1
|
Barnette D, Inselman AL, Kaldhone P, Lee GS, Davis K, Sarkar S, Malhi P, Fisher JE, Hanig JP, Beger RD, Jones EE. The incorporation of MALDI mass spectrometry imaging in studies to identify markers of toxicity following in utero opioid exposures in mouse fetuses. FRONTIERS IN TOXICOLOGY 2024; 6:1452974. [PMID: 39691158 PMCID: PMC11651024 DOI: 10.3389/ftox.2024.1452974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 11/07/2024] [Indexed: 12/19/2024] Open
Abstract
Introduction In 2015, the FDA released a Drug Safety Communication regarding a possible link between opioid exposure during early pregnancy and an increased risk of fetal neural tube defects (NTDs). At the time, the indications for opioid use during pregnancy were not changed due to incomplete maternal toxicity data and limitations in human and animal studies. To assess these knowledge gaps, largescale animal studies are ongoing; however, state-of-the-art technologies have emerged as promising tools to assess otherwise non-standard endpoints. Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) is a dynamic approach capable of generating 2D ion images to visualize the distribution of an analyte of interest across a tissue section. Methods Given the importance of lipid metabolism and neurotransmitters in the developing central nervous system, this study incorporates MALDI MSI to assess lipid distributions across mouse gestational day (GD) 18 fetuses, with and without observable NTDs following maternal exposure on GD 8 to morphine (400 mg/kg BW) or the NTD positive control valproic acid (VPA) (500 mg/kg BW). Results Analysis of whole-body mouse fetuses revealed differential lipid distributions localized mainly in the brain and spinal cord, which included several phosphatidylcholine (PC) species such as PCs 34:1, 34:0, and 36:2 localized to the cortex or hippocampus and lyso PC 16:0 across all brain regions. Overall, differential lipids increased in with maternal morphine and VPA exposure. Neurotransmitter distributions across the brain using FMP-10 derivatizing agent were also assessed, revealing morphine-specific changes. Discussion The observed differential glycerophospholipid distributions in relation to treatment and NTD development in mouse fetuses provide potential targets for further investigation of molecular mechanisms of opioid-related developmental effects. Overall, these findings support the feasibility of incorporating MALDI MSI to assess non-standard endpoints of opioid exposure during gestation.
Collapse
Affiliation(s)
- Dustyn Barnette
- National Center for Toxicological Research (FDA), Division of Systems Biology, Jefferson, AR, United States
| | - Amy L. Inselman
- National Center for Toxicological Research (FDA), Division of Systems Biology, Jefferson, AR, United States
| | - Pravin Kaldhone
- National Center for Toxicological Research (FDA), Division of Systems Biology, Jefferson, AR, United States
| | - Grace S. Lee
- Center for Drug Evaluation and Research (CDER), Office of Testing and Research, Silver Spring, MD, United States
| | - Kelly Davis
- National Center for Toxicological Research (FDA), Toxicologic Pathology Associates, Jefferson, AR, United States
| | - Sumit Sarkar
- National Center for Toxicological Research (FDA), Division of Neurotoxicology, Jefferson, AR, United States
| | - Pritpal Malhi
- National Center for Toxicological Research (FDA), Toxicologic Pathology Associates, Jefferson, AR, United States
| | - J. Edward Fisher
- Center for Drug Evaluation and Research (CDER), Office of Testing and Research, Silver Spring, MD, United States
| | - Joseph P. Hanig
- Center for Drug Evaluation and Research (CDER), Division of Pharmacology Toxicology for Neuroscience, Silver Spring, MD, United States
| | - Richard D. Beger
- National Center for Toxicological Research (FDA), Division of Systems Biology, Jefferson, AR, United States
| | - E. Ellen Jones
- National Center for Toxicological Research (FDA), Division of Systems Biology, Jefferson, AR, United States
| |
Collapse
|
2
|
Petrova B, Guler AT. Recent Developments in Single-Cell Metabolomics by Mass Spectrometry─A Perspective. J Proteome Res 2024. [PMID: 39437423 DOI: 10.1021/acs.jproteome.4c00646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Recent advancements in single-cell (sc) resolution analyses, particularly in sc transcriptomics and sc proteomics, have revolutionized our ability to probe and understand cellular heterogeneity. The study of metabolism through small molecules, metabolomics, provides an additional level of information otherwise unattainable by transcriptomics or proteomics by shedding light on the metabolic pathways that translate gene expression into functional outcomes. Metabolic heterogeneity, critical in health and disease, impacts developmental outcomes, disease progression, and treatment responses. However, dedicated approaches probing the sc metabolome have not reached the maturity of other sc omics technologies. Over the past decade, innovations in sc metabolomics have addressed some of the practical limitations, including cell isolation, signal sensitivity, and throughput. To fully exploit their potential in biological research, however, remaining challenges must be thoroughly addressed. Additionally, integrating sc metabolomics with orthogonal sc techniques will be required to validate relevant results and gain systems-level understanding. This perspective offers a broad-stroke overview of recent mass spectrometry (MS)-based sc metabolomics advancements, focusing on ongoing challenges from a biologist's viewpoint, aimed at addressing pertinent and innovative biological questions. Additionally, we emphasize the use of orthogonal approaches and showcase biological systems that these sophisticated methodologies are apt to explore.
Collapse
Affiliation(s)
- Boryana Petrova
- Medical University of Vienna, Vienna 1090, Austria
- Department of Pathology, Boston Children's Hospital, Boston, Massachusetts 02115, United States
| | - Arzu Tugce Guler
- Department of Pathology, Boston Children's Hospital, Boston, Massachusetts 02115, United States
- Institute for Experiential AI, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
3
|
Castro Colabianchi AM, González Pérez NG, Franchini LF, López SL. A maternal dorsoventral prepattern revealed by an asymmetric distribution of ventralizing molecules before fertilization in Xenopus laevis. Front Cell Dev Biol 2024; 12:1365705. [PMID: 38572484 PMCID: PMC10987785 DOI: 10.3389/fcell.2024.1365705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/07/2024] [Indexed: 04/05/2024] Open
Abstract
The establishment of the embryonic dorsoventral axis in Xenopus occurs when the radial symmetry around the egg's animal-vegetal axis is broken to give rise to the typical symmetry of Bilaterians. We have previously shown that the Notch1 protein is ventrally enriched during early embryogenesis in Xenopus laevis and zebrafish and exerts ventralizing activity through β-Catenin destabilization and the positive regulation of ventral center genes in X. laevis. These findings led us to further investigate when these asymmetries arise. In this work, we show that the asymmetrical distribution of Notch1 protein and mRNA precedes cortical rotation and even fertilization in X. laevis. Moreover, we found that in unfertilized eggs transcripts encoded by the ventralizing gene bmp4 are also asymmetrically distributed in the animal hemisphere and notch1 transcripts accumulate consistently on the same side of the eccentric maturation point. Strikingly, a Notch1 asymmetry orthogonal to the animal-vegetal axis appears during X. laevis oogenesis. Thus, we show for the first time a maternal bias in the distribution of molecules that are later involved in ventral patterning during embryonic axialization, strongly supporting the hypothesis of a dorsoventral prepattern or intrinsic bilaterality of Xenopus eggs before fertilization.
Collapse
Affiliation(s)
- Aitana M. Castro Colabianchi
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Biología Celular e Histología / 1° U.A. Departamento de Histología, Embriología, Biología Celular y Genética, Laboratorio de Embriología Molecular “Prof. Dr. Andrés E. Carrasco”, Buenos Aires, Argentina
- CONICET–Universidad de Buenos Aires, Instituto de Biología Celular y Neurociencias “Prof. E. De Robertis” (IBCN), Buenos Aires, Argentina
| | - Nicolás G. González Pérez
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Biología Celular e Histología / 1° U.A. Departamento de Histología, Embriología, Biología Celular y Genética, Laboratorio de Embriología Molecular “Prof. Dr. Andrés E. Carrasco”, Buenos Aires, Argentina
- CONICET–Universidad de Buenos Aires, Instituto de Biología Celular y Neurociencias “Prof. E. De Robertis” (IBCN), Buenos Aires, Argentina
| | - Lucía F. Franchini
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI) “Dr. Héctor N. Torres”, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Silvia L. López
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Biología Celular e Histología / 1° U.A. Departamento de Histología, Embriología, Biología Celular y Genética, Laboratorio de Embriología Molecular “Prof. Dr. Andrés E. Carrasco”, Buenos Aires, Argentina
- CONICET–Universidad de Buenos Aires, Instituto de Biología Celular y Neurociencias “Prof. E. De Robertis” (IBCN), Buenos Aires, Argentina
| |
Collapse
|
4
|
Wevers D, Ramautar R, Clark C, Hankemeier T, Ali A. Opportunities and challenges for sample preparation and enrichment in mass spectrometry for single-cell metabolomics. Electrophoresis 2023; 44:2000-2024. [PMID: 37667867 DOI: 10.1002/elps.202300105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/08/2023] [Accepted: 08/19/2023] [Indexed: 09/06/2023]
Abstract
Single-cell heterogeneity in metabolism, drug resistance and disease type poses the need for analytical techniques for single-cell analysis. As the metabolome provides the closest view of the status quo in the cell, studying the metabolome at single-cell resolution may unravel said heterogeneity. A challenge in single-cell metabolome analysis is that metabolites cannot be amplified, so one needs to deal with picolitre volumes and a wide range of analyte concentrations. Due to high sensitivity and resolution, MS is preferred in single-cell metabolomics. Large numbers of cells need to be analysed for proper statistics; this requires high-throughput analysis, and hence automation of the analytical workflow. Significant advances in (micro)sampling methods, CE and ion mobility spectrometry have been made, some of which have been applied in high-throughput analyses. Microfluidics has enabled an automation of cell picking and metabolite extraction; image recognition has enabled automated cell identification. Many techniques have been used for data analysis, varying from conventional techniques to novel combinations of advanced chemometric approaches. Steps have been set in making data more findable, accessible, interoperable and reusable, but significant opportunities for improvement remain. Herein, advances in single-cell analysis workflows and data analysis are discussed, and recommendations are made based on the experimental goal.
Collapse
Affiliation(s)
- Dirk Wevers
- Wageningen University and Research, Wageningen, The Netherlands
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research, Leiden, The Netherlands
| | - Rawi Ramautar
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research, Leiden, The Netherlands
| | - Charlie Clark
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research, Leiden, The Netherlands
| | - Thomas Hankemeier
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research, Leiden, The Netherlands
| | - Ahmed Ali
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research, Leiden, The Netherlands
| |
Collapse
|
5
|
Bagwe K, Gould N, Johnson KR, Ivanov AR. Single-cell omic molecular profiling using capillary electrophoresis-mass spectrometry. Trends Analyt Chem 2023; 165:117117. [PMID: 37388554 PMCID: PMC10306258 DOI: 10.1016/j.trac.2023.117117] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
Tissues and other cell populations are highly heterogeneous at the cellular level, owing to differences in expression and modifications of proteins, polynucleotides, metabolites, and lipids. The ability to assess this heterogeneity is crucial in understanding numerous biological phenomena, including various pathologies. Traditional analyses apply bulk-cell sampling, which masks the potentially subtle differences between cells that can be important in understanding of biological processes. These limitations due to cell heterogeneity inspired significant efforts and interest toward the analysis of smaller sample sizes, down to the level of individual cells. Among the emerging techniques, the unique capabilities of capillary electrophoresis coupled with mass spectrometry (CE-MS) made it a prominent technique for proteomics and metabolomics analysis at the single-cell level. In this review, we focus on the application of CE-MS in the proteomic and metabolomic profiling of single cells and highlight the recent advances in sample preparation, separation, MS acquisition, and data analysis.
Collapse
Affiliation(s)
- Ketki Bagwe
- Barnett Institute of Chemical and Biological Analysis, Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Ave., Boston, MA, 02115, United States
| | - Noah Gould
- Barnett Institute of Chemical and Biological Analysis, Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Ave., Boston, MA, 02115, United States
| | - Kendall R. Johnson
- Barnett Institute of Chemical and Biological Analysis, Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Ave., Boston, MA, 02115, United States
| | - Alexander R. Ivanov
- Barnett Institute of Chemical and Biological Analysis, Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Ave., Boston, MA, 02115, United States
| |
Collapse
|
6
|
Lee S, Vu HM, Lee JH, Lim H, Kim MS. Advances in Mass Spectrometry-Based Single Cell Analysis. BIOLOGY 2023; 12:395. [PMID: 36979087 PMCID: PMC10045136 DOI: 10.3390/biology12030395] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023]
Abstract
Technological developments and improvements in single-cell isolation and analytical platforms allow for advanced molecular profiling at the single-cell level, which reveals cell-to-cell variation within the admixture cells in complex biological or clinical systems. This helps to understand the cellular heterogeneity of normal or diseased tissues and organs. However, most studies focused on the analysis of nucleic acids (e.g., DNA and RNA) and mass spectrometry (MS)-based analysis for proteins and metabolites of a single cell lagged until recently. Undoubtedly, MS-based single-cell analysis will provide a deeper insight into cellular mechanisms related to health and disease. This review summarizes recent advances in MS-based single-cell analysis methods and their applications in biology and medicine.
Collapse
Affiliation(s)
- Siheun Lee
- School of Undergraduate Studies, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Hung M. Vu
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Jung-Hyun Lee
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Heejin Lim
- Center for Scientific Instrumentation, Korea Basic Science Institute (KBSI), Cheongju 28119, Republic of Korea
| | - Min-Sik Kim
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
- New Biology Research Center, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
- Center for Cell Fate Reprogramming and Control, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| |
Collapse
|
7
|
Hu R, Li Y, Yang Y, Liu M. Mass spectrometry-based strategies for single-cell metabolomics. MASS SPECTROMETRY REVIEWS 2023; 42:67-94. [PMID: 34028064 DOI: 10.1002/mas.21704] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 05/05/2021] [Accepted: 05/11/2021] [Indexed: 06/12/2023]
Abstract
Single cell analysis has drawn increasing interest from the research community due to its capability to interrogate cellular heterogeneity, allowing refined tissue classification and facilitating novel biomarker discovery. With the advancement of relevant instruments and techniques, it is now possible to perform multiple omics including genomics, transcriptomics, metabolomics or even proteomics at single cell level. In comparison with other omics studies, single-cell metabolomics (SCM) represents a significant challenge since it involves many types of dynamically changing compounds with a wide range of concentrations. In addition, metabolites cannot be amplified. Although difficult, considerable progress has been made over the past decade in mass spectrometry (MS)-based SCM in terms of processing technologies and biochemical applications. In this review, we will summarize recent progress in the development of promising MS platforms, sample preparation methods and SCM analysis of various cell types (including plant cell, cancer cell, neuron, embryo cell, and yeast cell). Current limitations and future research directions in the field of SCM will also be discussed.
Collapse
Affiliation(s)
- Rui Hu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ying Li
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yunhuang Yang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Maili Liu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
8
|
Recent advances and typical applications in mass spectrometry-based technologies for single-cell metabolite analysis. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
9
|
Portero EP, Pade L, Li J, Choi SB, Nemes P. Single-Cell Mass Spectrometry of Metabolites and Proteins for Systems and Functional Biology. NEUROMETHODS 2022; 184:87-114. [PMID: 36699808 PMCID: PMC9872963 DOI: 10.1007/978-1-0716-2525-5_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Molecular composition is intricately intertwined with cellular function, and elucidation of this relationship is essential for understanding life processes and developing next-generational therapeutics. Technological innovations in capillary electrophoresis (CE) and liquid chromatography (LC) mass spectrometry (MS) provide previously unavailable insights into cellular biochemistry by allowing for the unbiased detection and quantification of molecules with high specificity. This chapter presents our validated protocols integrating ultrasensitive MS with classical tools of cell, developmental, and neurobiology to assess the biological function of important biomolecules. We use CE and LC MS to measure hundreds of metabolites and thousands of proteins in single cells or limited populations of tissues in chordate embryos and mammalian neurons, revealing molecular heterogeneity between identified cells. By pairing microinjection and optical microscopy, we demonstrate cell lineage tracing and testing the roles the dysregulated molecules play in the formation and maintenance of cell heterogeneity and tissue specification in frog embryos (Xenopus laevis). Electrophysiology extends our workflows to characterizing neuronal activity in sections of mammalian brain tissues. The information obtained from these studies mutually strengthen chemistry and biology and highlight the importance of interdisciplinary research to advance basic knowledge and translational applications forward.
Collapse
Affiliation(s)
| | | | - Jie Li
- Department of Chemistry & Biochemistry, University of Maryland, 8051 Regents Drive, College Park, MD 20742
| | - Sam B. Choi
- Department of Chemistry & Biochemistry, University of Maryland, 8051 Regents Drive, College Park, MD 20742
| | - Peter Nemes
- Department of Chemistry & Biochemistry, University of Maryland, 8051 Regents Drive, College Park, MD 20742
| |
Collapse
|
10
|
Suzuki Y, Hayasaka R, Hasebe M, Ikeda S, Soga T, Tomita M, Hirayama A, Kuroda H. Comparative Metabolomics of Small Molecules Specifically Expressed in the Dorsal or Ventral Marginal Zones in Vertebrate Gastrula. Metabolites 2022; 12:metabo12060566. [PMID: 35736498 PMCID: PMC9229639 DOI: 10.3390/metabo12060566] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/14/2022] [Accepted: 06/17/2022] [Indexed: 02/06/2023] Open
Abstract
Many previous studies have reported the various proteins specifically secreted as inducers in the dorsal or ventral regions in vertebrate gastrula. However, little is known about the effect on cell fate of small molecules below 1000 Da. We therefore tried to identify small molecules specifically expressed in the dorsal marginal zone (DMZ) or ventral marginal zone (VMZ) in vertebrate gastrula. Small intracellular and secreted molecules were detected using explants and supernatant samples. Hydrophilic metabolites were analyzed by capillary ion chromatography-mass spectrometry and liquid chromatography-mass spectrometry, and lipids were analyzed by supercritical fluid chromatography-tandem mass spectrometry. In total, 190 hydrophilic metabolites and 396 lipids were identified. The DMZ was found to have high amounts of glycolysis- and glutathione metabolism-related metabolites in explants, and the VMZ was richer in purine metabolism-related metabolites. We also discovered some hydrophilic metabolites and lipids differentially contained in the DMZ or VMZ. Our research would contribute to a deeper understanding of the cellular physiology that regulates early embryogenesis.
Collapse
Affiliation(s)
- Yukako Suzuki
- Institute for Advanced Biosciences, Keio University, Tsuruoka 997-0052, Yamagata, Japan; (Y.S.); (R.H.); (M.H.); (S.I.); (T.S.); (M.T.); (A.H.)
| | - Ryosuke Hayasaka
- Institute for Advanced Biosciences, Keio University, Tsuruoka 997-0052, Yamagata, Japan; (Y.S.); (R.H.); (M.H.); (S.I.); (T.S.); (M.T.); (A.H.)
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa 252-0882, Kanagawa, Japan
| | - Masako Hasebe
- Institute for Advanced Biosciences, Keio University, Tsuruoka 997-0052, Yamagata, Japan; (Y.S.); (R.H.); (M.H.); (S.I.); (T.S.); (M.T.); (A.H.)
| | - Satsuki Ikeda
- Institute for Advanced Biosciences, Keio University, Tsuruoka 997-0052, Yamagata, Japan; (Y.S.); (R.H.); (M.H.); (S.I.); (T.S.); (M.T.); (A.H.)
| | - Tomoyoshi Soga
- Institute for Advanced Biosciences, Keio University, Tsuruoka 997-0052, Yamagata, Japan; (Y.S.); (R.H.); (M.H.); (S.I.); (T.S.); (M.T.); (A.H.)
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa 252-0882, Kanagawa, Japan
| | - Masaru Tomita
- Institute for Advanced Biosciences, Keio University, Tsuruoka 997-0052, Yamagata, Japan; (Y.S.); (R.H.); (M.H.); (S.I.); (T.S.); (M.T.); (A.H.)
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa 252-0882, Kanagawa, Japan
| | - Akiyoshi Hirayama
- Institute for Advanced Biosciences, Keio University, Tsuruoka 997-0052, Yamagata, Japan; (Y.S.); (R.H.); (M.H.); (S.I.); (T.S.); (M.T.); (A.H.)
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa 252-0882, Kanagawa, Japan
| | - Hiroki Kuroda
- Institute for Advanced Biosciences, Keio University, Tsuruoka 997-0052, Yamagata, Japan; (Y.S.); (R.H.); (M.H.); (S.I.); (T.S.); (M.T.); (A.H.)
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa 252-0882, Kanagawa, Japan
- Correspondence: ; Tel.: +81-466-49-3404
| |
Collapse
|
11
|
Kassem S, van der Pan K, de Jager AL, Naber BAE, de Laat IF, Louis A, van Dongen JJM, Teodosio C, Díez P. Proteomics for Low Cell Numbers: How to Optimize the Sample Preparation Workflow for Mass Spectrometry Analysis. J Proteome Res 2021; 20:4217-4230. [PMID: 34328739 PMCID: PMC8419858 DOI: 10.1021/acs.jproteome.1c00321] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Indexed: 12/20/2022]
Abstract
Nowadays, massive genomics and transcriptomics data can be generated at the single-cell level. However, proteomics in this setting is still a big challenge. Despite the great improvements in sensitivity and performance of mass spectrometry instruments and the better knowledge on sample preparation processing, it is widely acknowledged that multistep proteomics workflows may lead to substantial sample loss, especially when working with paucicellular samples. Still, in clinical fields, frequently limited sample amounts are available for downstream analysis, thereby hampering comprehensive characterization at protein level. To aim at better protein and peptide recoveries, we compare existing and novel approaches in the multistep sample preparation protocols for mass spectrometry studies, from sample collection, cell lysis, protein quantification, and electrophoresis/staining to protein digestion, peptide recovery, and LC-MS/MS instruments. From this critical evaluation, we conclude that the recent innovations and technologies, together with high quality management of samples, make proteomics on paucicellular samples possible, which will have immediate impact for the proteomics community.
Collapse
Affiliation(s)
- Sara Kassem
- Department
of Immunology, Leiden University Medical
Center (LUMC), Albinusdreef 2, 2333ZA Leiden, Netherlands
| | - Kyra van der Pan
- Department
of Immunology, Leiden University Medical
Center (LUMC), Albinusdreef 2, 2333ZA Leiden, Netherlands
| | - Anniek L. de Jager
- Department
of Immunology, Leiden University Medical
Center (LUMC), Albinusdreef 2, 2333ZA Leiden, Netherlands
| | - Brigitta A. E. Naber
- Department
of Immunology, Leiden University Medical
Center (LUMC), Albinusdreef 2, 2333ZA Leiden, Netherlands
| | - Inge F. de Laat
- Department
of Immunology, Leiden University Medical
Center (LUMC), Albinusdreef 2, 2333ZA Leiden, Netherlands
| | - Alesha Louis
- Department
of Immunology, Leiden University Medical
Center (LUMC), Albinusdreef 2, 2333ZA Leiden, Netherlands
| | - Jacques J. M. van Dongen
- Department
of Immunology, Leiden University Medical
Center (LUMC), Albinusdreef 2, 2333ZA Leiden, Netherlands
| | - Cristina Teodosio
- Department
of Immunology, Leiden University Medical
Center (LUMC), Albinusdreef 2, 2333ZA Leiden, Netherlands
| | - Paula Díez
- Department
of Immunology, Leiden University Medical
Center (LUMC), Albinusdreef 2, 2333ZA Leiden, Netherlands
| |
Collapse
|
12
|
Lombard-Banek C, Li J, Portero EP, Onjiko RM, Singer CD, Plotnick DO, Al Shabeeb RQ, Nemes P. In Vivo Subcellular Mass Spectrometry Enables Proteo-Metabolomic Single-Cell Systems Biology in a Chordate Embryo Developing to a Normally Behaving Tadpole (X. laevis)*. Angew Chem Int Ed Engl 2021; 60:12852-12858. [PMID: 33682213 PMCID: PMC8176382 DOI: 10.1002/anie.202100923] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Indexed: 01/05/2023]
Abstract
We report the development of in vivo subcellular high-resolution mass spectrometry (HRMS) for proteo-metabolomic molecular systems biology in complex tissues. With light microscopy, we identified the left-dorsal and left-ventral animal cells in cleavage-stage non-sentient Xenopus laevis embryos. Using precision-translated fabricated microcapillaries, the subcellular content of each cell was double-probed, each time swiftly (<5 s/event) aspirating <5 % of cell volume (≈10 nL). The proteins and metabolites were analyzed by home-built ultrasensitive capillary electrophoresis electrospray ionization employing orbitrap or time-of-flight HRMS. Label-free detection of ≈150 metabolites (57 identified) and 738 proteins found proteo-metabolomic networks with differential quantitative activities between the cell types. With spatially and temporally scalable sampling, the technology preserved the integrity of the analyzed cells, the neighboring cells, and the embryo. 95 % of the analyzed embryos developed into sentient tadpoles that were indistinguishable from their wild-type siblings based on anatomy and visual function in a background color preference assay.
Collapse
Affiliation(s)
- Camille Lombard-Banek
- Department of Chemistry & Biochemistry, University of Maryland, 0107 Chemistry Building, 8051 Regents Drive, College Park, MD 20742 (USA)
| | - Jie Li
- Department of Chemistry & Biochemistry, University of Maryland, 0107 Chemistry Building, 8051 Regents Drive, College Park, MD 20742 (USA)
| | - Erika P. Portero
- Department of Chemistry & Biochemistry, University of Maryland, 0107 Chemistry Building, 8051 Regents Drive, College Park, MD 20742 (USA)
| | - Rosemary M. Onjiko
- Department of Chemistry, The George Washington University, 800 22nd St NW, Washington, DC 20052 (USA)
| | - Chase D. Singer
- Department of Chemistry & Biochemistry, University of Maryland, 0107 Chemistry Building, 8051 Regents Drive, College Park, MD 20742 (USA)
| | - David O. Plotnick
- Department of Chemistry, The George Washington University, 800 22nd St NW, Washington, DC 20052 (USA)
| | - Reem Q. Al Shabeeb
- Department of Chemistry, The George Washington University, 800 22nd St NW, Washington, DC 20052 (USA)
| | - Peter Nemes
- Department of Chemistry & Biochemistry, University of Maryland, 0107 Chemistry Building, 8051 Regents Drive, College Park, MD 20742 (USA)
- Department of Chemistry, The George Washington University, 800 22nd St NW, Washington, DC 20052 (USA)
- Department of Anatomy & Cell Biology, School of Medicine and Health Sciences, The George Washington University, 2300 I Street NW, Washington, DC 20037 (USA)
| |
Collapse
|
13
|
Baxi AB, Pade LR, Nemes P. Mass spectrometry based proteomics for developmental neurobiology in the amphibian Xenopus laevis. Curr Top Dev Biol 2021; 145:205-231. [PMID: 34074530 PMCID: PMC8314003 DOI: 10.1016/bs.ctdb.2021.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The South African clawed frog (Xenopus laevis), a prominent vertebrate model in cell and developmental biology, has been instrumental in studying molecular mechanisms of neural development and disease. Recently, high-resolution mass spectrometry (HRMS), a bioanalytical technology, has expanded the molecular toolbox of protein detection and characterization (proteomics). This chapter overviews the characteristics, advantages, and challenges of this biological model and technology. Discussions are offered on their combined use to aid studies on cell differentiation and development of neural tissues. Finally, the emerging integration of proteomics and other 'omic technologies is reflected on to generate new knowledge, drive and test new hypotheses, and ultimately, advance the understanding of neural development during states of health and disease.
Collapse
Affiliation(s)
- Aparna B Baxi
- Department of Chemistry & Biochemistry, University of Maryland, College Park, College Park, MD, United States; Department of Anatomy and Cell Biology, The George Washington University, Washington, DC, United States
| | - Leena R Pade
- Department of Chemistry & Biochemistry, University of Maryland, College Park, College Park, MD, United States
| | - Peter Nemes
- Department of Chemistry & Biochemistry, University of Maryland, College Park, College Park, MD, United States; Department of Anatomy and Cell Biology, The George Washington University, Washington, DC, United States.
| |
Collapse
|
14
|
Lombard‐Banek C, Li J, Portero EP, Onjiko RM, Singer CD, Plotnick DO, Al Shabeeb RQ, Nemes P. In Vivo Subcellular Mass Spectrometry Enables Proteo‐Metabolomic Single‐Cell Systems Biology in a Chordate Embryo Developing to a Normally Behaving Tadpole (
X. laevis
)**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100923] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Camille Lombard‐Banek
- Department of Chemistry & Biochemistry University of Maryland 0107 Chemistry Building 8051 Regents Drive College Park MD 20742 USA
| | - Jie Li
- Department of Chemistry & Biochemistry University of Maryland 0107 Chemistry Building 8051 Regents Drive College Park MD 20742 USA
| | - Erika P. Portero
- Department of Chemistry & Biochemistry University of Maryland 0107 Chemistry Building 8051 Regents Drive College Park MD 20742 USA
| | - Rosemary M. Onjiko
- Department of Chemistry The George Washington University 800 22nd St NW Washington DC 20052 USA
| | - Chase D. Singer
- Department of Chemistry & Biochemistry University of Maryland 0107 Chemistry Building 8051 Regents Drive College Park MD 20742 USA
| | - David O. Plotnick
- Department of Chemistry The George Washington University 800 22nd St NW Washington DC 20052 USA
| | - Reem Q. Al Shabeeb
- Department of Chemistry The George Washington University 800 22nd St NW Washington DC 20052 USA
| | - Peter Nemes
- Department of Chemistry & Biochemistry University of Maryland 0107 Chemistry Building 8051 Regents Drive College Park MD 20742 USA
- Department of Chemistry The George Washington University 800 22nd St NW Washington DC 20052 USA
- Department of Anatomy & Cell Biology School of Medicine and Health Sciences The George Washington University 2300 I Street NW Washington DC 20037 USA
| |
Collapse
|
15
|
Kawai T. Recent Advances in Trace Bioanalysis by Capillary Electrophoresis. ANAL SCI 2021; 37:27-36. [PMID: 33041311 DOI: 10.2116/analsci.20sar12] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 09/29/2020] [Indexed: 07/25/2024]
Abstract
Recently, single cell analysis is becoming more and more important to elucidate cellular heterogeneity. Except for nucleic acid that can be amplified by PCR, the required technical level for single cell analysis is extremely high and the appropriate design of sample preparation and a sensitive analytical system is necessary. Capillary/microchip electrophoresis (CE/MCE) can separate biomolecules in nL-scale solution with high resolution, and it is highly compatible with trace samples like a single cell. Coupled with highly sensitive detectors such as laser-induced fluorescence and nano-electrospray ionization-mass spectrometry, zmol level analytes can be detected. For further enhancing sensitivity, online sample preconcentration techniques can be employed. By integrating these high-sensitive techniques, single cell analysis of metabolites, proteins, and lipids have been achieved. This review paper highlights successful research on CE/MCE-based trace bioanalysis in recent 10 years. Firstly, an overview of basic knowledge on CE/MCE including sensitivity enhancement techniques is provided. Applications to trace bioanalysis are then introduced with discussion on current issues and future prospects.
Collapse
Affiliation(s)
- Takayuki Kawai
- RIKEN Center for Biosystems Dynamics Research
- Graduate School of Frontier Biosciences, Osaka University
| |
Collapse
|
16
|
Evers TMJ, Hochane M, Tans SJ, Heeren RMA, Semrau S, Nemes P, Mashaghi A. Deciphering Metabolic Heterogeneity by Single-Cell Analysis. Anal Chem 2019; 91:13314-13323. [PMID: 31549807 PMCID: PMC6922888 DOI: 10.1021/acs.analchem.9b02410] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Single-cell analysis provides insights into cellular heterogeneity and dynamics of individual cells. This Feature highlights recent developments in key analytical techniques suited for single-cell metabolic analysis with a special focus on mass spectrometry-based analytical platforms and RNA-seq as well as imaging techniques that reveal stochasticity in metabolism.
Collapse
Affiliation(s)
- Tom MJ Evers
- Medical Systems Biophysics and Bioengineering, Leiden Academic Centre for Drug Research, Faculty of Mathematics and Natural Sciences, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Mazène Hochane
- Leiden Institute of Physics, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Sander J Tans
- AMOLF Institute, Science Park 104 1098 XG Amsterdam, The Netherlands
| | - Ron MA Heeren
- The Maastricht MultiModal Molecular Imaging Institute (M4I), Division of Imaging Mass Spectrometry, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Stefan Semrau
- Leiden Institute of Physics, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Peter Nemes
- Department of Chemistry & Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - Alireza Mashaghi
- Medical Systems Biophysics and Bioengineering, Leiden Academic Centre for Drug Research, Faculty of Mathematics and Natural Sciences, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| |
Collapse
|
17
|
Ali A, Abouleila Y, Shimizu Y, Hiyama E, Emara S, Mashaghi A, Hankemeier T. Single-cell metabolomics by mass spectrometry: Advances, challenges, and future applications. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.02.033] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
18
|
Wishart DS. Metabolomics for Investigating Physiological and Pathophysiological Processes. Physiol Rev 2019; 99:1819-1875. [PMID: 31434538 DOI: 10.1152/physrev.00035.2018] [Citation(s) in RCA: 554] [Impact Index Per Article: 92.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Metabolomics uses advanced analytical chemistry techniques to enable the high-throughput characterization of metabolites from cells, organs, tissues, or biofluids. The rapid growth in metabolomics is leading to a renewed interest in metabolism and the role that small molecule metabolites play in many biological processes. As a result, traditional views of metabolites as being simply the "bricks and mortar" of cells or just the fuel for cellular energetics are being upended. Indeed, metabolites appear to have much more varied and far more important roles as signaling molecules, immune modulators, endogenous toxins, and environmental sensors. This review explores how metabolomics is yielding important new insights into a number of important biological and physiological processes. In particular, a major focus is on illustrating how metabolomics and discoveries made through metabolomics are improving our understanding of both normal physiology and the pathophysiology of many diseases. These discoveries are yielding new insights into how metabolites influence organ function, immune function, nutrient sensing, and gut physiology. Collectively, this work is leading to a much more unified and system-wide perspective of biology wherein metabolites, proteins, and genes are understood to interact synergistically to modify the actions and functions of organelles, organs, and organisms.
Collapse
Affiliation(s)
- David S Wishart
- Departments of Biological Sciences and Computing Science, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
19
|
Lombard-Banek C, Choi SB, Nemes P. Single-cell proteomics in complex tissues using microprobe capillary electrophoresis mass spectrometry. Methods Enzymol 2019; 628:263-292. [PMID: 31668233 PMCID: PMC7397975 DOI: 10.1016/bs.mie.2019.07.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Direct measurement of proteins produced by single cells promises to expand our understanding of molecular cell-to-cell differences (heterogeneity) and their contribution to normal and impaired development. High-resolution mass spectrometry (HRMS) is the modern technology of choice for the label-free identification and quantification of proteins, albeit usually in large populations of cells. Recent advances in microscale sample collection and processing, separation, and ionization have extended this powerful technology to single cells. This chapter describes a protocol based on microprobe capillary electrophoresis (CE) HRMS to enable the direct proteomic profiling of single cells embedded in complex tissues without the requirement for dissociation or whole-cell dissection. We here demonstrate the technology for identified individual cells in early developing embryos of Xenopus laevis and zebrafish as well as electrophysiologically identified single neurons in physiologically active brain slices from the mouse substantia nigra. Instructions are provided step-by-step to identify single cells using physiological or morphological cues, collect the content of the cells using microfabricated capillaries, and perform bottom-up proteomics using a custom-built CE electrospray ionization (ESI) mass spectrometer equipped with a quadrupole time-of-flight or orbitrap mass analyzer. Results obtained by this approach have revealed previously unknown differences between the proteomic state of embryonic cells and neurons. The data from single-cell proteomics by microprobe CE-ESI-HRMS complements those from single-cell transcriptomics, thereby opening exciting potentials to deepen our knowledge of molecular mechanisms governing cell and developmental processes.
Collapse
Affiliation(s)
- Camille Lombard-Banek
- Department of Chemistry & Biochemistry, University of Maryland, College Park, MD, United States
| | - Sam B Choi
- Department of Chemistry & Biochemistry, University of Maryland, College Park, MD, United States
| | - Peter Nemes
- Department of Chemistry & Biochemistry, University of Maryland, College Park, MD, United States.
| |
Collapse
|
20
|
Kawai T, Ota N, Okada K, Imasato A, Owa Y, Morita M, Tada M, Tanaka Y. Ultrasensitive Single Cell Metabolomics by Capillary Electrophoresis-Mass Spectrometry with a Thin-Walled Tapered Emitter and Large-Volume Dual Sample Preconcentration. Anal Chem 2019; 91:10564-10572. [PMID: 31357863 DOI: 10.1021/acs.analchem.9b01578] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Single cell metabolome analysis is essential for studying microscale life phenomena such as neuronal networks and tumor microenvironments. Capillary electrophoresis-mass spectrometry (CE-MS) is one of the most sensitive technologies; however, its sensitivity is still not enough for single cell analysis on general human cells such as HeLa. To address these issues, we first developed an efficient ionization emitter, named as a "nanoCESI" emitter, that had a thin-walled (∼10 μm) and tapered (5-10 μm) end. The thin conductive wall enabled sheathless ionization and minimized the flow rate of ionizing sample, and the tapered end efficiently ionized analytes via an electrospray ionization mechanism, providing up to 3.5-fold increase in sensitivity compared with a conventional sheathless emitter. Fifty repetitive analyses on 20 amino acids were successfully achieved with a nanoCESI emitter. Relative standard deviations of 50 analyses were 1.5%, 4.4%, and 6.8% for migration time, peak height, and peak area, respectively, where a limit of detection (LOD) of 170 pM (850 zmol) was achieved. Second, a sample enrichment method, large-volume dual preconcentration by isotachophoresis and stacking (LDIS), was applied to a newly designed protocol of nanoCESI-MS. This approach achieved up to 380-fold enhanced sensitivity and LOD of 450 fM. Compared with normal sheathless CE-MS, coupling of nanoCESI and LDIS provided up to 800-fold increase of sensitivity in total. Finally, metabolome analyses of single HeLa cells were performed, where 20 amino acids were successfully quantified with triple-quadrupole MS and 40 metabolites were identified with quadrupole-time-of-flight MS, as a promising analytical platform for microscale bioanalysis for the next generation.
Collapse
Affiliation(s)
- Takayuki Kawai
- RIKEN Center for Biosystems Dynamics Research , Suita , Osaka 565-0874 , Japan.,Japan Science and Technology Agency , PRESTO, Kawaguchi , Saitama 332-0012 , Japan.,Graduate School of Frontier Biosciences , Osaka University , Suita , Osaka 565-0871 , Japan
| | - Nobutoshi Ota
- RIKEN Center for Biosystems Dynamics Research , Suita , Osaka 565-0874 , Japan
| | - Kaori Okada
- RIKEN Center for Biosystems Dynamics Research , Suita , Osaka 565-0874 , Japan
| | - Akiko Imasato
- RIKEN Center for Biosystems Dynamics Research , Suita , Osaka 565-0874 , Japan
| | - Yuri Owa
- RIKEN Center for Biosystems Dynamics Research , Suita , Osaka 565-0874 , Japan
| | - Makiko Morita
- RIKEN Center for Biosystems Dynamics Research , Suita , Osaka 565-0874 , Japan
| | - Misa Tada
- RIKEN Center for Biosystems Dynamics Research , Suita , Osaka 565-0874 , Japan
| | - Yo Tanaka
- RIKEN Center for Biosystems Dynamics Research , Suita , Osaka 565-0874 , Japan.,Graduate School of Frontier Biosciences , Osaka University , Suita , Osaka 565-0871 , Japan
| |
Collapse
|
21
|
Neumann EK, Do TD, Comi TJ, Sweedler JV. Exploring the Fundamental Structures of Life: Non-Targeted, Chemical Analysis of Single Cells and Subcellular Structures. Angew Chem Int Ed Engl 2019; 58:9348-9364. [PMID: 30500998 PMCID: PMC6542728 DOI: 10.1002/anie.201811951] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Indexed: 01/14/2023]
Abstract
Cells are a basic functional and structural unit of living organisms. Both unicellular communities and multicellular species produce an astonishing chemical diversity, enabling a wide range of divergent functions, yet each cell shares numerous aspects that are common to all living organisms. While there are many approaches for studying this chemical diversity, only a few are non-targeted and capable of analyzing hundreds of different chemicals at cellular resolution. Here, we review the non-targeted approaches used to perform comprehensive chemical analyses, provide chemical imaging information, or obtain high-throughput single-cell profiling data. Single-cell measurement capabilities are rapidly increasing in terms of throughput, limits of detection, and completeness of the chemical analyses; these improvements enable their application to understand ever more complex physiological phenomena, such as learning, memory, and behavior.
Collapse
Affiliation(s)
- Elizabeth K. Neumann
- Department of Chemistry and the Beckman Institute for Advanced Science and Technology, 405 N. Mathews Avenue, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Thanh D. Do
- Department of Chemistry, 1420 Circle Drive, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Troy J. Comi
- Department of Chemistry and the Beckman Institute for Advanced Science and Technology, 405 N. Mathews Avenue, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Jonathan V. Sweedler
- Department of Chemistry and the Beckman Institute for Advanced Science and Technology, 405 N. Mathews Avenue, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
22
|
Yin L, Zhang Z, Liu Y, Gao Y, Gu J. Recent advances in single-cell analysis by mass spectrometry. Analyst 2019; 144:824-845. [PMID: 30334031 DOI: 10.1039/c8an01190g] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cells are the most basic structural units that play vital roles in the functioning of living organisms. Analysis of the chemical composition and content of a single cell plays a vital role in ensuring precise investigations of cellular metabolism, and is a crucial aspect of lipidomic and proteomic studies. In addition, structural knowledge provides a better understanding of cell behavior as well as the cellular and subcellular mechanisms. However, single-cell analysis can be very challenging due to the very small size of each cell as well as the large variety and extremely low concentrations of substances found in individual cells. On account of its high sensitivity and selectivity, mass spectrometry holds great promise as an effective technique for single-cell analysis. Numerous mass spectrometric techniques have been developed to elucidate the molecular profiles at the cellular level, including electrospray ionization mass spectrometry (ESI-MS), secondary ion mass spectrometry (SIMS), laser-based mass spectrometry and inductively coupled plasma mass spectrometry (ICP-MS). In this review, the recent advances in single-cell analysis by mass spectrometry are summarized. The strategies of different ionization modes to achieve single-cell analysis are classified and discussed in detail.
Collapse
Affiliation(s)
- Lei Yin
- Research Institute of Translational Medicine, The First Hospital of Jilin University, Jilin University, Dongminzhu Street, Changchun 130061, PR China.
| | | | | | | | | |
Collapse
|
23
|
Portero EP, Nemes P. Dual cationic-anionic profiling of metabolites in a single identified cell in a live Xenopus laevis embryo by microprobe CE-ESI-MS. Analyst 2019; 144:892-900. [PMID: 30542678 DOI: 10.1039/c8an01999a] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In situ capillary microsampling with capillary electrophoresis (CE) electrospray ionization (ESI) mass spectrometry (MS) enabled the characterization of cationic metabolites in single cells in complex tissues and organisms. For deeper coverage of the metabolome and metabolic networks, analytical approaches are needed that provide complementary detection for anionic metabolites, ideally using the same instrumentation. Described here is one such approach that enables sequential cationic and anionic (dual) analysis of metabolites in the same identified cell in a live vertebrate embryo. A calibrated volume was microaspirated from the animal-ventral cell in a live 8-cell embryo of Xenopus laevis, and cationic and anionic metabolites were one-pot microextracted from the aspirate, followed by CE-ESI-MS analysis of the same extract. A laboratory-built CE-ESI interface was reconfigured to enable dual cationic-anionic analysis with ∼5-10 nM (50-100 amol) lower limit of detection and a capability for quantification. To provide robust separation and efficient ion generation, the CE-ESI interface was enclosed in a nitrogen gas filled chamber, and the operational parameters were optimized for the cone-jet spraying regime in both the positive and negative ion mode. A total of ∼250 cationic and ∼200 anionic molecular features were detected from the cell between m/z 50-550, including 60 and 24 identified metabolites, respectively. With only 11 metabolites identified mutually, the duplexed approach yielded complementary information on metabolites produced in the cell, which in turn deepened network coverage for several metabolic pathways. With scalability to smaller cells and adaptability to other types of tissues and organisms, dual cationic-anionic detection with in situ microprobe CE-ESI-MS opens a door to better understand cell metabolism.
Collapse
Affiliation(s)
- Erika P Portero
- Department of Chemistry & Biochemistry, University of Maryland, College Park, MD 20742, USA.
| | | |
Collapse
|
24
|
León M, Ferreira CR, Eberlin LS, Jarmusch AK, Pirro V, Rodrigues ACB, Favaron PO, Miglino MA, Cooks RG. Metabolites and Lipids Associated with Fetal Swine Anatomy via Desorption Electrospray Ionization - Mass Spectrometry Imaging. Sci Rep 2019; 9:7247. [PMID: 31076607 PMCID: PMC6510765 DOI: 10.1038/s41598-019-43698-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 04/27/2019] [Indexed: 12/11/2022] Open
Abstract
Chemical imaging by mass spectrometry (MS) has been largely used to study diseases in animals and humans, especially cancer; however, this technology has been minimally explored to study the complex chemical changes associated with fetal development. In this work, we report the histologically-compatible chemical imaging of small molecules by desorption electrospray ionization (DESI) - MS of a complete swine fetus at 50 days of gestation. Tissue morphology was unperturbed by morphologically-friendly DESI-MS analysis while allowing detection of a wide range of small molecules. We observed organ-dependent localization of lipids, e.g. a large diversity of phosphatidylserine lipids in brain compared to other organs, as well as metabolites such as N-acetyl-aspartic acid in the developing nervous system and N-acetyl-L-glutamine in the heart. Some lipids abundant in the lungs, such as PC(32:0) and PS(40:6), were similar to surfactant composition reported previously. Sulfatides were highly concentrated in the fetus liver, while hexoses were barely detected at this organ but were abundant in lung and heart. The chemical information on small molecules recorded via DESI-MS imaging coupled with traditional anatomical evaluation is a powerful source of bioanalytical information which reveals the chemical changes associated with embryonic and fetal development that, when disturbed, causes congenital diseases such as spina bifida and cleft palate.
Collapse
Affiliation(s)
- Marisol León
- Surgery Department, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil
| | - Christina R Ferreira
- Department of Chemistry and Center for Analytical Instrumentation Development, Purdue University, West Lafayette, IN, 47907, United States
| | - Livia S Eberlin
- Department of Chemistry, The University of Texas at Austin, Austin, TX, 78712, United States
| | - Alan K Jarmusch
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, 92093, United States
| | - Valentina Pirro
- Department of Chemistry and Center for Analytical Instrumentation Development, Purdue University, West Lafayette, IN, 47907, United States
| | - Ana Clara Bastos Rodrigues
- Surgery Department, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil
| | | | - Maria Angelica Miglino
- Surgery Department, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil
| | - R Graham Cooks
- Department of Chemistry and Center for Analytical Instrumentation Development, Purdue University, West Lafayette, IN, 47907, United States.
| |
Collapse
|
25
|
Neumann EK, Do TD, Comi TJ, Sweedler JV. Erforschung der fundamentalen Strukturen des Lebens: Nicht zielgerichtete chemische Analyse von Einzelzellen und subzellulären Strukturen. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201811951] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Elizabeth K. Neumann
- Department of Chemistry and the Beckman Institute for Advanced Science and TechnologyUniversity of Illinois at Urbana-Champaign 405 N. Mathews Avenue Urbana IL 61801 USA
| | - Thanh D. Do
- Department of ChemistryUniversity of Tennessee 1420 Circle Drive Knoxville TN 37996 USA
| | - Troy J. Comi
- Department of Chemistry and the Beckman Institute for Advanced Science and TechnologyUniversity of Illinois at Urbana-Champaign 405 N. Mathews Avenue Urbana IL 61801 USA
| | - Jonathan V. Sweedler
- Department of Chemistry and the Beckman Institute for Advanced Science and TechnologyUniversity of Illinois at Urbana-Champaign 405 N. Mathews Avenue Urbana IL 61801 USA
| |
Collapse
|
26
|
A microanalytical capillary electrophoresis mass spectrometry assay for quantifying angiotensin peptides in the brain. Anal Bioanal Chem 2019; 411:4661-4671. [PMID: 30953113 DOI: 10.1007/s00216-019-01771-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 02/23/2019] [Accepted: 03/08/2019] [Indexed: 01/04/2023]
Abstract
The renin-angiotensin system (RAS) of the brain produces a series of biologically active angiotensinogen-derived peptides involved in physiological homeostasis and pathophysiology of disease. Despite significant research efforts to date, a comprehensive understanding of brain RAS physiology is lacking. A significant challenge has been the limited set of bioanalytical assays capable of detecting angiotensin (Ang) peptides at physiologically low concentrations (2-15 fmol/g of wet tissue) and sufficient chemical specificity for unambiguous molecular identifications. Additionally, a complex brain anatomy calls for microanalysis of specific tissue regions, thus further taxing sensitivity requirements for identification and quantification in studies of the RAS. To fill this technology gap, we here developed a microanalytical assay by coupling a laboratory-built capillary electrophoresis (CE) nano-electrospray ionization (nano-ESI) platform to a high-resolution mass spectrometer (HRMS). Using parallel reaction monitoring, we demonstrated that this technology achieved confident identification and quantification of the Ang peptides at approx. 5 amol to 300 zmol sensitivity. This microanalytical assay revealed differential Ang peptide profiles between tissues that were micro-sampled from the subfornical organ and the paraventricular nucleus of the hypothalamus, important brain regions involved in thirst and water homeostasis and neuroendocrine regulation to stress. Microanalytical CE-nano-ESI-HRMS extends the analytical toolbox of neuroscience to help better understand the RAS.
Collapse
|
27
|
Xiao HM, Wang X, Liao QL, Zhao S, Huang WH, Feng YQ. Sensitive analysis of multiple low-molecular-weight thiols in a single human cervical cancer cell by chemical derivatization-liquid chromatography-mass spectrometry. Analyst 2019; 144:6578-6585. [DOI: 10.1039/c9an01566c] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Simultaneous quantification of multiple low-molecular-weight thiols from a single HeLa cell was realized by chemical derivatization assisted LC-MS method.
Collapse
Affiliation(s)
- Hua-Ming Xiao
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)
- Department of Chemistry
- Wuhan University
- Wuhan 430072
- People's Republic of China
| | - Xian Wang
- Key Laboratory of Analytical Chemistry of State Ethnic Affairs Commission
- College of Chemistry and Materials Science
- South-Central University for Nationalities
- Wuhan 430074
- People's Republic of China
| | - Quan-Lan Liao
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)
- Department of Chemistry
- Wuhan University
- Wuhan 430072
- People's Republic of China
| | - Shuai Zhao
- School of Pharmaceutical Engineering & life science
- Changzhou University
- Changzhou 213164
- People's Republic of China
| | - Wei-Hua Huang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)
- Department of Chemistry
- Wuhan University
- Wuhan 430072
- People's Republic of China
| | - Yu-Qi Feng
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)
- Department of Chemistry
- Wuhan University
- Wuhan 430072
- People's Republic of China
| |
Collapse
|
28
|
DeLaney K, Sauer CS, Vu NQ, Li L. Recent Advances and New Perspectives in Capillary Electrophoresis-Mass Spectrometry for Single Cell "Omics". Molecules 2018; 24:molecules24010042. [PMID: 30583525 PMCID: PMC6337428 DOI: 10.3390/molecules24010042] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 12/20/2018] [Accepted: 12/21/2018] [Indexed: 12/31/2022] Open
Abstract
Accurate clinical therapeutics rely on understanding the metabolic responses of individual cells. However, the high level of heterogeneity between cells means that simply sampling from large populations of cells is not necessarily a reliable approximation of an individual cell's response. As a result, there have been numerous developments in the field of single-cell analysis to address this lack of knowledge. Many of these developments have focused on the coupling of capillary electrophoresis (CE), a separation technique with low sample consumption and high resolving power, and mass spectrometry (MS), a sensitive detection method for interrogating all ions in a sample in a single analysis. In recent years, there have been many notable advancements at each step of the single-cell CE-MS analysis workflow, including sampling, manipulation, separation, and MS analysis. In each of these areas, the combined improvements in analytical instrumentation and achievements of numerous researchers have served to drive the field forward to new frontiers. Consequently, notable biological discoveries have been made possible by the implementation of these methods. Although there is still room in the field for numerous further advances, researchers have effectively minimized various limitations in detection of analytes, and it is expected that there will be many more developments in the near future.
Collapse
Affiliation(s)
- Kellen DeLaney
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA.
| | - Christopher S Sauer
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA.
| | - Nhu Q Vu
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA.
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA.
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705, USA.
| |
Collapse
|
29
|
Ramautar R, Somsen GW, de Jong GJ. CE-MS for metabolomics: Developments and applications in the period 2016-2018. Electrophoresis 2018; 40:165-179. [PMID: 30232802 PMCID: PMC6586046 DOI: 10.1002/elps.201800323] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 09/09/2018] [Accepted: 09/10/2018] [Indexed: 12/16/2022]
Abstract
In the field of metabolomics, CE-MS is now recognized as a strong analytical technique for the analysis of (highly) polar and charged metabolites in a wide range of biological samples. Over the past few years, significant attention has been paid to the design and improvement of CE-MS approaches for (large-scale) metabolic profiling studies and for establishing protocols in order to further expand the role of CE-MS in metabolomics. In this paper, which is a follow-up of a previous review paper covering the years 2014-2016 (Electrophoresis 2017, 38, 190-202), main advances in CE-MS approaches for metabolomics studies are outlined covering the literature from July 2016 to June 2018. Aspects like developments in interfacing designs and data analysis tools for improving the performance of CE-MS for metabolomics are discussed. Representative examples highlight the utility of CE-MS in the fields of biomedical, clinical, microbial, and plant metabolomics. A complete overview of recent CE-MS-based metabolomics studies is given in a table, which provides information on sample type and pretreatment, capillary coatings and MS detection mode. Finally, some general conclusions and perspectives are given.
Collapse
Affiliation(s)
- Rawi Ramautar
- Biomedical Microscale Analytics, Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands
| | - Govert W Somsen
- Division of BioAnalytical Chemistry, Amsterdam Institute for Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Gerhardus J de Jong
- Biomolecular Analysis, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
30
|
|
31
|
Baxi AB, Lombard-Banek C, Moody SA, Nemes P. Proteomic Characterization of the Neural Ectoderm Fated Cell Clones in the Xenopus laevis Embryo by High-Resolution Mass Spectrometry. ACS Chem Neurosci 2018; 9:2064-2073. [PMID: 29578674 DOI: 10.1021/acschemneuro.7b00525] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The molecular program by which embryonic ectoderm is induced to form neural tissue is essential to understanding normal and impaired development of the central nervous system. Xenopus has been a powerful vertebrate model in which to elucidate this process. However, abundant vitellogenin (yolk) proteins in cells of the early Xenopus embryo interfere with protein detection by high-resolution mass spectrometry (HRMS), the technology of choice for identifying these gene products. Here, we systematically evaluated strategies of bottom-up proteomics to enhance proteomic detection from the neural ectoderm (NE) of X. laevis using nanoflow high-performance liquid chromatography (nanoLC) HRMS. From whole embryos, high-pH fractionation prior to nanoLC-HRMS yielded 1319 protein groups vs 762 proteins without fractionation (control). Compared to 702 proteins from dorsal halves of embryos (control), 1881 proteins were identified after yolk platelets were depleted via sucrose-gradient centrifugation. We combined these approaches to characterize protein expression in the NE of the early embryo. To guide microdissection of the NE tissues from the gastrula (stage 10), their precursor (midline dorsal-animal, or D111) cells were fate-mapped from the 32-cell embryo using a fluorescent lineage tracer. HRMS of the cell clones identified 2363 proteins, including 147 phosphoproteins (without phosphoprotein enrichment), transcription factors, and members from pathways of cellular signaling. In reference to transcriptomic maps of the developing X. laevis, 76 proteins involved in signaling pathways were gene matched to transcripts with known enrichment in the neural plate. Besides a protocol, this work provides qualitative proteomic data on the early developing NE.
Collapse
Affiliation(s)
- Aparna B. Baxi
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
- Department of Anatomy and Regenerative Biology, The George Washington University, Washington, DC 20052, United States
| | - Camille Lombard-Banek
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Sally A. Moody
- Department of Anatomy and Regenerative Biology, The George Washington University, Washington, DC 20052, United States
| | - Peter Nemes
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
- Department of Anatomy and Regenerative Biology, The George Washington University, Washington, DC 20052, United States
| |
Collapse
|
32
|
Onjiko RM, Portero EP, Moody SA, Nemes P. Microprobe Capillary Electrophoresis Mass Spectrometry for Single-cell Metabolomics in Live Frog (Xenopus laevis) Embryos. J Vis Exp 2017. [PMID: 29286491 DOI: 10.3791/56956] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The quantification of small molecules in single cells raises new potentials for better understanding the basic processes that underlie embryonic development. To enable single-cell investigations directly in live embryos, new analytical approaches are needed, particularly those that are sensitive, selective, quantitative, robust, and scalable to different cell sizes. Here, we present a protocol that enables the in situ analysis of metabolism in single cells in freely developing embryos of the South African clawed frog (Xenopus laevis), a powerful model in cell and developmental biology. This approach uses a capillary microprobe to aspirate a defined portion from single identified cells in the embryo, leaving neighboring cells intact for subsequent analysis. The collected cell content is analyzed by a microscale capillary electrophoresis electrospray ionization (CE-ESI) interface coupled to a high-resolution tandem mass spectrometer. This approach is scalable to various cell sizes and compatible with the complex three-dimensional structure of the developing embryo. As an example, we demonstrate that microprobe single-cell CE-ESI-MS enables the elucidation of metabolic cell heterogeneity that unfolds as a progenitor cell gives rise to descendants during development of the embryo. Besides cell and developmental biology, the single-cell analysis protocols described here are amenable to other cell sizes, cell types, or animal models.
Collapse
Affiliation(s)
| | | | - Sally A Moody
- Department of Anatomy & Regenerative Biology, George Washington University
| | - Peter Nemes
- Department of Chemistry, George Washington University; Department of Chemistry & Biochemistry, University of Maryland, College Park;
| |
Collapse
|