobilization on the biomolecular scaffold, and (iii) compartmentalization. In particular, a detailed overview is correlated to the natural counterpart with advances made in the field. We have then discussed the beneficial account of coassembly of multienzymes and provided a synopsis of the essential parameters in the rational coimmobilization design.
Collapse
Affiliation(s)
- Nidhi C Dubey
- Institute of Molecular Medicine, Jamia Hamdard, New Delhi 110062, India
| | - Bijay P Tripathi
- Department of Materials Science and Engineering, Indian institute of Technology Delhi, New Delhi 110016, India
| |
Collapse
|
50
|
Välimäki S, Liu Q, Schoonen L, Vervoort DFM, Nonappa, Linko V, Nolte RJM, van Hest JCM, Kostiainen MA. Engineered protein cages for selective heparin encapsulation. J Mater Chem B 2021; 9:1272-1276. [PMID: 33427277 DOI: 10.1039/d0tb02541k] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A heparin-specific binding peptide was conjugated to a cowpea chlorotic mottle virus (CCMV) capsid protein, which was subsequently allowed to encapsulate heparin and form capsid-like protein cages. The encapsulation is specific and the capsid-heparin assemblies display negligible hemolytic activity, indicating proper blood compatibility and promising possibilities for heparin antidote applications.
Collapse
Affiliation(s)
- Salla Välimäki
- Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, Aalto FI-00076, Espoo, Finland.
| | - Qing Liu
- Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, Aalto FI-00076, Espoo, Finland.
| | - Lise Schoonen
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, Nijmegen 6525 AJ, The Netherlands
| | - Daan F M Vervoort
- Department of Bio-Organic Chemistry, Eindhoven University of Technology, Institute of Complex Molecular Systems (ICMS), Het Kranenveld 14, Eindhoven 5600 MB, The Netherlands
| | - Nonappa
- HYBER Centre, Department of Applied Physics, Aalto University, Aalto FI-00076, Finland
| | - Veikko Linko
- Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, Aalto FI-00076, Espoo, Finland. and HYBER Centre, Department of Applied Physics, Aalto University, Aalto FI-00076, Finland
| | - Roeland J M Nolte
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, Nijmegen 6525 AJ, The Netherlands
| | - Jan C M van Hest
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, Nijmegen 6525 AJ, The Netherlands and Department of Bio-Organic Chemistry, Eindhoven University of Technology, Institute of Complex Molecular Systems (ICMS), Het Kranenveld 14, Eindhoven 5600 MB, The Netherlands
| | - Mauri A Kostiainen
- Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, Aalto FI-00076, Espoo, Finland. and HYBER Centre, Department of Applied Physics, Aalto University, Aalto FI-00076, Finland
| |
Collapse
|