1
|
Xu L, Liu R, Zhao Y, Shen X, Sun C, Yang Z, Wang J, Du Y, Geng S, Chen F. Coordination-Polymer-Derived Cu-CoO/C Nanocomposite Used in Fenton-like Reaction to Achieve Efficient Degradation of Organic Compounds. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:132. [PMID: 38251097 PMCID: PMC10819537 DOI: 10.3390/nano14020132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/28/2023] [Accepted: 01/03/2024] [Indexed: 01/23/2024]
Abstract
In this paper, carbon-matrix-supported copper (Cu) and cobaltous oxide (CoO) nanoparticles were obtained by using coordination polymers (CPs) as a precursor. The aqueous solutions of copper methacrylate (CuMA) and cobalt methacrylate (CoMA) were preferentially prepared, which were then mixed with anhydrous ethanol to fabricate dual metal ion coordination polymers (CuMA/CoMA). After calcination under an argon atmosphere, the Cu-CoO/C nanocomposite was obtained. Scanning electron microscope (SEM) and transmission electron microscope (TEM) showed that the material has banded morphology, and the dual functional nanoparticles were highly dispersed in the carbon matrix. The prepared material was used in a heterogeneous Fenton-like reaction, with the aim of replacing traditional ferric catalysts to solve pH constraints and the mass production of ferric slime. The obtained nanocomposite showed excellent catalytic performance on the degradation of methylene blue (MB) at near-neutral conditions; the discoloration efficiency is about 98.5% within 50 min in the presence of 0.15 mmol/mL H2O2 and 0.5 mg/mL catalyst. And good reusability was verified via eight cycles. The plausible pathway for MB discoloration and the possible catalytic mechanism was also proposed.
Collapse
Affiliation(s)
- Linxu Xu
- Institute of Resources and Environment Innovation, Shandong Jianzhu University, Jinan 250101, China
| | - Rupeng Liu
- Institute of Resources and Environment Innovation, Shandong Jianzhu University, Jinan 250101, China
| | - Yubo Zhao
- Institute of Resources and Environment Innovation, Shandong Jianzhu University, Jinan 250101, China
| | - Xue Shen
- Institute of Resources and Environment Innovation, Shandong Jianzhu University, Jinan 250101, China
| | - Cuizhen Sun
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China
| | - Zhigang Yang
- Institute of Resources and Environment Innovation, Shandong Jianzhu University, Jinan 250101, China
| | - Jin Wang
- Institute of Resources and Environment Innovation, Shandong Jianzhu University, Jinan 250101, China
| | - Yufeng Du
- Institute of Resources and Environment Innovation, Shandong Jianzhu University, Jinan 250101, China
| | - Shuying Geng
- Institute of Resources and Environment Innovation, Shandong Jianzhu University, Jinan 250101, China
| | - Feiyong Chen
- Institute of Resources and Environment Innovation, Shandong Jianzhu University, Jinan 250101, China
- Jianda Ecological Environment Innovation Center, Shandong Jianzhu University, Huzhou 313000, China
| |
Collapse
|
2
|
Trang TD, Lin JY, Chang HC, Huy NN, Ghotekar S, Lin KYA, Munagapati VS, Yee YF, Lin YF. Hollow-Architected Heteroatom-Doped Carbon-Supported Nanoscale Cu/Co as an Enhanced Magnetic Activator for Oxone to Degrade Toxicants in Water. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2565. [PMID: 37764595 PMCID: PMC10537558 DOI: 10.3390/nano13182565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023]
Abstract
Even though transition metals can activate Oxone to degrade toxic contaminants, bimetallic materials possess higher catalytic activities because of synergistic effects, making them more attractive for Oxone activation. Herein, nanoscale CuCo-bearing N-doped carbon (CuCoNC) can be designed to afford a hollow structure as well as CuCo species by adopting cobaltic metal organic frameworks as a template. In contrast to Co-bearing N-doped carbon (CoNC), which lacks the Cu dopant, CuCo alloy nanoparticles (NPs) are contained by the Cu dopant within the carbonaceous matrix, giving CuCoNC more prominent electrochemical properties and larger porous structures and highly nitrogen moieties. CuCoNC, as a result, has a significantly higher capability compared to CoNC and Co3O4 NPs, for Oxone activation to degrade a toxic contaminant, Rhodamine B (RDMB). Furthermore, CuCoNC+Oxone has a smaller activation energy for RDMB elimination and maintains its superior effectiveness for removing RDMB in various water conditions. The computational chemistry insights have revealed the RDMB degradation mechanism. This study reveals that CuCoNC is a useful activator for Oxone to eliminate RDMB.
Collapse
Affiliation(s)
- Tran Doan Trang
- Department of Environmental Engineering & Innovation, Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung 402, Taiwan
| | - Jia-Yin Lin
- Semiconductor and Green Technology Program, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung 402, Taiwan
| | - Hou-Chien Chang
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan
| | - Nguyen Nhat Huy
- Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City 700000, Vietnam;
- Vietnam National University Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam
| | - Suresh Ghotekar
- Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam 603103, Tamil Nadu, India;
| | - Kun-Yi Andrew Lin
- Department of Environmental Engineering & Innovation, Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung 402, Taiwan
- Institute of Analytical and Environmental Sciences, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Venkata Subbaiah Munagapati
- Research Centre for Soil & Water Resources and Natural Disaster Prevention (SWAN), National Yunlin University of Science and Technology, Douliou 64002, Taiwan
| | - Yeoh Fei Yee
- School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal 14300, Penang, Malaysia
| | - Yi-Feng Lin
- Department of Chemical Engineering and R&D Center for Membrane Technology, Chung Yuan Christian University, 200 Chung Pei Rd., Chungli, Taoyuan 320, Taiwan
| |
Collapse
|
3
|
Ikram M, Shazaib M, Haider A, Shahzadi A, Baz S, Algaradah MM, Ul-Hamid A, Nabgan W, Abd-Rabboh HSM, Ali S. Catalytic evaluation and in vitro bacterial inactivation of graphitic carbon nitride/carbon sphere doped bismuth oxide quantum dots with evidential in silico analysis. RSC Adv 2023; 13:25305-25315. [PMID: 37622014 PMCID: PMC10445278 DOI: 10.1039/d3ra04664h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/18/2023] [Indexed: 08/26/2023] Open
Abstract
Herein, Bi2O3 quantum dots (QDs) have been synthesized and doped with various concentrations of graphitic carbon nitride (g-C3N4) and a fixed amount of carbon spheres (CS) using a co-precipitation technique. XRD analysis confirmed the presence of monoclinic structure along the space group P21/c and C2/c. Various functional groups and characteristic peaks of (Bi-O) were identified using FTIR spectra. QDs morphology of Bi2O3 showed agglomeration with higher amounts of g-C3N4 by TEM analysis. HR-TEM determined the variation in the d-spacing which increased with increasing dopants. These doping agents were employed to reduce the exciting recombination rate of Bi2O3 QDs by providing more active sites which enhance antibacterial activity. Notably, (6 wt%) g-C3N4/CS-doped Bi2O3 exhibited considerable antimicrobial potential in opposition to E. coli at higher values of concentrations relative to ciprofloxacin. The (3 wt%) g-C3N4/CS-doped Bi2O3 exhibits the highest catalytic potential (97.67%) against RhB in a neutral medium. The compound g-C3N4/CS-Bi2O3 has been suggested as a potential inhibitor of β-lactamaseE. coli and DNA gyraseE. coli based on the findings of a molecular docking study that was in better agreement with in vitro bactericidal activity.
Collapse
Affiliation(s)
- Muhammad Ikram
- Solar Cell Applications Research Lab, Department of Physics, Government College University Lahore 54000 Pakistan
| | - Muhammad Shazaib
- Department of Physics, Riphah Institute of Computing and Applied Sciences (RICAS), Riphah International University 14 Ali Road Lahore Pakistan
| | - Ali Haider
- Department of Clinical Sciences, Faculty of Veterinary and Animal Sciences, Muhammad Nawaz Shareef University of Agriculture Multan 66000 Pakistan
| | - Anum Shahzadi
- Faculty of Pharmacy, The University of Lahore Lahore 54000 Pakistan
| | - Shair Baz
- Solar Cell Applications Research Lab, Department of Physics, Government College University Lahore 54000 Pakistan
| | | | - Anwar Ul-Hamid
- Core Research Facilities, King Fahd University of Petroleum & Minerals Dhahran 31261 Saudi Arabia
| | - Walid Nabgan
- Departament d'Enginyeria Química, Universitat Rovira i Virgili Av Països Catalans 26 Tarragona 43007 Spain
| | - Hisham S M Abd-Rabboh
- Chemistry Department, Faculty of Science, King Khalid University P.O. Box 9004 Abha 61413 Saudi Arabia
| | - Salamat Ali
- Department of Physics, Riphah Institute of Computing and Applied Sciences (RICAS), Riphah International University 14 Ali Road Lahore Pakistan
| |
Collapse
|
4
|
Li L, Li F, Li T, Cao W. A facile synthesis of K 3PMo 12O 40/WO 3 crystals for effective sonocatalytic performance. RSC Adv 2023; 13:15981-15992. [PMID: 37250223 PMCID: PMC10214110 DOI: 10.1039/d3ra02531d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 05/17/2023] [Indexed: 05/31/2023] Open
Abstract
Proper treatment of hazardous contaminants in the air, land, and water is crucial to environmental remediation. Sonocatalysis, by using ultrasound and suitable catalysts, has shown its potential in organic pollutant removal. In this work, K3PMo12O40/WO3 sonocatalysts were fabricated via a facile solution method at room temperature. Techniques such as powder X-ray diffraction, scanning electron microscopy (SEM), transmission electron microscopy, and X-ray photoelectron spectroscopy were used to characterize the structure and morphology of the products. By using the K3PMo12O40/WO3 sonocatalyst, an ultrasound-assisted advanced oxidation process has been developed for the catalytic degradation of methyl orange and acid red 88. Almost all dyes were degraded within 120 min of ultrasound baths, proving that the K3PMo12O40/WO3 sonocatalyst has the advantage of speeding up the decomposition of contaminants. The impacts of key parameters, including catalyst dosage, dye concentration, dye pH, and ultrasonic power were evaluated to understand and reach optimized conditions in sonocatalysis. The remarkable performance of K3PMo12O40/WO3 in the sonocatalytic degradation of pollutants provides a new strategy for the application of K3PMo12O40 in sonocatalysis.
Collapse
Affiliation(s)
- Linjing Li
- College of Chemistry, Key Lab of Environment Friendly Chemistry and Application in Ministry of Education, Xiangtan University Xiangtan 411105 China
| | - Feng Li
- College of Chemistry, Key Lab of Environment Friendly Chemistry and Application in Ministry of Education, Xiangtan University Xiangtan 411105 China
- Nano and Molecular Materials Research Unit, Faculty of Science, University of Oulu P.O. Box 3000 FIN-90014 Oulu Finland
| | - Taohai Li
- College of Chemistry, Key Lab of Environment Friendly Chemistry and Application in Ministry of Education, Xiangtan University Xiangtan 411105 China
- Nano and Molecular Materials Research Unit, Faculty of Science, University of Oulu P.O. Box 3000 FIN-90014 Oulu Finland
| | - Wei Cao
- Nano and Molecular Materials Research Unit, Faculty of Science, University of Oulu P.O. Box 3000 FIN-90014 Oulu Finland
| |
Collapse
|
5
|
Jia RQ, Chen YJ, Zuo LY, Jin YJ, Li B, Wang LY. Enhancing the Photocatalytic Degradation Efficiency of Dyes of Copper-Based Metal-Organic Frameworks through a Dimension-Induced Structural Strategy. Inorg Chem 2023; 62:442-453. [PMID: 36571809 DOI: 10.1021/acs.inorgchem.2c03538] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Photocatalytic degradation of pollutants is an effective environment purification strategy. Metal-organic frameworks (MOFs) have attracted extensive attention in the field of photocatalysis owing to their structural diversity, uniform cavity, and large specific surface area. However, poor electrical conductivity, light absorption, and water stability restrict their development. The tailorable structure of MOFs may effectively overcome these limitations. Herein, three Cu-based MOFs (complexes 1-3) with one-dimensional (1D), two-dimensional (2D), and three-dimensional (3D) structures, respectively, were successfully prepared by introducing different uncoordinated ligands and adjusting the ligand/metal salt ratio. Among them, complex 1 with a 1D chain was constructed as a typical J-type aggregation by π-π stacking interactions between adjacent naphthalene rings. This intermolecular aggregation mode enhances strong exciton coupling between conjugated rings, reduces the transition energy, expands the intrinsic light absorption edge, and provides a channel for electron transport, thus improving the charge-separation efficiency. As expected, complex 1 with a 1D chain structure exhibited excellent Fenton-like catalytic activity. The apparent reaction rates were 3.2 and 2.0 times higher than those of 2D and 3D MOFs, respectively.
Collapse
Affiliation(s)
- Ruo-Qin Jia
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang473061, Henan Province, P. R. China
| | - Ying-Jun Chen
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang473061, Henan Province, P. R. China
| | - Lu-Yang Zuo
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang473061, Henan Province, P. R. China
| | - Yu-Jie Jin
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang473061, Henan Province, P. R. China
| | - Bo Li
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang473061, Henan Province, P. R. China
| | - Li-Ya Wang
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang473061, Henan Province, P. R. China
| |
Collapse
|
6
|
Khudkham T, Channei D, Pinchaipat B, Chotima R. Degradation of Methylene Blue with a Cu(II)-Quinoline Complex Immobilized on a Silica Support as a Photo-Fenton-Like Catalyst. ACS OMEGA 2022; 7:33258-33265. [PMID: 36157765 PMCID: PMC9494654 DOI: 10.1021/acsomega.2c03770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 09/01/2022] [Indexed: 06/16/2023]
Abstract
A Cu(II)-quinoline complex immobilized on a silica support was prepared to enhance the degradation of dyes. Mesoporous silica functionalized with this Cu(II) complex was turned into a photo-Fenton-like catalyst. Various techniques were used to characterize the resulting material, and the catalytic activity was determined by the degradation of methylene blue (MB) under UV light irradiation. The Cu(II) ion was successfully coordinated to the quinoline ligand on a silica support. The dye degradation investigation has shown that 95% of the dye was degraded in 2.5 h. The active radical species involved in the reaction were OH• and O2 •-, suggesting that a peroxo complex intermediate might be formed during degradation processes.
Collapse
|
7
|
Li S, Liu M, Liu Q, Pan F, Zhang L, Ma K. Zeolite encapsulated Cu(II)-salen complexes for the catalytic degradation of dyes in a neutral condition. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
8
|
Keshtkar Vanashi A, Ghasemzadeh H. Copper(II) containing chitosan hydrogel as a heterogeneous Fenton-like catalyst for production of hydroxyl radical: A quantitative study. Int J Biol Macromol 2022; 199:348-357. [PMID: 34995667 DOI: 10.1016/j.ijbiomac.2021.12.150] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 11/24/2022]
Abstract
The Fenton reaction, which generate hydroxl radical as a powerful oxidizing agent, is of interest due to its role in biological systems and wastewater treatment. However, unlike the ferrous/ferric system that is active only in acidic condition, the copper ion can operate over a wide pH range as a Fenton-like system. In this research a copper containing hydrogel (Cu/CH) was prepared by loading the Cu2+ ions into a hydrogel based on chitosan, acrylamide (AAM), and acrylic acid (AA), and used for production of hydroxyl radical in a Fenton-like reaction. The prepared catalyst was characterized by using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and energy dispersive X-ray analysis (EDAX). The catalytic activity of the hydrogels was quantitatively investigated by measuring the hydroxyl radical using the photoluminescence (PL) technique. Various parameters such as contact time, amount of metal ion, dose of hydrogen peroxide, and dose of Cu/CH were investigated. A catalytic mechanism was proposed for production of hydroxyl radical. The reusability studies showed that the Cu/CH can be reused several times without loss of its catalytic activity. In addition, various metal ions were loaded into the hydrogel and their performance in the production of hydroxyl radical were investigated.
Collapse
Affiliation(s)
- Abolfazl Keshtkar Vanashi
- Department of Chemistry, Faculty of Science, Imam Khomeini International University, P.O.Box 288, Qazvin, Iran
| | - Hossein Ghasemzadeh
- Department of Chemistry, Faculty of Science, Imam Khomeini International University, P.O.Box 288, Qazvin, Iran.
| |
Collapse
|
9
|
Gao Q, Lei Q, Miao R, Gao M, Liu H, Yang Q, Liu Y, Song F, Yu Y, Yang W. Bi-doped graphitic carbon nitride nanotubes boost the photocatalytic degradation of Rhodamine B. NEW J CHEM 2022. [DOI: 10.1039/d1nj05569k] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Polymeric carbon nitride (PCN) is an emerging metal-free photocatalyst with high stability but is plagued by low photocatalytic efficiency due to the rapid charge carrier recombination behavior.
Collapse
Affiliation(s)
- Qingqing Gao
- School of Chemistry and Chemical Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Qian Lei
- School of Chemistry and Chemical Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China
| | - Ruoyan Miao
- School of Chemistry and Chemical Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China
| | - Manyi Gao
- School of Chemistry and Chemical Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Hu Liu
- School of Chemistry and Chemical Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China
| | - Qin Yang
- School of Chemistry and Chemical Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China
| | - Yequn Liu
- Institutional Center for Shared Technologies and Facilities of Institute of Coal Chemistry, CAS, State Key Laboratory of Coal Conversion, Taiyuan 030001, China
| | - Fang Song
- Instrumental Analysis Center, Xi’an University of Architecture and Technology, Xi’an 710055, China
| | - Yongsheng Yu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Weiwei Yang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| |
Collapse
|
10
|
Yang C, Xu H, Shi J, Liu Z, Zhao L. Preparation and Photocatalysis of CuO/Bentonite Based on Adsorption and Photocatalytic Activity. MATERIALS 2021; 14:ma14195803. [PMID: 34640199 PMCID: PMC8510130 DOI: 10.3390/ma14195803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 11/16/2022]
Abstract
A CuO/bentonite composite photocatalyst was prepared to fully utilize the adsorption capacity of bentonite and the photocatalytic activity of CuO. CuO and bentonite were chosen as a photocatalyst due to the excellent optical property of CuO and large specific surface area of bentonite, together with their high stability and low production cost. The sample was characterized by XRD, SEM, and BET. The effects of several factors on degradation process were investigated such as dosage of H2O2, irradiation time, pH of the solution, and dosage of catalyst. The optimum conditions for decolorization of methylene blue solution by CuO/bentonite were determined. Under optimal conditions, the decolorization efficiency of methylene blue by a 1.4% CuO/bentonite (400 °C) composite photocatalyst under visible irradiation at 240 min reached 96.98%. The degradation process follow edpseudo-second-order kinetics. The photocatalytic mechanism is discussed in detail. This composite structure provides a new solution to the cycle and aggregation of the photocatalyst in water.
Collapse
Affiliation(s)
- Cuina Yang
- State Key Laboratory of Disaster Prevention & Mitigation of Explosion & Impact, Army Engineering University of PLA, Nanjing 210007, China;
- School of Civil Engineering and Architecture, Xinxiang University, Xinxiang 453003, China; (J.S.); (L.Z.)
| | - Hongfa Xu
- State Key Laboratory of Disaster Prevention & Mitigation of Explosion & Impact, Army Engineering University of PLA, Nanjing 210007, China;
- Correspondence:
| | - Jicun Shi
- School of Civil Engineering and Architecture, Xinxiang University, Xinxiang 453003, China; (J.S.); (L.Z.)
| | - Zhifeng Liu
- School of Materials Science and Engineering, Tianjin Chengjian University, Tianjin 300384, China;
| | - Lei Zhao
- School of Civil Engineering and Architecture, Xinxiang University, Xinxiang 453003, China; (J.S.); (L.Z.)
| |
Collapse
|
11
|
Cu(II) Schiff base complex functionalized mesoporous silica nanoparticles as an efficient catalyst for the synthesis of questiomycin A and photo-Fenton-like rhodamine B degradation. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2021.122429] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
12
|
Superior fenton-like degradation of tetracycline by iron loaded graphitic carbon derived from microplastics: Synthesis, catalytic performance, and mechanism. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118773] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
13
|
Wang C, Sun R, Huang R, Cao Y. A novel strategy for enhancing heterogeneous Fenton degradation of dye wastewater using natural pyrite: Kinetics and mechanism. CHEMOSPHERE 2021; 272:129883. [PMID: 33581565 DOI: 10.1016/j.chemosphere.2021.129883] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/26/2021] [Accepted: 02/02/2021] [Indexed: 06/12/2023]
Abstract
Hydrogen peroxide activation by pyrite for degradation of recalcitrant contaminants receives increasing attention. The improvement of catalytic efficiency of natural pyrite is still a challenging issue. This work provides a novel strategy of enhancing catalytic efficiency via pre-reaction between pyrite and hydrogen peroxide. Effects of process factors including pre-reaction time, hydrogen peroxide, solution pH and initial dye concentration were examined. Natural pyrite with low purity was characterized by Raman, scanning electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. Reaction kinetic verifies tremendous improvement of the reaction rate through pre-reaction. Enhanced dye degradation is ascribed to hydroxyl radical production promoted by self-regulation of pH, Fe2+ releasing and Fe2+/Fe3+ cycle. The plausible mechanism was proposed based on multiple determinations. Dye degradation in different water matrix was efficiently obtained, as well as multicomponent dyes. Additionally, broad operation pH and good reusing performance make the developed process highly attractive for application. This work provides a solid step-forward of pyrite/hydrogen peroxide Fenton process for treatment of recalcitrant contaminants in wastewater.
Collapse
Affiliation(s)
- Chongqing Wang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Ruirui Sun
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Rong Huang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Yijun Cao
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
14
|
Wongsuwan S, Chatwichien J, Pinchaipat B, Kumphune S, Harding DJ, Harding P, Boonmak J, Youngme S, Chotima R. Synthesis, characterization and anticancer activity of Fe(II) and Fe(III) complexes containing N-(8-quinolyl)salicylaldimine Schiff base ligands. J Biol Inorg Chem 2021; 26:327-339. [PMID: 33606116 DOI: 10.1007/s00775-021-01857-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 02/04/2021] [Indexed: 01/03/2023]
Abstract
A series of Fe(II) complexes (1-4) and Fe(III) complexes (5-8) from Fe(II)/(III) chloride and N-(8-quinolyl)-X-salicylaldimine Schiff base ligands (Hqsal-X2/X: X = Br, Cl) were successfully synthesized and characterized by spectroscopic (FT-IR, 1H-NMR), mass spectrometry, thermogravimetric analysis (TGA), and single crystal X-ray crystallographic techniques. The interaction of complexes 1-8 with calf thymus DNA (CT-DNA) was determined by UV-Vis and fluorescence spectroscopy. The complexes exhibited good DNA-binding activity via intercalation. The molecular docking between a selected complex and DNA was also investigated. The in vitro anticancer activity of the Schiff base ligands and their complexes were screened against the A549 human lung adenocarcinoma cell line. The complexes showed anticancer activity toward A549 cancer cells while the free ligands and iron chloride salts showed no inhibitory effects at 100 µM. In this series, complex [Fe(qsal-Cl2)2]Cl 6 showed the highest anticancer activity aginst A549 cells (IC50 = 10 µM). This is better than two well-known anticancer agents (Etoposide and Cisplatin). Furthermore, the possible mechanism for complexes 1-8 penetrating A549 cells through intracellular ROS generation was investigated. The complexes containing dihalogen substituents 1, 2, 5, and 6 can increase ROS in A549 cells, leading to DNA or macromolecular damage and cell-death induction.
Collapse
Affiliation(s)
- Sutthida Wongsuwan
- Department of Chemistry, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
| | - Jaruwan Chatwichien
- Program in Chemical Sciences, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok, 10210, Thailand
| | - Bussaba Pinchaipat
- Department of Chemistry, Faculty of Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Sarawut Kumphune
- Integrative Biomedical Research Unit (IBRU), Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, 65000, Thailand
- Biomedical Engineering Institute (BMEI), Chiang Mai University, Chiang Mai, 50200, Thailand
| | - David J Harding
- Functional Materials and Nanotechnology Center of Excellence, Walailak University, Thasala, 80160, Nakhon Si Thammarat, Thailand
| | - Phimphaka Harding
- Functional Materials and Nanotechnology Center of Excellence, Walailak University, Thasala, 80160, Nakhon Si Thammarat, Thailand
| | - Jaursup Boonmak
- Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Sujittra Youngme
- Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Ratanon Chotima
- Department of Chemistry, Faculty of Science, Naresuan University, Phitsanulok, 65000, Thailand.
| |
Collapse
|
15
|
Vasu D, Navaneetha Pandiyaraj K, Padmanabhan PVA, Pichumani M, Deshmukh RR, Jaganathan SK. Degradation of simulated Direct Orange-S (DO-S) textile effluent using nonthermal atmospheric pressure plasma jet. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:649-662. [PMID: 31679080 DOI: 10.1007/s10653-019-00446-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 10/09/2019] [Indexed: 06/10/2023]
Abstract
One of the major environmental issues of textile industries is the discharge of large quantities of textile effluents, which are source of contamination of water bodies on surface of earth and quality of groundwater. The effluents are toxic, non-biodegradable, carcinogenic and prodigious threats to human and aquatic creatures. Since textile effluents can be treated efficiently and effectively by various advanced oxidation processes (AOPs). Among the various AOPs, cold atmospheric pressure plasma is a promising method among many prominent techniques available to treat the effluents. In this paper, we report about the degradation of simulated effluent, namely Direct Orange-S (DO-S) aqueous solution, using nonthermal atmospheric pressure plasma jet. The plasma treatment of DO-S aqueous solution was carried out as a function of various operating parameters such as potential and treatment time. The change in properties of treated DO-S dye was investigated by means of various analytical techniques such as high-performance liquid chromatography, UV-visible (UV-Vis) spectroscopy and determination of total organic content (TOC). The reactive species present in the samples were identified using optical emission spectrometry (OES). OES results confirmed that the formation of reactive oxygen and nitrogen species during the plasma treatment in the liquid surface was responsible for dye oxidation and degradation. Degradation efficiency, as monitored by color removal efficiency, of 96% could be achieved after 1 h of treatment. Concurrently, the TOC values were found to decrease with plasma treatment, implying that the plasma treatment process enhanced the non-toxicity nature of DO-S aqueous solution. Toxicity of the untreated and plasma-treated dye solution samples was studied using Escherichia coli (E. coli) and Staphylococcus (S. aureus) organisms, which demonstrated that the plasma-treated dye solution was non-toxic in nature compared with untreated one.
Collapse
Affiliation(s)
- D Vasu
- Research Division of Plasma Processing (RDPP), Department of Physics, Sri Shakthi Institute of Engineering and Technology, L&T Bypass, Chinniyam Palayam (Post), Coimbatore, 641062, India
| | - K Navaneetha Pandiyaraj
- Research Division of Plasma Processing (RDPP), Department of Physics, Sri Shakthi Institute of Engineering and Technology, L&T Bypass, Chinniyam Palayam (Post), Coimbatore, 641062, India.
| | - P V A Padmanabhan
- Research Division of Plasma Processing (RDPP), Department of Physics, Sri Shakthi Institute of Engineering and Technology, L&T Bypass, Chinniyam Palayam (Post), Coimbatore, 641062, India
| | - M Pichumani
- Department of Nanoscience and Nanotechnology, Sri Ramakrishna Engineering College, Coimbatore, 641022, India
| | - R R Deshmukh
- Department of Physics, Institute of Chemical Technology, Matunga, Mumbai, 400019, India
| | - S K Jaganathan
- Department of Engineering, Faculty of Science and Engineering, University of Hull, Hull, HU6 7RX, UK
- IJNUTM Cardiovascular Engineering Centre, School of Biomedical Engineering and Health Science, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai, 81310, Malaysia
| |
Collapse
|
16
|
Biomass-Derived Activated Carbon as a Catalyst for the Effective Degradation of Rhodamine B dye. Processes (Basel) 2020. [DOI: 10.3390/pr8080926] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Activated carbon (AC) was fabricated from carrot waste using ZnCl2 as the activating agent and calcined at 700 °C for 2 h in a tube furnace. The as-synthesized AC was characterized using Fourier-transform infrared spectroscopy, X-ray diffraction analysis, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, and Brunauer–Emmett–Teller analysis; the results revealed that it exhibited a high specific surface area and high porosity. Moreover, this material displayed superior catalytic activity for the degradation of toxic Rhodamine B (RhB) dye. Rate constant for the degradation of RhB was ascertained at different experimental conditions. Lastly, we used the Arrhenius equation and determined that the activation energy for the decomposition of RhB using AC was approximately 35.9 kJ mol−1, which was very low. Hopefully it will create a great platform for the degradation of other toxic dye in near future.
Collapse
|
17
|
Tariq M, Muhammad M, Khan J, Raziq A, Uddin MK, Niaz A, Ahmed SS, Rahim A. Removal of Rhodamine B dye from aqueous solutions using photo-Fenton processes and novel Ni-Cu@MWCNTs photocatalyst. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113399] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
18
|
Hajizadeh Z, Hassanzadeh-Afruzi F, Jelodar DF, Ahghari MR, Maleki A. Cu(ii) immobilized on Fe 3O 4@HNTs-tetrazole (CFHT) nanocomposite: synthesis, characterization, investigation of its catalytic role for the 1,3 dipolar cycloaddition reaction, and antibacterial activity. RSC Adv 2020; 10:26467-26478. [PMID: 35519782 PMCID: PMC9055433 DOI: 10.1039/d0ra04772d] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 07/02/2020] [Indexed: 01/04/2023] Open
Abstract
In the present study, Cu(ii) immobilized on an Fe3O4@HNTs-tetrazole (CFHT) nanocomposite was designed and prepared. For this, halloysite nanotubes (HNTs) as natural mesoporous substances were modified during several chemical reactions. The synthesis of the CFHT nanocomposite was investigated step by step with the required physicochemical techniques such as FT-IR, EDX, SEM, TEM, XRD, VSM, TGA and CHNS analyses. After ensuring that the nanocomposite was successfully prepared, its catalytic application in the synthesis of the 5-substituted 1H-tetrazole derivatives via multicomponent reactions (MCRs) between aromatic aldehydes, malononitrile, and sodium azide was assessed. According to the experimental results, the prepared nanocomposite exhibited excellent capability for conducting this MCR reaction. All desired products were obtained in a short reaction time (30-40 min) with high productivity (90-97%) and without a complicated workup procedure. Furthermore, the magnetic property of the synthesized heterogeneous nanocomposite empowers it to be recovered and reused in five times successive reactions without any significant reduction in reaction efficiency. Moreover, the remarkable antibacterial activity of the nanocomposite against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) was evaluated by agar diffusion and plate-count methods. The zones of inhibition were around 16 and 20 mm for E. coli and S. aureus bacteria, respectively. Also, colony analysis confirms the killing of bacteria by using the CFHT nanocomposite.
Collapse
Affiliation(s)
- Zoleikha Hajizadeh
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98-21-73021584 +98-21-73228313
| | - Fereshte Hassanzadeh-Afruzi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98-21-73021584 +98-21-73228313
| | - Diana Fallah Jelodar
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98-21-73021584 +98-21-73228313
| | - Mohammad Reza Ahghari
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98-21-73021584 +98-21-73228313
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98-21-73021584 +98-21-73228313
| |
Collapse
|
19
|
Li J, Pham AN, Dai R, Wang Z, Waite TD. Recent advances in Cu-Fenton systems for the treatment of industrial wastewaters: Role of Cu complexes and Cu composites. JOURNAL OF HAZARDOUS MATERIALS 2020; 392:122261. [PMID: 32066018 DOI: 10.1016/j.jhazmat.2020.122261] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 02/02/2020] [Accepted: 02/07/2020] [Indexed: 06/10/2023]
Abstract
Cu-based Fenton systems have been recognized as a promising suite of technologies for the treatment of industrial wastewaters due to their high catalytic oxidation capacity. Rapid progress regarding Cu Fenton systems has been made not only in fundamental mechanistic aspects of these systems but also with regard to applications over the past decade. Based on available literature, this review synthesizes the recent advances regarding both the understanding and applications of Cu-based Fenton processes for industrial wastewater treatment. Cu-based catalysts that are essential to the effectiveness of use of Cu Fenton reactions for oxidation of target species are mainly classified into two types: (i) Cu complexes with organic or inorganic ligands, and (ii) Cu composites with inorganic materials. Performance of the Cu-based catalysts for the removal of organic pollutants in industrial wastewaters are reviewed, with the key operating parameters illustrated. Furthermore, the roles of Cu complexes and composites in both homogeneous and heterogeneous Cu-Fenton systems are critically examined with particular focus on the mechanisms involved. Perspectives and future efforts needed for Cu-based Fenton systems using Cu complexes and composites for industrial wastewater treatment are presented.
Collapse
Affiliation(s)
- Jiayi Li
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - A Ninh Pham
- School of Civil and Environmental Engineering, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Ruobin Dai
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Zhiwei Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China.
| | - T David Waite
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; School of Civil and Environmental Engineering, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| |
Collapse
|
20
|
Ai S, Guo X, Zhao L, Yang D, Ding H. Zeolitic imidazolate framework-supported Prussian blue analogues as an efficient Fenton-like catalyst for activation of peroxymonosulfate. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.123796] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
21
|
Satdeve N, Ugwekar R, Bhanvase B. Ultrasound assisted preparation and characterization of Ag supported on ZnO nanoparticles for visible light degradation of methylene blue dye. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111313] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
22
|
Wang C, Cao Y, Wang H. Copper-based catalyst from waste printed circuit boards for effective Fenton-like discoloration of Rhodamine B at neutral pH. CHEMOSPHERE 2019; 230:278-285. [PMID: 31108438 DOI: 10.1016/j.chemosphere.2019.05.068] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/08/2019] [Accepted: 05/09/2019] [Indexed: 06/09/2023]
Abstract
The carbonized waste printed circuit board (c-PCB) was used as novel copper-based catalyst for Fenton-like discoloration of Rhodamine B (RhB). The elemental ingredients, structure and morphology of the catalyst was investigated by multi-techniques. The catalytic activity of c-PCB for RhB discoloration was evaluated in the presence of H2O2, examining the factors of catalyst dosage, H2O2 dosage, solution pH, RhB concentration and temperature. RhB discoloration is improved with increasing catalyst dosage (0-2.0 g L-1), H2O2 dosage (0-0.15 mol L-1), solution pH (4.66-9.36) and temperature (30-50 °C). We found that c-PCB shows excellent catalytic activity for RhB discoloration in a broad pH range. RhB removal of 95.78% is obtained within 6 h at neutral pH (6.70). RhB discoloration is well described by the first-order kinetics, and the activation energy is calculated to be 87 kJ mol-1. The dominant role of OH radical in the c-PCB/H2O2 system is identified by quenching tests. The plausible pathway for RhB discoloration is discussed based on the time-dependent UV-vis spectra. The possible catalytic mechanism in the c-PCB/H2O2 system is also presented. Good reusability of c-PCB is verified by three cycles. This work opens a new strategy of "waste treating waste", facilitating management of hazardous solid wastes and cleaner treatment of textile wastewater.
Collapse
Affiliation(s)
- Chongqing Wang
- School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou, 450001, China
| | - Yijun Cao
- School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou, 450001, China.
| | - Hui Wang
- School of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| |
Collapse
|
23
|
Jain H, Joshi A, Ramachandran CN, Kumar R. Synthesis of a Highly Efficient Multifunctional Copper (II)‐Pyridyl Complex for Adsorption and Photocatalytic Degradation of Organic Dyes. ChemistrySelect 2019. [DOI: 10.1002/slct.201900498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Harshita Jain
- Department of ChemistryUniversity of Delhi Delhi- 110007 India
| | - Ankita Joshi
- Department of ChemistryIndian Institute of Technology Roorkee-Uttarakhand- 247667 India
| | - C. N. Ramachandran
- Department of ChemistryIndian Institute of Technology Roorkee-Uttarakhand- 247667 India
| | - Rakesh Kumar
- Department of ChemistryUniversity of Delhi Delhi- 110007 India
| |
Collapse
|
24
|
Strongly prolonged hydroxyl radical production for Fenton-like reactions: The golden touch of Cu. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2018.12.060] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
25
|
Xu L, Yang Y, Li W, Tao Y, Sui Z, Song S, Yang J. Three-dimensional macroporous graphene-wrapped zero-valent copper nanoparticles as efficient micro-electrolysis-promoted Fenton-like catalysts for metronidazole removal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 658:219-233. [PMID: 30577018 DOI: 10.1016/j.scitotenv.2018.12.040] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 11/15/2018] [Accepted: 12/04/2018] [Indexed: 06/09/2023]
Abstract
Three-dimensional macroporous graphene-wrapped zero-valent copper nanoparticles (3D-GN@Cu0) were synthesized using a self-assembly process of liquid-phase reduction and characterized by field emission scanning electron microscopy, nitrogen adsorption/desorption isotherms, X-ray diffraction, Raman spectrum analysis, and X-ray photoelectron spectroscopy. The catalytic activity of 3D-GN@Cu0 was evaluated in view of the effects of various systems, the pH value, catalyst dosage, initial metronidazole concentration and temperature, and it showed a high efficiency for removing metronidazole with saturated dissolved oxygen (without adding extra H2O2) in a wide range of pH value from 3.2 to 9.8. Combined with the results of dissolved oxygen activation, determination of reactive oxidizing species, and X-ray photoelectron spectroscopy (XPS) analysis, the surface-bounded ·OHads formed by the reaction of the in situ generation H2O2 with 3D-GN@Cu0 was mainly responsible for the removal of metronidazole. The charge distribution and electrostatic potential (ESP) of 3D-GN@Cu0 further illustrated the distribution and transfer of electrons on the catalyst surface, which predicted a micro-electrolysis-promoted Fenton-like reaction mechanism.
Collapse
Affiliation(s)
- Lejin Xu
- Department of Nuclear Engineering and Technology, School of Energy and Power Engineering, Huazhong University of Science & Technology, Wuhan 430074, PR China
| | - Yujia Yang
- Department of Nuclear Engineering and Technology, School of Energy and Power Engineering, Huazhong University of Science & Technology, Wuhan 430074, PR China
| | - Wuyang Li
- Department of Nuclear Engineering and Technology, School of Energy and Power Engineering, Huazhong University of Science & Technology, Wuhan 430074, PR China
| | - Yujie Tao
- Department of Nuclear Engineering and Technology, School of Energy and Power Engineering, Huazhong University of Science & Technology, Wuhan 430074, PR China
| | - Zengguang Sui
- Department of Nuclear Engineering and Technology, School of Energy and Power Engineering, Huazhong University of Science & Technology, Wuhan 430074, PR China
| | - Shuang Song
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Jun Yang
- Department of Nuclear Engineering and Technology, School of Energy and Power Engineering, Huazhong University of Science & Technology, Wuhan 430074, PR China.
| |
Collapse
|
26
|
Díaz-García D, Ardiles PR, Prashar S, Rodríguez-Diéguez A, Páez PL, Gómez-Ruiz S. Preparation and Study of the Antibacterial Applications and Oxidative Stress Induction of Copper Maleamate-Functionalized Mesoporous Silica Nanoparticles. Pharmaceutics 2019; 11:E30. [PMID: 30646534 PMCID: PMC6359009 DOI: 10.3390/pharmaceutics11010030] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 01/09/2019] [Accepted: 01/10/2019] [Indexed: 02/06/2023] Open
Abstract
Mesoporous silica nanoparticles (MSNs) are an interesting class of nanomaterials with potential applications in different therapeutic areas and that have been extensively used as drug carriers in different fields of medicine. The present work is focused on the synthesis of MSNs containing a maleamato ligand (MSN-maleamic) and the subsequent coordination of copper(II) ions (MSN-maleamic-Cu) for the exploration of their potential application as antibacterial agents. The Cu-containing nanomaterials have been characterized by different techniques and the preliminary antibacterial effect of the supported maleamato-copper(II) complexes has been tested against two types of bacteria (Gram positive and Gram negative) in different assays to determine the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). The biological results showed a moderate antibacterial activity against Escherichia coli which motivated a more detailed study of the antibacterial mechanism of action of the synthesized maleamate-containing nanosystems and whose findings showed oxidative stress generation in bacterial cells. All the prepared nanomaterials were also tested as catalysts in the "solvent free" selective oxidation of benzyl alcohol, to observe if there is a potential correlation between the catalytic oxidation capacity of the materials and the observed oxidative stress in bacteria. This may help in the future, for a more accurate rational design of antibacterial nanosystems, based on their observed catalytic oxidation activity.
Collapse
Affiliation(s)
- Diana Díaz-García
- Departamento de Biología y Geología, Física y Química Inorgánica, ESCET, Universidad Rey Juan Carlos, Calle Tulipán s/n, E-28933 Móstoles (Madrid), Spain.
| | - Perla R Ardiles
- Departamento de Ciencias Farmacéuticas. Facultad de Ciencias Químicas, Universidad Nacional de Córdoba. Ciudad Universitaria, Haya de la Torre y Medina Allende, X5000HUA Córdoba, Argentina.
| | - Sanjiv Prashar
- Departamento de Biología y Geología, Física y Química Inorgánica, ESCET, Universidad Rey Juan Carlos, Calle Tulipán s/n, E-28933 Móstoles (Madrid), Spain.
| | - Antonio Rodríguez-Diéguez
- Departamento de Química Inorgánica, Universidad de Granada, Facultad de Ciencias, Campus de Fuentenueva, Avda. Fuentenueva s/n, E-18071 Granada, Spain.
| | - Paulina L Páez
- Departamento de Ciencias Farmacéuticas. Facultad de Ciencias Químicas, Universidad Nacional de Córdoba. Ciudad Universitaria, Haya de la Torre y Medina Allende, X5000HUA Córdoba, Argentina.
| | - Santiago Gómez-Ruiz
- Departamento de Biología y Geología, Física y Química Inorgánica, ESCET, Universidad Rey Juan Carlos, Calle Tulipán s/n, E-28933 Móstoles (Madrid), Spain.
| |
Collapse
|
27
|
Su Z, Li J, Zhang D, Ye P, Li H, Yan Y. Novel flexible Fenton-like catalyst: Unique CuO nanowires arrays on copper mesh with high efficiency across a wide pH range. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 647:587-596. [PMID: 30092514 DOI: 10.1016/j.scitotenv.2018.08.022] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/02/2018] [Accepted: 08/02/2018] [Indexed: 06/08/2023]
Abstract
Free-standing and flexible Cu@CuO nanowires (NWs) mesh as an easily recycled Fenton-like catalyst is developed for the first time. Dense CuO nanowire arrays were uniformly grown on a copper mesh surface simply by wet etching accompanied with thermal dehydration. These dense CuO NWs provide a large specific area and therefore guarantee excellent catalytic performance toward the degradation of rhodamine B (RhB). With a k-value of 0.23 min-1, such a Cu@CuO NWs mesh is able to degrade 100% RhB in only 16 min. This Fenton-like catalyst is also appropriate for degrading other organic dyes, including crystal violet, methylene blue, and rhodamine 6G. Unlike the conventional Fenton catalyst implemented at a pH value around 3, the Cu@CuO NWs mesh could adapt to a wide pH range from 2.1 to 12.0. More intriguingly, the Cu@CuO NWs mesh with excellent flexibility could be easily recycled after catalysis, which is a significant advance compared to the previously reported Fenton catalysts in the form of powders or nanoparticles. In addition, the recycling performance of this Cu@CuO NWs mesh was also assessed. On the basis of electron spin resonance (ESR) results, O2- rather than OH is the main active species for the dye degradation by the Cu@CuO NWs mesh. With a marvelous combination of excellent flexibility, wide pH adaptation, and high efficiency, this easily recycled three dimensional Cu@CuO NWs architecture can afford new ideas for the Fenton chemistry.
Collapse
Affiliation(s)
- Zhen Su
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Jing Li
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Dandan Zhang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Pin Ye
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Heping Li
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| | - Youwei Yan
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| |
Collapse
|
28
|
Lv M, Yang L, Wang X, Cheng X, Song Y, Yin Y, Liu H, Han Y, Cao K, Ma W, Qi G, Li S. Visible-light photocatalytic capability and the mechanism investigation of a novel PANI/Sn3O4 p–n heterostructure. RSC Adv 2019; 9:40694-40707. [PMID: 35542680 PMCID: PMC9076232 DOI: 10.1039/c9ra07562c] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 12/02/2019] [Indexed: 12/03/2022] Open
Abstract
A novel polyaniline (PANI)/Sn3O4 heterojunction composed of PANI nanofibers and Sn3O4 nanosheets was fabricated by a facile physical milling technique. Modification of Sn3O4 with a PANI conductive polymer contributes to facilitating interfacial charge transfer efficiency, and thus, significantly enhances the visible-light Rhodamine B (RhB) photo-degradation. Results indicate that PANI/Sn3O4 heterostructures with 10 wt% PANI reached the maximum degradation efficiency (around 97%) for RhB within 5 h, which is 2.27 times higher than that of Sn3O4 alone. This improvement is due to the p–n heterostructure formation in PANI/Sn3O4. Moreover, the outcome of reactive species capturing experiments demonstrated that in PANI/Sn3O4, holes made the largest contribution to RhB degradation under visible light illumination, while hydroxyl radicals showed less significance under the same conditions. In addition, the photocatalytic mechanism was proposed based on evidence from the reactive species test and energy band structure analysis. A novel polyaniline (PANI)/Sn3O4 heterojunction composed of PANI nanofibers and Sn3O4 nanosheets was fabricated by a facile physical milling technique.![]()
Collapse
|
29
|
Ngigi EM, Nomngongo PN, Ngila JC. Synthesis and Application of Fe-Doped WO3 Nanoparticles for Photocatalytic Degradation of Methylparaben Using Visible–Light Radiation and H2O2. Catal Letters 2018. [DOI: 10.1007/s10562-018-2594-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
30
|
Jiang L, Zhang Y, Zhou M, Liang L, Li K. Oxidation of Rhodamine B by persulfate activated with porous carbon aerogel through a non-radical mechanism. JOURNAL OF HAZARDOUS MATERIALS 2018; 358:53-61. [PMID: 29960934 DOI: 10.1016/j.jhazmat.2018.06.048] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 06/08/2018] [Accepted: 06/22/2018] [Indexed: 06/08/2023]
Abstract
In this study, porous carbon aerogel (CA) was synthesized with D-glucose, ammonium persulfate and aniline by a hydrothermal carbonization method. It was reported for the first time as an excellent catalyst for activating persulfate (PS) to degrade rhodamine B (RhB). The morphology of CA was characterized, exhibiting microporous and mesoporous structures. The solution pH of 3, 5, 7 and 9 showed slight impact on the degradation of RhB; however, when the pH increased to 11, the removal of RhB decreased. The PS concentration and CA dosage played a key role in the RhB degradation, and the activation energy was calculated to be 22.11 kJ/mol. Electron paramagnetic resonance (EPR) spectra suggested that neither sulfate radical (SO4-) nor hydroxyl radical (OH) was generated from the PS activation. The radical quenching experiments also confirmed that CA activated PS in a non-radical pathway. It was indicated that PS bonded with CC in the sp2 hybridized system could directly degrade RhB. The defective edges at the boundary of CA also facilitated the RhB removal. This work presented a green material with both excellent catalytic performance and high regeneration possibility in the heterogeneous metal-free PS activation, providing a new strategy in water treatment.
Collapse
Affiliation(s)
- Lili Jiang
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China; Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Ying Zhang
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China; Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Minghua Zhou
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China; Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.
| | - Liang Liang
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China; Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Kerui Li
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China; Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| |
Collapse
|
31
|
di Gregorio MC, Ranjan P, Houben L, Shimon LJW, Rechav K, Lahav M, van der Boom ME. Metal-Coordination-Induced Fusion Creates Hollow Crystalline Molecular Superstructures. J Am Chem Soc 2018; 140:9132-9139. [PMID: 29939733 DOI: 10.1021/jacs.8b03055] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In this work, we report the formation of superstructures assembled from organic tubular crystals mediated by metal-coordination chemistry. This template-free process involves the crystallization of molecules into crystals having a rectangular and uniform morphology, which then go on to fuse together into multibranched superstructures. The initially hollow and organic crystals are obtained under solvothermal conditions in the presence of a copper salt, whereas the superstructures are subsequently formed by aging the reaction mixture at room temperature. The mild thermodynamic conditions and the favorable kinetics of this unique self-assembly process allowed us to ex-situ monitor the superstructure formation by electron microscopy, highlighting a pivotal and unusual role for copper ions in their formation and stabilization.
Collapse
|