1
|
Fu S, Ding J, Lv H, Zheng Y, Liu S, Zhao K, Bai Z, Shi Y, He D, Wang R, Zhao J, Wu X, Tang D, Qiu X, Wang Y, Zhang X. Resonantly Enhanced Hybrid Wannier-Mott-Frenkel Excitons in Organic-Inorganic Van Der Waals Heterostructures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2411972. [PMID: 39828605 DOI: 10.1002/adma.202411972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 01/12/2025] [Indexed: 01/22/2025]
Abstract
Hybrid excitons formed via resonant hybridization in 2D material heterostructures feature both large optical and electrical dipoles, providing a promising platform for many-body exciton physics and correlated electronic states. However, hybrid excitons at organic-inorganic interface combining the advantages of both Wannier-Mott and Frenkel excitons remain elusive. Here, hybrid excitons are reported in the copper phthalocyanine/molybdenum diselenide (CuPc/MoSe2) heterostructure (HS) featuring strong molecular orientation dependence by low-temperature photoluminescence and absorption spectroscopy. The hybrid Wannier-Mott-Frenkel excitons exhibit a large oscillator strength and display signatures of the Frenkel excitons in CuPc and the Wannier-Mott excitons in MoSe2 simultaneously through the delocalized electrons. The density functional theory (DFT) calculations further confirm the strong hybridization between the lowest unoccupied molecular orbital (LUMO) of CuPc and the conduction band minimum (CBM) of MoSe2. The out-of-plane molecular orientation is further employed to tune the hybridization strength and tailor the hybrid exciton states. The results reveal the hybrid excitons at the CuPc/MoSe2 interface with tunability by molecular orientation, suggesting that the organic-inorganic HS constitutes a promising platform for many-body exciton physics such as exciton condensation and optoelectrical applications.
Collapse
Affiliation(s)
- Shaohua Fu
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing, 100044, China
- Synergetic Innovation Center for Quantum Effects and Application, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control of Ministry of Education, School of Physics and Electronics, Hunan Normal University, Changsha, 410081, China
| | - Jianwei Ding
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY, 11794, USA
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haifeng Lv
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Synergetic Innovation of Quantum Information & Quantum Technology, School of Chemistry and Materials Sciences, and CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yue Zheng
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
| | - Shuangyan Liu
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing, 100044, China
| | - Kun Zhao
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing, 100044, China
| | - Zhiying Bai
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing, 100044, China
| | - Yumeng Shi
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing, 100044, China
| | - Dawei He
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing, 100044, China
| | - Rui Wang
- Beijing Information Technology College, Beijing, 100015, China
| | - Jimin Zhao
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xiaojun Wu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Synergetic Innovation of Quantum Information & Quantum Technology, School of Chemistry and Materials Sciences, and CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Dongsheng Tang
- Synergetic Innovation Center for Quantum Effects and Application, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control of Ministry of Education, School of Physics and Electronics, Hunan Normal University, Changsha, 410081, China
| | - Xiaohui Qiu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongsheng Wang
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing, 100044, China
| | - Xiaoxian Zhang
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing, 100044, China
| |
Collapse
|
2
|
Wang Y, Zhang T, Ma K, Bin Z, Zhang X, Tang F, Xu X, Yin T, Hu M. Terahertz Nanoscopy on Low-Dimensional Materials: Toward Ultrafast Physical Phenomena. ACS APPLIED MATERIALS & INTERFACES 2025; 17:2736-2755. [PMID: 39815472 DOI: 10.1021/acsami.4c14419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Low-dimensional materials (LDMs) with unique electromagnetic properties and diverse local phenomena have garnered significant interest, particularly for their low-energy responses within the terahertz (THz) range. Achieving deep subwavelength resolution, THz nanoscopy offers a promising route to investigate LDMs at the nanoscale. Steady-state THz nanoscopy has been demonstrated as a powerful tool for investigating light-matter interactions across boundaries and interfaces, enabling insights into physical phenomena such as localized collective oscillations, quantum confinement of quasiparticles, and metal-to-insulator phase transitions (MITs). However, tracking the ultrafast nonequilibrium dynamics of LDMs remains challenging. Ultrafast THz nanoscopy, with femtosecond temporal resolution, provides a direct pathway to investigate and manipulate the motion of, for example, charges, currents, and carriers at ultrashort time scales. In this review, we focus on recent advances in THz nanoscopy of LDMs, with particular emphasis on the ultrafast dynamics of light-matter interaction. We provide a concise overview of recent advances and suggest future research directions in this impactful field of interdisciplinary science.
Collapse
Affiliation(s)
- Yueying Wang
- Terahertz Research Center, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
- Key Laboratory of Terahertz Technology, Ministry of Education, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Tianyu Zhang
- Terahertz Research Center, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
- Key Laboratory of Terahertz Technology, Ministry of Education, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Kun Ma
- Terahertz Research Center, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
- Key Laboratory of Terahertz Technology, Ministry of Education, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Zechuan Bin
- Terahertz Research Center, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
- Key Laboratory of Terahertz Technology, Ministry of Education, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Xiaoqiuyan Zhang
- Terahertz Research Center, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
- Key Laboratory of Terahertz Technology, Ministry of Education, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Fu Tang
- Terahertz Research Center, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
- Key Laboratory of Terahertz Technology, Ministry of Education, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Xingxing Xu
- Terahertz Research Center, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
- Key Laboratory of Terahertz Technology, Ministry of Education, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Tinggui Yin
- Terahertz Research Center, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
- Key Laboratory of Terahertz Technology, Ministry of Education, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Min Hu
- Terahertz Research Center, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
- Key Laboratory of Terahertz Technology, Ministry of Education, University of Electronic Science and Technology of China, Chengdu 611731, China
| |
Collapse
|
3
|
Imahori H, Akiyama M. Photoinduced charge separation at heterojunctions between two-dimensional layered materials and small organic molecules. MATERIALS HORIZONS 2025; 12:92-102. [PMID: 39359189 DOI: 10.1039/d4mh01296h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
p-n heterojunctions are fundamental components for electronics and optoelectronics, including diodes, transistors, sensors, and solar cells. Over the past few decades, organic-inorganic p-n heterojunctions have garnered significant interest due to the diverse properties they exhibit, which are a result of the limitless combinations of organic molecules and inorganic materials. This review article concentrates on photoinduced charge separation and photocurrent generation at heterojunctions between two-dimensional layered materials and structurally well-defined organic small molecules. We highlight representative examples, including our work, and critically discuss their potential and perspectives.
Collapse
Affiliation(s)
- Hiroshi Imahori
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan.
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
- Institute for Liberal Arts and Sciences (ILAS), Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Midori Akiyama
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan.
| |
Collapse
|
4
|
Park S, Ji J, Pillai S, Fischer H, Rouillon J, Benitez-Martin C, Andréasson J, You JH, Choi JH. Layer-number-dependent photoswitchability in 2D MoS 2-diarylethene hybrids. NANOSCALE 2024. [PMID: 39696962 DOI: 10.1039/d4nr03631j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
Molybdenum disulfide (MoS2) is a notable two-dimensional (2D) transition metal dichalcogenide (TMD) with properties ideal for nanoelectronic and optoelectronic applications. With growing interest in the material, it is critical to understand its layer-number-dependent properties and develop strategies for controlling them. Here, we demonstrate a photo-modulation of MoS2 flakes and elucidate layer-number-dependent charge transfer behaviors. We fabricated hybrid structures by functionalizing MoS2 flakes with a uniform layer of photochromic diarylethene (DAE) molecules that can switch between closed- and open-form isomers under UV and visible light, respectively. We discovered that the closed-form DAE quenches the photoluminescence (PL) of monolayer MoS2 when excited at 633 nm and that the PL fully recovers after DAE isomerization into the open-form. Similarly, the electric conductivity of monolayer MoS2 is drastically enhanced when interacting with the closed-form isomers. In contrast, photoinduced isomerization did not modulate the properties of the hybrids made of MoS2 bilayers and trilayers. Density functional theory (DFT) calculations revealed that a hole transfer from monolayer MoS2 to the closed-form isomer took place due to energy level alignments, but such interactions were prohibited with open-form DAE. Computational results also indicated negligible charge transfer at the hybrid interfaces with bilayer and trilayer MoS2. These findings highlight the critical role of layer-number-dependent interactions in MoS2-DAE hybrids, offering valuable insights for the development of advanced photoswitchable devices.
Collapse
Affiliation(s)
- Sewon Park
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, USA.
| | - Jaehoon Ji
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, USA.
| | - Srajan Pillai
- Department of Mechanical Engineering, University of St. Thomas, St. Paul, Minnesota 55105, USA
| | - Henry Fischer
- Department of Mechanical Engineering, University of St. Thomas, St. Paul, Minnesota 55105, USA
| | - Jean Rouillon
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Carlos Benitez-Martin
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-413 90 Gothenburg, Sweden
| | - Joakim Andréasson
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Jeong Ho You
- Department of Mechanical Engineering, University of St. Thomas, St. Paul, Minnesota 55105, USA
| | - Jong Hyun Choi
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, USA.
| |
Collapse
|
5
|
Chen H, Lian Y, Zhou T, Li H, Li J, Liu X, Huang Y, Liu WT. Excitonic-Vibrational Interaction at 2D Material/Organic Molecule Interfaces Studied by Time-Resolved Sum Frequency Generation. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1892. [PMID: 39683281 DOI: 10.3390/nano14231892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/14/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024]
Abstract
The hybrid heterostructures formed between two-dimensional (2D) materials and organic molecules have gained great interest for their potential applications in advanced photonic and optoelectronic devices, such as solar cells and biosensors. Characterizing the interfacial structure and dynamic properties at the molecular level is essential for realizing such applications. Here, we report a time-resolved sum-frequency generation (TR-SFG) approach to investigate the hybrid structure of polymethyl methacrylate (PMMA) molecules and 2D transition metal dichalcogenides (TMDCs). By utilizing both infrared and visible light, TR-SFG can provide surface-specific information about both molecular vibrations and electronic transitions simultaneously. Our setup employed a Bragg grating for generating both a narrowband probe and an ultrafast pump pulse, along with a synchronized beam chopper and Galvo mirror combination for real-time spectral normalization, which can be readily incorporated into standard SFG setups. Applying this technique to the TMDC/PMMA interfaces yielded structural information regarding PMMA side chains and dynamic responses of both PMMA vibrational modes and TMDC excitonic transitions. We further observed a prominent enhancement effect of the PMMA vibrational SF amplitude for about 10 times upon the resonance with TMDC excitonic transition. These findings lay a foundation for further investigation into interactions at the 2D material/organic molecule interfaces.
Collapse
Affiliation(s)
- Huiling Chen
- Physics Department, State Key Laboratory of Surface Physics, Key Laboratory of Micro and Nano Photonic Structures [Ministry of Education (MOE)], Fudan University, Shanghai 200433, China
| | - Yu Lian
- Physics Department, State Key Laboratory of Surface Physics, Key Laboratory of Micro and Nano Photonic Structures [Ministry of Education (MOE)], Fudan University, Shanghai 200433, China
| | - Tao Zhou
- Physics Department, State Key Laboratory of Surface Physics, Key Laboratory of Micro and Nano Photonic Structures [Ministry of Education (MOE)], Fudan University, Shanghai 200433, China
| | - Hui Li
- Physics Department, State Key Laboratory of Surface Physics, Key Laboratory of Micro and Nano Photonic Structures [Ministry of Education (MOE)], Fudan University, Shanghai 200433, China
| | - Jiashi Li
- Physics Department, State Key Laboratory of Surface Physics, Key Laboratory of Micro and Nano Photonic Structures [Ministry of Education (MOE)], Fudan University, Shanghai 200433, China
| | - Xinyi Liu
- Physics Department, State Key Laboratory of Surface Physics, Key Laboratory of Micro and Nano Photonic Structures [Ministry of Education (MOE)], Fudan University, Shanghai 200433, China
| | - Yuan Huang
- School of Integrated Circuits and Electronics, MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, Beijing Institute of Technology, Beijing 100081, China
| | - Wei-Tao Liu
- Physics Department, State Key Laboratory of Surface Physics, Key Laboratory of Micro and Nano Photonic Structures [Ministry of Education (MOE)], Fudan University, Shanghai 200433, China
| |
Collapse
|
6
|
Guo D, Fu Q, Zhang G, Cui Y, Liu K, Zhang X, Yu Y, Zhao W, Zheng T, Long H, Zeng P, Han X, Zhou J, Xin K, Gu T, Wang W, Zhang Q, Hu Z, Zhang J, Chen Q, Wei Z, Zhao B, Lu J, Ni Z. Composition Modulation-Mediated Band Alignment Engineering from Type I to Type III in 2D vdW Heterostructures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400060. [PMID: 39126132 DOI: 10.1002/adma.202400060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 07/22/2024] [Indexed: 08/12/2024]
Abstract
Band alignment engineering is crucial for facilitating charge separation and transfer in optoelectronic devices, which ultimately dictates the behavior of Van der Waals heterostructures (vdWH)-based photodetectors and light emitting diode (LEDs). However, the impact of the band offset in vdWHs on important figures of merit in optoelectronic devices has not yet been systematically analyzed. Herein, the regulation of band alignment in WSe2/Bi2Te3- xSex vdWHs (0 ≤ x ≤ 3) is demonstrated through the implementation of chemical vapor deposition (CVD). A combination of experimental and theoretical results proved that the synthesized vdWHs can be gradually tuned from Type I (WSe2/Bi2Te3) to Type III (WSe2/Bi2Se3). As the band alignment changes from Type I to Type III, a remarkable responsivity of 58.12 A W-1 and detectivity of 2.91×1012 Jones (in Type I) decrease in the vdWHs-based photodetector, and the ultrafast photoresponse time is 3.2 µs (in Type III). Additionally, Type III vdWH-based LEDs exhibit the highest luminance and electroluminescence (EL) external quantum efficiencies (EQE) among p-n diodes based on Transition Metal Dichalcogenides (TMDs) at room temperature, which is attributed to band alignment-induced distinct interfacial charge injection. This work serves as a valuable reference for the application and expansion of fundamental band alignment principles in the design and fabrication of future optoelectronic devices.
Collapse
Affiliation(s)
- Dingli Guo
- School of Physics and Key Laboratory of Quantum Materials and Devices of Ministry of Education, Southeast University, Nanjing, 211189, China
- Institute of Semiconductors and State Key Laboratory of Superlattices and Microstructures, Chinese Academy of Sciences, Beijing, 100083, China
| | - Qiang Fu
- School of Physics and Key Laboratory of Quantum Materials and Devices of Ministry of Education, Southeast University, Nanjing, 211189, China
| | - Guitao Zhang
- School of Physics and Key Laboratory of Quantum Materials and Devices of Ministry of Education, Southeast University, Nanjing, 211189, China
| | - Yueying Cui
- School of Physics and Key Laboratory of Quantum Materials and Devices of Ministry of Education, Southeast University, Nanjing, 211189, China
| | - Kaiyang Liu
- School of Physics and Key Laboratory of Quantum Materials and Devices of Ministry of Education, Southeast University, Nanjing, 211189, China
| | - Xinlei Zhang
- School of Physics and Key Laboratory of Quantum Materials and Devices of Ministry of Education, Southeast University, Nanjing, 211189, China
| | - Yali Yu
- Institute of Semiconductors and State Key Laboratory of Superlattices and Microstructures, Chinese Academy of Sciences, Beijing, 100083, China
| | - Weiwei Zhao
- School of Physics and Key Laboratory of Quantum Materials and Devices of Ministry of Education, Southeast University, Nanjing, 211189, China
| | - Ting Zheng
- School of Physics and Key Laboratory of Quantum Materials and Devices of Ministry of Education, Southeast University, Nanjing, 211189, China
| | - Haoran Long
- Institute of Semiconductors and State Key Laboratory of Superlattices and Microstructures, Chinese Academy of Sciences, Beijing, 100083, China
| | - Peiyu Zeng
- School of Physics and Key Laboratory of Quantum Materials and Devices of Ministry of Education, Southeast University, Nanjing, 211189, China
| | - Xu Han
- Advanced Research Institute for Multidisciplinary Sciences, Beijing Institute of Technology, Beijing, 100081, China
| | - Jun Zhou
- School of Physics and Key Laboratory of Quantum Materials and Devices of Ministry of Education, Southeast University, Nanjing, 211189, China
| | - Kaiyao Xin
- Institute of Semiconductors and State Key Laboratory of Superlattices and Microstructures, Chinese Academy of Sciences, Beijing, 100083, China
| | - Tiancheng Gu
- School of Physics and Key Laboratory of Quantum Materials and Devices of Ministry of Education, Southeast University, Nanjing, 211189, China
| | - Wenhui Wang
- School of Physics and Key Laboratory of Quantum Materials and Devices of Ministry of Education, Southeast University, Nanjing, 211189, China
| | - Qi Zhang
- School of Physics and Key Laboratory of Quantum Materials and Devices of Ministry of Education, Southeast University, Nanjing, 211189, China
| | - Zhenliang Hu
- School of Physics and Key Laboratory of Quantum Materials and Devices of Ministry of Education, Southeast University, Nanjing, 211189, China
| | - Jialin Zhang
- School of Physics and Key Laboratory of Quantum Materials and Devices of Ministry of Education, Southeast University, Nanjing, 211189, China
| | - Qian Chen
- School of Physics and Key Laboratory of Quantum Materials and Devices of Ministry of Education, Southeast University, Nanjing, 211189, China
| | - Zhongming Wei
- Institute of Semiconductors and State Key Laboratory of Superlattices and Microstructures, Chinese Academy of Sciences, Beijing, 100083, China
| | - Bei Zhao
- School of Physics and Key Laboratory of Quantum Materials and Devices of Ministry of Education, Southeast University, Nanjing, 211189, China
| | - Junpeng Lu
- School of Physics and Key Laboratory of Quantum Materials and Devices of Ministry of Education, Southeast University, Nanjing, 211189, China
- School of Electronic Science and Engineering, Southeast University, Nanjing, 210096, China
| | - Zhenhua Ni
- School of Physics and Key Laboratory of Quantum Materials and Devices of Ministry of Education, Southeast University, Nanjing, 211189, China
- School of Electronic Science and Engineering, Southeast University, Nanjing, 210096, China
| |
Collapse
|
7
|
Yu X, Xu C, Sun J, Xu H, Huang H, Gan Z, George A, Ouyang S, Liu F. Recent developments in two-dimensional molybdenum disulfide-based multimodal cancer theranostics. J Nanobiotechnology 2024; 22:515. [PMID: 39198894 PMCID: PMC11351052 DOI: 10.1186/s12951-024-02785-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/18/2024] [Indexed: 09/01/2024] Open
Abstract
Recent advancements in cancer research have led to the generation of innovative nanomaterials for improved diagnostic and therapeutic strategies. Despite the proven potential of two-dimensional (2D) molybdenum disulfide (MoS2) as a versatile platform in biomedical applications, few review articles have focused on MoS2-based platforms for cancer theranostics. This review aims to fill this gap by providing a comprehensive overview of the latest developments in 2D MoS2 cancer theranostics and emerging strategies in this field. This review highlights the potential applications of 2D MoS2 in single-model imaging and therapy, including fluorescence imaging, photoacoustic imaging, photothermal therapy, and catalytic therapy. This review further classifies the potential of 2D MoS2 in multimodal imaging for diagnostic and synergistic theranostic platforms. In particular, this review underscores the progress of 2D MoS2 as an integrated drug delivery system, covering a broad spectrum of therapeutic strategies from chemotherapy and gene therapy to immunotherapy and photodynamic therapy. Finally, this review discusses the current challenges and future perspectives in meeting the diverse demands of advanced cancer diagnostic and theranostic applications.
Collapse
Affiliation(s)
- Xinbo Yu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Shenyang, 110001, China
- Phase I Clinical Trials Center, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Chen Xu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Shenyang, 110001, China
- Phase I Clinical Trials Center, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Jingxu Sun
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Shenyang, 110001, China
| | - Hainan Xu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Hanwei Huang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Shenyang, 110001, China
- Phase I Clinical Trials Center, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Ziyang Gan
- Institute of Physical Chemistry, Abbe Center of Photonics, Friedrich Schiller University Jena, Jena, Germany
| | - Antony George
- Institute of Physical Chemistry, Abbe Center of Photonics, Friedrich Schiller University Jena, Jena, Germany
| | - Sihui Ouyang
- College of Materials Science and Engineering, Chongqing University, National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing, 400044, China.
| | - Funan Liu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Shenyang, 110001, China.
- Phase I Clinical Trials Center, The First Hospital of China Medical University, Shenyang, 110001, China.
| |
Collapse
|
8
|
Fuller N, Rudayni F, Amos S, Rijal K, Maroufian SA, Valencia-Acuna P, Karl T, Zhao H, Peelaers H, Zhou Q, Chan WL. Modulation of Electrostatic Potential in 2D Crystal Engineered by an Array of Alternating Polar Molecules. NANO LETTERS 2024; 24:10258-10264. [PMID: 39134480 DOI: 10.1021/acs.nanolett.4c02555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
The moiré potential in rotationally misfit two-dimensional (2D) heterostructures has been used to build artificial exciton and electron lattices, which have become platforms for realizing exotic electronic phases. Here, we demonstrate a different approach to create a superlattice potential in 2D crystals by using the near field of an array of polar molecules. A bilayer of titanyl phthalocyanine (TiOPc), consisting of alternating out-of-plane dipoles, is deposited on monolayer MoS2. Time-resolved two-photon photoemission spectroscopy reveals a pair of interlayer exciton states with an energy difference of ∼0.1 eV, which is consistent with the electrostatic potential modulation induced by the TiOPc bilayer as determined by density functional theory calculations. Because the symmetry and the period of this potential superlattice can be changed readily by using molecules of different shapes and sizes, molecule/2D heterostructures can be promising platforms for designing artificial exciton and electron lattices.
Collapse
Affiliation(s)
- Neno Fuller
- Department of Physics and Astronomy, University of Kansas, Lawrence, Kansas 66045, United States
| | - Fatimah Rudayni
- Department of Physics and Astronomy, University of Kansas, Lawrence, Kansas 66045, United States
- Department of Physics, Jazan University, Jazan 45142, Saudi Arabia
| | - Stephanie Amos
- Department of Physics and Astronomy, University of Kansas, Lawrence, Kansas 66045, United States
| | - Kushal Rijal
- Department of Physics and Astronomy, University of Kansas, Lawrence, Kansas 66045, United States
| | - Seyed A Maroufian
- Department of Physics and Astronomy, University of Kansas, Lawrence, Kansas 66045, United States
| | - Pavel Valencia-Acuna
- Department of Physics and Astronomy, University of Kansas, Lawrence, Kansas 66045, United States
| | - Tyson Karl
- Department of Physics and Astronomy, University of Kansas, Lawrence, Kansas 66045, United States
| | - Hui Zhao
- Department of Physics and Astronomy, University of Kansas, Lawrence, Kansas 66045, United States
| | - Hartwin Peelaers
- Department of Physics and Astronomy, University of Kansas, Lawrence, Kansas 66045, United States
| | - Qunfei Zhou
- Department of Physics and Astronomy, University of Kansas, Lawrence, Kansas 66045, United States
| | - Wai-Lun Chan
- Department of Physics and Astronomy, University of Kansas, Lawrence, Kansas 66045, United States
| |
Collapse
|
9
|
Liu Y, Lv H, Guo Y, Zhu H, Shang Z, Zhao Y, Lin Y, Tai X, Guo Z, Cui X, Zhao J, Yuan B, Liu Y, Zhang G, Sun Z, Wu X, Xie Y, Wu C. Interfacial Charge-Transfer Excitonic Insulator in a Two-Dimensional Organic-Inorganic Superlattice. J Am Chem Soc 2024. [PMID: 39022834 DOI: 10.1021/jacs.4c06216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Excitonic insulators are long-sought-after quantum materials predicted to spontaneously open a gap by the Bose condensation of bound electron-hole pairs, namely, excitons, in their ground state. Since the theoretical conjecture, extensive efforts have been devoted to pursuing excitonic insulator platforms for exploring macroscopic quantum phenomena in real materials. Reliable evidence of excitonic character has been obtained in layered chalcogenides as promising candidates. However, owing to the interference of intrinsic lattice instabilities, it is still debatable whether those features, such as the charge density wave and gap opening, are primarily driven by the excitonic effect or by the lattice transition. Herein, we develop an intercalation chemistry strategy for obtaining a novel charge-transfer excitonic insulator in organic-inorganic superlattice interfaces that serves as an ideal platform to decouple the excitonic effect from the lattice effect. In this system, we observe a narrow excitonic gap, formation of a charge density wave without periodic lattice distortion, and metal-insulator transition, providing visualized evidence of exciton condensation occurring in thermal equilibrium. Our findings identify self-assembly intercalation chemistry as a new strategy for developing novel excitonic insulators.
Collapse
Affiliation(s)
- Yang Liu
- Key Laboratory of Precision and Intelligent Chemistry, CAS Key Laboratory of Mechanical Behavior and Design of Materials, University of Science & Technology of China, Hefei, Anhui 230026, P. R. China
| | - Haifeng Lv
- Key Laboratory of Precision and Intelligent Chemistry, CAS Key Laboratory of Mechanical Behavior and Design of Materials, University of Science & Technology of China, Hefei, Anhui 230026, P. R. China
| | - Yuqiao Guo
- Key Laboratory of Precision and Intelligent Chemistry, CAS Key Laboratory of Mechanical Behavior and Design of Materials, University of Science & Technology of China, Hefei, Anhui 230026, P. R. China
| | - Hongen Zhu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Zhengmin Shang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Yingcheng Zhao
- Key Laboratory of Precision and Intelligent Chemistry, CAS Key Laboratory of Mechanical Behavior and Design of Materials, University of Science & Technology of China, Hefei, Anhui 230026, P. R. China
| | - Yue Lin
- Key Laboratory of Precision and Intelligent Chemistry, CAS Key Laboratory of Mechanical Behavior and Design of Materials, University of Science & Technology of China, Hefei, Anhui 230026, P. R. China
| | - Xiaolin Tai
- Key Laboratory of Precision and Intelligent Chemistry, CAS Key Laboratory of Mechanical Behavior and Design of Materials, University of Science & Technology of China, Hefei, Anhui 230026, P. R. China
| | - Ziyang Guo
- Key Laboratory of Precision and Intelligent Chemistry, CAS Key Laboratory of Mechanical Behavior and Design of Materials, University of Science & Technology of China, Hefei, Anhui 230026, P. R. China
| | - Xuefeng Cui
- Key Laboratory of Precision and Intelligent Chemistry, CAS Key Laboratory of Mechanical Behavior and Design of Materials, University of Science & Technology of China, Hefei, Anhui 230026, P. R. China
| | - Jiyin Zhao
- Key Laboratory of Precision and Intelligent Chemistry, CAS Key Laboratory of Mechanical Behavior and Design of Materials, University of Science & Technology of China, Hefei, Anhui 230026, P. R. China
| | - Bingkai Yuan
- Key Laboratory of Precision and Intelligent Chemistry, CAS Key Laboratory of Mechanical Behavior and Design of Materials, University of Science & Technology of China, Hefei, Anhui 230026, P. R. China
| | - Yi Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Guobin Zhang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Zhe Sun
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Xiaojun Wu
- Key Laboratory of Precision and Intelligent Chemistry, CAS Key Laboratory of Mechanical Behavior and Design of Materials, University of Science & Technology of China, Hefei, Anhui 230026, P. R. China
| | - Yi Xie
- Key Laboratory of Precision and Intelligent Chemistry, CAS Key Laboratory of Mechanical Behavior and Design of Materials, University of Science & Technology of China, Hefei, Anhui 230026, P. R. China
| | - Changzheng Wu
- Key Laboratory of Precision and Intelligent Chemistry, CAS Key Laboratory of Mechanical Behavior and Design of Materials, University of Science & Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
10
|
Mirzaei A, Alizadeh M, Ansari HR, Moayedi M, Kordrostami Z, Safaeian H, Lee MH, Kim TU, Kim JY, Kim HW, Kim SS. Resistive gas sensors for the detection of NH 3gas based on 2D WS 2, WSe 2, MoS 2, and MoSe 2: a review. NANOTECHNOLOGY 2024; 35:332002. [PMID: 38744265 DOI: 10.1088/1361-6528/ad4b22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 05/14/2024] [Indexed: 05/16/2024]
Abstract
Transition metal dichalcogenides (TMDs) with a two-dimensional (2D) structure and semiconducting features are highly favorable for the production of NH3gas sensors. Among the TMD family, WS2, WSe2, MoS2, and MoSe2exhibit high conductivity and a high surface area, along with high availability, reasons for which they are favored in gas-sensing studies. In this review, we have discussed the structure, synthesis, and NH3sensing characteristics of pristine, decorated, doped, and composite-based WS2, WSe2, MoS2, and MoSe2gas sensors. Both experimental and theoretical studies are considered. Furthermore, both room temperature and higher temperature gas sensors are discussed. We also emphasized the gas-sensing mechanism. Thus, this review provides a reference for researchers working in the field of 2D TMD gas sensors.
Collapse
Affiliation(s)
- Ali Mirzaei
- Department of Materials Science and Engineering, Shiraz University of Technology, Shiraz 71557-13876, Iran
| | - Morteza Alizadeh
- Department of Materials Science and Engineering, Shiraz University of Technology, Shiraz 71557-13876, Iran
| | - Hamid Reza Ansari
- Department of Electrical Engineering, Shiraz University of Technology, Shiraz 71557-13876, Iran
| | - Mehdi Moayedi
- Department of Electrical Engineering, Shiraz University of Technology, Shiraz 71557-13876, Iran
| | - Zoheir Kordrostami
- Department of Electrical Engineering, Shiraz University of Technology, Shiraz 71557-13876, Iran
| | - Haniyeh Safaeian
- Department of Materials Science and Engineering, Shiraz University of Technology, Shiraz 71557-13876, Iran
| | - Myoung Hoon Lee
- Department of Materials Science and Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Tae-Un Kim
- Department of Materials Science and Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Jin-Young Kim
- Department of Materials Science and Engineering, Inha University, Incheon 22212, Republic of Korea
- The Research Institute of Industrial Science, Hanyang University, Seoul 04763, Republic of Korea
| | - Hyoun Woo Kim
- The Research Institute of Industrial Science, Hanyang University, Seoul 04763, Republic of Korea
- Division of Materials Science and Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Sang Sub Kim
- Department of Materials Science and Engineering, Inha University, Incheon 22212, Republic of Korea
| |
Collapse
|
11
|
Zhou M, Zhang P, Zhang M, Jin X, Zhang Y, Liu B, Quan D, Jia M, Zhang Z, Zhang Z, Kong XY, Jiang L. Bioinspired Light-Driven Proton Pump: Engineering Band Alignment of WS 2 with PEDOT:PSS and PDINN. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308277. [PMID: 38044301 DOI: 10.1002/smll.202308277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/14/2023] [Indexed: 12/05/2023]
Abstract
Bioinspired two-dimensional (2D) nanofluidic systems for photo-induced ion transport have attracted great attention, as they open a new pathway to enabling light-to-ionic energy conversion. However, there is still a great challenge in achieving a satisfactory performance. It is noticed that organic solar cells (OSCs, light-harvesting device based on photovoltaic effect) commonly require hole/electron transport layer materials (TLMs), PEDOT:PSS (PE) and PDINN (PD), respectively, to promote the energy conversion. Inspired by such a strategy, an artificial proton pump by coupling a nanofluidic system with TLMs is proposed, in which the PE- and PD-functionalized tungsten disulfide (WS2) multilayers construct a heterogeneous membrane, realizing an excellent output power of ≈1.13 nW. The proton transport is fine-regulated due to the TLMs-engineered band structure of WS2. Clearly, the incorporating TLMs of OSCs into 2D nanofluidic systems offers a feasible and promising approach for band edge engineering and promoting the light-to-ionic energy conversion.
Collapse
Affiliation(s)
- Min Zhou
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Peikun Zhang
- State Key Laboratory of Mechanics and Control for Aerospace Structures, Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, and Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P. R. China
| | - Ming Zhang
- State Key Laboratory of Organic/Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xiaoyan Jin
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yuhui Zhang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Biying Liu
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Di Quan
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Meijuan Jia
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Zhiguo Zhang
- State Key Laboratory of Organic/Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Zhuhua Zhang
- State Key Laboratory of Mechanics and Control for Aerospace Structures, Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, and Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P. R. China
| | - Xiang-Yu Kong
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Science and Technology Center for Quantum Biology, National Institute of Extremely-Weak Magnetic Field Infrastructure, Hangzhou, Zhejiang, 310051, P. R. China
| | - Lei Jiang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Science and Technology Center for Quantum Biology, National Institute of Extremely-Weak Magnetic Field Infrastructure, Hangzhou, Zhejiang, 310051, P. R. China
| |
Collapse
|
12
|
Xiong S, Wang Y, Yao J, Xu J, Xu M. Exciton Dynamics of TiOPc/WSe 2 Heterostructure. ACS NANO 2024; 18:10249-10258. [PMID: 38529949 DOI: 10.1021/acsnano.4c00946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
The van der Waals (vdW) heterostructures composed of two-dimensional (2D) transition metal dichalcogenides (TMDs) and organic semiconductors demonstrate numerous compelling optoelectronic properties. However, the influence of the vdW epitaxial effect and temperature on the optoelectronic properties and interface exciton dynamics of heterostructures remains unclear. This study systematically investigates the fluorescence properties of TiOPc/WSe2 heterostructure. Comprehensive spectral characterization elucidates that the emission behavior of the TiOPc/WSe2 heterostructure arises from charge/energy transfer at the heterostructure interfaces and the structural ordering of the organic layer on the 2D monolayer WSe2 induced by vdW epitaxy. The interface exciton dynamic features probed by ultrafast transient spectroscopy reveal that the face-to-face molecular stacking configuration of TiOPc exhibits ultrafast exciton dynamics. In particular, we observe picosecond-scale absorption of organic molecular dimer cations, providing direct evidence of interface charge transfer at room temperature. Moreover, energy transfer from the TiOPc to WSe2 may exist based on the tunability in the fluorescence emission of the TiOPc/WSe2 heterostructure as the temperature changes. This study unveils the critical role of vdW epitaxy and temperature in the exciton dynamics of organic/2D TMDs hybrid systems and provides guidance for studying interlayer charge and energy transfer in organic/inorganic heterostructures.
Collapse
Affiliation(s)
- Shuo Xiong
- College of Integrated Circuits, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou 310027, P. R. China
| | - Yuwei Wang
- College of Integrated Circuits, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou 310027, P. R. China
| | - Jialong Yao
- College of Integrated Circuits, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou 310027, P. R. China
| | - Jing Xu
- Optical Communications Laboratory, Ocean College, Zhejiang University, Zhoushan 316021, P. R. China
| | - Mingsheng Xu
- College of Integrated Circuits, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou 310027, P. R. China
| |
Collapse
|
13
|
Rudayni F, Rijal K, Fuller N, Chan WL. Enthalpy-uphill exciton dissociation in organic/2D heterostructures promotes free carrier generation. MATERIALS HORIZONS 2024; 11:813-821. [PMID: 38018228 DOI: 10.1039/d3mh01522j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Despite the large binding energy of charge transfer (CT) excitons in type-II organic/2D heterostructures, it has been demonstrated that free carriers can be generated from CT excitons with a long lifetime. Using a model fluorinated zine phthalocyanine (F8ZnPc)/monolayer-WS2 interface, we find that CT excitons can dissociate spontaneously into free carriers despite it being an enthalpy-uphill process. Specifically, it is observed that CT excitons can gain an energy of 250 meV in 50 ps and dissociate into free carriers without any applied electric field. This observation is surprising because excited electrons typically lose energy to the environment and relax to lower energy states. We hypothesize that this abnormal enthalpy-uphill CT exciton dissociation process is driven by entropy gain. Kinetically, the entropic driving force can also reduce the rate for the reverse process - the conversion of free electron-hole pairs back to CT excitons. Hence, this mechanism can potentially explain the very long carrier lifetime observed in organic/2D heterostructures.
Collapse
Affiliation(s)
- Fatimah Rudayni
- Department of Physics and Astronomy, University of Kansas, Lawrence, Kansas 66045, US.
- Department of Physics, Jazan University, Jazan 45142, Saudi Arabia
| | - Kushal Rijal
- Department of Physics and Astronomy, University of Kansas, Lawrence, Kansas 66045, US.
| | - Neno Fuller
- Department of Physics and Astronomy, University of Kansas, Lawrence, Kansas 66045, US.
| | - Wai-Lun Chan
- Department of Physics and Astronomy, University of Kansas, Lawrence, Kansas 66045, US.
| |
Collapse
|
14
|
Muñoz J. Rational Design of Stimuli-Responsive Inorganic 2D Materials via Molecular Engineering: Toward Molecule-Programmable Nanoelectronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305546. [PMID: 37906953 DOI: 10.1002/adma.202305546] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/10/2023] [Indexed: 11/02/2023]
Abstract
The ability of electronic devices to act as switches makes digital information processing possible. Succeeding graphene, emerging inorganic 2D materials (i2DMs) have been identified as alternative 2D materials to harbor a variety of active molecular components to move the current silicon-based semiconductor technology forward to a post-Moore era focused on molecule-based information processing components. In this regard, i2DMs benefits are not only for their prominent physiochemical properties (e.g., the existence of bandgap), but also for their high surface-to-volume ratio rich in reactive sites. Nonetheless, since this field is still in an early stage, having knowledge of both i) the different strategies for molecularly functionalizing the current library of i2DMs, and ii) the different types of active molecular components is a sine qua non condition for a rational design of stimuli-responsive i2DMs capable of performing logical operations at the molecular level. Consequently, this Review provides a comprehensive tutorial for covalently anchoring ad hoc molecular components-as active units triggered by different external inputs-onto pivotal i2DMs to assess their role in the expanding field of molecule-programmable nanoelectronics for electrically monitoring bistable molecular switches. Limitations, challenges, and future perspectives of this emerging field which crosses materials chemistry with computation are critically discussed.
Collapse
Affiliation(s)
- Jose Muñoz
- Departament de Química, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, 08193, Spain
| |
Collapse
|
15
|
Ahmed A, Zahir Iqbal M, Dahshan A, Aftab S, Hegazy HH, Yousef ES. Recent advances in 2D transition metal dichalcogenide-based photodetectors: a review. NANOSCALE 2024; 16:2097-2120. [PMID: 38204422 DOI: 10.1039/d3nr04994a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Two-dimensional (2D) transition metal dichalcogenides (TMDs) have emerged as a highly promising platform for the development of photodetectors (PDs) owing to their remarkable electronic and optoelectronic properties. Highly effective PDs can be obtained by making use of the exceptional properties of 2D materials, such as their high transparency, large charge carrier mobility, and tunable electronic structure. The photodetection mechanism in 2D TMD-based PDs is thoroughly discussed in this article, with special attention paid to the key characteristics that set them apart from PDs based on other integrated materials. This review examines how single TMDs, TMD-TMD heterostructures, TMD-graphene (Gr) hybrids, TMD-MXene composites, TMD-perovskite heterostructures, and TMD-quantum dot (QD) configurations show advanced photodetection. Additionally, a thorough analysis of the recent developments in 2D TMD-based PDs, highlighting their exceptional performance capabilities, including ultrafast photo response, ultrabroad detectivity, and ultrahigh photoresponsivity, attained through cutting-edge methods is provided. The article conclusion highlights the potential for ground-breaking discoveries in this fast developing field of research by outlining the challenges faced in the field of PDs today and providing an outlook on the prospects of 2D TMD-based PDs in the future.
Collapse
Affiliation(s)
- Anique Ahmed
- Faculty of Engineering Sciences, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, Topi, 23640, Khyber Pakhtunkhwa, Pakistan.
| | - Muhammad Zahir Iqbal
- Faculty of Engineering Sciences, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, Topi, 23640, Khyber Pakhtunkhwa, Pakistan.
| | - Alaa Dahshan
- Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, Saudi Arabia
| | - Sikandar Aftab
- Department of Intelligent Mechatronics Engineering, Sejong University, Seoul 05006, South Korea
| | - Hosameldin Helmy Hegazy
- Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, Saudi Arabia
| | - El Sayed Yousef
- Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, Saudi Arabia
| |
Collapse
|
16
|
Günder D, Axt M, Witte G. Heteroepitaxy in Organic/TMD Hybrids and Challenge to Achieve it for TMD Monolayers: The Case of Pentacene on WS 2 and WSe 2. ACS APPLIED MATERIALS & INTERFACES 2024; 16:1911-1920. [PMID: 38154080 DOI: 10.1021/acsami.3c15829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2023]
Abstract
The intriguing photophysical properties of monolayer stacks of different transition-metal dichalcogenides (TMDs), revealing rich exciton physics including interfacial and moiré excitons, have recently prompted an extension of similar investigations to hybrid systems of TMDs and organic films, as the latter combine large photoabsorption cross sections with the ability to tailor energy levels by targeted synthesis. To go beyond single-molecule photoexcitations and exploit the excitonic signatures of organic solids, crystalline molecular films are required. Moreover, a defined registry on the substrate, ideally an epitaxy, is desirable to also achieve an excitonic coupling in momentum space. This poses a certain challenge as excitonic dipole moments of organic films are closely related to the molecular orientation and film structure, which critically depend on the support roughness. Using X-ray diffraction, optical polarization, and atomic force microscopy, we analyzed the structure of pentacene (PEN) multilayer films grown on WSe2(001) and WS2(001) and identified an epitaxial alignment. While (022)-oriented PEN films are formed on both substrates, their azimuthal orientations are quite different, showing an alignment of the molecular L-axis along the ⟨ 110 ⟩ WSe 2 and ⟨ 100 ⟩ WS 2 directions. This intrinsic epitaxial PEN growth depends, however, sensitively on the substrates surface quality. While it occurs on exfoliated TMD single crystals and multilayer flakes, it is hardly found on exfoliated monolayers, which often exhibit bubbles and wrinkles. This enhances the surface roughness and results in (001)-oriented PEN films with upright molecular orientation but without any azimuthal alignment. However, monolayer flakes can be smoothed by AFM operated in contact mode or by transferring to ultrasmooth substrates such as hBN, which again yields epitaxial PEN films. As different PEN orientations result in different characteristic film morphologies (elongated mesa islands vs pyramidal dendrites), which can be easily distinguished by AFM or optical microscopy, this provides a simple means to judge the roughness of the used TMD surface.
Collapse
Affiliation(s)
- Darius Günder
- Molekulare Festkörperphysik, Philipps-Universität Marburg, Marburg 35032, Germany
| | - Marleen Axt
- Oberflächenphysik, Philipps-Universität Marburg, Marburg 35032, Germany
| | - Gregor Witte
- Molekulare Festkörperphysik, Philipps-Universität Marburg, Marburg 35032, Germany
| |
Collapse
|
17
|
He H, Jian X, Zen T, Feng B, Hu Y, Yuan Z, Zhao Z, Gao X, Lv L, Cao Z. Sulfur defect induced Cd 0.3Zn 0.7S in-situ anchoring on metal organic framework for enhanced photothermal catalytic CO 2 reduction to prepare proportionally adjustable syngas. J Colloid Interface Sci 2024; 653:687-696. [PMID: 37741176 DOI: 10.1016/j.jcis.2023.09.103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 09/25/2023]
Abstract
The rapid recombination of interfacial charges is considered to be the main obstacle limiting the photocatalytic CO2 reduction. Thus, it is a challenge to research an accurate and stable charge transfer control strategy. MIL-53 (Al)-S/Cd0.3Zn0.7S (MAS/CZS-0.3) photocatalysts with chemically bonded interfaces were constructed by in-situ electrostatic assembly of sulfur defect Cd0.3Zn0.7S (CZS-0.3) on the surface of MIL-53 (Al) (MAW), which enhanced interfacial coupling and accelerated electron transfer efficiency. An adjustable proportion of syngas (H2/CO) was prepared by photothermal catalytic CO2 reduction at micro-interface. and the optimal yield of CO (66.10 μmol∙g-1∙h-1) and H2 (71.0 μmol∙g-1∙h-1) was realized by the MAS/CZS-0.3 photocatalyst. The improved activity was due to the photogenerated electrons migrated from CZS-0.3 to the adsorption active sites of MAS, which strengthened the adsorption and activation of CO2 on MAS. The photothermal catalytic CO2 reduction to CO follows the pathway of CO2→*COOH → CO and CO2→*HCO3-→CO. This work provided a reference for the research, characterization, and application of in-situ anchoring of metal organic frameworks in photothermal catalytic CO2 reduction, and provided a green path for the supply of Syngas in industry.
Collapse
Affiliation(s)
- Hongbin He
- Department of Chemistry and Chemical Engineering, Clean Utilization of Low Rank Coal of Shaanxi Collaborative Innovation Center, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an University, Yan'an 716000, PR China
| | - Xuan Jian
- Department of Chemistry and Chemical Engineering, Clean Utilization of Low Rank Coal of Shaanxi Collaborative Innovation Center, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an University, Yan'an 716000, PR China
| | - Tianxu Zen
- Department of Chemistry and Chemical Engineering, Clean Utilization of Low Rank Coal of Shaanxi Collaborative Innovation Center, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an University, Yan'an 716000, PR China
| | - Bingbing Feng
- Department of Chemistry and Chemical Engineering, Clean Utilization of Low Rank Coal of Shaanxi Collaborative Innovation Center, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an University, Yan'an 716000, PR China
| | - Yanan Hu
- Department of Chemistry and Chemical Engineering, Clean Utilization of Low Rank Coal of Shaanxi Collaborative Innovation Center, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an University, Yan'an 716000, PR China
| | - Zhongqiang Yuan
- Department of Chemistry and Chemical Engineering, Clean Utilization of Low Rank Coal of Shaanxi Collaborative Innovation Center, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an University, Yan'an 716000, PR China
| | - Zizhen Zhao
- Department of Chemistry and Chemical Engineering, Clean Utilization of Low Rank Coal of Shaanxi Collaborative Innovation Center, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an University, Yan'an 716000, PR China
| | - Xiaoming Gao
- Department of Chemistry and Chemical Engineering, Clean Utilization of Low Rank Coal of Shaanxi Collaborative Innovation Center, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an University, Yan'an 716000, PR China.
| | - Lei Lv
- Department of Chemistry and Chemical Engineering, Clean Utilization of Low Rank Coal of Shaanxi Collaborative Innovation Center, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an University, Yan'an 716000, PR China
| | - Zhenheng Cao
- Department of Chemistry and Chemical Engineering, Clean Utilization of Low Rank Coal of Shaanxi Collaborative Innovation Center, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an University, Yan'an 716000, PR China
| |
Collapse
|
18
|
Wang C, Cusin L, Ma C, Unsal E, Wang H, Consolaro VG, Montes-García V, Han B, Vitale S, Dianat A, Croy A, Zhang H, Gutierrez R, Cuniberti G, Liu Z, Chi L, Ciesielski A, Samorì P. Enhancing the Carrier Transport in Monolayer MoS 2 through Interlayer Coupling with 2D Covalent Organic Frameworks. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305882. [PMID: 37690084 DOI: 10.1002/adma.202305882] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/23/2023] [Indexed: 09/12/2023]
Abstract
The coupling of different 2D materials (2DMs) to form van der Waals heterostructures (vdWHs) is a powerful strategy for adjusting the electronic properties of 2D semiconductors, for applications in opto-electronics and quantum computing. 2D molybdenum disulfide (MoS2 ) represents an archetypical semiconducting, monolayer thick versatile platform for the generation of hybrid vdWH with tunable charge transport characteristics through its interfacing with molecules and assemblies thereof. However, the physisorption of (macro)molecules on 2D MoS2 yields hybrids possessing a limited thermal stability, thereby jeopardizing their technological applications. Herein, the rational design and optimized synthesis of 2D covalent organic frameworks (2D-COFs) for the generation of MoS2 /2D-COF vdWHs exhibiting strong interlayer coupling effects are reported. The high crystallinity of the 2D-COF films makes it possible to engineer an ultrastable periodic doping effect on MoS2 , boosting devices' field-effect mobility at room temperature. Such a performance increase can be attributed to the synergistic effect of the efficient interfacial electron transfer process and the pronounced suppression of MoS2 's lattice vibration. This proof-of-concept work validates an unprecedented approach for the efficient modulation of the electronic properties of 2D transition metal dichalcogenides toward high-performance (opto)electronics for CMOS digital circuits.
Collapse
Affiliation(s)
- Can Wang
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, 130012, P. R. China
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg & CNRS, 8 allée Gaspard Monge, Strasbourg, 67000, France
| | - Luca Cusin
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg & CNRS, 8 allée Gaspard Monge, Strasbourg, 67000, France
| | - Chun Ma
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg & CNRS, 8 allée Gaspard Monge, Strasbourg, 67000, France
| | - Elif Unsal
- Institute for Materials Science and Max Bergmann Center of Biomaterials, TU Dresden, 01062, Dresden, Germany
| | - Hanlin Wang
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg & CNRS, 8 allée Gaspard Monge, Strasbourg, 67000, France
| | | | - Verónica Montes-García
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg & CNRS, 8 allée Gaspard Monge, Strasbourg, 67000, France
| | - Bin Han
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg & CNRS, 8 allée Gaspard Monge, Strasbourg, 67000, France
| | - Stefania Vitale
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg & CNRS, 8 allée Gaspard Monge, Strasbourg, 67000, France
| | - Arezoo Dianat
- Institute for Materials Science and Max Bergmann Center of Biomaterials, TU Dresden, 01062, Dresden, Germany
| | - Alexander Croy
- Institute of Physical Chemistry, Friedrich Schiller University Jena, 07737, Jena, Germany
| | - Haiming Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon Based Functional Materials & Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Rafael Gutierrez
- Institute for Materials Science and Max Bergmann Center of Biomaterials, TU Dresden, 01062, Dresden, Germany
| | - Gianaurelio Cuniberti
- Institute for Materials Science and Max Bergmann Center of Biomaterials, TU Dresden, 01062, Dresden, Germany
- Dresden Center for Computational Materials Science (DCMS), TU Dresden, 01062, Dresden, Germany
| | - Zhaoyang Liu
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, 130012, P. R. China
| | - Lifeng Chi
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon Based Functional Materials & Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Artur Ciesielski
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg & CNRS, 8 allée Gaspard Monge, Strasbourg, 67000, France
| | - Paolo Samorì
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg & CNRS, 8 allée Gaspard Monge, Strasbourg, 67000, France
| |
Collapse
|
19
|
Liu XY, Chen WK, Fang WH, Cui G. Nonadiabatic Dynamics Simulations for Photoinduced Processes in Molecules and Semiconductors: Methodologies and Applications. J Chem Theory Comput 2023. [PMID: 37984502 DOI: 10.1021/acs.jctc.3c00960] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Nonadiabatic dynamics (NAMD) simulations have become powerful tools for elucidating complicated photoinduced processes in various systems from molecules to semiconductor materials. In this review, we present an overview of our recent research on photophysics of molecular systems and periodic semiconductor materials with the aid of ab initio NAMD simulation methods implemented in the generalized trajectory surface-hopping (GTSH) package. Both theoretical backgrounds and applications of the developed NAMD methods are presented in detail. For molecular systems, the linear-response time-dependent density functional theory (LR-TDDFT) method is primarily used to model electronic structures in NAMD simulations owing to its balanced efficiency and accuracy. Moreover, the efficient algorithms for calculating nonadiabatic coupling terms (NACTs) and spin-orbit couplings (SOCs) have been coded into the package to increase the simulation efficiency. In combination with various analysis techniques, we can explore the mechanistic details of the photoinduced dynamics of a range of molecular systems, including charge separation and energy transfer processes in organic donor-acceptor structures, ultrafast intersystem crossing (ISC) processes in transition metal complexes (TMCs), and exciton dynamics in molecular aggregates. For semiconductor materials, we developed the NAMD methods for simulating the photoinduced carrier dynamics within the framework of the Kohn-Sham density functional theory (KS-DFT), in which SOC effects are explicitly accounted for using the two-component, noncollinear DFT method. Using this method, we have investigated the photoinduced carrier dynamics at the interface of a variety of van der Waals (vdW) heterojunctions, such as two-dimensional transition metal dichalcogenides (TMDs), carbon nanotubes (CNTs), and perovskites-related systems. Recently, we extended the LR-TDDFT-based NAMD method for semiconductor materials, allowing us to study the excitonic effects in the photoinduced energy transfer process. These results demonstrate that the NAMD simulations are powerful tools for exploring the photodynamics of molecular systems and semiconductor materials. In future studies, the NAMD simulation methods can be employed to elucidate experimental phenomena and reveal microscopic details as well as rationally design novel photofunctional materials with desired properties.
Collapse
Affiliation(s)
- Xiang-Yang Liu
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, P. R. China
| | - Wen-Kai Chen
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Wei-Hai Fang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
- Hefei National Laboratory, Hefei 230088, P. R. China
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
- Hefei National Laboratory, Hefei 230088, P. R. China
| |
Collapse
|
20
|
Rijal K, Amos S, Valencia-Acuna P, Rudayni F, Fuller N, Zhao H, Peelaers H, Chan WL. Nanoscale Periodic Trapping Sites for Interlayer Excitons Built by Deformable Molecular Crystal on 2D Crystal. ACS NANO 2023; 17:7775-7786. [PMID: 37042658 DOI: 10.1021/acsnano.3c00541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The nanoscale moiré pattern formed at 2D transition-metal dichalcogenide crystal (TMDC) heterostructures provides periodic trapping sites for excitons, which is essential for realizing various exotic phases such as artificial exciton lattices, Bose-Einstein condensates, and exciton insulators. At organic molecule/TMDC heterostructures, similar periodic potentials can be formed via other degrees of freedom. Here, we utilize the structure deformability of a 2D molecular crystal as a degree of freedom to create a periodic nanoscale potential that can trap interlayer excitons (IXs). Specifically, two semiconducting molecules, PTCDI and PTCDA, which possess similar band gaps and ionization potentials but form different lattice structures on MoS2, are investigated. The PTCDI lattice on MoS2 is distorted geometrically, which lifts the degeneracy of the two molecules within the crystal's unit cell. The degeneracy lifting results in a spatial variation of the molecular orbital energy, with an amplitude and periodicity of ∼0.2 eV and ∼2 nm, respectively. On the other hand, no such energy variation is observed in PTCDA/MoS2, where the PTCDA lattice is much less distorted. The periodic variation in molecular orbital energies provides effective trapping sites for IXs. For IXs formed at PTCDI/MoS2, rapid spatial localization of the electron in the organic layer toward the interface is observed, which demonstrates the effectiveness of these interfacial IX traps.
Collapse
Affiliation(s)
- Kushal Rijal
- Department of Physics and Astronomy, University of Kansas, Lawrence, Kansas 66045, United States
| | - Stephanie Amos
- Department of Physics and Astronomy, University of Kansas, Lawrence, Kansas 66045, United States
| | - Pavel Valencia-Acuna
- Department of Physics and Astronomy, University of Kansas, Lawrence, Kansas 66045, United States
| | - Fatimah Rudayni
- Department of Physics and Astronomy, University of Kansas, Lawrence, Kansas 66045, United States
- Department of Physics, Jazan University, Jazan 45142, Saudi Arabia
| | - Neno Fuller
- Department of Physics and Astronomy, University of Kansas, Lawrence, Kansas 66045, United States
| | - Hui Zhao
- Department of Physics and Astronomy, University of Kansas, Lawrence, Kansas 66045, United States
| | - Hartwin Peelaers
- Department of Physics and Astronomy, University of Kansas, Lawrence, Kansas 66045, United States
| | - Wai-Lun Chan
- Department of Physics and Astronomy, University of Kansas, Lawrence, Kansas 66045, United States
| |
Collapse
|
21
|
Dreher M, Dombrowski PM, Tripp MW, Münster N, Koert U, Witte G. Shape control in 2D molecular nanosheets by tuning anisotropic intermolecular interactions and assembly kinetics. Nat Commun 2023; 14:1554. [PMID: 36944658 PMCID: PMC10030871 DOI: 10.1038/s41467-023-37203-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 03/07/2023] [Indexed: 03/23/2023] Open
Abstract
Since molecular materials often decompose upon exposure to radiation, lithographic patterning techniques established for inorganic materials are usually not applicable for the fabrication of organic nanostructures. Instead, molecular self-organisation must be utilised to achieve bottom-up growth of desired structures. Here, we demonstrate control over the mesoscopic shape of 2D molecular nanosheets without affecting their nanoscopic molecular packing motif, using molecules that do not form lateral covalent bonds. We show that anisotropic attractive Coulomb forces between partially fluorinated pentacenes lead to the growth of distinctly elongated nanosheets and that the direction of elongation differs between nanosheets that were grown and ones that were fabricated by partial desorption of a complete molecular monolayer. Using kinetic Monte Carlo simulations, we show that lateral intermolecular interactions alone are sufficient to rationalise the different kinetics of structure formation during nanosheet growth and desorption, without inclusion of interactions between the molecules and the supporting MoS2 substrate. By comparison of the behaviour of differently fluorinated molecules, experimentally and computationally, we can identify properties of molecules with regard to interactions and molecular packing motifs that are required for an effective utilisation of the observed effect.
Collapse
Affiliation(s)
- Maximilian Dreher
- Department of Physics, Philipps-Universität Marburg, 35037, Marburg, Germany
| | | | | | - Niels Münster
- Department of Chemistry, Philipps-Universität Marburg, 35037, Marburg, Germany
| | - Ulrich Koert
- Department of Chemistry, Philipps-Universität Marburg, 35037, Marburg, Germany
| | - Gregor Witte
- Department of Physics, Philipps-Universität Marburg, 35037, Marburg, Germany.
| |
Collapse
|
22
|
Chen H, Xu Z, Zhou Y, Zhang M, Feng S, Bu X, Zhang Z, He M. Controllable preparation of 2D carbon paper modified with flower-like WS 2 for efficient microwave absorption. Dalton Trans 2023; 52:3085-3096. [PMID: 36786669 DOI: 10.1039/d2dt03137j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
In the practical application of microwave absorbing materials, traditional powder materials need to be mixed with the matrix to fabricate composite coatings. However, the complex preparation process of composite coatings and the uneven dispersion of powders in the matrix limit their application. To solve these problems, two-dimensional (2D) F-WS2/CP composite films were prepared by using carbon paper (CP) as a dispersion matrix and loading flower-like WS2 on its surface through a simple hydrothermal method. The morphology and microwave absorption (MA) performance of the composite films are easily regulated by adjusting the amount of reaction precursors. The combination of WS2 and CP facilitates impedance matching and improves the electromagnetic wave attenuation performance based on the synergistic effect of different loss mechanisms including multiple reflections and scattering, interfacial polarization, dipolar polarization, and conduction loss. At a low filler content (5 wt%), the maximum reflection loss (RL) of the composite film is up to -50 dB (99.999% energy absorption) at 12.5 GHz with 2.8 mm thickness. Moreover, at a relatively thin 1.8 mm thickness, its maximum RL remains -35 dB (>99.9% energy absorption). The as-prepared composite film shows excellent MA properties at a thinner thickness and lower filling content, providing inspiration for the preparation of light weight and efficient 2D thin-film microwave absorbers in the future.
Collapse
Affiliation(s)
- Hao Chen
- Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science & Technology, Xi'an 710021, China.,Jiangsu Optoelectronic Functional Materials and Engineering Laboratory, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.
| | - Zhengjian Xu
- Jiangsu Optoelectronic Functional Materials and Engineering Laboratory, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.
| | - Yuming Zhou
- Jiangsu Optoelectronic Functional Materials and Engineering Laboratory, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.
| | - Meiyun Zhang
- Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Shuangjiang Feng
- Jiangsu Optoelectronic Functional Materials and Engineering Laboratory, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.
| | - Xiaohai Bu
- School of Materials Science and Engineering, Nanjing Institute of Technology, Nanjing 211167, China
| | - Zewu Zhang
- School of Materials Science and Engineering, Nanjing Institute of Technology, Nanjing 211167, China
| | - Man He
- Jiangsu Optoelectronic Functional Materials and Engineering Laboratory, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.
| |
Collapse
|
23
|
Zhang L, Zhou F, Zhang X, Yang S, Wen B, Yan H, Yildirim T, Song X, Yang Q, Tian M, Wan N, Song H, Pei J, Qin S, Zhu J, Wageh S, Al-Hartomy OA, Al-Sehemi AG, Shen H, Liu Y, Zhang H. Discovery of Type II Interlayer Trions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2206212. [PMID: 36373507 DOI: 10.1002/adma.202206212] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/25/2022] [Indexed: 06/16/2023]
Abstract
In terms of interlayer trions, electronic excitations in van der Waals heterostructures (vdWHs) can be classified into Type I (i.e., two identical charges in the same layer) and Type II (i.e., two identical charges in the different layers). Type I interlayer trions are investigated theoretically and experimentally. By contrast, Type II interlayer trions remain elusive in vdWHs, due to inadequate free charges, unsuitable band alignment, reduced Coulomb interactions, poor interface quality, etc. Here, the first observation of Type II interlayer trions is reported by exploring band alignments and choosing an atomically thin organic-inorganic system-monolayer WSe2 /bilayer pentacene heterostructure (1L + 2L HS). Both positive and negative Type II interlayer trions are electrically tuned and observed via PL spectroscopy. In particular, Type II interlayer trions exhibit in-plane anisotropic emission, possibly caused by their unique spatial structure and anisotropic charge interactions, which is highly correlated with the transition dipole moment of pentacene. The results pave the way to develop excitonic devices and all-optical circuits using atomically thin organic-inorganic bilayers.
Collapse
Affiliation(s)
- Linglong Zhang
- College of Physics, Nanjing University of Aeronautics and Astronautics, Key Laboratory of Aerospace Information Materials and Physics (NUAA), MIIT, Nanjing, 211106, China
| | - Fei Zhou
- State Key Laboratory for Environment-friendly Energy Materials, School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Xiaowei Zhang
- Department of Electrical Engineering and Computer Science, Ningbo University, Ningbo, 315211, China
| | - Shunshun Yang
- College of Physics, Nanjing University of Aeronautics and Astronautics, Key Laboratory of Aerospace Information Materials and Physics (NUAA), MIIT, Nanjing, 211106, China
| | - Bo Wen
- Institute of Nanosurface Science and Engineering, Guangdong Provincial Key Laboratory of Micro/Nano Optomechatronics Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Han Yan
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, CB3 0FS, UK
| | - Tanju Yildirim
- Center for Functional Sensor & Actuator (CFSN), National Institute for Materials Science (NIMS), Tsukuba, Ibaraki, 305-0044, Japan
| | - Xiaoying Song
- College of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China
| | - Qi Yang
- Intstitue of Microscale Optoelectronics, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Ming Tian
- SEU-FEI Nano Pico Center, Key Laboratory of MEMS of Ministry of Education, School of Electronics Science and Engineering, Southeast University, Nanjing, 210096, China
| | - Neng Wan
- SEU-FEI Nano Pico Center, Key Laboratory of MEMS of Ministry of Education, School of Electronics Science and Engineering, Southeast University, Nanjing, 210096, China
| | - Hucheng Song
- Center of Energy Storage Materials & Technology, College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructures/Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Jiajie Pei
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Shuchao Qin
- Key Laboratory of Optical Communication Science and Technology of Shandong Province, School of Physical Science and Information Engineering, Liaocheng University, Liaocheng, 252059, China
| | - Jiaqi Zhu
- Intstitue of Microscale Optoelectronics, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - S Wageh
- Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Omar A Al-Hartomy
- Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Abdullah G Al-Sehemi
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | | | - Youwen Liu
- College of Physics, Nanjing University of Aeronautics and Astronautics, Key Laboratory of Aerospace Information Materials and Physics (NUAA), MIIT, Nanjing, 211106, China
| | - Han Zhang
- Intstitue of Microscale Optoelectronics, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
24
|
Thompson JJP, Lumsargis V, Feierabend M, Zhao Q, Wang K, Dou L, Huang L, Malic E. Interlayer exciton landscape in WS 2/tetracene heterostructures. NANOSCALE 2023; 15:1730-1738. [PMID: 36594632 DOI: 10.1039/d2nr02055f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The vertical stacking of two-dimensional materials into heterostructures gives rise to a plethora of intriguing optoelectronic properties and presents an unprecedented potential for technological development. While much progress has been made combining different monolayers of transition metal dichalcogenides (TMDs), little is known about TMD-based heterostructures including organic layers of molecules. Here, we present a joint theory-experiment study on a TMD/tetracene heterostructure demonstrating clear signatures of spatially separated interlayer excitons in low temperature photoluminescence spectra. Here, the Coulomb-bound electrons and holes are localized either in the TMD or in the molecule layer, respectively. We reveal both in theory and experiment signatures of the entire intra- and interlayer exciton landscape in the photoluminescence spectra. In particular, we find both in theory and experiment a pronounced transfer of intensity from the intralayer TMD exciton to a series of energetically lower interlayer excitons with decreasing temperature. In addition, we find signatures of phonon-sidebands stemming from these interlayer exciton states. Our findings shed light on the microscopic nature of interlayer excitons in TMD/molecule heterostructures and could have important implications for technological applications of these materials.
Collapse
Affiliation(s)
- Joshua J P Thompson
- Department of Physics, Philipps-Universität Marburg, 35037 Marburg, Germany.
| | - Victoria Lumsargis
- Department of Chemistry, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Maja Feierabend
- Department of Physics, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Quichen Zhao
- Department of Chemistry, Purdue University, West Lafayette, Indiana, 47907, USA
- State Key Laboratory of Superhard Materials, Jilin University, Changchun, Jilin, 130012, China
| | - Kang Wang
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Letian Dou
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Libai Huang
- Department of Chemistry, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Ermin Malic
- Department of Physics, Philipps-Universität Marburg, 35037 Marburg, Germany.
- Department of Physics, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| |
Collapse
|
25
|
Ding J, Fu S, Hu K, Zhang G, Liu M, Zhang X, Wang R, Qiu X. Efficient Hot Electron Capture in CuPc/MoSe 2 Heterostructure Assisted by Intersystem Crossing. NANO LETTERS 2022; 22:8463-8469. [PMID: 36301844 DOI: 10.1021/acs.nanolett.2c02748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Efficient hot electron extraction is a promising approach to develop photovoltaic devices that exceed the Shockley-Queisser limit. However, experimental evidence of hot electron harvesting employing an organic-inorganic interface is still elusive. Here, we reveal the hot electron dynamics at a CuPc/MoSe2 interface using steady-state spectroscopy and transient absorption spectroscopy. A hot electron transfer efficiency of greater than 78% from MoSe2 to CuPc is observed, comparable to that achieved in quantum dot hybrid systems. The mechanism is proposed as follows: the photogenerated hot electrons in MoSe2 transfer to CuPc and form singlet charge transfer states, which subsequently transform into triplet charge transfer states assisted by the rapid intersystem crossing, inhibiting back-donation of electrons and facilitating exciton dissociation into CuPc polarons with a nanosecond lifetime. Our results demonstrate that the intersystem crossing of the hybrid electronic state at organic-inorganic interfaces may serve as a scheme to enable efficient hot electron extraction in photovoltaic devices.
Collapse
Affiliation(s)
- Jianwei Ding
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Shaohua Fu
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing 100044, People's Republic of China
| | - Kui Hu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Guangjie Zhang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
| | - Mengxi Liu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
| | - Xiaoxian Zhang
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing 100044, People's Republic of China
| | - Rui Wang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
| | - Xiaohui Qiu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
26
|
Zhao K, He D, Fu S, Bai Z, Miao Q, Huang M, Wang Y, Zhang X. Interfacial Coupling and Modulation of van der Waals Heterostructures for Nanodevices. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3418. [PMID: 36234543 PMCID: PMC9565824 DOI: 10.3390/nano12193418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/09/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
In recent years, van der Waals heterostructures (vdWHs) of two-dimensional (2D) materials have attracted extensive research interest. By stacking various 2D materials together to form vdWHs, it is interesting to see that new and fascinating properties are formed beyond single 2D materials; thus, 2D heterostructures-based nanodevices, especially for potential optoelectronic applications, were successfully constructed in the past few decades. With the dramatically increased demand for well-controlled heterostructures for nanodevices with desired performance in recent years, various interfacial modulation methods have been carried out to regulate the interfacial coupling of such heterostructures. Here, the research progress in the study of interfacial coupling of vdWHs (investigated by Photoluminescence, Raman, and Pump-probe spectroscopies as well as other techniques), the modulation of interfacial coupling by applying various external fields (including electrical, optical, mechanical fields), as well as the related applications for future electrics and optoelectronics, have been briefly reviewed. By summarizing the recent progress, discussing the recent advances, and looking forward to future trends and existing challenges, this review is aimed at providing an overall picture of the importance of interfacial modulation in vdWHs for possible strategies to optimize the device's performance.
Collapse
|
27
|
Ji J, Choi JH. Recent progress in 2D hybrid heterostructures from transition metal dichalcogenides and organic layers: properties and applications in energy and optoelectronics fields. NANOSCALE 2022; 14:10648-10689. [PMID: 35839069 DOI: 10.1039/d2nr01358d] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Atomically thin transition metal dichalcogenides (TMDs) present extraordinary optoelectronic, electrochemical, and mechanical properties that have not been accessible in bulk semiconducting materials. Recently, a new research field, 2D hybrid heteromaterials, has emerged upon integrating TMDs with molecular systems, including organic molecules, polymers, metal-organic frameworks, and carbonaceous materials, that can tailor the TMD properties and exploit synergetic effects. TMD-based hybrid heterostructures can meet the demands of future optoelectronics, including supporting flexible, transparent, and ultrathin devices, and energy-based applications, offering high energy and power densities with long cycle lives. To realize such applications, it is necessary to understand the interactions between the hybrid components and to develop strategies for exploiting the distinct benefits of each component. Here, we provide an overview of the current understanding of the new phenomena and mechanisms involved in TMD/organic hybrids and potential applications harnessing such valuable materials in an insightful way. We highlight recent discoveries relating to multicomponent hybrid materials. Finally, we conclude this review by discussing challenges related to hybrid heteromaterials and presenting future directions and opportunities in this research field.
Collapse
Affiliation(s)
- Jaehoon Ji
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, USA.
| | - Jong Hyun Choi
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, USA.
| |
Collapse
|
28
|
Wang X, Liu S, Chen Y, Zheng Y, Li L. Properties at the interface of the pristine CdSe and core-shell CdSe-ZnS quantum dots with ultrathin monolayers of two-dimensional MX 2 (M: Mo, W; X: S, Se, Te) heterostructures from density functional theory. J Mol Model 2022; 28:220. [PMID: 35831761 DOI: 10.1007/s00894-022-05194-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 06/13/2022] [Indexed: 11/25/2022]
Abstract
In this work, eight van der Waals heterojunctions based on CdSe or CdSe-ZnS quantum dots (QDs) and four commonly used two-dimensional transition metal dichalcogenides (2D-TMDs) are theoretically designed. On the basis of the constructed structures, density functional theory (DFT) method is employed to investigate the structural and optoelectronic related properties of these heterojunctions in detail. Specifically, their electronic properties including charge density differences, density of states, and band offsets are calculated, based on which band alignment types as well as their potentials as novel photovoltaic materials are discussed. According to these calculations, we proposed that several van der Waals heterostructures including MoS2/CdSe, MoTe2/CdSe, WSe2/CdSe, MoTe2/CdSe-ZnS, and WSe2/CdSe-ZnS might be used as potential photovoltaic materials due to their type II band alignment characteristics. Moreover, the WSe2/CdSe-ZnS heterostructure is expected to have optimal photovoltaic performance attributed to their large bond offsets and band gaps, which could not only facilitate charge separation processes, but also slow down charge recombination. Our present theoretical work could be helpful for the future experimental design of novel CdSe QDs and 2D-TMD based van der Waals heterostructures with excellent photovoltaic performances.
Collapse
Affiliation(s)
- Xin Wang
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, 610068, China
| | - Shuai Liu
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, 610068, China
| | - Yang Chen
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, 610068, China
| | - Yan Zheng
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, 610068, China.
| | - Laicai Li
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, 610068, China.
| |
Collapse
|
29
|
Kirubasankar B, Won YS, Adofo LA, Choi SH, Kim SM, Kim KK. Atomic and structural modifications of two-dimensional transition metal dichalcogenides for various advanced applications. Chem Sci 2022; 13:7707-7738. [PMID: 35865881 PMCID: PMC9258346 DOI: 10.1039/d2sc01398c] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/18/2022] [Indexed: 12/14/2022] Open
Abstract
Two-dimensional (2D) transition metal dichalcogenides (TMDs) and their heterostructures have attracted significant interest in both academia and industry because of their unusual physical and chemical properties. They offer numerous applications, such as electronic, optoelectronic, and spintronic devices, in addition to energy storage and conversion. Atomic and structural modifications of van der Waals layered materials are required to achieve unique and versatile properties for advanced applications. This review presents a discussion on the atomic-scale and structural modifications of 2D TMDs and their heterostructures via post-treatment. Atomic-scale modifications such as vacancy generation, substitutional doping, functionalization and repair of 2D TMDs and structural modifications including phase transitions and construction of heterostructures are discussed. Such modifications on the physical and chemical properties of 2D TMDs enable the development of various advanced applications including electronic and optoelectronic devices, sensing, catalysis, nanogenerators, and memory and neuromorphic devices. Finally, the challenges and prospects of various post-treatment techniques and related future advanced applications are addressed.
Collapse
Affiliation(s)
- Balakrishnan Kirubasankar
- Department of Energy Science, Sungkyunkwan University Suwon 16419 South Korea
- Department of Chemistry, Sookmyung Women's University Seoul 14072 South Korea
| | - Yo Seob Won
- Department of Energy Science, Sungkyunkwan University Suwon 16419 South Korea
- Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), Sungkyunkwan University Suwon 16419 South Korea
| | - Laud Anim Adofo
- Department of Energy Science, Sungkyunkwan University Suwon 16419 South Korea
- Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), Sungkyunkwan University Suwon 16419 South Korea
| | - Soo Ho Choi
- Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), Sungkyunkwan University Suwon 16419 South Korea
| | - Soo Min Kim
- Department of Chemistry, Sookmyung Women's University Seoul 14072 South Korea
| | - Ki Kang Kim
- Department of Energy Science, Sungkyunkwan University Suwon 16419 South Korea
- Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), Sungkyunkwan University Suwon 16419 South Korea
| |
Collapse
|
30
|
Zhang L, Tang Y, Yan H, Yildirim T, Yang S, Song H, Zhang X, Tian F, Luo Z, Pei J, Yang Q, Xu Y, Song X, Khan AR, Xia S, Sun X, Wen B, Zhou F, Li W, Liu Y, Zhang H. Direct observation of contact resistivity for monolayer TMD based junctions via PL spectroscopy. NANOSCALE 2022; 14:8260-8270. [PMID: 35660824 DOI: 10.1039/d2nr01504h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Monolayer transition metal dichalcogenides (mTMDs) possess a direct band gap and strong PL emission that is highly sensitive to doping level and interfaces, laying the foundation for investigating the contact between mTMD and metal via PL spectroscopy. Currently, electrical methods have been utilized to measure the contact resistance (RC), but they are complicated, time-consuming, high-cost and suffer from inevitable chemical disorders and Fermi level pinning. In addition, previously reported contact resistances comprise both Schottky barrier and tunnel barrier components. Here, we report a simple, rapid and low-cost method to study the tunnel barrier dominated contact resistance of mTMD based junctions through PL spectroscopy. These junctions are free from chemical disorders and Fermi level pinning. Excluding the Schottky barrier component, solely tunnel barrier dominated contact resistances of 1 L MoSe2/Au and 1 L MoSe2/graphene junctions were estimated to be 147.8 Ω μm and 54.9 Ω μm, respectively. Density functional theory (DFT) simulations revealed that the larger RC of the former was possibly due to the existence of intrinsic effective potential difference (Φbarrier) between mTMD and metal. Both junctions exhibit an increasing tendency of RC as temperature decreases, which is probably attributed to the thermal expansion coefficient (TEC) mismatch-triggered interlayer spacing (d) increase and temperature-induced doping. Remarkably, a significant change of RC was observed in 1 L MoSe2/Au junctions, which is possibly ascribed to the changes of their orbital overlaps. Our results open new avenues for exploring fundamental metal-semiconductor contact principles and constructing high-performance devices.
Collapse
Affiliation(s)
- Linglong Zhang
- College of Physics, Nanjing University of Aeronautics and Astronautics, Key Laboratory of Aerospace Information Materials and Physics (NUAA), MIIT, Nanjing 211106, China.
| | - Yilin Tang
- Research School of Electrical, Energy and Materials Engineering, College of Engineering and Computer Science, The Australian National University, Canberra 2601, Australia
| | - Han Yan
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB3 0FS, UK
| | - Tanju Yildirim
- Center for Functional Sensor & Actuator (CFSN), National Institute for Materials Science (NIMS), Tsukuba, Ibaraki 305-0044, Japan
| | - Shunshun Yang
- College of Physics, Nanjing University of Aeronautics and Astronautics, Key Laboratory of Aerospace Information Materials and Physics (NUAA), MIIT, Nanjing 211106, China.
| | - Haizeng Song
- School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
| | - Xiaowei Zhang
- Department of Electrical Engineering and Computer Science, Ningbo University, Ningbo 315211, China
| | - Fuguo Tian
- College of Physics, Nanjing University of Aeronautics and Astronautics, Key Laboratory of Aerospace Information Materials and Physics (NUAA), MIIT, Nanjing 211106, China.
| | - Zhongzhong Luo
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Jiangsu Province Engineering Research Center for Fabrication and Application of Special Optical Fiber Materials and Devices, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, Jiangsu 210023, China
| | - Jiajie Pei
- College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, Fujian, China
| | - Qi Yang
- Collaborative Innovation Center for Optoelectronic Science and Technology, International Collaborative Laboratory of 2D Materials for Optoelectronic Science and Technology of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, 518060, China
| | - Yixin Xu
- College of Physics, Nanjing University of Aeronautics and Astronautics, Key Laboratory of Aerospace Information Materials and Physics (NUAA), MIIT, Nanjing 211106, China.
| | - Xiaoying Song
- College of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Ahmed Raza Khan
- Research School of Electrical, Energy and Materials Engineering, College of Engineering and Computer Science, The Australian National University, Canberra 2601, Australia
- Department of Industrial and Manufacturing Engineering University of Engineering and Technology (Rachna College), Lahore 54700, Pakistan
| | - Sihao Xia
- College of Physics, Nanjing University of Aeronautics and Astronautics, Key Laboratory of Aerospace Information Materials and Physics (NUAA), MIIT, Nanjing 211106, China.
| | - Xueqian Sun
- Research School of Electrical, Energy and Materials Engineering, College of Engineering and Computer Science, The Australian National University, Canberra 2601, Australia
| | - Bo Wen
- Institute of Nanosurface Science and Engineering, Guangdong Provincial Key Laboratory of Micro/Nano Optomechatronics Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Fei Zhou
- National Key Laboratory for Precision Hot Processing of Metals; School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China.
- State Key Laboratory for Environment-friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Weiwei Li
- College of Physics, Nanjing University of Aeronautics and Astronautics, Key Laboratory of Aerospace Information Materials and Physics (NUAA), MIIT, Nanjing 211106, China.
| | - Youwen Liu
- College of Physics, Nanjing University of Aeronautics and Astronautics, Key Laboratory of Aerospace Information Materials and Physics (NUAA), MIIT, Nanjing 211106, China.
| | - Han Zhang
- Collaborative Innovation Center for Optoelectronic Science and Technology, International Collaborative Laboratory of 2D Materials for Optoelectronic Science and Technology of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
31
|
Reed-Lingenfelter SN, Chen Y, Yarali M, Charboneau DJ, Curley JB, Hynek DJ, Wang M, Williams NL, Hazari N, Quek SY, Cha JJ. Compact Super Electron-Donor to Monolayer MoS 2. NANO LETTERS 2022; 22:4501-4508. [PMID: 35609247 DOI: 10.1021/acs.nanolett.2c01167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The surface functionalization of two-dimensional (2D) materials with organic electron donors (OEDs) is a powerful tool to modulate the electronic properties of the material. Here we report a novel molecular dopant, Me-OED, that demonstrates record-breaking molecular doping to MoS2, achieving a carrier density of 1.10 ± 0.37 × 1014 cm-2 at optimal functionalization conditions; the achieved carrier density is much higher than those by other OEDs such as benzyl viologen and an OED based on 4,4'-bipyridine. This impressive doping power is attributed to the compact size of Me-OED, which leads to high surface coverage on MoS2. To confirm, we study tBu-OED, which has an identical reduction potential to Me-OED but is significantly larger. Using field-effect transistor measurements and spectroscopic characterization, we estimate the doping powers of Me- and tBu-OED are 0.22-0.44 and 0.11 electrons per molecule, respectively, in good agreement with calculations. Our results demonstrate that the small size of Me-OED is critical to maximizing the surface coverage and molecular interactions with MoS2, enabling us to achieve unprecedented doping of MoS2.
Collapse
Affiliation(s)
- Serrae N Reed-Lingenfelter
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06511, United States
- Energy Sciences Institute, Yale West Campus, West Haven, Connecticut 06516, United States
| | - Yifeng Chen
- Department of Physics, National University of Singapore, 117551, Singapore
| | - Milad Yarali
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06511, United States
- Energy Sciences Institute, Yale West Campus, West Haven, Connecticut 06516, United States
| | - David J Charboneau
- Department of Chemistry, Yale University, New Haven, Connecticut 06511, United States
| | - Julia B Curley
- Department of Chemistry, Yale University, New Haven, Connecticut 06511, United States
| | - David J Hynek
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06511, United States
- Energy Sciences Institute, Yale West Campus, West Haven, Connecticut 06516, United States
| | - Mengjing Wang
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06511, United States
- Energy Sciences Institute, Yale West Campus, West Haven, Connecticut 06516, United States
| | - Natalie L Williams
- Energy Sciences Institute, Yale West Campus, West Haven, Connecticut 06516, United States
- Department of Chemistry, Yale University, New Haven, Connecticut 06511, United States
| | - Nilay Hazari
- Department of Chemistry, Yale University, New Haven, Connecticut 06511, United States
| | - Su Ying Quek
- Department of Physics, National University of Singapore, 117551, Singapore
- Centre for Advanced 2D Materials, National University of Singapore, Block S14, Level 6, 6 Science Drive 2, 117546, Singapore
| | - Judy J Cha
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06511, United States
- Energy Sciences Institute, Yale West Campus, West Haven, Connecticut 06516, United States
| |
Collapse
|
32
|
Jang YJ, Kim JH. Two-dimensional transition metal dichalcogenides as an emerging platform for singlet fission solar cells. Chem Asian J 2022; 17:e202200265. [PMID: 35644937 DOI: 10.1002/asia.202200265] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/25/2022] [Indexed: 11/06/2022]
Abstract
Singlet fission, a rapid exciton doubling process via inverse Auger recombination, is recognized as one of the most practical and feasible means for overcoming the Shockley-Queisser limit. Singlet fission solar cells are generally developed by integrating photon downconversion organic semiconductors into conventional photovoltaic devices to break the maximum photovoltaic response of the host semiconductors by virtue of extra triplet excitons. In this regard, proper matching of two different semiconductors and heterointerface engineering are both crucial for highly efficient singlet fission solar cells. Therefore, the aim of this study is to review the prerequisite conditions for efficient triplet transfer at the heterointerfaces and thus highlight the robust spin and valley degrees of freedom of transition metal dichalcogenides with the ultimate goal of stimulating research into next-generation singlet fission solar cells.
Collapse
Affiliation(s)
- Yu Jin Jang
- Sungkyunkwan University, Convergence Research Center for Energy and Environmental Sciences, KOREA, REPUBLIC OF
| | - Ji-Hee Kim
- Sungkyunkwan University, Department of Energy Science, 2066 Seoburo, Jangangu, Suwon, KOREA, REPUBLIC OF
| |
Collapse
|
33
|
Xia J, Gu H, Liang C, Cai Y, Xing G. Manipulation of Band Alignment in Two-Dimensional Vertical WSe 2/BA 2PbI 4 Ruddlesden-Popper Perovskite Heterojunctions via Defect Engineering. J Phys Chem Lett 2022; 13:4579-4588. [PMID: 35583485 DOI: 10.1021/acs.jpclett.2c00856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Transition metal dichalcogenides (TMDs), two-dimensional (2D) layered Ruddlesden-Popper perovskite material, and their heterojunctions have attracted a great deal of interest in optoelectronic applications. Although various approaches for modulating their properties and applications have been demonstrated, knowledge of the interface band alignment and defect engineering on the TMD/2D perovskite heterojunction is still lacking. Herein, the optoelectronic properties and defect engineering of the WSe2/BA2PbI4 heterojunction have been investigated with density functional theory simulations. We find that the WSe2/BA2PbI4 van der Waals heterojunction maintains an indirect bandgap and S-scheme alignment, facilitating the efficient splitting of light excited carriers across the interface. Importantly, we find that defect engineering could manipulate the band alignment. The introduction of the BA vacancies could switch the interface from the S-scheme to the typical type II interface, whereas Se vacancies would facilitate recombination at the S-scheme interface. Our work proves that the interfacial properties of heterojunctions can be regulated by defect modulation to address different optoelectronic applications.
Collapse
Affiliation(s)
- Junmin Xia
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau 999078, P. R. China
| | - Hao Gu
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau 999078, P. R. China
| | - Chao Liang
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau 999078, P. R. China
| | - Yongqing Cai
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau 999078, P. R. China
| | - Guichuan Xing
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau 999078, P. R. China
| |
Collapse
|
34
|
Huang W, Zhang Y, Song M, Wang B, Hou H, Hu X, Chen X, Zhai T. Encapsulation strategies on 2D materials for field effect transistors and photodetectors. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.08.086] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
35
|
Bokka N, Khush Mahendrakumar G, Sahatiya P. A
water‐soluble
micropatterned
MoS
2
quantum dots/polyvinyl alcohol film as a transient contact (pressure) and
non‐contact
(humidity) as touch and proximity sensor. J Appl Polym Sci 2022. [DOI: 10.1002/app.51711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Naveen Bokka
- Department of Electrical and Electronics Engineering Birla Institute of Technology and Science Pilani Hyderabad Campus Hyderabad India
| | - Gohel Khush Mahendrakumar
- Department of Electrical and Electronics Engineering Birla Institute of Technology and Science Pilani Hyderabad Campus Hyderabad India
| | - Parikshit Sahatiya
- Department of Electrical and Electronics Engineering Birla Institute of Technology and Science Pilani Hyderabad Campus Hyderabad India
| |
Collapse
|
36
|
Boosting the electronic and catalytic properties of 2D semiconductors with supramolecular 2D hydrogen-bonded superlattices. Nat Commun 2022; 13:510. [PMID: 35082288 PMCID: PMC8791956 DOI: 10.1038/s41467-022-28116-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 12/06/2021] [Indexed: 12/13/2022] Open
Abstract
The electronic properties of two-dimensional semiconductors can be strongly modulated by interfacing them with atomically precise self-assembled molecular lattices, yielding hybrid van der Waals heterostructures (vdWHs). While proof-of-concepts exploited molecular assemblies held together by lateral unspecific van der Waals interactions, the use of 2D supramolecular networks relying on specific non-covalent forces is still unexplored. Herein, prototypical hydrogen-bonded 2D networks of cyanuric acid (CA) and melamine (M) are self-assembled onto MoS2 and WSe2 forming hybrid organic/inorganic vdWHs. The charge carrier density of monolayer MoS2 exhibits an exponential increase with the decreasing area occupied by the CA·M unit cell, in a cooperatively amplified process, reaching 2.7 × 1013 cm−2 and thereby demonstrating strong n-doping. When the 2D CA·M network is used as buffer layer, a stark enhancement in the catalytic activity of monolayer MoS2 for hydrogen evolution reactions is observed, outperforming the platinum (Pt) catalyst via gate modulation. Here, the authors report the functionalization of monolayer transition metal dichalcogenides with hydrogen-bonded 2D supramolecular networks of cyanuric acid and melamine, leading to a pronounced n-doping effect and enhancement of MoS2 catalytic activity for hydrogen evolution reactions.
Collapse
|
37
|
Ab initio Nonadiabatic Dynamics of Semiconductor Nanomaterials via Surface Hopping Method. CHINESE J CHEM PHYS 2022. [DOI: 10.1063/1674-0068/cjcp2111247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
38
|
Adeniran O, Liu ZF. Quasiparticle electronic structure of phthalocyanine:TMD interfaces from first-principles GW. J Chem Phys 2021; 155:214702. [PMID: 34879665 DOI: 10.1063/5.0072995] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Interfaces formed between monolayer transition metal dichalcogenides and (metallo)phthalocyanine molecules are promising in energy applications and provide a platform for studying mixed-dimensional molecule-semiconductor heterostructures in general. An accurate characterization of the frontier energy level alignment at these interfaces is key in the fundamental understanding of the charge transfer dynamics between the two photon absorbers. Here, we employ the first-principles substrate screening GW approach to quantitatively characterize the quasiparticle electronic structure of a series of interfaces: metal-free phthalocyanine (H2Pc) adsorbed on monolayer MX2 (M = Mo, W; X = S, Se) and zinc phthalocyanine (ZnPc) adsorbed on MoX2 (X = S, Se). Furthermore, we reveal the dielectric screening effect of the commonly used α-quartz (SiO2) substrate on the H2Pc:MoS2 interface using the dielectric embedding GW approach. Our calculations furnish a systematic set of GW results for these interfaces, providing the structure-property relationship across a series of similar systems and benchmarks for future experimental and theoretical studies.
Collapse
Affiliation(s)
- Olugbenga Adeniran
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, USA
| | - Zhen-Fei Liu
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, USA
| |
Collapse
|
39
|
Zheng YJ, Zhang Q, Odunmbaku O, Ou Z, Li M, Sun K. Tuning the carrier type and density of monolayer tin selenide via organic molecular doping. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 34:085001. [PMID: 34736236 DOI: 10.1088/1361-648x/ac3691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 11/04/2021] [Indexed: 06/13/2023]
Abstract
Utilizing first-principles calculations, charge transfer doping process of single layer tin selenide (SL-SnSe) via the surface adsorption of various organic molecules was investigated. Effective p-type SnSe, with carrier concentration exceeding 3.59 × 1013 cm-2, was obtained upon adsorption of tetracyanoquinodimethane or 2,3,5,6-tetrafluoro-7,7,8,8-tetracyano-quinodimethane on SL-SnSe due to their lowest unoccupied molecular orbitals acting as shallow acceptor states. While we could not obtain effective n-type SnSe through adsorption of tetrathiafulvalene (TTF) or 1,4,5,8-tetrathianaphthalene on pristine SnSe due to their highest occupied molecular orbitals (HOMO) being far from the conduction band edge of SnSe, this disadvantageous situation can be amended by the introduction of an external electric field perpendicular to the monolayer surface. It is found that Snvacwill facilitate charge transfer from TTF to SnSe through introducing an unoccupied gap state just above the HOMO of TTF, thereby partially compensating for the p-type doping effect of Snvac. Our results show that both effective p-type and n-type SnSe can be obtained and tuned by charge transfer doping, which is necessary to promote its applications in nanoelectronics, thermoelectrics and optoelectronics.
Collapse
Affiliation(s)
- Yu Jie Zheng
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems of the Ministry of Education of China, Chongqing University, Chongqing 400044, People's Republic of China
- School of Energy and Power Engineering, Chongqing University, Chongqing 400044, People's Republic of China
| | - Qi Zhang
- School of Energy and Power Engineering, Chongqing University, Chongqing 400044, People's Republic of China
| | - Omololu Odunmbaku
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems of the Ministry of Education of China, Chongqing University, Chongqing 400044, People's Republic of China
- School of Energy and Power Engineering, Chongqing University, Chongqing 400044, People's Republic of China
| | - Zeping Ou
- School of Energy and Power Engineering, Chongqing University, Chongqing 400044, People's Republic of China
| | - Meng Li
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems of the Ministry of Education of China, Chongqing University, Chongqing 400044, People's Republic of China
- School of Energy and Power Engineering, Chongqing University, Chongqing 400044, People's Republic of China
| | - Kuan Sun
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems of the Ministry of Education of China, Chongqing University, Chongqing 400044, People's Republic of China
- School of Energy and Power Engineering, Chongqing University, Chongqing 400044, People's Republic of China
| |
Collapse
|
40
|
Xie Z, Zhang B, Ge Y, Zhu Y, Nie G, Song Y, Lim CK, Zhang H, Prasad PN. Chemistry, Functionalization, and Applications of Recent Monoelemental Two-Dimensional Materials and Their Heterostructures. Chem Rev 2021; 122:1127-1207. [PMID: 34780169 DOI: 10.1021/acs.chemrev.1c00165] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The past decades have witnessed a rapid expansion in investigations of two-dimensional (2D) monoelemental materials (Xenes), which are promising materials in various fields, including applications in optoelectronic devices, biomedicine, catalysis, and energy storage. Apart from graphene and phosphorene, recently emerging 2D Xenes, specifically graphdiyne, borophene, arsenene, antimonene, bismuthene, and tellurene, have attracted considerable interest due to their unique optical, electrical, and catalytic properties, endowing them a broader range of intriguing applications. In this review, the structures and properties of these emerging Xenes are summarized based on theoretical and experimental results. The synthetic approaches for their fabrication, mainly bottom-up and top-down, are presented. Surface modification strategies are also shown. The wide applications of these emerging Xenes in nonlinear optical devices, optoelectronics, catalysis, biomedicine, and energy application are further discussed. Finally, this review concludes with an assessment of the current status, a description of existing scientific and application challenges, and a discussion of possible directions to advance this fertile field.
Collapse
Affiliation(s)
- Zhongjian Xie
- Institute of Pediatrics, Shenzhen Children's Hospital, Shenzhen 518038, Guangdong, P.R. China.,Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Institute of Microscale Optoelectronics, and Otolaryngology Department of the First Affiliated Hospital, Shenzhen Second People's Hospital, Health Science Center, Shenzhen University, Shenzhen 518060, P.R. China
| | - Bin Zhang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Institute of Microscale Optoelectronics, and Otolaryngology Department of the First Affiliated Hospital, Shenzhen Second People's Hospital, Health Science Center, Shenzhen University, Shenzhen 518060, P.R. China
| | - Yanqi Ge
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Institute of Microscale Optoelectronics, and Otolaryngology Department of the First Affiliated Hospital, Shenzhen Second People's Hospital, Health Science Center, Shenzhen University, Shenzhen 518060, P.R. China
| | - Yao Zhu
- Shenzhen Medical Ultrasound Engineering Center, Department of Ultrasonography, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, First Clinical Medical College of Southern University of Science and Technology, Shenzhen 518020, China
| | - Guohui Nie
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Institute of Microscale Optoelectronics, and Otolaryngology Department of the First Affiliated Hospital, Shenzhen Second People's Hospital, Health Science Center, Shenzhen University, Shenzhen 518060, P.R. China
| | - YuFeng Song
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Institute of Microscale Optoelectronics, and Otolaryngology Department of the First Affiliated Hospital, Shenzhen Second People's Hospital, Health Science Center, Shenzhen University, Shenzhen 518060, P.R. China
| | - Chang-Keun Lim
- Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan City 010000, Kazakhstan
| | - Han Zhang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Institute of Microscale Optoelectronics, and Otolaryngology Department of the First Affiliated Hospital, Shenzhen Second People's Hospital, Health Science Center, Shenzhen University, Shenzhen 518060, P.R. China
| | - Paras N Prasad
- Institute for Lasers, Photonics, and Biophotonics and Department of Chemistry, University at Buffalo, State University of New York, Buffalo 14260-3000, United States
| |
Collapse
|
41
|
Kim JK, Cho K, Jang J, Baek KY, Kim J, Seo J, Song M, Shin J, Kim J, Parkin SSP, Lee JH, Kang K, Lee T. Molecular Dopant-Dependent Charge Transport in Surface-Charge-Transfer-Doped Tungsten Diselenide Field Effect Transistors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2101598. [PMID: 34533851 DOI: 10.1002/adma.202101598] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 08/15/2021] [Indexed: 06/13/2023]
Abstract
The controllability of carrier density and major carrier type of transition metal dichalcogenides(TMDCs) is critical for electronic and optoelectronic device applications. To utilize doping in TMDC devices, it is important to understand the role of dopants in charge transport properties of TMDCs. Here, the effects of molecular doping on the charge transport properties of tungsten diselenide (WSe2 ) are investigated using three p-type molecular dopants, 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4 -TCNQ), tris(4-bromophenyl)ammoniumyl hexachloroantimonate (magic blue), and molybdenum tris(1,2-bis(trifluoromethyl)ethane-1,2-dithiolene) (Mo(tfd-COCF3 )3 ). The temperature-dependent transport measurements show that the dopant counterions on WSe2 surface can induce Coulomb scattering in WSe2 channel and the degree of scattering is significantly dependent on the dopant. Furthermore, the quantitative analysis revealed that the amount of charge transfer between WSe2 and dopants is related to not only doping density, but also the contribution of each dopant ion toward Coulomb scattering. The first-principles density functional theory calculations show that the amount of charge transfer is mainly determined by intrinsic properties of the dopant molecules such as relative frontier orbital positions and their spin configurations. The authors' systematic investigation of the charge transport of doped TMDCs will be directly relevant for pursuing molecular routes for efficient and controllable doping in TMDC nanoelectronic devices.
Collapse
Affiliation(s)
- Jae-Keun Kim
- Department of Physics and Astronomy and Institute of Applied Physics, Seoul National University, Seoul, 08826, Korea
- Max-Planck Institute of Microstructure Physics, Weinberg 2, 06120, Halle (Saale), Germany
| | - Kyungjune Cho
- Max-Planck Institute of Microstructure Physics, Weinberg 2, 06120, Halle (Saale), Germany
- Soft Hybrid Materials Research Center, Korea Institute of Science and Technology, Seoul, 02792, Korea
| | - Juntae Jang
- Department of Physics and Astronomy and Institute of Applied Physics, Seoul National University, Seoul, 08826, Korea
| | - Kyeong-Yoon Baek
- Department of Physics and Astronomy and Institute of Applied Physics, Seoul National University, Seoul, 08826, Korea
| | - Jehyun Kim
- Department of Physics and Astronomy and Institute of Applied Physics, Seoul National University, Seoul, 08826, Korea
| | - Junseok Seo
- Department of Physics and Astronomy and Institute of Applied Physics, Seoul National University, Seoul, 08826, Korea
| | - Minwoo Song
- Department of Physics and Astronomy and Institute of Applied Physics, Seoul National University, Seoul, 08826, Korea
| | - Jiwon Shin
- Department of Physics and Astronomy and Institute of Applied Physics, Seoul National University, Seoul, 08826, Korea
| | - Jaeyoung Kim
- Department of Physics and Astronomy and Institute of Applied Physics, Seoul National University, Seoul, 08826, Korea
| | - Stuart S P Parkin
- Max-Planck Institute of Microstructure Physics, Weinberg 2, 06120, Halle (Saale), Germany
| | - Jung-Hoon Lee
- Computational Science Research Center, Korea Institute of Science and Technology, Seoul, 02792, Korea
| | - Keehoon Kang
- Department of Materials Science & Engineering, Yonsei University, Seoul, 03722, Korea
| | - Takhee Lee
- Department of Physics and Astronomy and Institute of Applied Physics, Seoul National University, Seoul, 08826, Korea
| |
Collapse
|
42
|
|
43
|
Amsterdam SH, Stanev TK, Wang L, Zhou Q, Irgen-Gioro S, Padgaonkar S, Murthy AA, Sangwan VK, Dravid VP, Weiss EA, Darancet P, Chan MKY, Hersam MC, Stern NP, Marks TJ. Mechanistic Investigation of Molybdenum Disulfide Defect Photoluminescence Quenching by Adsorbed Metallophthalocyanines. J Am Chem Soc 2021; 143:17153-17161. [PMID: 34613735 DOI: 10.1021/jacs.1c07795] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Lattice defects play an important role in determining the optical and electrical properties of monolayer semiconductors such as MoS2. Although the structures of various defects in monolayer MoS2 are well studied, little is known about the nature of the fluorescent defect species and their interaction with molecular adsorbates. In this study, the quenching of the low-temperature defect photoluminescence (PL) in MoS2 is investigated following the deposition of metallophthalocyanines (MPcs). The quenching is found to significantly depend on the identity of the phthalocyanine metal, with the quenching efficiency decreasing in the order CoPc > CuPc > ZnPc, and almost no quenching by metal-free H2Pc is observed. Time-correlated single photon counting (TCSPC) measurements corroborate the observed trend, indicating a decrease in the defect PL lifetime upon MPc adsorption, and the gate voltage-dependent PL reveals the suppression of the defect emission even at large Fermi level shifts. Density functional theory modeling argues that the MPc complexes stabilize dark negatively charged defects over luminescent neutral defects through an electrostatic local gating effect. These results demonstrate the control of defect-based excited-state decay pathways via molecular electronic structure tuning, which has broad implications for the design of mixed-dimensional optoelectronic devices.
Collapse
Affiliation(s)
- Samuel H Amsterdam
- Department of Chemistry and the Materials Research Center, Northwestern University, Evanston, Illinois 60208, United States
| | - Teodor K Stanev
- Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208, United States
| | - Luqing Wang
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States.,Department of Materials Science and Engineering and the Materials Research Center, Northwestern University, Evanston, Illinois 60208, United States
| | - Qunfei Zhou
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States.,Department of Materials Science and Engineering and the Materials Research Center, Northwestern University, Evanston, Illinois 60208, United States
| | - Shawn Irgen-Gioro
- Department of Chemistry and the Materials Research Center, Northwestern University, Evanston, Illinois 60208, United States
| | - Suyog Padgaonkar
- Department of Chemistry and the Materials Research Center, Northwestern University, Evanston, Illinois 60208, United States
| | - Akshay A Murthy
- Department of Materials Science and Engineering and the Materials Research Center, Northwestern University, Evanston, Illinois 60208, United States
| | - Vinod K Sangwan
- Department of Materials Science and Engineering and the Materials Research Center, Northwestern University, Evanston, Illinois 60208, United States
| | - Vinayak P Dravid
- Department of Materials Science and Engineering and the Materials Research Center, Northwestern University, Evanston, Illinois 60208, United States.,Northwestern University Atomic and Nanoscale Characterization Experimental (NUANCE) Center, Evanston, Illinois 60208, United States
| | - Emily A Weiss
- Department of Chemistry and the Materials Research Center, Northwestern University, Evanston, Illinois 60208, United States.,Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208, United States.,Department of Materials Science and Engineering and the Materials Research Center, Northwestern University, Evanston, Illinois 60208, United States
| | - Pierre Darancet
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States.,Northwestern Argonne Institute of Science and Engineering, Evanston, Illinois 60208, United States
| | - Maria K Y Chan
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States.,Northwestern Argonne Institute of Science and Engineering, Evanston, Illinois 60208, United States
| | - Mark C Hersam
- Department of Chemistry and the Materials Research Center, Northwestern University, Evanston, Illinois 60208, United States.,Department of Materials Science and Engineering and the Materials Research Center, Northwestern University, Evanston, Illinois 60208, United States.,Department of Electrical and Computer Engineering and the Materials Research Center, Northwestern University, Evanston, Illinois 60208, United States
| | - Nathaniel P Stern
- Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208, United States
| | - Tobin J Marks
- Department of Chemistry and the Materials Research Center, Northwestern University, Evanston, Illinois 60208, United States.,Department of Materials Science and Engineering and the Materials Research Center, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
44
|
Cheng NLQ, Xuan F, Spataru CD, Quek SY. Charge Transfer Screening and Energy Level Alignment at Complex Organic-Inorganic Interfaces: A Tractable Ab Initio GW Approach. J Phys Chem Lett 2021; 12:8841-8846. [PMID: 34492190 DOI: 10.1021/acs.jpclett.1c02302] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Complex organic-inorganic interfaces are important for device and sensing applications. Charge transfer doping is prevalent in such applications and can affect the interfacial energy level alignments (ELA), which are determined by many-body interactions. We develop an approximate ab initio many-body GW approach that can capture many-body interactions due to interfacial charge transfer. The approach uses significantly less resources than a regular GW calculation but gives excellent agreement with benchmark GW calculations on an F4TCNQ/graphene interface. We find that many-body interactions due to charge transfer screening result in gate-tunable F4TCNQ HOMO-LUMO gaps. We further predict the ELA of a large system of experimental interest-4,4'-bis(dimethylamino)bipyridine (DMAP-OED) on monolayer MoS2, where charge transfer screening results in an ∼1 eV reduction of the molecular HOMO-LUMO gap. Comparison with a two-dimensional electron gas model reveals the importance of explicitly considering the intraband transitions in determining the charge transfer screening in organic-inorganic interface systems.
Collapse
Affiliation(s)
- Nicholas Lin Quan Cheng
- Department of Physics, National University of Singapore, 2 Science Drive 3, 117551 Singapore
- Centre for Advanced 2D Materials, National University of Singapore, 6 Science Drive 2, 117546 Singapore
| | - Fengyuan Xuan
- Centre for Advanced 2D Materials, National University of Singapore, 6 Science Drive 2, 117546 Singapore
| | - Catalin D Spataru
- Sandia National Laboratories, Livermore, California 94551, United States
| | - Su Ying Quek
- Department of Physics, National University of Singapore, 2 Science Drive 3, 117551 Singapore
- Centre for Advanced 2D Materials, National University of Singapore, 6 Science Drive 2, 117546 Singapore
- NUS Graduate School Integrative Sciences and Engineering Programme, National University of Singapore, 117456 Singapore
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, 117575 Singapore
| |
Collapse
|
45
|
Wang W, Huai L, Wu S, Shan J, Zhu J, Liu Z, Yue L, Li Y. Ultrahigh-Volumetric-Energy-Density Lithium-Sulfur Batteries with Lean Electrolyte Enabled by Cobalt-Doped MoSe 2/Ti 3C 2T x MXene Bifunctional Catalyst. ACS NANO 2021; 15:11619-11633. [PMID: 34247479 DOI: 10.1021/acsnano.1c02047] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
It is a significant challenge to design a dense high-sulfur-loaded cathode and meanwhile to acquire fast sulfur redox kinetics and suppress the heavy shuttling in the lean electrolyte, thus to acquire a high volumetric energy density without sacrificing gravimetric performance for realistic Li-S batteries (LSBs). Herein, we develop a cation-doping strategy to tailor the electronic structure and catalytic activity of MoSe2 that in situ hybridized with conductive Ti3C2Tx MXene, thus obtaining a Co-MoSe2/MXene bifunctional catalyst as a high-efficient sulfur host. Combining a smart design of the dense sulfur structure, the as-fabricated highly dense S/Co-MoSe2/MXene monolith cathode (density: 1.88 g cm-3, conductivity: 230 S m-1) achieves a high reversible specific capacity of 1454 mAh g-1 and an ultrahigh volumetric energy density of 3659 Wh L-1 at a routine electrolyte and a high areal capacity of ∼8.0 mAh cm-2 under an extremely lean electrolyte of 3.5 μL mgs-1 at 0.1 C. Experimental and DFT theoretical results uncover that introducing Co element into the MoSe2 plane can form a shorter Co-Se bond, impel the Mo 3d band to approach the Fermi level, and provide strong interactions between polysulfides and Co-MoSe2, thereby enhancing its intrinsic electronic conductivity and catalytic activity for fast redox kinetics and uniform Li2S nucleation in a dense high-sulfur-loaded cathode. This deep work provides a good strategy for constructing high-volumetric-energy-density, high-areal-capacity LSBs with lean electrolytes.
Collapse
Affiliation(s)
- Wei Wang
- School of Materials and Energy, Guangdong University of Technology, No. 100 Waihuan Xi Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
| | - Liyuan Huai
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Shangyou Wu
- School of Materials and Energy, Guangdong University of Technology, No. 100 Waihuan Xi Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
| | - Jiongwei Shan
- School of Materials and Energy, Guangdong University of Technology, No. 100 Waihuan Xi Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
| | - Junlu Zhu
- School of Materials and Energy, Guangdong University of Technology, No. 100 Waihuan Xi Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
| | - Zhonggang Liu
- School of Materials and Energy, Guangdong University of Technology, No. 100 Waihuan Xi Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
| | - Liguo Yue
- School of Materials and Energy, Guangdong University of Technology, No. 100 Waihuan Xi Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
| | - Yunyong Li
- School of Materials and Energy, Guangdong University of Technology, No. 100 Waihuan Xi Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
| |
Collapse
|
46
|
Maiti S, Poonia D, Schiettecatte P, Hens Z, Geiregat P, Kinge S, Siebbeles LD. Generating Triplets in Organic Semiconductor Tetracene upon Photoexcitation of Transition Metal Dichalcogenide ReS 2. J Phys Chem Lett 2021; 12:5256-5260. [PMID: 34048249 PMCID: PMC8201445 DOI: 10.1021/acs.jpclett.1c01411] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
We studied the dynamics of transfer of photoexcited electronic states in a bilayer of the two-dimensional transition metal dichalcogenide ReS2 and tetracene, with the aim to produce triplets in the latter. This material combination was used as the band gap of ReS2 (1.5 eV) is slightly larger than the triplet energy of tetracene (1.25 eV). Using time-resolved optical absorption spectroscopy, transfer of photoexcited states from ReS2 to triplet states in tetracene was found to occur within 5 ps with an efficiency near 38%. This result opens up new possibilities for heterostructure design of two-dimensional materials with suitable organics to produce long-lived triplets. Triplets are of interest as sensitizers in a wide variety of applications including optoelectronics, photovoltaics, photocatalysis, and photon upconversion.
Collapse
Affiliation(s)
- Sourav Maiti
- Optoelectronic
Materials Section, Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, Delft 2629 HZ, The Netherlands
| | - Deepika Poonia
- Optoelectronic
Materials Section, Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, Delft 2629 HZ, The Netherlands
| | - Pieter Schiettecatte
- Physics
and Chemistry of Nanostructures, Ghent University, Ghent, Belgium
- Center
for Nano and Biophotonics, Ghent University, Ghent, Belgium
| | - Zeger Hens
- Physics
and Chemistry of Nanostructures, Ghent University, Ghent, Belgium
- Center
for Nano and Biophotonics, Ghent University, Ghent, Belgium
| | - Pieter Geiregat
- Physics
and Chemistry of Nanostructures, Ghent University, Ghent, Belgium
- Center
for Nano and Biophotonics, Ghent University, Ghent, Belgium
| | - Sachin Kinge
- Optoelectronic
Materials Section, Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, Delft 2629 HZ, The Netherlands
- Toyota
Motor Europe, Materials Research & Development, Hoge Wei 33, B-1913 Zaventem, Belgium
| | - Laurens D.A. Siebbeles
- Optoelectronic
Materials Section, Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, Delft 2629 HZ, The Netherlands
| |
Collapse
|
47
|
Park S, Mutz N, Kovalenko SA, Schultz T, Shin D, Aljarb A, Li L, Tung V, Amsalem P, List‐Kratochvil EJW, Stähler J, Xu X, Blumstengel S, Koch N. Type-I Energy Level Alignment at the PTCDA-Monolayer MoS 2 Interface Promotes Resonance Energy Transfer and Luminescence Enhancement. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2100215. [PMID: 34194946 PMCID: PMC8224443 DOI: 10.1002/advs.202100215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/24/2021] [Indexed: 06/13/2023]
Abstract
Van der Waals heterostructures consisting of 2D semiconductors and conjugated molecules are of increasing interest because of the prospect of a synergistic enhancement of (opto)electronic properties. In particular, perylenetetracarboxylic dianhydride (PTCDA) on monolayer (ML)-MoS2 has been identified as promising candidate and a staggered type-II energy level alignment and excited state interfacial charge transfer have been proposed. In contrast, it is here found with inverse and direct angle resolved photoelectron spectroscopy that PTCDA/ML-MoS2 supported by insulating sapphire exhibits a straddling type-I level alignment, with PTCDA having the wider energy gap. Photoluminescence (PL) and sub-picosecond transient absorption measurements reveal that resonance energy transfer, i.e., electron-hole pair (exciton) transfer, from PTCDA to ML-MoS2 occurs on a sub-picosecond time scale. This gives rise to an enhanced PL yield from ML-MoS2 in the heterostructure and an according overall modulation of the photoresponse. These results underpin the importance of a precise knowledge of the interfacial electronic structure in order to understand excited state dynamics and to devise reliable design strategies for optimized optoelectronic functionality in van der Waals heterostructures.
Collapse
Affiliation(s)
- Soohyung Park
- Advanced Analysis CenterKorea Institute of Science and Technology (KIST)Seoul02792South Korea
| | - Niklas Mutz
- Humboldt‐Universität zu BerlinInstitut für Physik & IRIS AdlershofBerlin12489Germany
| | | | - Thorsten Schultz
- Humboldt‐Universität zu BerlinInstitut für Physik & IRIS AdlershofBerlin12489Germany
- Helmholtz‐Zentrum für Materialien und Energie GmbHBerlin12489Germany
| | - Dongguen Shin
- Humboldt‐Universität zu BerlinInstitut für Physik & IRIS AdlershofBerlin12489Germany
| | - Areej Aljarb
- Physical Sciences and EngineeringKing Abdullah University of Science and TechnologyThuwal23955‐6900Saudi Arabia
| | - Lain‐Jong Li
- Department of Mechanical EngineeringThe University of Hong KongPokfulam RoadHong Kong
| | - Vincent Tung
- Physical Sciences and EngineeringKing Abdullah University of Science and TechnologyThuwal23955‐6900Saudi Arabia
| | - Patrick Amsalem
- Humboldt‐Universität zu BerlinInstitut für Physik & IRIS AdlershofBerlin12489Germany
| | - Emil J. W. List‐Kratochvil
- Humboldt‐Universität zu BerlinInstitut für Physik & IRIS AdlershofBerlin12489Germany
- Humboldt‐Universität zu BerlinInstitut für ChemieBerlin12489Germany
- Helmholtz‐Zentrum für Materialien und Energie GmbHBerlin12489Germany
| | - Julia Stähler
- Humboldt‐Universität zu BerlinInstitut für ChemieBerlin12489Germany
| | - Xiaomin Xu
- Shenzhen Geim Graphene CenterTsinghua‐Berkeley Shenzhen InstituteTsinghua UniversityShenzhen518055China
| | - Sylke Blumstengel
- Humboldt‐Universität zu BerlinInstitut für Physik & IRIS AdlershofBerlin12489Germany
- Humboldt‐Universität zu BerlinInstitut für ChemieBerlin12489Germany
| | - Norbert Koch
- Humboldt‐Universität zu BerlinInstitut für Physik & IRIS AdlershofBerlin12489Germany
- Helmholtz‐Zentrum für Materialien und Energie GmbHBerlin12489Germany
| |
Collapse
|
48
|
Zhou HJ, Xu DH, Yang QH, Liu XY, Cui G, Li L. Rational design of monolayer transition metal dichalcogenide@fullerene van der Waals photovoltaic heterojunctions with time-domain density functional theory simulations. Dalton Trans 2021; 50:6725-6734. [PMID: 33912883 DOI: 10.1039/d1dt00291k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
van der Waals heterojunctions formed by transition metal dichalcogenides (TMDs) and fullerenes are promising candidates for novel photovoltaic devices due to the excellent optoelectronic properties of both TMDs and fullerenes. However, relevant experimental and theoretical investigations remain scarce to the best of our knowledge. Herein, we have first employed static density functional theory (DFT) calculations in combination with time-domain density functional theory (TDDFT) based nonadiabatic dynamics simulations to rationally evaluate the photovoltaic performances of four TMD@fullerene heterostructures, i.e. WSe2@C60, WSe2@C70, MoTe2@C60 and MoTe2@C70, respectively. Our simulation results indicate that the C70-based heterostructures overall have better photoinduced electron transfer efficiencies than their C60-based counterparts, among which the performance of the WSe2@C70 heterostructure is the best and the electron transfer from WSe2 to C70 almost accomplishes within 1 ps. In addition, the large build-in potential of about 0.75 eV of WSe2@C70 is beneficial for the charge separation processes. Our present work not only selects the van der Waals TMD@fullerene heterojunctions that might have excellent photovoltaic properties, but also paves the way for the rational design of novel heterojunctions with better optoelectronic performances with DFT and TDDFT simulations in the future.
Collapse
Affiliation(s)
- Hong-Jun Zhou
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, China.
| | | | | | | | | | | |
Collapse
|
49
|
Schmidt AM, Calvete MJF. Phthalocyanines: An Old Dog Can Still Have New (Photo)Tricks! Molecules 2021; 26:2823. [PMID: 34068708 PMCID: PMC8126243 DOI: 10.3390/molecules26092823] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/23/2021] [Accepted: 05/06/2021] [Indexed: 12/13/2022] Open
Abstract
Phthalocyanines have enjoyed throughout the years the benefits of being exquisite compounds with many favorable properties arising from the straightforward and diverse possibilities of their structural modulation. Last decades appreciated a steady growth in applications for phthalocyanines, particularly those dependent on their great photophysical properties, now used in several cutting-edge technologies, particularly in photonic applications. Judging by the vivid reports currently provided by many researchers around the world, the spotlight remains assured. This review deals with the use of phthalocyanine molecules in innovative materials in photo-applications. Beyond a comprehensive view on the recent discoveries, a critical review of the most acclaimed/considered reports is the driving force, providing a brief and direct insight on the latest milestones in phthalocyanine photonic-based science.
Collapse
Affiliation(s)
- Andrea M. Schmidt
- LifeEstetika, Laser Solutions, Universitätstadt Tübingen, Maria-von-Linden Strasse, 72076 Tübingen, Germany;
| | - Mário J. F. Calvete
- University of Coimbra, CQC, Department of Chemistry, Rua Larga, 3004-535 Coimbra, Portugal
| |
Collapse
|
50
|
Zhao C, Tao W, Chen Z, Zhou H, Zhang C, Lin J, Zhu H. Ultrafast Electron Transfer with Long-Lived Charge Separation and Spin Polarization in WSe 2/C 60 Heterojunction. J Phys Chem Lett 2021; 12:3691-3697. [PMID: 33829780 DOI: 10.1021/acs.jpclett.1c00848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The strong excitonic effect in monolayer transition-metal dichalcogenides (TMDs) endows them with intriguing optoelectronic properties but also short-lived population and valley polarization. Exciton dissociation by interfacial charge transfer has been shown as an effective approach to prolonging excited-state lifetimes. Herein, by ultrafast spectroscopy and building-block molecule C60, we investigated exciton and valley polarization dynamics in the prototypical WSe2/C60 inorganic-organic hybrid. We show that excitons in WSe2 can be dissociated through ultrafast (∼1 ps) electron transfer to C60, with nanosecond charge separation due to thermally activated electron diffusion in C60 film. Because of suppressed electron-hole exchange interaction after electron transfer, hole in WSe2 exhibits a spin/valley polarization lifetime of ∼60 ps at room temperature, more than 2 orders of magnitude longer than that in WSe2 monolayer. This study suggests exciton dissociation as a general approach to suppress electron-hole interaction and prolong the charge/spin/valley lifetime in TMDs.
Collapse
Affiliation(s)
- Chang Zhao
- State Key Laboratory of Modern Optical Instrumentation, Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, China
| | - Weijian Tao
- State Key Laboratory of Modern Optical Instrumentation, Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zeng Chen
- State Key Laboratory of Modern Optical Instrumentation, Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hongzhi Zhou
- State Key Laboratory of Modern Optical Instrumentation, Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chi Zhang
- State Key Laboratory of Modern Optical Instrumentation, Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, China
| | - Junyi Lin
- State Key Laboratory of Modern Optical Instrumentation, Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, China
| | - Haiming Zhu
- State Key Laboratory of Modern Optical Instrumentation, Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|