1
|
Alsaleh AN, Aziz IM, Aljowaie RM, Alshalan RM, Alkubaisi NA, Aboul-Soud MAM. In Vitro Evaluation, Chemical Profiling, and In Silico ADMET Prediction of the Pharmacological Activities of Artemisia absinthium Root Extract. Pharmaceuticals (Basel) 2024; 17:1646. [PMID: 39770489 PMCID: PMC11728498 DOI: 10.3390/ph17121646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/21/2024] [Accepted: 12/05/2024] [Indexed: 01/16/2025] Open
Abstract
Artemisia absinthium L., is a plant with established pharmacological properties, but the A. absinthium root extract (AARE) remains unexplored. The aim of this study was to examine the chemical composition of AARE and assess its biological activity, which included antidiabetic, antibacterial, anticancer, and antioxidant properties. GC-MS was used to analyze the chemical components. The antioxidant activity of the total phenolic and flavonoid content was evaluated. Antibacterial activity and cytotoxic effects were identified. Enzyme inhibition experiments were performed to determine its antidiabetic potential. Molecular docking was utilized to evaluate the potential antioxidant, antibacterial, and anticancer activities of the compounds from AARE using Maestro 11.5 from the Schrödinger suite. AARE exhibited moderate antioxidant activity in DPPH (IC50: 172.41 ± 3.15 μg/mL) and ABTS (IC50: 378.94 ± 2.18 μg/mL) assays. Cytotoxicity tests on MCF-7 and HepG2 cancer cells demonstrated significant anticancer effects, with IC50 values of 150.12 ± 0.74 μg/mL and 137.11 ± 1.33 μg/mL, respectively. Apoptotic studies indicated an upregulation of pro-apoptotic genes (caspase-3, 8, 9, Bax) and a downregulation of anti-apoptotic markers (Bcl-2 and Bcl-Xl). AARE also inhibited α-amylase and α-glucosidase, suggesting potential antidiabetic effects, with IC50 values of 224.12 ± 1.17 μg/mL and 243.35 ± 1.51 μg/mL. Antibacterial assays revealed strong activity against Gram-positive bacteria. Molecular docking and pharmacokinetic analysis identified promising inhibitory effects of key AARE compounds on NADPH oxidase, E. coli Gyrase B, and Topoisomerase IIα, with favorable drug-like properties. These findings suggest AARE's potential in treating cancer, diabetes, and bacterial infections, warranting further in vivo and clinical studies.
Collapse
Affiliation(s)
- Asma N. Alsaleh
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (A.N.A.); (R.M.A.); (R.M.A.); (N.A.A.)
| | - Ibrahim M. Aziz
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (A.N.A.); (R.M.A.); (R.M.A.); (N.A.A.)
| | - Reem M. Aljowaie
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (A.N.A.); (R.M.A.); (R.M.A.); (N.A.A.)
| | - Rawan M. Alshalan
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (A.N.A.); (R.M.A.); (R.M.A.); (N.A.A.)
| | - Noorah A. Alkubaisi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (A.N.A.); (R.M.A.); (R.M.A.); (N.A.A.)
| | - Mourad A. M. Aboul-Soud
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh 11433, Saudi Arabia;
| |
Collapse
|
2
|
Liu Y, Wang Y, Sheng Z, Du Q, Zhang H. New insights into EGCG retards the digestion of wheat starch by α-amylase in ternary system: Comparison with binary systems. Int J Biol Macromol 2024; 283:137639. [PMID: 39547637 DOI: 10.1016/j.ijbiomac.2024.137639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/11/2024] [Accepted: 11/12/2024] [Indexed: 11/17/2024]
Abstract
This study was to investigate the mechanism of the action of epigallocatechin gallate (EGCG) on α-amylase in the ternary simulated system and explore the changes in enzyme structure during the digestion process. Enzymatic kinetics, fluorescence spectroscopy, surface hydrophobicity, fluorescence microscopy, and molecular docking were used to compare (in the presence and absence of EGCG) the structural changes of α-amylase and α-amylase-starch complex, as well as the binding characteristics among EGCG and the α-amylase and starch. The results showed that EGCG had a significant inhibitory effect on α-amylase, and it exhibited a coexistence of competitive and anti-competition inhibition type, and predominantly competitive inhibition. In the ternary and binary systems, the inhibitory mechanisms of EGCG on α-amylase were distinct. In the ternary system, EGCG preferably bound to α-amylase to form α-amylase-EGCG binary complexes rather than α-amylase-starch-EGCG ternary complexes, and altered the structure of α-amylase, leading to unfolding of the enzyme's secondary structure and exposing more non-catalytic site aromatic amino acids.
Collapse
Affiliation(s)
- Yi Liu
- College of Food and Health, Zhejiang Agriculture and Forestry University, No. 666 Wusu Road, Linan District, 311300 Hangzhou, Zhejiang Province, China.
| | - Yiru Wang
- College of Food and Health, Zhejiang Agriculture and Forestry University, No. 666 Wusu Road, Linan District, 311300 Hangzhou, Zhejiang Province, China
| | - Zheng Sheng
- College of Food and Health, Zhejiang Agriculture and Forestry University, No. 666 Wusu Road, Linan District, 311300 Hangzhou, Zhejiang Province, China
| | - Qizhen Du
- College of Food and Health, Zhejiang Agriculture and Forestry University, No. 666 Wusu Road, Linan District, 311300 Hangzhou, Zhejiang Province, China
| | - Haihua Zhang
- College of Food and Health, Zhejiang Agriculture and Forestry University, No. 666 Wusu Road, Linan District, 311300 Hangzhou, Zhejiang Province, China.
| |
Collapse
|
3
|
Zuñiga-Martínez BS, Domínguez-Avila JA, Montiel-Herrera M, Villegas-Ochoa MA, Robles-Sánchez RM, Ayala-Zavala JF, Viuda-Martos M, González-Aguilar GA. Consumption of Plant-Derived Phenolic Acids Modulates Hunger and Satiety Responses Due to Chemical Interactions with Enteroendocrine Mediators. Foods 2024; 13:3640. [PMID: 39594055 PMCID: PMC11593637 DOI: 10.3390/foods13223640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/08/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
Energy-dense foods are commonly rich in fat and simple sugars and poor in dietary fiber and micronutrients; regularly consuming them decreases the concentration and/or effect of anorexigenic hormones and may increase that of orexigenic ones, thereby decreasing satiety. In contrast, plant-derived phenolic-rich foods exert positive effects on satiety. In silico, in vitro, and in vivo investigations on some of most representative phenolic acids like chlorogenic acid (CGA), gallic acid (GA), ferulic acid (FA), and protocatechuic acid (PCA) have shown that they are able to modulate various hunger and satiety processes; however, there are few studies that show how their chemical structure contributes to achieve such effects. The objective of this review is to summarize how these phenolic acids can favorably modulate hormones and other satiety mediators, with emphasis on the chemical interactions exerted between the core of these compounds and their biological targets. The evidence suggests that they form interactions with certain hormones, their receptors, and/or enzymes involved in regulating hunger and satiety, which are attributed to their chemical structure (such as the position of hydroxyl groups). Further research is needed to continue understanding these molecular mechanisms of action and to utilize the knowledge in the development of health-promoting foods.
Collapse
Affiliation(s)
- B. Shain Zuñiga-Martínez
- Centro de Investigación en Alimentación y Desarrollo A. C., Carretera Gustavo Enrique Astiazarán Rosas No. 46, Col. La Victoria, Hermosillo 83304, SO, Mexico; (B.S.Z.-M.); (M.A.V.-O.); (J.F.A.-Z.); (G.A.G.-A.)
| | - J. Abraham Domínguez-Avila
- CONAHCYT-Centro de Investigación en Alimentación y Desarrollo A. C., Carretera Gustavo Enrique Astiazarán Rosas No. 46, Col. La Victoria, Hermosillo 83304, SO, Mexico
| | - Marcelino Montiel-Herrera
- Departmento de Medicina y Ciencias de la Salud, Universidad de Sonora, Blvd. Luis Encinas y Rosales s/n, Col Centro, Hermosillo 83000, SO, Mexico;
| | - Mónica A. Villegas-Ochoa
- Centro de Investigación en Alimentación y Desarrollo A. C., Carretera Gustavo Enrique Astiazarán Rosas No. 46, Col. La Victoria, Hermosillo 83304, SO, Mexico; (B.S.Z.-M.); (M.A.V.-O.); (J.F.A.-Z.); (G.A.G.-A.)
| | - Rosario Maribel Robles-Sánchez
- Departmento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Blvd. Luis Encinas y Rosales s/n, Col Centro, Hermosillo 83000, SO, Mexico;
| | - J. Fernando Ayala-Zavala
- Centro de Investigación en Alimentación y Desarrollo A. C., Carretera Gustavo Enrique Astiazarán Rosas No. 46, Col. La Victoria, Hermosillo 83304, SO, Mexico; (B.S.Z.-M.); (M.A.V.-O.); (J.F.A.-Z.); (G.A.G.-A.)
| | - Manuel Viuda-Martos
- IPOA Research Group, Instituto de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Universidad Miguel Hernández, 03312 Alicante, Spain;
| | - Gustavo A. González-Aguilar
- Centro de Investigación en Alimentación y Desarrollo A. C., Carretera Gustavo Enrique Astiazarán Rosas No. 46, Col. La Victoria, Hermosillo 83304, SO, Mexico; (B.S.Z.-M.); (M.A.V.-O.); (J.F.A.-Z.); (G.A.G.-A.)
| |
Collapse
|
4
|
Mate PS, Verma VC, Agrawal S, Jaiswal JP, Kumari VV, Kumar R, Kumari M, Gaber A, Hossain A. Effect of fenugreek (Trigonella foenum-graecum L.) seed extract on glycemic index, in vitro digestibility, and physical characterization of wheat (Triticum aestivum L.) starch. J Food Sci 2024; 89:7626-7639. [PMID: 39327545 DOI: 10.1111/1750-3841.17411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/16/2024] [Accepted: 09/03/2024] [Indexed: 09/28/2024]
Abstract
Diabetes is a major health concern and is approaching epidemic proportions worldwide. In 2021, diabetes mellitus was responsible for 6.7 million deaths across the globe. Mortality due to diabetes is predicted to rise nearly 10-fold by 2030 and 783 million by 2045. Wheat starch, which constitutes about 70% of the endosperm, is a key component of wheat grain. The rapid hydrolysis of wheat starch can result in elevated postprandial glucose levels, leading to diabetes. The increase in blood glucose levels is primarily due to carbohydrate hydrolysis, catalyzed by the enzymes α-amylase and α-glucosidase. Although various medications are available for treating diabetes, most of them are costly and may lead to adverse effects. Natural herbs like fenugreek are recommended in traditional medicine for regulating blood glucose levels. This investigation aimed to study the effect of fenugreek seed extract (FSE) on in vitro starch hydrolysis by pancreatic α-amylase and the ultrastructure of starch. Wheat cultivars were characterized for their total starch, amylose content, and resistant starch content, and were screened for their predicted glycemic index. Microscopic studies were conducted to analyze the size and shape of starch granules and to compare native starch with starch treated with FSE. Significant inhibition of enzymatic starch hydrolysis was observed with FSE, with the maximum inhibitory effect caused by 0.2% FSE. These findings suggest that fenugreek could play a role in controlling blood glucose levels by reducing wheat starch hydrolysis and could be effective in managing diabetes.
Collapse
Affiliation(s)
- Payal S Mate
- Department of Biochemistry, G.B. Pant University of Agriculture & Technology, Pantnagar, India
- Division of Animal Biochemistry, National Dairy Research Institute, Karnal, India
| | - Vivek Chandra Verma
- Department of Biochemistry, G.B. Pant University of Agriculture & Technology, Pantnagar, India
- Department of Biochemistry, Panjab University, Chandigarh, India
| | - Sanjeev Agrawal
- Department of Biochemistry, G.B. Pant University of Agriculture & Technology, Pantnagar, India
| | - Jai Prakash Jaiswal
- Department of Genetics & Plant Breeding, G.B. Pant University of Agriculture & Technology, Pantnagar, India
| | | | - Rajeev Kumar
- Division of Plant Physiology & Biochemistry, Indian Institute of Sugarcane Research (ICAR), Lucknow, India
| | - Mala Kumari
- Department of Plant Breeding & Genetics, Bihar Agricultural University, Bhagalpur, India
| | - Ahmed Gaber
- Department of Biology, College of Science, Taif University, Taif, Saudi Arabia
| | - Akbar Hossain
- Soil Science Division, Bangladesh Wheat and Maize Research Institute, Dinajpur, Bangladesh
| |
Collapse
|
5
|
Mukherjee S, Chopra H, Goyal R, Jin S, Dong Z, Das T, Bhattacharya T. Therapeutic effect of targeted antioxidant natural products. DISCOVER NANO 2024; 19:144. [PMID: 39251461 PMCID: PMC11383917 DOI: 10.1186/s11671-024-04100-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/28/2024] [Indexed: 09/11/2024]
Abstract
The exploration of targeted therapy has proven to be a highly promising avenue in the realm of drug development research. The human body generates a substantial amount of free radicals during metabolic processes, and if not promptly eliminated, these free radicals can lead to oxidative stress, disrupting homeostasis and potentially contributing to chronic diseases and cancers. Before the development of contemporary medicine with synthetic pharmaceuticals and antioxidants, there was a long-standing practice of employing raw, natural ingredients to cure a variety of illnesses. This practice persisted even after the active antioxidant molecules were known. The ability of natural antioxidants to neutralise excess free radicals in the human body and so prevent and cure a wide range of illnesses. The term "natural antioxidant" refers to compounds derived from plants or other living organisms that have the ability to control the production of free radicals, scavenge them, stop free radical-mediated chain reactions, and prevent lipid peroxidation. These compounds have a strong potential to inhibit oxidative stress. Phytochemicals (antioxidants) derived from plants, such as polyphenols, carotenoids, vitamins, and others, are central to the discussion of natural antioxidants. Not only may these chemicals increase endogenous antioxidant defenses, affect communication cascades, and control gene expression, but they have also shown strong free radical scavenging properties. This study comprehensively summarizes the primary classes of natural antioxidants found in different plant and animal source that contribute to the prevention and treatment of diseases. Additionally, it outlines the research progress and outlines future development prospects. These discoveries not only establish a theoretical groundwork for pharmacological development but also present inventive ideas for addressing challenges in medical treatment.
Collapse
Affiliation(s)
- Sohini Mukherjee
- Department of Environmental Science, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, West Bengal, 700019, India
| | - Hitesh Chopra
- Department of Biosciences, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, 602105, India
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Rajat Goyal
- MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana, 133207, India
| | - Sihao Jin
- Department of Nursing, School of Medicine, Shaoxing Vocational and Technical College, Shaoxing, 312000, China
| | - Zhenzhen Dong
- Department of Nursing, School of Medicine, Shaoxing Vocational and Technical College, Shaoxing, 312000, China
| | - Tanmoy Das
- Faculty of Engineering, Lincoln University College, 47301, Petaling Jaya, Selangor Darul Ehsan, Malaysia
| | - Tanima Bhattacharya
- Faculty of Applied Science, Lincoln University College, 47301, Petaling Jaya, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
6
|
Zhu Y, Wang D, Zhou S, Zhou T. Hypoglycemic Effects of Gynura divaricata (L.) DC Polysaccharide and Action Mechanisms via Modulation of Gut Microbiota in Diabetic Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:9893-9905. [PMID: 38651360 DOI: 10.1021/acs.jafc.4c00626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Aiming to provide a basis for the application of Gynura divaricata (L.) DC polysaccharide (GDP) in functional foods, the hypoglycemic effects of GDP, and action mechanisms, were investigated. Results showed that GDP effectively inhibited α-glucosidase and remarkably increased the glucose absorption, glycogen content, and pyruvate kinase and hexokinase activities of insulin-resistant HepG2 cells, indicating its potent in vitro hypoglycemic effect. In streptozotocin-induced type 2 diabetes mice, GDP significantly improved various glycolipid metabolism-related indices in serum and liver, e.g., fasting blood glucose, oral glucose tolerance, glycosylated serum protein content, serum insulin level, antioxidant enzyme activities, TG, TC, LDL-C, and HDL-C levels, and hepatic glycogen content, and recovered the structure of gut microbiota to the normal level. It was also found that GDP significantly affected the expression of related genes in the PI3K/Akt, AMPK, and GS/GSK-3β signaling pathways. Therefore, GDP regulates blood glucose possibly by directly inhibiting α-glucosidase, exerting antioxidant activity, and regulating intestinal microbiota.
Collapse
Affiliation(s)
- Yuzhu Zhu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Xiasha, Hangzhou, Zhejiang 310018, PR China
| | - Dong Wang
- Zhejiang Chemtrue Bio-Pharm Co., Ltd., Xiasha, Hangzhou, Zhejiang 310018, PR China
| | - Shaobo Zhou
- Key Laboratory for Food Microbial Technology of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Xiasha, Hangzhou, Zhejiang 310018, PR China
- School of Science, Faculty of Engineering and Science, University of Greenwich, Central Avenue, Chatham ME4 4TB, U.K
| | - Tao Zhou
- Key Laboratory for Food Microbial Technology of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Xiasha, Hangzhou, Zhejiang 310018, PR China
| |
Collapse
|
7
|
Cui XR, Bai YP, Guo XN, Zhu KX. Insights into the effect mechanism of acidic pH condition on the in vitro starch digestion of black highland barley semi-dried noodles. Int J Biol Macromol 2024; 265:130928. [PMID: 38513901 DOI: 10.1016/j.ijbiomac.2024.130928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/04/2024] [Accepted: 03/14/2024] [Indexed: 03/23/2024]
Abstract
In this study, black highland barley semi-dried noodles (BHBSNs) were adjusted to acidic pH (5.0, 4.5, 4.0) with an acidity regulator (monosodium fumarate) for obtaining low glycemic index (GI) BHBSNs, and the changes in the in vitro starch digestion, free phenolic content, and α-amylase activity in BHBSNs were investigated. The estimated glycemic index (eGI) of BHBSNs decreased from 59.23 to 52.59, 53.89 and 53.61, respectively, as the pH was adjusted from 6.0 to 5.0, 4.5, 4.0. As the pH of BHBSNs decreased, the equilibrium hydrolysis (C∞) decreased, and kinetic coefficient (k) decreased and then increased. Compared to the control, the pH of the digestive fluid decreased during digestion with decreasing pH, and the α-amylase inhibition of BHBSNs with pH 5.0, 4.5, and 4.0 increased by 56.54 %, 75.18 %, and 107.98 %, respectively. In addition, as the pH of BHBSNs decreased, the free phenolic content and the content of released phenolics during digestion increased. Pearson correlations analysis showed that the increase in α-amylase inhibition and phenolic release during digestion induced by acidic pH was negatively correlated with the eGI and C∞ of BHBSNs. This study indicated that acidic pH condition could modulate starch digestion for preparing low GI BHBSNs.
Collapse
Affiliation(s)
- Xin-Ru Cui
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, Jiangsu Province, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, PR China
| | - Yi-Peng Bai
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, Jiangsu Province, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, PR China.
| | - Xiao-Na Guo
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, Jiangsu Province, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, PR China.
| | - Ke-Xue Zhu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, Jiangsu Province, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, PR China.
| |
Collapse
|
8
|
Khenifi ML, Serseg T, Migas P, Krauze-Baranowska M, Özdemir S, Bensouici C, Alghonaim MI, Al-Khafaji K, Alsalamah SA, Boudjeniba M, Yousfi M, Boufahja F, Bendif H, Mahdid M. HPLC-DAD-MS Characterization, Antioxidant Activity, α-amylase Inhibition, Molecular Docking, and ADMET of Flavonoids from Fenugreek Seeds. Molecules 2023; 28:7798. [PMID: 38067527 PMCID: PMC10708475 DOI: 10.3390/molecules28237798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/18/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
Fenugreek (Trigonella foenum-graecum) has a great beneficial health effect; it has been used in traditional medicine by many cultures. Likewise, the α-amylase inhibitors are potential compounds in the development of drugs for the treatment of diabetes. The beneficial health effects of fenugreek lead us to explore the chemical composition of the seeds and their antioxidant and α-amylase inhibition activities. The flavonoid extraction from fenugreek seeds was achieved with methanol through a Soxhlet apparatus. Then, the flavonoid glycosides were characterized using HPLC-DAD-ESI-MS analysis. The antioxidant capacity of fenugreek seed was measured using DPPH, FRAP, ABTS, and CUPRAC assays. Finally, the α-amylase inhibition activity was carried out using in vitro and in silico methods. The methanolic extract was found to contain high amounts of total phenolics (154.68 ± 1.50 μg GAE/mg E), flavonoids (37.69 ± 0.73 μg QE/mg E). The highest radical-scavenging ability was recorded for the methanolic extract against DPPH (IC50 = 556.6 ± 9.87 μg/mL), ABTS (IC50 = 593.62 ± 9.35 μg/mL). The ME had the best reducing power according to the CUPRAC (A 0.5 = 451.90 ± 9.07 μg/mL). The results indicate that the methanolic extracts of fenugreek seed best α-amylase inhibition activities IC50 = 653.52 ± 3.24 μg/mL. Twenty-seven flavonoids were detected, and all studied flavonoids selected have good affinity and stabilize very well in the pocket of α-amylase. The interactions between the studied flavonoids with α-amylase were investigated. The flavonoids from fenugreek seed present a good inhibitory effect against α-amylase, which is beneficial for the prevention of diabetes and its complications.
Collapse
Affiliation(s)
- Mohammed Lamine Khenifi
- Laboratoire d’Ethnobotanique et Substances Naturelles, Departement of Biology, Ecole Normale Supérieure de Kouba, B.P 92, Kouba 16308, Algeria; (M.L.K.); (M.B.); (H.B.); (M.M.)
- Laboratoire des Sciences Appliquées et Didactiques, Ecole Normale Supérieure de Laghouat, B.P 4033 la gare routière, Laghouat 03000, Algeria;
| | - Talia Serseg
- Laboratoire des Sciences Appliquées et Didactiques, Ecole Normale Supérieure de Laghouat, B.P 4033 la gare routière, Laghouat 03000, Algeria;
- Fundamental Sciences Laboratory, Amar Telidji University, Laghouat 03000, Algeria;
| | - Piotr Migas
- Pharmacognosy with Medicinal Plants Garden, Medical University of Gdańsk, 80-416 Gdańsk, Poland; (P.M.); (M.K.-B.)
| | - Mirosława Krauze-Baranowska
- Pharmacognosy with Medicinal Plants Garden, Medical University of Gdańsk, 80-416 Gdańsk, Poland; (P.M.); (M.K.-B.)
| | - Sadin Özdemir
- Food Processing Programme, Technical Science Vocational School Mersin University, Mersin TR-33343, Turkey;
| | - Chawki Bensouici
- Biotechnology Research Center (CRBT), Ali Mendjli New Town UV 03, B.P E73, Constantine 25016, Algeria;
| | - Mohammed I. Alghonaim
- Biology Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia; (M.I.A.); (S.A.A.)
| | - Khattab Al-Khafaji
- Department of Environmental Science, College of Energy and Environmental Science, Al-Karkh University of Science, Baghdad 10081, Iraq;
| | - Sulaiman A. Alsalamah
- Biology Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia; (M.I.A.); (S.A.A.)
| | - Messaoud Boudjeniba
- Laboratoire d’Ethnobotanique et Substances Naturelles, Departement of Biology, Ecole Normale Supérieure de Kouba, B.P 92, Kouba 16308, Algeria; (M.L.K.); (M.B.); (H.B.); (M.M.)
| | - Mohamed Yousfi
- Fundamental Sciences Laboratory, Amar Telidji University, Laghouat 03000, Algeria;
| | - Fehmi Boufahja
- Biology Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia; (M.I.A.); (S.A.A.)
| | - Hamdi Bendif
- Laboratoire d’Ethnobotanique et Substances Naturelles, Departement of Biology, Ecole Normale Supérieure de Kouba, B.P 92, Kouba 16308, Algeria; (M.L.K.); (M.B.); (H.B.); (M.M.)
- Department of Natural and life Sciences, Faculty of Sciences, University of Msila, Msila 28000, Algeria
| | - Mohamed Mahdid
- Laboratoire d’Ethnobotanique et Substances Naturelles, Departement of Biology, Ecole Normale Supérieure de Kouba, B.P 92, Kouba 16308, Algeria; (M.L.K.); (M.B.); (H.B.); (M.M.)
| |
Collapse
|
9
|
Li F, Zeng K, Ming J. Lowering glycemic levels via gastrointestinal tract factors: the roles of dietary fiber, polyphenols, and their combination. Crit Rev Food Sci Nutr 2023; 65:575-611. [PMID: 37966135 DOI: 10.1080/10408398.2023.2278169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Dietary fiber (DF) and polyphenols (DP) are typical blood sugar-lowering components, and both play distinct yet interconnected roles in exerting their blood sugar-lowering effects. We comprehensively summarized the single and combined effects of DF and DP on blood glucose homeostasis through regulating the relevant factors in the upper gastrointestinal tract (UGT) and lower gastrointestinal tract (LGT). In the UGT, DF slowed down glucose metabolism by enhancing digesta viscosity and hindering enzyme-substrate interaction. DP primarily targeted enzymes and substrates. When combined, DP enhanced the adsorption capacity of DF for glucose. DF weakened DP's inhibitory effect on enzymes. Both DF and DP disrupted glucose intestinal uptake via physical or genomic modulation, but the co-consumption of DF and DP demonstrated a lower inhibitory effect on glucose uptake than DP alone. In the LGT, DF and DP showed synergistic or antagonistic effects on gut microbiota. Remarkably, whole foods exhibited potent prebiotic effects due to their compound-rich matrix, potentially enhancing glucose homeostasis and expanding dietary options for glucose regulation research.
Collapse
Affiliation(s)
- Fuhua Li
- College of Food Science, Southwest University, Chongqing, People's Republic of China
- Research Group Food Chem and Human Nutrition, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing, People's Republic of China
| | - Kaifang Zeng
- College of Food Science, Southwest University, Chongqing, People's Republic of China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing, People's Republic of China
| | - Jian Ming
- College of Food Science, Southwest University, Chongqing, People's Republic of China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing, People's Republic of China
| |
Collapse
|
10
|
Yang B, Wu X, Zeng J, Song J, Qi T, Yang Y, Liu D, Mo Y, He M, Feng L, Jia X. A Multi-Component Nano-Co-Delivery System Utilizing Astragalus Polysaccharides as Carriers for Improving Biopharmaceutical Properties of Astragalus Flavonoids. Int J Nanomedicine 2023; 18:6705-6724. [PMID: 38026532 PMCID: PMC10656867 DOI: 10.2147/ijn.s434196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Purpose Enhancing the dissolution, permeation and absorption of active components with low solubility and poor permeability is crucial for maximizing therapeutic efficacy and optimizing functionality. The objective of this study is to investigate the potential of natural polysaccharides as carriers to improve the biopharmaceutical properties of active components. Methods In this study, we employed four representative flavonoids in Astragali Radix, namely Calycosin-7-O-β-D-glucoside (CAG), Ononin (ON), Calycosin (CA) and Formononetin (FMN), as a demonstration to evaluate the potential of Astragalus polysaccharides (APS) as carriers to improve the biopharmaceutical properties, sush as solubility, permeability, and absorption in vivo. In addition, the microstructure of the flavonoids-APS complexes was characterized, and the interaction mechanism between APS and flavonoids was investigated using multispectral technique and molecular dynamics simulation. Results The results showed that APS can self-assemble into aggregates with a porous structure and large surface area in aqueous solutions. These aggregates can be loaded with flavonoids through weak intermolecular interactions, such as hydrogen bonding, thereby improving their gastrointestinal stability, solubility, permeability and absorption in vivo. Conclusion We discovered the self-assembly properties of APS and its potential as carriers. Compared with introducing external excipients, the utilization of natural polysaccharides in plants as carriers may have a unique advantage in enhancing dissolution, permeation and absorption.
Collapse
Affiliation(s)
- Bing Yang
- School of Traditional Chinese Pharmacy, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, People’s Republic of China
| | - Xiaochun Wu
- School of Traditional Chinese Pharmacy, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, People’s Republic of China
| | - Jingqi Zeng
- School of Traditional Chinese Pharmacy, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, People’s Republic of China
| | - Jinjing Song
- School of Traditional Chinese Pharmacy, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, People’s Republic of China
| | - Tianhao Qi
- School of Traditional Chinese Pharmacy, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, People’s Republic of China
| | - Yanjun Yang
- School of Traditional Chinese Pharmacy, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, People’s Republic of China
| | - Dingkun Liu
- School of Traditional Chinese Pharmacy, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, People’s Republic of China
| | - Yulin Mo
- School of Traditional Chinese Pharmacy, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, People’s Republic of China
| | - Miao He
- College of Pharmacy, Dali University, Dali, Yunnan, People’s Republic of China
| | - Liang Feng
- School of Traditional Chinese Pharmacy, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, People’s Republic of China
| | - Xiaobin Jia
- School of Traditional Chinese Pharmacy, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, People’s Republic of China
| |
Collapse
|
11
|
Alreshidi M, Abdulhakeem MA, Badraoui R, Amato G, Caputo L, De Martino L, Nazzaro F, Fratianni F, Formisano C, De Feo V, Snoussi M. Pulicaria incisa (Lam.) DC. as a Potential Source of Antioxidant, Antibacterial, and Anti-Enzymatic Bioactive Molecules: Phytochemical Constituents, In Vitro and In Silico Pharmacological Analysis. Molecules 2023; 28:7439. [PMID: 37959858 PMCID: PMC10648406 DOI: 10.3390/molecules28217439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023] Open
Abstract
Plants with medicinal benefits are a crucial source of compounds for developing drugs. This study was designed to determine the chemical composition, antibacterial, antibiofilm, antioxidant, and anti-enzymatic activities of Pulicaria incisa (Lam.) DC. We also reported the molecular interaction between identified molecules and several receptors associated with antimicrobial and antibiofilm activities. A total of seventeen and thirteen compounds were identified in aqueous and methanolic extracts of P. incisa, respectively. The methanolic extract yielded a higher total content of polyphenols and flavonoids of about 84.80 ± 2.8 mg GAE/g and 28.30 ± 1.2 mg QE/g, respectively. Significant antibacterial activity was recorded for both extracts, with minimum inhibitory concentration (MIC) values ranging from 30 to 36 µg/mL, and the result was comparable to the reference antibiotic control. Antibiofilm assays revealed that both extracts were able to reduce the attachment of bacterial cells to 96-well plates, but the highest antibiofilm activity was recorded against Staphylococcus aureus. The methanolic extract also showed anti-enzymatic potency and high antioxidant activity, as demonstrated by all assays used, including DPPH, FRAP, and ABTS. These results were further validated by in silico approaches, particularly the molecular interaction of the identified compounds with the targeted receptors. These findings present P. incisa as a significant source of antibacterial, antibiofilm, antioxidant, and anti-enzymatic molecules.
Collapse
Affiliation(s)
- Mousa Alreshidi
- Department of Biology, College of Science, University of Ha’il, Hail 2440, Saudi Arabia; (M.A.); (M.A.A.); (M.S.)
| | - Mohammad A. Abdulhakeem
- Department of Biology, College of Science, University of Ha’il, Hail 2440, Saudi Arabia; (M.A.); (M.A.A.); (M.S.)
| | - Riadh Badraoui
- Department of Biology, College of Science, University of Ha’il, Hail 2440, Saudi Arabia; (M.A.); (M.A.A.); (M.S.)
- Section of Histology-Cytology, Medicine Faculty of Tunis, University of Tunis El Manar, Tunis 1007, Tunisia
| | - Giuseppe Amato
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy; (G.A.); (L.D.M.)
| | - Lucia Caputo
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy; (G.A.); (L.D.M.)
| | - Laura De Martino
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy; (G.A.); (L.D.M.)
| | | | | | - Carmen Formisano
- Department of Pharmacy, School of Medicine and Surgery, University of Napoli Federico II, 80131 Napoli, Italy;
| | - Vincenzo De Feo
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy; (G.A.); (L.D.M.)
| | - Mejdi Snoussi
- Department of Biology, College of Science, University of Ha’il, Hail 2440, Saudi Arabia; (M.A.); (M.A.A.); (M.S.)
- Laboratory of Genetics, Biodiversity and Valorization of Bio-Resources (LR11ES41), Higher Institute of Biotechnology of Monastir, University of Monastir, Avenue Tahar Haddad, BP74, Monastir 5000, Tunisia
| |
Collapse
|
12
|
D'Costa AS, Golding BA, Raval MK, Rolland-Sabaté A, Bordenave N. Probing gallic acid-starch interactions through Rapid ViscoAnalyzer in vitro digestion. Food Res Int 2023; 173:113409. [PMID: 37803750 DOI: 10.1016/j.foodres.2023.113409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/22/2023] [Accepted: 08/26/2023] [Indexed: 10/08/2023]
Abstract
Phenolic compounds are known inhibitors of starch digestion through binding with α-amylase. However, a growing body of research shows that phenolic-starch interactions at the molecular level may interfere with this inhibition potential. In this study, we evaluated the effect of Gallic Acid (GA) as a model phenolic compound on starch digestion kinetics carried out in vitro in a Rapid ViscoAnalyzer (RVA). The results showed that when GA was added before cooking of starch in order to promote starch-GA complexation, the rate of digestion of starch was similar to that of starch alone, and faster than when GA was added after cooking of starch. The results demonstrated that when GA was introduced after cooking of starch, GA inhibited α-amylase strongly and that inhibition increased with starch paste viscosity only for potato and wheat starches. No correlation was found between starch molecular characteristics and the inhibiting capacity of GA at different starch concentrations. However, the apparent influence of starch chain length distribution suggested that physical effects (such as the absorption of GA at the surface of the starch paste) may play a role in the capacity of GA to inhibit α-amylase.
Collapse
Affiliation(s)
- Adrian S D'Costa
- School of Chemistry and Biomolecular Sciences, Faculty of Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Billy A Golding
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, UK
| | - Mrudav K Raval
- Department of Chemical Engineering, Mumbai Institute of Chemical Technology, Mumbai, Maharashtra, India
| | | | - Nicolas Bordenave
- School of Chemistry and Biomolecular Sciences, Faculty of Sciences, University of Ottawa, Ottawa, ON, Canada; INRAE, Avignon Université, UMR SQPOV, F-84000 Avignon, France; School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
13
|
Raza H, Xu H, Zhou Q, He J, Zhu B, Li S, Wang M. A review of green methods used in starch-polyphenol interactions: physicochemical and digestion aspects. Food Funct 2023; 14:8071-8100. [PMID: 37647014 DOI: 10.1039/d3fo01729j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
The interactions of starch with lipids, proteins, and other major food components during food processing are inevitable. These interactions could result in the formation of V-type or non-V-type complexes of starch. The starch-lipid complexes have been intensively studied for over five decades, however, the complexes of starch and polyphenols are relatively less studied and are the subject of recent interest. The interactions of starch with polyphenols can affect the physicochemical properties and its digestibility. The literature has highlighted several green methods such as ultrasound, microwave, high pressure, extrusion, ball-milling, cold plasma etc., to assist interactions of starch with polyphenols. However, comprehensive information on green methods to induce starch-polyphenol interactions is still scarce. Therefore, in light of the importance and potential of starch-polyphenol complexes in developing functional foods with low digestion, this review has summarized the novel green methods employed in interactions of starch with flavonoids, phenolic acids and tannins. It has been speculated that flavonoids, phenolic acids, and tannins, among other types of polyphenols, may have anti-digestive activities and are also revealed for their interaction with starch to form either an inclusion or non-inclusion complex. Further information on the effects of these interactions on physicochemical parameters to understand the chemistry and structure of the complexes is also provided.
Collapse
Affiliation(s)
- Husnain Raza
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study and Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China.
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China
- Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 26, Frederiksberg C, DK, 1958, Denmark
| | - Hui Xu
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study and Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China.
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China
| | - Qian Zhou
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study and Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China.
| | - Jiayi He
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study and Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China.
| | - Beiwei Zhu
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study and Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China.
| | - Siqian Li
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study and Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China.
| | - Mingfu Wang
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study and Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
14
|
Lisiecka K, Dziki D, Gawlik-Dziki U, Świeca M, Różyło R. Influence of Soluble Fiber as a Carrier on Antioxidant and Physical Properties of Powders Produced Based on the Spray Drying of Malvae arboreae flos Aqueous Extracts. Foods 2023; 12:3363. [PMID: 37761072 PMCID: PMC10527584 DOI: 10.3390/foods12183363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/03/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
The objective of this study was to assess the impact of inulin and pectin, wherein pectin replaced inulin with weight ranging from 2% to 8%, as wall materials on various aspects: bioactive component content, antioxidant and anti-inflammatory properties, bioavailability, powder recovery during the drying process, and selected physical characteristics of powders derived from Malvae arboreae flos aqueous extracts obtained through spray drying. Powders containing a soluble fraction of fiber demonstrated a recovery efficiency of over 50% during drying, along with low moisture content, water activity, and hygroscopicity, coupled with high solubility. The incorporation of pectin up to 8% did not significantly alter the color profile of the powders. However, at levels of 4% to 8% pectin, concave distortions and particle morphology cracks became noticeable, along with the potential to form agglomerates (evident when the span index ranged between 5.11 and 14.51). The substitution of inulin with pectin led to higher total contents of flavonoids (from 1.31% to 49.57% before digestion, and from 18.92% to 36.48% after digestion) and anthocyanins (from 45.79% to 78.56% before digestion, and from 65.45% to 521.81% after digestion) compared to samples containing only inulin as a carrier. Bioacceptability values exceeding 100% indicated effective preservation of compounds responsible for ferric-reducing antioxidant power, as well as the inhibition of xanthine oxidase and cyclooxygenase-2 across all samples.
Collapse
Affiliation(s)
- Katarzyna Lisiecka
- Department of Biochemistry and Food Chemistry, University of Life Sciences in Lublin, Skromna St. 8, 20-704 Lublin, Poland (U.G.-D.)
| | - Dariusz Dziki
- Department of Thermal Technology and Food Process Engineering, University of Life Sciences in Lublin, Głęboka St. 31, 20-612 Lublin, Poland
| | - Urszula Gawlik-Dziki
- Department of Biochemistry and Food Chemistry, University of Life Sciences in Lublin, Skromna St. 8, 20-704 Lublin, Poland (U.G.-D.)
| | - Michał Świeca
- Department of Biochemistry and Food Chemistry, University of Life Sciences in Lublin, Skromna St. 8, 20-704 Lublin, Poland (U.G.-D.)
| | - Renata Różyło
- Department of Food Engineering and Machines, University of Life Sciences in Lublin, Głęboka St. 28, 20-612 Lublin, Poland
| |
Collapse
|
15
|
Siano F, Mamone G, Vasca E, Puppo MC, Picariello G. Pasta fortified with C-glycosides-rich carob (Ceratonia siliqua L.) seed germ flour: Inhibitory activity against carbohydrate digesting enzymes. Food Res Int 2023; 170:112962. [PMID: 37316051 DOI: 10.1016/j.foodres.2023.112962] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/22/2023] [Accepted: 05/10/2023] [Indexed: 06/16/2023]
Abstract
Carob (Ceratonia siliqua L.) seed germ flour (SGF) is a by-product resulting from the extractionextraction of locust bean gum (E410), which is a texturing and thickening ingredient used for food, pharmaceutical and cosmetic preparations. SGF is a protein-rich edible matrix and contains relatively high amounts of apigenin 6,8-C-di- and poly-glycosylated derivatives. In this work, we prepared durum wheat pasta containing 5 and 10 % (w/w) of SGF and carried out inhibition assays against type-2 diabetes relevant carbohydrate hydrolysing enzymes, namely porcine pancreatic α-amylase and α-glycosidases from jejunal brush border membranes. Nearly 70-80% of the SGF flavonoids were retained in the pasta after cooking in boiling water. Extracts from cooked pasta fortified with 5 or 10% SGF inhibited either α-amylase by 53% and 74% or α-glycosidases by 62 and 69%, respectively. The release of reducing sugars from starch was delayed in SGF-containing pasta compared to the full-wheat counterpart, as assessed by simulated oral-gastric-duodenal digestion. By effect of starch degradation, the SGF flavonoids were discharged in the water phase of the chyme, supporting a possible inhibitory activity against both duodenal α-amylase and small intestinal α-glycosidases in vivo. SGF is a promising functional ingredient obtained from an industrial by-product for producing cereal-based foods with reduced glycaemic index.
Collapse
Affiliation(s)
- Francesco Siano
- Istituto di Scienze dell'Alimentazione, Consiglio Nazionale delle Ricerche, Via Roma, 64, 83100 Avellino, Italy
| | - Gianfranco Mamone
- Istituto di Scienze dell'Alimentazione, Consiglio Nazionale delle Ricerche, Via Roma, 64, 83100 Avellino, Italy
| | - Ermanno Vasca
- Dipartimento di Chimica e Biologia "A. Zambelli", Università degli Studi di Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy
| | - Maria Cecilia Puppo
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA - UNLP - CONICET), Calle 47 y 116, 1900 La Plata, Argentina
| | - Gianluca Picariello
- Istituto di Scienze dell'Alimentazione, Consiglio Nazionale delle Ricerche, Via Roma, 64, 83100 Avellino, Italy.
| |
Collapse
|
16
|
Wang R, Li M, Brennan MA, Dhital S, Kulasiri D, Brennan CS, Guo B. Complexation of starch and phenolic compounds during food processing and impacts on the release of phenolic compounds. Compr Rev Food Sci Food Saf 2023; 22:3185-3211. [PMID: 37254305 DOI: 10.1111/1541-4337.13180] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 05/05/2023] [Accepted: 05/06/2023] [Indexed: 06/01/2023]
Abstract
Phenolic compounds can form complexes with starch during food processing, which can modulate the release of phenolic compounds in the gastrointestinal tract and regulate the bioaccessibility of phenolic compounds. The starch-phenolic complexation is determined by the structure of starch, phenolic compounds, and the food processing conditions. In this review, the complexation between starch and phenolic compounds during (hydro)thermal and nonthermal processing is reviewed. A hypothesis on the complexation kinetics is developed to elucidate the mechanism of complexation between starch and phenolic compounds considering the reaction time and the processing conditions. The subsequent effects of complexation on the physicochemical properties of starch, including gelatinization, retrogradation, and digestion, are critically articulated. Further, the release of phenolic substances and the bioaccessibility of different types of starch-phenolics complexes are discussed. The review emphasizes that the processing-induced structural changes of starch are the major determinant modulating the extent and manner of complexation with phenolic compounds. The controlled release of complexes formed between phenolic compounds and starch in the digestive tracts can modify the functionality of starch-based foods and, thus, can be used for both the modulation of glycemic response and the targeted delivery of phenolic compounds.
Collapse
Affiliation(s)
- Ruibin Wang
- Institute of Food Science and Technology, CAAS/ Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural Affairs, Beijing, P. R. China
- Department of Wine, Food and Molecular Biosciences, Lincoln University, Lincoln, New Zealand
- Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Ming Li
- Institute of Food Science and Technology, CAAS/ Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural Affairs, Beijing, P. R. China
| | - Margaret Anne Brennan
- Department of Wine, Food and Molecular Biosciences, Lincoln University, Lincoln, New Zealand
| | - Sushil Dhital
- Department of Chemical and Biological Engineering, Monash University, Melbourne, Victoria, Australia
| | - Don Kulasiri
- Department of Wine, Food and Molecular Biosciences, Lincoln University, Lincoln, New Zealand
| | - Charles Stephen Brennan
- Riddet Institute, Massey University, Palmerston North, New Zealand
- School of Science, Royal Melbourne Institute of Technology University, Melbourne, Victoria, Australia
| | - Boli Guo
- Institute of Food Science and Technology, CAAS/ Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural Affairs, Beijing, P. R. China
| |
Collapse
|
17
|
Barkaoui S, Madureira J, Boudhrioua N, Cabo Verde S. Berries: effects on health, preservation methods, and uses in functional foods: a review. Eur Food Res Technol 2023. [DOI: 10.1007/s00217-023-04257-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
18
|
Baccari W, Saidi I, Znati M, Mustafa AM, Caprioli G, Harrath AH, Ben Jannet H. HPLC-MS/MS analysis, antioxidant and α-amylase inhibitory activities of the endemic plant Ferula tunetana using in vitro and in silico methods. Process Biochem 2023. [DOI: 10.1016/j.procbio.2023.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
19
|
The α-Amylase and α-Glucosidase Inhibition Capacity of Grape Pomace: A Review. FOOD BIOPROCESS TECH 2023; 16:691-703. [PMID: 36062030 PMCID: PMC9427156 DOI: 10.1007/s11947-022-02895-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 08/20/2022] [Indexed: 11/30/2022]
Abstract
The concept of functional foods is gaining more importance due to its role in maintaining a healthy status and preventing some metabolic diseases. The control of diabetes, in particular type-2 (T2DM), could be considered a big challenge since it involves other factors such as eating habits. From the pharmacological point of view, inhibiting digestive enzymes, such as α-amylase and α-glucosidase, is one of the mechanisms mainly used by synthetic drugs to control this disease; however, several side effects are described. For that reason, using bioactive compounds may appear as an alternative without presenting the complications synthetic drugs available on the market have. The winemaking industry generates tons of waste annually, and grape pomace (GP) is the most important. GP is recognized for its nutritional value and as a source of bioactive compounds that are helpful for human health. This review highlights the importance of GP as a possible source of α-amylase and α-glucosidase inhibitors. Also, it is emphasized the components involved in this bioactivity and the possible interactions among them. Especially, some phenolic compounds and fiber of GP are the main ones responsible for interfering with the human digestive enzymes. Preliminary studies in vitro confirmed this bioactivity; however, further information is required to allow the specific use of GP as a functional ingredient inside the market of products recommended for people with diabetes. Graphical abstract
Collapse
|
20
|
LI G, GE X. Interaction mechanism of icariin and whey protein based on spectrofluorimetry and molecular docking. FOOD SCIENCE AND TECHNOLOGY 2023. [DOI: 10.1590/fst.102822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Gang LI
- School of Food Science, China
| | | |
Collapse
|
21
|
Metabolic Fate of Orally Ingested Proanthocyanidins through the Digestive Tract. Antioxidants (Basel) 2022; 12:antiox12010017. [PMID: 36670878 PMCID: PMC9854439 DOI: 10.3390/antiox12010017] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/08/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Proanthocyanidins (PACs), which are oligomers or polymers of flavan-3ols with potent antioxidative activity, are well known to exert a variety of beneficial health effects. Nonetheless, their bioaccessibility and bioavailability have been poorly assessed. In this review, we focused on the metabolic fate of PACs through the digestive tract. When oligomeric and polymeric PACs are orally ingested, a large portion of the PACs reach the colon, where a small portion is subjected to microbial degradation to phenolic acids and valerolactones, despite the possibility that slight depolymerization of PACs occurs in the stomach and small intestine. Valerolactones, as microbiota-generated catabolites of PACs, may contribute to some of the health benefits of orally ingested PACs. The remaining portion interacts with gut microbiota, resulting in improved microbial diversity and, thereby, contributing to improved health. For instance, an increased amount of beneficial gut bacteria (e.g., Akkermansia muciniphila and butyrate-producing bacteria) could ameliorate host metabolic functions, and a lowered ratio of Firmicutes/Bacteroidetes at the phylum level could mitigate obesity-related metabolic disorders.
Collapse
|
22
|
Phytonutritional profile, cooking quality, in vitro digestibility, organoleptic attributes and storage stability of variety bell pepper incorporated pasta. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01702-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Ansari P, Hannan JMA, Choudhury ST, Islam SS, Talukder A, Seidel V, Abdel-Wahab YHA. Antidiabetic Actions of Ethanol Extract of Camellia sinensis Leaf Ameliorates Insulin Secretion, Inhibits the DPP-IV Enzyme, Improves Glucose Tolerance, and Increases Active GLP-1 (7-36) Levels in High-Fat-Diet-Fed Rats. MEDICINES (BASEL, SWITZERLAND) 2022; 9:medicines9110056. [PMID: 36422117 PMCID: PMC9698069 DOI: 10.3390/medicines9110056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/04/2022] [Accepted: 11/09/2022] [Indexed: 05/14/2023]
Abstract
Camellia sinensis (green tea) is used in traditional medicine to treat a wide range of ailments. In the present study, the insulin-releasing and glucose-lowering effects of the ethanol extract of Camellia sinensis (EECS), along with molecular mechanism/s of action, were investigated in vitro and in vivo. The insulin secretion was measured using clonal pancreatic BRIN BD11 β cells, and mouse islets. In vitro models examined the additional glucose-lowering properties of EECS, and 3T3L1 adipocytes were used to assess glucose uptake and insulin action. Non-toxic doses of EECS increased insulin secretion in a concentration-dependent manner, and this regulatory effect was similar to that of glucagon-like peptide 1 (GLP-1). The insulin release was further enhanced when combined with isobutylmethylxanthine (IBMX), tolbutamide or 30 mM KCl, but was decreased in the presence of verapamil, diazoxide and Ca2+ chelation. EECS also depolarized the β-cell membrane and elevated intracellular Ca2+, suggesting the involvement of a KATP-dependent pathway. Furthermore, EECS increased glucose uptake and insulin action in 3T3-L1 cells and inhibited dipeptidyl peptidase IV (DPP-IV) enzyme activity, starch digestion and protein glycation in vitro. Oral administration of EECS improved glucose tolerance and plasma insulin as well as inhibited plasma DPP-IV and increased active GLP-1 (7-36) levels in high-fat-diet-fed rats. Flavonoids and other phytochemicals present in EECS could be responsible for these effects. Further research on the mechanism of action of EECS compounds could lead to the development of cost-effective treatments for type 2 diabetes.
Collapse
Affiliation(s)
- Prawej Ansari
- Department of Pharmacy, School of Pharmacy and Public Health, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh
- School of Biomedical Sciences, Ulster University, Coleraine BT52 1SA, UK
- Correspondence:
| | - J. M. A. Hannan
- Department of Pharmacy, School of Pharmacy and Public Health, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh
| | - Samara T. Choudhury
- Department of Pharmacy, School of Pharmacy and Public Health, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh
| | - Sara S. Islam
- Department of Pharmacy, School of Pharmacy and Public Health, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh
| | - Abdullah Talukder
- Department of Pharmacy, School of Pharmacy and Public Health, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh
| | - Veronique Seidel
- Natural Products Research Laboratory, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK
| | | |
Collapse
|
24
|
Shen P, Peng Y, Zhou X, Jiang X, Raj R, Ge H, Wang W, Yu B, Zhang J. A comprehensive spectral and in silico analysis on the interactions between quercetin, isoquercitrin, rutin and HMGB1. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
25
|
Slow hydrolysis of amylose in soluble starch and amylopectin in suspendable starch liberated from non-glutinous rice flour heated with a sorghum extract. Heliyon 2022; 8:e11605. [DOI: 10.1016/j.heliyon.2022.e11605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/18/2022] [Accepted: 11/10/2022] [Indexed: 11/18/2022] Open
|
26
|
Wang J, Brennan MA, Brennan CS, Serventi L. Predictive Glycaemic Response of Pasta Enriched with Juice, Puree, and Pomace from Red Cabbage and Spinach. Nutrients 2022; 14:4575. [PMID: 36364837 PMCID: PMC9654938 DOI: 10.3390/nu14214575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/24/2022] [Accepted: 10/28/2022] [Indexed: 01/12/2024] Open
Abstract
This study reports the digestibility and nutritional quality of pasta made from durum wheat semolina which was partially substituted by puree, juice or pomace from spinach and red cabbage. The results show that 10% substitution of semolina with red cabbage pomace and spinach pomace, 1% substitution of spinach juice, and 2% substitution of spinach puree significantly reduced the area under the curve of the in vitro starch digestion. This reduction was due to a combined effect of decreased starch content, increased dietary fibre content and inhibition of α-amylase caused by vegetable material addition. Total phenolic content (TPC) and antioxidant capacity increased significantly on raw, cooked and digested samples of vegetable fortified pasta compared to control. The β-carotene content of spinach pasta (raw, cooked, and digested) was also higher than that of control. At the 1% substitution level, the juice was more efficient in improving the antioxidant capacity of resultant pasta compared to puree or pomace.
Collapse
Affiliation(s)
- Jinghong Wang
- Faculty of Agriculture and Life Sciences, Lincoln University, P.O. Box 85084, Christchurch 7647, New Zealand
- Riddet Research Institute, Private Bag 11 222, Palmerston North 4442, New Zealand
| | - Margaret Anne Brennan
- Faculty of Agriculture and Life Sciences, Lincoln University, P.O. Box 85084, Christchurch 7647, New Zealand
| | - Charles Stephen Brennan
- Riddet Research Institute, Private Bag 11 222, Palmerston North 4442, New Zealand
- School of Science, RMIT, Melbourne, VIC 3000, Australia
| | - Luca Serventi
- Faculty of Agriculture and Life Sciences, Lincoln University, P.O. Box 85084, Christchurch 7647, New Zealand
| |
Collapse
|
27
|
Wang R, Li M, Brennan MA, Kulasiri D, Guo B, Brennan CS. Phenolic Release during In Vitro Digestion of Cold and Hot Extruded Noodles Supplemented with Starch and Phenolic Extracts. Nutrients 2022; 14:nu14183864. [PMID: 36145240 PMCID: PMC9504551 DOI: 10.3390/nu14183864] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/12/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
Dietary phenolic compounds must be released from the food matrix in the gastrointestinal tract to play a bioactive role, the release of which is interfered with by food structure. The release of phenolics (unbound and bound) of cold and hot extruded noodles enriched with phenolics (2.0%) during simulated in vitro gastrointestinal digestion was investigated. Bound phenolic content and X-ray diffraction (XRD) analysis were utilized to characterize the intensity and manner of starch-phenolic complexation during the preparation of extruded noodles. Hot extrusion induced the formation of more complexes, especially the V-type inclusion complexes, with a higher proportion of bound phenolics than cold extrusion, contributing to a more controlled release of phenolics along with slower starch digestion. For instance, during simulated small intestinal digestion, less unbound phenolics (59.4%) were released from hot extruded phenolic-enhanced noodles than from the corresponding cold extruded noodles (68.2%). This is similar to the release behavior of bound phenolics, that cold extruded noodles released more bound phenolics (56.5%) than hot extruded noodles (41.9%). For noodles extruded with rutin, the release of unbound rutin from hot extruded noodles and cold extruded noodles was 63.6% and 79.0%, respectively, in the small intestine phase, and bound rutin was released at a much lower amount from the hot extruded noodles (55.8%) than from the cold extruded noodles (89.7%). Hot extrusion may allow more potential bioaccessible phenolics (such as rutin), further improving the development of starchy foods enriched with controlled phenolics.
Collapse
Affiliation(s)
- Ruibin Wang
- Key Laboratory of Agro-Products Processing, Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
- Department of Wine, Food and Molecular Biosciences, Faculty of Agriculture & Life Sciences, Lincoln University, Lincoln 7647, New Zealand
- Riddet Institute, Massey University, Palmerston North 4474, New Zealand
| | - Ming Li
- Key Laboratory of Agro-Products Processing, Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Margaret Anne Brennan
- Department of Wine, Food and Molecular Biosciences, Faculty of Agriculture & Life Sciences, Lincoln University, Lincoln 7647, New Zealand
| | - Don Kulasiri
- Department of Wine, Food and Molecular Biosciences, Faculty of Agriculture & Life Sciences, Lincoln University, Lincoln 7647, New Zealand
| | - Boli Guo
- Key Laboratory of Agro-Products Processing, Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
- Correspondence: (B.G.); (C.S.B.)
| | - Charles Stephen Brennan
- Riddet Institute, Massey University, Palmerston North 4474, New Zealand
- School of Science, Royal Melbourne Institute of Technology University, Melbourne, VIC 3000, Australia
- Correspondence: (B.G.); (C.S.B.)
| |
Collapse
|
28
|
Ismail Y, Fahmy DM, Ghattas MH, Ahmed MM, Zehry W, Saleh SM, Abo-elmatty DM. Integrating experimental model, LC-MS/MS chemical analysis, and systems biology approach to investigate the possible antidiabetic effect and mechanisms of Matricaria aurea (Golden Chamomile) in type 2 diabetes mellitus. Front Pharmacol 2022; 13:924478. [PMID: 36160451 PMCID: PMC9490514 DOI: 10.3389/fphar.2022.924478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/11/2022] [Indexed: 11/18/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a heterogeneous disease with numerous abnormal targets and pathways involved in insulin resistance, low-grade inflammation, oxidative stress, beta cell dysfunction, and epigenetic factors. Botanical drugs provide a large chemical space that can modify various targets simultaneously. Matricaria aurea (MA, golden chamomile) is a widely used herb in Middle Eastern communities for many ailments, including diabetes mellitus, without any scientific basis to support this tradition. For the first time, this study aimed to investigate the possible antidiabetic activity of MA in a type 2 diabetic rat model, identify chemical constituents by LC-MS/MS, and then elucidate the molecular mechanism(s) using enzyme activity assays, q-RTPCR gene expression analysis, network pharmacology analysis, and molecular docking simulation. Our results demonstrated that only the polar hydroethanolic extract of MA had remarkable antidiabetic activity. Furthermore, it improved dyslipidemia, insulin resistance status, ALT, and AST levels. LC-MS/MS analysis of MA hydroethanolic extract identified 62 compounds, including the popular chamomile flavonoids apigenin and luteolin, other flavonoids and their glycosides, coumarin derivatives, and phenolic acids. Based on pharmacokinetic screening and literature, 46 compounds were chosen for subsequent network analysis, which linked to 364 candidate T2DM targets from various databases and literature. The network analysis identified 123 hub proteins, including insulin signaling and metabolic proteins: IRS1, IRS2, PIK3R1, AKT1, AKT2, MAPK1, MAPK3, and PCK1, inflammatory proteins: TNF and IL1B, antioxidant enzymes: CAT and SOD, and others. Subsequent filtering identified 40 crucial core targets (major hubs) of MA in T2DM treatment. Functional enrichment analyses of the candidate targets revealed that MA targets were mainly involved in the inflammatory module, energy-sensing/endocrine/metabolic module, and oxidative stress module. q-RTPCR gene expression analysis showed that MA hydroethanolic extract was able to significantly upregulate PIK3R1 and downregulate IL1B, PCK1, and MIR29A. Moreover, the activity of the antioxidant hub enzymes was substantially increased. Molecular docking scores were also consistent with the networks’ predictions. Based on experimental and computational analysis, this study revealed for the first time that MA exerted antidiabetic action via simultaneous modulation of multiple targets and pathways, including inflammatory pathways, energy-sensing/endocrine/metabolic pathways, and oxidative stress pathways.
Collapse
Affiliation(s)
- Yassin Ismail
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
- Natural Products Unit, Department of Medicinal and Aromatic Plants, Desert Research Center, Cairo, Egypt
- *Correspondence: Yassin Ismail,
| | - Dina M. Fahmy
- Natural Products Unit, Department of Medicinal and Aromatic Plants, Desert Research Center, Cairo, Egypt
| | - Maivel H. Ghattas
- Department of Medical Biochemistry, Faculty of Medicine, Port Said University, Port Said, Egypt
| | - Mai M. Ahmed
- Natural Products Unit, Department of Medicinal and Aromatic Plants, Desert Research Center, Cairo, Egypt
| | - Walaa Zehry
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Samy M. Saleh
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Dina M. Abo-elmatty
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
29
|
Huang Y, Wu P, Chen XD. Mechanistic insights into the influence of flavonoids from dandelion on physicochemical properties and in vitro digestibility of cooked potato starch. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
30
|
Takahama U, Hirota S. Further slowing down of hydrolysis of amylose heated with black soybean extract by treating with nitrite under gastric conditions. Sci Rep 2022; 12:13212. [PMID: 35918428 PMCID: PMC9345987 DOI: 10.1038/s41598-022-17476-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/26/2022] [Indexed: 11/09/2022] Open
Abstract
Black soybean (BSB), which contains cyanidin-3-O-glucoside (C3G) and procyanidins, is cooked with rice in Japan. The color of the cooked rice is purplish red due to the binding of C3G and reddish oxidation products of procyanidins. These components can slowdown pancreatin-induced hydrolysis of amylose more significantly than the hydrolysis of amylopectin, and can react with nitrous acid in the stomach. This manuscript deals with the effects of nitrous acid on pancreatin-induced hydrolysis of amylose heated with BSB extract. The hydrolysis of amylose heated with BSB extract was slow, and the slowdown was due to the binding of C3G/its degradation products and degradation products of procyanidins. The amylose hydrolysis was slowed down further by treating with nitrite under gastric conditions. The further slowdown was discussed to be due to the binding of the products, which were formed by the reaction of procyanidins with nitrous acid, to amylose. In the products, dinitroprocyanidins were included. In this way, the digestibility of amylose heated with BSB extract can be slowed down further by reacting with nitrous acid in the stomach.
Collapse
Affiliation(s)
- Umeo Takahama
- Emeritus Professor of Dentistry, Kyushu Dental University, Kitakyushu, 803-8580, Japan.
| | | |
Collapse
|
31
|
Liu X, Tian Y, Chi W, Zhang H, Yu J, Chen G, Wu W, Jiang X, Wang S, Lin Z, Xuan W, Ye J, Wang B, Liu Y, Sun Z, Xu D, Wang C, Wan J. Alternative splicing of OsGS1;1 affects nitrogen-use efficiency, grain development, and amylose content in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:1751-1762. [PMID: 35404523 DOI: 10.1111/tpj.15768] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 06/14/2023]
Abstract
Excessive nitrogen fertilizer application is harmful to the environment and reduces the quality of cereal crops. Maintaining crop yields under low nitrogen (LN) conditions and improving quality are important goals for cereal crop breeding. Although the effects of nitrogen assimilation on crop nitrogen-use efficiency (NUE) have been intensively studied, natural variations of the key assimilation genes underlying grain development and quality are largely unclear. Here, we identified an NUE-associated gene, OsGS1;1, encoding glutamine synthase, through genome-wide association analysis, followed by validation experiments and functional analysis. Fifteen single-nucleotide polymorphisms in the OsGS1;1 region led to alternative splicing that generated two functional transcripts: OsGS1;1a and OsGS1;1b. The elite haplotype of OsGS1;1 showed high OsGS1;1b activity, which improved NUE, affected grain development, and reduced amylose content. The results show that OsGS1;1, which is induced under LN conditions, affects grain formation by regulating sugar metabolism and may provide a new avenue for the breeding of high-yield and high-quality rice (Oryza sativa).
Collapse
Affiliation(s)
- Xiaolan Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Biology, Genetics and Breeding of Japonica Rice in the Mid-lower Yangtze River, Ministry of Agriculture, Jiangsu Plant Gene Engineering Research Centre, Nanjing, 210095, China
| | - Yunlu Tian
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wenchao Chi
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hanzhi Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jun Yu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
| | - Gaoming Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wei Wu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xingzhou Jiang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
| | - Saisai Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhixi Lin
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wei Xuan
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jian Ye
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Baoxiang Wang
- Lianyungang Academy of Agricultural Science, Lianyungang, Jiangsu province, 222000, China
| | - Yan Liu
- Lianyungang Academy of Agricultural Science, Lianyungang, Jiangsu province, 222000, China
| | - Zhiguang Sun
- Lianyungang Academy of Agricultural Science, Lianyungang, Jiangsu province, 222000, China
| | - Dayong Xu
- Lianyungang Academy of Agricultural Science, Lianyungang, Jiangsu province, 222000, China
| | - Chunming Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Biology, Genetics and Breeding of Japonica Rice in the Mid-lower Yangtze River, Ministry of Agriculture, Jiangsu Plant Gene Engineering Research Centre, Nanjing, 210095, China
| | - Jianmin Wan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
32
|
Identification of nutritional values of the fermentative extract from the mixture of Stereum hirsutum mycelial substrates and ginseng extracts. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
33
|
Huang D, Teo NZ, Gao J, Jin X, Zhou W. Characteristics of anthocyanins in fortified cakes: a promising potent inhibitor of sucrase, α‐glucosidase and lipase. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Danlan Huang
- Department of Food Science and Technology National University of Singapore Science Drive 2 Singapore City 117542 Singapore
- National University of Singapore (Suzhou) Research Institute 377 Linquan Street, Suzhou Industrial Park Jiangsu 215123 China
| | - Ni Zhen Teo
- Department of Food Science and Technology National University of Singapore Science Drive 2 Singapore City 117542 Singapore
| | - Jing Gao
- Department of Food Science and Technology National University of Singapore Science Drive 2 Singapore City 117542 Singapore
- National University of Singapore (Suzhou) Research Institute 377 Linquan Street, Suzhou Industrial Park Jiangsu 215123 China
| | - Xiaoxuan Jin
- Department of Food Science and Technology National University of Singapore Science Drive 2 Singapore City 117542 Singapore
- National University of Singapore (Suzhou) Research Institute 377 Linquan Street, Suzhou Industrial Park Jiangsu 215123 China
| | - Weibiao Zhou
- Department of Food Science and Technology National University of Singapore Science Drive 2 Singapore City 117542 Singapore
- National University of Singapore (Suzhou) Research Institute 377 Linquan Street, Suzhou Industrial Park Jiangsu 215123 China
| |
Collapse
|
34
|
Lee YE, Yoo SH, Chung JO, Rha CS, Park MY, Lee HJ, Oh JH, Hong YD, Shim SM. Impact of flavonol extracts derived from green tea or targeted flavonols as secondary ingredients on intestinal glucose transport. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:1317-1325. [PMID: 35250057 PMCID: PMC8882555 DOI: 10.1007/s13197-021-05140-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 04/03/2021] [Accepted: 05/12/2021] [Indexed: 11/28/2022]
Abstract
The purpose of the current study was to examine the effect of adding secondary ingredients such as green tea derived water-soluble polysaccharides (GTP) and flavonol aglycone rich fractions derived from cellulase treated green tea extract (FVN) into catechin rich green tea extracts (GTE) on wheat starch digestion and intestinal glucose transport using in vitro digestion with Caco-2 cells. Co-digestion of wheat starch with GTE (16.88 g L-1) or GTE + GTP + FVN (16.69 g L-1) appeared to promote starch hydrolysis compared to control (15.49 g L-1). In case of major flavonoids, addition of epigallocatechin gallate (EGCG), EGCG + myricetin (M) into wheat starch significantly increased the digestion of starch into glucose. Glucose transport rate decreased by 22.35% in wheat starch + GTE + GTP + FVN (1.39%), while the least amount of glucose (1.70%) was transported in EGCG mixed with M (1% of EGCG) as secondary ingredients among individual flavonoids formulation. It indicated that inhibitory effect on glucose transport was higher in addition of GTE, GTP, and FVN as excipients ingredients rather than targeted major flavonoids. Results from the current study suggest that whole green tea including flavonoid rich fractions could enhance hypoglycemic potential of GTE. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13197-021-05140-2.
Collapse
Affiliation(s)
- Yeong-Eun Lee
- Department of Food Science and Technology, Sejong University, 98 Gunja-dong, Gwangjin-gu, Seoul 05006 Republic of Korea
| | - So-Hee Yoo
- Department of Food Science and Technology, Sejong University, 98 Gunja-dong, Gwangjin-gu, Seoul 05006 Republic of Korea
| | - Jin-Oh Chung
- AMOREPACIFIC R&D Center, 1920, Yonggu-daero, Giheung-gu, Yongin-si, Gyeonggi-do Republic of Korea
| | - Chan-Su Rha
- AMOREPACIFIC R&D Center, 1920, Yonggu-daero, Giheung-gu, Yongin-si, Gyeonggi-do Republic of Korea
| | - Mi-Young Park
- AMOREPACIFIC R&D Center, 1920, Yonggu-daero, Giheung-gu, Yongin-si, Gyeonggi-do Republic of Korea
| | - Hyun-Jeong Lee
- Department of Food Science and Technology, Sejong University, 98 Gunja-dong, Gwangjin-gu, Seoul 05006 Republic of Korea
| | - Jeong-Ho Oh
- Department of Food Science and Technology, Sejong University, 98 Gunja-dong, Gwangjin-gu, Seoul 05006 Republic of Korea
| | - Yong-Deog Hong
- AMOREPACIFIC R&D Center, 1920, Yonggu-daero, Giheung-gu, Yongin-si, Gyeonggi-do Republic of Korea
| | - Soon-Mi Shim
- Department of Food Science and Technology, Sejong University, 98 Gunja-dong, Gwangjin-gu, Seoul 05006 Republic of Korea
| |
Collapse
|
35
|
Chen X, Huang L, Cheng L, Hu B, Liu H, Hu J, Hu S, Han C, He H, Kang B, Xu H, Wang J, Li L. Effects of floor- and net-rearing systems on intestinal growth and microbial diversity in the ceca of ducks. BMC Microbiol 2022; 22:76. [PMID: 35296244 PMCID: PMC8925166 DOI: 10.1186/s12866-022-02478-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 02/19/2022] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Rearing systems can affect livestock production directly, but whether they have effects on intestinal growth states and ceca microorganisms in ducks is largely unclear. The current study used Nonghua ducks to estimate the effects of rearing systems on the intestines by evaluating differences in intestinal growth indices and cecal microorganisms between ducks in the floor-rearing system (FRS) and net-rearing system (NRS). RESULTS The values of relative weight (RW), relative length (RL) and RW/RL of the duodenum, jejunum, ileum and ceca in the FRS were significantly higher than those in the NRS during weeks 4, 8 and 13 (p < 0.05). A total of 157 genera were identified from ducks under the two systems, and the dominant microorganisms in both treatments were Firmicutes, Bacteroidetes, Actinobacteria and Proteobacteria at the phylum level. The distribution of microorganisms in the ceca of the two treatments showed significant separation during the three time periods, and the value of the Simpson index in the FRS was significantly higher than that in the NRS at 13 weeks (p < 0.05). Five differential microorganisms and 25 differential metabolic pathways were found in the ceca at week 4, seven differential microorganisms and 25 differential metabolic pathways were found in the ceca at week 8, and four differential microorganisms and two differential metabolic pathways were found in the ceca at week 13. CONCLUSIONS The rearing system influences duck intestinal development and microorganisms. The FRS group had higher intestinal RL, RW and RW/RL and obviously separated ceca microorganisms compared to those of the NRS group. The differential metabolic pathways of cecal microorganisms decreased with increasing age, and the abundance of translation pathways was higher in the NRS group at week 13, while cofactor and vitamin metabolism were more abundant in the FRS group.
Collapse
Affiliation(s)
- Xuefei Chen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan People’s Republic of China
| | - Liansi Huang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan People’s Republic of China
| | - Lumin Cheng
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan People’s Republic of China
| | - Bo Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan People’s Republic of China
| | - Hehe Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan People’s Republic of China
| | - Jiwei Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan People’s Republic of China
| | - Shenqiang Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan People’s Republic of China
| | - Chunchun Han
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan People’s Republic of China
| | - Hua He
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan People’s Republic of China
| | - Bo Kang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan People’s Republic of China
| | - Hengyong Xu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan People’s Republic of China
| | - Jiwen Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan People’s Republic of China
| | - Liang Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan People’s Republic of China
| |
Collapse
|
36
|
Liu M, Yang Q, Wu Y, Ouyang J. Effects of Endogenous Polyphenols in Acorn (
Quercus wutaishanica
Blume) Kernels on the Physicochemical Properties of Starch. STARCH-STARKE 2022. [DOI: 10.1002/star.202200005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Mengyu Liu
- Department of Food Science and Engineering College of Biological Sciences and Technology Beijing Key Laboratory of Forest Food Processing and Safety Beijing Forestry University Beijing China
| | - Qinxue Yang
- Department of Food Science and Engineering College of Biological Sciences and Technology Beijing Key Laboratory of Forest Food Processing and Safety Beijing Forestry University Beijing China
| | - Yanwen Wu
- Institute of Analysis and Testing Beijing Academy of Science and Technology (Beijing Center for Physical and Chemical Analysis) Beijing China
| | - Jie Ouyang
- Department of Food Science and Engineering College of Biological Sciences and Technology Beijing Key Laboratory of Forest Food Processing and Safety Beijing Forestry University Beijing China
| |
Collapse
|
37
|
Proença C, Rufino AT, Ferreira de Oliveira JMP, Freitas M, Fernandes PA, Silva AMS, Fernandes E. Inhibitory activity of flavonoids against human sucrase-isomaltase (α-glucosidase) activity in a Caco-2/TC7 cellular model. Food Funct 2022; 13:1108-1118. [PMID: 35015798 DOI: 10.1039/d1fo02995a] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Type 2 diabetes (T2D) is the most common form of diabetes, and the number of people with this metabolic disease is steadily increasing worldwide. Among the available antidiabetic agents, α-glucosidase inhibitors are the most effective at reducing postprandial hyperglycaemia (PPHG), one of the main characteristics of T2D. However, most of the studies that have been performed have used the more readily available rat intestinal preparations or yeast α-glucosidase as the enzyme source, which despite being useful and cost effective, have a questionable physiological value. The present study evaluates the inhibitory activity of a selected group of flavonoids against human sucrase-isomaltase (SI), the α-glucosidase found in Caco-2/TC7 cells. A microassay using the physiological substrates sucrose and maltose, and a synthetic substrate, p-nitrophenyl-α-D-glucopyranoside (pNPG) was performed. The most active flavonoid was compound 4 (melanoxetin), presenting an IC50 value similar using the two natural substrates. In contrast, the tested flavonoids were not effective at inhibiting SI, when pNPG was used as a substrate. Hydroxylation of flavonoids at C-3 of the C ring, at C-3' and C-4' of the B ring, and at C-7 and C-8 of the A ring were the features that improved the inhibitory activity of flavonoids against human SI. These phenolic compounds deserve further exploration as alternatives to the currently available α-glucosidase inhibitors. The present study also demonstrates that the non-clinical in vitro studies conducted for the evaluation of α-glucosidase activity should use the human source rather than surrogate sources of α-glucosidase.
Collapse
Affiliation(s)
- Carina Proença
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| | - Ana T Rufino
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| | - José Miguel P Ferreira de Oliveira
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| | - Marisa Freitas
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| | - Pedro A Fernandes
- UCIBIO, REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Artur M S Silva
- QOPNA and LAQV, REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Eduarda Fernandes
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| |
Collapse
|
38
|
Takahama U, Park J, Ansai T, Hirota S. Pancreatin-induced liberation of starch/cyanidin 3- O-glucoside complexes from rice cooked with black soybean that exhibit slow hydrolysis. Int J Food Sci Nutr 2022; 73:39-48. [PMID: 33978532 DOI: 10.1080/09637486.2021.1921706] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/19/2021] [Accepted: 04/21/2021] [Indexed: 10/21/2022]
Abstract
Cyanidin 3-O-glucoside (C3G), which has various health-promoting functions, is contained in black soybean (BSB). In Japan and Korea, BSB is cooked with rice and the cooked rice appears purplish in colour. In this study, BSB was cooked with glutinous rice, non-glutinous rice, and high-amylose rice. The amount of C3G detected in high-amylose rice was greater than that detected in glutinous rice, suggesting that C3G combined more efficiently with amylose than with amylopectin. Pancreatin induced the liberation of starch/C3G complexes from the purplish cooked rice, and rate of the liberation was in the following order; glutinous rice < non-glutinous rice < high-amylose rice. The amylose/C3G complexes liberated from high-amylose rice was hydrolysed slowly, while the amylopectin/C3G complexes liberated from glutinous rice were hydrolysed into smaller amylopectin/C3G complexes that were difficult to further hydrolysis. Thus, C3G may be useful for preparing foods whose starch hydrolysis is slow.
Collapse
Affiliation(s)
- Umeo Takahama
- Emeritus Professor of Kyushu Dental University, Kitakyushu, Japan
| | - JiWoo Park
- Department of Dentistry, Kyushu Dental University, Kitakyushu, Japan
| | - Toshihiro Ansai
- Department of Dentistry, Kyushu Dental University, Kitakyushu, Japan
| | | |
Collapse
|
39
|
Ombra MN, Nazzaro F, Fratianni F. Lowering the predicted glycemic index of pasta using dried onions as functional ingredients. Int J Food Sci Nutr 2022; 73:443-450. [PMID: 35043745 DOI: 10.1080/09637486.2021.2025211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Pasta is a commonly consumed food; adding some ingredients, maybe turn it into a functional food with health benefits. These ingredients consist of dietary fiber, antioxidant molecules, and enzyme inhibitor compounds, related to a reduced risk for some diseases. Onion (Allium cepa L.) is a rich source of bioactive compounds rendering it a relevant candidate for the production of functional foods. The present study examines the in vitro starch digestibility of durum wheat pasta supplemented with 3% onion flour. The incorporation of onion flour attenuated the extent of starch digestion and accordingly the area under the curve of reducing sugars discharged during in vitro digestion. The predicted glycemic index (pGI) of pasta supplemented with onion flour (3%) was significantly lower (pGI = 54 ± 0.17) than the control pasta (pGI = 72 ± 0.14). These results indicate that 3% onion fortified pasta represents a food with potential healthy properties, showing glucose-lowering capabilities in vitro.
Collapse
|
40
|
Ryuk JA, Ko BS, Moon NR, Park S. Protection against Neurological Symptoms by Consuming Corn Silk Water Extract in Artery-Occluded Gerbils with Reducing Oxidative Stress, Inflammation, and Post-Stroke Hyperglycemia through the Gut-Brain Axis. Antioxidants (Basel) 2022; 11:antiox11010168. [PMID: 35052672 PMCID: PMC8773031 DOI: 10.3390/antiox11010168] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 02/01/2023] Open
Abstract
Corn silk (Stigma maydis), rich in flavonoids, is traditionally used to treat edema, depression, and hyperglycemia and may alleviate ischemic stroke symptoms in Chinese medicine. This study examined whether corn silk water extract (CSW) could alleviate ischemic stroke symptoms and post-stroke hyperglycemia in Mongolian gerbils with transient cerebral ischemia and reperfusion (I/R). After being given 0.05% (I/R-LCSW) and 0.2% (I/R-HCSW), 0.02% aspirin (I/R-aspirin), and cellulose (I/R-control) in their 40 energy% fat diets for three weeks, the gerbils underwent an artery occlusion for eight minutes and reperfusion. They took the assigned diet for an additional three weeks. Sham-operated gerbils without artery occlusion had the same diet as Sham-control. CSW intake reduced neuronal cell death in gerbils with I/R and dose-dependently improved the neurological symptoms, including drooped eyes, crouched posture, flexor reflex, and walking patterns. CSW intake also alleviated the short-term memory and spontaneous alteration and grip strength compared to the I/R-control group. The protection against ischemic stroke symptoms was associated with the reduced tumor necrosis factor-α, interleukin-1β, superoxide, and lipid peroxide levels, promoting superoxide dismutase activity in the hippocampus in the CSW groups, compared to the I/R-control. The blood flow measured by Doppler was improved with CSW compared to the I/R-control. Furthermore, CSW intake prevented the post-stroke hyperglycemia related to decreasing pancreatic β-cell mass as much as the Sham-control, and it was related to protection against β-cell apoptosis, restoring the β-cell mass similar to the Sham-control. CSW intake elevated the relative abundance of Lactobacillus, Bifidobacterium, Allobaculum, and Akkermansia compared to the I/R-control. Picrust2 analysis showed that CSW increased the propionate and butyrate metabolism and the starch and glucose metabolism but reduced lipopolysaccharide biosynthesis compared to the I/R-control. In conclusion, CSW intake protects against neuronal cell death and post-hyperglycemia by reducing oxidative stress and inflammation and increasing blood flow and the β-cell mass. The alleviation was associated with promoting the gut-brain axis by changing the gut microbiome community.
Collapse
Affiliation(s)
- Jin Ah Ryuk
- Korean Medicine Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon 305-811, Korea; (J.A.R.); (B.S.K.)
| | - Byoung Seob Ko
- Korean Medicine Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon 305-811, Korea; (J.A.R.); (B.S.K.)
| | - Na Rang Moon
- Department of Food & Nutrition, Obesity/Diabetes Center, Hoseo University, Asan 336-795, Korea;
| | - Sunmin Park
- Department of Food & Nutrition, Obesity/Diabetes Center, Hoseo University, Asan 336-795, Korea;
- Department of Bioconvergence System, Hoseo University, Asan 336-795, Korea
- Correspondence: ; Tel.: +82-41-540-5345
| |
Collapse
|
41
|
Wang R, Li M, Wu G, Hui X, Tu J, Brennan MA, Guo B, Brennan CS. Inhibition of phenolics on the
in vitro
digestion of noodles from the view of phenolics release. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ruibin Wang
- Department of Wine, Food and Molecular Biosciences Faculty of Agriculture & Life Sciences Lincoln University Christchurch New Zealand
- CAAS/Key Laboratory of Agro‐Products Processing Institute of Food Science and Technology Ministry of Agriculture Beijing 100193 PR China
- Riddet Institute Palmerston North New Zealand
| | - Ming Li
- CAAS/Key Laboratory of Agro‐Products Processing Institute of Food Science and Technology Ministry of Agriculture Beijing 100193 PR China
| | - Gang Wu
- Department of Wine, Food and Molecular Biosciences Faculty of Agriculture & Life Sciences Lincoln University Christchurch New Zealand
- Riddet Institute Palmerston North New Zealand
| | - Xiaodan Hui
- Department of Wine, Food and Molecular Biosciences Faculty of Agriculture & Life Sciences Lincoln University Christchurch New Zealand
- Riddet Institute Palmerston North New Zealand
| | - Juncai Tu
- Riddet Institute Palmerston North New Zealand
- School of Science RMIT Melbourne Australia
| | - Margaret A. Brennan
- Department of Wine, Food and Molecular Biosciences Faculty of Agriculture & Life Sciences Lincoln University Christchurch New Zealand
| | - Boli Guo
- CAAS/Key Laboratory of Agro‐Products Processing Institute of Food Science and Technology Ministry of Agriculture Beijing 100193 PR China
| | - Charles S. Brennan
- Department of Wine, Food and Molecular Biosciences Faculty of Agriculture & Life Sciences Lincoln University Christchurch New Zealand
- Riddet Institute Palmerston North New Zealand
- School of Science RMIT Melbourne Australia
| |
Collapse
|
42
|
Cui J, Zeng S, Zhang C. Anti‐hyperglycaemic effects of Burdock (
Arctium lappa L
.) leaf flavonoids through inhibiting α‐amylase and α‐glucosidase. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Jue Cui
- School of Food and Biological Engineering Xuzhou University of Technology Xuzhou 221000 China
- Jiangsu Key Laboratory of Food Resource Development and Quality Safe Xuzhou Institute of Technology Xuzhou 221000 China
| | - Siman Zeng
- School of Food and Biological Engineering Xuzhou University of Technology Xuzhou 221000 China
| | - Chuyun Zhang
- School of Food and Biological Engineering Xuzhou University of Technology Xuzhou 221000 China
| |
Collapse
|
43
|
Takahama U, Park JW, Ansai T, Hirota S. Slowing down of starch hydrolysis of glutinous rice and non-glutinous rice flours by black soybean extracts: Cooperation between cyanidin 3-O-glucoside and procyanidins. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104741] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
44
|
Wu M, Yang Q, Wu Y, Ouyang J. Inhibitory effects of acorn (Quercus variabilis Blume) kernel-derived polyphenols on the activities of α-amylase, α-glucosidase, and dipeptidyl peptidase IV. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101224] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
45
|
Proanthocyanidins and Where to Find Them: A Meta-Analytic Approach to Investigate Their Chemistry, Biosynthesis, Distribution, and Effect on Human Health. Antioxidants (Basel) 2021; 10:antiox10081229. [PMID: 34439477 PMCID: PMC8389005 DOI: 10.3390/antiox10081229] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/22/2022] Open
Abstract
Proanthocyanidins (PACs) are a class of polyphenolic compounds that are attracting considerable interest in the nutraceutical field due to their potential health benefits. However, knowledge about the chemistry, biosynthesis, and distribution of PACs is limited. This review summarizes the main chemical characteristics and biosynthetic pathways and the main analytical methods aimed at their identification and quantification in raw plant matrices. Furthermore, meta-analytic approaches were used to identify the main plant sources in which PACs were contained and to investigate their potential effect on human health. In particular, a cluster analysis identified PACs in 35 different plant families and 60 different plant parts normally consumed in the human diet. On the other hand, a literature search, coupled with forest plot analyses, highlighted how PACs can be actively involved in both local and systemic effects. Finally, the potential mechanisms of action through which PACs may impact human health were investigated, focusing on their systemic hypoglycemic and lipid-lowering effects and their local anti-inflammatory actions on the intestinal epithelium. Overall, this review may be considered a complete report in which chemical, biosynthetic, ecological, and pharmacological aspects of PACs are discussed.
Collapse
|
46
|
Li L, Xu H, Zhou J, Yu J, Copeland L, Wang S. Mechanisms Underlying the Effect of Tea Extracts on In Vitro Digestion of Wheat Starch. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:8227-8235. [PMID: 34251195 DOI: 10.1021/acs.jafc.1c02526] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The effect of extracts from four types of tea made from Camelia sinensis (green, white, black, and oolong) on in vitro amylolysis of gelatinized starch and the underlying mechanisms were studied. Of the four extracts, black tea extract (BTE) gave the strongest inhibition of starch digestion and on α-amylase activity. Fluorescence quenching and surface plasmon resonance (SPR) showed compounds in BTE bound to α-amylase more strongly than those in the green, white, and oolong tea extracts. Individual testing of five phenolic compounds abundant in tea extracts showed that theaflavins had a greater inhibitory effect than catechins on α-amylase. SPR showed that theaflavins had much lower equilibrium dissociation constants and therefore bound more tightly to α-amylase than catechins. We conclude that BTE had a stronger inhibitory effect on in vitro enzymatic starch digestion than the other tea extracts, mainly due to the higher content of theaflavins causing stronger inhibition of α-amylase.
Collapse
Affiliation(s)
- Liujing Li
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
- School of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Hanbin Xu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
- School of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Jiaping Zhou
- School of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Jinglin Yu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Les Copeland
- Sydney Institute of Agriculture, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Shujun Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
- School of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| |
Collapse
|
47
|
Xu T, Li X, Ji S, Zhong Y, Simal-Gandara J, Capanoglu E, Xiao J, Lu B. Starch modification with phenolics: methods, physicochemical property alteration, and mechanisms of glycaemic control. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.02.023] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
48
|
Li X, Cai J, Yu J, Wang S, Copeland L, Wang S. Inhibition of in vitro enzymatic starch digestion by coffee extract. Food Chem 2021; 358:129837. [PMID: 33940299 DOI: 10.1016/j.foodchem.2021.129837] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 03/30/2021] [Accepted: 03/30/2021] [Indexed: 12/28/2022]
Abstract
There is evidence that moderate coffee consumption is beneficial in the prevention of type 2 diabetes, however, the underlying mechanism is not understood. In this study, the effects of an extract of ground coffee on the in vitro enzymatic digestion of starch were investigated. The coffee extract decreased the rate and extent of starch digestion, with kinetic analysis showing that the extract reduced the binding affinity of the enzymes for the substrate and their catalytic turnover. Fluorescence quenching indicated that the coffee extract formed complexes with the digestive enzymes through a static quenching mechanism. Ultraviolet absorption and circular dichroism spectra of the digestive enzymes confirmed that the coffee extract decreased the proportion of β-sheet structures in the enzymes. Therefore, we conclude that compounds in the soluble coffee extract can interact with porcine pancreatic amylase and amyloglucosidase causing inhibition of the enzymes and decreasing in vitro starch digestion.
Collapse
Affiliation(s)
- Xue Li
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China; School of Food Science and Engineering, Tianjin University of Science & Technology, 300457, China
| | - Jingjing Cai
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China; School of Food Science and Engineering, Tianjin University of Science & Technology, 300457, China
| | - Jinglin Yu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Les Copeland
- School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia
| | - Shujun Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China; School of Food Science and Engineering, Tianjin University of Science & Technology, 300457, China; College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China.
| |
Collapse
|
49
|
Zhou X, Wang S, Zhou Y. Study on the structure and digestibility of high amylose Tartary buckwheat (Fagopyrum tataricum Gaertn.) starch-flavonoid prepared by different methods. J Food Sci 2021; 86:1463-1474. [PMID: 33818774 DOI: 10.1111/1750-3841.15657] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/19/2021] [Accepted: 01/25/2021] [Indexed: 11/29/2022]
Abstract
Tartary buckwheat (Fagopyrum tataricum Gaertn.) is the only food rich in flavonoid bioactive substances in grains. Studies have shown that flavonoids interaction with amylose has an important impact on the physical and chemical properties and structure of starch. In this study, Tartary buckwheat was used as a raw material. It was then threshed with pullulanase, and a high amylose Tartary buckwheat starch flavonoid complex (HBS/BF) was prepared by physical mixing (PM), water bath treatment (WT), acid-base precipitation (AP), microwave treatment (MT), and ultrasonic treatment (UT); the physical and chemical properties were then evaluated. The results show that HBS/BF-UT and HBS/BF-MT have a higher iodine binding rate than HBS/BF-PM; X-ray diffraction results show that HBS/BF-AP has a V-type crystal form, but the relative crystallinity was reduced. Fourier infrared spectroscopy showed that there is no new covalent bond between Tartary buckwheat starch and flavonoids. In vitro digestion showed that adding flavonoid significantly increased the digestibility of Tartary buckwheat starch. PRACTICAL APPLICATION: These results will provide a theoretical basis for further starch anti-digestion mechanisms and the preparation of resistant starch. These steps will provide insights into the application of Tartary buckwheat starch and flavonoids in the food industry.
Collapse
Affiliation(s)
- Xiaoli Zhou
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
| | - Shichou Wang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
| | - Yiming Zhou
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
| |
Collapse
|
50
|
In vitro digestibility, cooking quality, bio-functional composition, and sensory properties of pasta incorporated with potato and pigeonpea flour. Int J Gastron Food Sci 2021. [DOI: 10.1016/j.ijgfs.2020.100300] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|