1
|
Jorge-Rosas F, Díaz-Godínez C, García-Aguirre S, Martínez-Calvillo S, Carrero JC. Entamoeba histolytica-induced NETs are highly cytotoxic on hepatic and colonic cells due to serine proteases and myeloperoxidase activities. Front Immunol 2024; 15:1493946. [PMID: 39687618 PMCID: PMC11646992 DOI: 10.3389/fimmu.2024.1493946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 11/14/2024] [Indexed: 12/18/2024] Open
Abstract
During intestinal and liver invasion by the protozoan parasite Entamoeba histolytica, extensive tissue destruction linked to large neutrophil infiltrates is observed. It has been proposed that microbicidal components of neutrophils are responsible for the damage, however, the mechanism by which they are released and act in the extracellular space remains unknown. In previous studies, we have shown that E. histolytica trophozoites induce NET formation, leading to the release of neutrophil granule content into extruded DNA. In this work, we evaluate the possible participation of NETs in the development of amoeba-associated pathology and analyze the contribution of anti-microbial components of the associated granules. E. histolytica-induced NETs were isolated and their effect on the viability and integrity of HCT 116 colonic and Hep G2 liver cultures were evaluated. The results showed that simple incubation of cell monolayers with purified NETs for 24 h resulted in cell detachment and death in a dose-dependent manner. The effect was thermolabile and correlated with the amount of DNA and protein present in NETs. Pretreatment of NETs with specific inhibitors of some microbicidal components suggested that serine proteases, are mostly responsible for the damage caused by NETs on HCT 116 cells, while the MPO activity was the most related to Hep G2 cells damage. Our study also points to a very important role of DNA as a scaffold for the activity of these proteins. We show evidence of the development of NETs in amoebic liver abscesses in hamsters as a preamble to evaluate their participation in tissue damage. In conclusion, these studies demonstrate that amoebic-induced NETs have potent cytotoxic effects on target cells and, therefore, may be responsible for the intense damage associated with tissue invasion by this parasite.
Collapse
Affiliation(s)
- Fabian Jorge-Rosas
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| | - César Díaz-Godínez
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| | - Samuel García-Aguirre
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| | - Santiago Martínez-Calvillo
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, EM, Mexico
| | - Julio César Carrero
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| |
Collapse
|
2
|
Yao J, Ji L, Wang G, Ding J. Effect of neutrophils on tumor immunity and immunotherapy resistance with underlying mechanisms. Cancer Commun (Lond) 2024. [PMID: 39485719 DOI: 10.1002/cac2.12613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 09/08/2024] [Accepted: 09/17/2024] [Indexed: 11/03/2024] Open
Abstract
Neutrophils are key mediators of the immune response and play essential roles in the development of tumors and immune evasion. Emerging studies indicate that neutrophils also play a critical role in the immunotherapy resistance in cancer. In this review, firstly, we summarize the novel classification and phenotypes of neutrophils and describe the regulatory relationships between neutrophils and tumor metabolism, flora microecology, neuroendocrine and tumor therapy from a new perspective. Secondly, we review the mechanisms by which neutrophils affect drug resistance in tumor immunotherapy from the aspects of the immune microenvironment, tumor antigens, and epigenetics. Finally, we propose several promising strategies for overcoming tumor immunotherapy resistance by targeting neutrophils and provide new research ideas in this area.
Collapse
Affiliation(s)
- Jiali Yao
- Clinical Cancer Institute, Center for Translational Medicine, Naval Medical University, Shanghai, China
| | - Linlin Ji
- Clinical Cancer Institute, Center for Translational Medicine, Naval Medical University, Shanghai, China
| | - Guang Wang
- Clinical Cancer Institute, Center for Translational Medicine, Naval Medical University, Shanghai, China
| | - Jin Ding
- Clinical Cancer Institute, Center for Translational Medicine, Naval Medical University, Shanghai, China
| |
Collapse
|
3
|
Dairov A, Sekenova A, Alimbek S, Nurkina A, Shakhatbayev M, Kumasheva V, Kuanysh S, Adish Z, Issabekova A, Ogay V. Psoriasis: The Versatility of Mesenchymal Stem Cell and Exosome Therapies. Biomolecules 2024; 14:1351. [PMID: 39595528 PMCID: PMC11591958 DOI: 10.3390/biom14111351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 11/28/2024] Open
Abstract
Mesenchymal stem cells (MSCs) are multilineage differentiating stromal cells with extensive immunomodulatory and anti-inflammatory properties. MSC-based therapy is widely used in the treatment of various pathologies, including bone and cartilage diseases, cardiac ischemia, diabetes, and neurological disorders. Along with MSCs, it is promising to study the therapeutic properties of exosomes derived from MSCs (MSC-Exo). A number of studies report that the therapeutic properties of MSC-Exo are superior to those of MSCs. In particular, MSC-Exo are used for tissue regeneration in various diseases, such as healing of skin wounds, cancer, coronary heart disease, lung injury, liver fibrosis, and neurological, autoimmune, and inflammatory diseases. In this regard, it is not surprising that the scientific community is interested in studying the therapeutic properties of MSCs and MSC-Exo in the treatment of psoriasis. This review summarizes the recent advancements from preclinical and clinical studies of MSCs and MSC-Exo in the treatment of psoriasis, and it also discusses their mechanisms of therapeutic action involved in the treatment of this disease.
Collapse
Affiliation(s)
- Aidar Dairov
- Stem Cell Laboratory, National Center for Biotechnology, Astana 010000, Kazakhstan or (A.D.); (A.S.); (S.A.); (A.N.); (M.S.); (V.K.); (V.O.)
- Department of General Biology and Genomics, L.N. Gumilyov Eurasian National University, Astana 010008, Kazakhstan
| | - Aliya Sekenova
- Stem Cell Laboratory, National Center for Biotechnology, Astana 010000, Kazakhstan or (A.D.); (A.S.); (S.A.); (A.N.); (M.S.); (V.K.); (V.O.)
| | - Symbat Alimbek
- Stem Cell Laboratory, National Center for Biotechnology, Astana 010000, Kazakhstan or (A.D.); (A.S.); (S.A.); (A.N.); (M.S.); (V.K.); (V.O.)
| | - Assiya Nurkina
- Stem Cell Laboratory, National Center for Biotechnology, Astana 010000, Kazakhstan or (A.D.); (A.S.); (S.A.); (A.N.); (M.S.); (V.K.); (V.O.)
| | - Miras Shakhatbayev
- Stem Cell Laboratory, National Center for Biotechnology, Astana 010000, Kazakhstan or (A.D.); (A.S.); (S.A.); (A.N.); (M.S.); (V.K.); (V.O.)
| | - Venera Kumasheva
- Stem Cell Laboratory, National Center for Biotechnology, Astana 010000, Kazakhstan or (A.D.); (A.S.); (S.A.); (A.N.); (M.S.); (V.K.); (V.O.)
| | - Sandugash Kuanysh
- Obstetrics and Gynecology, Astana Medical University, Astana 010000, Kazakhstan
| | - Zhansaya Adish
- Laboratory of Immunochemistry and Immunobiotechnology, National Center for Biotechnology, Astana 010000, Kazakhstan;
- Department of Natural Sciences, L.N. Gumilyov Eurasian National University, Astana 010008, Kazakhstan
| | - Assel Issabekova
- Stem Cell Laboratory, National Center for Biotechnology, Astana 010000, Kazakhstan or (A.D.); (A.S.); (S.A.); (A.N.); (M.S.); (V.K.); (V.O.)
| | - Vyacheslav Ogay
- Stem Cell Laboratory, National Center for Biotechnology, Astana 010000, Kazakhstan or (A.D.); (A.S.); (S.A.); (A.N.); (M.S.); (V.K.); (V.O.)
- Department of General Biology and Genomics, L.N. Gumilyov Eurasian National University, Astana 010008, Kazakhstan
| |
Collapse
|
4
|
Shvedov M, Sherstyukova E, Kandrashina S, Inozemtsev V, Sergunova V. Atomic Force Microscopy and Scanning Ion-Conductance Microscopy for Investigation of Biomechanical Characteristics of Neutrophils. Cells 2024; 13:1757. [PMID: 39513864 PMCID: PMC11545488 DOI: 10.3390/cells13211757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/17/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Scanning probe microscopy (SPM) is a versatile tool for studying a wide range of materials. It is well suited for investigating living matter, for example, in single-cell neutrophil studies. SPM has been extensively utilized to analyze cell physical properties, providing detailed insights into their structural and functional characteristics at the nanoscale. Its long-standing application in this field highlights its essential role in cell biology and immunology research, significantly contributing to understanding cellular mechanics and interactions. In this review, we discuss the application of SPM techniques, specifically atomic force microscopy (AFM) and scanning ion-conductance microscopy (SICM), to study the fundamental functions of neutrophils. In addition, recent advances in the application of SPM in single-cell immunology are discussed. The application of these techniques allows for obtaining data on the morphology, topography, and mechanical and electrochemical properties of neutrophils with high accuracy.
Collapse
Affiliation(s)
- Mikhail Shvedov
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Research Institute of General Reanimatology, 107031 Moscow, Russia; (E.S.); (S.K.); (V.I.)
| | - Ekaterina Sherstyukova
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Research Institute of General Reanimatology, 107031 Moscow, Russia; (E.S.); (S.K.); (V.I.)
| | - Snezhanna Kandrashina
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Research Institute of General Reanimatology, 107031 Moscow, Russia; (E.S.); (S.K.); (V.I.)
| | - Vladimir Inozemtsev
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Research Institute of General Reanimatology, 107031 Moscow, Russia; (E.S.); (S.K.); (V.I.)
- Koltzov Institute of Development Biology of Russia Academy of Science, 119334 Moscow, Russia
| | - Viktoria Sergunova
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Research Institute of General Reanimatology, 107031 Moscow, Russia; (E.S.); (S.K.); (V.I.)
| |
Collapse
|
5
|
Ebrahimi Samani S, Tatsukawa H, Hitomi K, Kaartinen MT. Transglutaminase 1: Emerging Functions beyond Skin. Int J Mol Sci 2024; 25:10306. [PMID: 39408635 PMCID: PMC11476513 DOI: 10.3390/ijms251910306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/20/2024] [Accepted: 09/22/2024] [Indexed: 10/20/2024] Open
Abstract
Transglutaminase enzymes catalyze Ca2+- and thiol-dependent posttranslational modifications of glutamine-residues that include esterification, hydrolysis and transamidation, which results in covalent protein-protein crosslinking. Among the eight transglutaminase family members in mammals, transglutaminase 1 (TG1) plays a crucial role in skin barrier formation via crosslinking and insolubilizing proteins in keratinocytes. Despite this established function in skin, novel functions have begun merging in normal tissue homeostasis as well as in pathologies. This review summarizes our current understanding of the structure, activation, expression and activity patterns of TG1 and discusses its putative novel role in other tissues, such as in vascular integrity, and in diseases, such as cancer and fibrosis.
Collapse
Affiliation(s)
- Sahar Ebrahimi Samani
- Division of Experimental Medicine, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3A 0C7, Canada;
| | - Hideki Tatsukawa
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya 464-8601, Japan; (H.T.); (K.H.)
| | - Kiyotaka Hitomi
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya 464-8601, Japan; (H.T.); (K.H.)
| | - Mari T. Kaartinen
- Division of Experimental Medicine, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3A 0C7, Canada;
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada
| |
Collapse
|
6
|
Wan MC, Jiao K, Zhu YN, Wan QQ, Zhang YP, Niu LZ, Lei C, Song JH, Lu WC, Liu HJ, Ren ZY, Tay F, Niu LN. Bacteria-mediated resistance of neutrophil extracellular traps to enzymatic degradation drives the formation of dental calculi. Nat Biomed Eng 2024; 8:1177-1190. [PMID: 38491329 DOI: 10.1038/s41551-024-01186-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 02/06/2024] [Indexed: 03/18/2024]
Abstract
Dental calculi can cause gingival bleeding and periodontitis, yet the mechanism underlying the formation of such mineral build-ups, and in particular the role of the local microenvironment, are unclear. Here we show that the formation of dental calculi involves bacteria in local mature biofilms converting the DNA in neutrophil extracellular traps (NETs) from being degradable by the enzyme DNase I to being degradation resistant, promoting the nucleation and growth of apatite. DNase I inhibited NET-induced mineralization in vitro and ex vivo, yet plasma DNases were ineffective at inhibiting ectopic mineralization in the oral cavity in rodents. The topical application of the DNA-intercalating agent chloroquine in rodents fed with a dental calculogenic diet reverted NET DNA to its degradable form, inhibiting the formation of calculi. Our findings may motivate therapeutic strategies for the reduction of the prevalence of the deposition of bacteria-driven calculi in the oral cavity.
Collapse
Affiliation(s)
- Mei-Chen Wan
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, P.R. China
| | - Kai Jiao
- Department of Stomatology, Tangdu hospital; State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, P.R. China
| | - Yi-Na Zhu
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, P.R. China
| | - Qian-Qian Wan
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, P.R. China
| | - Yi-Peng Zhang
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, P.R. China
| | - Long-Zhang Niu
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, P.R. China
| | - Chen Lei
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, P.R. China
| | - Jing-Han Song
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, P.R. China
| | - Wei-Cheng Lu
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, P.R. China
| | - Hua-Jie Liu
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, P.R. China
| | - Zhao-Yang Ren
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, P.R. China
| | - Franklin Tay
- The Dental College of Georgia, Augusta University, Augusta, GA, USA
| | - Li-Na Niu
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, P.R. China.
| |
Collapse
|
7
|
Ma Y, Wei J, He W, Ren J. Neutrophil extracellular traps in cancer. MedComm (Beijing) 2024; 5:e647. [PMID: 39015554 PMCID: PMC11247337 DOI: 10.1002/mco2.647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 07/18/2024] Open
Abstract
Neutrophil extracellular traps (NETs), which consist of chromatin DNA studded with granule proteins, are released by neutrophils in response to both infectious and sterile inflammation. Beyond the canonical role in defense against pathogens, the extrusion of NETs also contributes to the initiation, metastasis, and therapeutic response of malignant diseases. Recently, NETs have been implicated in the development and therapeutic responses of various types of tumors. Although extensive work regarding inflammation in tumors has been reported, a comprehensive summary of how these web-like extracellular structures initiate and propagate tumor progression under the specific microenvironment is lacking. In this review, we demonstrate the initiators and related signaling pathways that trigger NETs formation in cancers. Additionally, this review will outline the current molecular mechanisms and regulatory networks of NETs during dormant cancer cells awakening, circulating tumor cells (CTCs) extravasation, and metastatic recurrence of cancer. This is followed by a perspective on the current and potential clinical potential of NETs as therapeutic targets in the treatment of both local and metastatic disease, including the improvement of the efficacy of existing therapies.
Collapse
Affiliation(s)
- Yuxi Ma
- Cancer CenterUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Institute of Radiation OncologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Key Laboratory of Precision Radiation OncologyWuhanChina
| | - Jielin Wei
- Cancer CenterUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Institute of Radiation OncologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Key Laboratory of Precision Radiation OncologyWuhanChina
| | - Wenshan He
- Department of Breast and Thyroid SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Jinghua Ren
- Cancer CenterUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Institute of Radiation OncologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Key Laboratory of Precision Radiation OncologyWuhanChina
| |
Collapse
|
8
|
Zhang J, Feng Y, Shi D. NETosis of psoriasis: a critical step in amplifying the inflammatory response. Front Immunol 2024; 15:1374934. [PMID: 39148738 PMCID: PMC11324545 DOI: 10.3389/fimmu.2024.1374934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 07/08/2024] [Indexed: 08/17/2024] Open
Abstract
NETosis, a regulated form of neutrophil death, is crucial for host defense against pathogens. However, the release of neutrophil extracellular traps (NETs) during NETosis can have detrimental effects on surrounding tissues and contribute to the pro-inflammatory response, in addition to their role in controlling microbes. Although it is well-established that the IL-23-Th17 axis plays a key role in the pathogenesis of psoriasis, emerging evidence suggests that psoriasis, as an autoinflammatory disease, is also associated with NETosis. The purpose of this review is to provide a comprehensive understanding of the mechanisms underlying NETosis in psoriasis. It will cover topics such as the formation of NETs, immune cells involved in NETosis, and potential biomarkers as prognostic/predicting factors in psoriasis. By analyzing the intricate relationship between NETosis and psoriasis, this review also aims to identify novel possibilities targeting NETosis for the treatment of psoriasis.
Collapse
Affiliation(s)
- Jinke Zhang
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yahui Feng
- The Laboratory of Medical Mycology, Jining No. 1 People's Hospital, Jining, Shandong, China
| | - Dongmei Shi
- The Laboratory of Medical Mycology, Jining No. 1 People's Hospital, Jining, Shandong, China
- Department of Dermatology, Jining No.1 People's Hospital, Jining, Shandong, China
| |
Collapse
|
9
|
Chen B, Sun H, Zhang J, Xu J, Song Z, Zhan G, Bai X, Feng L. Cell-Based Micro/Nano-Robots for Biomedical Applications: A Review. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304607. [PMID: 37653591 DOI: 10.1002/smll.202304607] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/28/2023] [Indexed: 09/02/2023]
Abstract
Micro/nano-robots are powerful tools for biomedical applications and are applied in disease diagnosis, tumor imaging, drug delivery, and targeted therapy. Among the various types of micro-robots, cell-based micro-robots exhibit unique properties because of their different cell sources. In combination with various actuation methods, particularly externally propelled methods, cell-based microrobots have enormous potential for biomedical applications. This review introduces recent progress and applications of cell-based micro/nano-robots. Different actuation methods for micro/nano-robots are summarized, and cell-based micro-robots with different cell templates are introduced. Furthermore, the review focuses on the combination of cell-based micro/nano-robots with precise control using different external fields. Potential challenges, further prospects, and clinical translations are also discussed.
Collapse
Affiliation(s)
- Bo Chen
- School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191, China
| | - Hongyan Sun
- School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191, China
| | - Jiaying Zhang
- School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191, China
| | - Junjie Xu
- School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191, China
| | - Zeyu Song
- School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191, China
| | - Guangdong Zhan
- School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191, China
| | - Xue Bai
- School of Biomedical Engineering, Capital Medical University, Beijing, 100069, China
| | - Lin Feng
- School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191, China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191, China
| |
Collapse
|
10
|
Quoc QL, Cao TBT, Jang JH, Shin YS, Choi Y, Park HS. ST2-Mediated Neutrophilic Airway Inflammation: A Therapeutic Target for Patients With Uncontrolled Asthma. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2024; 16:22-41. [PMID: 38262389 PMCID: PMC10823144 DOI: 10.4168/aair.2024.16.1.22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/05/2023] [Accepted: 08/05/2023] [Indexed: 01/25/2024]
Abstract
PURPOSE Suppression of tumorigenicity 2 (ST2) has been proposed as the receptor contributing to neutrophilic inflammation in patients with type 2-low asthma. However, the exact role of ST2 in neutrophil activation remains poorly understood. METHODS A total of 105 asthmatic patients (classified into 3 groups according to control status: the controlled asthma [CA], partly-controlled asthma [PA], and uncontrolled asthma [UA] groups), and 104 healthy controls were enrolled to compare serum levels of soluble ST2 (sST2) and interleukin (IL)-33. Moreover, the functions of ST2 in neutrophils and macrophages (Mϕ) were evaluated ex vivo and in vivo. RESULTS Serum sST2 levels were significantly higher in the UA group than in the CA or PA groups (P < 0.05 for all) with a negative correlation between serum sST2 and forced expiratory volume in 1 second % (r = -0.203, P = 0.038). Significantly higher expression of ST2 receptors on peripheral neutrophils was noted in the UA group than in the PA or CA groups. IL-33 exerted its effects on the production of reactive oxygen species, the formation of extracellular traps from neutrophils, and Mϕ polarization/activation. In neutrophilic asthmatic mice, treatment with anti-ST2 antibody significantly suppressed proinflammatory cytokines (tumor necrosis factor-alpha and IL-17A) as well as the numbers of immune cells (neutrophils, Mϕ, and group 3 innate lymphoid cells) in the lungs. CONCLUSIONS These results suggest that IL-33 induces the activation of neutrophils and Mϕ via ST2 receptors, leading to neutrophilic airway inflammation and poor control status of asthma. ST2 could be a therapeutic target for neutrophilic airway inflammation in patients with UA.
Collapse
Affiliation(s)
- Quang Luu Quoc
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
- Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Korea
| | - Thi Bich Tra Cao
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
- Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Korea
| | - Jae-Hyuk Jang
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | - Yoo Seob Shin
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
- Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Korea
| | - Youngwoo Choi
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
- Department of Biomaterials Science, College of Natural Resources and Life Science, Pusan National University, Miryang, Korea.
| | - Hae-Sim Park
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
- Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Korea.
| |
Collapse
|
11
|
Boboltz A, Yang S, Duncan GA. Engineering in vitro models of cystic fibrosis lung disease using neutrophil extracellular trap inspired biomaterials. J Mater Chem B 2023; 11:9419-9430. [PMID: 37701932 PMCID: PMC10591795 DOI: 10.1039/d3tb01489d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
Cystic fibrosis (CF) is a muco-obstructive lung disease where inflammatory responses due to chronic infection result in the accumulation of neutrophil extracellular traps (NETs) in the airways. NETs are web-like complexes comprised mainly of decondensed chromatin that function to capture and kill bacteria. Prior studies have established excess release of NETs in CF airways increases viscoelasticity of mucus secretions and reduces mucociliary clearance. Despite the pivotal role of NETs in CF disease pathogenesis, current in vitro models of this disease do not account for their contribution. Motivated by this, we developed a new approach to study the pathobiological effects of NETs in CF by combining synthetic NET-like biomaterials, composed of DNA and histones, with an in vitro human airway epithelial cell culture model. To determine the impact of synthetic NETs on airway clearance function, we incorporated synthetic NETs into mucin hydrogels and cell culture derived airway mucus to assess their rheological and transport properties. We found that the addition of synthetic NETs significantly increases mucin hydrogel viscoelasticity. As a result, mucociliary transport in vitro was significantly reduced with the addition of mucus containing synthetic NETs. Given the prevalence of bacterial infection in the CF lung, we also evaluated the growth of Pseudomonas aeruginosa in mucus with or without synthetic NETs. We found mucus containing synthetic NETs promoted microcolony growth and prolonged bacterial survival. Together, this work establishes a new biomaterial enabled approach to study innate immunity mediated airway dysfunction in CF.
Collapse
Affiliation(s)
- Allison Boboltz
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA.
| | - Sydney Yang
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA.
| | - Gregg A Duncan
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
12
|
Huang MYY, Lippuner C, Schiff M, Book M, Stueber F. Neutrophil extracellular trap formation during surgical procedures: a pilot study. Sci Rep 2023; 13:15217. [PMID: 37709941 PMCID: PMC10502064 DOI: 10.1038/s41598-023-42565-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/12/2023] [Indexed: 09/16/2023] Open
Abstract
Neutrophils can release neutrophil extracellular traps (NETs) containing DNA fibres and antimicrobial peptides to immobilize invading pathogens. NET formation (NETosis) plays a vital role in inflammation and immune responses. In this study we investigated the impact of surgical trauma on NETosis of neutrophils. Nine patients undergoing "Transcatheter/percutaneous aortic valve implantation" (TAVI/PAVI, mild surgical trauma), and ten undergoing "Aortocoronary bypass" (ACB, severe surgical trauma) were included in our pilot study. Peripheral blood was collected before, end of, and after surgery (24 h and 48 h). Neutrophilic granulocytes were isolated and stimulated in vitro with Phorbol-12-myristate-13-acetate (PMA). NETosis rate was examined by microscopy. In addition, HLA-DR surface expression on circulating monocytes was analysed by flow-cytometry as a prognostic marker of the immune status. Both surgical procedures led to significant down regulation of monocytic HLA-DR surface expression, albeit more pronounced in ACB patients, and there was a similar trend in NETosis regulation over the surgical 24H course. Upon PMA stimulation, no significant difference in NETosis was observed over time in TAVI/PAVI group; however, a decreasing NETosis trend with a significant drop upon ACB surgery was evident. The reduced PMA-induced NETosis in ACB group suggests that the inducibility of neutrophils to form NETs following severe surgical trauma may be compromised. Moreover, the decreased monocytic HLA-DR expression suggests a post-operative immunosuppressed status in all patients, with a bigger impact by ACB, which might be attributed to the extracorporeal circulation or tissue damage occurring during surgery.
Collapse
Affiliation(s)
- Melody Ying-Yu Huang
- Department of Anaesthesiology and Pain Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
- Department for BioMedical Research, University of Bern, Bern, Switzerland.
- Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH) Zürich, Zürich, Switzerland.
| | - Christoph Lippuner
- Department of Anaesthesiology and Pain Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Marcel Schiff
- Department of Anaesthesiology and Pain Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
- Universitätsklinikum Freiburg, Freiburg, Germany
| | - Malte Book
- Department of Anaesthesiology and Pain Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Universitätsklinik für Anästhesiologie/Intensiv-/Notfallmedizin/Schmerztherapie, Oldenburg, Germany
| | - Frank Stueber
- Department of Anaesthesiology and Pain Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
- Department for BioMedical Research, University of Bern, Bern, Switzerland.
| |
Collapse
|
13
|
Sergunova V, Inozemtsev V, Vorobjeva N, Kozlova E, Sherstyukova E, Lyapunova S, Chernysh A. Morphology of Neutrophils during Their Activation and NETosis: Atomic Force Microscopy Study. Cells 2023; 12:2199. [PMID: 37681931 PMCID: PMC10486724 DOI: 10.3390/cells12172199] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/09/2023] Open
Abstract
Confocal microscopy and fluorescence staining of cellular structures are commonly used to study neutrophil activation and NETosis. However, they do not reveal the specific characteristics of the neutrophil membrane surface, its nanostructure, and morphology. The aim of this study was to reveal the topography and nanosurface characteristics of neutrophils during activation and NETosis using atomic force microscopy (AFM). We showed the main stages of neutrophil activation and NETosis, which include control cell spreading, cell fragment formation, fusion of nuclear segments, membrane disruption, release of neutrophil extracellular traps (NETs), and final cell disintegration. Changes in neutrophil membrane nanosurface parameters during activation and NETosis were quantified. It was shown that with increasing activation time there was a decrease in the spectral intensity of the spatial periods. Exposure to the activator A23187 resulted in an increase in the number and average size of cell fragments over time. Exposure to the activators A23187 and PMA (phorbol 12-myristate 13-acetate) caused the same pattern of cell transformation from spherical cells with segmented nuclei to disrupted cells with NET release. A23187 induced NETosis earlier than PMA, but PMA resulted in more cells with NETosis at the end of the specified time interval (180 min). In our study, we used AFM as the main research tool. Confocal laser-scanning microscopy (CLSM) images are provided for identification and detailed analysis of the phenomena studied. In this way, we exploited the advantages of both techniques.
Collapse
Affiliation(s)
- Viktoria Sergunova
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Research Institute of General Reanimatology, 107031 Moscow, Russia; (V.I.); (E.K.); (E.S.); (S.L.); (A.C.)
| | - Vladimir Inozemtsev
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Research Institute of General Reanimatology, 107031 Moscow, Russia; (V.I.); (E.K.); (E.S.); (S.L.); (A.C.)
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, 119334 Moscow, Russia
| | - Nina Vorobjeva
- Department of Immunology, Biology Faculty, Lomonosov Moscow State University, 119234 Moscow, Russia;
| | - Elena Kozlova
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Research Institute of General Reanimatology, 107031 Moscow, Russia; (V.I.); (E.K.); (E.S.); (S.L.); (A.C.)
- Department of Medical and Biological Physics, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Ekaterina Sherstyukova
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Research Institute of General Reanimatology, 107031 Moscow, Russia; (V.I.); (E.K.); (E.S.); (S.L.); (A.C.)
- Department of Medical and Biological Physics, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Snezhanna Lyapunova
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Research Institute of General Reanimatology, 107031 Moscow, Russia; (V.I.); (E.K.); (E.S.); (S.L.); (A.C.)
| | - Aleksandr Chernysh
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Research Institute of General Reanimatology, 107031 Moscow, Russia; (V.I.); (E.K.); (E.S.); (S.L.); (A.C.)
| |
Collapse
|
14
|
Boboltz AM, Yang S, Duncan GA. Engineering in vitro models of cystic fibrosis lung disease using neutrophil extracellular trap inspired biomaterials. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.26.546583. [PMID: 37425779 PMCID: PMC10327088 DOI: 10.1101/2023.06.26.546583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Cystic fibrosis (CF) is a muco-obstructive lung disease where inflammatory responses due to chronic infection result in the accumulation of neutrophil extracellular traps (NETs) in the airways. NETs are web-like complexes comprised mainly of decondensed chromatin that function to capture and kill bacteria. Prior studies have established excess release of NETs in CF airways increases viscoelasticity of mucus secretions and reduces mucociliary clearance. Despite the pivotal role of NETs in CF disease pathogenesis, current in vitro models of this disease do not account for their contribution. Motivated by this, we developed a new approach to study the pathobiological effects of NETs in CF by combining synthetic NET-like biomaterials, composed of DNA and histones, with an in vitro human airway epithelial cell culture model. To determine the impact of synthetic NETs on airway clearance function, we incorporated synthetic NETs into mucin hydrogels and cell culture derived airway mucus to assess their rheological and transport properties. We found that the addition of synthetic NETs significantly increases mucin hydrogel and native mucus viscoelasticity. As a result, mucociliary transport in vitro was significantly reduced with the addition of mucus containing synthetic NETs. Given the prevalence of bacterial infection in the CF lung, we also evaluated the growth of Pseudomonas aeruginosa in mucus with or without synthetic NETs. We found mucus containing synthetic NETs promoted microcolony growth and prolonged bacterial survival. Together, this work establishes a new biomaterial enabled approach to study innate immunity mediated airway dysfunction in CF.
Collapse
Affiliation(s)
- Allison M Boboltz
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Sydney Yang
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Gregg A Duncan
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
15
|
Li W, Wang Z, Su C, Liao Z, Pei Y, Wang J, Li Z, Fu S, Liu J. The effect of neutrophil extracellular traps in venous thrombosis. Thromb J 2023; 21:67. [PMID: 37328882 DOI: 10.1186/s12959-023-00512-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 06/11/2023] [Indexed: 06/18/2023] Open
Abstract
Neutrophil extracellular traps (NETs) as special release products of neutrophils have received extensive attention. They are composed of decondensed chromatin and coated with nucleoproteins, including histones and some granulosa proteins. NETs can form a network structure to effectively capture and eliminate pathogens and prevent their spread. Not only that, recent studies have shown that NETs also play an important role in venous thrombosis. This review provides the most important updated evidence regarding the mechanism of NETs formation and the role of NETs in the process of venous thrombosis. The potential prophylactic and therapeutic value of NETs in venous thrombotic disease will also be discussed.
Collapse
Affiliation(s)
- Weiwei Li
- Department of Hepatobiliary Surgery, Affiliated Hospital of Chengde Medical University, Chengde, Hebei Province, 067000, China
| | - Zixiang Wang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Chengde Medical University, Chengde, Hebei Province, 067000, China
| | - Chen'guang Su
- Department of Hepatobiliary Surgery, Affiliated Hospital of Chengde Medical University, Chengde, Hebei Province, 067000, China
| | - Zheng Liao
- Department of Hepatobiliary Surgery, Affiliated Hospital of Chengde Medical University, Chengde, Hebei Province, 067000, China
| | - Yinxuan Pei
- Department of Hepatobiliary Surgery, Affiliated Hospital of Chengde Medical University, Chengde, Hebei Province, 067000, China
| | - Jianli Wang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Chengde Medical University, Chengde, Hebei Province, 067000, China
| | - Zixin Li
- Department of Pathology, Affiliated Hospital of Chengde Medical University, Chengde, Hebei Province, 067000, China
| | - Shijie Fu
- Department of Orthopedic, Affiliated Hospital of Chengde Medical University, Chengde, Hebei Province, 067000, China
| | - Jinlong Liu
- Department of Hepatobiliary Surgery, Affiliated Hospital of Chengde Medical University, Chengde, Hebei Province, 067000, China.
| |
Collapse
|
16
|
Xie M, Hao Y, Feng L, Wang T, Yao M, Li H, Ma D, Feng J. Neutrophil Heterogeneity and its Roles in the Inflammatory Network after Ischemic Stroke. Curr Neuropharmacol 2023; 21:621-650. [PMID: 35794770 PMCID: PMC10207908 DOI: 10.2174/1570159x20666220706115957] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/19/2022] [Accepted: 06/13/2022] [Indexed: 11/22/2022] Open
Abstract
As the first peripheral immune cells to enter the brain after ischemic stroke, neutrophils are important participants in stroke-related neuroinflammation. Neutrophils are quickly mobilized from the periphery in response to a stroke episode and cross the blood-brain barrier to reach the ischemic brain parenchyma. This process involves the mobilization and activation of neutrophils from peripheral immune organs (including the bone marrow and spleen), their chemotaxis in the peripheral blood, and their infiltration into the brain parenchyma (including disruption of the blood-brain barrier, inflammatory effects on brain tissue, and interactions with other immune cell types). In the past, it was believed that neutrophils aggravated brain injuries through the massive release of proteases, reactive oxygen species, pro-inflammatory factors, and extracellular structures known as neutrophil extracellular traps (NETs). With the failure of early clinical trials targeting neutrophils and uncovering their underlying heterogeneity, our view of their role in ischemic stroke has become more complex and multifaceted. As neutrophils can be divided into N1 and N2 phenotypes in tumors, neutrophils have also been found to have similar phenotypes after ischemic stroke, and play different roles in the development and prognosis of ischemic stroke. N1 neutrophils are dominant during the acute phase of stroke (within three days) and are responsible for the damage to neural structures via the aforementioned mechanisms. However, the proportion of N2 neutrophils gradually increases in later phases, and this has a beneficial effect through the release of anti-inflammatory factors and other neuroprotective mediators. Moreover, the N1 and N2 phenotypes are highly plastic and can be transformed into each other under certain conditions. The pronounced differences in their function and their high degree of plasticity make these neutrophil subpopulations promising targets for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Meizhen Xie
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin, Changchun, Jilin Province 130021, China
| | - Yulei Hao
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin, Changchun, Jilin Province 130021, China
| | - Liangshu Feng
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin, Changchun, Jilin Province 130021, China
| | - Tian Wang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin, Changchun, Jilin Province 130021, China
| | - Mengyue Yao
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin, Changchun, Jilin Province 130021, China
| | - Hui Li
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin, Changchun, Jilin Province 130021, China
| | - Di Ma
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin, Changchun, Jilin Province 130021, China
| | - Jiachun Feng
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin, Changchun, Jilin Province 130021, China
| |
Collapse
|
17
|
Zhou X, Jin S, Pan J, Lin Q, Yang S, Ambe PC, Basharat Z, Zimmer V, Wang W, Hong W. Damage associated molecular patterns and neutrophil extracellular traps in acute pancreatitis. Front Cell Infect Microbiol 2022; 12:927193. [PMID: 36034701 PMCID: PMC9411527 DOI: 10.3389/fcimb.2022.927193] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 07/21/2022] [Indexed: 11/15/2022] Open
Abstract
Previous researches have emphasized a trypsin-centered theory of acute pancreatitis (AP) for more than a century. With additional studies into the pathogenesis of AP, new mechanisms have been explored. Among them, the role of immune response bears great importance. Pro-inflammatory substances, especially damage-associated molecular patterns (DAMPs), play an essential role in activating, signaling, and steering inflammation. Meanwhile, activated neutrophils attach great importance to the immune defense by forming neutrophil extracellular traps (NETs), which cause ductal obstruction, premature trypsinogen activation, and modulate inflammation. In this review, we discuss the latest advances in understanding the pathological role of DAMPs and NETs in AP and shed light on the flexible crosstalk between these vital inflammatory mediators. We, then highlight the potentially promising treatment for AP targeting DAMPs and NETs, with a focus on novel insights into the mechanism, diagnosis, and management of AP.
Collapse
Affiliation(s)
- Xiaoying Zhou
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Shengchun Jin
- School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jingyi Pan
- School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Qingyi Lin
- School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Shaopeng Yang
- School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Peter C. Ambe
- Department of General Surgery, Visceral Surgery and Coloproctology, Vinzenz-Pallotti-Hospital Bensberg, Bensberg, Germany
| | - Zarrin Basharat
- Jamil-ur-Rahman Center for Genome Research, Dr. Panjwani Centre for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Vincent Zimmer
- Department of Medicine, Marienhausklinik St. Josef Kohlhof, Neunkirchen, Germany
- Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg, Germany
| | - Wei Wang
- School of Mental Health, Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, Wenzhou Medical University, Wenzhou, China
- *Correspondence: Wandong Hong, ; Wei Wang,
| | - Wandong Hong
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- *Correspondence: Wandong Hong, ; Wei Wang,
| |
Collapse
|
18
|
Ahangar P, Strudwick XL, Cowin AJ. Wound Healing from an Actin Cytoskeletal Perspective. Cold Spring Harb Perspect Biol 2022; 14:a041235. [PMID: 35074864 PMCID: PMC9341468 DOI: 10.1101/cshperspect.a041235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Wound healing requires a complex cascade of highly controlled and conserved cellular and molecular processes. These involve numerous cell types and extracellular matrix molecules regulated by the actin cytoskeleton. This microscopic network of filaments is present within the cytoplasm of all cells and provides the shape and mechanical support required for cell movement and proliferation. Here, an overview of the processes of wound healing are described from the perspective of the cell in relation to the actin cytoskeleton. Key points of discussion include the role of actin, its binding proteins, signaling pathways, and events that play significant roles in the phases of wound healing. The identification of cytoskeletal targets that can be used to manipulate and improve wound healing is included as an emerging area of focus that may inform future therapeutic approaches to improve healing of complex wounds.
Collapse
Affiliation(s)
- Parinaz Ahangar
- Future Industries Institute, UniSA STEM, University of South Australia, South Australia, Adelaide 5000, Australia
| | - Xanthe L Strudwick
- Future Industries Institute, UniSA STEM, University of South Australia, South Australia, Adelaide 5000, Australia
| | - Allison J Cowin
- Future Industries Institute, UniSA STEM, University of South Australia, South Australia, Adelaide 5000, Australia
| |
Collapse
|
19
|
Liu X, Gao Q, Wu S, Qin H, Zhang T, Zheng X, Li B. Optically Manipulated Neutrophils as Native Microcrafts In Vivo. ACS CENTRAL SCIENCE 2022; 8:1017-1027. [PMID: 35912340 PMCID: PMC9336151 DOI: 10.1021/acscentsci.2c00468] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
As the first line of host defense against invading pathogens, neutrophils have an inherent phagocytosis capability for the elimination of foreign agents and target loading upon activation, as well as the ability to transmigrate across blood vessels to the infected tissue, making them natural candidates to execute various medical tasks in vivo. However, most of the existing neutrophil-based strategies rely on their spontaneous chemotactic motion, lacking in effective activation, rapid migration, and high navigation precision. Here, we report an optically manipulated neutrophil microcraft in vivo through the organic integration of endogenous neutrophils and scanning optical tweezers, functioning as a native biological material and wireless remote controller, respectively. The neutrophil microcrafts can be remotely activated by light and then navigated to the target position along a designated route, followed by the fulfillment of its task in vivo, such as active intercellular connection, targeted delivery of nanomedicine, and precise elimination of cell debris, free from the extra construction or modification of the native neutrophils. On the basis of the innate immunologic function of neutrophils and intelligent optical manipulation, the proposed neutrophil microcraft might provide new insight for the construction of native medical microdevices for drug delivery and precise treatment of inflammatory diseases.
Collapse
|
20
|
Pfister H. Neutrophil Extracellular Traps and Neutrophil-Derived Extracellular Vesicles: Common Players in Neutrophil Effector Functions. Diagnostics (Basel) 2022; 12:diagnostics12071715. [PMID: 35885618 PMCID: PMC9323717 DOI: 10.3390/diagnostics12071715] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/07/2022] [Accepted: 07/12/2022] [Indexed: 02/06/2023] Open
Abstract
Neutrophil granulocytes are a central component of the innate immune system. In recent years, they have gained considerable attention due to newly discovered biological effector functions and their involvement in various pathological conditions. They have been shown to trigger mechanisms that can either promote or inhibit the development of autoimmunity, thrombosis, and cancer. One mechanism for their modulatory effect is the release of extracellular vesicles (EVs), that trigger appropriate signaling pathways in immune cells and other target cells. In addition, activated neutrophils can release bactericidal DNA fibers decorated with proteins from neutrophil granules (neutrophil extracellular traps, NETs). While NETs are very effective in limiting pathogens, they can also cause severe damage if released in excess or cleared inefficiently. Since NETs and EVs share a variety of neutrophil molecules and initially act in the same microenvironment, differential biochemical and functional analysis is particularly challenging. This review focuses on the biochemical and functional parallels and the extent to which the overlapping spectrum of effector molecules has an impact on biological and pathological effects.
Collapse
Affiliation(s)
- Heiko Pfister
- Munich Biomarker Research Center, Institute of Laboratory Medicine, German Heart Center Munich, Technical University Munich, D-80636 Munich, Germany
| |
Collapse
|
21
|
Plasma Proteomic Analysis Identified Proteins Associated with Faulty Neutrophils Functionality in Decompensated Cirrhosis Patients with Sepsis. Cells 2022; 11:cells11111745. [PMID: 35681439 PMCID: PMC9179303 DOI: 10.3390/cells11111745] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/17/2022] [Accepted: 04/20/2022] [Indexed: 02/04/2023] Open
Abstract
Decompensated cirrhosis (DC) is susceptible to infections and sepsis. Neutrophils and monocytes provide the first line of defense to encounter infection. We aimed to evaluate proteins related to neutrophils functionality in sepsis. 70 (DC), 40 with sepsis, 30 without (w/o) sepsis and 15 healthy controls (HC) plasma was analyzed for proteomic analysis, cytokine bead array, endotoxin, cell free DNA and whole blood cells were analyzed for nCD64-mHLADR index, neutrophils-monocytes, functionality and QRT-PCR. nCD64-mHLADR index was significantly increased (p < 0.0001) with decreased HLA-DR expression on total monocytes in sepsis (p = 0.045). Phagocytic activity of both neutrophils and monocytes were significantly decreased in sepsis (p = 0.002 and p = 0.0003). Sepsis plasma stimulated healthy neutrophils, showed significant increase in NETs (neutrophil extracellular traps) and cell free DNA (p = 0.049 and p = 0.04) compared to w/o sepsis and HC. Proteomic analysis revealed upregulated- DNAJC13, TMSB4X, GPI, GSTP1, PNP, ANPEP, COTL1, GCA, APOA1 and PGAM1 while downregulated- AHSG, DEFA1,SERPINA3, MPO, MMRN1and PROS1 proteins (FC > 1.5; p < 0.05) associated to neutrophil activation and autophagy in sepsis. Proteins such as DNAJC13, GPI, GSTP1, PNP, ANPEP, COTL1, PGAM1, PROS1, MPO, SERPINA3 and MMRN1 showed positive correlation with neutrophils activity and number, oxidative burst activity and clinical parameters such as MELD, MELD Na and Bilirubin. Proteomic analysis revealed that faulty functionality of neutrophils may be due to the autophagy proteins i.e., DNAJC13, AHSG, TMSB4X, PROS1 and SERPINA3, which can be used as therapeutic targets in decompensated cirrhosis patients with sepsis.
Collapse
|
22
|
Keir HR, Chalmers JD. Neutrophil extracellular traps in chronic lung disease: implications for pathogenesis and therapy. Eur Respir Rev 2022; 31:31/163/210241. [PMID: 35197267 PMCID: PMC9488971 DOI: 10.1183/16000617.0241-2021] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/28/2021] [Indexed: 12/20/2022] Open
Abstract
Neutrophilic inflammation has a key role in the pathophysiology of multiple chronic lung diseases. The formation of neutrophil extracellular traps (NETs) has emerged as a key mechanism of disease in neutrophilic lung diseases including asthma, COPD, cystic fibrosis and, most recently, bronchiectasis. NETs are large, web-like structures composed of DNA and anti-microbial proteins that are able to bind pathogens, prevent microbial dissemination and degrade bacterial virulence factors. The release of excess concentrations of proteases, antimicrobial proteins, DNA and histones, however, also leads to tissue damage, impaired mucociliary clearance, impaired bacterial killing and increased inflammation. A number of studies have linked airway NET formation with greater disease severity, increased exacerbations and overall worse disease outcomes across the spectrum of airway diseases. Treating neutrophilic inflammation has been challenging in chronic lung disease because of the delicate balance between reducing inflammation and increasing the risk of infections through immunosuppression. Novel approaches to suppressing NET formation or the associated inflammation are in development and represent an important therapeutic target. This review will discuss the relationship between NETs and the pathophysiology of cystic fibrosis, asthma, COPD and bronchiectasis, and explore the current and future development of NET-targeting therapies. NETs contribute to the pathophysiology of chronic lung disease. Immunomodulating therapies that may reduce inflammatory mediators and NET formation, without compromising bacterial clearance, offer a new treatment path for patients. https://bit.ly/3fyJC6I
Collapse
Affiliation(s)
- Holly R Keir
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, Dundee, UK
| | - James D Chalmers
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, Dundee, UK
| |
Collapse
|
23
|
Schroder AL, Chami B, Liu Y, Doyle CM, El Kazzi M, Ahlenstiel G, Ahmad G, Pathma-Nathan N, Collins G, Toh J, Harman A, Byrne S, Ctercteko G, Witting PK. Neutrophil Extracellular Trap Density Increases With Increasing Histopathological Severity of Crohn's Disease. Inflamm Bowel Dis 2022; 28:586-598. [PMID: 34724042 PMCID: PMC9036391 DOI: 10.1093/ibd/izab239] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND Intestinal neutrophil recruitment is a characteristic feature of the earliest stages of inflammatory bowel disease (IBD). Neutrophil elastase (NE) and myeloperoxidase (MPO) mediate the formation of neutrophil extracellular traps (NETs); NETs produce the bactericidal oxidant hypochlorous acid (HOCl), causing host tissue damage when unregulated. The project aim was to investigate the relationship between NET formation and clinical IBD in humans. METHODS Human intestinal biopsies were collected from Crohn's disease (CD) patients, endoscopically categorized as unaffected, transitional, or diseased, and assigned a histopathological score. RESULTS A significant linear correlation was identified between pathological score and cell viability (TUNEL+). Immunohistochemical analysis revealed the presence of NET markers NE, MPO, and citrullinated histone (CitH3) that increased significantly with increasing histopathological score. Diseased specimens showed greater MPO+-immunostaining than control (P < .0001) and unaffected CD (P < .0001), with transitional CD specimens also showing greater staining than controls (P < .05) and unaffected CD (P < .05). Similarly, NE+-immunostaining was elevated significantly in diseased CD than controls (P < .0001) and unaffected CD (P < .0001) and was significantly higher in transitional CD than in controls (P < .0001) and unaffected CD (P < .0001). The CitH3+-immunostaining of diseased CD was significantly higher than controls (P < .05), unaffected CD (P < .0001) and transitional CD (P < .05), with transitional CD specimens showing greater staining than unaffected CD (P < .01). Multiplex immunohistochemistry with z-stacking revealed colocalization of NE, MPO, CitH3, and DAPI (cell nuclei), confirming the NET assignment. CONCLUSION These data indicate an association between increased NET formation and CD severity, potentially due to excessive MPO-mediated HOCl production in the extracellular domain, causing host tissue damage that exacerbates CD.
Collapse
Affiliation(s)
- Angie L Schroder
- The University of Sydney, School of Medical Sciences, Faculty of Medicine and Health, NSW, Australia
- Charles Perkins Centre, The University of Sydney, NSW, Australia
| | - Belal Chami
- The University of Sydney, School of Medical Sciences, Faculty of Medicine and Health, NSW, Australia
- Charles Perkins Centre, The University of Sydney, NSW, Australia
| | - Yuyang Liu
- The University of Sydney, School of Medical Sciences, Faculty of Medicine and Health, NSW, Australia
- Charles Perkins Centre, The University of Sydney, NSW, Australia
| | - Chloe M Doyle
- The University of Sydney, School of Medical Sciences, Faculty of Medicine and Health, NSW, Australia
- Westmead Institute for Medical Research, Centre for Immunology and Allergy Research, Westmead, NSW, Australia
| | - Mary El Kazzi
- The University of Sydney, School of Medical Sciences, Faculty of Medicine and Health, NSW, Australia
- Charles Perkins Centre, The University of Sydney, NSW, Australia
| | - Golo Ahlenstiel
- Western Sydney University, Westmead Clinical School and The Westmead Institute for Medical Research, Blacktown Hospital, Blacktown, NSW, Australia
| | - Gulfam Ahmad
- The University of Sydney, School of Medical Sciences, Faculty of Medicine and Health, NSW, Australia
- Charles Perkins Centre, The University of Sydney, NSW, Australia
| | - Nimalan Pathma-Nathan
- Westmead Institute for Medical Research, Centre for Immunology and Allergy Research, Westmead, NSW, Australia
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW,Australia
| | - Geoff Collins
- Westmead Institute for Medical Research, Centre for Immunology and Allergy Research, Westmead, NSW, Australia
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW,Australia
| | - James Toh
- Westmead Institute for Medical Research, Centre for Immunology and Allergy Research, Westmead, NSW, Australia
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW,Australia
- Department of Colorectal Surgery, Westmead Hospital, NSW,Australia
| | - Andrew Harman
- The University of Sydney, School of Medical Sciences, Faculty of Medicine and Health, NSW, Australia
- Westmead Institute for Medical Research, Centre for Immunology and Allergy Research, Westmead, NSW, Australia
| | - Scott Byrne
- The University of Sydney, School of Medical Sciences, Faculty of Medicine and Health, NSW, Australia
- Westmead Institute for Medical Research, Centre for Immunology and Allergy Research, Westmead, NSW, Australia
| | - Grahame Ctercteko
- Westmead Institute for Medical Research, Centre for Immunology and Allergy Research, Westmead, NSW, Australia
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW,Australia
- Department of Colorectal Surgery, Westmead Hospital, NSW,Australia
| | - Paul K Witting
- The University of Sydney, School of Medical Sciences, Faculty of Medicine and Health, NSW, Australia
- Charles Perkins Centre, The University of Sydney, NSW, Australia
| |
Collapse
|
24
|
Chamardani TM, Amiritavassoli S. Inhibition of NETosis for treatment purposes: friend or foe? Mol Cell Biochem 2022; 477:673-688. [PMID: 34993747 PMCID: PMC8736330 DOI: 10.1007/s11010-021-04315-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 11/25/2021] [Indexed: 12/29/2022]
Abstract
Active neutrophils participate in innate and adaptive immune responses through various mechanisms, one of the most important of which is the formation and release of neutrophil extracellular traps (NETs). The NETs are composed of network-like structures made of histone proteins, DNA and other released antibacterial proteins by activated neutrophils, and evidence suggests that in addition to the innate defense against infections, NETosis plays an important role in the pathogenesis of several other non-infectious pathological states, such as autoimmune diseases and even cancer. Therefore, targeting NET has become one of the important therapeutic approaches and has been considered by researchers. NET inhibitors or other molecules involved in the NET formation, such as the protein arginine deiminase 4 (PAD4) enzyme, an arginine-to-citrulline converter, participate in chromatin condensation and NET formation, is the basis of this therapeutic approach. The important point is whether complete inhibition of NETosis can be helpful because by inhibiting this mechanism, the activity of neutrophils is suppressed. In this review, the biology of NETosis and its role in the pathogenesis of some important diseases have been summarized, and the consequences of treatment based on inhibition of NET formation have been discussed.
Collapse
|
25
|
Wang J, Zhou Y, Ren B, Zou L, He B, Li M. The Role of Neutrophil Extracellular Traps in Periodontitis. Front Cell Infect Microbiol 2021; 11:639144. [PMID: 33816343 PMCID: PMC8012762 DOI: 10.3389/fcimb.2021.639144] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 02/01/2021] [Indexed: 02/06/2023] Open
Abstract
Periodontitis is a chronic, destructive disease of periodontal tissues caused by multifaceted, dynamic interactions. Periodontal bacteria and host immunity jointly contribute to the pathological processes of the disease. The dysbiotic microbial communities elicit an excessive immune response, mainly by polymorphonuclear neutrophils (PMNs). As one of the main mechanisms of PMN immune response in the oral cavity, neutrophil extracellular traps (NETs) play a crucial role in the initiation and progression of late-onset periodontitis. NETs are generated and released by neutrophils stimulated by various irritants, such as pathogens, host-derived mediators, and drugs. Chromatin and proteins are the main components of NETs. Depending on the characteristics of the processes, three main pathways of NET formation have been described. NETs can trap and kill pathogens by increased expression of antibacterial components and identifying and trapping bacteria to restrict their spread. Moreover, NETs can promote and reduce inflammation, inflicting injuries on the tissues during the pro-inflammation process. During their long-term encounter with NETs, periodontal bacteria have developed various mechanisms, including breaking down DNA of NETs, degrading antibacterial proteins, and impacting NET levels in the pocket environment to resist the antibacterial function of NETs. In addition, periodontal pathogens can secrete pro-inflammatory factors to perpetuate the inflammatory environment and a friendly growth environment, which are responsible for the progressive tissue damage. By learning the strategies of pathogens, regulating the periodontal concentration of NETs becomes possible. Some practical ways to treat late-onset periodontitis are reducing the concentration of NETs, administering anti-inflammatory therapy, and prescribing broad-spectrum and specific antibacterial agents. This review mainly focuses on the mechanism of NETs, pathogenesis of periodontitis, and potential therapeutic approaches based on interactions between NETs and periodontal pathogens.
Collapse
Affiliation(s)
| | | | | | | | | | - Mingyun Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| |
Collapse
|
26
|
Jiang Q, Zhao Y, Shui Y, Zhou X, Cheng L, Ren B, Chen Z, Li M. Interactions Between Neutrophils and Periodontal Pathogens in Late-Onset Periodontitis. Front Cell Infect Microbiol 2021; 11:627328. [PMID: 33777839 PMCID: PMC7994856 DOI: 10.3389/fcimb.2021.627328] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/03/2021] [Indexed: 02/05/2023] Open
Abstract
Late-onset periodontitis is associated with a series of inflammatory reactions induced by periodontal pathogens, such as Porphyromonas gingivalis, a keystone pathogen involved in periodontitis. Neutrophils are the most abundant leukocytes in the periodontal pocket/gingival crevice and inflamed periodontal tissues. They form a “wall” between the dental plaque and the junctional epithelium, preventing microbial invasion. The balance between neutrophils and the microbial community is essential to periodontal homeostasis. Excessive activation of neutrophils in response to periodontal pathogens can induce tissue damage and lead to periodontitis persistence. Therefore, illuminating the interactions between neutrophils and periodontal pathogens is critical for progress in the field of periodontitis. The present review aimed to summarize the interactions between neutrophils and periodontal pathogens in late-onset periodontitis, including neutrophil recruitment, neutrophil mechanisms to clear the pathogens, and pathogen strategies to evade neutrophil-mediated elimination of bacteria. The recruitment is a multi-step process, including tethering and rolling, adhesion, crawling, and transmigration. Neutrophils clear the pathogens mainly by phagocytosis, respiratory burst responses, degranulation, and neutrophil extracellular trap (NET) formation. The mechanisms that pathogens activate to evade neutrophil-mediated killing include impairing neutrophil recruitment, preventing phagocytosis, uncoupling killing from inflammation, and resistance to ROS, degranulation products, and NETs.
Collapse
Affiliation(s)
- Qingsong Jiang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - Yuxi Zhao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - Yusen Shui
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - Lei Cheng
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - Biao Ren
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - Zhu Chen
- Department of Conservative Dentistry and Endodontics, Guiyang Hospital of Stomatology, Guiyang, China
| | - Mingyun Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| |
Collapse
|
27
|
Novel Cell Permeable Polymers of N-Substituted L-2,3-Diaminopropionic Acid (DAPEGs) and Cellular Consequences of Their Interactions with Nucleic Acids. Int J Mol Sci 2021; 22:ijms22052571. [PMID: 33806461 PMCID: PMC7961587 DOI: 10.3390/ijms22052571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/24/2021] [Accepted: 02/27/2021] [Indexed: 11/21/2022] Open
Abstract
The present study aimed to synthesize novel polycationic polymers composed of N-substituted L-2,3-diaminopropionic acid residues (DAPEGs) and investigate their cell permeability, cytotoxicity, and DNA-binding ability. The most efficient cell membrane-penetrating compounds (O2Oc-Dap(GO2)n-O2Oc-NH2, where n = 4, 6, and 8) showed dsDNA binding with a binding constant in the micromolar range (0.3, 3.4, and 0.19 µM, respectively) and were not cytotoxic to HB2 and MDA-MB-231 cells. Selected compounds used in the transfection of a GFP plasmid showed high transfection efficacy and minimal cytotoxicity. Their interaction with plasmid DNA and the increasing length of the main chain of tested compounds strongly influenced the organization and shape of the flower-like nanostructures formed, which were unique for 5/6-FAM-O2Oc-[Dap(GO2)]8-O2Oc-NH2 and typical for large proteins.
Collapse
|
28
|
Tackenberg H, Möller S, Filippi MD, Laskay T. The Small GTPase Cdc42 Negatively Regulates the Formation of Neutrophil Extracellular Traps by Engaging Mitochondria. Front Immunol 2021; 12:564720. [PMID: 33679729 PMCID: PMC7925625 DOI: 10.3389/fimmu.2021.564720] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 01/26/2021] [Indexed: 12/16/2022] Open
Abstract
Neutrophil granulocytes represent the first line of defense against invading pathogens. In addition to the production of Reactive Oxygen Species, degranulation, and phagocytosis, these specialized cells are able to extrude Neutrophil Extracellular Traps. Extensive work was done to elucidate the mechanism of this special form of cell death. However, the exact mechanisms are still not fully uncovered. Here we demonstrate that the small GTPase Cdc42 is a negative regulator of NET formation in primary human and murine neutrophils. We present a functional role for Cdc42 activity in NET formation that differs from the already described NETosis pathways. We show that Cdc42 deficiency induces NETs independent of the NADPH-oxidase but dependent on protein kinase C. Furthermore, we demonstrate that Cdc42 deficiency induces NETosis through activation of SK-channels and that mitochondria play a crucial role in this process. Our data therefore suggests a mechanistic role for Cdc42 activity in primary human neutrophils, and identify Cdc42 activity as a target to modulate the formation of Neutrophil Extracellular Traps.
Collapse
Affiliation(s)
- Heidi Tackenberg
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| | - Sonja Möller
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| | - Marie-Dominique Filippi
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Tamás Laskay
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| |
Collapse
|
29
|
Yang J, Wu Z, Long Q, Huang J, Hong T, Liu W, Lin J. Insights Into Immunothrombosis: The Interplay Among Neutrophil Extracellular Trap, von Willebrand Factor, and ADAMTS13. Front Immunol 2020; 11:610696. [PMID: 33343584 PMCID: PMC7738460 DOI: 10.3389/fimmu.2020.610696] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 11/02/2020] [Indexed: 12/24/2022] Open
Abstract
Both neutrophil extracellular traps (NETs) and von Willebrand factor (VWF) are essential for thrombosis and inflammation. During these processes, a complex series of events, including endothelial activation, NET formation, VWF secretion, and blood cell adhesion, aggregation and activation, occurs in an ordered manner in the vasculature. The adhesive activity of VWF multimers is regulated by a specific metalloprotease ADAMTS13 (a disintegrin and metalloproteinase with thrombospondin type 1 motifs, member 13). Increasing evidence indicates that the interaction between NETs and VWF contributes to arterial and venous thrombosis as well as inflammation. Furthermore, contents released from activated neutrophils or NETs induce the reduction of ADAMTS13 activity, which may occur in both thrombotic microangiopathies (TMAs) and acute ischemic stroke (AIS). Recently, NET is considered as a driver of endothelial damage and immunothrombosis in COVID-19. In addition, the levels of VWF and ADAMTS13 can predict the mortality of COVID-19. In this review, we summarize the biological characteristics and interactions of NETs, VWF, and ADAMTS13, and discuss their roles in TMAs, AIS, and COVID-19. Targeting the NET-VWF axis may be a novel therapeutic strategy for inflammation-associated TMAs, AIS, and COVID-19.
Collapse
Affiliation(s)
- Junxian Yang
- Research Department of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Institute of Biomechanics/School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
| | - Zhiwei Wu
- Research Department of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Institute of Biomechanics/School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
| | - Quan Long
- Institute of Biomechanics/School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
| | - Jiaqi Huang
- Institute of Biomechanics/School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
| | - Tiantian Hong
- Research Department of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Institute of Biomechanics/School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
| | - Wang Liu
- Institute of Biomechanics/School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
| | - Jiangguo Lin
- Research Department of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Institute of Biomechanics/School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
30
|
Linnemann C, Venturelli S, Konrad F, Nussler AK, Ehnert S. Bio-impedance measurement allows displaying the early stages of neutrophil extracellular traps. EXCLI JOURNAL 2020; 19:1481-1495. [PMID: 33250682 PMCID: PMC7689246 DOI: 10.17179/excli2020-2868] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 10/29/2020] [Indexed: 12/31/2022]
Abstract
Neutrophils are the most abundant immune cells in the blood. Besides common immune defense mechanisms, releasing their DNA covered with antimicrobial proteases and histones represent another strong defense mechanism: neutrophil extracellular traps. In vitro the two most common inducers of these, so called, NETs are calcium ionophores (CI) and PMA (Phorbol 12-myristate 13-acetate). Following stimulation monitoring of NET release is necessary. For now, the methods of choice are quantification of free DNA by fluorescent dyes or analysis of immunofluorescence images. As a new method we tested bio-impedance monitoring of neutrophils after stimulation with the two inducers PMA and CI in gold-electrode coated plates. Bio-impedance (cell index) was measured over time. Results were compared to the monitoring of NETs by the fluorescent DNA-binding dye Sytox Green and immunofluorescence analysis. Cell index peaked about 25 min faster following CI stimulation than following PMA stimulation. The activation in Sytox Green Assay was significantly later detectable for PMA (+ approx. 90 min) but not for CI stimulation. The earlier and faster activation by CI was also confirmed by immunofluorescence staining. Our data suggest that bio-impedance measurement allows an easy online tracking of early neutrophil activation. This offers new opportunities to monitor early phases and stimuli-dependent dynamics of NETosis.
Collapse
Affiliation(s)
- Caren Linnemann
- Siegfried Weller Institute for Trauma Research, BG Unfallklinik Tuebingen, Eberhard Karls Universität Tuebingen, Tuebingen, Germany
| | - Sascha Venturelli
- Institute of Physiology, Department of Vegetative and Clinical Physiology, University Hospital Tuebingen, Tuebingen, Germany
- Institute of Nutritional Sciences, Department of Nutritional Biochemistry, University of Hohenheim, Stuttgart, Germany
| | - Franziska Konrad
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Tuebingen, Tuebingen, Germany
| | - Andreas K. Nussler
- Siegfried Weller Institute for Trauma Research, BG Unfallklinik Tuebingen, Eberhard Karls Universität Tuebingen, Tuebingen, Germany
| | - Sabrina Ehnert
- Siegfried Weller Institute for Trauma Research, BG Unfallklinik Tuebingen, Eberhard Karls Universität Tuebingen, Tuebingen, Germany
| |
Collapse
|
31
|
Santocki M, Kolaczkowska E. On Neutrophil Extracellular Trap (NET) Removal: What We Know Thus Far and Why So Little. Cells 2020; 9:cells9092079. [PMID: 32932841 PMCID: PMC7565917 DOI: 10.3390/cells9092079] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/05/2020] [Accepted: 09/08/2020] [Indexed: 12/17/2022] Open
Abstract
Although neutrophil extracellular traps (NETs) were discovered only 16 years ago, they have already taken us from heaven to hell as we learned that apart from beneficial trapping of pathogens, they cause, or contribute to, numerous disorders. The latter is connected to their persistent presence in the blood or tissue, and we hardly know how they are removed in mild pathophysiological conditions and why their removal is impaired in multiple severe pathological conditions. Herein, we bring together all data available up till now on how NETs are cleared—from engaged cells, their phenotypes, to involved enzymes and molecules. Moreover, we hypothesize on why NET removal is challenged in multiple disorders and propose further directions for studies on NET removal as well as possible therapeutic strategies to have them cleared.
Collapse
|
32
|
Abstract
Neutrophils are critical to innate immunity, including host defense against bacterial and fungal infections. They achieve their host defense role by phagocytosing pathogens, secreting their granules full of cytotoxic enzymes, or expelling neutrophil extracellular traps (NETs) during the process of NETosis. NETs are weblike DNA structures decorated with histones and antimicrobial proteins released by activated neutrophils. Initially described as a means for neutrophils to neutralize pathogens, NET release also occurs in sterile inflammation, promotes thrombosis, and can mediate tissue damage. To effectively manipulate this double-edged sword to fight a particular disease, researchers must work toward understanding the mechanisms driving NETosis. Such understanding would allow the generation of new drugs to promote or prevent NETosis as needed. While knowledge regarding the (patho)physiological roles of NETosis is accumulating, little is known about the cellular and biophysical bases of this process. In this review, we describe and discuss our current knowledge of the molecular, cellular, and biophysical mechanisms mediating NET release as well as open questions in the field.
Collapse
Affiliation(s)
- Hawa Racine Thiam
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health, Bethesda, Maryland 20892, USA; ,
| | - Siu Ling Wong
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232
| | - Denisa D Wagner
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts 02115, USA.,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA.,Division of Hematology/Oncology, Boston Children's Hospital, Boston, Massachusetts 02115, USA
| | - Clare M Waterman
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health, Bethesda, Maryland 20892, USA; ,
| |
Collapse
|
33
|
Becker RC, Phillip Owens A, Sadayappan S. The potential roles of Von Willebrand factor and neutrophil extracellular traps in the natural history of hypertrophic and hypertensive cardiomyopathy. Thromb Res 2020; 192:78-87. [PMID: 32460175 DOI: 10.1016/j.thromres.2020.05.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 05/01/2020] [Accepted: 05/03/2020] [Indexed: 02/09/2023]
Abstract
Inflammation is often applied broadly to human disease. Despite its general familiarity, inflammation is highly complex. There are numerous injurious, immune and infectious determinants, functional elements and signaling pathways, ranging from genetic to epigenetic, environmental, racial, molecular and cellular that participate in disease onset and progression, phenotypic heterogeneity, and treatment selection and response. In addition, inflammation can be tissue and organ specific, adding a layer of complexity to achieving a detailed and translatable understanding of its role in health and disease. The following review takes a close look at inflammation in the context of two common heart diseases, hypertrophic cardiomyopathy and hypertensive cardiomyopathy.
Collapse
Affiliation(s)
- Richard C Becker
- Division of Cardiovascular Health and Disease, Heart, Lung and Blood Institute, University of Cincinnati College of Medicine, United States of America.
| | - A Phillip Owens
- Division of Cardiovascular Health and Disease, Heart, Lung and Blood Institute, University of Cincinnati College of Medicine, United States of America
| | - Sakthivel Sadayappan
- Division of Cardiovascular Health and Disease, Heart, Lung and Blood Institute, University of Cincinnati College of Medicine, United States of America
| |
Collapse
|
34
|
Liang X, Liu L, Wang Y, Guo H, Fan H, Zhang C, Hou L, Liu Z. Autophagy-driven NETosis is a double-edged sword - Review. Biomed Pharmacother 2020; 126:110065. [PMID: 32200255 DOI: 10.1016/j.biopha.2020.110065] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 02/25/2020] [Accepted: 02/28/2020] [Indexed: 02/06/2023] Open
Abstract
Autophagy is a cellular mechanism responsible for delivering protein aggregates or damaged organelles to lysosomes for degradation. It is also simultaneously a precise regulatory process, which is crucial for dealing with hunger, oxidative stress, and pathogen defense. Neutrophil Extracellular Traps (NETs), which form a part of a newly described bactericidal process, are reticular structures composed of a DNA backbone and multiple functional proteins, formed via a process known as NETosis. NETs exert their anti-infection activity by capturing pathogenic microorganisms, inhibiting their spread and inactivating virulence factors. However, NETs may also activate an immune response in non-infectious diseases, leading to tissue damage. Although the mechanism underlying this phenomenon is unclear, a large number of studies have suggested that autophagy may be involved. Autophagy-mediated NETs not only induce inflammation and tissue damage, but can also lead to cell senescence, malignant transformation, and cell death. Autophagy-dependent NETs also play a beneficial role in the hostwith respect to pathogen clearance and immune defense. Through careful review of the literature, we have found that the distinct roles of autophagy in NETosis may be dependent on the extent of autophagy and the specific manner in which it was induced. This article summarizes numerous recent studies, and reviews the role of autophagy-driven NETosis in various diseases, in the hope that this will lead to the development of more effective treatments.
Collapse
Affiliation(s)
- Xiaofei Liang
- Department of Laboratory Medicine, The First Hospital of Qiqihar, Qiqihar, 161005, China; Department of Laboratory Medicine, Affiliated Qiqihar Hospital, Southern Medical University, Qiqihar, 161005, China
| | - Li Liu
- Department of Laboratory Medicine, The First Hospital of Qiqihar, Qiqihar, 161005, China; Department of Laboratory Medicine, Affiliated Qiqihar Hospital, Southern Medical University, Qiqihar, 161005, China.
| | - Yan Wang
- Department of Laboratory Medicine, The First Hospital of Qiqihar, Qiqihar, 161005, China; Department of Laboratory Medicine, Affiliated Qiqihar Hospital, Southern Medical University, Qiqihar, 161005, China
| | - Haipeng Guo
- Department of Laboratory Medicine, The First Hospital of Qiqihar, Qiqihar, 161005, China; Department of Laboratory Medicine, Affiliated Qiqihar Hospital, Southern Medical University, Qiqihar, 161005, China
| | - Hua Fan
- Department of Laboratory Medicine, The First Hospital of Qiqihar, Qiqihar, 161005, China; Department of Laboratory Medicine, Affiliated Qiqihar Hospital, Southern Medical University, Qiqihar, 161005, China
| | - Chao Zhang
- Department of Laboratory Medicine, The First Hospital of Qiqihar, Qiqihar, 161005, China; Department of Laboratory Medicine, Affiliated Qiqihar Hospital, Southern Medical University, Qiqihar, 161005, China
| | - Lili Hou
- Department of Laboratory Medicine, The First Hospital of Qiqihar, Qiqihar, 161005, China; Department of Laboratory Medicine, Affiliated Qiqihar Hospital, Southern Medical University, Qiqihar, 161005, China
| | - Zhibo Liu
- Department of Laboratory Medicine, The First Hospital of Qiqihar, Qiqihar, 161005, China; Department of Laboratory Medicine, Affiliated Qiqihar Hospital, Southern Medical University, Qiqihar, 161005, China
| |
Collapse
|
35
|
Neutrophil Extracellular Trap Formation Correlates with Favorable Overall Survival in High Grade Ovarian Cancer. Cancers (Basel) 2020; 12:cancers12020505. [PMID: 32098278 PMCID: PMC7072166 DOI: 10.3390/cancers12020505] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/12/2020] [Accepted: 02/17/2020] [Indexed: 02/06/2023] Open
Abstract
It is still a question of debate whether neutrophils, often found in the tumor microenvironment, mediate tumor-promoting or rather tumor-inhibiting activities. The present study focuses on the involvement of neutrophils in high grade serous ovarian cancer (HGSOC). Macroscopic features classify two types of peritoneal tumor spread in HGSOC. Widespread and millet sized lesions characterize the miliary type, while non-miliary metastases are larger and associated with better prognosis. Multi-omics and FACS data were generated from ascites samples. Integrated data analysis demonstrates a significant increase of neutrophil extracellular trap (NET)-associated molecules in non-miliary ascites samples. A co-association network analysis performed with the ascites data further revealed a striking correlation between NETosis-associated metabolites and several eicosanoids. The congruence of data generated from primary neutrophils with ascites analyses indicates the predominance of NADPH oxidase 2 (NOX)-independent NETosis. NETosis is associated with protein S100A8/A9 release. An increase of the S100A8/CRP abundance ratio was found to correlate with favorable survival of HGSOC patients. The analysis of additional five independent proteome studies with regard to S100A8/CRP ratios confirmed this observation. In conclusion, NET formation seems to relate with better cancer patient outcome.
Collapse
|
36
|
Neumann A, Brogden G, von Köckritz-Blickwede M. Extracellular Traps: An Ancient Weapon of Multiple Kingdoms. BIOLOGY 2020; 9:biology9020034. [PMID: 32085405 PMCID: PMC7168307 DOI: 10.3390/biology9020034] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 02/12/2020] [Accepted: 02/13/2020] [Indexed: 12/31/2022]
Abstract
The discovery, in 2004, of extracellular traps released by neutrophils has extended our understanding of the mode of action of various innate immune cells. This fascinating discovery demonstrated the extracellular trapping and killing of various pathogens by neutrophils. During the last decade, evidence has accumulated showing that extracellular traps play a crucial role in the defence mechanisms of various cell types present in vertebrates, invertebrates, and plants. The aim of this review is to summarise the relevant literature on the evolutionary history of extracellular traps used as a weapon in various kingdoms of life.
Collapse
Affiliation(s)
- Ariane Neumann
- Department of Clinical Sciences, Division of Infection Medicine, Lund University, Baravägen 27, 22184 Lund, Sweden;
| | - Graham Brogden
- Department of Physiological Chemistry, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hannover, Germany;
| | - Maren von Köckritz-Blickwede
- Department of Physiological Chemistry, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hannover, Germany;
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hannover, Germany
- Correspondence: ; Tel.: +49-511-953-8787
| |
Collapse
|
37
|
Pires RH, Shree N, Manu E, Guzniczak E, Otto O. Cardiomyocyte mechanodynamics under conditions of actin remodelling. Philos Trans R Soc Lond B Biol Sci 2019; 374:20190081. [PMID: 31587648 PMCID: PMC6792454 DOI: 10.1098/rstb.2019.0081] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2019] [Indexed: 01/26/2023] Open
Abstract
The mechanical performance of cardiomyocytes (CMs) is an important indicator of their maturation state and of primary importance for the development of therapies based on cardiac stem cells. As the mechanical analysis of adherent cells at high-throughput remains challenging, we explore the applicability of real-time deformability cytometry (RT-DC) to probe cardiomyocytes in suspension. RT-DC is a microfluidic technology allowing for real-time mechanical analysis of thousands of cells with a throughput exceeding 1000 cells per second. For CMs derived from human-induced pluripotent stem cells, we determined a Young's modulus of 1.25 ± 0.08 kPa which is in close range to previous reports. Upon challenging the cytoskeleton with cytochalasin D (CytoD) to induce filamentous actin depolymerization, we distinguish three different regimes in cellular elasticity. Transitions are observed below 10 nM and above 103 nM and are characterized by a decrease in Young's modulus. These regimes can be linked to cytoskeletal and sarcomeric actin contributions by CM contractility measurements at varying CytoD concentrations, where we observe a significant reduction in pulse duration only above 103 nM while no change is found for compound exposure at lower concentrations. Comparing our results to mechanical cell measurements using atomic force microscopy, we demonstrate for the first time to our knowledge, the feasibility of using a microfluidic technique to measure mechanical properties of large samples of adherent cells while linking our results to the composition of the cytoskeletal network. This article is part of a discussion meeting issue 'Single cell ecology'.
Collapse
Affiliation(s)
- Ricardo H. Pires
- Zentrum für Innovationskompetenz: Humorale Immunreaktionen bei kardiovaskulären Erkrankungen, Universität Greifswald, Fleischmannstrasse 42, 17489 Greifswald, Germany
| | - Nithya Shree
- Zentrum für Innovationskompetenz: Humorale Immunreaktionen bei kardiovaskulären Erkrankungen, Universität Greifswald, Fleischmannstrasse 42, 17489 Greifswald, Germany
| | - Emmanuel Manu
- Zentrum für Innovationskompetenz: Humorale Immunreaktionen bei kardiovaskulären Erkrankungen, Universität Greifswald, Fleischmannstrasse 42, 17489 Greifswald, Germany
| | - Ewa Guzniczak
- Heriot-Watt University School of Engineering and Physical Science, Institute of Biological Chemistry, Biophysics and Bioengineering, Edinburgh Campus, Edinburgh EH14 4AS, UK
| | - Oliver Otto
- Zentrum für Innovationskompetenz: Humorale Immunreaktionen bei kardiovaskulären Erkrankungen, Universität Greifswald, Fleischmannstrasse 42, 17489 Greifswald, Germany
| |
Collapse
|
38
|
Weerappuli PD, Louttit C, Kojima T, Brennan L, Yalavarthi S, Xu Y, Ochyl LJ, Maeda ML, Kim HS, Knight JS, Takayama S, Moon JJ. Extracellular Trap-Mimicking DNA-Histone Mesostructures Synergistically Activate Dendritic Cells. Adv Healthc Mater 2019; 8:e1900926. [PMID: 31614077 PMCID: PMC6872909 DOI: 10.1002/adhm.201900926] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/13/2019] [Indexed: 12/15/2022]
Abstract
Extracellular traps (ETs), such as neutrophil extracellular traps, are a physical mesh deployed by immune cells to entrap and constrain pathogens. ETs are immunogenic structures composed of DNA, histones, and an array of variable protein and peptide components. While much attention has been paid to the multifaceted function of these structures, mechanistic studies of ETs remain challenging due to their heterogeneity and complexity. Here, a novel DNA-histone mesostructure (DHM) formed by complexation of DNA and histones into a fibrous mesh is reported. DHMs mirror the DNA-histone structural frame of ETs and offer a facile platform for cell culture studies. It is shown that DHMs are potent activators of dendritic cells and identify both the methylation state of DHMs and physical interaction between dendritic cells and DHMs as key tuning switches for immune stimulation. Overall, the DHM platform provides a new opportunity to study the role of ETs in immune activation and pathophysiology.
Collapse
Affiliation(s)
- Priyan D. Weerappuli
- Department of Biomedical Engineering, University of Michigan 2800
Plymouth Drive, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan 2800 Plymouth
Drive, Ann Arbor, MI 48109, USA
| | - Cameron Louttit
- Department of Biomedical Engineering, University of Michigan 2800
Plymouth Drive, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan 2800 Plymouth
Drive, Ann Arbor, MI 48109, USA
| | - Taisuke Kojima
- Wallace H Coulter Department of Biomedical Engineering, Georgia
Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Luke Brennan
- Department of Biomedical Engineering, University of Michigan 2800
Plymouth Drive, Ann Arbor, MI 48109, USA
| | | | - Yao Xu
- Biointerfaces Institute, University of Michigan 2800 Plymouth
Drive, Ann Arbor, MI 48109, USA
- Department of Pharmaceutical Sciences, University of Michigan 2800
Plymouth Drive, Ann Arbor, MI 48109, USA
| | - Lukasz J. Ochyl
- Biointerfaces Institute, University of Michigan 2800 Plymouth
Drive, Ann Arbor, MI 48109, USA
- Department of Pharmaceutical Sciences, University of Michigan 2800
Plymouth Drive, Ann Arbor, MI 48109, USA
| | - Midori L. Maeda
- Wallace H Coulter Department of Biomedical Engineering, Georgia
Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Hong Sun Kim
- Department of Biomedical Engineering, University of Michigan 2800
Plymouth Drive, Ann Arbor, MI 48109, USA
| | - Jason S. Knight
- Division of Rheumatology, University of Michigan, Ann Arbor, MI
48109, USA
| | - Shuichi Takayama
- Wallace H Coulter Department of Biomedical Engineering, Georgia
Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - James J. Moon
- Department of Biomedical Engineering, University of Michigan 2800
Plymouth Drive, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan 2800 Plymouth
Drive, Ann Arbor, MI 48109, USA
- Department of Pharmaceutical Sciences, University of Michigan 2800
Plymouth Drive, Ann Arbor, MI 48109, USA
| |
Collapse
|
39
|
Eaton P, do Amaral CP, Couto SCP, Oliveira MS, Vasconcelos AG, Borges TKS, Kückelhaus SAS, Leite JRSA, Muniz-Junqueira MI. Atomic Force Microscopy Is a Potent Technique to Study Eosinophil Activation. Front Physiol 2019; 10:1261. [PMID: 31632296 PMCID: PMC6781654 DOI: 10.3389/fphys.2019.01261] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 09/17/2019] [Indexed: 12/18/2022] Open
Abstract
Eosinophils are multifunctional cells with several functions both in healthy individuals, and those with several diseases. Increased number and morphological changes in eosinophils have been correlated with the severity of an acute asthma exacerbation. We measured eosinophils obtained from healthy controls and individuals with acute asthma using atomic force microscopy (AFM). In the control samples, cells showed more rounded morphologies with some spreading, while activated cells from symptomatic individuals were spreading, and presenting emission of multiple pseudopods. Eosinophils presenting separate granules close to the cells suggesting some degranulation was also increased in asthma samples. In comparison to histopathological techniques based on brightfield microscopy, AFM showed considerably more details of these morphological changes, making the technique much more sensitive to detect eosinophil morphological changes that indicate functional alteration of this cell. AFM could be an important tool to evaluate diseases with alterations in eosinophil functions.
Collapse
Affiliation(s)
- Peter Eaton
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,LAQV-REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Constança Pais do Amaral
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Shirley C P Couto
- Laboratory of Cellular Immunology, Pathology Area, Faculty of Medicine, University of Brasília, Brasília, Brazil
| | - Mariangela S Oliveira
- Laboratory of Cellular Immunology, Pathology Area, Faculty of Medicine, University of Brasília, Brasília, Brazil
| | - Andreanne G Vasconcelos
- Research Center in Morphology and Applied Immunology, Morphology Area, Faculty of Medicine, University of Brasília, Brasília, Brazil
| | - Tatiana K S Borges
- Laboratory of Cellular Immunology, Pathology Area, Faculty of Medicine, University of Brasília, Brasília, Brazil
| | - Selma A S Kückelhaus
- Research Center in Morphology and Applied Immunology, Morphology Area, Faculty of Medicine, University of Brasília, Brasília, Brazil
| | - José Roberto S A Leite
- Research Center in Morphology and Applied Immunology, Morphology Area, Faculty of Medicine, University of Brasília, Brasília, Brazil
| | | |
Collapse
|
40
|
Networks that stop the flow: A fresh look at fibrin and neutrophil extracellular traps. Thromb Res 2019; 182:1-11. [DOI: 10.1016/j.thromres.2019.08.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/18/2019] [Accepted: 08/05/2019] [Indexed: 12/23/2022]
|
41
|
Louttit C, Park KS, Moon JJ. Bioinspired nucleic acid structures for immune modulation. Biomaterials 2019; 217:119287. [PMID: 31247511 PMCID: PMC6635102 DOI: 10.1016/j.biomaterials.2019.119287] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 06/14/2019] [Accepted: 06/15/2019] [Indexed: 12/27/2022]
Abstract
Nucleic acids have both extensive physiological function and structural potential, rendering them quintessential engineering biomaterials. As carriers of precisely-tunable genetic information, both DNA and RNA can be synthetically generated to form a myriad of structures and to transmit specific genetic code. Importantly, recent studies have shown that DNA and RNA, both in their native and engineered forms, can function as potent regulators of innate immunity, capable of initiating and modulating immune responses. In this review, we highlight recent advances in biomaterials inspired by the various interactions of nucleic acids and the immune system. We discuss key advances in self-assembled structures based on exogenous nucleic acids and engineering approaches to apply endogenous nucleic acids as found in immunogenic cell death and extracellular traps. In addition, we discuss new strategies to control dinucleotide signaling and provide recent examples of biomaterials designed for cancer immunotherapy with STING agonists.
Collapse
Affiliation(s)
- Cameron Louttit
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Kyung Soo Park
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - James J Moon
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
42
|
Comparison of cell mechanical measurements provided by Atomic Force Microscopy (AFM) and Micropipette Aspiration (MPA). J Mech Behav Biomed Mater 2019; 95:103-115. [PMID: 30986755 DOI: 10.1016/j.jmbbm.2019.03.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/15/2019] [Accepted: 03/31/2019] [Indexed: 01/21/2023]
Abstract
A comparative analysis of T-lymphocyte mechanical data obtained from Micropipette Aspiration (MPA) and Atomic Force Microscopy (AFM) is presented. Results obtained by fitting the experimental data to simple Hertz and Theret models led to non-Gaussian distributions and significantly different values of the elastic moduli obtained by both techniques. The use of more refined models, taking into account the finite size of cells (simplified double contact and Zhou models) reduces the differences in the values calculated for the elastic moduli. Several possible sources for the discrepancy between the techniques are considered. The analysis suggests that the local nature of AFM measurements compared with the more general character of MPA measurements probably contributed to the differences observed.
Collapse
|
43
|
Song Y, Kadiyala U, Weerappuli P, Valdez JJ, Yalavarthi S, Louttit C, Knight JS, Moon JJ, Weiss DS, VanEpps JS, Takayama S. Antimicrobial Microwebs of DNA-Histone Inspired from Neutrophil Extracellular Traps. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1807436. [PMID: 30698844 PMCID: PMC6467213 DOI: 10.1002/adma.201807436] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 01/16/2019] [Indexed: 05/07/2023]
Abstract
Neutrophil extracellular traps (NETs) are decondensed chromatin networks released by neutrophils that can trap and kill pathogens but can also paradoxically promote biofilms. The mechanism of NET functions remains ambiguous, at least in part, due to their complex and variable compositions. To unravel the antimicrobial performance of NETs, a minimalistic NET-like synthetic structure, termed "microwebs," is produced by the sonochemical complexation of DNA and histone. The prepared microwebs have structural similarity to NETs at the nanometer to micrometer dimensions but with well-defined molecular compositions. Microwebs prepared with different DNA to histone ratios show that microwebs trap pathogenic Escherichia coli in a manner similar to NETs when the zeta potential of the microwebs is positive. The DNA nanofiber networks and the bactericidal histone constituting the microwebs inhibit the growth of E. coli. Moreover, microwebs work synergistically with colistin sulfate, a common and a last-resort antibiotic, by targeting the cell envelope of pathogenic bacteria. The synthesis of microwebs enables mechanistic studies not possible with NETs, and it opens new possibilities for constructing biomimetic bacterial microenvironments to better understand and predict physiological pathogen responses.
Collapse
Affiliation(s)
- Yang Song
- Wallace H Coulter Department of Biomedical Engineering & Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology & Emory School of Medicine, Atlanta, GA, 30332, USA
| | - Usha Kadiyala
- Department of Emergency Medicine, Michigan Center for Integrative Research in Critical Care, Biointerfaces Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Priyan Weerappuli
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jordan J. Valdez
- Emory Antibiotic Resistance Center, Emory Vaccine Center, School of Medicine, Emory University, Atlanta, GA, 30307, USA
| | | | - Cameron Louttit
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jason S. Knight
- Division of Rheumatology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - James J. Moon
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - David S. Weiss
- Emory Antibiotic Resistance Center, Emory Vaccine Center, School of Medicine, Emory University, Atlanta, GA, 30307, USA
| | - J. Scott VanEpps
- Department of Emergency Medicine, Michigan Center for Integrative Research in Critical Care, Biointerfaces Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Shuichi Takayama
- Wallace H Coulter Department of Biomedical Engineering & Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology & Emory School of Medicine, Atlanta, GA, 30332, USA
| |
Collapse
|
44
|
Hattanda F, Nakazawa D, Watanabe-Kusunoki K, Kusunoki Y, Shida H, Masuda S, Nishio S, Tomaru U, Atsumi T, Ishizu A. The presence of anti-neutrophil extracellular trap antibody in patients with microscopic polyangiitis. Rheumatology (Oxford) 2019; 58:1293-1298. [DOI: 10.1093/rheumatology/kez089] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 02/19/2019] [Indexed: 11/14/2022] Open
Affiliation(s)
- Fumihiko Hattanda
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Daigo Nakazawa
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Kanako Watanabe-Kusunoki
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yoshihiro Kusunoki
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Haruki Shida
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Sakiko Masuda
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Saori Nishio
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Utano Tomaru
- Department of Pathology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Tatsuya Atsumi
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Akihiro Ishizu
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| |
Collapse
|
45
|
Imaging and Manipulation of Extracellular Traps by Atomic Force Microscopy. Methods Mol Biol 2018. [PMID: 30374869 DOI: 10.1007/978-1-4939-8894-5_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Neutrophil extracellular traps (NETs) are part of an immunological response and one of the mechanisms by which neutrophils protect the host from pathogen invasion and proliferation. Notwithstanding their protective role, NETs have also been linked to the development of a variety of disorders, including cardiovascular and autoimmune diseases. Since the first reports on NETs in 2004 it has been possible to image NETs by a variety of imaging techniques. Despite this, such reports seldomly include contact probe methods, and therefore lack the unique insights such techniques typically provide. In fact, more than 10 years have passed since the discovery of NETs, and although their importance as part of a unique cellular response mechanism has become very clear, studies that attempt to address them by atomic force microscopy (AFM) remain very limited. Particularly striking is the almost absent information on the mechanical properties of NETs, and factors that may influence them. The fact that NETs are a particularly adhesive network of filaments poses a considerable technical challenge for contact probe methods and can limit advances involving either imaging or manipulation of NETs by AFM. The current set of protocols aims at aiding a knowledgeable AFM operator to obtain AFM images and to perform force spectroscopy experiments with such samples. A variety of different topics, including sample preparation and data analysis, are discussed.
Collapse
|
46
|
Ueki S, Hebisawa A, Kitani M, Asano K, Neves JS. Allergic Bronchopulmonary Aspergillosis-A Luminal Hypereosinophilic Disease With Extracellular Trap Cell Death. Front Immunol 2018; 9:2346. [PMID: 30364279 PMCID: PMC6193060 DOI: 10.3389/fimmu.2018.02346] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 09/21/2018] [Indexed: 12/16/2022] Open
Abstract
Allergic bronchopulmonary aspergillosis (ABPA) is characterized by an early allergic response and late-phase lung injury in response to repeated exposure to Aspergillus antigens, as a consequence of persistent fungal colonization of the airways. Here, we summarize the clinical and pathological features of ABPA, focusing on thick mucus plugging, a key observation in ABPA. Recent findings have indicated that luminal eosinophils undergo cytolytic extracellular trap cell death (ETosis) and release filamentous chromatin fibers (extracellular traps, ETs) by direct interaction with Aspergillus fumigatus. Production of ETs is considered to be an innate immune response against non-phagocytable pathogens using a "trap and kill" mechanism, although eosinophil ETs do not promote A. fumigatus damage or killing. Compared with neutrophils, eosinophil ETs are composed of stable and condensed chromatin fibers and thus might contribute to the higher viscosity of eosinophilic mucus. The major fate of massively accumulated eosinophils in the airways is ETosis, which potentially induces the release of toxic granule proteins and damage-associated molecular patterns, epithelial damage, and further decreases mucus clearance. This new perspective on ABPA as a luminal hypereosinophilic disease with ETosis/ETs could provide a better understanding of airway mucus plugging and contribute to future therapeutic strategies for this challenging disease.
Collapse
Affiliation(s)
- Shigeharu Ueki
- Department of General Internal Medicine and Clinical Laboratory Medicine, Akita University Graduate School of Medicine, Akita, Japan
| | - Akira Hebisawa
- Clinical Research Center and Pathology Division, National Hospital Organization Tokyo National Hospital, Tokyo, Japan
| | - Masashi Kitani
- Clinical Research Center and Pathology Division, National Hospital Organization Tokyo National Hospital, Tokyo, Japan
| | - Koichiro Asano
- Division of Pulmonary Medicine, Department of Medicine, Tokai University School of Medicine, Kanagawa, Japan
| | - Josiane S Neves
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
47
|
Schmid AS, Hemmerle T, Pretto F, Kipar A, Neri D. Antibody-based targeted delivery of interleukin-4 synergizes with dexamethasone for the reduction of inflammation in arthritis. Rheumatology (Oxford) 2018; 57:748-755. [PMID: 29365185 DOI: 10.1093/rheumatology/kex447] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Indexed: 12/14/2022] Open
Abstract
Objectives We have previously reported that F8-IL4, a fusion protein consisting of the F8 antibody specific to the alternatively-spliced extra domain A of fibronectin and of murine IL-4, cures mice with established arthritis, when used in combination with dexamethasone (DXM). The goal of this study was to assess whether other therapeutic agents, besides DXM, could induce cures in combination with F8-IL4 and to elucidate which leucocytes are most affected by the pharmacological treatment. Methods We performed therapy experiments in mice with CIA, using intravenous administrations of F8-IL4 in combination with DXM, MTX, murine cytotoxic T-lymphocyte-associated protein 4 fused to the fragment crystallizable portion of murine IgG2a, as well as mAbs to murine IL17A or the p40 subunit of murine IL12/IL23. Histology and immunohistochemistry for the identification of the various leucocytes were performed on the paws of mice euthanized at different therapy time points. Results Only the use of F8-IL4 in combination with DXM induced complete remissions, while all other combinations did not lead to cures. The light microscopical evaluation of paws with arthritis revealed a predominant infiltration of neutrophils, which substantially decreased 24 h after treatment with F8-IL4 and DXM. Conclusion The combination of F8-IL4 with DXM promotes a rapid anti-arthritic action by potently inhibiting neutrophil activity. A fully human analogue of F8-IL4 may find clinical utility for the treatment of neutrophil-driven chronic inflammatory conditions.
Collapse
Affiliation(s)
- Anja Sophie Schmid
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Zürich, Switzerland
| | - Teresa Hemmerle
- Philochem AG, Otelfingen, University of Zürich, Zürich, Switzerland
| | - Francesca Pretto
- Philochem AG, Otelfingen, University of Zürich, Zürich, Switzerland
| | - Anja Kipar
- Laboratory for Animal Model Pathology, Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
| | - Dario Neri
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Zürich, Switzerland
| |
Collapse
|
48
|
Myeloperoxidase in the inflamed colon: A novel target for treating inflammatory bowel disease. Arch Biochem Biophys 2018; 645:61-71. [DOI: 10.1016/j.abb.2018.03.012] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 03/08/2018] [Accepted: 03/12/2018] [Indexed: 12/17/2022]
|
49
|
NETosis, complement, and coagulation: a triangular relationship. Cell Mol Immunol 2018; 16:19-27. [PMID: 29572545 DOI: 10.1038/s41423-018-0024-0] [Citation(s) in RCA: 273] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 02/28/2018] [Accepted: 02/28/2018] [Indexed: 12/23/2022] Open
Abstract
NETosis is a regulated form of neutrophil cell death that contributes to the host defense against pathogens and was linked to various diseases soon after its first description in 2004. During NETosis, neutrophils release neutrophil extracellular traps (NETs), which can capture and kill bacteria and other pathogens to prevent them from spreading. Although substantial progress has been made in our understanding of NETosis, the precise mechanism underlying NETosis is still a matter of debate. Research continues to elucidate the molecular pathways involved in NETosis. In recent years, interactions with the complement and coagulation systems have become increasingly apparent. Activated complement proteins can stimulate NET formation, and NETs, in turn, can serve as a platform for complement activation. In addition, NETs can act as a scaffold for thrombus formation during coagulation. While crosstalk between the coagulation and complement systems has been previously described, NETosis appears to be a third important player in this consortium to protect the host against pathogens. This review summarizes our current knowledge on the mutual interactions between NETosis, the complement system and the coagulation system, with an emerging description of their complex triangular relationship.
Collapse
|
50
|
Homa J. Earthworm coelomocyte extracellular traps: structural and functional similarities with neutrophil NETs. Cell Tissue Res 2018; 371:407-414. [PMID: 29404728 PMCID: PMC5820388 DOI: 10.1007/s00441-018-2787-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 01/04/2018] [Indexed: 12/20/2022]
Abstract
Invertebrate immunity is associated with natural mechanisms that include cellular and humoral elements, similar to those that play a role in vertebrate innate immune responses. Formation of extracellular traps (ETs) is a newly discovered mechanism to combat pathogens, operating not only in vertebrate leucocytes but also in invertebrate immune cells. The ET components include extracellular DNA (exDNA), antimicrobial proteins and histones. Formation of mammalian ETs depends on enzymes such as neutrophil elastase, myeloperoxidase, the citrullination of histones and protease activity. It was confirmed that coelomocytes-immunocompetent cells of the earthworm Eisenia andrei-are also able to release ETs in a protease-dependent manner, dependent or independent of the formation of reactive oxygen species and rearrangement of the cell cytoskeleton. Similar to vertebrate leukocytes (e.g., neutrophil), coelomocytes are responsible for many immune functions like phagocytosis, cytotoxicity and secretion of humoral factors. ETs formed by coelomocyte analogues to neutrophil ETs consist of exDNA, histone H3 and attached to these structures proteins, e.g., heat shock proteins HSP27. The latter fact confirms that mechanisms of ET release are conserved in evolution. The study on Annelida adds this animal group to the list of invertebrates capable of ET release, but most importantly provides insides into innate mechanisms of ET formation in lower animal taxa.
Collapse
Affiliation(s)
- Joanna Homa
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland.
| |
Collapse
|