1
|
Rabiee N, Rabiee M. Wearable Aptasensors. Anal Chem 2024; 96:19160-19182. [PMID: 39604058 DOI: 10.1021/acs.analchem.4c05004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
This Perspective explores the revolutionary advances in wearable aptasensor (WA) technology, which combines wearable devices and aptamer-based detection systems for personalized, real-time health monitoring. The devices leverage the specificity and sensitivity of aptamers to target specific molecules, offering broad applications from continuous glucose tracking to early diagnosis of diseases. The integration of data analytics and artificial intelligence (AI) allows early risk prediction and guides preventive health measures. While challenges in miniaturization, power efficiency, and data security persist, these devices hold significant potential to democratize healthcare and reshape patient-doctor interactions.
Collapse
Affiliation(s)
- Navid Rabiee
- Department of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai 600077, India
| | - Mohammad Rabiee
- Biomaterials Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran 165543, Iran
| |
Collapse
|
2
|
Janduang S, Cotchim S, Kongkaew S, Srilikhit A, Wannapob R, Kanatharana P, Thavarungkul P, Limbut W. Synthesis of flower-like ZnO nanoparticles for label-free point of care detection of carcinoembryonic antigen. Talanta 2024; 277:126330. [PMID: 38833905 DOI: 10.1016/j.talanta.2024.126330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 05/21/2024] [Accepted: 05/26/2024] [Indexed: 06/06/2024]
Abstract
In this work, flower-like ZnO nanoparticles (ZnONPs) were synthesized using zinc nitrate (Zn(NO3)2 6H2O) as a precursor with KOH. The morphology of the ZnONPs was controlled by varying the synthesis temperature at 50, 75 and 95 °C. The morphology and structure of ZnONPs were characterized using Scanning Electron Microscopy, and X-Ray Diffraction and Brunauer-Emmett Teller analysis. ZnONPs were successfully synthesized by a simple chemical precipitation method. A synthesis temperature of 75 °C produced the most suitable flower-like ZnONPs, which were combined with graphene nanoplatelets to develop a label-free electrochemical immunosensor for the detection of the colon cancer biomarker carcinoembryonic antigen in human serum. Under optimum conditions, the developed immunosensor showed a linear range of 0.5-10.0 ng mL-1 with a limit of detection of 0.44 ng mL-1. The label-free electrochemical immunosensor exhibited good selectivity, reproducibility, and repeatability, and recoveries were excellent. The immunosensor is used with a Near-Field Communication potentiostat connected to a smartphone to facilitate point-of-care cancer detection in low-resource locations.
Collapse
Affiliation(s)
- Santipap Janduang
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Suparat Cotchim
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Supatinee Kongkaew
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Angkana Srilikhit
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Rodtichoti Wannapob
- Silicon Craft Technology PLC, No. 40, Thetsabanrangsannua Rd., Ladyao, Chatuchak, Bangkok, 10900, Thailand
| | - Proespichaya Kanatharana
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Panote Thavarungkul
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Warakorn Limbut
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Forensic Science Innovation and Service Center, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand.
| |
Collapse
|
3
|
Wahyuni WT, Rahman HA, Afifah S, Anindya W, Hidayat RA, Khalil M, Fan B, Putra BR. Comparison of the analytical performance of two different electrochemical sensors based on a composite of gold nanorods with carbon nanomaterials and PEDOT:PSS for the sensitive detection of nitrite in processed meat products. RSC Adv 2024; 14:24856-24873. [PMID: 39119281 PMCID: PMC11307257 DOI: 10.1039/d4ra04629c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/01/2024] [Indexed: 08/10/2024] Open
Abstract
Herein, two platforms for electrochemical sensors were developed based on a combination of gold nanorods (AuNRs) with electrochemically reduced graphene oxide (ErGO) or with multiwalled carbon nanotubes (MWCNTs) and PEDOT:PSS for nitrite detection. The first and second electrodes were denoted as AuNRs/ErGO/PEDOT:PSS/GCE and AuNRs/MWCNT/PEDOT:PSS/GCE, respectively. Both materials for electrode modifiers were then characterized using UV-Vis and Raman spectroscopy, SEM, and HR-TEM. In addition, both sensors exhibit good electrochemical and electroanalytical performance for nitrite detection when investigated using voltammetric techniques. The synergistic effect between the AuNRs and their composites enhanced the electrocatalytic activity toward nitrite oxidation compared with the unmodified electrode, and the electroanalytical performance of the second electrode was superior to the first electrode. This is because the high surface area and conductivity of the MWCNTs in the second electrode provide the highest electrochemically active area (0.1510 cm2) among the other electrodes. Moreover, the second electrode exhibited a higher value for the surface coverage and the diffusion coefficient than the first electrode for nitrite detection. The electroanalytical performances of the first and second electrode for nitrite detection in terms of concentration range are 0.8-100 μM and 0.2-100 μM, limit of detection (0.2 μM and 0.08 μM), and measurement sensitivity (0.0451 μA μM-1 cm-2 and 0.0634 μA μM-1 cm-2). Good selectivity was also shown from both sensors in the presence of NaCl, Na2SO4, Na3PO4, MgSO4, NaHCO3, NaNO3, glucose, and ascorbic acid as interfering species for nitrite detection. Furthermore, both sensors were employed to detect nitrite as a food preservative in the beef sample, and the results showed no significant difference compared with the spectrophotometric technique. These results indicate that both proposed nitrite sensors may be further applied as promising electrochemical sensing platforms for in situ nitrite detection.
Collapse
Affiliation(s)
- Wulan Tri Wahyuni
- Department of Chemistry, Analytical Chemistry Division, Faculty of Mathematics and Natural Sciences, IPB University Bogor 16680 Indonesia
- Tropical Biopharmaca Research Center, IPB University Bogor 16680 Indonesia
| | - Hemas Arif Rahman
- Department of Chemistry, Analytical Chemistry Division, Faculty of Mathematics and Natural Sciences, IPB University Bogor 16680 Indonesia
| | - Salmi Afifah
- Department of Chemistry, Analytical Chemistry Division, Faculty of Mathematics and Natural Sciences, IPB University Bogor 16680 Indonesia
| | - Weni Anindya
- Department of Chemistry, Analytical Chemistry Division, Faculty of Mathematics and Natural Sciences, IPB University Bogor 16680 Indonesia
| | - Rayyan Azzahra Hidayat
- Department of Chemistry, Analytical Chemistry Division, Faculty of Mathematics and Natural Sciences, IPB University Bogor 16680 Indonesia
| | - Munawar Khalil
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, University of Indonesia Depok 16424 Indonesia
| | - Bingbing Fan
- School of Material Science and Engineering, Zhengzhou University Zhengzhou 450001 China
| | - Budi Riza Putra
- Research Center for Metallurgy, National Research and Innovation Agency (BRIN) PUSPIPTEK Gd. 470 South Tangerang Banten 15315 Indonesia
| |
Collapse
|
4
|
Pandey N, Mandal M, Samanta D, Mukherjee G, Dutta G. A nanobody based ultrasensitive electrochemical biosensor for the detection of soluble CTLA-4 -A candidate biomarker for cancer development and progression. Biosens Bioelectron 2023; 242:115733. [PMID: 37820555 DOI: 10.1016/j.bios.2023.115733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/28/2023] [Accepted: 10/03/2023] [Indexed: 10/13/2023]
Abstract
A soluble isoform of cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) has been found in the serum of healthy individuals and alterations in its expression level have been linked with the development and progression of various cancers. Conventionally, soluble CTLA-4 (sCTLA-4) has been quantified by techniques such as ELISA, western blot, and flow cytometry, which however are time-consuming, highly expensive and require large sample volumes. Therefore, rapid, cost-effective and real-time monitoring of soluble CTLA-4 levels is much needed to facilitate timely diagnosis of a worsening disease and help patient selection for immunotherapeutic interventions in cancer. Here, for the first time, we report an ultrasensitive, highly selective electrochemical nanobody (NAb) based biosensor for the quantitative detection of soluble CTLA-4 employing poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) and gold nanoparticles modified electrode with attomole sensitivity. Incorporating nanomaterials with conductive polymers enhances the sensitivity of the electrochemical biosensor, while the nanobody's stability, specificity and ease of production make it a suitable choice as a bioreceptor. The proposed NAb-based sensor can detect sCTLA-4 from pure recombinant protein in a wide concentration range of 100 ag mL-1- 500 μg mL-1, with a limit of detection of 1.19 ag mL-1 (+3σ of the blank signal). The sensor's relative standard deviation for reproducibility is less than 0.4% and has effective real sample analytics for cell culture supernatant with no significant difference with pure recombinant protein (p < 0.05). Our proposed nanobody based sensor exhibits stability for up to 2 weeks (<3% variation). Moreover, this nanobody-based sensor presents a future opportunity for quantitative, ultrasensitive, and economical biosensor development that can be adapted to monitor the immune landscape of cancer patients to provide a larger therapeutic window.
Collapse
Affiliation(s)
- Nidhi Pandey
- Immunology and Inflammation Research Lab, School of Medical Sciences and Technology, Indian Institute of Technology, Kharagpur, Kharagpur, 721302, India
| | - Mukti Mandal
- NanoBiosensors and Biodevices Lab, School of Medical Sciences and Technology, Indian Institute of Technology, Kharagpur, Kharagpur, 721302, India
| | - Dibyendu Samanta
- School of Bio Science, Indian Institute of Technology, Kharagpur, Kharagpur, 721302, India
| | - Gayatri Mukherjee
- Immunology and Inflammation Research Lab, School of Medical Sciences and Technology, Indian Institute of Technology, Kharagpur, Kharagpur, 721302, India.
| | - Gorachand Dutta
- NanoBiosensors and Biodevices Lab, School of Medical Sciences and Technology, Indian Institute of Technology, Kharagpur, Kharagpur, 721302, India.
| |
Collapse
|
5
|
Promsuwan K, Soleh A, Samoson K, Saisahas K, Wangchuk S, Saichanapan J, Kanatharana P, Thavarungkul P, Limbut W. Novel biosensor platform for glucose monitoring via smartphone based on battery-less NFC potentiostat. Talanta 2023; 256:124266. [PMID: 36693284 DOI: 10.1016/j.talanta.2023.124266] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 01/08/2023] [Accepted: 01/10/2023] [Indexed: 01/13/2023]
Abstract
Near-field communication (NFC) was used to control a portable glucose biosensor for diabetes diagnosis. The system comprised a smartphone and an NFC potentiostat connected to a screen-printed carbon electrode (SPCE) modified with Prussian blue-graphene ink and functionalized with gold nanoparticles-embedded poly (3,4ethylene dioxythiophene):polysulfonic acid coated with glucose oxidase (GOx-AuNPs-PEDOT:PSS/PB-G). GOx catalyzed the glucose redox reaction while the conductivity and sensitivity of the AuNPs-PEDOT:PSS composite enhanced electron transfer to the PB-G, which was used as a mediator. The fabrication process was characterized by scanning electron microscopy (SEM) with energy dispersibe x-ray analysis (EDX). The platform was electrochemically characterized by electrical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The NFC biosensing device was then applied to quantify glucose in human blood serum by amperometry. The linear concentration range and detection limit for glucose were 0.5-500 μM and 0.15 μM, respectively. The accuracy of the device was good and results were in agreement with the results obtained from the standard hospital method. This NFC glucose sensing device can be a simple, sensitive, selective and portable platform for medical diagnosis.
Collapse
Affiliation(s)
- Kiattisak Promsuwan
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Forensic Science Innovation and Service Center, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Asamee Soleh
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Kritsada Samoson
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Forensic Science Innovation and Service Center, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Kasrin Saisahas
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Forensic Science Innovation and Service Center, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Sangay Wangchuk
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Jenjira Saichanapan
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Forensic Science Innovation and Service Center, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Proespichaya Kanatharana
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Panote Thavarungkul
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Warakorn Limbut
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Forensic Science Innovation and Service Center, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand.
| |
Collapse
|
6
|
Moyseowicz A, Minta D, Gryglewicz G. Conductive Polymer/Graphene‐based Composites for Next Generation Energy Storage and Sensing Applications. ChemElectroChem 2023. [DOI: 10.1002/celc.202201145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
Affiliation(s)
- Adam Moyseowicz
- Department of Process Engineering and Technology of Polymer and Carbon Materials Wrocław University of Science and Technology Wybrzeże Stanisława Wyspiańskiego 27 50-370 Wrocław Poland
| | - Daria Minta
- Department of Process Engineering and Technology of Polymer and Carbon Materials Wrocław University of Science and Technology Wybrzeże Stanisława Wyspiańskiego 27 50-370 Wrocław Poland
| | - Grażyna Gryglewicz
- Department of Process Engineering and Technology of Polymer and Carbon Materials Wrocław University of Science and Technology Wybrzeże Stanisława Wyspiańskiego 27 50-370 Wrocław Poland
| |
Collapse
|
7
|
Theansun W, Sriprachuabwong C, Chuenchom L, Prajongtat P, Techasakul S, Tuantranont A, Dechtrirat D. Acetylcholinesterase modified inkjet-printed graphene/gold nanoparticle/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) hybrid electrode for ultrasensitive chlorpyrifos detection. Bioelectrochemistry 2023; 149:108305. [DOI: 10.1016/j.bioelechem.2022.108305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 10/06/2022] [Accepted: 10/11/2022] [Indexed: 12/05/2022]
|
8
|
Zhang Y, Wang X, Ayman E, Zhao Q, Wang Y, Gao Z, Gong G. Mussel-inspired graphene oxide-based mixed matrix membranes for improving permeability and antifouling property. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
9
|
Development of conducting cellulose paper for electrochemical sensing of procalcitonin. Mikrochim Acta 2022; 190:32. [PMID: 36534199 DOI: 10.1007/s00604-022-05596-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 11/23/2022] [Indexed: 12/23/2022]
Abstract
An electrochemical paper-based sensor was developed for the detection of bacterial infection (BI)-specific biomarker procalcitonin (PCT). Reduced graphene oxide-gold nanoparticles (rGO-AuNP) and poly(3,4-ethylene dioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) were synthesized and were fabricated to a disposable, portable, and inexpensive cellulose fiber paper (CFP) substrate. rGO-AuNP-PEDOT:PSS nanocomposite-modified conductive paper-based biosensing platform was efficaciously fabricated by a constant and simple coating procedure. rGO-AuNP-PEDOT:PSS nanocomposite-modified conductive paper electrode was found to provide a sensitive and conductive substrate for PCT detection. The presence of rGO-AuNP-PEDOT:PSS nanocomposite on CFP substate was investigated by Fourier transform infrared spectrometry, field emission scanning electron microscopy, ultraviolet-visible spectroscopy, and X-ray diffraction studies. The electrochemical behavior of rGO-AuNP-PEDOT:PSS @CFP surface was studied with impedance spectroscopy, cyclic voltammetry, and chronoamperometry techniques. This low-cost paper-based biosensor has a linear range for PCT of 1 × 103 to 6 × 107 fg mL-1. This developed sensor exhibited good reproducibility with a relative standard deviation (RSD) of about 3.7%. The proposed CFP-based biosensor has been proven as an accelerated simple point-of-care (POC) exploratory approach for early PCT diagnosis in inadequate areas with limited production facilities, computational techniques, and highly skilled experts.
Collapse
|
10
|
Gupta Y, Pandey CM, Ghrera AS. Reduced Graphene Oxide‐Gold Nanoparticle Nanohybrid Modified Cost‐Effective Paper‐Based Biosensor for Procalcitonin Detection. ChemistrySelect 2022. [DOI: 10.1002/slct.202202642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yachana Gupta
- Applied Science Department The NorthCap University, HUDA-Sector 23A Gurugram India
| | - Chandra Mouli Pandey
- Department of Chemistry Faculty of Science Shree Guru Gobind Singh Tricentenary University Gurugram 122505 Haryana India
| | - Aditya Sharma Ghrera
- Applied Science Department The NorthCap University, HUDA-Sector 23A Gurugram India
| |
Collapse
|
11
|
Mourdikoudis S, Antonatos N, Mazánek V, Marek I, Sofer Z. Simple Bottom-Up Synthesis of Bismuthene Nanostructures with a Suitable Morphology for Competitive Performance in the Electrocatalytic Nitrogen Reduction Reaction. Inorg Chem 2022; 61:5524-5538. [PMID: 35344664 DOI: 10.1021/acs.inorgchem.1c03938] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nitrogen reduction to ammonia under ambient conditions has received important attention, in which high-performing catalysts are sought. A new, facile, and seedless solvothermal method based on a high-temperature reduction route has been developed in this work for the production of bismuthene nanostructures with excellent performance in the electrocatalytic nitrogen reduction reaction (NRR). Different reaction conditions were tested, such as the type of solvent, surfactant, reducing agent, reaction temperature, and time, as well as bismuth precursor source, resulting in distinct particle morphologies. Two-dimensional sheet-like structures and small particles displayed very high electrocatalytic activity, attributed to the abundance of tips, edges, and high surface area. NRR experiments resulted in an ammonia yield of 571 ± 0.1 μg h-1 cm-2 with a respective Faradaic efficiency of 7.94 ± 0.2% vs Ag/AgCl. The easy implementation of the synthetic reaction to produce Bi nanostructures facilitates its potential scale up to larger production yields.
Collapse
Affiliation(s)
- Stefanos Mourdikoudis
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Nikolas Antonatos
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Vlastimil Mazánek
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Ivo Marek
- Central Laboratories, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Zdeněk Sofer
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic
| |
Collapse
|
12
|
Nde DT, Jhung SH, Lee HJ. Electrocatalytic Determination of Hydrazine Concentrations with Polyelectrolyte Supported AuCo Nanoparticles on Carbon Electrodes. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
13
|
Babeli I, Puiggalí-Jou A, Roa JJ, Ginebra MP, García-Torres J, Alemán C. Hybrid conducting alginate-based hydrogel for hydrogen peroxide detection from enzymatic oxidation of lactate. Int J Biol Macromol 2021; 193:1237-1248. [PMID: 34742851 DOI: 10.1016/j.ijbiomac.2021.10.169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/18/2021] [Accepted: 10/21/2021] [Indexed: 12/19/2022]
Abstract
A conducting nanocomposite hydrogel is developed for the detection of L-lactate. The hydrogel is based on a mixture of alginate (Alg) and poly(3,4-ethylenedioxythiophene) (PEDOT), which is loaded with gold nanoparticles (GNP). In this novel hydrogel, Alg provides 3D structural support and flexibility, PEDOT confers conductivity and sensing capacity, and GNP provides signal amplification with respect to simple voltammetric and chronoamperometric response. The synergistic combination of the properties provided by each component results in a new flexible nanocomposite with outstanding capacity to detect hydrogen peroxide, which has been used to detect the oxidation of L-lactate. The hydrogel detects hydrogen peroxide with linear response and limits of detection of 0.91 μM and 0.02 μM by cyclic voltammetry and chronoamperometry, respectively. The hydrogel is functionalized with lactate oxidase, which catalyzes the oxidation of L-lactate to pyruvate, forming hydrogen peroxide. For L-lactate detection, the functionalized biosensor works in two linear regimes, one for concentrations lower than 5 mM with a limit of detection of 0.4 mM, and the other for concentrations up to 100 mM with a limit of detection of 3.5 mM. Because of its linear range interval, the developed biosensor could be suitable for a wide number of biological fluids.
Collapse
Affiliation(s)
- Ismael Babeli
- Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/ Edueard Maristany, 10-14, 08019 Barcelona, Spain
| | - Anna Puiggalí-Jou
- Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/ Edueard Maristany, 10-14, 08019 Barcelona, Spain; Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, 08930 Barcelona, Spain.
| | - Joan Josep Roa
- Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, 08930 Barcelona, Spain; Center for Research in Structural Integrity, Reliability and Micromechanics of Materials, Departament de Ciència i Enginyeria de Materials, Universitat Politècnica de Catalunya, 08030 Barcelona, Spain
| | - Maria-Pau Ginebra
- Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, 08930 Barcelona, Spain; Biomaterials, Biomechanics and Tissue Engineering Group, Departament de Ciència i Enginyeria de Materials, Universitat Politècnica de Catalunya (UPC), 08930 Barcelona, Spain; Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10-12, 08028 Barcelona, Spain
| | - Jose García-Torres
- Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, 08930 Barcelona, Spain; Biomaterials, Biomechanics and Tissue Engineering Group, Departament de Ciència i Enginyeria de Materials, Universitat Politècnica de Catalunya (UPC), 08930 Barcelona, Spain.
| | - Carlos Alemán
- Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/ Edueard Maristany, 10-14, 08019 Barcelona, Spain; Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, 08930 Barcelona, Spain; Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10-12, 08028 Barcelona, Spain.
| |
Collapse
|
14
|
Islam S, Shaheen Shah S, Naher S, Ali Ehsan M, Aziz MA, Ahammad AJS. Graphene and Carbon Nanotube-based Electrochemical Sensing Platforms for Dopamine. Chem Asian J 2021; 16:3516-3543. [PMID: 34487610 DOI: 10.1002/asia.202100898] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/05/2021] [Indexed: 12/24/2022]
Abstract
Dopamine (DA) is an important neurotransmitter, which is created and released from the central nervous system. It plays a crucial role in human activities, like cognition, emotions, and response to anything. Maladjustment of DA in human blood serum results in different neural diseases, like Parkinson's and Schizophrenia. Consequently, researchers have started working on DA detection in blood serum, which is undoubtedly a hot research area. Electrochemical sensing techniques are more promising to detect DA in real samples. However, utilizing conventional electrodes for selective determination of DA encounters numerous problems due to the coexistence of other materials, such as uric acid and ascorbic acid, which have an oxidation potential close to DA. To overcome such problems, researchers have put their focus on the modification of bare electrodes. The aim of this review is to present recent advances in modifications of most used bare electrodes with carbonaceous materials, especially graphene, its derivatives, and carbon nanotubes, for electrochemical detection of DA. A brief discussion about the mechanistic phenomena at the electrode interface has also been included in this review.
Collapse
Affiliation(s)
- Santa Islam
- Department of Chemistry, Jagannath University, Dhaka, 1100, Bangladesh
| | - Syed Shaheen Shah
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, Dhahran, 31261, Saudi Arabia.,Physics Department, King Fahd University of Petroleum & Minerals, KFUPM Box 5047, Dhahran, 31261, Saudi Arabia
| | - Shamsun Naher
- Department of Chemistry, Jagannath University, Dhaka, 1100, Bangladesh
| | - Muhammad Ali Ehsan
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, Dhahran, 31261, Saudi Arabia
| | - Md Abdul Aziz
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, Dhahran, 31261, Saudi Arabia
| | - A J Saleh Ahammad
- Department of Chemistry, Jagannath University, Dhaka, 1100, Bangladesh
| |
Collapse
|
15
|
Díez-Pascual AM. Environmentally Friendly Synthesis of Poly(3,4-Ethylenedioxythiophene): Poly(Styrene Sulfonate)/SnO 2 Nanocomposites. Polymers (Basel) 2021; 13:2445. [PMID: 34372048 PMCID: PMC8348352 DOI: 10.3390/polym13152445] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 11/30/2022] Open
Abstract
Conductive poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) is widely used for practical applications such as energy conversion and storage devices owing to its good flexibility, processability, high electrical conductivity, and superior optical transparency, among others. However, its hygroscopic character, short durability, and poor thermoelectric performance compared to inorganic counterparts has greatly limited its high-tech applications. In this work, PEDOT:PSS/SnO2 nanocomposites have been prepared via a simple, low cost, environmentally friendly method without the use of organic solvents or compatibilizing agents. Their morphology, thermal, thermoelectrical, optical, and mechanical properties have been characterized. Electron microscopy analysis revealed a uniform dispersion of the SnO2 nanoparticles, and the Raman spectra revealed the existence of very strong SnO2-PEDOT:PSS interactions. The stiffness and strength of the matrix gradually increased with increasing SnO2 content, up to 120% and 65%, respectively. Moreover, the nanocomposites showed superior thermal stability (as far as 70 °C), improved electrical conductivity (up to 140%), and higher Seebeck coefficient (about 80% increase) than neat PEDOT:PSS. On the other hand, hardly any change in optical transparency was observed. These sustainable nanocomposites show considerably improved performance compared to commercial PEDOT:PSS, and can be highly useful for applications in energy storage, flexible electronics, thermoelectric devices, and related fields.
Collapse
Affiliation(s)
- Ana M Díez-Pascual
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona, Km. 33.6, 28805 Alcalá de Henares, Madrid, España (Spain)
| |
Collapse
|
16
|
Terán-Alcocer Á, Bravo-Plascencia F, Cevallos-Morillo C, Palma-Cando A. Electrochemical Sensors Based on Conducting Polymers for the Aqueous Detection of Biologically Relevant Molecules. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:252. [PMID: 33478121 PMCID: PMC7835872 DOI: 10.3390/nano11010252] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 12/12/2022]
Abstract
Electrochemical sensors appear as low-cost, rapid, easy to use, and in situ devices for determination of diverse analytes in a liquid solution. In that context, conducting polymers are much-explored sensor building materials because of their semiconductivity, structural versatility, multiple synthetic pathways, and stability in environmental conditions. In this state-of-the-art review, synthetic processes, morphological characterization, and nanostructure formation are analyzed for relevant literature about electrochemical sensors based on conducting polymers for the determination of molecules that (i) have a fundamental role in the human body function regulation, and (ii) are considered as water emergent pollutants. Special focus is put on the different types of micro- and nanostructures generated for the polymer itself or the combination with different materials in a composite, and how the rough morphology of the conducting polymers based electrochemical sensors affect their limit of detection. Polypyrroles, polyanilines, and polythiophenes appear as the most recurrent conducting polymers for the construction of electrochemical sensors. These conducting polymers are usually built starting from bifunctional precursor monomers resulting in linear and branched polymer structures; however, opportunities for sensitivity enhancement in electrochemical sensors have been recently reported by using conjugated microporous polymers synthesized from multifunctional monomers.
Collapse
Affiliation(s)
- Álvaro Terán-Alcocer
- Grupo de Investigación Aplicada en Materiales y Procesos (GIAMP), School of Chemical Sciences and Engineering, Yachay Tech University, Hda. San José s/n y Proyecto Yachay, 100119 Urcuquí, Ecuador; (Á.T.-A.); (F.B.-P.)
| | - Francisco Bravo-Plascencia
- Grupo de Investigación Aplicada en Materiales y Procesos (GIAMP), School of Chemical Sciences and Engineering, Yachay Tech University, Hda. San José s/n y Proyecto Yachay, 100119 Urcuquí, Ecuador; (Á.T.-A.); (F.B.-P.)
| | - Carlos Cevallos-Morillo
- Facultad de Ciencias Químicas, Universidad Central del Ecuador, Francisco Viteri s/n y Gato Sobral, 170129 Quito, Ecuador;
| | - Alex Palma-Cando
- Grupo de Investigación Aplicada en Materiales y Procesos (GIAMP), School of Chemical Sciences and Engineering, Yachay Tech University, Hda. San José s/n y Proyecto Yachay, 100119 Urcuquí, Ecuador; (Á.T.-A.); (F.B.-P.)
| |
Collapse
|
17
|
Cogal S. A review of poly(3,4-ethylenedioxythiophene) and its composites-based electrochemical sensors for dopamine detection. POLYM-PLAST TECH MAT 2020. [DOI: 10.1080/25740881.2020.1811321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Sadik Cogal
- Department of Polymer Engineering, Faculty of Engineering and Architecture, Burdur Mehmet Akif Ersoy University, Burdur, Turkey
| |
Collapse
|
18
|
Electrochemical and Spectroscopic Properties of Green Synthesized Gold Nanoparticles Doped in Polyacrylonitrile Nanofibers. J CLUST SCI 2020. [DOI: 10.1007/s10876-020-01834-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
19
|
Luo H, Zhao Y, Jin X, Yang J, Cong H, Ge Q, Sun L, Liu M, Tao Z. Voltammetric Detection of Catechol and Dopamine Based on a Supramolecular Composite Prepared from Multifarene[3,3] and Reduced Graphene Oxide. ELECTROANAL 2020. [DOI: 10.1002/elan.201900772] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Huan Luo
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou ProvinceGuizhou University Guiyang 550025 China
| | - Yong‐Yi Zhao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou ProvinceGuizhou University Guiyang 550025 China
| | - Xian‐Yi Jin
- School of Materials and Metallurgical EngineeringGuizhou Institute of Technology Guiyang 550001 China
| | - Jian‐Mei Yang
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou ProvinceGuizhou University Guiyang 550025 China
| | - Hang Cong
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou ProvinceGuizhou University Guiyang 550025 China
| | - Qing‐Mei Ge
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou ProvinceGuizhou University Guiyang 550025 China
| | - Lin Sun
- Guizhou Shengyang Pipeline Technology Co., Ltd Guiding 551302 China
| | - Mao Liu
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou ProvinceGuizhou University Guiyang 550025 China
| | - Zhu Tao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou ProvinceGuizhou University Guiyang 550025 China
| |
Collapse
|
20
|
Electrochemical biosensors for the detection and study of α-synuclein related to Parkinson's disease - A review. Anal Chim Acta 2019; 1089:32-39. [PMID: 31627816 DOI: 10.1016/j.aca.2019.09.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 09/01/2019] [Accepted: 09/04/2019] [Indexed: 12/11/2022]
Abstract
Parkinson's disease (PD) is a long-term degenerative disorder that affects predominately dopaminergic neurons in the substantia nigra, which mainly control movement. Alpha-synuclein (α-syn) is a major constituent of Lewy bodies that are reported to be the most important toxic species in the brain of PD patients. In this critical review, we highlight novel electrochemical biosensors that have been recently developed utilizing aptamers and antibodies in connection with various nanomaterials to study biomarkers related to PD such as α-syn. We also review several research articles that have utilized electrochemical biosensors to study the interaction of α-syn with biometals as well as small molecules such as clioquinol, (-)-epigallocatechin-3-gallate (EGCG) and baicalein. Due to the significant advances in nanomaterials in the past decade, electrochemical biosensors capable of detecting multiple biomarkers in clinically relevant samples in real-time have been achieved. This may facilitate the path towards commercialization of electrochemical biosensors for clinical applications and high-throughput screening of small molecules for structure-activity relationship (SAR) studies.
Collapse
|
21
|
Lee S, Eom T, Kim MK, Yang SG, Shim BS. Durable soft neural micro-electrode coating by an electrochemical synthesis of PEDOT:PSS / graphene oxide composites. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.04.099] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
22
|
Taj A, Shaheen A, Xu J, Estrela P, Mujahid A, Asim T, Zubair Iqbal M, Khan WS, Bajwa SZ. In-situ synthesis of 3D ultra-small gold augmented graphene hybrid for highly sensitive electrochemical binding capability. J Colloid Interface Sci 2019; 553:289-297. [PMID: 31212228 DOI: 10.1016/j.jcis.2019.06.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/17/2019] [Accepted: 06/04/2019] [Indexed: 02/06/2023]
Abstract
The fascinating properties of graphene can be augmented with other nanomaterials to generate hybrids to design innovative applications. Contrary to the conventional methodologies, we showed a novel yet simple, in-situ, biological approach which allowed for the effective growth of gold nanostructures on graphene surfaces (3D Au NS@GO). The morphology of the obtained hybrid consisted of sheets of graphene, anchoring uniform dispersion of ultra-small gold nanostructures of about 2-8 nm diameter. Surface plasmon resonance at 380 nm confirmed the nano-regimen of the hybrid. Fourier transform infrared spectroscopy indicated the utilization of amine spacers to host gold ions leading to nucleation and growth. The exceptional positive surface potential of 55 mV suggest that the hybrid as an ideal support for electrocatalysis. Ultimately, the hybrid was found to be an efficient receptor material for electrochemical performance towards the binding of uric acid which is an important biomolecule of human metabolism. The designed material enabled the detection of uric acid concentrations as low as 30 nM. This synthesis strategy is highly suitable to design new hybrid materials with interesting morphology and outstanding properties for the identification of clinically relevant biomolecules.
Collapse
Affiliation(s)
- Ayesha Taj
- National Institute for Biotechnology and Genetic Engineering (NIBGE), P.O. Box No. 577, Jhang Road, Faisalabad, Pakistan; Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad, Pakistan
| | - Ayesha Shaheen
- National Institute for Biotechnology and Genetic Engineering (NIBGE), P.O. Box No. 577, Jhang Road, Faisalabad, Pakistan; Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad, Pakistan
| | - Jie Xu
- Department of Industrial and Mechanical Engineering, College of Engineering, University of Illinois at Chicago, Chicago, USA
| | - Pedro Estrela
- Centre of Biosensor Bioelectronics and Biodevices (C3Bio) and Department of Electronics and Electrical Engineering, University of Bath, Bath BA2 7AY, UK
| | - Adnan Mujahid
- Institute of Chemistry, University of the Punjab, Quaid-i-Azam Campus, Lahore 54590, Pakistan
| | - Tayyaba Asim
- Department of Environmental Science, Lahore College for Women University, Lahore 54590, Pakistan
| | - M Zubair Iqbal
- Department of Materials Engineering, College of Materials and Textiles, Zhejiang Sci-Tech University, No. 2 Road of Xiasha, Hangzhou 310018, PR China
| | - Waheed S Khan
- National Institute for Biotechnology and Genetic Engineering (NIBGE), P.O. Box No. 577, Jhang Road, Faisalabad, Pakistan.
| | - Sadia Z Bajwa
- National Institute for Biotechnology and Genetic Engineering (NIBGE), P.O. Box No. 577, Jhang Road, Faisalabad, Pakistan.
| |
Collapse
|
23
|
Prajapati DG, Kandasubramanian B. Progress in the Development of Intrinsically Conducting Polymer Composites as Biosensors. MACROMOL CHEM PHYS 2019; 220:1800561. [PMID: 32327916 PMCID: PMC7168478 DOI: 10.1002/macp.201800561] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/25/2019] [Indexed: 12/22/2022]
Abstract
Biosensors are analytical devices which find extensive applications in fields such as the food industry, defense sector, environmental monitoring, and in clinical diagnosis. Similarly, intrinsically conducting polymers (ICPs) and their composites have lured immense interest in bio-sensing due to their various attributes like compatibility with biological molecules, efficient electron transfer upon biochemical reactions, loading of bio-reagent, and immobilization of biomolecules. Further, they are proficient in sensing diverse biological species and compounds like glucose (detection limit ≈0.18 nm), DNA (≈10 pm), cholesterol (≈1 µm), aptamer (≈0.8 pm), and also cancer cells (≈5 pm mL-1) making them a potential candidate for biological sensing functions. ICPs and their composites have been extensively exploited by researchers in the field of biosensors owing to these peculiarities; however, no consolidated literature on the usage of conducting polymer composites for biosensing functions is available. This review extensively elucidates on ICP composites and doped conjugated polymers for biosensing functions of copious biological species. In addition, a brief overview is provided on various forms of biosensors, their sensing mechanisms, and various methods of immobilizing biological species along with the life cycle assessment of biosensors for various biosensing applications, and their cost analysis.
Collapse
Affiliation(s)
- Deepak G. Prajapati
- Nano Texturing LaboratoryDepartment of Metallurgical and Materials EngineeringDefence Institute of Advanced TechnologyMinistry of DefenceGirinagarPune411025India
| | - Balasubramanian Kandasubramanian
- Nano Texturing LaboratoryDepartment of Metallurgical and Materials EngineeringDefence Institute of Advanced TechnologyMinistry of DefenceGirinagarPune411025India
| |
Collapse
|