1
|
Jiang C, Wu Y, Zhang Y, Zong J, Wang N, Liu G, Liu R, Yu H. Supramolecular Modulation for Selective Mechanochemical Iron-Catalyzed Olefin Oxidation. Angew Chem Int Ed Engl 2025; 64:e202413901. [PMID: 39221519 DOI: 10.1002/anie.202413901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/30/2024] [Accepted: 08/31/2024] [Indexed: 09/04/2024]
Abstract
The development of a mechanochemical Fe-catalyzed Wacker oxidation of olefins with a sustainable and benign procedure holds significant promise for industrial applications. However, navigating the intricate interactions inherent in ball-milling conditions to fine-tune reaction selectivity remains a formidable challenge. Herein, leveraging the dispersive and/or trapping properties of cyclodextrins, an innovative mechanochemical approach is developed through the integration of cyclodextrins into a Fe-catalyzed system, enabling a streamlined Wacker oxidation process from simple and/or commercially available alkenes. Our efforts have yielded optimized mechanochemical conditions demonstrating exceptional reactivity and selectivity in generating a diverse array of ketone products, markedly enhancing catalytic efficiency compared to conventional batch methods. Mechanistic investigations have revealed a predominantly Markovnikov-selective catalytic cycle, effectively minimizing undesired alcohol formation, hydrogenation, and the other competing pathways, boosting both reaction yield and selectivity.
Collapse
Affiliation(s)
- Chuan Jiang
- International Joint Laboratory on Resource Chemistry, Shanghai Normal University, 200234, Shanghai, P. R. China
| | - Ye Wu
- International Joint Laboratory on Resource Chemistry, Shanghai Normal University, 200234, Shanghai, P. R. China
| | - Yongjin Zhang
- International Joint Laboratory on Resource Chemistry, Shanghai Normal University, 200234, Shanghai, P. R. China
| | - Jiawei Zong
- International Joint Laboratory on Resource Chemistry, Shanghai Normal University, 200234, Shanghai, P. R. China
| | - Ning Wang
- International Joint Laboratory on Resource Chemistry, Shanghai Normal University, 200234, Shanghai, P. R. China
| | - Guohua Liu
- International Joint Laboratory on Resource Chemistry, Shanghai Normal University, 200234, Shanghai, P. R. China
| | - Rui Liu
- International Joint Laboratory on Resource Chemistry, Shanghai Normal University, 200234, Shanghai, P. R. China
| | - Han Yu
- International Joint Laboratory on Resource Chemistry, Shanghai Normal University, 200234, Shanghai, P. R. China
| |
Collapse
|
2
|
Sheikhaleslami S, Sperry J. Mechanochemical Radical Transformations in Organic Synthesis. Chemistry 2025; 31:e202403833. [PMID: 39434622 DOI: 10.1002/chem.202403833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 10/23/2024]
Abstract
Organic synthesis has historically relied on solution-phase, polar transformations to forge new bonds. However, this paradigm is evolving, propelled by the rapid evolution of radical chemistry. Additionally, organic synthesis is witnessing a simultaneous resurgence in mechanochemistry, the formation of new bonds in the solid-state, further contributing to this shift in the status quo. The aforementioned advances in radical chemistry have predominantly occurred in the solution phase, while the majority of mechanochemical synthesis advances feature polar transformations. Herein, we discuss a rapidly advancing area of organic synthesis: mechanochemical radical reactions. Solid-state radical reactions offer improved green chemistry metrics, better reaction outcomes, and access to intermediates and products that are difficult or impossible to reach in solution. This review explores these reactions in the context of small molecule synthesis, from early findings to the current state-of-the-art, underscoring the pivotal role solid-state radical reactions are likely to play in advancing sustainable chemical synthesis.
Collapse
Affiliation(s)
- Sahra Sheikhaleslami
- Centre for Green Chemical Science, School of Chemical Sciences, University of Auckland, New Zealand
| | - Jonathan Sperry
- Centre for Green Chemical Science, School of Chemical Sciences, University of Auckland, New Zealand
| |
Collapse
|
3
|
Trzeciak K, Dudek MK, Potrzebowski MJ. Mechanochemical Transformations of Pharmaceutical Cocrystals: Polymorphs and Coformer Exchange. Chemistry 2024; 30:e202402683. [PMID: 39384536 DOI: 10.1002/chem.202402683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/11/2024]
Abstract
Transformations of solid samples under solvent-free or minimal solvent conditions set the future trend and define a modern strategy for the production of new materials. Of the various technologies tested in recent years, the mechanochemical approach seems to be the most promising for economic and ecological reasons. The aim of this review article is to present the current state of art in solid state research on binary systems, which have found numerous applications in the pharmaceutical and materials science industries. This article is divided into three sections. In the first part, we describe the new equipment improvements, which include the innovative application of thermo-mechanochemistry, sono-mechanochemistry, photo-mechanochemistry, electro-mechanochemistry, as well as resonant acoustic mixing (RAM), and transformation under high-speed sample spinning ("SpeedMixing"). A brief description of techniques dedicated to ex-situ and in-situ studies of progress and the mechanism of solid matter transformation (PXRD, FTIR, Raman and NMR spectroscopy) is presented. In the second section, we discuss the problem of cocrystal polymorphism highlighting the issue related with correlation between mechanochemical parameters (time, temperature, energy, molar ratio, solvent used as a liquid assistant, surface energy, crystal size, crystal shape) and preference for the formation of requested polymorph. The last part is devoted to the description of the processes of coformer exchange in binary systems forced by mechanical and/or thermal stimuli. The influence of the thermodynamic factor on the selection of the best-suited partner for the formation of a two-component stable structure is presented.
Collapse
Affiliation(s)
- Katarzyna Trzeciak
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Lodz, Poland
| | - Marta K Dudek
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Lodz, Poland
| | - Marek J Potrzebowski
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Lodz, Poland
| |
Collapse
|
4
|
Hamzehpoor E, Effaty F, Borchers TH, Stein RS, Wahrhaftig-Lewis A, Ottenwaelder X, Friščić T, Perepichka DF. Mechanochemical Synthesis of Boroxine-linked Covalent Organic Frameworks. Angew Chem Int Ed Engl 2024; 63:e202404539. [PMID: 38970305 DOI: 10.1002/anie.202404539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/03/2024] [Accepted: 07/05/2024] [Indexed: 07/08/2024]
Abstract
We report a rapid, room-temperature mechanochemical synthesis of 2- and 3-dimensional boroxine covalent organic frameworks (COFs), enabled by using trimethylboroxine as a dehydrating additive to overcome the hydrolytic sensitivity of boroxine-based COFs. The resulting COFs display high porosity and crystallinity, with COF-102 being the first example of a mechanochemically prepared 3D COF, exhibiting a surface area of ca. 2,500 m2 g-1. Mechanochemistry enabled a>20-fold reduction in solvent use and ~100-fold reduction in reaction time compared with solvothermal methods, providing target COFs quantitatively with no additional work-up besides vacuum drying. Real-time Raman spectroscopy permitted the first quantitative kinetic analysis of COF mechanosynthesis, while transferring the reaction design to Resonant Acoustic Mixing (RAM) enabled synthesis of multi-gram amounts of the target COFs (tested up to 10 g).
Collapse
Affiliation(s)
- Ehsan Hamzehpoor
- Department of Chemistry, McGill University, 801 Sherbrooke St. W., Montreal, H3A 0B8, Canada
| | - Farshid Effaty
- Department of Chemistry, McGill University, 801 Sherbrooke St. W., Montreal, H3A 0B8, Canada
- Department of Chemistry and Biochemistry, Concordia University, 7141 Sherbrooke St. W., Montreal, H4B 1R6, Canada
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Tristan H Borchers
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Robin S Stein
- Department of Chemistry, McGill University, 801 Sherbrooke St. W., Montreal, H3A 0B8, Canada
- Bruker UK Ltd, Longwood Close, Westwood Business Park, Coventry, CV4 8HZ, United Kingdom
| | | | - Xavier Ottenwaelder
- Department of Chemistry and Biochemistry, Concordia University, 7141 Sherbrooke St. W., Montreal, H4B 1R6, Canada
| | - Tomislav Friščić
- Department of Chemistry, McGill University, 801 Sherbrooke St. W., Montreal, H3A 0B8, Canada
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Dmytro F Perepichka
- Department of Chemistry, McGill University, 801 Sherbrooke St. W., Montreal, H3A 0B8, Canada
| |
Collapse
|
5
|
Zavarise C, Cintrat JC, Romero E, Sallustrau A. Isocyanate-based multicomponent reactions. RSC Adv 2024; 14:39253-39267. [PMID: 39670166 PMCID: PMC11635408 DOI: 10.1039/d4ra04152f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 11/29/2024] [Indexed: 12/14/2024] Open
Abstract
Since their discovery, multicomponent reactions have attracted significant attention due to their versatility and efficiency. This review aims to explore the latest advancements in isocyanate-based multicomponent reactions and the sophisticated chemical opportunities they present for generating molecules of interest. The added value of the methodologies described, supported by mechanism schemes, as well as scopes of application, will be discussed. These developments will be organised as the main accessible chemical functions and sorted according to their type of MCR (3, 4 or 5-MCR).
Collapse
Affiliation(s)
- Clara Zavarise
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM Gif-sur-Yvette 91191 France
| | - Jean-Christophe Cintrat
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM Gif-sur-Yvette 91191 France
| | - Eugénie Romero
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM Gif-sur-Yvette 91191 France
| | - Antoine Sallustrau
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM Gif-sur-Yvette 91191 France
| |
Collapse
|
6
|
Prabhakar PS, Sahoo J, Alnaser IA, Seikh AH, Karim MR, Dutta S. Aqueous solution of biogenic carboxylic acids as sustainable catalysts and green reaction media for the high-yielding synthesis of Biginelli adducts, Hantzsch esters, and substituted pyridines. RSC Adv 2024; 14:39050-39060. [PMID: 39659593 PMCID: PMC11629940 DOI: 10.1039/d4ra07772e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 11/27/2024] [Indexed: 12/12/2024] Open
Abstract
3,4-Dihydropyrimidin-2(1H)-ones (DHPMs) and 1,4-dihydropyridines (DHPs), prepared by applying the Biginelli and Hantzsch reaction protocols, respectively, are well-documented nitrogen-containing heterocycles with intriguing pharmacological properties. The aqueous solution of biogenic carboxylic acids renewably produced from biomass via catalytic or enzymatic processes can be used as a sustainable catalyst and green reaction media for synthesizing DHPs and DHPMs. This work evaluates the efficacy of various biogenic acids in their aqueous solutions as catalysts for synthesizing DHPs and DHPMs from substituted benzaldehydes. Among the studied biogenic acids, gluconic acid aqueous solution (GAAS) proved to be the most efficient, safe, non-volatile, and recyclable catalyst. The reaction afforded excellent isolated yields (≥85%) of spectroscopically pure DHPs and DHPMs under optimized conditions and employed a straightforward work-up procedure. Aqueous ammonia was successfully employed instead of ammonium salt to improve the atom economy of DHPs. Moreover, substituted pyridines were synthesized from DHPs in a one-pot, two-step process using NaNO2 as an oxidant in the GAAS medium.
Collapse
Affiliation(s)
| | - Jitendra Sahoo
- Department of Chemistry, National Institute of Technology Karnataka (NITK) Surathkal Mangalore-575025 India
| | - Ibrahim A Alnaser
- Center of Excellence for Research in Engineering Materials (CEREM), Deanship of Scientific Research, King Saud University Riyadh 11421 Saudi Arabia
| | - Asiful H Seikh
- Center of Excellence for Research in Engineering Materials (CEREM), Deanship of Scientific Research, King Saud University Riyadh 11421 Saudi Arabia
| | - Mohammad Rezaul Karim
- Center of Excellence for Research in Engineering Materials (CEREM), Deanship of Scientific Research, King Saud University Riyadh 11421 Saudi Arabia
| | - Saikat Dutta
- Department of Chemistry, National Institute of Technology Karnataka (NITK) Surathkal Mangalore-575025 India
| |
Collapse
|
7
|
Iizuka K, Takezawa H, Fujita M. Template and Solid-State-Assisted Assembly of an M 9L 6 Expanded Coordination Cage for Medium-Sized Molecule Encapsulation. J Am Chem Soc 2024; 146:32311-32316. [PMID: 39555681 PMCID: PMC11613438 DOI: 10.1021/jacs.4c14509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/11/2024] [Accepted: 11/14/2024] [Indexed: 11/19/2024]
Abstract
The M6L4 cage, self-assembling from six Pd(II) or Pt(II) 90-degree blocks and four triazine-cored triangular ligands, has an effective hydrophobic cavity of about 450 Å3 capable of encapsulating one or more small molecules. Here, from the same components, we successfully constructed an M9L6 cage with an internal volume expanded to 1540 Å3 via the self-assembly of an M8L6 precursor using pillar[5]arene as a template. This cage retains the high molecular recognition ability of the M6L4 cage while recognizing medium-sized guest molecules with molecular weights of up to ∼1600.
Collapse
Affiliation(s)
- Kenta Iizuka
- Department
of Applied Chemistry, School of Engineering, The University of Tokyo, Mitsui Link Lab Kashiwanoha 1, FS CREATION, 6-6-2 Kashiwanoha, Kashiwa, Chiba 277-0882, Japan
| | - Hiroki Takezawa
- Department
of Applied Chemistry, School of Engineering, The University of Tokyo, Mitsui Link Lab Kashiwanoha 1, FS CREATION, 6-6-2 Kashiwanoha, Kashiwa, Chiba 277-0882, Japan
| | - Makoto Fujita
- Department
of Applied Chemistry, School of Engineering, The University of Tokyo, Mitsui Link Lab Kashiwanoha 1, FS CREATION, 6-6-2 Kashiwanoha, Kashiwa, Chiba 277-0882, Japan
- Tokyo
College, UT Institutes for Advanced Study, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
- Division
of Advanced Molecular Science, Institute
for Molecular Science (IMS), 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
| |
Collapse
|
8
|
Acharya SS, Parida BB. Synthetic routes to access dicarbonylated aryls and heteroaryls. Org Biomol Chem 2024; 22:8209-8248. [PMID: 39319402 DOI: 10.1039/d4ob01278j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
1,2-Dicarbonyl compounds are privileged functionalities found in natural products, pharmaceuticals, bioactive molecules, and food items, and are important precursors in catalysis, asymmetric synthesis, polymer chemistry and synthesizing functionalized heterocycles. Herein, this comprehensive review focuses on various approaches for synthesizing 1,2-dicarbonylated aryls and heteroaryls in both intermolecular and intramolecular fashion, covering the dicarbonylation of indoles, imidazoheterocycles, indolizines, aminopyrazoles, pyrroloisoquinolines, coumarins, furan, anilines, phenols, anthranils, and benzil synthesis over the last decade (since 2015). Also, the present review highlights the scope and future perspectives of the approach.
Collapse
Affiliation(s)
- Swadhin Swaraj Acharya
- Organic Synthesis Laboratory, P. G. Department of Chemistry, Berhampur University, Bhanja Bihar, Odisha, India 760007.
| | - Bibhuti Bhusan Parida
- Organic Synthesis Laboratory, P. G. Department of Chemistry, Berhampur University, Bhanja Bihar, Odisha, India 760007.
| |
Collapse
|
9
|
Verdoliva V, Bedini E, De Luca S. Sustainable Chemical Modification of Natural Polysaccharides: Mechanochemical, Solvent-Free Conjugation of Pectins and Hyaluronic Acid Promoted by Microwave Radiations. Biomacromolecules 2024; 25:6217-6228. [PMID: 39269184 DOI: 10.1021/acs.biomac.4c00844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
The modern chemistry has the main focus of saving resources and developing synthetic strategies characterized by intrinsic efficiency, ease and safety in operation, short reaction time, reduced energy, and waste. Natural polysaccharides are largely distributed in plant/animal cells; in other words, they are often provided by renewable sources. This characteristic makes them suitable compounds to be investigated for their employment as biodegradable material. In addition, natural polysaccharides have been proven to have a wide range of applications, and this prompted researchers to investigate their chemical modifications in order to modulate their properties. Herein we discuss the development of conjugation strategies of some polysaccharides with natural substrates and the effects of the structural modification on their bioactivities. Finally, this work intends to provide suggestions and perspectives on the development of safe and sustainable synthetic processes on polysaccharides.
Collapse
Affiliation(s)
- Valentina Verdoliva
- Institute of Crystallography, National Research Council, 81100 Caserta, Italy
| | - Emiliano Bedini
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| | - Stefania De Luca
- Institute of Biostructures and Bioimaging, National Research Council, 80131 Naples, Italy
| |
Collapse
|
10
|
Rentería-Gómez MA, Calderón-Rangel D, Corona-Díaz A, Gámez-Montaño R. A Sonochemical and Mechanochemical One-Pot Multicomponent/Click Coupling Strategy for the Sustainable Synthesis of Bis-Heterocyclic Drug Scaffolds. Chempluschem 2024:e202400455. [PMID: 39326014 DOI: 10.1002/cplu.202400455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 09/28/2024]
Abstract
Bis-heterocycles were synthesized via a consecutive one-pot process by a Groebke-Blackburn-Bienaymé reaction (GBB-3CR) followed by Copper-catalyzed Alkyne-Azide Cycloaddition (CuAAC) assisted by alternative sustainable energies (ASE) such as ultrasonic and mechanical. These efficient and convergent strategies allowed the in situ generation of complex azides functionalized with imidazo[1,2-a]pyridines (IMPs), which was used as a synthetic platform. The target molecules contain two privileged scaffolds in medicinal chemistry: IMPs and the heterocyclic bioisostere of trans-amide bond, the 1,4-disubstituted 1H-1,2,3-triazoles (1,4-DS-1,2,3-Ts).
Collapse
Affiliation(s)
- Manuel A Rentería-Gómez
- Departamento de Química, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Noria Alta S/N, Col. Noria Alta, Guanajuato, C.P. 36050, Gto., México
| | - David Calderón-Rangel
- Departamento de Química, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Noria Alta S/N, Col. Noria Alta, Guanajuato, C.P. 36050, Gto., México
| | - Alejandro Corona-Díaz
- Departamento de Química, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Noria Alta S/N, Col. Noria Alta, Guanajuato, C.P. 36050, Gto., México
| | - Rocío Gámez-Montaño
- Departamento de Química, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Noria Alta S/N, Col. Noria Alta, Guanajuato, C.P. 36050, Gto., México
| |
Collapse
|
11
|
Khafaga DSR, El-Morsy MT, Faried H, Diab AH, Shehab S, Saleh AM, Ali GAM. Metal-organic frameworks in drug delivery: engineering versatile platforms for therapeutic applications. RSC Adv 2024; 14:30201-30229. [PMID: 39315019 PMCID: PMC11418013 DOI: 10.1039/d4ra04441j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/30/2024] [Indexed: 09/25/2024] Open
Abstract
Recently, metal-organic frameworks (MOFs) have attracted much attention as versatile materials for drug delivery and personalized medicine. MOFs are porous structures made up of metal ions coupled with organic ligands. This review highlights the synthesis techniques used to design MOFs with specific features such as surface area and pore size, and the drug encapsulation within MOFs not only improves their stability and solubility but also allows for controlled release kinetics, which improves therapeutic efficacy and minimizes adverse effects. Furthermore, it discusses the challenges and potential advantages of MOF-based drug delivery, such as MOF stability, biocompatibility, and scale-up production. With further advancements in MOF synthesis, functionalization techniques, and understanding of their interactions using biological systems, MOFs can have significant promise for expanding the area of personalized medicine and improving patient outcomes.
Collapse
Affiliation(s)
- Doaa S R Khafaga
- Health Sector, Faculty of Science, Galala University New Galala City 43511 Suez Egypt
| | - Manar T El-Morsy
- Bionanotechnology Department, Faculty of Nanotechnology, Cairo University Giza 12613 Egypt
| | - Habiba Faried
- Biotechnology Department, Faculty of Science, Cairo University Giza 12613 Egypt
| | - Ayah H Diab
- Biotechnology Department, Faculty of Science, Cairo University Giza 12613 Egypt
| | - Shaimaa Shehab
- Biotechnology Department, Faculty of Science, Cairo University Giza 12613 Egypt
| | - Ahmed M Saleh
- Bionanotechnology Department, Faculty of Nanotechnology, Cairo University Giza 12613 Egypt
| | - Gomaa A M Ali
- College of Marine Science and Aquatic Biology, University of Khorfakkan 18119 Sharjah United Arab Emirates
- Faculty of Science, Galala University 43511 Suez Egypt
- Chemistry Department, Faculty of Science, Al-Azhar University Assiut 71524 Egypt
| |
Collapse
|
12
|
Faizan S, Wali AF, Talath S, Rehman MU, Sivamani Y, Nilugal KC, Shivangere NB, Attia SM, Nadeem A, Elayaperumal S, Kumar BRP. Novel dihydropyrimidines as promising EGFR & HER2 inhibitors: Insights from experimental and computational studies. Eur J Med Chem 2024; 275:116607. [PMID: 38908102 DOI: 10.1016/j.ejmech.2024.116607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/10/2024] [Accepted: 06/14/2024] [Indexed: 06/24/2024]
Abstract
Dihydropyrimidines are widely recognized for their diverse biological properties and are often synthesized by the Biginelli reactions. In this backdrop, a novel series of Biginelli dihydropyrimidines were designed, synthesized, purified, and analyzed by FT-IR, 1H NMR, 13C NMR, and mass spectrometry. Anticancer activity against MCF-7 breast cancer cells was evaluated as part of their cytotoxicity in comparison with the normal Vero cells. The cytotoxicity of dihydropyrimidines ranges from moderate to significant. Among the 38 dihydropyrimidines screened, compounds 16, 21, and 39 exhibited significant cytotoxicity. These 3 compounds were subjected to flow cytometry studies and EGFRwt Kinase inhibition assay using lapatinib as a standard. The study included evaluation for the inhibition of EGFR and HER2 expression at five different concentrations. At a concentration of 1000 nM compound 21 showed 98.51 % and 96.79 % inhibition of EGFR and HER2 expression. Moreover, compounds 16, 21 and 39 significantly inhibited EGFRwt activity with IC50 = 69.83, 37.21 and 76.79 nM, respectively. In addition, 3D-QSAR experiments were conducted to elucidate Structure activity relationships in a 3D grid space by comparing the experimental and predicted cytotoxic activities. Molecular docking studies were performed to validate the results by in silico method. All together, we developed a new series of Biginelli dihydropyrimidines as dual EGFR/HER2 inhibitors.
Collapse
Affiliation(s)
- Syed Faizan
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, Mysuru 570015, Constituent College of the JSS Academy of Higher Education & Research, Mysuru, 570015, India
| | - Adil Farooq Wali
- Department of Pharmaceutical Chemistry, RAK College of Pharmacy, RAK Medical & Health Sciences University, Ras Al Khaimah, United Arab Emirates
| | - Sirajunisa Talath
- Department of Pharmaceutical Chemistry, RAK College of Pharmacy, RAK Medical & Health Sciences University, Ras Al Khaimah, United Arab Emirates
| | - Muneeb U Rehman
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Yuvaraj Sivamani
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, Mysuru 570015, Constituent College of the JSS Academy of Higher Education & Research, Mysuru, 570015, India
| | - Kiran C Nilugal
- School of Pharmacy, Management and Science University, Selangor, 40100, Malaysia
| | | | - Sabry M Attia
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Ahmed Nadeem
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Sumitha Elayaperumal
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysore, Karnataka, India
| | - B R Prashantha Kumar
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, Mysuru 570015, Constituent College of the JSS Academy of Higher Education & Research, Mysuru, 570015, India.
| |
Collapse
|
13
|
Yaragorla S, Sneha Latha D, Kumar R. Mechanochemical Regioselective [3+3] Annulation of 6-Amino Uracil with Propargyl Alcohols Catalyzed by a Brønsted Acid/Hexafluoroisopropanol. Chemistry 2024; 30:e202401480. [PMID: 38727792 DOI: 10.1002/chem.202401480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Indexed: 06/19/2024]
Abstract
A mechanochemistry approach is developed for regioselective synthesis of functionalized dihydropyrido[2,3-d]pyrimidines by milling propargylic alcohols and 6-aminouracils with HFIP/p-TsOH. In the case of tert-propargyl alcohols, this [3+3] cascade annulation proceeded through allenylation of uracil followed by a 6-endo trig cyclization. With sec-propargyl alcohols, the reaction furnished the propargylation of uracil. This atom economy ball milling reaction allows access to a broad range of dihydropyrido[2,3-d]pyrimidine derivatives in excellent yields. We demonstrated the gram scale synthesis of 3 g and post-synthetic modifications to effect the cyclization of 5 to 6.
Collapse
Affiliation(s)
- Srinivasarao Yaragorla
- University of Hyderabad (an Institute of Eminence), P.O. Central University, Gachibowli, 500046, Hyderabad, Telangana State, India
| | - Dandugula Sneha Latha
- University of Hyderabad (an Institute of Eminence), P.O. Central University, Gachibowli, 500046, Hyderabad, Telangana State, India
| | - Rituraj Kumar
- University of Hyderabad (an Institute of Eminence), P.O. Central University, Gachibowli, 500046, Hyderabad, Telangana State, India
| |
Collapse
|
14
|
Shao G, Liu YY, Niu C, Yin ZC, Ye SQ, Yao YR, Chen M, Chen JS, Xia XL, Yang S, Wang GW. Unexpected and divergent mechanosynthesis of furanoid-bridged fullerene dimers C 120O and C 120O 2. Chem Sci 2024:d4sc04167d. [PMID: 39246362 PMCID: PMC11376007 DOI: 10.1039/d4sc04167d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/15/2024] [Indexed: 09/10/2024] Open
Abstract
An unexpected, divergent and efficient approach toward furanoid-bridged fullerene dimers C120O and C120O2 was established under different solvent-free ball-milling conditions by simply using pristine C60 as the starting material, water as the oxygen source and FeCl3 as the mediator. The structures of C120O and C120O2 were unambiguously established by single-crystal X-ray crystallography. A plausible reaction mechanism is proposed on the basis of control experiments. Furthermore, C120O2 has been applied in organic solar cells as the third component and exhibits good performance.
Collapse
Affiliation(s)
- Gang Shao
- Hefei National Research Center for Physical Sciences at Microscale and Department of Chemistry, University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Yuan-Yuan Liu
- Hefei National Research Center for Physical Sciences at Microscale and Department of Chemistry, University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Chuang Niu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, and School of Chemistry and Materials Science, Anhui Normal University Wuhu Anhui 241002 P. R. China
| | - Zheng-Chun Yin
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, and School of Chemistry and Materials Science, Anhui Normal University Wuhu Anhui 241002 P. R. China
| | - Shi-Qi Ye
- Hefei National Research Center for Physical Sciences at Microscale and Department of Chemistry, University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Yang-Rong Yao
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, and Department of Materials Science and Engineering, University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Muqing Chen
- School of Environment and Civil Engineering, Dongguan University of Technology Dongguan Guangdong 523808 P. R. China
| | - Jun-Shen Chen
- Hefei National Research Center for Physical Sciences at Microscale and Department of Chemistry, University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Xu-Ling Xia
- Hefei National Research Center for Physical Sciences at Microscale and Department of Chemistry, University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Shangfeng Yang
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, and Department of Materials Science and Engineering, University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Guan-Wu Wang
- Hefei National Research Center for Physical Sciences at Microscale and Department of Chemistry, University of Science and Technology of China Hefei Anhui 230026 P. R. China
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, and School of Chemistry and Materials Science, Anhui Normal University Wuhu Anhui 241002 P. R. China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University Lanzhou Gansu 730000 P. R. China
| |
Collapse
|
15
|
Amer MM, Backer L, Buschmann H, Handler N, Scherf-Clavel O, Holzgrabe U, Bolm C. Prediction of Degradation Profiles for Various Sartans under Solvent-Free Mechanochemical Conditions. Anal Chem 2024. [PMID: 39092810 DOI: 10.1021/acs.analchem.4c02025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
For the approval of a drug, the stability data must be submitted to regulatory authorities. Such analyses are often time-consuming and cost-intensive. Forced degradation studies are mainly carried out under harsh conditions in the dissolved state, often leading to extraneous degradation profiles for a solid drug. Oxidative mechanochemical degradation offers the possibility of generating realistic degradation profiles. In this study, a sustainable mechanochemical procedure is presented for the degradation of five active pharmaceutical ingredients (APIs) from the sartan family: losartan potassium, irbesartan, valsartan, olmesartan medoxomil, and telmisartan. High-resolution mass spectrometry enabled the detection of impurities already present in untreated APIs and allowed the elucidation of degradation products. Significant degradation profiles could already be obtained after 15-60 min of ball milling time. Many of the identified degradation products are described in the literature and pharmacopoeias, emphasizing the significance of our results and the applicability of this approach to predict degradation profiles for drugs in the solid state.
Collapse
Affiliation(s)
- Mostafa M Amer
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
- Department of Chemistry, University of Oxford, Oxford OX1 3TA, U.K
| | - Laura Backer
- Institute for Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Helmut Buschmann
- RD&C Research, Development & Consulting GmbH, 1170 Vienna, Austria
| | - Norbert Handler
- RD&C Research, Development & Consulting GmbH, 1170 Vienna, Austria
| | | | - Ulrike Holzgrabe
- Institute for Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Carsten Bolm
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| |
Collapse
|
16
|
Huang M, Deng L, Lao T, Zhang Z, Su Z, Yu Y, Cao H. Dehydrogenation Coupling and [3 + 2] Cycloaddition of Indolizines with Allenes in the Presence of Piezoelectric Materials under Ball Milling Conditions. J Org Chem 2024; 89:9733-9743. [PMID: 38959385 DOI: 10.1021/acs.joc.3c02404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
A wide range of indolizines with allenes proceeded smoothly under mechanochemical-induced conditions via [3 + 2] annulation process, affording various substituted pyrrolo[2,1,5-cd]indolizines with good yield. The reaction efficiency was greatly improved by using a piezoelectric material as the charge transfer catalyst. The photophysical properties of the resulting pyrrolo[2,1,5-cd]indolizine was characterized.
Collapse
Affiliation(s)
- Mingzhou Huang
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering and Technology Research Centre, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Lichan Deng
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering and Technology Research Centre, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Tianfeng Lao
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering and Technology Research Centre, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Ziwu Zhang
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering and Technology Research Centre, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Zhengquan Su
- Guangdong Engineering Research Centre of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Centre of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yue Yu
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering and Technology Research Centre, Guangdong Pharmaceutical University, Zhongshan 528458, China
- Guangdong Pharmaceutical University-University of Hong Kong Joint Biomedical Innovation Platform, Zhongshan 528437, China
| | - Hua Cao
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering and Technology Research Centre, Guangdong Pharmaceutical University, Zhongshan 528458, China
- Guangdong Pharmaceutical University-University of Hong Kong Joint Biomedical Innovation Platform, Zhongshan 528437, China
| |
Collapse
|
17
|
Yaragorla S, Tiwari D, Lone MS. Mechanochemical Cascade Cyclization of Cyclopropyl Ketones with 1,2-Diamino Arenes for the Direct Synthesis of 1,2-Disubstituted Benzimidazoles†. J Org Chem 2024; 89:9427-9439. [PMID: 38905327 DOI: 10.1021/acs.joc.4c00716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
A mechanochemical synthesis of 1,2-disubstituted benzimidazoles from donor-acceptor cyclopropyl ketones and 1,2-diaminoarenes under metal-free and solventless conditions is reported. The reaction does not require inert conditions and is promoted by a stoichiometric amount of 1,1,1,3,3,3-hexafluoroisopropanol. This cascade reaction involves ring-opening, cyclization, and retro-Mannich reaction of cyclopropyl ketones with aryl 1,2-diamines. Compared to its solution-phase counterpart, this mechanochemical approach shows fast reactivity (24 vs 1.5 h). Mechanistic investigations by electrospray ionization mass spectrometry helped us to propose the reaction mechanism.
Collapse
Affiliation(s)
- Srinivasarao Yaragorla
- School of Chemistry, University of Hyderabad, P.O. Central University, Gachibowli, Hyderabad 500046, India
| | - Divyanshu Tiwari
- School of Chemistry, University of Hyderabad, P.O. Central University, Gachibowli, Hyderabad 500046, India
| | - Mehak Saba Lone
- School of Chemistry, University of Hyderabad, P.O. Central University, Gachibowli, Hyderabad 500046, India
| |
Collapse
|
18
|
Li MJ, Xiao HJ, Xu P, Wu LT, Chen SQ, Zhang Z, Xu H. Mechanosynthesis of Pyrrole-2-carboxylic Acids via Copper-Catalyzed Spiroannulation/Ring-Opening Aromatization of 4-Arylidene Isoxazol-5-ones with Enamino Esters. Org Lett 2024; 26:4189-4193. [PMID: 38743432 DOI: 10.1021/acs.orglett.4c00829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
An efficient and practical tandem reaction of 4-arylidene isoxazol-5-ones with enamino esters catalyzed by an inexpensive copper salt has been established in a ball mill. This innovative approach yields a diverse array of structurally novel pyrrole-2-carboxylic acids, showing excellent tolerance toward different functional groups. By integrating spiroannulation and ring-opening aromatization processes, this protocol introduces a facile and cost-effective strategy for synthesizing highly functionalized pyrrole derivatives.
Collapse
Affiliation(s)
- Ming-Jun Li
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, P. R. China
| | - Hui-Juan Xiao
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, P. R. China
| | - Peng Xu
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, P. R. China
| | - Luan-Ting Wu
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, P. R. China
| | - Si-Qi Chen
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, P. R. China
| | - Ze Zhang
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, P. R. China
| | - Hui Xu
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, P. R. China
| |
Collapse
|
19
|
Iacob BC, Bodoki AE, Da Costa Carvalho DF, Serpa Paulino AA, Barbu-Tudoran L, Bodoki E. Unlocking New Avenues: Solid-State Synthesis of Molecularly Imprinted Polymers. Int J Mol Sci 2024; 25:5504. [PMID: 38791542 PMCID: PMC11122393 DOI: 10.3390/ijms25105504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
Molecularly imprinted polymers (MIPs) are established artificial molecular recognition platforms with tailored selectivity towards a target molecule, whose synthesis and functionality are highly influenced by the nature of the solvent employed in their synthesis. Steps towards the "greenification" of molecular imprinting technology (MIT) has already been initiated by the elaboration of green MIT principles; developing MIPs in a solvent-free environment may not only offer an eco-friendly alternative, but could also significantly influence the affinity and expected selectivity of the resulting binding sites. In the current study the first solvent-free mechanochemical synthesis of MIPs via liquid-assisted grinding (LAG) is reported. The successful synthesis of the imprinted polymer was functionally demonstrated by measuring its template rebinding capacity and the selectivity of the molecular recognition process in comparison with the ones obtained by the conventional, non-covalent molecular imprinting process in liquid media. The results demonstrated similar binding capacities towards the template molecule and superior chemoselectivity compared to the solution-based MIP synthesis method. The adoption of green chemistry principles with all their inherent advantages in the synthesis of MIPs may not only be able to alleviate the potential environmental and health concerns associated with their analytical (e.g., selective adsorbents) and biomedical (e.g., drug carriers or reservoirs) applications, but might also offer a conceptual change in molecular imprinting technology.
Collapse
Affiliation(s)
- Bogdan-Cezar Iacob
- Analytical Chemistry Department, Faculty of Pharmacy, “Iuliu Haţieganu” University of Medicine and Pharmacy, 4 Pasteur St., 400349 Cluj-Napoca, Romania;
| | - Andreea Elena Bodoki
- Inorganic Chemistry Department, Faculty of Pharmacy, “Iuliu Haţieganu” University of Medicine and Pharmacy, 12 Ion Creangă St., 400010 Cluj-Napoca, Romania;
| | - Diogo Filipe Da Costa Carvalho
- Instituto Politécnico de Lisboa, Escola Superior de Tecnologia da Saúde de Lisboa, Av. D. João II, Lote 4.69.01, 1990-096 Lisboa, Portugal; (D.F.D.C.C.); (A.A.S.P.)
| | - Antonio Augusto Serpa Paulino
- Instituto Politécnico de Lisboa, Escola Superior de Tecnologia da Saúde de Lisboa, Av. D. João II, Lote 4.69.01, 1990-096 Lisboa, Portugal; (D.F.D.C.C.); (A.A.S.P.)
| | - Lucian Barbu-Tudoran
- Electron Microscopy Center, Faculty of Biology and Geology, “Babes-Bolyai” University, 5-7 Clinicilor St., 400006 Cluj-Napoca, Romania;
| | - Ede Bodoki
- Analytical Chemistry Department, Faculty of Pharmacy, “Iuliu Haţieganu” University of Medicine and Pharmacy, 4 Pasteur St., 400349 Cluj-Napoca, Romania;
| |
Collapse
|
20
|
Jia Y, Wang H, Guo J, Zhang F, Zhang L, Li X, Zhao Y, Bao X, Liu Q, Li X, Liu H. EMM-Promoted Pd-Catalyzed Solid State Intramolecular Heck-Type Cyclization/Boronation and Suzuki Couplings: Access to Functionalized Indolines. J Org Chem 2024; 89:6704-6713. [PMID: 38709904 DOI: 10.1021/acs.joc.3c02842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
EMM (electromagnetic mill)-promoted Pd-catalyzed solid state intramolecular Heck-type cyclization/boronation and Suzuki couplings are reported. Compared to previous mechanochemistry that constructed one chemical bond through a cross-coupling reaction, this strategy realizes cascade transformation along with multiple chemical bond formation. This conversion does not require organic solvents or additional heating, and it shows a good substrate scope and high functional group tolerance.
Collapse
Affiliation(s)
- Yuwei Jia
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, People's Republic of China
| | - Hui Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, People's Republic of China
| | - Jintao Guo
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, People's Republic of China
| | - Feng Zhang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, People's Republic of China
| | - Lizhi Zhang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, People's Republic of China
| | - Xinjin Li
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, People's Republic of China
| | - Yan Zhao
- Clinical Laboratory of Zibo Central Hospital, Zibo 255020, People's Republic of China
| | - Xingliang Bao
- Zibo New Materials Trading Center Zhangdian District, Zibo Tengyu Chemical Engineering Company, Ltd., Zibo 255020, People's Republic of China
| | - Qing Liu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, People's Republic of China
| | - Xiaowei Li
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, People's Republic of China
| | - Hui Liu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, People's Republic of China
| |
Collapse
|
21
|
Li MJ, Lu MM, Xu P, Chen SQ, Wu LT, Zhang Z, Xu H. Chemodivergent mechanosynthesis of cyclopentenyl and pyrrolinyl spirobarbiturates from unsaturated barbiturates and enamino esters. Chem Commun (Camb) 2024; 60:3958-3961. [PMID: 38501223 DOI: 10.1039/d3cc06327e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
A novel and interesting controllable spirocyclization of unsaturated barbiturates with enamino esters for the assembly of cyclopentenyl and pyrrolinyl spirobarbiturates has been developed under ball-milling conditions. The present protocol features high chemoselectivity and efficiency, excellent functional group tolerance and mild reaction conditions.
Collapse
Affiliation(s)
- Ming-Jun Li
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, P. R. China.
| | - Ming-Ming Lu
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, P. R. China.
| | - Peng Xu
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, P. R. China.
| | - Si-Qi Chen
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, P. R. China.
| | - Luan-Ting Wu
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, P. R. China.
| | - Ze Zhang
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, P. R. China.
| | - Hui Xu
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, P. R. China.
| |
Collapse
|
22
|
Xing F, Xu J, Zhou Y, Yu P, Zhe M, Xiang Z, Duan X, Ritz U. Recent advances in metal-organic frameworks for stimuli-responsive drug delivery. NANOSCALE 2024; 16:4434-4483. [PMID: 38305732 DOI: 10.1039/d3nr05776c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
After entering the human body, drugs for treating diseases, which are prone to delivery and release in an uncontrolled manner, are affected by various factors. Based on this, many researchers utilize various microenvironmental changes encountered during drug delivery to trigger drug release and have proposed stimuli-responsive drug delivery systems. In recent years, metal-organic frameworks (MOFs) have become promising stimuli-responsive agents to release the loaded therapeutic agents at the target site to achieve more precise drug delivery due to their high drug loading, excellent biocompatibility, and high stimuli-responsiveness. The MOF-based stimuli-responsive systems can respond to various stimuli under pathological conditions at the site of the lesion, releasing the loaded therapeutic agent in a controlled manner, and improving the accuracy and safety of drug delivery. Due to the changes in different physical and chemical factors in the pathological process of diseases, the construction of stimuli-responsive systems based on MOFs has become a new direction in drug delivery and controlled release. Based on the background of the rapidly increasing attention to MOFs applied in drug delivery, we aim to review various MOF-based stimuli-responsive drug delivery systems and their response mechanisms to various stimuli. In addition, the current challenges and future perspectives of MOF-based stimuli-responsive drug delivery systems are also discussed in this review.
Collapse
Affiliation(s)
- Fei Xing
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China.
| | - Jiawei Xu
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China.
| | - Yuxi Zhou
- Department of Periodontology, Justus-Liebig-University of Giessen, Germany
| | - Peiyun Yu
- LIMES Institute, Department of Molecular Brain Physiology and Behavior, University of Bonn, Carl-Troll-Str. 31, 53115 Bonn, Germany
| | - Man Zhe
- Animal Experiment Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Zhou Xiang
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China.
| | - Xin Duan
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China.
- Department of Orthopedic Surgery, The Fifth People's Hospital of Sichuan Province, Chengdu, China
| | - Ulrike Ritz
- Department of Orthopaedics and Traumatology, Biomatics Group, University Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany.
| |
Collapse
|
23
|
Kubota K, Endo T, Ito H. Solid-state mechanochemistry for the rapid and efficient synthesis of tris-cyclometalated iridium(iii) complexes. Chem Sci 2024; 15:3365-3371. [PMID: 38425515 PMCID: PMC10901499 DOI: 10.1039/d3sc05796h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/18/2024] [Indexed: 03/02/2024] Open
Abstract
Tris-cyclometalated iridium(iii) complexes have received widespread attention as attractive prospective materials for e.g., organic light-emitting diodes (OLEDs), photoredox catalysts, and bioimaging probes. However, their preparation usually requires prolonged reaction times, significant amounts of high-boiling solvents, multistep synthesis, and inert-gas-line techniques. Unfortunately, these requirements represent major drawbacks from both a production-cost and an environmental perspective. Herein, we show that a two-step mechanochemical protocol using ball milling enables the rapid and efficient synthesis of various tris-cyclometalated iridium(iii) complexes from relatively cheap iridium(iii) chloride hydrate without the use of significant amounts of organic solvent in air. Notably, a direct one-pot procedure is also demonstrated. The present solid-state approach can be expected to inspire the development of cost-effective and timely production methods for these valuable iridium-based complexes, as well as the discovery of new phosphorescent materials, sensors, and catalysts.
Collapse
Affiliation(s)
- Koji Kubota
- Division of Applied Chemistry and Frontier Chemistry Center, Faculty of Engineering, Hokkaido University Sapporo Hokkaido Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University Sapporo Hokkaido Japan
| | - Tsubura Endo
- Division of Applied Chemistry and Frontier Chemistry Center, Faculty of Engineering, Hokkaido University Sapporo Hokkaido Japan
| | - Hajime Ito
- Division of Applied Chemistry and Frontier Chemistry Center, Faculty of Engineering, Hokkaido University Sapporo Hokkaido Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University Sapporo Hokkaido Japan
| |
Collapse
|
24
|
Biswas S, Bolm C. Rhodium(II)-Catalyzed N-H Insertions of Carbenes under Mechanochemical Conditions. Org Lett 2024; 26:1511-1516. [PMID: 38358095 DOI: 10.1021/acs.orglett.4c00216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Under mechanochemical conditions in a mixer mill, Rh2(OAc)4 catalyzes the reaction between aryldiazoesters and anilines to give α-amino esters. The process proceeds under mild conditions and is insensitive to air. It is solvent-free and scalable. A broad substrate scope, short reaction times, operational simplicity, and good functional group tolerance are additional salient features of this protocol.
Collapse
Affiliation(s)
- Sourav Biswas
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Carsten Bolm
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| |
Collapse
|
25
|
Silva IDA, Bartalucci E, Bolm C, Wiegand T. Opportunities and Challenges in Applying Solid-State NMR Spectroscopy in Organic Mechanochemistry. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2304092. [PMID: 37407000 DOI: 10.1002/adma.202304092] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/12/2023] [Accepted: 06/28/2023] [Indexed: 07/07/2023]
Abstract
In recent years it is shown that mechanochemical strategies can be beneficial in directed conversions of organic compounds. Finding new reactions proved difficult, and due to the lack of mechanistic understanding of mechanochemical reaction events, respective efforts have mostly remained empirical. Spectroscopic techniques are crucial in shedding light on these questions. In this overview, the opportunities and challenges of solid-state nuclear magnetic resonance (NMR) spectroscopy in the field of organic mechanochemistry are discussed. After a brief discussion of the basics of high-resolution solid-state NMR under magic-angle spinning (MAS) conditions, seven opportunities for solid-state NMR in the field of organic mechanochemistry are presented, ranging from ex situ approaches to structurally elucidated reaction products obtained by milling to the potential and limitations of in situ solid-state NMR approaches. Particular strengths of solid-state NMR, for instance in differentiating polymorphs, in NMR-crystallographic structure-determination protocols, or in detecting weak noncovalent interactions in molecular-recognition events employing proton-detected solid-state NMR experiments at fast MAS frequencies, are discussed.
Collapse
Affiliation(s)
| | - Ettore Bartalucci
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470, Mülheim/Ruhr, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Carsten Bolm
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Thomas Wiegand
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470, Mülheim/Ruhr, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| |
Collapse
|
26
|
Čarný T, Kisszékelyi P, Markovič M, Gracza T, Koóš P, Šebesta R. Mechanochemical Pd-Catalyzed Amino- and Oxycarbonylations using FeBr 2(CO) 4 as a CO Source. Org Lett 2023. [PMID: 38018997 DOI: 10.1021/acs.orglett.3c03440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Herein, we describe the development of mechanochemical amino- and oxycarbonylation employing FeBr2(CO)4 as a solid CO source. This Pd/XantPhos-catalyzed reaction affords a range of carboxamides and esters from aryl iodides and various amines or phenols. Both primary and secondary amines, including amino acids, can be employed as N-nucleophiles.
Collapse
Affiliation(s)
- Tomáš Čarný
- Department of Organic Chemistry, Faculty of Natural Sciences, Comenius University Bratislava, Mlynská dolina, Ilkovičova 6, SK-842 15 Bratislava, Slovakia
| | - Péter Kisszékelyi
- Department of Organic Chemistry, Faculty of Natural Sciences, Comenius University Bratislava, Mlynská dolina, Ilkovičova 6, SK-842 15 Bratislava, Slovakia
| | - Martin Markovič
- Department of Organic Chemistry, Institute of Organic Chemistry, Catalysis and Petrochemistry, Slovak University of Technology, SK-812 37 Bratislava, Slovakia
| | - Tibor Gracza
- Department of Organic Chemistry, Institute of Organic Chemistry, Catalysis and Petrochemistry, Slovak University of Technology, SK-812 37 Bratislava, Slovakia
| | - Peter Koóš
- Department of Organic Chemistry, Institute of Organic Chemistry, Catalysis and Petrochemistry, Slovak University of Technology, SK-812 37 Bratislava, Slovakia
| | - Radovan Šebesta
- Department of Organic Chemistry, Faculty of Natural Sciences, Comenius University Bratislava, Mlynská dolina, Ilkovičova 6, SK-842 15 Bratislava, Slovakia
| |
Collapse
|
27
|
Partovi M, Rezayati S, Ramazani A, Ahmadi Y, Taherkhani H. Recyclable mesalamine-functionalized magnetic nanoparticles (mesalamine/GPTMS@SiO 2@Fe 3O 4) for tandem Knoevenagel-Michael cyclocondensation: grinding technique for the synthesis of biologically active 2-amino-4 H-benzo[ b]pyran derivatives. RSC Adv 2023; 13:33566-33587. [PMID: 38020042 PMCID: PMC10658220 DOI: 10.1039/d3ra06560j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 10/31/2023] [Indexed: 12/01/2023] Open
Abstract
In the present study, mesalamine-functionalized on magnetic nanoparticles (mesalamine/GPTMS@SiO2@Fe3O4) is fabricated as an efficient and magnetically recoverable nanocatalyst. The as-prepared nanocatalyst was successfully synthesized in three steps using a convenient and low-cost method via modification of the surface of Fe3O4 nanoparticles with silica and GPTMS, respectively, to afford GPTMS@SiO2@Fe3O4. Finally, treatment with mesalamine as a powerful antioxidant generates the final nanocatalyst. Then, its structure was characterized by FT-IR, SEM, TEM, EDX, XRD, BET, VSM, and TGA techniques. The average size was found to be approximately 38 nm using TEM analysis and the average crystallite size was found to be approximately 27.02 nm using XRD analysis. In particular, the synthesized nanocatalyst exhibited strong thermal stability up to 400 °C and high magnetization properties. The activity of the synthesized nanocatalyst was evaluated in the tandem Knoevenagel-Michael cyclocondensation of various aromatic aldehydes, dimedone and malononitrile under a dry grinding method at room temperature to provide biologically active 2-amino-4H-benzo[b]pyran derivatives products in a short time with good yields. The presented procedure offers several advantages including gram-scale synthesis, good green chemistry metrics (GCM), easy fabrication of the catalyst, atom economy (AE), no use of column chromatography, and avoiding the generation of toxic materials. Furthermore, the nanocatalyst can be reused for 8 cycles with no loss of performance by using an external magnet.
Collapse
Affiliation(s)
- Mahdiyeh Partovi
- Department of Chemistry, Faculty of Science, University of Zanjan Zanjan 45371-38791 Iran
| | - Sobhan Rezayati
- Department of Chemistry, Faculty of Science, University of Zanjan Zanjan 45371-38791 Iran
| | - Ali Ramazani
- Department of Chemistry, Faculty of Science, University of Zanjan Zanjan 45371-38791 Iran
- Department of Biotechnology, Research Institute of Modern Biological Techniques (RIMBT), University of Zanjan Zanjan 45371-38791 Iran
| | - Yavar Ahmadi
- Department of Chemistry Education, Farhangian University P. O. Box 14665-889, Tehran Iran
| | - Hooman Taherkhani
- Department of Chemistry, Faculty of Science, University of Zanjan Zanjan 45371-38791 Iran
| |
Collapse
|
28
|
Wang X, Mu B, Li S, Lu Y, Wang A. Mechanochemical preparation of low cost kaolinite-based BiVO 4hybrid pigments with high near infrared reflectance. NANOTECHNOLOGY 2023; 34:505710. [PMID: 37725954 DOI: 10.1088/1361-6528/acfb09] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/18/2023] [Indexed: 09/21/2023]
Abstract
For accelerate construction of the energy and resource-saving and environmental-friendly society, cleaner preparation of low-cost and high-performance colorful near-infrared reflective inorganic pigments with the decorative function is indispensable to reduce the hazards of urban heat island and simultaneously beautify the appearance of the buildings. Due to the non-toxicity, good chemical stability and narrow band gap, BiVO4has been becoming a promising environment-friendly yellow inorganic pigments among the conventional heavy metals-containing inorganic pigments. In this study, the low-cost and brilliant kaolinite-based BiVO4hybrid pigments were fabricated by cleaner mechanochemical method based on cheap and abundant kaolinite using crystal water of the hydrated metal salts as trace solvent, which could effectively promote the interaction of the involved components at the molecular level during grinding and then decreased the mass transfer resistance for the formation of monoclinic scheelite BiVO4in the following calcination. The obtained hybrid pigments at the optimal preparation conditions exhibited brilliant color properties (D65-10°,L*= 83.45 ± 0.08,a*= 4.17 ± 0.08,b*= 88.59 ± 0.17), high near-infrared reflectance of 86.22%, infrared solar reflectance of 88.14% and high emissivity of 0.9369 in the waveband of 8-13μm. Furthermore, the hybrid pigments could be used for coloring epoxy resin with high emissivity of 0.8782 in 8-13μm. Therefore, the brilliant and low-cost kaolinite-based bismuth yellow hybrid pigments have the enormous potential to be served as colorful functional nanofillers for cooling roofing materials.
Collapse
Affiliation(s)
- Xiaowen Wang
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, People's Republic of China
| | - Bin Mu
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, People's Republic of China
| | - Shue Li
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Yushen Lu
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, People's Republic of China
| | - Aiqin Wang
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, People's Republic of China
| |
Collapse
|
29
|
Fantozzi N, Volle JN, Porcheddu A, Virieux D, García F, Colacino E. Green metrics in mechanochemistry. Chem Soc Rev 2023; 52:6680-6714. [PMID: 37691600 DOI: 10.1039/d2cs00997h] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
The development of new green methodologies and their broader adoption for promoting sustainable development in chemistry laboratories and industry play a significant role in society, due to the economic importance of chemistry and its widespread presence in everyday life. Therefore, a sustainable approach to chemistry contributes to the well-being of the worldwide population and complies with the United Nations Sustainable Development Goals (UN SDGs) and the European Green Deal. The review highlights how batch and continuous mechanochemical methods are an eco-friendly approach for organic synthesis, with a lower environmental footprint in most cases, compared to solution-based procedures. The assessment is objectively based on the use of green metrics (e.g., atom and real atom economy, E-factor, process mass intensity, material parameter recovery, Eco-scale, stoichiometric factor, etc.) and indicators (e.g. DOZN tool and life cycle assessment, LCA, studies) applied to organic transformations such as synthesis of the amide bond, carbamates, heterocycles, active pharmaceutical ingredients (APIs), porphyrins, porous organic polymers (POPs), metal- or acid-catalysed processes, multicomponent and condensation reactions, rearrangements, etc. The generalized absence of bulk solvents, the precise control over the stoichiometry (i.e., using agents in a stoichiometrically rather than in excess), and the more selective reactions enabling simplified work-up procedures are the distinctive factors, marking the superiority of mechanochemical processes over solution-based chemistry.
Collapse
Affiliation(s)
| | - Jean-Noël Volle
- ICGM, Univ Montpellier, CNRS, ENSCM, 34293 Montpellier, France.
| | - Andrea Porcheddu
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Cittadella Universitaria, 09042, Monserrato (CA), Italy
| | - David Virieux
- ICGM, Univ Montpellier, CNRS, ENSCM, 34293 Montpellier, France.
| | - Felipe García
- Departamento de Química Orgánica e Inorgánica, Facultad de Química, Universidad de Oviedo, Julián Claveria 8, Oviedo, 33006, Asturias, Spain.
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia.
| | | |
Collapse
|
30
|
Kubota K, Kondo K, Seo T, Jin M, Ito H. Solid-state mechanochemical cross-coupling of insoluble substrates into insoluble products by removable solubilizing silyl groups: uniform synthesis of nonsubstituted linear oligothiophenes. RSC Adv 2023; 13:28652-28657. [PMID: 37780729 PMCID: PMC10540273 DOI: 10.1039/d3ra05571j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 09/22/2023] [Indexed: 10/03/2023] Open
Abstract
Conventional solution-based organic reactions that involve insoluble substrates are challenging and inefficient. Furthermore, even if the reaction is successful, the corresponding products are insoluble in most cases, making their isolation and subsequent transformations difficult. Hence, the conversion of insoluble compounds into insoluble products remains a challenge in practical synthetic chemistry. In this study, we showcase a potential solution to address these solubility issues by combining a mechanochemical cross-coupling approach with removable solubilizing silyl groups. Our strategy involves solid-state Suzuki-Miyaura cross-coupling reactions between organoboron nucleophiles bearing a silyl group with long alkyl chains and insoluble polyaromatic halides. The silyl group on the nucleophile can act as a solubilizing group that enables product isolation via silica gel column chromatography and can be easily removed by the addition of fluoride anions to form the desired insoluble coupling products with sufficient purity. Furthermore, we demonstrate that after aromatic electrophilic bromination of the desilylated products, sequential solid-state cross-coupling of the obtained insoluble brominated substrates, followed by desilylation, afforded further π-extended functional molecules. Using this conceptually new protocol, we achieved the first uniform synthesis of the longest nonsubstituted linear insoluble 9-mer oligothiophene.
Collapse
Affiliation(s)
- Koji Kubota
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University Sapporo Hokkaido Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University Sapporo Hokkaido Japan
| | - Keisuke Kondo
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University Sapporo Hokkaido Japan
| | - Tamae Seo
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University Sapporo Hokkaido Japan
| | - Mingoo Jin
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University Sapporo Hokkaido Japan
| | - Hajime Ito
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University Sapporo Hokkaido Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University Sapporo Hokkaido Japan
| |
Collapse
|
31
|
Hu X, Li K, Yu H. Mechanochemical asymmetric three-component Mannich reaction involving unreactive arylamines. Org Biomol Chem 2023; 21:6348-6355. [PMID: 37427663 DOI: 10.1039/d3ob00954h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
We report here a mechanochemical protocol for an asymmetric three-component Mannich reaction involving unreactive arylamines with simple cyclic ketones and arylaldehydes catalyzed by (S)-proline with a chiral diol. In this mechanochemical protocol, ball milling enables reaction acceleration and enantioselectivity control. The reported asymmetric three-component Mannich reactions usually involve reactive arylamines such as p-anisidine and phenylamine, while the catalytic asymmetric Mannich reactions involving unreactive arylamines in solution did not proceed smoothly or gave low yields and enantioselectivities. However, the use of ball-milling techniques overcomes the deficiency of the batch systems in solution and avoids the use of toxic organic solvents. The desired products were obtained in moderate-to-good yields (49%-80%) with good-to-high enantioselectivities (up to 99% ee). This is the first example of a mechanochemically activated catalytic asymmetric three-component Mannich reaction involving unreactive arylamines.
Collapse
Affiliation(s)
- Xiaoyun Hu
- School of Chemistry and Materials Science, Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education and Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, 708 Minyuan Road, China.
| | - Kang Li
- School of Chemistry and Materials Science, Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education and Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, 708 Minyuan Road, China.
| | - Huiting Yu
- School of Chemistry and Materials Science, Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education and Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, 708 Minyuan Road, China.
| |
Collapse
|
32
|
Damera T, Pagadala R. A New and an Eco-Friendly Approach for the Construction of Multi-Functionalized Benzenes with Computational Studies. Chem Biodivers 2023; 20:e202201224. [PMID: 36807833 DOI: 10.1002/cbdv.202201224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/25/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023]
Abstract
The new path chosen is more appropriate in the context of green chemistry. This research aims to construct 5,6,7,8-tetrahydronaphthalene-1,3-dicarbonitrile (THNDC) and 1,2,3,4-tetrahydroisoquinoline-6,8-dicarbonitrile (THIDC) derivatives via the cyclization of three easily obtainable reactants under an environmentally benign mortar and pestle grinding technique. Notably, the robust route offers an esteemed opportunity for the introduction of multi-substituted benzenes and ensures the good compatibility of bioactive molecules. Furthermore, the synthesized compounds are investigated using docking simulations with two representative drugs (6c and 6e) for target validation. The physicochemical, pharmacokinetic, drug-like properties (ADMET), and therapeutic friendliness characteristics of these synthesized compounds are computed.
Collapse
Affiliation(s)
- Thirupathi Damera
- Chemistry Division, Department of H&S, CVR College of Engineering, Mangalpally, Ibrahimpatnam, Hyderabad, Telangana, India
| | - Ramakanth Pagadala
- Chemistry Division, Department of H&S, CVR College of Engineering, Mangalpally, Ibrahimpatnam, Hyderabad, Telangana, India
| |
Collapse
|
33
|
Pharande PS, Rashinkar GS, Pore DM. Silica-grafted DBU-supported NiCl2: a sustainable heterogeneous catalyst for A3 coupling. RESEARCH ON CHEMICAL INTERMEDIATES 2023. [DOI: 10.1007/s11164-023-04980-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
34
|
Mallah D, Mirjalili BBF. A green protocol ball milling synthesis of dihydropyrano[2,3-c]pyrazole using nano-silica/aminoethylpiperazine as a metal-free catalyst. BMC Chem 2023; 17:10. [PMID: 36870991 PMCID: PMC9985283 DOI: 10.1186/s13065-023-00934-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
BACKGROUND Ball mill is an effective, and green method for the synthesis of heterocyclic compounds in very good yields. This method is a simple, economical, and environmentally friendly process. In this work, an efficient approach for the synthesis of pyranopyrazoles (PPzs) using ball milling and metal-free nano-catalyst (Nano-silica/aminoethylpiperazine), under solvent-free conditions was reported. RESULTS The new nano-catalyst silica/aminoethylpiperazine was prepared by immobilization of 1-(2-aminoethyl)piperazine on nano-silica chloride. The structure of the prepared nano-catalyst was identified by FT-IR, FESEM, TGA, EDX, EDS-map, XRD, and pH techniques. This novel nano-catalyst was used for the synthesis of dihydropyrano[2,3-c]pyrazole derivatives under ball milling and solvent-free conditions. CONCLUSIONS Unlike other pyranopyrazoles synthesis reactions, this method has advantages including short reaction time (5-20 min), room temperature, and relatively high efficiency, which makes this protocol very attractive for the synthesis of pyranopyrazoles derivatives.
Collapse
Affiliation(s)
- Dina Mallah
- grid.413021.50000 0004 0612 8240Department of Chemistry, College of Science, Yazd University, P.O. Box 89195-741, Yazd, Islamic Republic of Iran
| | - Bi Bi Fatemeh Mirjalili
- Department of Chemistry, College of Science, Yazd University, P.O. Box 89195-741, Yazd, Islamic Republic of Iran.
| |
Collapse
|
35
|
Ball mill–assisted synthesis of carbon-free SnSe nanoparticles for sodium-ion battery anodes. J Solid State Electrochem 2023. [DOI: 10.1007/s10008-023-05416-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
36
|
Salami SA, Smith VJ, Krause RWM. Water‐Assisted Passerini Reactions under Mechanochemical Activation: A Simple and Straightforward Access to Oxindole Derivatives. ChemistrySelect 2023. [DOI: 10.1002/slct.202204325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
| | - Vincent J. Smith
- Department of Chemistry Rhodes University Grahamstown, Makhanda 6139 South Africa
| | - Rui W. M. Krause
- Department of Chemistry Rhodes University Grahamstown, Makhanda 6139 South Africa
| |
Collapse
|
37
|
Borah B, Swain S, Patat M, Kumar B, Prajapat KK, Biswas R, Vasantha R, Chowhan LR. Brønsted acid catalyzed mechanochemical domino multicomponent reactions by employing liquid assisted grindstone chemistry. Sci Rep 2023; 13:1386. [PMID: 36697475 PMCID: PMC9876939 DOI: 10.1038/s41598-023-27948-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 01/10/2023] [Indexed: 01/27/2023] Open
Abstract
Here, we have demonstrated a metal-free energy-efficient mechanochemical approach for expedient access to a diverse set of 2-amino-3-cyano-aryl/heteroaryl-4H-chromenes, tetrahydrospiro[chromene-3,4'-indoline], 2,2'-aryl/heteroarylmethylene-bis(3-hydroxy-5,5-dimethylcyclohex-2-enone) as well as tetrahydro-1H-xanthen-1-one by employing the reactivity of 5,5-dimethylcyclohexane-1,3-dione/cyclohexane-1,3-dione with TsOH⋅H2O as Brønsted acid catalyst under water-assisted grinding conditions at ambient temperature. The ability to accomplish multiple C-C, C=C, C-O, and C-N bonds from readily available starting materials via a domino multicomponent strategy in the absence of metal-catalyst as well as volatile organic solvents with an immediate reduction in the cost of the transformation without necessitates complex operational procedures, features the significant highlights of this approach. The excellent yield of the products, broad functional group tolerances, easy set-up, column-free, scalable synthesis with ultralow catalyst loading, short reaction time, waste-free, ligand-free, and toxic-free, are other notable advantages of this approach. The greenness and sustainability of the protocol were also established by demonstrating several green metrics parameters.
Collapse
Affiliation(s)
- Biplob Borah
- grid.448759.30000 0004 1764 7951School of Applied Material Sciences, Centre for Applied Chemistry, Sector-30, Central University of Gujarat, Gandhinagar, 382030 India
| | - Sidhartha Swain
- grid.448759.30000 0004 1764 7951School of Applied Material Sciences, Centre for Applied Chemistry, Sector-30, Central University of Gujarat, Gandhinagar, 382030 India
| | - Mihir Patat
- grid.448759.30000 0004 1764 7951School of Applied Material Sciences, Centre for Applied Chemistry, Sector-30, Central University of Gujarat, Gandhinagar, 382030 India
| | - Bhupender Kumar
- grid.448759.30000 0004 1764 7951School of Applied Material Sciences, Centre for Applied Chemistry, Sector-30, Central University of Gujarat, Gandhinagar, 382030 India
| | - Ketan Kumar Prajapat
- grid.448759.30000 0004 1764 7951School of Applied Material Sciences, Centre for Applied Chemistry, Sector-30, Central University of Gujarat, Gandhinagar, 382030 India
| | - Rathindranath Biswas
- grid.428366.d0000 0004 1773 9952Department of Chemistry, Central University of Punjab, Bathinda, 151401 India
| | - R. Vasantha
- grid.448759.30000 0004 1764 7951School of Applied Material Sciences, Centre for Applied Chemistry, Sector-30, Central University of Gujarat, Gandhinagar, 382030 India
| | - L. Raju Chowhan
- grid.448759.30000 0004 1764 7951School of Applied Material Sciences, Centre for Applied Chemistry, Sector-30, Central University of Gujarat, Gandhinagar, 382030 India
| |
Collapse
|
38
|
Salami SA, Smith VJ, Krause RWM. N-Formamide as a carbonyl precursor in the catalytic synthesis of Passerini adducts under aqua and mechanochemical conditions. RSC Adv 2023; 13:4019-4031. [PMID: 36756572 PMCID: PMC9890950 DOI: 10.1039/d2ra06189a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 01/23/2023] [Indexed: 01/28/2023] Open
Abstract
A new simple, efficient, and environmentally friendly protocol is presented for the catalytic synthesis of α-acyloxycarboxamides using N-formamides as a carbonyl precursor under aqua and mechanochemical conditions. Immobilized sulfuric acid on silica gel was employed for the synthesis of desired products, via the reaction of benzoic acid, 1-napthylisocyanide and various heterocyclic N-formamides. After a careful optimization of the reaction conditions, the desired Passerini products were obtained in high to excellent yields in short reaction times (10-30 min) at room temperature. The highly efficient and environmentally friendly method provides a facile access to a library of α-acyloxycarboxamides derivatives for future research on bioactivity screening.
Collapse
|
39
|
Stevanović JN, Petrović SP, Tadić NB, Cvetanović K, Silva AG, Radović DV, Sarajlić M. Mechanochemical Synthesis of TiO 2-CeO 2 Mixed Oxides Utilized as a Screen-Printed Sensing Material for Oxygen Sensor. SENSORS (BASEL, SWITZERLAND) 2023; 23:1313. [PMID: 36772353 PMCID: PMC9919251 DOI: 10.3390/s23031313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/14/2023] [Accepted: 01/21/2023] [Indexed: 06/18/2023]
Abstract
TiO2 and CeO2 are well known as oxygen sensing materials. Despite high sensitivity, the actual utilization of these materials in gas detection remains limited. Research conducted over the last two decades has revealed synergistic effects of TiO2-CeO2 mixed oxides that have the potential to improve some aspects of oxygen monitoring. However, there are no studies on the sensing properties of the TiO2-CeO2 obtained by mechanochemical treatment. We have tested the applicability of the mechanochemically treated TiO2-CeO2 for oxygen detection and presented the results in this study. The sensing layers are prepared as a porous structure by screen printing a thick film on a commercial substrate. The obtained structures were exposed to various O2 concentrations. The results of electrical measurements showed that TiO2-CeO2 films have a significantly lower resistance than pure oxide films. Mixtures of composition TiO2:CeO2 = 0.8:0.2, ground for 100 min, have the lowest electrical resistance among the tested materials. Mixtures of composition TiO2:CeO2 = 0.5:0.5 and ground for 100 min proved to be the most sensitive. The operating temperature can be as low as 320 °C, which places this sensor in the class of semiconductor sensors working at relatively lower temperatures.
Collapse
Affiliation(s)
- Jelena N. Stevanović
- Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoševa 12, 11000 Belgrade, Serbia
| | - Srđan P. Petrović
- Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoševa 12, 11000 Belgrade, Serbia
| | - Nenad B. Tadić
- Faculty of Physics, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia
| | - Katarina Cvetanović
- Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoševa 12, 11000 Belgrade, Serbia
| | - Ana G. Silva
- CeFiTec, Nova School of Science and Technology, New University of Lisbon, Campus da Caparica, 2829-516 Caparica, Portugal
| | - Dana Vasiljević Radović
- Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoševa 12, 11000 Belgrade, Serbia
| | - Milija Sarajlić
- Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoševa 12, 11000 Belgrade, Serbia
| |
Collapse
|
40
|
Kubota K, Seo T, Ito H. Solid-state cross-coupling reactions of insoluble aryl halides under polymer-assisted grinding conditions. Faraday Discuss 2023; 241:104-113. [PMID: 36254741 DOI: 10.1039/d2fd00121g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In this study, polymer-assisted grinding (POLAG), a ball-milling technique based on the use of polymer additives, was applied to mechanochemical solid-state Suzuki-Miyaura cross-coupling reactions of insoluble aryl halides. We found that the efficiency of this challenging solid-state cross-coupling was improved by the addition of polytetrafluoroethylene (PTFE) as a POLAG additive under high-temperature ball-milling conditions. Our results suggest that POLAG is a promising approach for controlling the reactivity of insoluble substrates that are barely reactive under conventional solution-based conditions.
Collapse
Affiliation(s)
- Koji Kubota
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido, Japan. .,Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido, Japan
| | - Tamae Seo
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido, Japan.
| | - Hajime Ito
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido, Japan. .,Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
41
|
Utecht-Jarzyńska G, Kowalczyk A, Jasiński M. Fluorinated and Non-Fluorinated 1,4-Diarylpyrazoles via MnO 2-Mediated Mechanochemical Deacylative Oxidation of 5-Acylpyrazolines. Molecules 2022; 27:8446. [PMID: 36500541 PMCID: PMC9736116 DOI: 10.3390/molecules27238446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/25/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
A solvent-free two-step synthesis of polyfunctionalized pyrazoles under ball-milling mechanochemical conditions was developed. The protocol comprises (3 + 2)-cycloaddition of in situ generated nitrile imines and chalcones, followed by oxidation of the initially formed 5-acylpyrazolines with activated MnO2. The second step proceeds via an exclusive deacylative pathway, to give a series of 1,4-diarylpyrazoles functionalized with a fluorinated (CF3) or non-fluorinated (Ph, COOEt, Ac) substituent at C(3) of the heterocyclic ring. In contrast, MnO2-mediated oxidation of a model isomeric 4-acylpyrazoline proceeded with low chemoselectivity, leading to fully substituted pyrazole as a major product formed via dehydrogenative aromatization. The presented approach extends the scope of the known methods carried out in organic solvents and enables the preparation of polyfunctionalized pyrazoles, which are of general interest in medicine and material sciences.
Collapse
Affiliation(s)
- Greta Utecht-Jarzyńska
- Department of Organic and Applied Chemistry, Faculty of Chemistry, University of Lodz, Tamka 12, 91403 Lodz, Poland
| | - Anna Kowalczyk
- Department of Organic and Applied Chemistry, Faculty of Chemistry, University of Lodz, Tamka 12, 91403 Lodz, Poland
- Doctoral School of Exact and Natural Sciences, University of Lodz, Banacha 12/16, 90237 Lodz, Poland
| | - Marcin Jasiński
- Department of Organic and Applied Chemistry, Faculty of Chemistry, University of Lodz, Tamka 12, 91403 Lodz, Poland
| |
Collapse
|
42
|
Mohammadi Ziarani G, Khademi M, Mohajer F, Badiei A, Varma RS. The Synthesis of 2,2-BIS(1-INDOL-3-YL)Acenaphthylene-1(2)-Ones Using Nanocatalysis: Fluorescent Sensing for Cu 2+ Ions. ECOLOGICAL CHEMISTRY AND ENGINEERING S 2022; 29:463-475. [DOI: 10.2478/eces-2022-0033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Abstract
2,2-bis(1H-indol-3-yl)acenaphthylene-1(2H)-ones were synthesised by the reaction of acenaphthenequinone and 2 equivalents of indole using Fe3O4@SiO2@Si-Pr-NH-CH2CH2NH2 as the basic magnetic nanocatalyst, assembled under greener and sustainable conditions in high purity and yields. Furthermore, the photoluminescence properties of 2,2-bis(2-methyl-1H-indol-3-yl)acenaphthylene-1(2H)-one were exploited for the sensing of copper ions in the mixed solvent systems comprising H2O and CH3CN in excitation wavelength at 410 nm with a detection limit of 9.5 ∙ 10–6 M.
Collapse
Affiliation(s)
- Ghodsi Mohammadi Ziarani
- Department of Organic Chemistry, Faculty of Chemistry , University of Alzahra , Tehran , Iran , P.O. Box: 1993893973, phone/fax: +98821 6613927
| | - Mahdieh Khademi
- Department of Organic Chemistry, Faculty of Chemistry , University of Alzahra , Tehran , Iran , P.O. Box: 1993893973, phone/fax: +98821 6613927
| | - Fatemeh Mohajer
- Department of Organic Chemistry, Faculty of Chemistry , University of Alzahra , Tehran , Iran , P.O. Box: 1993893973, phone/fax: +98821 6613927
| | - Alireza Badiei
- School of Chemistry, College of Science , University of Tehran , Iran
| | - Rajender S. Varma
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute , Palacky University , Šlechtitelů 27, 783 71 Olomouc , Czech Republic
| |
Collapse
|
43
|
Bhattacherjee D, Kovalev IS, Kopchuk DS, Rahman M, Santra S, Zyryanov GV, Das P, Purohit R, Rusinov VL, Chupakhin ON. Mechanochemical Approach towards Multi-Functionalized 1,2,3-Triazoles and Anti-Seizure Drug Rufinamide Analogs Using Copper Beads. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227784. [PMID: 36431885 PMCID: PMC9693609 DOI: 10.3390/molecules27227784] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022]
Abstract
Highly regiospecific, copper-salt-free and neat conditions have been demonstrated for the 1,3-dipolar azide-alkyne cycloaddition (AAC) reactions under mechanochemical conditions. A group of structurally challenging alkynes and heterocyclic derivatives was efficiently implemented to achieve highly functionalized 1,4-disubstituted-1,2,3-triazoles in good to excellent yield by using the Cu beads without generation of unwanted byproducts. Furthermore, the high-speed ball milling (HSBM) strategy has also been extended to the synthesis of the commercially available pharmaceutical agent, Rufinamide, an antiepileptic drug (AED) and its analogues. The same strategy was also applied for the synthesis of the Cl-derivative of Rufinamide. Analysis of the single crystal XRD data of the triazole was also performed for the final structural confirmation. The Cu beads are easily recoverable from the reaction mixture and used for the further reactions without any special treatment.
Collapse
Affiliation(s)
- Dhananjay Bhattacherjee
- Department of Organic and Biomolecular Chemistry, Ural Federal University, 19 Mira Street, 620002 Yekaterinburg, Russia
| | - Igor S. Kovalev
- Department of Organic and Biomolecular Chemistry, Ural Federal University, 19 Mira Street, 620002 Yekaterinburg, Russia
| | - Dmitry S. Kopchuk
- Department of Organic and Biomolecular Chemistry, Ural Federal University, 19 Mira Street, 620002 Yekaterinburg, Russia
- I. Ya. Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, 22 S. Kovalevskoi Street, 620219 Yekaterinburg, Russia
| | - Matiur Rahman
- Department of Organic and Biomolecular Chemistry, Ural Federal University, 19 Mira Street, 620002 Yekaterinburg, Russia
| | - Sougata Santra
- Department of Organic and Biomolecular Chemistry, Ural Federal University, 19 Mira Street, 620002 Yekaterinburg, Russia
- Correspondence:
| | - Grigory V. Zyryanov
- Department of Organic and Biomolecular Chemistry, Ural Federal University, 19 Mira Street, 620002 Yekaterinburg, Russia
- I. Ya. Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, 22 S. Kovalevskoi Street, 620219 Yekaterinburg, Russia
| | - Pralay Das
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rituraj Purohit
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Structural Bioinformatics Lab, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur 176061, India
| | - Vladimir L. Rusinov
- Department of Organic and Biomolecular Chemistry, Ural Federal University, 19 Mira Street, 620002 Yekaterinburg, Russia
- I. Ya. Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, 22 S. Kovalevskoi Street, 620219 Yekaterinburg, Russia
| | - Oleg N. Chupakhin
- Department of Organic and Biomolecular Chemistry, Ural Federal University, 19 Mira Street, 620002 Yekaterinburg, Russia
- I. Ya. Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, 22 S. Kovalevskoi Street, 620219 Yekaterinburg, Russia
| |
Collapse
|
44
|
In Melting Points We Trust: A Review on the Misguiding Characterization of Multicomponent Reactions Adducts and Intermediates. Molecules 2022; 27:molecules27217552. [DOI: 10.3390/molecules27217552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/25/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022] Open
Abstract
We discuss herein the problems associated with using melting points to characterize multicomponent reactions’ (MCRs) products and intermediates. Although surprising, it is not rare to find articles in which these MCRs final adducts (or their intermediates) are characterized solely by comparing melting points with those available from other reports. A brief survey among specialized articles highlights serious and obvious problems with this practice since, for instance, cases are found in which as many as 25 quite contrasting melting points have been attributed to the very same MCR adduct. Indeed, it seems logical to assume that the inherent non-confirmatory nature of melting points could be vastly misleading as a protocol for structural confirmation, but still many publications (also in the Q1 and Q2 quartiles) insist on using it. This procedure contradicts best practices in organic synthesis, and articles fraught with limitations and misleading conclusions have been published in the MCRs field. The drawbacks inherent to this practice are indeed serious and have misguided MCRs advances. We therefore suggest some precautions aimed at avoiding future confusions.
Collapse
|
45
|
Liu X, Li Y, Zeng L, Li X, Chen N, Bai S, He H, Wang Q, Zhang C. A Review on Mechanochemistry: Approaching Advanced Energy Materials with Greener Force. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108327. [PMID: 35015320 DOI: 10.1002/adma.202108327] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 01/06/2022] [Indexed: 06/14/2023]
Abstract
Mechanochemistry with solvent-free and environmentally friendly characteristics is one of the most promising alternatives to traditional liquid-phase-based reactions, demonstrating epoch-making significance in the realization of different types of chemistry. Mechanochemistry utilizes mechanical energy to promote physical and chemical transformations to design complex molecules and nanostructured materials, encourage dispersion and recombination of multiphase components, and accelerate reaction rates and efficiencies via highly reactive surfaces. In particular, mechanochemistry deserves special attention because it is capable of endowing energy materials with unique characteristics and properties. Herein, the latest advances and progress in mechanochemistry for the preparation and modification of energy materials are reviewed. An outline of the basic knowledge, methods, and characteristics of different mechanochemical strategies is presented, distinguishing this review from most mechanochemistry reviews that only focus on ball-milling. Next, this outline is followed by a detailed and insightful discussion of mechanochemistry-involved energy conversion and storage applications. The discussion comprehensively covers aspects of energy transformations from mechanical/optical/chemical energy to electrical energy. Finally, next-generation advanced energy materials are proposed. This review is intended to bring mechanochemistry to the frontline and guide this burgeoning field of interdisciplinary research for developing advanced energy materials with greener mechanical force.
Collapse
Affiliation(s)
- Xingang Liu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, 610065, China
| | - Yijun Li
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, 610065, China
| | - Li Zeng
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, 610065, China
| | - Xi Li
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, 610065, China
| | - Ning Chen
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, 610065, China
| | - Shibing Bai
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, 610065, China
| | - Hanna He
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, 610065, China
| | - Qi Wang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, 610065, China
| | - Chuhong Zhang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, 610065, China
| |
Collapse
|
46
|
Zhang Z, Lao T, Deng L, Zhang C, Liu J, Fu M, Su Z, Yu Y, Cao H. Mechanochemical Electrophilic Mono- or Disulfur Transfer: Construction of P(O)-S or P(O)-S-S Bonds. Org Lett 2022; 24:7222-7226. [PMID: 36169201 DOI: 10.1021/acs.orglett.2c03018] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Under mechanochemically induced conditions, a wide range of diarylphosphine oxides or H-phosphonates react with trisulfide dioxides to afford various thiophosphate derivatives in good yields. Selective S-S bond cleavage of trisulfide dioxides determined by connecting groups is proposed as the key step in the construction of P(O)-S or P(O)-S-S bonds, which is supported by calculations.
Collapse
Affiliation(s)
- Ziwu Zhang
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering and Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Tianfeng Lao
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering and Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Lichan Deng
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering and Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Chen Zhang
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering and Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, China.,School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Jubin Liu
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering and Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Min Fu
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering and Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Zhengquan Su
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering and Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Yue Yu
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering and Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, China.,Guangdong Pharmaceutical University-University of Hong Kong Joint Biomedical Innovation Platform, Zhongshan 528437, China
| | - Hua Cao
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering and Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, China.,Guangdong Pharmaceutical University-University of Hong Kong Joint Biomedical Innovation Platform, Zhongshan 528437, China
| |
Collapse
|
47
|
Cuccu F, De Luca L, Delogu F, Colacino E, Solin N, Mocci R, Porcheddu A. Mechanochemistry: New Tools to Navigate the Uncharted Territory of "Impossible" Reactions. CHEMSUSCHEM 2022; 15:e202200362. [PMID: 35867602 PMCID: PMC9542358 DOI: 10.1002/cssc.202200362] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/01/2022] [Indexed: 05/10/2023]
Abstract
Mechanochemical transformations have made chemists enter unknown territories, forcing a different chemistry perspective. While questioning or revisiting familiar concepts belonging to solution chemistry, mechanochemistry has broken new ground, especially in the panorama of organic synthesis. Not only does it foster new "thinking outside the box", but it also has opened new reaction paths, allowing to overcome the weaknesses of traditional chemistry exactly where the use of well-established solution-based methodologies rules out progress. In this Review, the reader is introduced to an intriguing research subject not yet fully explored and waiting for improved understanding. Indeed, the study is mainly focused on organic transformations that, although impossible in solution, become possible under mechanochemical processing conditions, simultaneously entailing innovation and expanding the chemical space.
Collapse
Affiliation(s)
- Federico Cuccu
- Dipartimento di Scienze Chimiche e GeologicheUniversità degli Studi di CagliariCittadella Universitaria09042Monserrato, CagliariItaly
| | - Lidia De Luca
- Dipartimento di Chimica e FarmaciaUniversità degli Studi di Sassarivia Vienna 207100SassariItaly
| | - Francesco Delogu
- Dipartimento di Ingegneria Meccanica, Chimica e dei MaterialiUniversità degli Studi di CagliariVia Marengo 209123CagliariItaly
| | | | - Niclas Solin
- Department of PhysicsChemistry and Biology (IFM)Electronic and Photonic Materials (EFM)Building Fysikhuset, Room M319, CampusVallaSweden
| | - Rita Mocci
- Dipartimento di Scienze Chimiche e GeologicheUniversità degli Studi di CagliariCittadella Universitaria09042Monserrato, CagliariItaly
| | - Andrea Porcheddu
- Dipartimento di Scienze Chimiche e GeologicheUniversità degli Studi di CagliariCittadella Universitaria09042Monserrato, CagliariItaly
| |
Collapse
|
48
|
Mumtaz N, Javaid A, Imran M, Latif S, Hussain N, Nawaz S, Bilal M. Nanoengineered metal-organic framework for adsorptive and photocatalytic mitigation of pharmaceuticals and pesticide from wastewater. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 308:119690. [PMID: 35772620 DOI: 10.1016/j.envpol.2022.119690] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/22/2022] [Accepted: 06/25/2022] [Indexed: 06/15/2023]
Abstract
Rapidly expanding water pollution has transformed into significant dangers around the world. In recent years, the pharmaceutical and agriculture field attained enormous progress to meet the necessities of health and life; however, discharge of trace amounts of pharmaceuticals and pesticides into water significantly have a negative influence on human health and the environment. Contamination with these pollutants also constitutes a great threat to the aquatic ecosystem. To deal with the harmful impacts of such pollutants, their expulsion has attracted researchers' interest a lot, and it became essential to figure out techniques suitable for the removal of these pollutants. Thus, many researchers have devoted their efforts to improving the existing technology or providing an alternative strategy to solve this environmental problem. One of the attractive materials for this purpose is metal-organic frameworks (MOFs) due to their superior high surface area, high porosity, and the tunable features of their structures and function. Among various techniques of wastewater treatment, such as biological treatment, advanced oxidation process and membrane technologies, etc., metal-organic frameworks (MOFs) materials are tailorable porous architectures and are viably used as adsorbents or photocatalysts for wastewater treatment due to their porosity, tunable internal structure, and large surface area. MOFs are synthesized by various methods such as solvo/hydrothermal, sonochemical, microwave and mechanochemical methods. Most common method used for the synthesis of MOFs is solvothermal/hydrothermal methods. Herein, this review aims at providing a comprehensive overview of the latest advances in MOFs and their derivatives, focusing on the following aspects: synthesis and applications. This review comprehensively highlights the application of MOFs and nano-MOFs to remove pharmaceuticals and pesticides from wastewater. For the past years, transition metal-based MOFs have been concentrated as photocatalyst/adsorbents in treating contaminated water. However, work on main group metal-based MOFs is not so abundant. Hence, the foremost objective of this review is to present the latest material and references concerning main group element-based MOFs and nanoscale materials derived from them towards wastewater treatment. It summarizes the possible research challenges and directions for MOFs and their derivatives as catalysts applied to wastewater treatment in the future. With the context of recent pioneering studies on main group elements-based MOFs and their derivatives; we hope to stimulate some possibilities for further development, challenges and future perspectives in this field have been highlighted.
Collapse
Affiliation(s)
- Nazish Mumtaz
- Centre for Inorganic Chemistry, School of Chemistry, University of the Punjab, Lahore, 54000, Pakistan
| | - Ayesha Javaid
- Centre for Inorganic Chemistry, School of Chemistry, University of the Punjab, Lahore, 54000, Pakistan
| | - Muhammad Imran
- Centre for Inorganic Chemistry, School of Chemistry, University of the Punjab, Lahore, 54000, Pakistan
| | - Shoomaila Latif
- School of Physical Sciences, University of the Punjab, Lahore, 54000, Pakistan
| | - Nazim Hussain
- Center for Applied Molecular Biology (CAMB), University of the Punjab, Lahore, 54000, Pakistan
| | - Shahid Nawaz
- Department of Chemistry, The University of Lahore, Lahore, Pakistan
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China.
| |
Collapse
|
49
|
Mkrtchyan S, Jakubczyk M, Lanka S, Yar M, Mahmood T, Ayub K, Sillanpää M, Thomas. C, Iaroshenko V. Mechanochemical Ni‐catalysed arylation of ortho‐hydroxyarylenaminones: Synthesis of isoflavones. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Satenik Mkrtchyan
- Laboratory of Homogeneous Catalysis and Molecular Design at Center of Molecular and Macromolecular Studies, Polish Academy of Sciences. POLAND
| | - Michał Jakubczyk
- Institute of Bioorganic Chemistry Polish Academy of Sciences POLAND
| | | | | | | | | | - Mika Sillanpää
- f. Department of Biological and Chemical Engineering, Aarhus University, Nørrebrogade 44, Aarhus C (Denmark). DENMARK
| | | | - Viktor Iaroshenko
- Laboratory of Homogeneous Catalysis and Molecular Design at Center of Molecular and Macromolecular Studies in Lodz POLAND
| |
Collapse
|
50
|
Li L, Niu C, Wang G. Mechanochemical
Metal‐Free
Synthesis of
3‐Arylindenones
via Unprecedented Aryl Swapping. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Liang Li
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry University of Science and Technology of China Hefei Anhui 230026 China
- Department of Chemistry and Chemical Engineering Hefei Normal University Hefei Anhui 230601 China
| | - Chuang Niu
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry University of Science and Technology of China Hefei Anhui 230026 China
| | - Guan‐Wu Wang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry University of Science and Technology of China Hefei Anhui 230026 China
| |
Collapse
|