1
|
Lee Y, Demes-Causse E, Yoo J, Jang SY, Jung S, Jaślan J, Hwang GS, Yoo J, De Angeli A, Lee S. Structural basis for malate-driven, pore lipid-regulated activation of the Arabidopsis vacuolar anion channel ALMT9. Nat Commun 2025; 16:1817. [PMID: 39979303 PMCID: PMC11842843 DOI: 10.1038/s41467-025-56940-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 02/04/2025] [Indexed: 02/22/2025] Open
Abstract
In plant cells, ALMTs are key plasma and vacuolar membrane-localized anion channels regulating plant responses to the environment. Vacuolar ALMTs control anion accumulation in plant cells and, in guard cells, they regulate stomata aperture. The activation of vacuolar ALMTs depends on voltage and cytosolic malate, but the underlying molecular mechanisms remain elusive. Here we report the cryo-EM structures of ALMT9 from Arabidopsis thaliana (AtALMT9), a malate-activated vacuolar anion channel, in plugged and unplugged lipid-bound states. In all these states, membrane lipids interact with the ion conduction pathway of AtALMT9. We identify two unplugged states presenting two distinct pore width profiles. Combining structural and functional analysis we identified conserved residues involved in ion conduction and in the pore lipid interaction. Molecular dynamics simulations revealed a peculiar anion conduction mechanism in AtALMT9. We propose a voltage-dependent activation mechanism based on the competition between pore lipids and malate at the cytosolic entrance of the channel.
Collapse
Affiliation(s)
- Yeongmok Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Republic of Korea
| | - Elsa Demes-Causse
- IPSiM, CNRS, INRAE, Institut Agro, Université Montpellier, Montpellier, France
| | - Jaemin Yoo
- Department of Physics, Sungkyunkwan University, Suwon, Republic of Korea
| | - Seo Young Jang
- Integrated Metabolomics Research Group, Metropolitan Seoul Center, Korea Basic Science Institute, Seoul, Republic of Korea
| | - Seoyeon Jung
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Republic of Korea
| | - Justyna Jaślan
- IPSiM, CNRS, INRAE, Institut Agro, Université Montpellier, Montpellier, France
| | - Geum-Sook Hwang
- Integrated Metabolomics Research Group, Metropolitan Seoul Center, Korea Basic Science Institute, Seoul, Republic of Korea
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - Jejoong Yoo
- Department of Physics, Sungkyunkwan University, Suwon, Republic of Korea
| | - Alexis De Angeli
- IPSiM, CNRS, INRAE, Institut Agro, Université Montpellier, Montpellier, France
| | - Sangho Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Republic of Korea.
- Biomedical Institute for Convergence at SKKU, Sungkyunkwan University, Suwon, Republic of Korea.
- Department of Metabiohealth, Sungkyunkwan University, Suwon, Republic of Korea.
| |
Collapse
|
2
|
Savenko M, Vácha R, Ramseyer C, Rivel T. Role of Divalent Ions in Membrane Models of Polymyxin-Sensitive and Resistant Gram-Negative Bacteria. J Chem Inf Model 2025; 65:1476-1491. [PMID: 39825802 DOI: 10.1021/acs.jcim.4c01574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2025]
Abstract
Polymyxins, critical last-resort antibiotics, impact the distribution of membrane-bound divalent cations in the outer membrane of Gram-negative bacteria. We employed atomistic molecular dynamics simulations to model the effect of displacing these ions. Two polymyxin-sensitive and two polymyxin-resistant models of the outer membrane of Salmonella enterica were investigated. First, we found that the removal of all calcium ions induces global stress on the model membranes, leading to substantial membrane restructuring. Next, we used enhanced sampling methods to explore the effects of localized stress by displacing membrane-bound ions. Our findings indicate that creating defects in the membrane-bound ion network facilitates polymyxin permeation. Additionally, our study of polymyxin-resistant mutations revealed that divalent ions in resistant model membranes are less likely to be displaced, potentially contributing to the increased resistance associated with these mutations. Lastly, we compared results from all-atom molecular dynamics simulations with coarse-grained simulations, demonstrating that the choice of force field significantly influences the behavior of membrane-bound ions under stress.
Collapse
Affiliation(s)
- Mariia Savenko
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague16000, Czech Republic
- Laboratoire Chrono-Environnement UMR CNRS 6249, Université de Bourgogne Franche-Comté, Besançon25000, France
| | - Robert Vácha
- Central European Institute of Technology, Masaryk University, Brno60200, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno60200, Czech Republic
| | - Christophe Ramseyer
- Laboratoire Chrono-Environnement UMR CNRS 6249, Université de Bourgogne Franche-Comté, Besançon25000, France
| | - Timothée Rivel
- Central European Institute of Technology, Masaryk University, Brno60200, Czech Republic
| |
Collapse
|
3
|
Sultan M, Razzaq M, Lee J, Das S, Kannappan S, Subramani VK, Yoo W, Kim T, Lee HR, Chaurasia AK, Kim KK. Targeting the G-quadruplex as a novel strategy for developing antibiotics against hypervirulent drug-resistant Staphylococcus aureus. J Biomed Sci 2025; 32:15. [PMID: 39905515 DOI: 10.1186/s12929-024-01109-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 12/09/2024] [Indexed: 02/06/2025] Open
Abstract
BACKGROUND The rapid emergence of multiple drug-resistant (MDR) bacterial pathogens and the lack of a novel antibiotic pipeline pose a serious threat to global healthcare. The limited number of established targets further restricts the identification of novel antibiotics to treat life-threatening MDR infections caused by Staphylococcus aureus strains. Therefore, novel targets for developing antibiotics are urgently required. In this study, we hypothesized that the G-quadruplex (G4)-binding ligands can be used as novel antibiotics as their binding can possibly downregulate/block the expression of vital genes. METHODS To test this, first we screened the antibiotic properties of representative G4-binding ligands against hypervirulent and MDR S. aureus USA300 and determined the in vitro and in vivo antibacterial activity; and proposed the mechanism of action by applying various microbiological, infection, microscopic, and biophysicochemical techniques. RESULTS Herein, among screened G4-binding ligands, N-methyl mesoporphyrin IX (NMM) showed the highest antibacterial activity against S. aureus USA300. NMM exhibited a minimum inhibitory concentration (MIC) of 5 μM against S. aureus USA300, impacting cell division and the cell wall by repressing the expressions of genes in the division cell wall (dcw) gene cluster. Genome-wide bioinformatics analysis of G4 motifs and their mapping on S. aureus genome, identified the presence of G4-motif in the promoter of mraZ, a conserved master regulator of the dcw cluster regulating the coordinated cell division and cell wall synthesis. Physicochemical assessments using UV-visible, circular dichroism, and nuclear magnetic resonance spectroscopy confirmed that the G4-motif present in the mraZ promoter formed an intramolecular parallel G4 structure, interacting with NMM. In vivo reporter followed by coupled in vitro transcription/translation (IVT) assays confirmed the role of mraZ G4 as a target interacting NMM to impose extreme antibacterial activity against both the gram-positive and -negative bacteria. In-cell and in vivo validation of NMM using RAW264.7 cells and Galleria mellonella; respectively, demonstrated that NMM exhibited superior antibiotic activity compared to well-established antibiotics, with no observed cytotoxicity. CONCLUSIONS In summary, the current study identified NMM as a broad-spectrum potent antibacterial agent and elucidated its plausible mechanism of action primarily by targeting G4-motif in the mraZ promoter of the dcw gene cluster.
Collapse
Affiliation(s)
- Maria Sultan
- Department of Precision Medicine, Graduate School of Basic Medical Science, Institute for Antimicrobial Resistance Research and Therapeutics, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
| | - Maria Razzaq
- Department of Precision Medicine, Graduate School of Basic Medical Science, Institute for Antimicrobial Resistance Research and Therapeutics, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
| | - Joohyun Lee
- Department of Precision Medicine, Graduate School of Basic Medical Science, Institute for Antimicrobial Resistance Research and Therapeutics, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
| | - Shreyasi Das
- Department of Precision Medicine, Graduate School of Basic Medical Science, Institute for Antimicrobial Resistance Research and Therapeutics, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
| | - Shrute Kannappan
- Department of Precision Medicine, Graduate School of Basic Medical Science, Institute for Antimicrobial Resistance Research and Therapeutics, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
| | - Vinod Kumar Subramani
- Department of Precision Medicine, Graduate School of Basic Medical Science, Institute for Antimicrobial Resistance Research and Therapeutics, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
| | - Wanki Yoo
- Department of Precision Medicine, Graduate School of Basic Medical Science, Institute for Antimicrobial Resistance Research and Therapeutics, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
| | - Truc Kim
- Department of Precision Medicine, Graduate School of Basic Medical Science, Institute for Antimicrobial Resistance Research and Therapeutics, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
| | - Hye-Ra Lee
- Department of Biotechnology and Bioinformatics, College of Science and Technology, Korea University, Sejong, 30019, Republic of Korea
| | - Akhilesh K Chaurasia
- Department of Precision Medicine, Graduate School of Basic Medical Science, Institute for Antimicrobial Resistance Research and Therapeutics, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea.
| | - Kyeong Kyu Kim
- Department of Precision Medicine, Graduate School of Basic Medical Science, Institute for Antimicrobial Resistance Research and Therapeutics, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea.
| |
Collapse
|
4
|
Gharui S, Sengupta D. Molecular Interactions of the Pioneer Transcription Factor GATA3 With DNA. Proteins 2025; 93:555-566. [PMID: 39315643 DOI: 10.1002/prot.26749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/15/2024] [Accepted: 08/30/2024] [Indexed: 09/25/2024]
Abstract
The GATA3 transcription factor is a pioneer transcription factor that is critical in the development, proliferation, and maintenance of several immune cell types. Identifying the detailed conformational dynamics and interactions of this transcription factor, as well as its clinically important population variants will allow us to unravel its mode of action. In this study, we analyze the molecular interactions of the GATA3 transcription factor bound to dsDNA as well as three clinically important population variants by atomistic molecular dynamics simulations. We identify the effect of the variants on the DNA conformational dynamics and delineate the differences compared to the wildtype transcription factor that could be related to impaired function. We highlight the structural plasticity in the binding of the GATA3 transcription factor and identify important DNA-protein contacts. Although the DNA-protein contacts are persistent and appear to be stable, they exhibit nanosecond timescale fluctuations and several binding/unbinding events. Further, we identify differential DNA binding in the three variants and show that the N-terminal binding is reduced in two of the variants. Our results indicate that reduced minor groove width and DNA diameter are important hallmarks for the binding of GATA3. Our work is an important step towards understanding the functional dynamics of the GATA3 protein and its clinically significant population variants.
Collapse
Affiliation(s)
- Sowmomita Gharui
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune, India
| | - Durba Sengupta
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
5
|
Hazrati M, Sukeník L, Vácha R. Split Membrane: A New Model to Accelerate All-Atom MD Simulation of Phospholipid Bilayers. J Chem Inf Model 2025; 65:845-856. [PMID: 39779296 PMCID: PMC11776049 DOI: 10.1021/acs.jcim.4c01664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/30/2024] [Accepted: 12/30/2024] [Indexed: 01/11/2025]
Abstract
All-atom molecular dynamics simulations are powerful tools for studying cell membranes and their interactions with proteins and other molecules. However, these processes occur on time scales determined by the diffusion rate of phospholipids, which are challenging to achieve in all-atom models. Here, we present a new all-atom model that accelerates lipid diffusion by splitting phospholipid molecules into head and tail groups. The bilayer structure is maintained by using external lateral potentials, which compensate for the lipid split. This split model enhances lateral lipid diffusion more than ten times, allowing faster and cheaper equilibration of large systems with different phospholipid types. The current model has been tested on membranes containing PSM, POPC, POPS, POPE, POPA, and cholesterol. We have also evaluated the interaction of the split model membranes with the Disheveled DEP domain and amphiphilic helix motif of the transcriptional repressor Opi1 as representative of peripheral proteins as well as the dimeric fragment of the epidermal growth factor receptor transmembrane domain and the Human A2A Adenosine of G protein-coupled receptors as representative of transmembrane proteins. The split model can predict the interaction sites of proteins and their preferred phospholipid type. Thus, the model could be used to identify lipid binding sites and equilibrate large membranes at an affordable computational cost.
Collapse
Affiliation(s)
- Mehrnoosh
Khodam Hazrati
- CEITEC—Central
European Institute of Technology, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech
Republic
| | - Lukáš Sukeník
- CEITEC—Central
European Institute of Technology, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech
Republic
- Department
of Condensed Matter Physics, Faculty of Science, Masaryk University, Kotlářská 267/2, 611 37 Brno, Czech
Republic
| | - Robert Vácha
- CEITEC—Central
European Institute of Technology, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech
Republic
- Department
of Condensed Matter Physics, Faculty of Science, Masaryk University, Kotlářská 267/2, 611 37 Brno, Czech
Republic
- National
Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| |
Collapse
|
6
|
Lemmens T, Šponer J, Krepl M. How Binding Site Flexibility Promotes RNA Scanning by TbRGG2 RRM: A Molecular Dynamics Simulation Study. J Chem Inf Model 2025; 65:896-907. [PMID: 39804219 PMCID: PMC11776045 DOI: 10.1021/acs.jcim.4c01954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/03/2025] [Accepted: 01/03/2025] [Indexed: 01/28/2025]
Abstract
RNA recognition motifs (RRMs) are a key class of proteins that primarily bind single-stranded RNAs. In this study, we applied standard atomistic molecular dynamics simulations to obtain insights into the intricate binding dynamics between uridine-rich RNAs and TbRGG2 RRM using the recently developed OL3-Stafix AMBER force field, which improves the description of single-stranded RNA molecules. Complementing structural experiments that unveil a primary binding mode with a single uridine bound, our simulations uncover two supplementary binding modes in which adjacent nucleotides encroach upon the binding pocket. This leads to a unique molecular mechanism through which the TbRGG2 RRM is capable of rapidly transitioning the U-rich sequence. In contrast, the presence of non-native cytidines induces stalling and destabilization of the complex. By leveraging extensive equilibrium dynamics and a large variety of binding states, TbRGG2 RRM effectively expedites diffusion along the RNA substrate while ensuring robust selectivity for U-rich sequences despite featuring a solitary binding pocket. We further substantiate our description of the complex dynamics by simulating the fully spontaneous association process of U-rich sequences to the TbRGG2 RRM. Our study highlights the critical role of dynamics and auxiliary binding states in interface dynamics employed by RNA-binding proteins, which is not readily apparent in traditional structural studies but could represent a general type of binding strategy employed by many RNA-binding proteins.
Collapse
Affiliation(s)
- Toon Lemmens
- Institute
of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, 612 00 Brno, Czech Republic
- National
Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Jiří Šponer
- Institute
of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, 612 00 Brno, Czech Republic
| | - Miroslav Krepl
- Institute
of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, 612 00 Brno, Czech Republic
| |
Collapse
|
7
|
Allsopp RJ, Klauda JB. Understanding Folding of bFGF and Potential Cellular Protective Mechanisms of Neural Cells. Biochemistry 2025; 64:509-524. [PMID: 39749909 DOI: 10.1021/acs.biochem.4c00297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Traumatic brain injury (TBI) is a serious health condition that affects an increasing number of people, especially veterans and athletes. TBI causes serious consequences because of its long-lasting impact on the brain and its alarming frequency of occurrence. Although the brain has some natural protective mechanisms, the processes that trigger them are poorly understood. Fibroblast growth factor (FGF) proteins interact with receptor proteins to protect cells. Gaps in the literature include how basic-FGF (bFGF) is activated by heparin, can heparin-like molecules induce neural protection, and the effect of allosteric binding on bFGF activity. To fill the gap in our understanding, we applied temperature replica exchange to study the influence of heparin binding to bFGF and how mutations in bFGF influence stability. A new favorable binding site was identified by comparing free energies computed from the potential of mean force (PMF). Although the varied sugars studied resulted in different interactions with bFGF compared to heparin, they each produced structural effects similar to those of bFGF that likely facilitate receptor binding and signaling. Our results also demonstrate how point mutations can trigger the same conformational change that is believed to promote favorable interactions with the receptor. A deeper atomic-level understanding of how chemicals are released during TBI is needed to improve the development of new treatments for TBI and could contribute to a better understanding of other diseases.
Collapse
Affiliation(s)
- Robert J Allsopp
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Jeffery B Klauda
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, United States
- Institute for Physical Science and Technology, Biophysics Program, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
8
|
Quezada GR, Vargas AA, Nieto S, García KI, Robles P, Jeldres RI. Molecular Dynamics Study of Polyacrylamide and Polysaccharide-Derived Flocculants Adsorption on Mg(OH) 2 Surfaces at pH 11. Polymers (Basel) 2025; 17:227. [PMID: 39861299 PMCID: PMC11768757 DOI: 10.3390/polym17020227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/07/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Brucite (Mg(OH)2) is a typical precipitate in the mining industry that adversely affects processes such as flotation and thickening. Gaining insights into the physicochemical properties of this mineral is critical for developing strategies to mitigate these challenges and improve operational efficiency. Additionally, incorporating natural-origin polymers aligns with the shift toward more sustainable mining practices. In this study, molecular dynamics simulations were employed to investigate the interaction of brucite with polysaccharides such as cellulose, guar gum, and alginate and to compare these with conventional polymers, including polyacrylamide, hydrolyzed polyacrylamide, and polyacrylic acid, under conditions of pH 11 in low-salinity water. The methodology enhanced adsorption sampling by incorporating additional temporary interactions between the polymer and the brucite surface. The results reveal that neutral polymers exhibit stronger and more stable interactions with brucite compared to charged polymers, which is consistent with the neutral nature of brucite under the studied conditions. Van der Waals forces predominantly govern the adsorption of polysaccharides, while Coulombic forces primarily drive interactions involving polyacrylamides. These findings provide valuable insights into the molecular mechanisms of polymer-brucite interactions, facilitating the development of more effective and sustainable mining additives.
Collapse
Affiliation(s)
- Gonzalo R. Quezada
- Escuela de Ingeniería Civil Química, Facultad de Ingeniería, Universidad del Bio-Bio, Concepción 4030000, Chile;
| | - Antonia A. Vargas
- Escuela de Ingeniería Civil Química, Facultad de Ingeniería, Universidad del Bio-Bio, Concepción 4030000, Chile;
| | - Steven Nieto
- Advanced Mining Technology Center (AMTC), Universidad de Antofagasta, Antofagasta 1240000, Chile; (S.N.); (R.I.J.)
| | - Karien I. García
- Facultad de Ciencias Ambientales and Centro EULA, Universidad de Concepción, Concepción 4030000, Chile;
| | - Pedro Robles
- Escuela de Ingeniería Química, Pontificia Universidad Católica de Valparaíso, Valparaíso 2340000, Chile
| | - Ricardo I. Jeldres
- Advanced Mining Technology Center (AMTC), Universidad de Antofagasta, Antofagasta 1240000, Chile; (S.N.); (R.I.J.)
- Departamento de Ingeniería Química y Procesos de Minerales, Facultad de Ingeniería, Universidad de Antofagasta, Antofagasta 1240000, Chile
| |
Collapse
|
9
|
Mlýnský V, Kührová P, Pykal M, Krepl M, Stadlbauer P, Otyepka M, Banáš P, Šponer J. Can We Ever Develop an Ideal RNA Force Field? Lessons Learned from Simulations of the UUCG RNA Tetraloop and Other Systems. J Chem Theory Comput 2025. [PMID: 39813107 DOI: 10.1021/acs.jctc.4c01357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Molecular dynamics (MD) simulations are an important and well-established tool for investigating RNA structural dynamics, but their accuracy relies heavily on the quality of the employed force field (ff). In this work, we present a comprehensive evaluation of widely used pair-additive and polarizable RNA ffs using the challenging UUCG tetraloop (TL) benchmark system. Extensive standard MD simulations, initiated from the NMR structure of the 14-mer UUCG TL, revealed that most ffs did not maintain the native state, instead favoring alternative loop conformations. Notably, three very recent variants of pair-additive ffs, OL3CP-gHBfix21, DES-Amber, and OL3R2.7, successfully preserved the native structure over a 10 × 20 μs time scale. To further assess these ffs, we performed enhanced sampling folding simulations of the shorter 8-mer UUCG TL, starting from the single-stranded conformation. Estimated folding free energies (ΔG°fold) varied significantly among these three ffs, with values of 0.0 ± 0.6, 2.4 ± 0.8, and 7.4 ± 0.2 kcal/mol for OL3CP-gHBfix21, DES-Amber, and OL3R2.7, respectively. The ΔG°fold value predicted by the OL3CP-gHBfix21 ff was closest to experimental estimates, ranging from -1.6 to -0.7 kcal/mol. In contrast, the higher ΔG°fold values obtained using DES-Amber and OL3R2.7 were unexpected, suggesting that key interactions are inaccurately described in the folded, unfolded, or misfolded ensembles. These discrepancies led us to further test DES-Amber and OL3R2.7 ffs on additional RNA and DNA systems, where further performance issues were observed. Our results emphasize the complexity of accurately modeling RNA dynamics and suggest that creating an RNA ff capable of reliably performing across a wide range of RNA systems remains extremely challenging. In conclusion, our study provides valuable insights into the capabilities of current RNA ffs and highlights key areas for future ff development.
Collapse
Affiliation(s)
- Vojtěch Mlýnský
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 00 Brno, Czech Republic
| | - Petra Kührová
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 00 Brno, Czech Republic
- Regional Center of Advanced Technologies and Materials, The Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, 779 00 Olomouc, Czech Republic
| | - Martin Pykal
- Regional Center of Advanced Technologies and Materials, The Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, 779 00 Olomouc, Czech Republic
| | - Miroslav Krepl
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 00 Brno, Czech Republic
| | - Petr Stadlbauer
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 00 Brno, Czech Republic
| | - Michal Otyepka
- Regional Center of Advanced Technologies and Materials, The Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, 779 00 Olomouc, Czech Republic
- IT4Innovations, VSB-Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
| | - Pavel Banáš
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 00 Brno, Czech Republic
- Regional Center of Advanced Technologies and Materials, The Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, 779 00 Olomouc, Czech Republic
- IT4Innovations, VSB-Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
| | - Jiří Šponer
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 00 Brno, Czech Republic
| |
Collapse
|
10
|
Szalai AM, Ferrari G, Richter L, Hartmann J, Kesici MZ, Ji B, Coshic K, Dagleish MRJ, Jaeger A, Aksimentiev A, Tessmer I, Kamińska I, Vera AM, Tinnefeld P. Single-molecule dynamic structural biology with vertically arranged DNA on a fluorescence microscope. Nat Methods 2025; 22:135-144. [PMID: 39516563 DOI: 10.1038/s41592-024-02498-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 10/04/2024] [Indexed: 11/16/2024]
Abstract
The intricate interplay between DNA and proteins is key for biological functions such as DNA replication, transcription and repair. Dynamic nanoscale observations of DNA structural features are necessary for understanding these interactions. Here we introduce graphene energy transfer with vertical nucleic acids (GETvNA), a method to investigate DNA-protein interactions that exploits the vertical orientation adopted by double-stranded DNA on graphene. This approach enables the dynamic study of DNA conformational changes via energy transfer from a probe dye to graphene, achieving spatial resolution down to the Ångström scale at subsecond temporal resolution. We measured DNA bending induced by adenine tracts, bulges, abasic sites and the binding of endonuclease IV. In addition, we observed the translocation of the O6-alkylguanine DNA alkyltransferase on DNA, reaching single base-pair resolution and detecting preferential binding to adenine tracts. This method promises widespread use for dynamical studies of nucleic acids and nucleic acid-protein interactions with resolution so far reserved for traditional structural biology techniques.
Collapse
Affiliation(s)
- Alan M Szalai
- Department of Chemistry and Center for NanoScience, Ludwig-Maximilians-Universität München, Munich, Germany.
- Centro de Investigaciones en Bionanociencias, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina.
| | - Giovanni Ferrari
- Department of Chemistry and Center for NanoScience, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Lars Richter
- Department of Chemistry and Center for NanoScience, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Jakob Hartmann
- Department of Chemistry and Center for NanoScience, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Merve-Zeynep Kesici
- Department of Chemistry and Center for NanoScience, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Bosong Ji
- Department of Chemistry and Center for NanoScience, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Kush Coshic
- Department of Physics, Center for Biophysics and Quantitative Biology, and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Martin R J Dagleish
- Department of Chemistry and Center for NanoScience, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Annika Jaeger
- Department of Chemistry and Center for NanoScience, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Aleksei Aksimentiev
- Department of Physics, Center for Biophysics and Quantitative Biology, and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Ingrid Tessmer
- Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
| | - Izabela Kamińska
- Department of Chemistry and Center for NanoScience, Ludwig-Maximilians-Universität München, Munich, Germany
- Institute of Physical Chemistry of the Polish Academy of Sciences, Warsaw, Poland
| | - Andrés M Vera
- Department of Chemistry and Center for NanoScience, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Philip Tinnefeld
- Department of Chemistry and Center for NanoScience, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
11
|
Yu JW, Kim S, Ryu JH, Lee WB, Yoon TJ. Spatiotemporal characterization of water diffusion anomalies in saline solutions using machine learning force field. SCIENCE ADVANCES 2024; 10:eadp9662. [PMID: 39661667 PMCID: PMC11633738 DOI: 10.1126/sciadv.adp9662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 11/04/2024] [Indexed: 12/13/2024]
Abstract
Understanding water behavior in salt solutions remains a notable challenge in computational chemistry. Conventional force fields have shown limitations in accurately representing water's properties across different salt types (chaotropes and kosmotropes) and concentrations, demonstrating the need for better methods. Machine learning force field applications in computational chemistry, especially through deep potential molecular dynamics (DPMD), offer a promising alternative that closely aligns with the accuracy of first-principles methods. Our research used DPMD to study how salts affect water by comparing its results with ab initio molecular dynamics, SPC/Fw, AMOEBA, and MB-Pol models. We studied water's behavior in salt solutions by examining its spatiotemporally correlated movement. Our findings showed that each model's accuracy in depicting water's behavior in salt solutions is strongly connected to spatiotemporal correlation. This study demonstrates both DPMD's advanced abilities in studying water-salt interactions and contributes to our understanding of the basic mechanisms that control these interactions.
Collapse
Affiliation(s)
- Ji Woong Yu
- Center for AI and Natural Sciences, Korea Institute for Advanced Study, Seoul 02455, Republic of Korea
| | - Sebin Kim
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Jae Hyun Ryu
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Won Bo Lee
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
- School of Transdisciplinary Innovations, Seoul National University, Seoul 08826, Republic of Korea
| | - Tae Jun Yoon
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
- School of Transdisciplinary Innovations, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
12
|
Kariyawasam NL, Wereszczynski J. The Influence of Ionic Environment on Nucleosome-Mica Interactions Revealed via Molecular Dynamics Simulations. J Phys Chem B 2024; 128:12038-12049. [PMID: 39607409 DOI: 10.1021/acs.jpcb.4c04223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Nucleosomes are the fundamental units of DNA compaction, playing a key role in modulating gene expression. As such, they are widely studied through both experimental and computational methods. While atomic force microscopy (AFM) is a powerful tool for visualizing and characterizing both canonical and modified nucleosomes, it relies on nucleosome interactions with mica surfaces. These interactions occur through cations adsorbed on the negatively charged mica, but the specific influences of monovalent and divalent cations on nucleosome adsorption remain unclear. In this study, we used molecular dynamics simulations to investigate how monovalent potassium ions and divalent magnesium ions affect nucleosome binding to mica surfaces. We also explored the impact of pretreated mica surfaces on nucleosome binding and structure. Our findings reveal that nucleosome-mica interactions depend on the type of cations present, which leads to distinct effects on nucleosome structure. Notably, nucleosomes bind effectively to mica surfaces in the presence of potassium ions with minimal structural perturbations.
Collapse
Affiliation(s)
- Nilusha L Kariyawasam
- Department of Physics, Illinois Institute of Technology, Chicago 60616, United States
- Center for Molecular Study of Condensed Soft Matter, Illinois Institute of Technology, Chicago, Illinois 60625, United States
| | - Jeff Wereszczynski
- Departments of Physics and Biology, Illinois Institute of Technology, Chicago, Illinois 60625, United States
- Center for Molecular Study of Condensed Soft Matter, Illinois Institute of Technology, Chicago, Illinois 60625, United States
| |
Collapse
|
13
|
Lim H, Hwang S, Cho SH, Bak YS, Yang WS, Park D, Kim CH. Compared Inhibitory Activities of Tamoxifen and Avenanthramide B on Liver Esterase and Correlation Based on the Superimposed Structure Between Porcine and Human Liver Esterase. Int J Mol Sci 2024; 25:13291. [PMID: 39769055 PMCID: PMC11675837 DOI: 10.3390/ijms252413291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/05/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Exposure to tamoxifen can exert effects on the human liver, and esterases process prodrugs such as antibiotics and convert them to less toxic metabolites. In this study, the porcine liver esterase (PLE)-inhibitory activity of tamoxifen has been investigated. PLE showed inhibition of a PLE isoenzyme (PLE5). In addition, avenanthramides, which have a similar structure to that of tamoxifen, have been used to determine the PLE-inhibitory effect. Among the avenanthramide derivatives, avenanthramide B has been shown to inhibit PLE. Avenanthramide B interacts with Lys284 of PLE, whereas avenanthramide A and C counteract with Lys284. Avenanthramide B has shown a similar inhibitory effect to that of tamoxifen. Given that avenanthramide B can modulate the action of PLE, it can be used in pharmaceutical and industrial applications for modulating the effects of PLE. Based on superimposed structures between PLE and human liver esterase, the impact of tamoxifen use in humans is discussed. In addition, this study can serve as a fundamental basis for future investigations regarding the potential risk of tamoxifen and other drugs. Thus, this study presents an insight into the comparison of structurally similar tamoxifen and avenanthramides on liver esterases, which can have implications for the pharmaceutical and agricultural industries.
Collapse
Affiliation(s)
- Hakseong Lim
- Department of Biological Science, Sungkyunkwan University, Suwon 16419, Republic of Korea;
| | - Sungbo Hwang
- Division of Advanced Predictive Research, Center for Biomimetic Research, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea;
| | - Seung-Hak Cho
- Division of Bacterial Disease Research, Center for Infectious Disease Research, Korea National Institute of Health, Cheongju 28159, Republic of Korea;
| | - Young-Seok Bak
- Department of Emergency Medical Services, Sun Moon University, Asan-si 31460, Republic of Korea;
| | - Woong-Suk Yang
- National Institute for Nanomaterials Technology (NINT), POSTECH, Pohang 37673, Republic of Korea;
| | - Daeui Park
- Division of Advanced Predictive Research, Center for Biomimetic Research, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea;
| | - Cheorl-Ho Kim
- Department of Biological Science, Sungkyunkwan University, Suwon 16419, Republic of Korea;
| |
Collapse
|
14
|
Karami Y, Bignon E. Cysteine hyperoxidation rewires communication pathways in the nucleosome and destabilizes the dyad. Comput Struct Biotechnol J 2024; 23:1387-1396. [PMID: 38596314 PMCID: PMC11001638 DOI: 10.1016/j.csbj.2024.03.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 04/11/2024] Open
Abstract
Gene activity is tightly controlled by reversible chemical modifications called epigenetic marks, which are of various types and modulate gene accessibility without affecting the DNA sequence. Despite an increasing body of evidence demonstrating the role of oxidative-type modifications of histones in gene expression regulation, there remains a complete absence of structural data at the atomistic level to understand the molecular mechanisms behind their regulatory action. Owing to μs time-scale MD simulations and protein communication networks analysis, we describe the impact of histone H3 hyperoxidation (i.e., S-sulfonylation) on the nucleosome core particle dynamics. Our results reveal the atomic-scale details of the intrinsic structural networks within the canonical histone core and their perturbation by hyperoxidation of the histone H3 C110. We show that this modification involves local rearrangements of the communication networks and destabilizes the dyad, and that one modification is enough to induce a maximal structural signature. Our results suggest that cysteine hyperoxidation in the nucleosome core particle might favor its disassembly.
Collapse
Affiliation(s)
- Yasaman Karami
- Université de Lorraine, CNRS, Inria, LORIA, F-54000 Nancy, France
| | | |
Collapse
|
15
|
Peeples CA, Liu R, Shen J. Force Field Limitations of All-Atom Continuous Constant pH Molecular Dynamics. J Phys Chem B 2024; 128:11616-11624. [PMID: 39531617 DOI: 10.1021/acs.jpcb.4c05971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
All-atom constant pH molecular dynamics simulations offer a powerful tool for understanding pH-mediated and proton-coupled biological processes. As the protonation equilibria of protein side chains are shifted by electrostatic interactions and desolvation energies, pKa values calculated from the constant pH simulations may be sensitive to the underlying protein force field and water model. Here we investigated the force field dependence of the all-atom particle mesh Ewald (PME) continuous constant pH (PME-CpHMD) simulations of a mini-protein BBL. The replica-exchange titration simulations based on the Amber ff19sb and ff14sb force fields with the respective water models showed significantly overestimated pKa downshifts for a buried histidine (His166) and for two glutamic acids (Glu141 and Glu161) that are involved in salt-bridge interactions. These errors (due to undersolvation of neutral histidines and overstabilization of salt bridges) are consistent with the previously reported pKa's based on the CHARMM c22/CMAP force field, albeit in larger magnitudes. The pKa calculations also demonstrated that ff19sb with OPC water is significantly more accurate than ff14sb with TIP3P water, and the salt-bridge related pKa downshifts can be partially alleviated by the atom-pair specific Lennard-Jones corrections (NBFIX). Together, these data suggest that the accuracies of the protonation equilibria of proteins from constant pH simulations can significantly benefit from improvements of force fields.
Collapse
Affiliation(s)
- Craig A Peeples
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| | - Ruibin Liu
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| | - Jana Shen
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| |
Collapse
|
16
|
Chandrasekhar S, Swope TP, Fadaei F, Hollis DR, Bricker R, Houser D, Portman JJ, Schmidt TL. Bending DNA increases its helical repeat. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.14.579968. [PMID: 38405957 PMCID: PMC10888926 DOI: 10.1101/2024.02.14.579968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
In all biological systems, DNA is under high mechanical stress from bending and twisting. For example, DNA is tightly bent in nucleosome complexes, virus capsids, bacterial chromosomes, or complexes with transcription factors that regulate gene expression. A structurally and mechanically accurate model of DNA is therefore necessary to understand some of the most fundamental molecular mechanisms in biology including DNA packaging, replication, transcription and gene regulation. An iconic feature of DNA is its double helical nature with an average repeath 0 of ~10.45 base pairs per turn, which is commonly believed to be independent of curvature. We developed a ligation assay on nicked DNA circles of variable curvature that reveals a strong unwinding of DNA to over 11 bp/turn for radii around 3-4 nm. Our work constitutes a major modification of the standard mechanical model of DNA and requires reassessing the molecular mechanisms and energetics of all processes involving tightly bent DNA.
Collapse
Affiliation(s)
| | - Thomas P. Swope
- Department of Physics, Kent State University, Kent, OH, 44242, USA
| | - Fatemeh Fadaei
- Department of Physics, Kent State University, Kent, OH, 44242, USA
| | - Daniel R. Hollis
- Department of Physics, Kent State University, Kent, OH, 44242, USA
| | - Rachel Bricker
- Department of Physics, Kent State University, Kent, OH, 44242, USA
| | - Draven Houser
- Department of Physics, Kent State University, Kent, OH, 44242, USA
| | - John J. Portman
- Department of Physics, Kent State University, Kent, OH, 44242, USA
| | | |
Collapse
|
17
|
Widmer J, Vitalis A, Caflisch A. On the specificity of the recognition of m6A-RNA by YTH reader domains. J Biol Chem 2024; 300:107998. [PMID: 39551145 PMCID: PMC11699332 DOI: 10.1016/j.jbc.2024.107998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/26/2024] [Accepted: 11/12/2024] [Indexed: 11/19/2024] Open
Abstract
Most processes of life are the result of polyvalent interactions between macromolecules, often of heterogeneous types and sizes. Frequently, the times associated with these interactions are prohibitively long for interrogation using atomistic simulations. Here, we study the recognition of N6-methylated adenine (m6A) in RNA by the reader domain YTHDC1, a prototypical, cognate pair that challenges simulations through its composition and required timescales. Simulations of RNA pentanucleotides in water reveal that the unbound state can impact (un)binding kinetics in a manner that is both model- and sequence-dependent. This is important because there are two contributions to the specificity of the recognition of the Gm6AC motif: from the sequence adjacent to the central adenine and from its methylation. Next, we establish a reductionist model consisting of an RNA trinucleotide binding to the isolated reader domain in high salt. An adaptive sampling protocol allows us to quantitatively study the dissociation of this complex. Through joint analysis of a data set including both the cognate and control sequences (GAC, Am6AA, and AAA), we derive that both contributions to specificity, sequence, and methylation, are significant and in good agreement with experimental numbers. Analysis of the kinetics suggests that flexibility in both the RNA and the YTHDC1 recognition loop leads to many low-populated unbinding pathways. This multiple-pathway mechanism might be dominant for the binding of unstructured polymers, including RNA and peptides, to proteins when their association is driven by polyvalent, electrostatic interactions.
Collapse
Affiliation(s)
- Julian Widmer
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Andreas Vitalis
- Department of Biochemistry, University of Zurich, Zurich, Switzerland.
| | - Amedeo Caflisch
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| |
Collapse
|
18
|
Kosarim NA, Fedulova AS, Shariafetdinova AS, Armeev GA, Shaytan AK. Molecular Dynamics Simulations of Nucleosomes Containing Histone Variant H2A.J. Int J Mol Sci 2024; 25:12136. [PMID: 39596203 PMCID: PMC11595175 DOI: 10.3390/ijms252212136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/07/2024] [Accepted: 11/09/2024] [Indexed: 11/28/2024] Open
Abstract
Histone proteins form the building blocks of chromatin-nucleosomes. Incorporation of alternative histone variants instead of the major (canonical) histones into nucleosomes is a key mechanism enabling epigenetic regulation of genome functioning. In humans, H2A.J is a constitutively expressed histone variant whose accumulation is associated with cell senescence, inflammatory gene expression, and certain cancers. It is sequence-wise very similar to the canonical H2A histones, and its effects on the nucleosome structure and dynamics remain elusive. This study employed all-atom molecular dynamics simulations to reveal atomistic mechanisms of structural and dynamical effects conferred by the incorporation of H2A.J into nucleosomes. We showed that the H2A.J C-terminal tail and its phosphorylated form have unique dynamics and interaction patterns with the DNA, which should affect DNA unwrapping and the availability of nucleosomes for interactions with other chromatin effectors. The dynamics of the L1-loop and the hydrogen bonding patterns inside the histone octamer were shown to be sensitive to single amino acid substitutions, potentially explaining the higher thermal stability of H2A.J nucleosomes. Taken together, our study demonstrated unique dynamical features of H2A.J-containing nucleosomes, which contribute to further understanding of the molecular mechanisms employed by H2A.J in regulating genome functioning.
Collapse
Affiliation(s)
- Nikita A. Kosarim
- Department of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (N.A.K.); (A.S.F.); (G.A.A.)
| | - Anastasiia S. Fedulova
- Department of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (N.A.K.); (A.S.F.); (G.A.A.)
| | | | - Grigoriy A. Armeev
- Department of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (N.A.K.); (A.S.F.); (G.A.A.)
| | - Alexey K. Shaytan
- Department of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (N.A.K.); (A.S.F.); (G.A.A.)
- Institute of Gene Biology, 119334 Moscow, Russia
| |
Collapse
|
19
|
Ryu M, Oh S, Jeong KB, Hwang S, Kim JS, Chung M, Chi SW. Single-Molecule-Based, Label-Free Monitoring of Molecular Glue Efficacies for Promoting Protein-Protein Interactions Using YaxAB Nanopores. ACS NANO 2024; 18:31451-31465. [PMID: 39482865 PMCID: PMC11562796 DOI: 10.1021/acsnano.4c11436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/15/2024] [Accepted: 10/21/2024] [Indexed: 11/03/2024]
Abstract
Modulating protein-protein interactions (PPIs) is an attractive strategy in drug discovery. Molecular glues, bifunctional small-molecule drugs that promote PPIs, offer an approach to targeting traditionally undruggable targets. However, the efficient discovery of molecular glues has been hampered by the current limitations of conventional ensemble-averaging-based methods. In this study, we present a YaxAB nanopore for probing the efficacy of molecular glues in inducing PPIs. Using YaxAB nanopores, we demonstrate single-molecule-based, label-free monitoring of protein complex formation between mammalian target of rapamycin (mTOR) and FK506-binding proteins (FKBPs) triggered by the molecular glue, rapamycin. Owing to its wide entrance and adjustable pore size, in combination with potent electro-osmotic flow (EOF), a single funnel-shaped YaxAB nanopore enables the simultaneous detection and single-molecule-level quantification of multiprotein states, including single proteins, binary complexes, and ternary complexes induced by rapamycin. Notably, YaxAB nanopores could sensitively discriminate between the binary complexes or ternary complexes induced by rapamycin and its analogues, despite the subtle size differences of ∼122 or ∼116 Da, respectively. Taken together, our results provide proof-of-concept for single-molecule-based, label-free, and ultrasensitive screening and structure-activity relationship (SAR) analysis of molecular glues, which will contribute to low-cost, highly efficient discovery, and rational design of bifunctional modality of drugs, such as molecular glues.
Collapse
Affiliation(s)
- Minju Ryu
- Disease
Target Structure Research Center, Division of Biomedical Research, Korea Research Institute of Bioscience and Biotechnology
(KRIBB), Daejeon 34141, Republic
of Korea
- Department
of Proteome Structural Biology, KRIBB School of Bioscience, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Sohee Oh
- Disease
Target Structure Research Center, Division of Biomedical Research, Korea Research Institute of Bioscience and Biotechnology
(KRIBB), Daejeon 34141, Republic
of Korea
| | - Ki-Baek Jeong
- Disease
Target Structure Research Center, Division of Biomedical Research, Korea Research Institute of Bioscience and Biotechnology
(KRIBB), Daejeon 34141, Republic
of Korea
- Critical
Diseases Diagnostics Convergence Research Center, KRIBB, Daejeon 34141, Republic of Korea
| | - Sungbo Hwang
- Disease
Target Structure Research Center, Division of Biomedical Research, Korea Research Institute of Bioscience and Biotechnology
(KRIBB), Daejeon 34141, Republic
of Korea
| | - Jin-Sik Kim
- Disease
Target Structure Research Center, Division of Biomedical Research, Korea Research Institute of Bioscience and Biotechnology
(KRIBB), Daejeon 34141, Republic
of Korea
- Critical
Diseases Diagnostics Convergence Research Center, KRIBB, Daejeon 34141, Republic of Korea
| | - Minji Chung
- Disease
Target Structure Research Center, Division of Biomedical Research, Korea Research Institute of Bioscience and Biotechnology
(KRIBB), Daejeon 34141, Republic
of Korea
- Department
of Proteome Structural Biology, KRIBB School of Bioscience, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Seung-Wook Chi
- Disease
Target Structure Research Center, Division of Biomedical Research, Korea Research Institute of Bioscience and Biotechnology
(KRIBB), Daejeon 34141, Republic
of Korea
- Department
of Proteome Structural Biology, KRIBB School of Bioscience, University of Science and Technology, Daejeon 34113, Republic of Korea
- School
of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi 16419, Republic
of Korea
| |
Collapse
|
20
|
Peeples CA, Liu R, Shen J. Force Field Limitations of All-Atom Continuous Constant pH Molecular Dynamics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.03.611076. [PMID: 39282392 PMCID: PMC11398383 DOI: 10.1101/2024.09.03.611076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
All-atom constant pH molecular dynamics simulations offer a powerful tool for understanding pH-mediated and proton-coupled biological processes. As the protonation equilibria of protein sidechains are shifted by electrostatic interactions and desolvation energies, pK a values calculated from the constant pH simulations may be sensitive to the underlying protein force field and water model. Here we investigated the force field dependence of the all-atom particle mesh Ewald (PME) continuous constant pH (PME-CpHMD) simulations of a mini-protein BBL. The replica-exchange titration simulations based on the Amber ff19sb and ff14sb force fields with the respective water models showed significantly overestimated pK a downshifts for a buried histidine (His166) and for two glutamic acids (Glu141 and Glu161) that are involved in salt-bridge interactions. These errors (due to undersolvation of neutral histidines and overstabilization of salt bridges) are consistent with the previously reported pK a's based on the CHARMM c22/CMAP force field, albeit in larger magnitudes. The pK a calculations also demonstrated that ff19sb with OPC water is significantly more accurate than ff14sb with TIP3P water, and the salt-bridge related pK a downshifts can be partially alleviated by the atom-pair specific Lennard-Jones corrections (NBFIX). Together, these data suggest that the accuracies of the protonation equilibria of proteins from constant pH simulations can significantly benefit from improvements of force fields.
Collapse
Affiliation(s)
- Craig A Peeples
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201
| | - Ruibin Liu
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201
| | - Jana Shen
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201
| |
Collapse
|
21
|
Asfa SS, Arshinchi Bonab R, Önder O, Uça Apaydın M, Döşeme H, Küçük C, Georgakilas AG, Stadler BM, Logotheti S, Kale S, Pavlopoulou A. Computer-Aided Identification and Design of Ligands for Multi-Targeting Inhibition of a Molecular Acute Myeloid Leukemia Network. Cancers (Basel) 2024; 16:3607. [PMID: 39518047 PMCID: PMC11544916 DOI: 10.3390/cancers16213607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/07/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND/OBJECTIVES Acute myeloid leukemia (AML) is characterized by therapeutic failure and long-term risk for disease relapses. As several therapeutic targets participate in networks, they can rewire to eventually evade single-target drugs. Hence, multi-targeting approaches are considered on the expectation that interference with many different components could synergistically hinder activation of alternative pathways and demolish the network one-off, leading to complete disease remission. METHODS Herein, we established a network-based, computer-aided approach for the rational design of drug combinations and de novo agents that interact with many AML network components simultaneously. RESULTS A reconstructed AML network guided the selection of suitable protein hubs and corresponding multi-targeting strategies. For proteins responsive to existing drugs, a greedy algorithm identified the minimum amount of compounds targeting the maximum number of hubs. We predicted permissible combinations of amiodarone, artenimol, fostamatinib, ponatinib, procaine, and vismodegib that interfere with 3-8 hubs, and we elucidated the pharmacological mode of action of procaine on DNMT3A. For proteins that do not respond to any approved drugs, namely cyclins A1, D2, and E1, we used structure-based de novo drug design to generate a novel triple-targeting compound of the chemical formula C15H15NO5, with favorable pharmacological and drug-like properties. CONCLUSIONS Overall, by integrating network and structural pharmacology with molecular modeling, we determined two complementary strategies with the potential to annihilate the AML network, one in the form of repurposable drug combinations and the other as a de novo synthesized triple-targeting agent. These target-drug interactions could be prioritized for preclinical and clinical testing toward precision medicine for AML.
Collapse
Affiliation(s)
- Seyedeh Sadaf Asfa
- Izmir Biomedicine and Genome Center, 35340 Balçova, İzmir, Türkiye; (S.S.A.); (R.A.B.); (O.Ö.); (M.U.A.); (H.D.); (S.K.)
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, 35340 Balçova, İzmir, Türkiye
- Department of Pharmacology and Therapeutics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
- Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R3E 0W2, Canada
| | - Reza Arshinchi Bonab
- Izmir Biomedicine and Genome Center, 35340 Balçova, İzmir, Türkiye; (S.S.A.); (R.A.B.); (O.Ö.); (M.U.A.); (H.D.); (S.K.)
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, 35340 Balçova, İzmir, Türkiye
- Department of Pharmacology and Therapeutics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
- Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R3E 0W2, Canada
| | - Onur Önder
- Izmir Biomedicine and Genome Center, 35340 Balçova, İzmir, Türkiye; (S.S.A.); (R.A.B.); (O.Ö.); (M.U.A.); (H.D.); (S.K.)
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, 35340 Balçova, İzmir, Türkiye
| | - Merve Uça Apaydın
- Izmir Biomedicine and Genome Center, 35340 Balçova, İzmir, Türkiye; (S.S.A.); (R.A.B.); (O.Ö.); (M.U.A.); (H.D.); (S.K.)
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, 35340 Balçova, İzmir, Türkiye
| | - Hatice Döşeme
- Izmir Biomedicine and Genome Center, 35340 Balçova, İzmir, Türkiye; (S.S.A.); (R.A.B.); (O.Ö.); (M.U.A.); (H.D.); (S.K.)
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, 35340 Balçova, İzmir, Türkiye
| | - Can Küçük
- Department of Medical Biology, Faculty of Medicine, Dokuz Eylül University, 35330 Balçova, İzmir, Türkiye;
| | - Alexandros G. Georgakilas
- Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Zografou Campous, 15780 Athens, Greece;
| | - Bernhard M. Stadler
- Technische Hochschule Nürnberg, Faculty of Applied Chemistry, 90489 Nuremberg, Germany;
| | - Stella Logotheti
- Biomedical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany;
| | - Seyit Kale
- Izmir Biomedicine and Genome Center, 35340 Balçova, İzmir, Türkiye; (S.S.A.); (R.A.B.); (O.Ö.); (M.U.A.); (H.D.); (S.K.)
- Department of Biophysics, Faculty of Medicine, Izmir Katip Çelebi University, 35330 Çiğli, İzmir, Türkiye
| | - Athanasia Pavlopoulou
- Izmir Biomedicine and Genome Center, 35340 Balçova, İzmir, Türkiye; (S.S.A.); (R.A.B.); (O.Ö.); (M.U.A.); (H.D.); (S.K.)
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, 35340 Balçova, İzmir, Türkiye
| |
Collapse
|
22
|
Liang D, Chen Y, Deng C, de Pablo JJ. Charge Scaling in Classical Force Fields for Lithium Ions in Polymers. ACS Macro Lett 2024; 13:1258-1264. [PMID: 39269737 PMCID: PMC11483941 DOI: 10.1021/acsmacrolett.4c00368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024]
Abstract
Polymer electrolytes are of interest for applications in energy storage. Molecular simulations of ion transport in polymer electrolytes have been widely used to study the conductivity in these materials. Such simulations have generally relied on classical force fields. A peculiar feature of such force fields has been that in the particular case of lithium ions (Li+), their charge must be scaled down by approximately 20% to achieve agreement with experimental measurements of ion diffusivity. In this work, we present first-principles calculations that serve to justify the charge-scaling factor and van der Waals interaction parameters for Li+ diffusion in poly(ethylene glycol) (PEO) with bistriflimide (TFSI-) counterions. Our results indicate that a scaling factor of 0.79 provides good agreement with DFT calculations over a relatively wide range of Li+ concentrations and temperatures, consistent with past reports where that factor was adjusted by trial and error. We also show that such a scaling factor leads to diffusivities that are in quantitative agreement with experimental measurements.
Collapse
Affiliation(s)
- Dongyue Liang
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Yuxi Chen
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Chuting Deng
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Juan J. de Pablo
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
23
|
Trapella M, Bellini T, De Michele C. In silico study of DNA mononucleotide self-assembly. J Chem Phys 2024; 161:134905. [PMID: 39356071 DOI: 10.1063/5.0226019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/18/2024] [Indexed: 10/03/2024] Open
Abstract
Recent experiments have demonstrated the self-assembly and long-range ordering of concentrated aqueous solutions of DNA and RNA mononucleotides. These are found to form Watson-Crick pairs that stack into columns that become spatially organized into a columnar liquid-crystalline phase. In this work, we numerically investigate this phase behavior by adopting an extremely coarse-grained model in which nucleotides are represented as semi-disk-like polyhedra decorated with attractive (patchy) sites that mimic the stacking and pairing interactions. We carry out Monte Carlo simulations of these patchy polyhedra by adapting algorithms borrowed from computer graphics. This model reproduces the features of the experimental phase behavior, which essentially depends on the combination of pairing and stacking interactions.
Collapse
Affiliation(s)
- Mattia Trapella
- Dipartimento di Fisica e Geologia, Università di Perugia, Perugia, Italy
| | - Tommaso Bellini
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università Degli Studi di Milano, Milano, Italy
| | | |
Collapse
|
24
|
Riopedre-Fernandez M, Kostal V, Martinek T, Martinez-Seara H, Biriukov D. Developing and Benchmarking Sulfate and Sulfamate Force Field Parameters via Ab Initio Molecular Dynamics Simulations To Accurately Model Glycosaminoglycan Electrostatic Interactions. J Chem Inf Model 2024; 64:7122-7134. [PMID: 39250601 PMCID: PMC11423409 DOI: 10.1021/acs.jcim.4c00981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Glycosaminoglycans (GAGs) are negatively charged polysaccharides found on cell surfaces, where they regulate transport pathways of foreign molecules toward the cell. The structural and functional diversity of GAGs is largely attributed to varied sulfation patterns along the polymer chains, which makes understanding their molecular recognition mechanisms crucial. Molecular dynamics (MD) simulations, thanks to their unmatched microscopic resolution, have the potential to be a reference tool for exploring the patterns responsible for biologically relevant interactions. However, the capability of molecular dynamics force fields used in biosimulations to accurately capture sulfation-specific interactions is not well established, partly due to the intrinsic properties of GAGs that pose challenges for most experimental techniques. In this work, we evaluate the performance of molecular dynamics force fields for sulfated GAGs by studying ion pairing of Ca2+ to sulfated moieties─N-methylsulfamate and methylsulfate─that resemble N- and O-sulfation found in GAGs, respectively. We tested available nonpolarizable (CHARMM36 and GLYCAM06) and explicitly polarizable (Drude and AMOEBA) force fields, and derived new implicitly polarizable models through charge scaling (prosECCo75 and GLYCAM-ECC75) that are consistent with our developed "charge-scaling" framework. The calcium-sulfamate/sulfate interaction free energy profiles obtained with the tested force fields were compared against reference ab initio molecular dynamics (AIMD) simulations, which serve as a robust alternative to experiments. AIMD simulations indicate that the preferential Ca2+ binding mode to sulfated GAG groups is solvent-shared pairing. Only our scaled-charge models agree satisfactorily with the AIMD data, while all other force fields exhibit poorer agreement, sometimes even qualitatively. Surprisingly, even explicitly polarizable force fields display a notable disagreement with the AIMD data, likely attributed to difficulties in their optimization and possible inherent limitations in depicting high-charge-density ion interactions accurately. Finally, the underperforming force fields lead to unrealistic aggregation of sulfated saccharides, which qualitatively disagrees with our understanding of the soft glycocalyx environment. Our results highlight the importance of accurately treating electronic polarization in MD simulations of sulfated GAGs and caution against over-reliance on currently available models without thorough validation and optimization.
Collapse
Affiliation(s)
- Miguel Riopedre-Fernandez
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 542/2, CZ-16610 Prague 6, Czech Republic
| | - Vojtech Kostal
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 542/2, CZ-16610 Prague 6, Czech Republic
| | - Tomas Martinek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 542/2, CZ-16610 Prague 6, Czech Republic
| | - Hector Martinez-Seara
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 542/2, CZ-16610 Prague 6, Czech Republic
| | - Denys Biriukov
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 542/2, CZ-16610 Prague 6, Czech Republic
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 753/5, CZ-62500 Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 753/5, CZ-62500 Brno, Czech Republic
| |
Collapse
|
25
|
Malinina DK, Armeev GA, Geraskina OV, Korovina AN, Studitsky VM, Feofanov AV. Complexes of HMO1 with DNA: Structure and Affinity. Biomolecules 2024; 14:1184. [PMID: 39334951 PMCID: PMC11430298 DOI: 10.3390/biom14091184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/13/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Saccharomyces cerevisiae HMO1 is an architectural nuclear DNA-binding protein that stimulates the activity of some remodelers and regulates the transcription of ribosomal protein genes, often binding to a DNA motif called IFHL. However, the molecular mechanism dictating this sequence specificity is unclear. Our circular dichroism spectroscopy studies show that the HMO1:DNA complex forms without noticeable changes in the structure of DNA and HMO1. Molecular modeling/molecular dynamics studies of the DNA complex with HMO1 Box B reveal two extended sites at the N-termini of helices I and II of Box B that are involved in the formation of the complex and stabilize the DNA bend induced by intercalation of the F114 side chain between base pairs. A comparison of the affinities of HMO1 for 24 bp DNA fragments containing either randomized or IFHL sequences reveals a twofold increase in the stability of the complex in the latter case, which may explain the selectivity in the recognition of the IFHL-containing promoter regions.
Collapse
Affiliation(s)
- Daria K. Malinina
- Biology Faculty, Lomonosov Moscow State University, Moscow 119992, Russia; (D.K.M.); (G.A.A.); (O.V.G.); (A.N.K.); (V.M.S.)
| | - Grigoriy A. Armeev
- Biology Faculty, Lomonosov Moscow State University, Moscow 119992, Russia; (D.K.M.); (G.A.A.); (O.V.G.); (A.N.K.); (V.M.S.)
| | - Olga V. Geraskina
- Biology Faculty, Lomonosov Moscow State University, Moscow 119992, Russia; (D.K.M.); (G.A.A.); (O.V.G.); (A.N.K.); (V.M.S.)
| | - Anna N. Korovina
- Biology Faculty, Lomonosov Moscow State University, Moscow 119992, Russia; (D.K.M.); (G.A.A.); (O.V.G.); (A.N.K.); (V.M.S.)
| | - Vasily M. Studitsky
- Biology Faculty, Lomonosov Moscow State University, Moscow 119992, Russia; (D.K.M.); (G.A.A.); (O.V.G.); (A.N.K.); (V.M.S.)
- Fox Chase Cancer Center, Philadelphia, PA 19111-2497, USA
| | - Alexey V. Feofanov
- Biology Faculty, Lomonosov Moscow State University, Moscow 119992, Russia; (D.K.M.); (G.A.A.); (O.V.G.); (A.N.K.); (V.M.S.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| |
Collapse
|
26
|
Wang T, Coshic K, Badiee M, McDonald MR, Aksimentiev A, Pollack L, Leung AKL. Cation-induced intramolecular coil-to-globule transition in poly(ADP-ribose). Nat Commun 2024; 15:7901. [PMID: 39256374 PMCID: PMC11387394 DOI: 10.1038/s41467-024-51972-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 08/22/2024] [Indexed: 09/12/2024] Open
Abstract
Poly(ADP-ribose) (PAR), a non-canonical nucleic acid, is essential for DNA/RNA metabolism and protein condensation, and its dysregulation is linked to cancer and neurodegeneration. However, key structural insights into PAR's functions remain largely uncharacterized, hindered by the challenges in synthesizing and characterizing PAR, which are attributed to its length heterogeneity. A central issue is how PAR, comprised solely of ADP-ribose units, attains specificity in its binding and condensing proteins based on chain length. Here, we integrate molecular dynamics simulations with small-angle X-ray scattering to analyze PAR structures. We identify diverse structural ensembles of PAR that fall into distinct subclasses and reveal distinct compaction of two different lengths of PAR upon the addition of small amounts of Mg2+ ions. Unlike PAR15, PAR22 forms ADP-ribose bundles via local intramolecular coil-to-globule transitions. Understanding these length-dependent structural changes could be central to deciphering the specific biological functions of PAR.
Collapse
Affiliation(s)
- Tong Wang
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, 14853, USA
| | - Kush Coshic
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana Champaign, Urbana, IL, 61801, USA
| | - Mohsen Badiee
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Maranda R McDonald
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
- Chemistry-Biology Interface Graduate Program, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Aleksei Aksimentiev
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana Champaign, Urbana, IL, 61801, USA.
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana Champaign, Urbana, IL, 61801, USA.
- Department of Physics, University of Illinois Urbana Champaign, Urbana, IL, 61801, USA.
| | - Lois Pollack
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, 14853, USA.
| | - Anthony K L Leung
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA.
- Chemistry-Biology Interface Graduate Program, Johns Hopkins University, Baltimore, MD, 21218, USA.
- Department of Molecular Biology and Genetics, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA.
- Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA.
- Department of Genetic Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA.
| |
Collapse
|
27
|
Hicks C, Rahman S, Gloor S, Fields J, Husby N, Vaidya A, Maier K, Morgan M, Keogh MC, Wolberger C. Ubiquitinated histone H2B as gatekeeper of the nucleosome acidic patch. Nucleic Acids Res 2024; 52:9978-9995. [PMID: 39149911 PMCID: PMC11381367 DOI: 10.1093/nar/gkae698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 07/15/2024] [Accepted: 08/01/2024] [Indexed: 08/17/2024] Open
Abstract
Monoubiquitination of histones H2B-K120 (H2BK120ub) and H2A-K119 (H2AK119ub) play opposing roles in regulating transcription and chromatin compaction. H2BK120ub is a hallmark of actively transcribed euchromatin, while H2AK119ub is highly enriched in transcriptionally repressed heterochromatin. Whereas H2BK120ub is known to stimulate the binding or activity of various chromatin-modifying enzymes, this post-translational modification (PTM) also interferes with the binding of several proteins to the nucleosome H2A/H2B acidic patch via an unknown mechanism. Here, we report cryoEM structures of an H2BK120ub nucleosome showing that ubiquitin adopts discrete positions that occlude the acidic patch. Molecular dynamics simulations show that ubiquitin remains stably positioned over this nucleosome region. By contrast, our cryoEM structures of H2AK119ub nucleosomes show ubiquitin adopting discrete positions that minimally occlude the acidic patch. Consistent with these observations, H2BK120ub, but not H2AK119ub, abrogates nucleosome interactions with acidic patch-binding proteins RCC1 and LANA, and single-domain antibodies specific to this region. Our results suggest a mechanism by which H2BK120ub serves as a gatekeeper to the acidic patch and point to distinct roles for histone H2AK119 and H2BK120 ubiquitination in regulating protein binding to nucleosomes.
Collapse
Affiliation(s)
- Chad W Hicks
- Department of Biophysics & Biophysical Chemistry, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, USA
| | - Sanim Rahman
- Department of Biophysics & Biophysical Chemistry, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, USA
| | - Susan L Gloor
- EpiCypher Inc., 6 Davis Drive, Suite 755, Durham, NC 27709, USA
| | - James K Fields
- Department of Biophysics & Biophysical Chemistry, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, USA
| | | | - Anup Vaidya
- EpiCypher Inc., 6 Davis Drive, Suite 755, Durham, NC 27709, USA
| | - Keith E Maier
- EpiCypher Inc., 6 Davis Drive, Suite 755, Durham, NC 27709, USA
| | - Michael Morgan
- Department of Biophysics & Biophysical Chemistry, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, USA
| | | | - Cynthia Wolberger
- Department of Biophysics & Biophysical Chemistry, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, USA
| |
Collapse
|
28
|
Marien J, Prévost C, Sacquin-Mora S. nP-Collabs: Investigating Counterion-Mediated Bridges in the Multiply Phosphorylated Tau-R2 Repeat. J Chem Inf Model 2024; 64:6570-6582. [PMID: 39092904 DOI: 10.1021/acs.jcim.4c00742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Tau is an intrinsically disordered (IDP) microtubule-associated protein (MAP) that plays a key part in microtubule assembly and organization. The function of tau can be regulated by multiple phosphorylation sites. These post-translational modifications are known to decrease the binding affinity of tau for microtubules, and abnormal tau phosphorylation patterns are involved in Alzheimer's disease. Using all-atom molecular dynamics simulations, we compared the conformational landscapes explored by the tau R2 repeat domain (which comprises a strong tubulin binding site) in its native state and with multiple phosphorylations on the S285, S289, and S293 residues, with four different standard force field (FF)/water model combinations. We find that the different parameters used for the phosphate groups (which can be more or less flexible) in these FFs and the specific interactions between bulk cations and water lead to the formation of a specific type of counterion bridge, termed nP-collab (for nphosphate collaboration, with n being an integer), where counterions form stable structures binding with two or three phosphate groups simultaneously. The resulting effect of nP-collabs on the tau-R2 conformational space differs when using sodium or potassium cations and is likely to impact the peptide overall dynamics and how this MAP interacts with tubulins. We also investigated the effect of phosphoresidue spacing and ionic concentration by modeling polyalanine peptides containing two phosphoserines located one-six residues apart. Three new metrics specifically tailored for IDPs (proteic Menger curvature, local curvature, and local flexibility) were introduced, which allow us to fully characterize the impact of nP-collabs on the dynamics of disordered peptides at the residue level.
Collapse
Affiliation(s)
- Jules Marien
- Laboratoire de Biochimie Théorique, Université Paris-Cité, CNRS, 13 Rue Pierre et Marie Curie, 75005 Paris, France
| | - Chantal Prévost
- Laboratoire de Biochimie Théorique, Université Paris-Cité, CNRS, 13 Rue Pierre et Marie Curie, 75005 Paris, France
| | - Sophie Sacquin-Mora
- Laboratoire de Biochimie Théorique, Université Paris-Cité, CNRS, 13 Rue Pierre et Marie Curie, 75005 Paris, France
| |
Collapse
|
29
|
Srivastava DK, Navratna V, Tosh DK, Chinn A, Sk MF, Tajkhorshid E, Jacobson KA, Gouaux E. Structure of the human dopamine transporter and mechanisms of inhibition. Nature 2024; 632:672-677. [PMID: 39112705 PMCID: PMC11324517 DOI: 10.1038/s41586-024-07739-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 06/19/2024] [Indexed: 08/16/2024]
Abstract
The neurotransmitter dopamine has central roles in mood, appetite, arousal and movement1. Despite its importance in brain physiology and function, and as a target for illicit and therapeutic drugs, the human dopamine transporter (hDAT) and mechanisms by which it is inhibited by small molecules and Zn2+ are without a high-resolution structural context. Here we determine the structure of hDAT in a tripartite complex with the competitive inhibitor and cocaine analogue, (-)-2-β-carbomethoxy-3-β-(4-fluorophenyl)tropane2 (β-CFT), the non-competitive inhibitor MRS72923 and Zn2+ (ref. 4). We show how β-CFT occupies the central site, approximately halfway across the membrane, stabilizing the transporter in an outward-open conformation. MRS7292 binds to a structurally uncharacterized allosteric site, adjacent to the extracellular vestibule, sequestered underneath the extracellular loop 4 (EL4) and adjacent to transmembrane helix 1b (TM1b), acting as a wedge, precluding movement of TM1b and closure of the extracellular gate. A Zn2+ ion further stabilizes the outward-facing conformation by coupling EL4 to EL2, TM7 and TM8, thus providing specific insights into how Zn2+ restrains the movement of EL4 relative to EL2 and inhibits transport activity.
Collapse
Affiliation(s)
| | - Vikas Navratna
- Vollum Institute, Oregon Health and Science University, Portland, OR, USA
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Dilip K Tosh
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Audrey Chinn
- Vollum Institute, Oregon Health and Science University, Portland, OR, USA
| | - Md Fulbabu Sk
- Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Biochemistry University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Emad Tajkhorshid
- Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Biochemistry University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Eric Gouaux
- Vollum Institute, Oregon Health and Science University, Portland, OR, USA.
- Howard Hughes Medical Institute, Oregon Health and Science University, Portland, OR, USA.
| |
Collapse
|
30
|
Zlobin A, Smirnov I, Golovin A. Dynamic interchange between two protonation states is characteristic of active sites of cholinesterases. Protein Sci 2024; 33:e5100. [PMID: 39022909 PMCID: PMC11255601 DOI: 10.1002/pro.5100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/28/2024] [Accepted: 06/19/2024] [Indexed: 07/20/2024]
Abstract
Cholinesterases are well-known and widely studied enzymes crucial to human health and involved in neurology, Alzheimer's, and lipid metabolism. The protonation pattern of active sites of cholinesterases influences all the chemical processes within, including reaction, covalent inhibition by nerve agents, and reactivation. Despite its significance, our comprehension of the fine structure of cholinesterases remains limited. In this study, we employed enhanced-sampling quantum-mechanical/molecular-mechanical calculations to show that cholinesterases predominantly operate as dynamic mixtures of two protonation states. The proton transfer between two non-catalytic glutamate residues follows the Grotthuss mechanism facilitated by a mediator water molecule. We show that this uncovered complexity of active sites presents a challenge for classical molecular dynamics simulations and calls for special treatment. The calculated proton transfer barrier of 1.65 kcal/mol initiates a discussion on the potential existence of two coupled low-barrier hydrogen bonds in the inhibited form of butyrylcholinesterase. These findings expand our understanding of structural features expressed by highly evolved enzymes and guide future advances in cholinesterase-related protein and drug design studies.
Collapse
Affiliation(s)
- Alexander Zlobin
- Institute for Drug DiscoveryLeipzig University Medical SchoolLeipzigGermany
- Faculty of Bioengineering and BioinformaticsLomonosov Moscow State UniversityMoscowRussia
| | - Ivan Smirnov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of SciencesMoscowRussia
| | - Andrey Golovin
- Faculty of Bioengineering and BioinformaticsLomonosov Moscow State UniversityMoscowRussia
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of SciencesMoscowRussia
- Belozersky Institute of Physico‐Chemical BiologyLomonosov Moscow State UniversityMoscowRussia
| |
Collapse
|
31
|
Sankaranarayanan SA, Yadav DN, Yadav S, Srivastava A, Pramatha SR, Kotagiri VR, Joshi H, Rengan AK. Tailoring Phage Nanosomes for Enhanced Theranostic Properties of Near Infrared Dyes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 39074245 DOI: 10.1021/acs.langmuir.4c01010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Near-infrared (NIR) phototherapies offer noninvasive, cost-effective solutions for treating tumors and microbial infections. However, organic NIR dyes commonly used suffer from solubility and stability issues requiring frequent dosing. We address this challenge by exploring the bacteriophage-mediated enhancement of NIR dye properties. Upon encapsulation within phage nanosomes, IR780 and Indocyanine green (ICG), with similar optical properties but distinct water solubility and exhibit enhanced UV-vis absorbance and photothermal transduction efficacy compared to liposomes. Experimental characterization corroborated with all-atom molecular dynamics simulations imprints the nanoscale structure, solubility, dynamics, and binding of these NIR dye molecules to the membrane and protein molecules present in Phage capsid. These NIR dye-loaded phage nanosomes, coencapsulated with mitoxantrone, demonstrate enhanced anticancer activity, and when combined with amphotericin B, these dye molecules exhibit superior photothermal effects against fungal infections. Our findings present a simple and efficient approach for tuning the photothermal performance of existing NIR dyes through a rational design for enhanced therapeutic outcomes.
Collapse
Affiliation(s)
| | | | - Saanya Yadav
- Department of Biotechnology, IIT Hyderabad, Kandi, Telangana 502284, India
| | - Aditya Srivastava
- Department of Biomedical Engineering, IIT Hyderabad, Kandi, Telangana 502284, India
| | | | | | - Himanshu Joshi
- Department of Biotechnology, IIT Hyderabad, Kandi, Telangana 502284, India
| | - Aravind Kumar Rengan
- Department of Biomedical Engineering, IIT Hyderabad, Kandi, Telangana 502284, India
| |
Collapse
|
32
|
Biriukov D, Vácha R. Pathways to a Shiny Future: Building the Foundation for Computational Physical Chemistry and Biophysics in 2050. ACS PHYSICAL CHEMISTRY AU 2024; 4:302-313. [PMID: 39069976 PMCID: PMC11274290 DOI: 10.1021/acsphyschemau.4c00003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 07/30/2024]
Abstract
In the last quarter-century, the field of molecular dynamics (MD) has undergone a remarkable transformation, propelled by substantial enhancements in software, hardware, and underlying methodologies. In this Perspective, we contemplate the future trajectory of MD simulations and their possible look at the year 2050. We spotlight the pivotal role of artificial intelligence (AI) in shaping the future of MD and the broader field of computational physical chemistry. We outline critical strategies and initiatives that are essential for the seamless integration of such technologies. Our discussion delves into topics like multiscale modeling, adept management of ever-increasing data deluge, the establishment of centralized simulation databases, and the autonomous refinement, cross-validation, and self-expansion of these repositories. The successful implementation of these advancements requires scientific transparency, a cautiously optimistic approach to interpreting AI-driven simulations and their analysis, and a mindset that prioritizes knowledge-motivated research alongside AI-enhanced big data exploration. While history reminds us that the trajectory of technological progress can be unpredictable, this Perspective offers guidance on preparedness and proactive measures, aiming to steer future advancements in the most beneficial and successful direction.
Collapse
Affiliation(s)
- Denys Biriukov
- CEITEC
− Central European Institute of Technology, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
- National
Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Robert Vácha
- CEITEC
− Central European Institute of Technology, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
- National
Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
- Department
of Condensed Matter Physics, Faculty of Science, Masaryk University, Kotlářská 267/2, 611 37 Brno, Czech
Republic
| |
Collapse
|
33
|
Wallerstein J, Han X, Levkovets M, Lesovoy D, Malmodin D, Mirabello C, Wallner B, Sun R, Sandalova T, Agback P, Karlsson G, Achour A, Agback T, Orekhov V. Insights into mechanisms of MALT1 allostery from NMR and AlphaFold dynamic analyses. Commun Biol 2024; 7:868. [PMID: 39014105 PMCID: PMC11252132 DOI: 10.1038/s42003-024-06558-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 07/05/2024] [Indexed: 07/18/2024] Open
Abstract
Mucosa-associated lymphoid tissue lymphoma-translocation protein 1 (MALT1) is an attractive target for the development of modulatory compounds in the treatment of lymphoma and other cancers. While the three-dimensional structure of MALT1 has been previously determined through X-ray analysis, its dynamic behaviour in solution has remained unexplored. We present here dynamic analyses of the apo MALT1 form along with the E549A mutation. This investigation used NMR 15N relaxation and NOE measurements between side-chain methyl groups. Our findings confirm that MALT1 exists as a monomer in solution, and demonstrate that the domains display semi-independent movements in relation to each other. Our dynamic study, covering multiple time scales, along with the assessment of conformational populations by Molecular Dynamic simulations, Alpha Fold modelling and PCA analysis, put the side chain of residue W580 in an inward position, shedding light at potential mechanisms underlying the allosteric regulation of this enzyme.
Collapse
Affiliation(s)
- Johan Wallerstein
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 465, SE-40530, Gothenburg, Sweden
| | - Xiao Han
- Science for Life Laboratory, Department of Medicine, Solna, Karolinska Institute, SE-17165, Solna, Sweden
- Division of Infectious Diseases, Karolinska University Hospital, SE‑171 76, Stockholm, Sweden
| | - Maria Levkovets
- Swedish NMR Centre, University of Gothenburg, Box 465, SE-40530, Gothenburg, Sweden
| | - Dmitry Lesovoy
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997, Moscow, Russia
| | - Daniel Malmodin
- Swedish NMR Centre, University of Gothenburg, Box 465, SE-40530, Gothenburg, Sweden
| | - Claudio Mirabello
- Dept of Physics, Chemistry and Biology, Linköping University, 581 83, Linköping, Sweden
- National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Solna, Sweden
| | - Björn Wallner
- National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Solna, Sweden
| | - Renhua Sun
- Science for Life Laboratory, Department of Medicine, Solna, Karolinska Institute, SE-17165, Solna, Sweden
- Division of Infectious Diseases, Karolinska University Hospital, SE‑171 76, Stockholm, Sweden
| | - Tatyana Sandalova
- Science for Life Laboratory, Department of Medicine, Solna, Karolinska Institute, SE-17165, Solna, Sweden
- Division of Infectious Diseases, Karolinska University Hospital, SE‑171 76, Stockholm, Sweden
| | - Peter Agback
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, PO Box 7015, SE-750 07, Uppsala, Sweden
| | - Göran Karlsson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 465, SE-40530, Gothenburg, Sweden
- Swedish NMR Centre, University of Gothenburg, Box 465, SE-40530, Gothenburg, Sweden
| | - Adnane Achour
- Science for Life Laboratory, Department of Medicine, Solna, Karolinska Institute, SE-17165, Solna, Sweden
- Division of Infectious Diseases, Karolinska University Hospital, SE‑171 76, Stockholm, Sweden
| | - Tatiana Agback
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, PO Box 7015, SE-750 07, Uppsala, Sweden.
| | - Vladislav Orekhov
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 465, SE-40530, Gothenburg, Sweden.
- Swedish NMR Centre, University of Gothenburg, Box 465, SE-40530, Gothenburg, Sweden.
| |
Collapse
|
34
|
Chakraborty R, Crawford-Eng HT, Leburton JP. Asymmetric ion transport through "Janus" MoSSe sub-nanometer pores. NANOSCALE 2024; 16:13106-13120. [PMID: 38912547 DOI: 10.1039/d4nr00589a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
We conduct all-atom molecular dynamics simulations to systematically investigate the underlying mechanisms governing ion transport through a sub-nanometer pore decorated with negative charges in a "Janus" MoSSe membrane. The charge imbalance between S and Se atoms on each side of the membrane induces different types of ion adsorption processes depending on the pore inner charge configuration, and the polarity of external biases, which leads to asymmetry in ionic I-V characteristics. Statistical analysis of the total translocation times including adsorption-desorption processes, and ion dwell times indicates that potassium ions predominantly remain adsorbed during their interaction with the membrane before undertaking a quick translocation through the pore. High applied biases suppress cation adsorption, which results in fast translocation with the current flow boosted by negative inner charges around the pore. We also show that in a membrane consisting of several "Janus" layers, the applied bias necessary to overcome the sub-nm pore barrier increases with the number of layers, providing control over the ionic current.
Collapse
Affiliation(s)
- Rajat Chakraborty
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
- Nick Holonyak, Jr. Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Henry T Crawford-Eng
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Jean-Pierre Leburton
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
- Nick Holonyak, Jr. Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
35
|
Mehrafrooz B, Yu L, Pandey L, Siwy ZS, Wanunu M, Aksimentiev A. Electro-osmotic Flow Generation via a Sticky Ion Action. ACS NANO 2024; 18:17521-17533. [PMID: 38832758 PMCID: PMC11233251 DOI: 10.1021/acsnano.4c00829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Selective transport of ions through nanometer-sized pores is fundamental to cell biology and central to many technological processes such as water desalination and electrical energy storage. Conventional methods for generating ion selectivity include placement of fixed electrical charges at the inner surface of a nanopore through either point mutations in a protein pore or chemical treatment of a solid-state nanopore surface, with each nanopore type requiring a custom approach. Here, we describe a general method for transforming a nanoscale pore into a highly selective, anion-conducting channel capable of generating a giant electro-osmotic effect. Our molecular dynamics simulations and reverse potential measurements show that exposure of a biological nanopore to high concentrations of guanidinium chloride renders the nanopore surface positively charged due to transient binding of guanidinium cations to the protein surface. A comparison of four biological nanopores reveals the relationship between ion selectivity, nanopore shape, composition of the nanopore surface, and electro-osmotic flow. Guanidinium ions are also found to produce anion selectivity and a giant electro-osmotic flow in solid-state nanopores via the same mechanism. Our sticky-ion approach to generate electro-osmotic flow can have numerous applications in controlling molecular transport at the nanoscale and for detection, identification, and sequencing of individual proteins.
Collapse
Affiliation(s)
- Behzad Mehrafrooz
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Luning Yu
- Department of Physics, Northeastern University, Boston, Massachusetts 02115, United States
| | - Laxmi Pandey
- Department of Physics, Northeastern University, Boston, Massachusetts 02115, United States
| | - Zuzanna S Siwy
- Department of Physics, University of California at Irvine, Irvine, California 92697, United States
| | - Meni Wanunu
- Department of Physics, Northeastern University, Boston, Massachusetts 02115, United States
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Aleksei Aksimentiev
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
36
|
Kienlein M, Zacharias M. How arginine inhibits substrate-binding domain 2 elucidated using molecular dynamics simulations. Protein Sci 2024; 33:e5077. [PMID: 38888275 PMCID: PMC11184577 DOI: 10.1002/pro.5077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/19/2024] [Accepted: 05/28/2024] [Indexed: 06/20/2024]
Abstract
The substrate-binding domain 2 (SBD2) is an important part of the bacterial glutamine (GLN) transporter and mediates binding and delivery of GLN to the transporter translocation subunit. The SBD2 consists of two domains, D1 and D2, that bind GLN in the space between domains in a closed structure. In the absence of ligand, the SBD2 adopts an open conformation with larger space between domains. The GLN binding and closing are essential for the subsequent transport into the cell. Arginine (ARG) can also bind to SBD2 but does not induce closing and inhibits GLN transport. We use atomistic molecular dynamics (MD) simulations in explicit solvent to study ARG binding in the presence of the open SBD2 structure and observed reversible binding to the native GLN binding site with similar contacts but no transition to a closed SBD2 state. Absolute binding free energy simulations predict a considerable binding affinity of ARG and GLN to the binding site on the D1 domain. Free energy simulations to induce subsequent closing revealed a strong free energy penalty in case of ARG binding in contrast to GLN binding that favors the closed SBD2 state but still retains a free energy barrier for closing. The simulations allowed the identification of the molecular origin of the closing penalty in case of bound ARG and suggested a mutation of lysine at position 373 to alanine that strongly reduced the penalty and allowed closing even in the presence of bound ARG. The study offers an explanation of the molecular mechanism of how ARG competitively inhibits GLN from binding to SBD2 and from triggering the transition to a closed conformation. The proposed Lys373Ala mutation shows promise as a potential tool to validate whether a conformational mismatch between open SBD2 and the translocator is responsible for preventing ARG uptake to the cell.
Collapse
Affiliation(s)
- Maximilian Kienlein
- Center for Functional Protein Assemblies (CPA)Technical University of MunichGarchingGermany
| | - Martin Zacharias
- Center for Functional Protein Assemblies (CPA)Technical University of MunichGarchingGermany
| |
Collapse
|
37
|
Deng Y, Carnevale V, Ditchfield R, Pletneva EV. Applications of the Newly Developed Force-Field Parameters Uncover a Dynamic Nature of Ω-Loop C in the Lys-Ligated Alkaline Form of Cytochrome c. J Phys Chem B 2024; 128:5935-5949. [PMID: 38864552 DOI: 10.1021/acs.jpcb.4c00625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Lys-ligated cytochromes make up an emerging family of heme proteins. Density functional theory calculations on the amine/imidazole-ligated c-type ferric heme were employed to develop force-field parameters for molecular dynamics (MD) simulations of structural and dynamic features of these proteins. The new force-field parameters were applied to the alkaline form of yeast iso-1 cytochrome c to rationalize discrepancies resulting from distinct experimental conditions in prior structural studies and to provide insights into the mechanisms of the alkaline transition. Our simulations have revealed the dynamic nature of Ω-loop C in the Lys-ligated protein and its unfolding in the Lys-ligated conformer having this loop in the same position as in the native Met-ligated protein. The proximity of Tyr67 or Tyr74 to the Lys ligand of ferric heme iron suggests a possible mechanism of the backward alkaline transition where a proton donor Tyr assists in Lys dissociation. The developed force-field parameters will be useful in structural and dynamic characterization of other native or engineered Lys-ligated heme proteins.
Collapse
Affiliation(s)
- Yunling Deng
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Vincenzo Carnevale
- Institute for Genomics and Evolutionary Medicine, Institute for Computational Molecular Science, and Department of Biology, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Robert Ditchfield
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Ekaterina V Pletneva
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, United States
| |
Collapse
|
38
|
Kariyawasam NL, Wereszczynski J. The Influence of Ionic Environment on Nucleosome-Mica Interactions Revealed via Molecular Dynamics Simulations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.25.600666. [PMID: 38979319 PMCID: PMC11230366 DOI: 10.1101/2024.06.25.600666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Mica serves as a crucial substrate in Atomic Force Microscopy (AFM) studies for visualizing and characterizing nucleosomes. Nucleosomes interact with the negatively charged mica surface via adsorbed cations. However, the specific influences of monovalent and divalent cations on nucleosome adsorption to the mica surface remain unclear. In this study, we investigated the binding of nucleosomes to the mica surface in the presence of monovalent potassium ions and divalent magnesium ions using molecular dynamics simulations. We also explored the impact of pre-treated mica surfaces on nucleosome binding and structure. Our findings reveal that nucleosome-mica interactions vary depending on the cations present, resulting in distinct effects on nucleosome structure. Notably, nucleosomes bind effectively to a mica surface in the presence of potassium ions with minimal structural perturbations.
Collapse
Affiliation(s)
- Nilusha L Kariyawasam
- Department of Physics, Illinois Institute of Technology, Chicago, USA
- Center for Molecular Study of Condensed Soft Matter, Illinois Institute of Technology, Chicago, USA
| | - Jeff Wereszczynski
- Departments of Physics and Biology, Illinois Institute of Technology, Chicago, USA
- Center for Molecular Study of Condensed Soft Matter, Illinois Institute of Technology, Chicago, USA
| |
Collapse
|
39
|
Siachouli P, Karadima KS, Mavrantzas VG, Pandis SN. The effect of functional groups on the glass transition temperature of atmospheric organic compounds: a molecular dynamics study. SOFT MATTER 2024; 20:4783-4794. [PMID: 38847330 DOI: 10.1039/d4sm00405a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Organic compounds constitute a substantial part of atmospheric particulate matter not only in terms of mass concentration but also in terms of distinct functional groups. The glass transition temperature provides an indirect way to investigate the phase state of the organic compounds, playing a crucial role in understanding their behavior and influence on aerosol processes. Molecular dynamics (MD) simulations were implemented here to predict the glass transition temperature (Tg) of atmospherically relevant organic compounds as well as the influence of their functional groups and length of their carbon chain. The cooling step used in the simulations was chosen to be neither too low (to supress crystallization) nor too high (to avoid Tg overprediction). According to the MD simulations, the predicted Tg is sensitive to the functional groups as follows: carboxylic acid (-COOH) > hydroxyl (-OH) and (-COOH) > carbonyls (-CO). Increasing the number of carbon atoms leads to higher Tg for the linearly structured compounds. Linear compounds with lower molecular weight were found to exhibit a lower Tg. No clear correlation between O : C and Tg was observed. The architecture of the carbon chain (linear, or branched, or ring) was also found to impact the glass transition temperature. Compounds containing a non-aromatic carbon ring are characterized by a higher Tg compared to linear and branched ones with the same number of carbon atoms.
Collapse
Affiliation(s)
- Panagiota Siachouli
- Department of Chemical Engineering, University of Patras, Patras, GR 26504, Greece.
- Institute of Chemical Engineering Sciences (ICE-HT/FORTH), Patras, GR 26504, Greece
| | - Katerina S Karadima
- Department of Chemical Engineering, University of Patras, Patras, GR 26504, Greece.
- Institute of Chemical Engineering Sciences (ICE-HT/FORTH), Patras, GR 26504, Greece
| | - Vlasis G Mavrantzas
- Department of Chemical Engineering, University of Patras, Patras, GR 26504, Greece.
- Institute of Chemical Engineering Sciences (ICE-HT/FORTH), Patras, GR 26504, Greece
- Particle Technology Laboratory, Department of Mechanical and Process Engineering, ETH Zürich, CH-8092 Zürich, Switzerland
| | - Spyros N Pandis
- Department of Chemical Engineering, University of Patras, Patras, GR 26504, Greece.
- Institute of Chemical Engineering Sciences (ICE-HT/FORTH), Patras, GR 26504, Greece
| |
Collapse
|
40
|
Bošković F, Maffeo C, Patiño-Guillén G, Tivony R, Aksimentiev A, Keyser UF. Nanopore Translocation Reveals Electrophoretic Force on Noncanonical RNA:DNA Double Helix. ACS NANO 2024; 18:15013-15024. [PMID: 38822455 PMCID: PMC11171748 DOI: 10.1021/acsnano.4c01466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/13/2024] [Accepted: 05/22/2024] [Indexed: 06/03/2024]
Abstract
Electrophoretic transport plays a pivotal role in advancing sensing technologies. So far, systematic studies have focused on the translocation of canonical B-form or A-form nucleic acids, while direct RNA analysis is emerging as the new frontier for nanopore sensing and sequencing. Here, we compare the less-explored dynamics of noncanonical RNA:DNA hybrids in electrophoretic transport to the well-researched transport of B-form DNA. Using DNA/RNA nanotechnology and solid-state nanopores, the translocation of RNA:DNA (RD) and DNA:DNA (DD) duplexes was examined. Notably, RD duplexes were found to translocate through nanopores faster than DD duplexes, despite containing the same number of base pairs. Our experiments reveal that RD duplexes present a noncanonical helix, with distinct transport properties from B-form DD molecules. We find that RD and DD molecules, with the same contour length, move with comparable velocity through nanopores. We examined the physical characteristics of both duplex forms using atomic force microscopy, atomistic molecular dynamics simulations, agarose gel electrophoresis, and dynamic light scattering measurements. With the help of coarse-grained and molecular dynamics simulations, we find the effective force per unit length applied by the electric field to a fragment of RD or DD duplex in nanopores with various geometries or shapes to be approximately the same. Our results shed light on the significance of helical form in nucleic acid translocation, with implications for RNA sensing, sequencing, and the molecular understanding of electrophoretic transport.
Collapse
Affiliation(s)
- Filip Bošković
- Cavendish
Laboratory, University of Cambridge, Cambridge CB3 0HE, U.K.
| | - Christopher Maffeo
- Department
of Physics, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Beckman
Institute for Advanced Science and Technology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | | | - Ran Tivony
- Cavendish
Laboratory, University of Cambridge, Cambridge CB3 0HE, U.K.
| | - Aleksei Aksimentiev
- Department
of Physics, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Beckman
Institute for Advanced Science and Technology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Department
of Bioengineering, University of Illinois
at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Ulrich F. Keyser
- Cavendish
Laboratory, University of Cambridge, Cambridge CB3 0HE, U.K.
| |
Collapse
|
41
|
Sun T, Korolev N, Minhas V, Mirzoev A, Lyubartsev AP, Nordenskiöld L. Multiscale modeling reveals the ion-mediated phase separation of nucleosome core particles. Biophys J 2024; 123:1414-1434. [PMID: 37915169 PMCID: PMC11163297 DOI: 10.1016/j.bpj.2023.10.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/05/2023] [Accepted: 10/27/2023] [Indexed: 11/03/2023] Open
Abstract
Due to the vast length scale inside the cell nucleus, multiscale models are required to understand chromatin folding, structure, and dynamics and how they regulate genomic activities such as DNA transcription, replication, and repair. We study the interactions and structure of condensed phases formed by the universal building block of chromatin, the nucleosome core particle (NCP), using bottom-up multiscale coarse-grained (CG) simulations with a model extracted from all-atom MD simulations. In the presence of the multivalent cations Mg(H2O)62+ or CoHex3+, we analyze the internal structures of the NCP aggregates and the contributions of histone tails and ions to the aggregation patterns. We then derive a "super" coarse-grained (SCG) NCP model to study the macroscopic scale phase separation of NCPs. The SCG simulations show the formation of NCP aggregates with Mg(H2O)62+ concentration-dependent densities and sizes. Variation of the CoHex3+ concentrations results in highly ordered lamellocolumnar and hexagonal columnar phases in agreement with experimental data. The results give detailed insights into nucleosome interactions and for understanding chromatin folding in the cell nucleus.
Collapse
Affiliation(s)
- Tiedong Sun
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Nikolay Korolev
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Vishal Minhas
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Alexander Mirzoev
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Alexander P Lyubartsev
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, Sweden.
| | - Lars Nordenskiöld
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
42
|
Bošković F, Maffeo C, Patiño-Guillén G, Tivony R, Aksimentiev A, Keyser UF. Nanopore translocation reveals electrophoretic force on non-canonical RNA:DNA double helix. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.12.557357. [PMID: 37745457 PMCID: PMC10515835 DOI: 10.1101/2023.09.12.557357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Electrophoretic transport plays a pivotal role in advancing sensing technologies. So far, systematic studies have focused on translocation of canonical B-form or A-form nucleic acids, while direct RNA analysis is emerging as the new frontier for nanopore sensing and sequencing. Here, we compare the less-explored dynamics of non-canonical RNA:DNA hybrids in electrophoretic transport with the well-researched transport of B-form DNA. Using DNA/RNA nanotechnology and solid-state nanopores, the translocation of RNA:DNA (RD) and DNA:DNA (DD) duplexes was examined. Notably, RD duplexes were found to translocate through nanopores faster than DD duplexes, despite containing the same number of base pairs. Our experiments reveal that RD duplexes present a non-canonical helix with distinct transport properties from B-form DD molecules. We find RD and DD molecules with the same contour length move with comparable velocity through nanopores. We examined the physical characteristics of both duplex forms using atomic force microscopy, atomistic molecular dynamics simulations, agarose gel electrophoresis, and dynamic light scattering measurements. With the help of coarse-grained and molecular dynamics simulations, we find the effective force per unit length applied by the electric field to a fragment of RD or DD duplex in nanopores with various geometries or shapes to be approximately the same within experimental errors. Our results shed light on the significance of helical form in nucleic acid translocation, with implications for RNA sensing, sequencing, and molecular understanding of electrophoretic transport.
Collapse
|
43
|
Nan Y, MacKerell AD. Balancing Group I Monatomic Ion-Polar Compound Interactions for Condensed Phase Simulation in the Polarizable Drude Force Field. J Chem Theory Comput 2024; 20:3242-3257. [PMID: 38588064 PMCID: PMC11039353 DOI: 10.1021/acs.jctc.3c01380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Molecular dynamics (MD) simulations are a commonly used method for investigating molecular behavior at the atomic level. Achieving reliable MD simulation results necessitates the use of an accurate force field. In the present work, we present a protocol to enhance the quality of group 1 monatomic ions (specifically Li+, Na+, K+, Rb+, and Cs+) with respect to their interactions with common polar model compounds in biomolecules in condensed phases in the context of the Drude polarizable force field. Instead of adjusting preexisting individual parameters for ions, model compounds, and water, we employ atom-pair specific Lennard-Jones (LJ) (known as NBFIX in CHARMM) and through-space Thole dipole screening (NBTHOLE) terms to fine-tune the balance of ion-model compound, ion-water, and model compound-water interactions. This involved establishing a protocol for the optimization of NBFIX and NBTHOLE parameters targeting the difference between molecular mechanical (MM) and quantum mechanical (QM) potential energy scans (PES). It is shown that targeting PES involving complexes that include multiple model compounds and/or ions as trimers and tetramers yields parameters that produce condensed phase properties in agreement with experimental data. Validation of this protocol involved the reproduction of experimental thermodynamic benchmarks, including solvation free energies of ions in methanol and N-methylacetamide, osmotic pressures, ionic conductivities, and diffusion coefficients within the condensed phase. These results show the importance of including more complex ion-model compound complexes beyond dimers in the QM target data to account for many-body effects during parameter fitting. The presented parameters represent a significant refinement of the Drude polarizable force field, which will lead to improved accuracy for modeling ion-biomolecular interactions.
Collapse
Affiliation(s)
- Yiling Nan
- University of Maryland Computer-Aided Drug Design Center, Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD 21201 MD
| | - Alexander D. MacKerell
- University of Maryland Computer-Aided Drug Design Center, Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD 21201 MD
| |
Collapse
|
44
|
Grassmann G, Miotto M, Desantis F, Di Rienzo L, Tartaglia GG, Pastore A, Ruocco G, Monti M, Milanetti E. Computational Approaches to Predict Protein-Protein Interactions in Crowded Cellular Environments. Chem Rev 2024; 124:3932-3977. [PMID: 38535831 PMCID: PMC11009965 DOI: 10.1021/acs.chemrev.3c00550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 04/11/2024]
Abstract
Investigating protein-protein interactions is crucial for understanding cellular biological processes because proteins often function within molecular complexes rather than in isolation. While experimental and computational methods have provided valuable insights into these interactions, they often overlook a critical factor: the crowded cellular environment. This environment significantly impacts protein behavior, including structural stability, diffusion, and ultimately the nature of binding. In this review, we discuss theoretical and computational approaches that allow the modeling of biological systems to guide and complement experiments and can thus significantly advance the investigation, and possibly the predictions, of protein-protein interactions in the crowded environment of cell cytoplasm. We explore topics such as statistical mechanics for lattice simulations, hydrodynamic interactions, diffusion processes in high-viscosity environments, and several methods based on molecular dynamics simulations. By synergistically leveraging methods from biophysics and computational biology, we review the state of the art of computational methods to study the impact of molecular crowding on protein-protein interactions and discuss its potential revolutionizing effects on the characterization of the human interactome.
Collapse
Affiliation(s)
- Greta Grassmann
- Department
of Biochemical Sciences “Alessandro Rossi Fanelli”, Sapienza University of Rome, Rome 00185, Italy
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Rome 00161, Italy
| | - Mattia Miotto
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Rome 00161, Italy
| | - Fausta Desantis
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Rome 00161, Italy
- The
Open University Affiliated Research Centre at Istituto Italiano di
Tecnologia, Genoa 16163, Italy
| | - Lorenzo Di Rienzo
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Rome 00161, Italy
| | - Gian Gaetano Tartaglia
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Rome 00161, Italy
- Department
of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genoa 16163, Italy
- Center
for Human Technologies, Genoa 16152, Italy
| | - Annalisa Pastore
- Experiment
Division, European Synchrotron Radiation
Facility, Grenoble 38043, France
| | - Giancarlo Ruocco
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Rome 00161, Italy
- Department
of Physics, Sapienza University, Rome 00185, Italy
| | - Michele Monti
- RNA
System Biology Lab, Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genoa 16163, Italy
| | - Edoardo Milanetti
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Rome 00161, Italy
- Department
of Physics, Sapienza University, Rome 00185, Italy
| |
Collapse
|
45
|
Coshic K, Maffeo C, Winogradoff D, Aksimentiev A. The structure and physical properties of a packaged bacteriophage particle. Nature 2024; 627:905-914. [PMID: 38448589 PMCID: PMC11196859 DOI: 10.1038/s41586-024-07150-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 02/01/2024] [Indexed: 03/08/2024]
Abstract
A string of nucleotides confined within a protein capsid contains all the instructions necessary to make a functional virus particle, a virion. Although the structure of the protein capsid is known for many virus species1,2, the three-dimensional organization of viral genomes has mostly eluded experimental probes3,4. Here we report all-atom structural models of an HK97 virion5, including its entire 39,732 base pair genome, obtained through multiresolution simulations. Mimicking the action of a packaging motor6, the genome was gradually loaded into the capsid. The structure of the packaged capsid was then refined through simulations of increasing resolution, which produced a 26 million atom model of the complete virion, including water and ions confined within the capsid. DNA packaging occurs through a loop extrusion mechanism7 that produces globally different configurations of the packaged genome and gives each viral particle individual traits. Multiple microsecond-long all-atom simulations characterized the effect of the packaged genome on capsid structure, internal pressure, electrostatics and diffusion of water, ions and DNA, and revealed the structural imprints of the capsid onto the genome. Our approach can be generalized to obtain complete all-atom structural models of other virus species, thereby potentially revealing new drug targets at the genome-capsid interface.
Collapse
Affiliation(s)
- Kush Coshic
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Christopher Maffeo
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - David Winogradoff
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Aleksei Aksimentiev
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
46
|
Smirnova E, Bignon E, Schultz P, Papai G, Ben Shem A. Binding to nucleosome poises human SIRT6 for histone H3 deacetylation. eLife 2024; 12:RP87989. [PMID: 38415718 PMCID: PMC10942634 DOI: 10.7554/elife.87989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024] Open
Abstract
Sirtuin 6 (SIRT6) is an NAD+-dependent histone H3 deacetylase that is prominently found associated with chromatin, attenuates transcriptionally active promoters and regulates DNA repair, metabolic homeostasis and lifespan. Unlike other sirtuins, it has low affinity to free histone tails but demonstrates strong binding to nucleosomes. It is poorly understood how SIRT6 docking on nucleosomes stimulates its histone deacetylation activity. Here, we present the structure of human SIRT6 bound to a nucleosome determined by cryogenic electron microscopy. The zinc finger domain of SIRT6 associates tightly with the acidic patch of the nucleosome through multiple arginine anchors. The Rossmann fold domain binds to the terminus of the looser DNA half of the nucleosome, detaching two turns of the DNA from the histone octamer and placing the NAD+ binding pocket close to the DNA exit site. This domain shows flexibility with respect to the fixed zinc finger and moves with, but also relative to, the unwrapped DNA terminus. We apply molecular dynamics simulations of the histone tails in the nucleosome to show that in this mode of interaction, the active site of SIRT6 is perfectly poised to catalyze deacetylation of the H3 histone tail and that the partial unwrapping of the DNA allows even lysines close to the H3 core to reach the enzyme.
Collapse
Affiliation(s)
- Ekaterina Smirnova
- Department of Integrated Structural Biology, IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC)IllkirchFrance
- Université de Strasbourg, IGBMC UMR 7104-UMR-S 1258IllkirchFrance
- CNRS, UMR 7104IllkirchFrance
- Inserm, UMR-S 1258IllkirchFrance
| | | | - Patrick Schultz
- Department of Integrated Structural Biology, IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC)IllkirchFrance
- Université de Strasbourg, IGBMC UMR 7104-UMR-S 1258IllkirchFrance
- CNRS, UMR 7104IllkirchFrance
- Inserm, UMR-S 1258IllkirchFrance
| | - Gabor Papai
- Department of Integrated Structural Biology, IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC)IllkirchFrance
- Université de Strasbourg, IGBMC UMR 7104-UMR-S 1258IllkirchFrance
- CNRS, UMR 7104IllkirchFrance
- Inserm, UMR-S 1258IllkirchFrance
| | - Adam Ben Shem
- Department of Integrated Structural Biology, IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC)IllkirchFrance
- Université de Strasbourg, IGBMC UMR 7104-UMR-S 1258IllkirchFrance
- CNRS, UMR 7104IllkirchFrance
- Inserm, UMR-S 1258IllkirchFrance
| |
Collapse
|
47
|
Song Y, Kim JS. Structure and dynamics of double-stranded DNA rotaxanes. NANOSCALE 2024; 16:4317-4324. [PMID: 38353661 DOI: 10.1039/d3nr05846h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
A DNA rotaxane, with its unique mechanically interlocked architecture consisting of a circular DNA molecule threaded onto a linear DNA axle, holds promise as a fundamental component for nanoscale functional devices. Nevertheless, its structural and dynamic behaviors, essential for advancing molecular machinery, remain largely unexplored. Using extensive all-atom molecular dynamics simulations, we investigated the behaviors of double-stranded DNA (dsDNA) rotaxanes, concentrating on the effects of shape distortion induced by torsional stress in small circular dsDNA containing 70-90 base pairs. We analyzed structural characteristics, including shape, intermolecular distances, and tilt angles, while also exploring dynamic properties such as translational diffusion and toroidal rotation. Our results indicate that shape distortion brings the circular and linear dsDNA components into closer proximity and causes a slight increase in translational diffusion yet a minor decrease in toroidal rotation. Nevertheless, there is no apparent evidence of coupling between translation and rotation. Overall, the insights from this study indicate that such shape distortion does not significantly alter their structure and dynamics. This finding provides flexibility for the design of DNA rotaxanes in nanoscale applications.
Collapse
Affiliation(s)
- Yeonho Song
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea.
| | - Jun Soo Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea.
| |
Collapse
|
48
|
Liu J, Aksimentiev A. Molecular Determinants of Current Blockade Produced by Peptide Transport Through a Nanopore. ACS NANOSCIENCE AU 2024; 4:21-29. [PMID: 38406313 PMCID: PMC10885333 DOI: 10.1021/acsnanoscienceau.3c00046] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/28/2023] [Accepted: 11/03/2023] [Indexed: 02/27/2024]
Abstract
The nanopore sensing method holds the promise of delivering a single molecule technology for identification of biological proteins, direct detection of post-translational modifications, and perhaps de novo determination of a protein's amino acid sequence. The key quantity measured in such nanopore sensing experiments is the magnitude of the ionic current passing through a nanopore blocked by a polypeptide chain. Establishing a relationship between the amino acid sequence of a peptide fragment confined within a nanopore and the blockade current flowing through the nanopore remains a major challenge for realizing the nanopore protein sequencing. Using the results of all-atom molecular dynamics simulations, here we compare nanopore sequencing of DNA with nanopore sequencing of proteins. We then delineate the factors affecting the blockade current modulation by the peptide sequence, showing that the current can be determined by (i) the steric footprint of an amino acid, (ii) its interactions with the pore wall, (iii) the local stretching of a polypeptide chain, and (iv) the local enhancement of the ion concentration at the nanopore constriction. We conclude with a brief discussion of the prospects for purely computational prediction of the blockade currents.
Collapse
Affiliation(s)
- Jingqian Liu
- Center
for Biophysics and Quantitative Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Beckman
Institute for Advanced Science and Technology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Aleksei Aksimentiev
- Center
for Biophysics and Quantitative Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Beckman
Institute for Advanced Science and Technology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Department
of Physics, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
49
|
Riopedre-Fernandez M, Biriukov D, Dračínský M, Martinez-Seara H. Hyaluronan-arginine enhanced and dynamic interaction emerges from distinctive molecular signature due to electrostatics and side-chain specificity. Carbohydr Polym 2024; 325:121568. [PMID: 38008475 DOI: 10.1016/j.carbpol.2023.121568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/01/2023] [Accepted: 11/05/2023] [Indexed: 11/28/2023]
Abstract
Hyaluronan is a natural carbohydrate polymer with a negative charge that fosters gel-like conditions crucial for its cellular functions and industrial applications. As a recognized ligand for proteins, understanding their mutual interactions provides solid ground to tune hyaluronan's gel properties using biocompatible peptides. This work employs NMR and molecular dynamics simulations to identify molecular motifs relevant to hyaluronan-peptide interactions using arginine, lysine, and glycine oligopeptides. Arginine-rich peptides exhibit the strongest binding to hyaluronan according to chemical shift perturbation measurements, followed distantly by the similarly charged lysine. This difference highlights the significance of electrostatics and the peculiarities of the guanidinium side chain in arginine, capable of non-polar interactions that further stabilize the binding. Additional nuclear Overhauser effect measurements do not show stable interaction partners, precluding strong and well-defined complexes. Finally, molecular simulations support our findings and show an extended but significant interaction region, especially for arginine, responsible for the observed enhanced binding, which can also promote cross-linking of hyaluronan polymers. Our findings pave the way for optimizing biocompatible peptides to alter hyaluronan gels' properties efficiently and also explain why hyaluronan-protein interaction typically involves positively charged arginine-rich regions also capable of forming hydrogen bonds and non-polar interactions.
Collapse
Affiliation(s)
- Miguel Riopedre-Fernandez
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, Prague 6 16000, Czech Republic
| | - Denys Biriukov
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, Prague 6 16000, Czech Republic
| | - Martin Dračínský
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, Prague 6 16000, Czech Republic
| | - Hector Martinez-Seara
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, Prague 6 16000, Czech Republic.
| |
Collapse
|
50
|
Love O, Winkler L, Cheatham TE. van der Waals Parameter Scanning with Amber Nucleic Acid Force Fields: Revisiting Means to Better Capture the RNA/DNA Structure through MD. J Chem Theory Comput 2024; 20:625-643. [PMID: 38157247 PMCID: PMC10809421 DOI: 10.1021/acs.jctc.3c01164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 01/03/2024]
Abstract
Molecular dynamics simulations can be used in combination with experimental techniques to uncover the intricacies of biomolecular structure, dynamics, and the resulting interactions. However, many noncanonical nucleic acid structures have proven to be challenging to replicate in accurate agreement with experimental data, often attributed to known force field deficiencies. A common force field criticism is the handling of van der Waals (vdW) parameters, which have not been updated since the regular use of Ewald's methods became routine. This work dives into the effects of minute vdW radii shifts on RNA tetranucleotide, B-DNA, and Z-DNA model systems described by commonly used Amber force fields. Using multidimensional replica exchange molecular dynamics (M-REMD), the GACC RNA tetranucleotide demonstrated changes in the structural distribution between the NMR minor and anomalous structure populations based on the O2' vdW radii scanning. However, no significant change in the NMR Major conformation population was observed. There were minimal changes in the B-DNA structure but there were more substantial improvements in Z-DNA structural descriptions, specifically with the Tumuc1 force field. This occurred with both LJbb vdW radii adjustments and incorporation of the CUFIX nonbonded parameter modifications. Though the limited vdW modifications tested did not provide a universal fix to the challenge of simulating the various known nucleic acid structures, they do provide direction and a greater understanding for future force field development efforts.
Collapse
Affiliation(s)
| | | | - Thomas E. Cheatham
- Department of Medicinal Chemistry,
College of Pharmacy, University of Utah, 2000 East 30 South Skaggs 306, Salt Lake City, Utah 84112, United States
| |
Collapse
|