1
|
Liu H, Song Y, Wang H, Zhou Y, Xu M, Xian J. Deciphering the Power of Resveratrol in Mitophagy: From Molecular Mechanisms to Therapeutic Applications. Phytother Res 2025. [PMID: 39754508 DOI: 10.1002/ptr.8433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/04/2024] [Accepted: 12/24/2024] [Indexed: 01/06/2025]
Abstract
Resveratrol (RES), a natural polyphenolic compound, has garnered significant attention for its therapeutic potential in various pathological conditions. This review explores how RES modulates mitophagy-the selective autophagic degradation of mitochondria essential for maintaining cellular homeostasis. RES promotes the initiation and execution of mitophagy by enhancing PINK1/Parkin-mediated mitochondrial clearance, reducing reactive oxygen species production, and mitigating apoptosis, thereby preserving mitochondrial integrity. Additionally, RES regulates mitophagy through the activation of key molecular targets such as AMP-activated protein kinase (AMPK), the mechanistic target of rapamycin (mTOR), deacetylases (SIRT1 and SIRT3), and mitochondrial quality control (MQC) pathways, demonstrating substantial therapeutic effects in multiple disease models. We provide a detailed account of the biosynthetic pathways, pharmacokinetics, and metabolic characteristics of RES, focusing on its role in mitophagy modulation and implications for medical applications. Potential adverse effects associated with its clinical use are also discussed. Despite its promising therapeutic properties, the clinical application of RES is limited by issues of bioavailability and pharmacokinetic profiles. Future research should concentrate on enhancing RES bioavailability and developing derivatives that precisely modulate mitophagy, thereby unlocking new avenues for disease therapy.
Collapse
Affiliation(s)
- Hongmei Liu
- Department of Pharmacy, Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, Sichuan, China
| | - Yixuan Song
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Huan Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ying Zhou
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Min Xu
- Department of Pharmacy, Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, Sichuan, China
| | - Jiaxun Xian
- Traditional Chinese Medicine Hospital of Meishan, Meishan, China
| |
Collapse
|
2
|
Li J, Gao H, Xu Z, Gao B, Zhang L, Su B, Yang S, Liu J, Liu Y, Wang X, Wang H, Lin Y, Shen H. Gestational exposure to carbon black nanoparticles triggered fetal growth restriction in mice: The mediation of inactivating autophagy-lysosomal degradation system in placental ferroptosis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 959:178167. [PMID: 39721551 DOI: 10.1016/j.scitotenv.2024.178167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/10/2024] [Accepted: 12/15/2024] [Indexed: 12/28/2024]
Abstract
Carbon black nanoparticles (CBNPs) are ubiquitous in our daily ambient environment, either resulting from tobacco combustion or constituting the core of PM2.5. Despite the potential risk of trafficking CBNPs to the fetus, the underlying toxicity of nano-sized carbon black particles in the placenta remains unambiguous. Pregnant C57BL/6 mice received intratracheal instillation of 30 nm or 120 nm CBNPs. CBNPs deposited in the lungs could infiltrate the red blood cells, further cross into the placenta, and cause fetal growth restriction. Mechanistically, we proposed a two-hit hypothesis in placenta response to CBNPs. The first hit was that CBNPs caused mitochondrial damage, reflected in the reduced mitochondrial matrix, the excessive mitochondrial fission, and the decreased mitochondrial membrane potential and mtDNA copy number. The second hit was that CBNPs disrupted the autophagy-lysosomal degradation system, impeding the removal of dysfunctional mitochondria and resulting in ferroptosis. Ferrestatin-1, a ferroptosis inhibitor, and rapamycin, an autophagy promotor, reversed ferroptosis and further confirm our suspicion. The findings suggested that CBNPs-triggered double-hit evoked placental ferroptosis, leading to fetal growth restriction. The study raised concerns about the potential placental toxicity of CBNPs and its impact on the fetal adverse outcome, which may propose potential targets for interventions in placental damage.
Collapse
Affiliation(s)
- Jing Li
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China.
| | - Hongying Gao
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Zehua Xu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China.
| | - Biling Gao
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Liang Zhang
- Department of Neurosurgery and Department of Neuroscience, Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Bowen Su
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Shijing Yang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Jiangling Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Ya Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Xiuxiu Wang
- College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Heng Wang
- Zhoushan Municipal Center for Disease Control and Prevention, Zhoushan, Zhejiang 316021, China
| | - Yi Lin
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China.
| | - Heqing Shen
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China; Department of Obstetrics, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen 361003, China.
| |
Collapse
|
3
|
Lv M, Liu C, Jiang X, Ge M, Wang H, Yu W. Molting of laying hens can activate AMPK- lipophagy - lipid metabolism pathway and improve intestinal digestion and absorption. Poult Sci 2024; 104:104641. [PMID: 39667182 PMCID: PMC11699241 DOI: 10.1016/j.psj.2024.104641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/30/2024] [Accepted: 12/04/2024] [Indexed: 12/14/2024] Open
Abstract
Poultry molting is a natural phenomenon, and process that improves the physiological function of laying hens. In this study, artificial intervention was used to induced molting (IM) in aged hens and improve their egg- laying performance. Jejunal lipophagy and lipid metabolism data were analyzed to elucidate the regulatory mechanisms by which the intestine affects egg production performance, particularly through the lens of digestion and absorption processes. Molting process in laying hens facilitated the regeneration of small intestinal villi following damage and shedding, while also reducing excess lipid accumulation within the intestine. Analyses of lipophagy and lipid metabolism-related factors revealed, increased the expression levels of genes and proteins, such as AMPK, FOXO1, TFEB, TFE3, PGC-1α and PPAR-α (P<0.05, P<0.01 and P<0.001). Serological analysis and detection of enzymes involved in digestion and absorption, showed upregulated expression of GLUT2, FABP (P<0.05 and P<0.001) and CD36 (P<0.01), and the activities of amylase, chymotrypsin and Lipase also increased significantly (P<0.05, P<0.01 and P<0.001). In conclusion, artificially IM activates the AMPK-lipophagy-lipid metabolism pathway to enhance intestinal digestion and absorption in laying hens. Our findings offer a theoretical framework for the intentional use of IM to promote a healthy state of digestion and absorption.
Collapse
Affiliation(s)
- Meiwei Lv
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Chenxin Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xiaowen Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Provincial Key Laboratory of Comparative Medicine and Animal Pathogenesis, Northeast Agricultural University, Harbin 150030, PR China
| | - Ming Ge
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Institute of Traditional Chinese Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Haibin Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Institute of Traditional Chinese Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Wenhui Yu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Institute of Traditional Chinese Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
4
|
Safari Maleki A, Hayes AW, Karimi G. Enhancing renal protection against cadmium toxicity: the role of herbal active ingredients. Toxicol Res (Camb) 2024; 13:tfae222. [PMID: 39712642 PMCID: PMC11662934 DOI: 10.1093/toxres/tfae222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/02/2024] [Accepted: 12/11/2024] [Indexed: 12/24/2024] Open
Abstract
Background Rapid industrialization globally has led to a notable increase in the production and utilization of metals, including cadmium (Cd), consequently escalating global metal pollution worldwide. Cd, characterized as a persistent environmental contaminant, poses significant health risks, particularly impacting human health, notably the functionality of the kidneys. The profound effects of Cd stem primarily from its limited excretion capabilities and extended half-life within the human body. Mechanisms underlying its toxicity encompass generating reactive oxygen species (ROS), disrupting calcium-signaling pathways and impairing cellular antioxidant defense mechanisms. This review focuses on the protective effects of various herbal active ingredients against Cd-induced nephrotoxicity. Aim This study aims to investigate the mechanisms of action of herbal active ingredients, including ant-oxidative, anti-inflammatory and anti-apoptotic pathways, to elucidate potential therapeutic strategies for reducing nephrotoxicity caused by Cd exposure. Methods A comprehensive search of scientific databases, including Web of Science, PubMed, Scopus and Google Scholar, used relevant keywords to identify studies published up to October 2024. Results Research illustrates that herbal active ingredients protect against Cd nephrotoxicity by reducing oxidative stress, enhancing antioxidant enzyme activity, inhibiting inflammation, preventing apoptosis, alleviating endoplasmic reticulum (ER) stress, enhancing autophagy and improving mitochondrial function in the kidney. Conclusion The present study indicates that an extensive understanding of the protective effects of herbal active ingredients holds promise for the development of innovative approaches to safeguard human health and environmental integrity against the detrimental effects of Cd exposure.
Collapse
Affiliation(s)
- Ahmad Safari Maleki
- Student Research Committee, Mashhad University of Medical Sciences, P. O. Box 91388-13944, Mashhad, Iran
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, P. O. Box 91779-48954, Mashhad, Iran
| | - A Wallace Hayes
- University of South Florida College of Public Health, Tampa, FL, USA and Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, USA
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, P. O. Box 91779-48954, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, P. O. Box 91967-73117, Mashhad, Iran
| |
Collapse
|
5
|
Zhang X, Yi R, Liu Y, Ma J, Xu J, Tian Q, Yan X, Wang S, Yang G. Resveratrol: potential application in safeguarding testicular health. EPMA J 2024; 15:643-657. [PMID: 39635023 PMCID: PMC11612077 DOI: 10.1007/s13167-024-00377-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 08/14/2024] [Indexed: 12/07/2024]
Abstract
Factors such as increasing mental pressure and poor living habits in modern society have led to an increase in the incidence of male reproductive diseases, including poor semen quality, testicular malignancy, and congenital developmental defects. The decline of male fertility deserves our attention. Resveratrol (3,4', 5-trihydroxy-trans-Stilbene, 3,4',5-trihydroxy), a polyphenol widely found in plant foods, is expected to enhance testicular function and promote breakthroughs in the treatment of diseases related to the male reproductive system. A large number of studies have shown that in male animals, resveratrol can enhance testicular function and spermatogenesis by activating SIRT1 expression and resist the damage of the testicular system by adverse factors. This article reviews the basic protective pathways of resveratrol against testicular and sperm damage, which involve oxidative stress, cell apoptosis, inflammatory damage, and mitochondrial function. The healthcare framework of predictive, preventive, and personalized medicine (PPPM/3PM) is by far the most beneficial for healthcare and is suitable for the management of chronic diseases. This review also summarizes the health benefits of resveratrol on male reproduction in the context of PPPM/3PM by comprehensively collecting and reviewing the available evidence, thus leading to a working hypothesis that resveratrol can personalize prevention and protection of male reproductive function. It provides a new perspective and direction for future research on the health effects of resveratrol in improving male reproductive function.
Collapse
Affiliation(s)
- Xu Zhang
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W, Lushun South Road, Dalian, 116044 China
| | - Ruhan Yi
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W, Lushun South Road, Dalian, 116044 China
| | - Yun Liu
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W, Lushun South Road, Dalian, 116044 China
| | - Jiaxuan Ma
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W, Lushun South Road, Dalian, 116044 China
| | - Jiawei Xu
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W, Lushun South Road, Dalian, 116044 China
| | - Qing Tian
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W, Lushun South Road, Dalian, 116044 China
| | - Xinyu Yan
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W, Lushun South Road, Dalian, 116044 China
| | - Shaopeng Wang
- Department of Cardiology, the First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Dalian, 116011 China
| | - Guang Yang
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W, Lushun South Road, Dalian, 116044 China
| |
Collapse
|
6
|
Safreena N, Nair IC, Chandra G. Therapeutic potential of Parkin and its regulation in Parkinson's disease. Biochem Pharmacol 2024; 230:116600. [PMID: 39500382 DOI: 10.1016/j.bcp.2024.116600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/05/2024] [Accepted: 10/28/2024] [Indexed: 11/14/2024]
Abstract
Parkinson's disease (PD) is a debilitating neurodegenerative disorder characterized by the progressive loss of dopaminergic neurons in the midbrain substantia nigra, resulting in motor and non-motor symptoms. While the exact etiology of PD remains elusive, a growing body of evidence suggests that dysfunction in the parkin protein plays a pivotal role in the pathogenesis of the disease. Parkin is an E3 ubiquitin ligase that ubiquitinates substrate proteins to control a number of crucial cellular processes including protein catabolism, immune response, and cellular apoptosis.While autosomal recessive mutations in the PARK2 gene, which codes for parkin, are linked to an inherited form of early-onset PD, heterozygous mutations in PARK2 have also been reported in the more commonly occurring sporadic PD cases. Impairment of parkin's E3 ligase activity is believed to play a pathogenic role in both familial and sporadic forms of PD.This article provides an overview of the current understanding of the mechanistic basis of parkin's E3 ligase activity, its major physiological role in controlling cellular functions, and how these are disrupted in familial and sporadic PD. The second half of the manuscript explores the currently available and potential therapeutic strategies targeting parkin structure and/or function in order to slow down or mitigate the progressive neurodegeneration in PD.
Collapse
Affiliation(s)
- Narukkottil Safreena
- Cell Biology Laboratory, Center for Development and Aging Research, Inter University Center for Biomedical Research & Super Specialty Hospital, Mahatma Gandhi University Campus at Thalappady, Rubber Board PO, Kottayam 686009, Kerala, India
| | - Indu C Nair
- SAS SNDP Yogam College, Konni, Pathanamthitta 689691, Kerala, India
| | - Goutam Chandra
- Cell Biology Laboratory, Center for Development and Aging Research, Inter University Center for Biomedical Research & Super Specialty Hospital, Mahatma Gandhi University Campus at Thalappady, Rubber Board PO, Kottayam 686009, Kerala, India.
| |
Collapse
|
7
|
Li D, Yang C, Sun L, Zhao Z, Liu J, Zhang C, Sun D, Zhang Q. High fluoride aggravates cadmium-mediated nephrotoxicity of renal tubular epithelial cells through ROS-PINK1/Parkin pathway. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:175927. [PMID: 39236818 DOI: 10.1016/j.scitotenv.2024.175927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/30/2024] [Accepted: 08/29/2024] [Indexed: 09/07/2024]
Abstract
Fluoride (F) and cadmium (Cd) as well known environmental pollutants can cause nephrotoxicity to damage human health, while the joint toxicity of F and Cd to the renal tubular epithelial cells remains still elusive. The interactive influence between F and Cd in oxidative stress, apoptosis, and mitochondrial autophagy of renal tubular epithelial cells was explored. Cells were submitted to varying concentrations with of NaF (1, 5, 10, and 15 μg/mL) combined with CdCl2·2.5H2O (1 μg/mL) for 12 h. Following this, the combined cytotoxicity was assessed. Our results show that different doses of F had varying effects on Cd-mediated nephrotoxicity, with a synergistic effect observed in the high F (15 μg/mL) co-treated with Cd. In response to the Cd induction, the high F treatment resulted in the formation of multiple autophagosomes and notably increased the levels of LDH, ROS, and MMP. It also elevated the MDA contents while decreasing the activities of SOD, GSH-Px, and CAT. Additionally, it yielded a higher Bax/Bcl-2 ratio, which further promotes the apoptotic process. The treatment also disturbed energy metabolism, resulting in a reduction of both ATP and ADP. Furthermore, autophagy-related genes and proteins, including PINK1, Parkin, LC3A, LC3B, and SQSTM1, were significantly improved. In brief, high F of 15 μg/mL aggravated Cd-mediated nephrotoxicity of renal tubular epithelial cells via the ROS-PINK1/Parkin pathway.
Collapse
Affiliation(s)
- Dashuan Li
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, No.6 Ankang Road, Guian New Area, Guizhou 561113, China
| | - Chaolian Yang
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, No.6 Ankang Road, Guian New Area, Guizhou 561113, China
| | - Lu Sun
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, No.6 Ankang Road, Guian New Area, Guizhou 561113, China
| | - Zhenqin Zhao
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, No.6 Ankang Road, Guian New Area, Guizhou 561113, China
| | - Jiaqi Liu
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, No.6 Ankang Road, Guian New Area, Guizhou 561113, China
| | - Cheng Zhang
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, No.6 Ankang Road, Guian New Area, Guizhou 561113, China
| | - Dali Sun
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, No.6 Ankang Road, Guian New Area, Guizhou 561113, China
| | - Qinghai Zhang
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, No.6 Ankang Road, Guian New Area, Guizhou 561113, China.
| |
Collapse
|
8
|
Xu WY, Li XW, Sun JX, Malhi KK, Li XN, Li JL. Cadmium causes spleen toxicity in chickens by regulating mitochondrial unfolded protein response and nuclear receptors response. Poult Sci 2024; 103:104167. [PMID: 39180780 PMCID: PMC11387532 DOI: 10.1016/j.psj.2024.104167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 08/26/2024] Open
Abstract
Cadmium (Cd) is a heavy metal that pollutes the environment and threatens human and animal health via the food chain. The spleen is one of the target organs affected by Cd toxicity. However, the mechanism of Cd toxicity is not fully understood. In this study, 80 chicks were allocated into 4 groups (n = 20) and exposed to different doses of CdCl2 (0 mg/kg, 35 mg/kg, 70 mg/kg and 140 mg/kg) for 90 d. The pathological changes in the spleen, mitochondrial dynamics-related factors, cytochrome P450 (CYP450) enzyme system contents, activities, transcription levels, nuclear receptors (NRs) response molecule levels, and mitochondrial unfolded protein-related factors were detected. The findings indicate that exposure to Cd significantly leads to spleen injury. In Cd groups, the total contents of CYP450 and cytochrome b5 (Cyt b5) increased, and the activities of the CYP450 enzyme system (APND, ERND, AH, and NCR) changed. The NRs response was induced, and the gene levels of AHR/CAR and corresponding CYP450 isoforms (CYP1B1, CYP1A5, CYP1A1, CYP2C18, CYP2D6 and CYP3A4) were found altered. The study found that Cd exposure altered the mRNA expression levels of mitochondrial dynamics-related factors, such as OPA1, Fis1, MFF, Mfn1, and Mfn2, breaking mitochondrial fusion and cleavage and ultimately leading to mitochondrial dysfunction. Changes were detected in the gene levels of several mitochondrial unfolded protein response (mtUPR)-related factors, namely (SIRT1, PGC-1α, NRF1, TFAM, SOD2, and HtrA2). Cd also altered the gene levels of mitochondrial function-related factors (VDAC1, Cyt-C, COA6, PRDX3, RAF and SIRT3). It is showed that Cd can initiate the NRs response, influence the homeostasis of the CPY450 enzyme system, trigger the mtUPR, impair mitochondrial function, and ultimately lead to Cd toxicity in the spleen of chickens.
Collapse
Affiliation(s)
- Wang-Ye Xu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Xiao-Wei Li
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Jin-Xu Sun
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Kanwar Kumar Malhi
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Xue-Nan Li
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Department of Clinical Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China; Department of Obstetrics & Gynaecology; Li Ka Shing Institute of Health Sciences; School of Biomedical Sciences; and The Chinese University of Hong Kong-Sichuan University Joint Laboratory for Reproductive Medicine, The Chinese University of Hong Kong, Hong Kong, China.
| | - Jin-Long Li
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Department of Clinical Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| |
Collapse
|
9
|
Xu D, Wang X, Hou X, Wang X, Shi W, Hu Y. The effect of Lonicerae flos and Rhizoma curcumae longae extract on the intestinal development and function of broilers. Poult Sci 2024; 103:104225. [PMID: 39217666 PMCID: PMC11402626 DOI: 10.1016/j.psj.2024.104225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/26/2024] [Accepted: 08/11/2024] [Indexed: 09/04/2024] Open
Abstract
This study was conducted to explore effects of Lonicerae flos and Rhomoma curcumae longae extracts (LR) on intestinal function of broilers. Three hundred broiler chickens were randomly assigned to the following 5 groups. The control group were fed the basal diet; the antibiotic group were fed the basal diet supplemented with spectinomycin hydrochloride (50 million units/ton) + lincomycin hydrochloride (25 g/ton); the LRH, LRM and LRL groups were fed the basal diet supplemented with a high dose (750 g/ton of feed), normal dose (500 g/ton of feed), or low dose (250 g/ton of feed) of LR, respectively. The changes of intestinal structure, intestinal digestive enzyme activities, antioxidant enzyme activities, inflammatory cytokines, and bacterial abundances in the colon and cecum contents were determined. The results indicated that compared with the control group and the antibiotic group, LR significantly increased the villus length/crypt depth (VCR) of the intestine, and significantly inhibited oxidative stress and inflammatory responses in the broiler intestine. In addition, LR regulated intestinal function by increasing the abundance of the intestinal microorganisms in broilers. In conclusion, LR improved antioxidant capacity, intestinal morphology, and microorganisms, and inhibited inflammatory response. The effect of high and medium doses of LR was better than lower doses.
Collapse
Affiliation(s)
- Dahai Xu
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding, 071000, China; State Key Laboratory of Animal Nutrition and feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xiao Wang
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding, 071000, China
| | - Xiaojiao Hou
- Beijing Centre Biology Co., Ltd., Beijing 102600, China
| | - Xiumin Wang
- Beijing Centre Biology Co., Ltd., Beijing 102600, China
| | - Wanyu Shi
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding, 071000, China.
| | - Yongfei Hu
- State Key Laboratory of Animal Nutrition and feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
10
|
Liu H, Jiang L, Xu S, Wang C, Sun J. Quercetin prevents methylmercury-induced mitochondrial dysfunction in the cerebral cortex of mice. Drug Chem Toxicol 2024; 47:1124-1138. [PMID: 38647114 DOI: 10.1080/01480545.2024.2341888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 04/06/2024] [Indexed: 04/25/2024]
Abstract
Methylmercury (MeHg) exposure can cause nerve damage and mitochondrial dysfunction. Mitochondrial dysfunction is mainly mediated by mitochondrial biogenesis and mitochondrial dynamics disorders. Quercetin (QE) plays an important role in activating silencing information regulator 2 related enzyme 1 (SIRT1), and SIRT1 activates peroxisome-proliferator-activated receptor-γ co-activator 1α (PGC-1α), which can regulate mitochondrial biogenesis and mitochondrial dynamics. The main purpose of this study was to explore the alleviating effects of QE on MeHg-induced nerve damage and mitochondrial dysfunction. The results showed that QE could reduce the excessive production of reactive oxygen species (ROS) and the loss of membrane potential induced by MeHg. Meanwhile, QE activated SIRT1 activity and SIRT1/PGC-1α signaling pathway, improved mitochondrial biogenesis and fusion and reduced mitochondrial fission. In summary, we hypothesized that QE prevents MeHg-induced mitochondrial dysfunction by activating SIRT1/PGC-1α signaling pathway.
Collapse
Affiliation(s)
- Haihui Liu
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, PR China
| | - Liujiangshan Jiang
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, PR China
| | - Si Xu
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, PR China
| | - Chen Wang
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, PR China
| | - Jingyi Sun
- Department of Cardiology, The Second Hospital of Dalian Medical University, Dalian, PR China
| |
Collapse
|
11
|
Gezer A, Üstündağ H, Karadağ Sarı E, Bedir G, Gür C, Mendil AS, Duysak L. β-carotene protects against α-amanitin nephrotoxicity via modulation of oxidative, autophagic, nitric oxide signaling, and polyol pathways in rat kidneys. Food Chem Toxicol 2024; 193:115040. [PMID: 39389447 DOI: 10.1016/j.fct.2024.115040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/26/2024] [Accepted: 10/06/2024] [Indexed: 10/12/2024]
Abstract
Alpha-amanitin (α-AMA), a toxic component of Amanita phalloides, causes severe hepato- and nephrotoxicity. This study investigated the protective effects of βeta-carotene (βC) against α-AMA-induced kidney damage in rats. Thirty-two male Sprague-Dawley rats were divided into four groups: Control, βC (50 mg/kg/day), α-AMA (3 mg/kg), and βC+α-AMA. βC was administered orally for 7 days before α-AMA injection. Renal function, oxidative stress markers, histopathological changes, and enzyme activities were evaluated 48 h post-α-AMA administration. α-AMA significantly increased serum creatinine and urea levels, decreased glutathione and catalase activity, and increased malondialdehyde levels (P < 0.001). βC pretreatment attenuated these changes (P < 0.05). Histopathological examination revealed reduced tubular degeneration in the βC+α-AMA group (P < 0.001). Immunohistochemical analysis showed increased LC3B and Beclin-1 expression in α-AMA-treated rats, indicating enhanced autophagy, partially reversed by βC. Additionally, α-AMA reduced nitric oxide synthase (NOS) activity and increased aldose reductase (AR) activity, both normalized by βC pretreatment (P < 0.01). βC demonstrates protective effects against α-AMA-induced nephrotoxicity through antioxidant action, modulation of autophagy, and regulation of NOS and AR pathways, suggesting its potential as a therapeutic agent in α-AMA poisoning.
Collapse
Affiliation(s)
- Arzu Gezer
- Atatürk University, Pharmaceutical Research and Development, Graduate School of Natural and Applied Sciences, Erzurum, Turkiye; Atatürk University, Vocational School of Health Services, Erzurum, Turkiye.
| | - Hilal Üstündağ
- Erzincan Binali Yıldırım University, Faculty of Medicine, Department of Physiology, Erzincan, Turkiye.
| | - Ebru Karadağ Sarı
- Kafkas University, Faculty of Veterinary Medicine, Department of Histology and Embryology, Kars, Turkiye
| | - Gürsel Bedir
- Atatürk University, School of Medicine, Department of Histology and Embryology, Erzurum, Turkiye
| | - Cihan Gür
- Atatürk University, Vocational School of Health Services, Erzurum, Turkiye
| | - Ali Sefa Mendil
- Erciyes University, Faculty of Veterinary Medicine, Department of Pathology, Kayseri, Turkiye
| | - Lale Duysak
- Atatürk University, Faculty of Pharmacy, Department of Biochemistry, Erzurum, Turkiye
| |
Collapse
|
12
|
Dugbartey GJ, Alornyo KK, Dapaa-Addo CO, Botchway E, Kwashie EK, Harley Y. Alpha-lipoic acid: A promising pharmacotherapy seen through the lens of kidney diseases. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2024; 7:100206. [PMID: 39524210 PMCID: PMC11550178 DOI: 10.1016/j.crphar.2024.100206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 10/09/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Kidney diseases have rapidly increased in prevalence over the past few decades, and have now become a major global public health concern. This has put economic burden on the public healthcare system and causing significant morbidity and mortality worldwide. Unfortunately, drugs currently in use for the management of kidney diseases have long-term major adverse effects that negatively impact the quality of life of these patients, hence making these drugs a "necessary evil". In recent times, antioxidant therapy has been explored as a potential pharmacological avenue for treatment of kidney diseases, and could offer a better therapeutic option with less adverse effect profile. One of such antioxidants is alpha-lipoic acid (ALA), a sulphur-containing multifunctional antioxidant that is endogenously produced by lipoic acid synthase in the mitochondria of many tissues, including the kidney. Burgeoning evidence indicates that ALA is showing clinical promise in the treatment and pharmacological management of many kidney diseases through its antioxidant and other therapeutic properties by activating several protective mechanisms while inhibiting deleterious signaling pathways. In this review, we present ALA as a potent naturally occurring antioxidant, its mitochondrial biosynthesis and pharmacological properties. In addition, we also discuss within the limit of present literature, ALA and its underlying molecular mechanisms implicated in experimental and clinical treatment of various kidney conditions, and thus, may offer nephrologists an additional and/or alternative avenue in the pharmacological management and treatment of kidney diseases while giving hope to these patients.
Collapse
Affiliation(s)
- George J. Dugbartey
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
- Department of Physiology and Pharmacology, Accra College of Medicine, East Legon, Accra, Ghana
- Department of Surgery, Division of Urology, London Health Sciences Centre, Western University, N6A 5C1, London, ON, Canada
- Matthew Mailing Centre for Translational Transplant Studies, London Health Sciences Centre, Western University, N6A 5C1, London, ON, Canada
| | - Karl K. Alornyo
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | | | - Emmanuel Botchway
- Department of Physiology and Pharmacology, Accra College of Medicine, East Legon, Accra, Ghana
| | - Emmanuel K. Kwashie
- Department of Physiology and Pharmacology, Accra College of Medicine, East Legon, Accra, Ghana
| | - Yvonne Harley
- Department of Physiology and Pharmacology, Accra College of Medicine, East Legon, Accra, Ghana
| |
Collapse
|
13
|
Lv Q, Xu W, Yang F, Li J, Wei W, Chen X, Liu Y, Zhang Z. Protective and Detoxifying Effects of Resveratrol on Zearalenone-Mediated Toxicity: A Review. Int J Mol Sci 2024; 25:11003. [PMID: 39456789 PMCID: PMC11507252 DOI: 10.3390/ijms252011003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/04/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Zearalenone (ZEA) is a mycotoxin produced by Fusarium spp. fungi and is widely found in moldy corn, wheat, barley, and other grains. ZEA is distributed to the whole body via blood circulation after metabolic transformation in animals. Through oxidative stress, immunosuppression, apoptosis, autophagy, and mitochondrial dysfunction, ZEA leads to hepatitis, neurodegenerative diseases, cancer, abortion, and stillbirth in female animals, and decreased sperm motility in male animals. In recent years, due to the influence of climate, storage facilities, and other factors, the problem of ZEA pollution in global food crops has become particularly prominent, resulting in serious problems for the animal husbandry and feed industries, and threatening human health. Resveratrol (RSV) is a natural product with therapeutic activities such as anti-inflammatory, antioxidant, and anticancer properties. RSV can alleviate ZEA-induced toxic effects by targeting signaling pathways such as NF-κB, Nrf2/Keap1, and PI3K/AKT/mTOR via attenuating oxidative damage, inflammatory response, and apoptosis, and regulating cellular autophagy. Therefore, this paper provides a review of the protective effect of RSV against ZEA-induced toxicity and its molecular mechanism, and discusses the safety and potential clinical applications of RSV in the search for natural mycotoxin detoxification agents.
Collapse
|
14
|
Leti Maggio E, Zucca C, Grande M, Carrano R, Infante A, Bei R, Lucarini V, De Maio F, Focaccetti C, Palumbo C, Marini S, Ferretti E, Cifaldi L, Masuelli L, Benvenuto M, Bei R. Polyphenols Regulate the Activity of Endocrine-Disrupting Chemicals, Having Both Positive and Negative Effects. J Xenobiot 2024; 14:1378-1405. [PMID: 39449418 PMCID: PMC11503411 DOI: 10.3390/jox14040077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/13/2024] [Accepted: 09/26/2024] [Indexed: 10/26/2024] Open
Abstract
Endocrine-disrupting chemicals (EDCs) are chemical substances that can interfere with any hormone action. They are categorized according to origin and use, such as industrial chemicals like polychlorinated biphenyls (PCBs) and polybrominated biphenyls (PBBs), plastics like bisphenol A (BPA), plasticizers like phthalates, pesticides like dichlorodiphenyltrichloroethane (DDT), fungicides like vinclozolin, and pharmaceuticals like diethylstilbestrol (DES). Natural EDCs, such as phytoestrogens, are present in the diet of both humans and animals. Polyphenols are a large group of natural compounds derived from plants and are found in beverages and food. They are grouped based on their chemical structure into flavonoids and nonflavonoids and are reported to have many beneficial effects on health, including, but not limited to, anticancer, antioxidant, and anti-inflammatory effects. Moreover, polyphenols have both pro- and antioxidant characteristics, and due to their antioxidant and anti-inflammatory potential, they presumably have a protective effect against damage induced by EDCs. However, polyphenols may act as EDCs. In this review, we report that polyphenols regulate the activity of EDCs, having both positive and negative effects. Hence, a better understanding of the associations between EDCs and polyphenols will allow the establishment of improved approaches to protect human health from EDCs.
Collapse
Affiliation(s)
- Eleonora Leti Maggio
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (E.L.M.); (C.Z.); (M.G.); (R.C.); (F.D.M.); (C.F.); (C.P.); (S.M.); (L.C.); (M.B.)
| | - Carlotta Zucca
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (E.L.M.); (C.Z.); (M.G.); (R.C.); (F.D.M.); (C.F.); (C.P.); (S.M.); (L.C.); (M.B.)
| | - Martina Grande
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (E.L.M.); (C.Z.); (M.G.); (R.C.); (F.D.M.); (C.F.); (C.P.); (S.M.); (L.C.); (M.B.)
| | - Raffaele Carrano
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (E.L.M.); (C.Z.); (M.G.); (R.C.); (F.D.M.); (C.F.); (C.P.); (S.M.); (L.C.); (M.B.)
| | - Antonio Infante
- Medical School, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (A.I.); (R.B.)
| | - Riccardo Bei
- Medical School, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (A.I.); (R.B.)
| | - Valeria Lucarini
- Department of Experimental Medicine, University of Rome “Sapienza”, Viale Regina Elena 324, 00161 Rome, Italy; (V.L.); (E.F.); (L.M.)
| | - Fernando De Maio
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (E.L.M.); (C.Z.); (M.G.); (R.C.); (F.D.M.); (C.F.); (C.P.); (S.M.); (L.C.); (M.B.)
| | - Chiara Focaccetti
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (E.L.M.); (C.Z.); (M.G.); (R.C.); (F.D.M.); (C.F.); (C.P.); (S.M.); (L.C.); (M.B.)
| | - Camilla Palumbo
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (E.L.M.); (C.Z.); (M.G.); (R.C.); (F.D.M.); (C.F.); (C.P.); (S.M.); (L.C.); (M.B.)
| | - Stefano Marini
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (E.L.M.); (C.Z.); (M.G.); (R.C.); (F.D.M.); (C.F.); (C.P.); (S.M.); (L.C.); (M.B.)
| | - Elisabetta Ferretti
- Department of Experimental Medicine, University of Rome “Sapienza”, Viale Regina Elena 324, 00161 Rome, Italy; (V.L.); (E.F.); (L.M.)
| | - Loredana Cifaldi
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (E.L.M.); (C.Z.); (M.G.); (R.C.); (F.D.M.); (C.F.); (C.P.); (S.M.); (L.C.); (M.B.)
| | - Laura Masuelli
- Department of Experimental Medicine, University of Rome “Sapienza”, Viale Regina Elena 324, 00161 Rome, Italy; (V.L.); (E.F.); (L.M.)
| | - Monica Benvenuto
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (E.L.M.); (C.Z.); (M.G.); (R.C.); (F.D.M.); (C.F.); (C.P.); (S.M.); (L.C.); (M.B.)
| | - Roberto Bei
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (E.L.M.); (C.Z.); (M.G.); (R.C.); (F.D.M.); (C.F.); (C.P.); (S.M.); (L.C.); (M.B.)
| |
Collapse
|
15
|
Yu S, Zhu W, Yu L. The role of rapamycin in the PINK1/Parkin signaling pathway in mitophagy in podocytes. Open Life Sci 2024; 19:20220958. [PMID: 39290494 PMCID: PMC11406223 DOI: 10.1515/biol-2022-0958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 08/05/2024] [Accepted: 08/09/2024] [Indexed: 09/19/2024] Open
Abstract
This study aimed to clarify the role of rapamycin in the PINK1/Parkin signaling pathway in mitophagy in podocytes and the role of voltage-dependent anion channel 1 (VDAC1) in the PINK1/Parkin signaling pathway in mouse glomerular podocytes. For this purpose, podocytes were cultured with rapamycin and observed using microscopy. The apoptosis rate of podocytes was detected by flow cytometry. Changes in the mitochondrial membrane potential were measured. The autophagy-related proteins VDAC1, PINK1, Parkin, and LC3 were detected, and mitochondrial autophagosomes were observed via transmission electron microscopy. In the present study, we demonstrated that the number of podocytes treated with rapamycin was significantly reduced. Compared with those in the control group, the apoptosis rate of podocytes and the degree of mitochondrial membrane potential depolarization were significantly higher. We also found the expression levels of VDAC1, PINK1, Parkin, and LC3 were significantly increased. In the rapamycin-treated group, the numbers of swollen mitochondria and mitochondrial autophagosomes were significantly higher. Finally, we showed that rapamycin can upregulate the expression of VDAC1, PINK1, Parkin, and LC3 in glomerular podocytes, which is correlated with mitophagy. VDAC1 is involved in mitophagy and is related to the PINK1/Parkin signaling pathway, serving as an indicator of mitophagy in podocytes.
Collapse
Affiliation(s)
- Shengyou Yu
- Department of Pediatrics, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510180, Guangdong Province, China
- Department of Pediatrics, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong Province, P. R. China
| | - Weixue Zhu
- Department of Pediatrics, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510180, Guangdong Province, China
| | - Li Yu
- Department of Pediatrics, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510180, Guangdong Province, China
- Department of Pediatrics, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong Province, P. R. China
| |
Collapse
|
16
|
Kuang J, Fang J, Hu S, Yang X, Fan X. MECHANISM OF MICRORNA-218-5P IN MITOCHONDRIAL BIOGENESIS OF SEPSIS-INDUCED ACUTE KIDNEY INJURY BY THE REGULATION OF PGC-1Α. Shock 2024; 62:426-436. [PMID: 38888503 DOI: 10.1097/shk.0000000000002410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
ABSTRACT Background: Sepsis-induced acute kidney injury (SI-AKI) is a kind of kidney dysfunction, which brings a lot of suffering. This study aimed to figure out the role of the miR-218-5p/PGC-1α axis in SI-AKI. Methods: AKI mouse model was established through cecal ligation and puncture. PGC-1α expression was activated using an activator ZLN005 before the serum and tissue samples were collected. Next, pathological structure and apoptosis of kidney tissues were observed. Levels of blood urea nitrogen, serum creatinine, and indicators of inflammation and oxidative stress were assessed. Moreover, reactive oxygen species and mitochondrial membrane potential levels, adenosine 5'-triphosphate content, and mitochondrial ultrastructure of kidney tissues were observed. HK2 cells were treated by lipopolysaccharide (LPS) to mimic sepsis in vitro , followed by evaluation of cell survival and apoptosis, inflammation, and oxidative stress. Subsequently, the binding relation between PGC-1α and miR-218-5p was predicted and validated. Then expression of PGC-1α and miR-218-5p was detected. PGC-1α and miR-218-5p expression were intervened to detect their influences in mitochondrial biogenesis. At last, miR-218-5p was overexpressed in ZLN005 (PGC-1α activating agent) pretreated SI-AKI mice to validate the mechanism. Results: PGC-1α is poorly expressed in SI-AKI, but overexpression of PGC-1α using ZLN005 alleviated SI-AKI injury and promoted mitochondrial biogenesis in AKI mice, and relieved LPS-induced cell injury. PGC-1α is a target of miR-218-5p. Downregulation of miR-218-5p expression in HK2 cells attenuated mitochondrial biogenesis disorder. Inhibition of PGC-1α annulled the role of miR-218-5p silencing in cells. In vivo , miR-218-5p overexpression partly reversed the protective role of ZLN005 in SI-AKI mice. Conclusion: miR-218-5p targeted PGC-1α to disrupt mitochondrial biogenesis, thereby exacerbating SI-AKI.
Collapse
Affiliation(s)
- Jing Kuang
- Department of Intensive Care Unit, Wuhan No.1 Hospital, Wuhan, China
| | - Jun Fang
- Department of Liver-Gallbladder and Gastric Diseases, Wuhan Hospital of Traditional Chinese Medicine, Wuhan, China
| | - Shuli Hu
- Department of Intensive Care Unit, Wuhan No.1 Hospital, Wuhan, China
| | - Xiuhong Yang
- Department of Intensive Care Unit, Wuhan No.1 Hospital, Wuhan, China
| | - Xuepeng Fan
- Department of Intensive Care Unit, Wuhan No.1 Hospital, Wuhan, China
| |
Collapse
|
17
|
Zhu L, Li J, Yang S, Deng X, Wang Z, Cao C. Fumonisin B 1 induces endoplasmic reticulum damage and inflammation by activating the NXR response and disrupting the normal CYP450 system, leading to liver damage in juvenile quail. J Food Sci 2024; 89:5967-5979. [PMID: 39086057 DOI: 10.1111/1750-3841.17213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/04/2024] [Accepted: 06/11/2024] [Indexed: 08/02/2024]
Abstract
Fumonisin B1 (FB1) is a mycotoxin affecting animal health through the food chain and has been closely associated with several diseases such as pulmonary edema in pigs and diarrhea in poultry. FB1 is mainly metabolized in the liver. Although a few studies have shown that FB1 causes liver damage, the molecular mechanism of liver damage is unclear. This study aimed to evaluate the role of liver damage, nuclear xenobiotic receptor (NXR) response and cytochrome P450 (CYP450)-mediated defense response during FB1 exposure. A total of 120 young quails were equally divided into two groups (control and FB1 groups). The quails in the control group were fed on a normal diet, while those in the FB1 group were fed on a quail diet containing 30 mg/kg for 42 days. Histopathological and ultrastructural changes in the liver, biochemical parameters, inflammatory factors, endoplasmic reticulum (ER) factors, NXR response and CYP450 cluster system and other related genes were examined at 14 days, 28 days and 42 days. The results showed that FB1 exposure impaired the metabolic function and caused liver injury. FB1 caused ER stress and decreased adenosine triphosphatease activity, induced the expression of inflammation-related genes such as interleukin 6 and nuclear factor kappa-B, and promoted inflammation. In addition, FB1 disrupted the expression of multiple CYP450 isoforms by activating nuclear xenobiotic receptors (NXRs). The present study confirms that FB1 exposure disturbs the homeostasis of cytochrome P450 systems (CYP450s) in quail liver by activating NXR responses and thereby causing liver damage. This study's findings provide insight into the molecular mechanisms of FB1-induced hepatotoxicity.
Collapse
Affiliation(s)
- Lingxin Zhu
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, P. R. China
| | - Jinhong Li
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, P. R. China
| | - Shuang Yang
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, P. R. China
| | - Xiaoqi Deng
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, P. R. China
| | - Zhenchao Wang
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, P. R. China
| | - Changyu Cao
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, P. R. China
- Foshan University Veterinary Teaching Hospital, Foshan, Guangdong, P. R. China
| |
Collapse
|
18
|
Shen Y, Yuan Y, Dong W. The Mechanism of Hyperoxia-Induced Neonatal Renal Injury and the Possible Protective Effect of Resveratrol. Am J Perinatol 2024; 41:1126-1133. [PMID: 35381611 DOI: 10.1055/a-1817-5357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
With recent advances in neonatal intensive care, preterm infants are surviving into adulthood. Nonetheless, epidemiological data on the health status of these preterm infants have begun to reveal a worrying theme; prematurity and the supplemental oxygen therapy these infants receive after birth appear to be risk factors for kidney disease in adulthood, affecting their quality of life. As the incidence of chronic kidney disease and the survival time of preterm infants both increase, the management of the hyperoxia-induced renal disease is becoming increasingly relevant to neonatologists. The mechanism of this increased risk is currently unknown, but prematurity itself and hyperoxia exposure after birth may predispose to disease by altering the normal trajectory of kidney maturation. This article reviews altered renal reactivity due to hyperoxia, the possible mechanisms of renal injury due to hyperoxia, and the role of resveratrol in renal injury. KEY POINTS: · Premature infants commonly receive supplementary oxygen.. · Hyperoxia can cause kidney damage via signal pathways.. · We should reduce the occurrence of late sequelae..
Collapse
Affiliation(s)
- Yunchuan Shen
- Division of Neonatology, Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Yuan Yuan
- Division of Neonatology, Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Wenbin Dong
- Division of Neonatology, Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
19
|
Shen Y, Wang X, Nan N, Fu X, Zeng R, Yang Y, Xian S, Shi J, Wu Q, Zhou S. SIRT3-Mediated Deacetylation of SDHA Rescues Mitochondrial Bioenergetics Contributing to Neuroprotection in Rotenone-Induced PD Models. Mol Neurobiol 2024; 61:4402-4420. [PMID: 38087172 DOI: 10.1007/s12035-023-03830-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 11/25/2023] [Indexed: 07/11/2024]
Abstract
Mitochondrial dysfunction is critically involved in the degeneration of dopamine (DA) neurons in the substantia nigra, a common pathological feature of Parkinson's disease (PD). Previous studies have demonstrated that the NAD+-dependent acetylase Sirtuin 3 (SIRT3) participates in maintaining mitochondrial function and is downregulated in aging-related neurodegenerative disorders. The exact mechanism of action of SIRT3 on mitochondrial bioenergetics in PD pathogenesis, however, has not been fully described. In this study, we investigated the regulatory role of SIRT3-mediated deacetylation of mitochondrial complex II (succinate dehydrogenase) subunit A (SDHA) and its effect on neuronal cell survival in rotenone (ROT)-induced rat and differentiated MN9D cell models. The results revealed that SIRT3 activity was suppressed in both in vivo and in vitro PD models. Accompanying this downregulation of SIRT3 was the hyperacetylation of SDHA, impaired activity of mitochondrial complex II, and decreased ATP production. It was found that the inhibition of SIRT3 activity was attributed to a reduction in the NAD+/NADH ratio caused by ROT-induced inhibition of mitochondrial complex I. Activation of SIRT3 by icariin and honokiol inhibited SDHA hyperacetylation and increased complex II activity, leading to increased ATP production and protection against ROT-induced neuronal damage. Furthermore, overexpression of SDHA also exerted potent protective benefits in cells treated with ROT. In addition, treatment of MN9D cells with the NAD+ precursor nicotinamide mononucleotide increased SIRT3 activity and complex II activity and promoted the survival of cells exposed to ROT. These findings unravel a regulatory SIRT3-SDHA axis, which may be closely related to PD pathology. Bioenergetic rescue through SIRT3 activation-dependent improvement of mitochondrial complex II activity may provide an effective strategy for protection from neurodegeneration.
Collapse
Affiliation(s)
- Yanhua Shen
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou, China
| | - Xueting Wang
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou, China
| | - Nan Nan
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou, China
| | - Xiaolong Fu
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou, China
| | - Ru Zeng
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou, China
| | - Yonggang Yang
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou, China
| | - Siting Xian
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou, China
| | - Jingshan Shi
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou, China
| | - Qin Wu
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou, China
| | - Shaoyu Zhou
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou, China.
| |
Collapse
|
20
|
Mognetti B, Franco F, Castrignano C, Bovolin P, Berta GN. Mechanisms of Phytoremediation by Resveratrol against Cadmium Toxicity. Antioxidants (Basel) 2024; 13:782. [PMID: 39061851 PMCID: PMC11273497 DOI: 10.3390/antiox13070782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
Cadmium (Cd) toxicity poses a significant threat to human health and the environment due to its widespread occurrence and persistence. In recent years, considerable attention has been directed towards exploring natural compounds with potential protective effects against Cd-induced toxicity. Among these compounds, resveratrol (RV) has emerged as a promising candidate, demonstrating a range of beneficial effects attributed to its antioxidant and anti-inflammatory properties. This literature review systematically evaluates the protective role of RV against Cd toxicity, considering the various mechanisms of action involved. A comprehensive analysis of both in vitro and in vivo studies is conducted to provide a comprehensive understanding of RV efficacy in mitigating Cd-induced damage. Additionally, this review highlights the importance of phytoremediation strategies in addressing Cd contamination, emphasizing the potential of RV in enhancing the efficiency of such remediation techniques. Through the integration of diverse research findings, this review underscores the therapeutic potential of RV in combating Cd toxicity and underscores the need for further investigation to elucidate its precise mechanisms of action and optimize its application in environmental and clinical settings.
Collapse
Affiliation(s)
- Barbara Mognetti
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Turin, Italy;
| | - Francesco Franco
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043 Orbassano, Italy; (F.F.); (C.C.); (G.N.B.)
| | - Chiara Castrignano
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043 Orbassano, Italy; (F.F.); (C.C.); (G.N.B.)
| | - Patrizia Bovolin
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Turin, Italy;
| | - Giovanni Nicolao Berta
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043 Orbassano, Italy; (F.F.); (C.C.); (G.N.B.)
| |
Collapse
|
21
|
Pan Y, Peng Z, Fang Z, Iddrisu L, Sun L, Deng Q, Gooneratne R. A Tripeptide (Ser-Arg-Pro, SRP) from Sipunculus nudus L. Improves Cadmium-Induced Acute Kidney Injury by Targeting the MAPK, Inflammatory, and Apoptosis Pathways in Mice. Mar Drugs 2024; 22:286. [PMID: 38921597 PMCID: PMC11204732 DOI: 10.3390/md22060286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/06/2024] [Accepted: 06/17/2024] [Indexed: 06/27/2024] Open
Abstract
Cadmium (Cd) is a toxic heavy metal that causes nephrosis, including acute kidney injury. To prevent and treat acute kidney injury (AKI) following Cd exposure, a tripeptide, Ser-Arg-Pro (SRP), from Sipunculus nudus L. was employed, and its potential efficacy in AKI was assessed. Oral administration of SRP significantly alleviated Cd-induced kidney damage, leading to improved renal function and the attenuation of structural abnormalities. A network pharmacology analysis revealed the potential of SRP in renal protection by targeting various pathways, including mitogen-activated protein kinase (MAPK) signaling, inflammatory response, and apoptosis pathways. Mechanistic studies indicated that SRP achieves renal protection by inhibiting the activation of MAPK pathways (phosphorylation of p38, p56, ERK, and JNK) in the oxidative stress cascade, suppressing inflammatory responses (iNOS, Arg1, Cox2, TNF-α, IL-1β, and IL-6), and restoring altered apoptosis factors (caspase-9, caspase-3, Bax, and Bcl-2). Hence, SRP has the potential to be used as a therapeutic agent for the treatment of Cd-induced nephrotoxicity.
Collapse
Affiliation(s)
- Yanmei Pan
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (Y.P.); (L.I.); (L.S.); (Q.D.)
| | - Zhilan Peng
- School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang 524023, China;
| | - Zhijia Fang
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (Y.P.); (L.I.); (L.S.); (Q.D.)
| | - Lukman Iddrisu
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (Y.P.); (L.I.); (L.S.); (Q.D.)
| | - Lijun Sun
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (Y.P.); (L.I.); (L.S.); (Q.D.)
| | - Qi Deng
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (Y.P.); (L.I.); (L.S.); (Q.D.)
| | - Ravi Gooneratne
- Department of Wine, Food and Molecular Biosciences, Lincoln University, Lincoln 7647, New Zealand;
| |
Collapse
|
22
|
Ma W, Lin X, Zhao Y, Zhang Z, Huang L. Protective effect of Lactiplantibacillus plantarum CCFM8661 against heavy metal mixture-induced liver and kidney injury in mice. Food Funct 2024; 15:6565-6577. [PMID: 38808610 DOI: 10.1039/d4fo01049c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Human health and the ecological balance are both gravely threatened by heavy metal pollution brought on by global industrialization. Probiotics are thought to represent a novel class of medicinal products for reducing heavy metal toxicity. Though simultaneous poisoning of numerous heavy metals is more prevalent, the majority of current studies on probiotics in the treatment of heavy metal poisoning concentrate on a single heavy metal. Thus, a mouse damage model was created in this investigation using five heavy metals (Pb, Cd, Hg, Cr, and As), and Lactiplantibacillus plantarum CCFM8661 was utilized as an intervention therapy. The oxidative stress markers, including superoxide dismutase (SOD), catalase (CAT), antioxidant capacity (T-AOC), and malondialdehyde (MDA), were evaluated in the blood, liver, and kidney tissues of mice throughout the experiment by tracking changes in body weight. Additionally, the amounts of five heavy metals were measured in the liver and kidney tissues. The alleviation of tissue damage and the detoxifying activity of L. plantarum CCFM8661 in mice with combined heavy metal intoxication were assessed by histopathological examination of liver and kidney tissues. Results revealed that during the test period, L. plantarum CCFM8661 significantly reduced the content of MDA and the contents of Pb, Cd, Hg, Cr, and As in liver and kidney tissues, while also significantly increasing weight gain and the activities of SOD, CAT, and T-AOC in mouse blood, liver, and kidney tissues compared to the model group. Mouse liver and kidney tissue damage from combined heavy metal exposure was considerably lessened by L. plantarum CCFM8661 when compared to the model group, according to H&E staining. This study demonstrates that L. plantarum CCFM8661 may be utilized as a useful intervention for the treatment of combined heavy metal poisoning by efficiently reducing the harm that heavy metals do to the body and maintaining bodily health.
Collapse
Affiliation(s)
- Weiwei Ma
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, 150030, China.
| | - Xinyue Lin
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, 150030, China.
| | - Yiyang Zhao
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, 150030, China.
| | - Ziwei Zhang
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, 150030, China.
| | - Lili Huang
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, 150030, China.
| |
Collapse
|
23
|
Zhou M, Niu H, Cui D, Huang G, Li J, Tian H, Xu X, Liang F, Chen R. Resveratrol triggers autophagy-related apoptosis to inhibit the progression of colorectal cancer via inhibition of FOXQ1. Phytother Res 2024; 38:3218-3239. [PMID: 38682953 DOI: 10.1002/ptr.8184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/14/2024] [Accepted: 02/27/2024] [Indexed: 05/01/2024]
Abstract
Colorectal cancer (CRC) is a significant health problem with elevated mortality rates, prompting intense exploration of its complex molecular mechanisms and innovative therapeutic avenues. Resveratrol (RSV), recognised for its anticancer effects through SIRT1 activation, is a promising candidate for CRC treatment. This study focuses on elucidating RSV's role in CRC progression, particularly its effect on autophagy-related apoptosis. Using bioinformatics, protein imprinting and immunohistochemistry, we established a direct correlation between FOXQ1 and adverse CRC prognosis. Comprehensive in vitro experiments confirmed RSV's ability to promote autophagy-related apoptosis in CRC cells. Plasmids for SIRT1 modulation were used to investigate underlying mechanisms. Molecular docking, glutathione-S-transferase pull-down experiments and immunoprecipitation highlighted RSV's direct activation of SIRT1, resulting in the inhibition of FOXQ1 expression. Downstream interventions identified ATG16L as a crucial autophagic target. In vivo and in vitro studies validated RSV's potential for CRC therapy through the SIRT1/FOXQ1/ATG16L pathway. This study establishes RSV's capacity to enhance autophagy-related cell apoptosis in CRC, positioning RSV as a prospective therapeutic agent for CRC within the SIRT1/FOXQ1/ATG16L pathway.
Collapse
Affiliation(s)
- MinFeng Zhou
- Union Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - HuiFang Niu
- School of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - DanDan Cui
- Union Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - GuoQuan Huang
- Department of Gastrointestinal Surgery, Enshi Central Hospital, Enshi City, China
| | - JinXiao Li
- Union Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - HaoRan Tian
- School of Acupuncture and Bone Injury, Hubei University of Chinese Medicine, Wuhan, China
| | - XiaoJuan Xu
- Union Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - FengXia Liang
- School of Acupuncture and Bone Injury, Hubei University of Chinese Medicine, Wuhan, China
| | - Rui Chen
- Union Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
24
|
Xiao L, Chen B, Chen C, Xiao F, Li M, Zhuang M, Dai Y, Wu K. Characterization and function of PTEN-induced putative kinase 1 (PINK1) in process of Zinc alleviates hepatic lipid deposition of yellow catfish (Pelteobagrus fulvidraco). Int J Biol Macromol 2024; 265:131156. [PMID: 38537862 DOI: 10.1016/j.ijbiomac.2024.131156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/28/2024] [Accepted: 03/25/2024] [Indexed: 04/01/2024]
Abstract
PTEN-induced putative kinase 1 (PINK1) is a key regulator of mitophagy, however, the relevant information remains poorly understood on aquatic animals. Here, a PINK1 gene was cloned, characterized and functionally studied in yellow catfish. PINK1 encoded a protein containing 570 amino acids, 2 functional domains. High fat (15.66%) fed fish showed a downregulation trend of liver PINK1 expression than that of normal fat (10.14%) group, and was reversed by the addition of Zn. In the in vitro study, high fat (HF) can increase lipid deposition and decrease by addition Zn (HFZ) in hepatocytes, whereas above phenomena reversed by overexpression/interference of PINK1, respectively. In addition, the addition of Zn can significantly affect mitochondrial activity, increase mitophagy, and improve the antioxidant activity of hepatocytes. Together, these findings illustrated that yellow catfish PINK1 is conserve, and it participated in mitochondria control of fish. These findings indicate Zn could alleviate high fat-induced hepatic lipid deposition of fish by activating PINK1-mediated mitophagy and provide basis for further exploring new approach for decreasing lipid deposition in fish products during aquaculture.
Collapse
Affiliation(s)
- Lanfei Xiao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou 510642, China
| | - Baojia Chen
- Nansha-South China Agricultural University Fishery Research Institute, Guangzhou 510642, China
| | - Chuan Chen
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Fei Xiao
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Mingzi Li
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Minjia Zhuang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Yishuang Dai
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Kun Wu
- Nansha-South China Agricultural University Fishery Research Institute, Guangzhou 510642, China; College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangzhou 510642, China.
| |
Collapse
|
25
|
Xu YR, Talukder M, Li CX, Zhao YX, Zhang C, Ge J, Li JL. Nano-selenium alleviates cadmium-induced neurotoxicity in cerebrum via inhibiting gap junction protein connexin 43 phosphorylation. ENVIRONMENTAL TOXICOLOGY 2024; 39:1163-1174. [PMID: 37860879 DOI: 10.1002/tox.24001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/24/2023] [Accepted: 10/07/2023] [Indexed: 10/21/2023]
Abstract
Cadmium (Cd) as a ubiquitous toxic heavy metal is reported to affect the nervous system. Selenium (Se) has been shown to have antagonistic effects against heavy metal toxicity. In addition, it shows potential antioxidant and anti-inflammatory properties. Thus, the purpose of this study was to determine the possible mechanism of brain injury after high Cd exposure and the mitigation of Nano-selenium (Nano-Se) against Cd-induced brain injury. In this study, the Cd-treated group showed a decrease in the number of neurons in brain tissue, swelling of the endoplasmic reticulum and mitochondria, and the formation of autophagosomes. Nano-Se intervention restored Cd-caused alterations in neuronal morphology, endoplasmic reticulum, and mitochondrial structure, thereby reducing neuronal damage. Furthermore, we found that some differentially expressed genes were involved in cell junction and molecular functions. Subsequently, we selected eleven (11) related differentially expressed genes for verification. The qRT-PCR results revealed the same trend of results as determined by RNA-Seq. Our findings also showed that Nano-Se supplementation alleviated Cx43 phosphorylation induced by Cd exposure. Based on immunofluorescence colocalization it was demonstrated that higher expression of GFAP and lower expressions of Cx43 were restored by Nano-Se supplementation. In conclusion, the data presented in this study establish a direct association between the phosphorylation of Cx43 and the occurrence of autophagy and neuroinflammation. However, it is noteworthy that the introduction of Nano-Se supplementation has been observed to mitigate these alterations. These results elucidate the relieving effect of Nano-Se on Cd exposure-induced brain injury.
Collapse
Affiliation(s)
- Ya-Ru Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P. R. China
| | - Milton Talukder
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P. R. China
- Department of Physiology and Pharmacology, Faculty of Animal Science and Veterinary Medicine, Patuakhali Science and Technology University, Barishal, Bangladesh
| | - Chen-Xi Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P. R. China
| | - Ying-Xin Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P. R. China
| | - Cong Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P. R. China
| | - Jing Ge
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P. R. China
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P. R. China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, P. R. China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, P. R. China
| |
Collapse
|
26
|
Jin Q, Ma F, Liu T, Yang L, Mao H, Wang Y, Peng L, Li P, Zhan Y. Sirtuins in kidney diseases: potential mechanism and therapeutic targets. Cell Commun Signal 2024; 22:114. [PMID: 38347622 PMCID: PMC10860260 DOI: 10.1186/s12964-023-01442-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 12/12/2023] [Indexed: 02/15/2024] Open
Abstract
Sirtuins, which are NAD+-dependent class III histone deacetylases, are involved in various biological processes, including DNA damage repair, immune inflammation, oxidative stress, mitochondrial homeostasis, autophagy, and apoptosis. Sirtuins are essential regulators of cellular function and organismal health. Increasing evidence suggests that the development of age-related diseases, including kidney diseases, is associated with aberrant expression of sirtuins, and that regulation of sirtuins expression and activity can effectively improve kidney function and delay the progression of kidney disease. In this review, we summarise current studies highlighting the role of sirtuins in renal diseases. First, we discuss sirtuin family members and their main mechanisms of action. We then outline the possible roles of sirtuins in various cell types in kidney diseases. Finally, we summarise the compounds that activate or inhibit sirtuin activity and that consequently ameliorate renal diseases. In conclusion, targeted modulation of sirtuins is a potential therapeutic strategy for kidney diseases. Video Abstract.
Collapse
Affiliation(s)
- Qi Jin
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fang Ma
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tongtong Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liping Yang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Huimin Mao
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuyang Wang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liang Peng
- China-Japan Friendship Hospital, Institute of Clinical Medical Sciences, Beijing, China.
| | - Ping Li
- China-Japan Friendship Hospital, Institute of Clinical Medical Sciences, Beijing, China.
| | - Yongli Zhan
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
27
|
Koyama H, Kamogashira T, Yamasoba T. Heavy Metal Exposure: Molecular Pathways, Clinical Implications, and Protective Strategies. Antioxidants (Basel) 2024; 13:76. [PMID: 38247500 PMCID: PMC10812460 DOI: 10.3390/antiox13010076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/25/2023] [Accepted: 12/28/2023] [Indexed: 01/23/2024] Open
Abstract
Heavy metals are often found in soil and can contaminate drinking water, posing a serious threat to human health. Molecular pathways and curation therapies for mitigating heavy metal toxicity have been studied for a long time. Recent studies on oxidative stress and aging have shown that the molecular foundation of cellular damage caused by heavy metals, namely, apoptosis, endoplasmic reticulum stress, and mitochondrial stress, share the same pathways as those involved in cellular senescence and aging. In recent aging studies, many types of heavy metal exposures have been used in both cellular and animal aging models. Chelation therapy is a traditional treatment for heavy metal toxicity. However, recently, various antioxidants have been found to be effective in treating heavy metal-induced damage, shifting the research focus to investigating the interplay between antioxidants and heavy metals. In this review, we introduce the molecular basis of heavy metal-induced cellular damage and its relationship with aging, summarize its clinical implications, and discuss antioxidants and other agents with protective effects against heavy metal damage.
Collapse
Affiliation(s)
- Hajime Koyama
- Department of Otolaryngology and Head and Neck Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8654, Japan
| | - Teru Kamogashira
- Department of Otolaryngology and Head and Neck Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8654, Japan
| | - Tatsuya Yamasoba
- Department of Otolaryngology and Head and Neck Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8654, Japan
- Tokyo Teishin Hospital, Tokyo 102-0071, Japan
| |
Collapse
|
28
|
Li L, Zhao J, Wang J, Xiong Q, Lin X, Guo X, Peng F, Liang W, Zuo X, Ying C. The arsenic-lowering effect of inulin-type prebiotics in end-stage renal disease: a randomized crossover trial. Food Funct 2024; 15:355-371. [PMID: 38093628 DOI: 10.1039/d3fo01843a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Background: Circulatory imbalance of trace elements is frequent in end-stage renal disease (ESRD), leading to a deficiency of essential elements and excess of toxic elements. The present study aimed to investigate whether inulin-type fructans (ITFs) could ameliorate the circulatory imbalance by modulating gut microbiota and regulating the absorption and elimination of trace elements. Methods: Peritoneal dialysis patients were enrolled in a randomized crossover trial, undergoing interventions with ITFs (10 g d-1) and maltodextrin (placebo) over a 9-month period (with a 3-month washout). The primary outcomes included essential elements Mn, Fe, Co, Cu, Zn, Se, Sr, and Mo and potential toxic elements V, Cr, Ni, As, Cd, Ba, Tl, Pb, Th, and U in plasma. Secondary outcomes included the gut microbiome, short chain fatty acids (SCFAs), bile acids (BAs), and daily removal of trace elements through urine, dialysate and feces. Results: Among the 44 participants initially randomized, 29 completed the prebiotic, placebo or both interventions. The daily dietary intake of macronutrients and trace elements remained consistent throughout the study. The administration of 10 g d-1 ITFs significantly reduced plasma arsenic (As) by 1.03 μg L-1 (95%CI: -1.74, -0.33) (FDR-adjusted P = 0.045) down from the baseline of 3.54 μg L-1 (IQRs: 2.61-4.40) and increased the As clearance rate by urine and dialysis (P = 0.033). Positive changes in gut microbiota were also observed, including an increase in the Firmicutes/Bacteroidetes ratio (P = 0.050), a trend towards higher fecal SCFAs (P = 0.082), and elevated excretion of primary BAs (P = 0.035). However, there were no significant changes in plasma concentrations of other trace elements or their daily removal by urine, dialysis and feces. Conclusions: The daily administration of 10 g d-1 ITFs proved to be effective in reducing the circulating retention of As but demonstrated to be ineffective for other trace elements in ESRD. These sentences are ok to include but as "The clinical trial registry number is ChiCTR-INR-17013739 (https://www.chictr.org.cn/showproj.aspx?proj=21228)".
Collapse
Affiliation(s)
- Li Li
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Jing Zhao
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Jinxue Wang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Qianqian Xiong
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Xuechun Lin
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Xiaolei Guo
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Fan Peng
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Wangqun Liang
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xuezhi Zuo
- Department of Clinical Nutrition, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Chenjiang Ying
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
29
|
Sheng Y, Zhang C, Cai D, Xu G, Chen S, Li W, Dong J, Shen B, Tang J, Xu L. 2,2',4,4'-Tetrabromodiphenyl ether and cadmium co-exposure activates aryl hydrocarbon receptor pathway to induce ROS and GSDME-dependent pyroptosis in renal tubular epithelial cells. ENVIRONMENTAL TOXICOLOGY 2024; 39:289-298. [PMID: 37705237 DOI: 10.1002/tox.23957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/06/2023] [Accepted: 08/20/2023] [Indexed: 09/15/2023]
Abstract
We have previously found that a mixture exposure of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) and cadmium (Cd) causes kidney damage; however, the mechanism was not fully understood. The aryl hydrocarbon receptor (AhR) is a ligand-receptor transcription factor that plays an important role in the adaptive response or metabolic detoxification of environmental toxins. Thus, this study aimed to examine the role of AhR in kidney toxicity. BDE-47 (50 μM) or Cd (5 μM) exposure reduced cell viability in renal tubular epithelial cells (HKC), with a larger effect observed in co-treatment. The cell morphology presented pyroptotic changes, including swollen cells, large bubbles, and plasma membrane pore formation. The gene expressions of AhR, heat shock protein 90 (Hsp90), AhR nuclear translocator (ARNT), and cytochrome P450 1B1 (CYP1B1) were increased, while CYP1A1 was decreased. Reactive oxygen species (ROS) were generated, which was reduced by the AhR antagonist CH223191. The apoptosis, necrosis, and intracellular lactated hydrogenase (LDH) release was elevated, and this was attenuated by N-acetylcysteine (NAC). Furthermore, the pyroptosis pathway was activated with increased protein levels of cleaved-caspase-3 and gasdermin E N-terminal (GSDME-NT), while caspase-8, caspase-3, and GSDME were decreased. These effects were alleviated by NAC and CH223191. Our data demonstrate a combined effect of BDE-47 and Cd on nephrotoxicity by activating AhR to induce ROS contributing to GSDME-dependent pyroptosis, and retardation of the AhR pathway could reduce this toxicity.
Collapse
Affiliation(s)
- Yating Sheng
- Department of Preventive Medicine, Forensic and Pathology Laboratory, College of Medicine, Jiaxing University, Jiaxing, China
| | - Chengpeng Zhang
- Department of Pathology, Municipal Key-Innovative Discipline of Molecular Diagnostics, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing University, Jiaxing, China
| | - Dandan Cai
- Department of Urology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Guangtao Xu
- Department of Preventive Medicine, Forensic and Pathology Laboratory, College of Medicine, Jiaxing University, Jiaxing, China
| | - Shipiao Chen
- Department of Preventive Medicine, Forensic and Pathology Laboratory, College of Medicine, Jiaxing University, Jiaxing, China
| | - Weijian Li
- Department of Preventive Medicine, Forensic and Pathology Laboratory, College of Medicine, Jiaxing University, Jiaxing, China
| | - Jingjian Dong
- Department of Preventive Medicine, Forensic and Pathology Laboratory, College of Medicine, Jiaxing University, Jiaxing, China
| | - Bin Shen
- Department of Preventive Medicine, Forensic and Pathology Laboratory, College of Medicine, Jiaxing University, Jiaxing, China
| | - Jie Tang
- Department of Pathology, Municipal Key-Innovative Discipline of Molecular Diagnostics, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing University, Jiaxing, China
| | - Long Xu
- Department of Preventive Medicine, Forensic and Pathology Laboratory, College of Medicine, Jiaxing University, Jiaxing, China
| |
Collapse
|
30
|
Al-Kuraishy HM, Al-Gareeb AI, Eldahshan OA, Abdelkhalek YM, El Dahshan M, Ahmed EA, Sabatier JM, Batiha GES. The possible role of nuclear factor erythroid-2-related factor 2 activators in the management of Covid-19. J Biochem Mol Toxicol 2024; 38:e23605. [PMID: 38069809 DOI: 10.1002/jbt.23605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 07/06/2023] [Accepted: 11/21/2023] [Indexed: 01/18/2024]
Abstract
COVID-19 is caused by a novel SARS-CoV-2 leading to pulmonary and extra-pulmonary manifestations due to oxidative stress (OS) development and hyperinflammation. COVID-19 is primarily asymptomatic though it may cause acute lung injury (ALI), acute respiratory distress syndrome (ARDS), systemic inflammation, and thrombotic events in severe cases. SARS-CoV-2-induced OS triggers the activation of different signaling pathways, which counterbalances this complication. One of these pathways is nuclear factor erythroid 2-related factor 2 (Nrf2), which induces a series of cellular interactions to mitigate SARS-CoV-2-mediated viral toxicity and OS-induced cellular injury. Nrf2 pathway inhibits the expression of pro-inflammatory cytokines and the development of cytokine storm in COVID-19. Therefore, Nrf2 activators may play an essential role in reducing SARS-CoV-2 infection-induced inflammation by suppressing NLRP3 inflammasome in COVID-19. Furthermore, Nrf2 activators can attenuate endothelial dysfunction (ED), renin-angiotensin system (RAS) dysregulation, immune thrombosis, and coagulopathy. Thus this mini-review tries to clarify the possible role of the Nrf2 activators in the management of COVID-19. Nrf2 activators could be an effective therapeutic strategy in the management of Covid-19. Preclinical and clinical studies are recommended in this regard.
Collapse
Affiliation(s)
- Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, Iraq
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, Iraq
| | - Omayma A Eldahshan
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, Egypt
| | | | - Magdy El Dahshan
- Department of Internal Medicine, Faculty of Medicine, Al Azhar University, Cairo, Egypt
| | - Eman A Ahmed
- Department of Pharmacology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Jean-Marc Sabatier
- Institut de Neurophysiopathologie (INP), CNRS UMR 7051, Faculté des Sciences Médicales et Paramédicales, Aix-Marseille Université, Marseille, France
| | - Gaber E-S Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, AlBeheira, Egypt
| |
Collapse
|
31
|
Yalcın T, Kaya S, Kuloğlu T. Resveratrol may dose-dependently modulate nephrin and OTULIN levels in a doxorubicin-induced nephrotoxicity model. Toxicol Mech Methods 2024; 34:98-108. [PMID: 37807854 DOI: 10.1080/15376516.2023.2268717] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/04/2023] [Indexed: 10/10/2023]
Abstract
One of the most important side effects of Doxorubicin (DOX), a chemotherapeutic agent, is nephrotoxicity. The purpose of this study is to determine whether different doses of natural polyphenol Resveratrol (RSV) show antioxidative, anti-inflammatory or antiapoptotic effects in kidney tissue in DOX-induced nephrotoxicity and to detect how nephrin and OTULIN levels are affected in this process. A total of six equal groups made up of the 42 Sprague-Dawley rats utilized in the study (n = 7) were randomly assigned. Except for the control group (no treatment), all treatments were given intraperitoneally to the DOX (15 mg/kg), DOX + RSV I (15 mg/kg DOX+ 1 mg/kg/day RSV), DOX + RSV II (15 mg/kg DOX+ 5 mg/kg/day RSV), RSV I and RSV II groups. Kidney tissues taken from rats sacrificed on the fifteenth day were analyzed biochemically, histologically and immunohistochemically. Accordingly, it was determined that nephrin and OTULIN levels decreased in kidney tissue in DOX-induced nephrotoxicity. Furthermore, DOX caused oxidative stress, inflammation, and apoptosis, as well as histopathological changes in kidney tissue. However, it was observed that DOX-induced changes were regulated by RSV application. RSV was demonstrated to have antioxidant, anti-inflammatory and anti-apoptotic properties in dose-dependent DOX-induced nephrotoxicity. RSV may exert nephroprotective effects by modulating DOX-induced altered nephrin and OTULIN levels.
Collapse
Affiliation(s)
- Tuba Yalcın
- Vocational School of Healthcare Studies, Batman University, Batman, Turkey
| | - Sercan Kaya
- Vocational School of Healthcare Studies, Batman University, Batman, Turkey
| | - Tuncay Kuloğlu
- Department of Histology and Embryology, Faculty of Medicine, Firat University, Elazig, Turkey
| |
Collapse
|
32
|
Wang D, Wu Y, Sun S, Zhao P, Zhou X, Liang C, Ma Y, Li S, Zhu X, Hao X, Shi J, Fan H. NLRP3 inflammasome-mediated pyroptosis involvement in cadmium exposure-induced cognitive deficits via the Sirt3-mtROS axis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166478. [PMID: 37625726 DOI: 10.1016/j.scitotenv.2023.166478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/03/2023] [Accepted: 08/20/2023] [Indexed: 08/27/2023]
Abstract
Cadmium (Cd), a toxic heavy metal, exerts deleterious effects on neuronal survival and cognitive function. NOD-like receptor 3 (NLRP3) inflammasome-dependent pyroptosis has been linked to Cd-induced cytotoxicity. The current research intended to elucidate the role of NLRP3 inflammasome-mediated pyroptosis in Cd-evoked neuronal death and cognitive impairments and the underlying mechanisms. Exposure to 1 mg/kg Cd for 8 weeks led to hippocampal-dependent cognitive deficits and neural/synaptic damage in mice. NLRP3 inflammasome-related protein expression (NLRP3, ASC, and caspase1 p20) and neuronal pyroptosis were significantly upregulated in Cd-treated hippocampi and SH-SY5Y cells. Moreover, pretreatment with the NLRP3 inhibitor MCC950 mitigated Cd-elicited NLRP3 inflammasome activation and subsequent neuronal pyroptosis in SH-SY5Y cells. Furthermore, exposure to Cd downregulated Sirt3 expression, suppressed SOD2 activity by hyperacetylation, and enhanced mtROS accumulation in vivo and in vitro. Notably, Cd-induced NLRP3 inflammasome-dependent neuronal pyroptosis was attenuated by a mtROS scavenger or Sirt3 overexpression in SH-SY5Y cells. In addition, Cd failed to further suppress SOD activity and activate NLRP3 inflammasome-dependent neuronal pyroptosis in Sirt3 shRNA-treated SH-SY5Y cells. Collectively, our findings indicate that Cd exposure induces neuronal injury and cognitive deficits by activating NLRP3 inflammasome-dependent neuronal pyroptosis and that activation of the NLRP3 inflammasome is partially mediated by the Sirt3-mtROS axis.
Collapse
Affiliation(s)
- Dongmei Wang
- College of Basic Medicine and Forensic Medicine, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, China.
| | - Yiran Wu
- College of Basic Medicine and Forensic Medicine, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, China
| | - Shihao Sun
- College of Basic Medicine and Forensic Medicine, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, China
| | - Pu Zhao
- College of Basic Medicine and Forensic Medicine, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, China
| | - Xiang Zhou
- College of Basic Medicine and Forensic Medicine, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, China
| | - Chen Liang
- College of Basic Medicine and Forensic Medicine, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, China
| | - Yilu Ma
- College of Basic Medicine and Forensic Medicine, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, China
| | - Sanqiang Li
- College of Basic Medicine and Forensic Medicine, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, China
| | - Xiaoying Zhu
- College of Basic Medicine and Forensic Medicine, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, China
| | - Xueqin Hao
- College of Basic Medicine and Forensic Medicine, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, China
| | - Jian Shi
- College of Basic Medicine and Forensic Medicine, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, China.
| | - Hua Fan
- College of Basic Medicine and Forensic Medicine, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, China.
| |
Collapse
|
33
|
Liu S, Liu J, Wu Y, Tan L, Luo Y, Ding C, Tang Z, Shi X, Fan W, Song S. Genistein upregulates AHR to protect against environmental toxin-induced NASH by inhibiting NLRP3 inflammasome activation and reconstructing antioxidant defense mechanisms. J Nutr Biochem 2023; 121:109436. [PMID: 37666477 DOI: 10.1016/j.jnutbio.2023.109436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/18/2023] [Accepted: 08/30/2023] [Indexed: 09/06/2023]
Abstract
We have previously proven that the environmental toxin could accelerate the development and progression of nonalcoholic steatohepatitis (NASH). However, the underlying mechanism associated with such excessive inflammation hasn't been fully illustrated. Although Genistein has been well accepted for its capability in anti-inflammation and anti-oxidation, its effect in ameliorating contaminants-induced NASH still needs to be identified. In this study, using chickens and primary chicken hepatocytes as models, we found that NOD-like receptor pyrin domain-containing 3 (NLRP3) inflammasome were over-activated in bromoacetic acid (BAA, one of the typical environmental toxins)-induced NASH, characterized by the infiltration of inflammatory cell, and the increase of NLRP3, Caspase-1 p20, and cytokines (IL-1β, IL-18) expressions. Interestingly, genistein treatment could recover these changes, with the signs of restored activities of anti-oxidases, decreased expressions of NLRP3 inflammasome components, and increased levels of elements in phase I metabolic system. The detailed mechanism was that, via up-regulating aryl hydrocarbon receptor (AHR), genistein lifted mRNA levels of Cyp1-related genes to reconstruct cytochrome P450 (CYP450) systems, and the raised AHR negatively regulated NLRP3 inflammasome activity to relieve inflammation. More important, the interaction and co-localization between AHR and NLRP3 was first proved, and genistein could promote the levels of AHR that interacted with NLRP3, which thereafter blocked the activation of NLRP3 inflammasome. Conclusively, in this research, we confirmed the AHR-dependent protective role of genistein in environmental toxin-linked NASH, which shed light on the potential precautions for contaminants-induced NASH.
Collapse
Affiliation(s)
- Shuhui Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| | - Jiwen Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| | - Yuting Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| | - Lei Tan
- Administration for Market Regulation of Guangdong Province Key Laboratory of Supervision for Edible Agricultural Products, Shenzhen Centre of Inspection and Testing for Agricultural Products, Shenzhen, 518000, China
| | - Yan Luo
- Administration for Market Regulation of Guangdong Province Key Laboratory of Supervision for Edible Agricultural Products, Shenzhen Centre of Inspection and Testing for Agricultural Products, Shenzhen, 518000, China
| | - Chenchen Ding
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| | - Zhihui Tang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| | - Xizhi Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Wentao Fan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China.
| | - Suquan Song
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China.
| |
Collapse
|
34
|
Wu BS, Xiang HQ, Yu YW, Liu S, Song DY, Wu C, Lin ZH, Zhu CX, Xue YJ, Ji KT. 3,4-benzo[a]pyrene aggravates myocardial infarction injury by activating NLRP3-related pyroptosis through PINK1/Parkin-mitophagy-mPTP opening axis. Int Immunopharmacol 2023; 122:110481. [PMID: 37390647 DOI: 10.1016/j.intimp.2023.110481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/27/2023] [Accepted: 06/08/2023] [Indexed: 07/02/2023]
Abstract
BACKGROUND Air pollution is an important and interventionable risk factor for cardiovascular disease. Air pollution exposure, even for a short-term exposure, is conspicuously relevant to increased risk of myocardial infarction (MI) mortality and clinical evidence has shown that air pollution particulate matter (PM) induces the aggravation of AMI. 3,4-benzo[a]pyrene (BaP), an extremely toxic polycyclic aromatic hydrocarbon (PAH) and a common component of PM, is listed as one of the main objects of environmental pollution monitoring. Both epidemiological and toxicological studies suggest that BaP exposure may be associated with cardiovascular disease. Since PM is significantly associated with the increased risk of MI mortality, and BaP is an important component of PM associated with cardiovascular disease, we intend to investigate the effect of BaP on MI models. METHODS The MI mouse model and the oxygen and glucose deprivation (OGD) H9C2 cell model were used to investigate the effect of BaP in MI injury. The involvement of mitophagy and pyroptosis in regulating deterioration of cardiac function and aggravation of MI injury induced by BaP was comprehensively evaluated. RESULTS Our study shows that BaP exacerbates MI injury in vivo and in vitro, a result based on BaP-induced NLRP3-related pyroptosis. In addition, BaP can inhibit PINK1/Parkin dependent mitophagy through the aryl hydrocarbon receptor (AhR), thus the mitochondrial permeability transition pore (mPTP) was induced to open. CONCLUSION Our results suggest a role for the BaP from air pollution in MI injury aggravation and reveal that BaP aggravates MI injury by activating NLRP3-related pyroptosis via the PINK1/Parkin-mitophagy-mPTP opening axis.
Collapse
Affiliation(s)
- Bo-Sen Wu
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Hua-Qiang Xiang
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Yong-Wei Yu
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Intensive Care Unit, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| | - Shuai Liu
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Dong-Yan Song
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Chang Wu
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Zhi-Hui Lin
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Chen-Xi Zhu
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Yang-Jing Xue
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.
| | - Kang-Ting Ji
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.
| |
Collapse
|
35
|
Hong W, Liu Y, Liang J, Jiang C, Yu M, Sun W, Huang B, Dong N, Kang L, Tang Y. Molecular Mechanisms of Selenium Mitigating Lead Toxicity in Chickens via Mitochondrial Pathway: Selenoproteins, Oxidative Stress, HSPs, and Apoptosis. TOXICS 2023; 11:734. [PMID: 37755744 PMCID: PMC10536545 DOI: 10.3390/toxics11090734] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/19/2023] [Accepted: 08/24/2023] [Indexed: 09/28/2023]
Abstract
Lead (Pb), a hazardous heavy metal, can damage the health of organisms. However, it is not clear whether Pb can damage chicken cerebellums and thalami. Selenium (Se), an essential nutrient for organisms, has a palliative effect on Pb poisoning in chickens. In our experiment, a model of chickens treated with Pb and Se alone and in combination was established to investigate the molecular mechanism of Se alleviating Pb-caused damage in both chicken cerebellums and thalami. Our morphological results indicated that Pb caused apoptotic lesions, such as mitochondrial and nuclear damage. Further, the anti-apoptotic gene Bcl-2 decreased; on the contrary, four pro-apoptotic genes (p53, Bax, Cyt c, and Caspase-3) increased under Pb treatment, meaning that Pb caused apoptosis via the p53-Cyt c-Caspase-3 pathway. Furthermore, we further demonstrated that Pb elevated four HSPs (HSP27, HSP40, HSP70, and HSP90), as well as HSP70 took part in the molecular mechanism of Pb-caused apoptosis. In addition, we found that Pb exposure led to oxidative stress via up-regulating the oxidant H2O2 and down-regulating four antioxidants (CAT, SOD, GST, and GPx). Moreover, Pb decreased three Se-containing factors (Txnrd1, Txnrd2, and Txnrd3), further confirming that Pb caused oxidative stress. Interestingly, Se supplementation reversed the above changes caused by Pb and alleviated Pb-induced oxidative stress and apoptosis. A time dependency was demonstrated for Bcl-2, Bax, and Cyt c in the cerebellums, as well as CAT, GPx, and p53 in the thalami of Pb-exposed chickens. HSP70 in cerebellums and HSP27 in thalami were more sensitive than those in thalami and cerebellums, respectively, under Pb exposure. Pb-induced apoptosis of thalami was more severe than cerebellums. In conclusion, after Pb treatment, Txnrds mediated oxidative stress, oxidative stress up-regulated HSPs, and finally, HSP70 triggered apoptosis. Se supplementation antagonized Pb-induced oxidative stress and apoptosis via the mitochondrial pathway and selenoproteins in chicken cerebellums and thalami. This study provides new information for the mechanism of environmental pollutant poisoning and the detoxification of Se on abiotic stress.
Collapse
Affiliation(s)
- Weichen Hong
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Yuhao Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Jiatian Liang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Chunyu Jiang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Meijin Yu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Wei Sun
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Bin Huang
- Electrical and Information Engineering College, Jilin Agricultural Science and Technology University, Jilin City 132101, China
| | - Na Dong
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Lu Kang
- Institute of Agricultural Quality Standards and Testing Technology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| | - You Tang
- Electrical and Information Engineering College, Jilin Agricultural Science and Technology University, Jilin City 132101, China
| |
Collapse
|
36
|
Dong Y, Zhuang XX, Wang YT, Tan J, Feng D, Li M, Zhong Q, Song Z, Shen HM, Fang EF, Lu JH. Chemical mitophagy modulators: Drug development strategies and novel regulatory mechanisms. Pharmacol Res 2023; 194:106835. [PMID: 37348691 DOI: 10.1016/j.phrs.2023.106835] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/09/2023] [Accepted: 06/19/2023] [Indexed: 06/24/2023]
Abstract
Maintaining mitochondrial homeostasis is a potential therapeutic strategy for various diseases, including neurodegenerative diseases, cardiovascular diseases, metabolic disorders, and cancer. Selective degradation of mitochondria by autophagy (mitophagy) is a fundamental mitochondrial quality control mechanism conserved from yeast to humans. Indeed, small-molecule modulators of mitophagy are valuable pharmaceutical tools that can be used to dissect complex biological processes and turn them into potential drugs. In the past few years, pharmacological regulation of mitophagy has shown promising therapeutic efficacy in various disease models. However, with the increasing number of chemical mitophagy modulator studies, frequent methodological flaws can be observed, leading some studies to draw unreliable or misleading conclusions. This review attempts (a) to summarize the molecular mechanisms of mitophagy; (b) to propose a Mitophagy Modulator Characterization System (MMCS); (c) to perform a comprehensive analysis of methods used to characterize mitophagy modulators, covering publications over the past 20 years; (d) to provide novel targets for pharmacological intervention of mitophagy. We believe this review will provide a panorama of current research on chemical mitophagy modulators and promote the development of safe and robust mitophagy modulators with therapeutic potential by introducing high methodological standards.
Collapse
Affiliation(s)
- Yu Dong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, 999078, Macau
| | - Xu-Xu Zhuang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, 999078, Macau
| | - Yi-Ting Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, 999078, Macau
| | - Jieqiong Tan
- Center for medical genetics, Central South University, Changsha 410031, Hunan, China
| | - Du Feng
- Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, College of Basic Medical Science, Guangzhou Medical University, Guangzhou 511436, Guangdong, China
| | - Min Li
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, 999077, Hong Kong Special Administrative Region
| | - Qing Zhong
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zhiyin Song
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Frontier Science Center for Immunology and Metabolism, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, Hubei, China
| | - Han-Ming Shen
- Department of Biomedical Sciences, Faculty of Health Sciences, Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, 999078, Macau
| | - Evandro F Fang
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, 1478 Lørenskog, Norway
| | - Jia-Hong Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, 999078, Macau.
| |
Collapse
|
37
|
Ungurianu A, Zanfirescu A, Margină D. Sirtuins, resveratrol and the intertwining cellular pathways connecting them. Ageing Res Rev 2023; 88:101936. [PMID: 37116286 DOI: 10.1016/j.arr.2023.101936] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/06/2023] [Accepted: 04/17/2023] [Indexed: 04/30/2023]
Abstract
Sirtuins are a family of NAD+-dependent deacylases with numerous physiological and pathological implications, which lately became an attractive therapeutic target. Sirtuin-activating compounds (STACs) could be useful in disease prevention and treatment. Despite its bioavailability issues, resveratrol exerts a myriad of beneficial effects, known as the "resveratrol paradox". Modulation of sirtuins' expression and activity may, in fact, underlie many of resveratrol revered actions; however, the cellular pathways affected by modulating the activity of each sirtuin isoform, in different physio-pathological conditions, are not fully known. The purpose of this review was to summarize recent reports concerning the effects of resveratrol on the activity of sirtuins in different experimental settings, focusing on in vitro and in vivo preclinical studies. Most reports concern SIRT1, however recent studies dive into the effects initiated via other isoforms. Numerous cellular signaling pathways were reported to be modulated by resveratrol in a sirtuin-dependent manner (increased phosphorylation of MAPKs, AKT, AMPK, RhoA, BDNF, decreased activation of NLRP3 inflammasome, NF-κB, STAT3, upregulation of SIRT1/SREBP1c pathway, reduced β-amyloid via SIRT1-NF-κB-BACE1 signaling and counteracting mitochondrial damage by deacetylating PGC-1α). Thus, resveratrol may be the ideal candidate in the search for STACs as a tool for preventing and treating inflammatory and neurodegenerative diseases.
Collapse
Affiliation(s)
- Anca Ungurianu
- Carol Davila University of Medicine and Pharmacy, Faculty of Pharmacy, Department of Biochemistry, Traian Vuia 6, 020956 Bucharest, Romania
| | - Anca Zanfirescu
- Carol Davila University of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmacology, Traian Vuia 6, 020956 Bucharest, Romania.
| | - Denisa Margină
- Carol Davila University of Medicine and Pharmacy, Faculty of Pharmacy, Department of Biochemistry, Traian Vuia 6, 020956 Bucharest, Romania
| |
Collapse
|
38
|
Ge J, Shelby SL, Wang Y, Morse PD, Coffey K, Li J, Geng T, Huang Y. Cardioprotective properties of quercetin in fescue toxicosis-induced cardiotoxicity via heart-gut axis in lambs (Ovis Aries). JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131843. [PMID: 37379607 DOI: 10.1016/j.jhazmat.2023.131843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/31/2023] [Accepted: 06/11/2023] [Indexed: 06/30/2023]
Abstract
The present study investigated whether quercetin mitigated fescue toxicosis-induced cardiovascular injury via the heart-gut axis. Twenty-four commercial Dorper lambs were stratified by body weight and assigned randomly to diets in one of four groups: endophyte-free without quercetin (E-,Q-), endophyte-positive without quercetin (E+,Q-), endophyte-positive plus 4 g/kg quercetin (E+,Q+) or endophyte-free plus 4 g/kg quercetin (E-,Q+) for 42 days. Body weight and average daily feed intake (ADFI) of lambs fed the endophyte-positive diets showed significant decreases. However, in the groups treated with quercetin, there were significant alterations of cardiac enzymes. Furthermore, reduced fescue toxicosis-induced histopathological lesions of heart and aorta were demonstrated in the E+,Q+ lambs. Results also suggested quercetin eased cardiovascular oxidative injury by inhibiting the increase of oxidative metabolites, and enhancing the levels of antioxidases. Quercetin reduced the inflammation response through suppressing NF-κB signaling pathway activation. Additionally, quercetin ameliorated fescue toxicosis-induced mitochondria dysfunction and improved mitochondrial quality control through enhancing PGC-1α-mediated mitochondrial biogenesis, maintaining the mitochondrial dynamics, and relieving aberrant Parkin/PINK-mediated mitophagy. Quercetin enhanced gastrointestinal microbial alpha and beta diversity, alleviated gut microbiota and microbiome derived metabolites-SCFAs dysbiosis by fescue toxicosis. These findings signified that quercetin may play a cardio-protective role via regulating the heart-gut microbiome axis.
Collapse
Affiliation(s)
- Jing Ge
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, PR China; Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville, AR 72701, United States
| | - Sarah Layne Shelby
- Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville, AR 72701, United States
| | - Yongjie Wang
- Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville, AR 72701, United States
| | - Palika Dias Morse
- Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville, AR 72701, United States
| | - Ken Coffey
- Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville, AR 72701, United States
| | - Jinlong Li
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, PR China, Northeast Agricultural University, Harbin 150030, PR China
| | - Tuoyu Geng
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou 225009, PR China.
| | - Yan Huang
- Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville, AR 72701, United States.
| |
Collapse
|
39
|
Gong P, Yue S, Shi F, Yang W, Yao W, Chen F, Guo Y. Protective Effect of Astragaloside IV against Cadmium-Induced Damage on Mouse Renal Podocytes (MPC5). Molecules 2023; 28:4897. [PMID: 37446560 DOI: 10.3390/molecules28134897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
In this study, we investigated the protective effect of Astragaloside IV (Ast) on mouse podocytes and its possible mechanism of action by constructing a cadmium-induced mouse renal podocytes model. We investigated the effects of cadmium (Cd) toxicity on cell number, morphology, the mitochondrial status of subcellular organelles, protein and gene levels, and the protective effects of Ast by constructing a model of Cd-induced damage to mouse renal podocytes (MPC5) and giving Ast protection at the same time. The results showed that exposure of MPC5 cells to CdCl2 culture medium containing 6.25 μM concentration acted with low cell mortality, but the mortality of MPC5 cells increased with the prolongation of cadmium exposure time. Given Ast, the death rate in the low dose group (12.5 μM) was significantly reduced, while the death rate in the medium dose group (25 μM) was extremely significantly reduced. In comparison to the control group, the Cd-exposed group exhibited a significant increase of 166.7% in malondialdehyde (MDA) content and a significant decrease of 17.1% in SOD activity. The mitochondrial membrane potential was also reduced to varying degrees. However, in the Ast-protected group compared to the Cd-exposed group, the MDA content significantly decreased by 20.8%, the SOD activity decreased by 7.14%, and the mitochondrial membrane potential showed a significant increase. Fluorescence staining of mitochondrial membrane potential indicated that Cd exposure caused mitochondrial apoptosis. In the 12-h cadmium-exposed group, the protein expression of Nephrin in mice significantly decreased by 33.4%. However, the expression of the Desmin protein significantly increased by 67.8%, and the expression of the autophagy protein LC3-II significantly increased by 55.5%. Meanwhile, the expression of PINK1, a mitochondrial autophagy pathway protein, was significantly increased in the 12 h and 24 h cadmium exposure groups. The mRNA level of PINK1 was significantly increased, and that of Parkin was decreased in the 48 h cadmium exposure group. Compared to the Cd-exposed group, the Ast group showed more significant improvements in the expression of podocyte structure, functional proteins, and mitochondrial autophagy pathway proteins. The immunological assay of mitochondrial autophagic pathway proteins further indicated that Cd-induced damage to MPC5 cells might be associated with the dysregulation of mitochondrial autophagy.
Collapse
Affiliation(s)
- Pin Gong
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Shan Yue
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Fuxiong Shi
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Wenjuan Yang
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Wenbo Yao
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Fuxin Chen
- School of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Yuxi Guo
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Xi'an 710021, China
| |
Collapse
|
40
|
Li Y, Zhao L, Sun C, Yang J, Zhang X, Dou S, Hua Q, Ma A, Cai J. Regulation of Gut Microflora by Lactobacillus casei Zhang Attenuates Liver Injury in Mice Caused by Anti-Tuberculosis Drugs. Int J Mol Sci 2023; 24:ijms24119444. [PMID: 37298396 DOI: 10.3390/ijms24119444] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/24/2023] [Accepted: 05/27/2023] [Indexed: 06/12/2023] Open
Abstract
The gut-liver axis may provide a new perspective for treating anti-tuberculosis drug-induced liver injury (ATDILI). Herein, the protective effect of Lactobacillus casei (Lc) was investigated by modulating gut microflora (GM) and the toll like receptor 4 (TLR4)-nuclear factor (NF)-κB-myeloiddifferentiationfactor 88 (MyD88) pathway. C57BL/6J mice were given three levels of Lc intragastrically for 2 h before administering isoniazid and rifampicin for 8 weeks. Blood, liver, and colon tissues, as well as cecal contents, were collected for biochemical and histological examination, as well as Western blot, quantitative real time polymerase chain reaction (qRT-PCR), and 16S rRNA analyses. Lc intervention decreased alkaline phosphatase (ALP), superoxide dismutase (SOD), glutathione (GSH), malondialdehyde (MDA), and tumor necrosis factor (TNF)-α levels (p < 0.05), recovered hepatic lobules, and reduced hepatocyte necrosis to alleviate liver injury induced by anti-tuberculosis drugs. Moreover, Lc also increased the abundance of Lactobacillus and Desulfovibrio and decreased Bilophila abundance, while enhancing zona occludens (ZO)-1 and claudin-1 protein expression compared with the model group (p < 0.05). Furthermore, Lc pretreatment reduced the lipopolysaccharide (LPS) level and downregulated NF-κB and MyD88 protein expression (p < 0.05), thus restraining pathway activation. Spearman correlation analysis indicated that Lactobacillus and Desulfovibrio were positively correlated with ZO-1 or occludin protein expression and negatively correlated with pathway protein expression. Desulfovibrio had significant negative relationships with alanine aminotransferase (ALT) and LPS levels. In contrast, Bilophila had negative associations with ZO-1, occludin, and claudin-1 protein expressions and positive correlations with LPS and pathway proteins. The results prove that Lactobacillus casei can enhance the intestinal barrier and change the composition of the gut microflora. Moreover, Lactobacillus casei may also inhibit TLR4-NF-κB-MyD88 pathway activation and alleviate ATDILI.
Collapse
Affiliation(s)
- Yue Li
- School of Public Health, Qingdao University, Qingdao 266021, China
- Institute of Nutrition and Health, Qingdao University, Qingdao 266021, China
| | - Liangjie Zhao
- School of Public Health, Qingdao University, Qingdao 266021, China
- Institute of Nutrition and Health, Qingdao University, Qingdao 266021, China
| | - Changyu Sun
- School of Public Health, Qingdao University, Qingdao 266021, China
| | - Jingyi Yang
- School of Public Health, Qingdao University, Qingdao 266021, China
| | - Xinyue Zhang
- School of Public Health, Qingdao University, Qingdao 266021, China
| | - Sheng Dou
- School of Public Health, Qingdao University, Qingdao 266021, China
| | - Qinglian Hua
- School of Public Health, Qingdao University, Qingdao 266021, China
- Institute of Nutrition and Health, Qingdao University, Qingdao 266021, China
| | - Aiguo Ma
- School of Public Health, Qingdao University, Qingdao 266021, China
- Institute of Nutrition and Health, Qingdao University, Qingdao 266021, China
| | - Jing Cai
- School of Public Health, Qingdao University, Qingdao 266021, China
- Institute of Nutrition and Health, Qingdao University, Qingdao 266021, China
| |
Collapse
|
41
|
Guo H, Wei L, Wang Y, Cui H, Deng H, Zhu Y, Deng J, Geng Y, Ouyang P, Lai W, Du Z, Ni X, Yin H, Fang J, Zuo Z. Nickel induces hepatotoxicity by mitochondrial biogenesis, mitochondrial dynamics, and mitophagy dysfunction. ENVIRONMENTAL TOXICOLOGY 2023; 38:1185-1195. [PMID: 36794572 DOI: 10.1002/tox.23758] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/18/2023] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
Nickel (Ni) is an important and widely hazardous chemical industrial waste. Excessive Ni exposure could cause multi-organs toxicity in human and animals. Liver is the major target organ of Ni accumulation and toxicity, however, the precise mechanism is still unclear. In this study, nickel chloride (NiCl2 )-treatment induced hepatic histopathological changes in the mice, and, transmission electron microscopy results showed mitochondrial swollen and deformed of hepatocyte. Next, the mitochondrial damages including mitochondrial biogenesis, mitochondrial dynamics, and mitophagy were measured after NiCl2 administration. The results showed that NiCl2 suppressed mitochondrial biogenesis by decreasing PGC-1α, TFAM, and NRF1 protein and mRNA expression levels. Meanwhile, the proteins involved in mitochondrial fusion were reduced by NiCl2 , such as Mfn1 and Mfn2, however, mitochondrial fission proteins Drip1 and Fis1 were significantly increased. The up-regulation of mitochondrial p62 and LC3II expression indicated that NiCl2 increased mitophagy in the liver. Moreover, the receptor-mediated mitophagy and ubiquitin (Ub)-dependent mitophagy were detected. NiCl2 promoted PINK1 accumulation and Parkin recruitment on mitochondria. And, the receptor proteins of mitophagy Bnip3 and FUNDC1 were increased in the NiCl2 -treated mice liver. Overall, these results show that NiCl2 could induce mitochondria damage in the liver of mice, and, dysfunction of mitochondrial biogenesis, mitochondrial dynamics and mitophagy involved in the molecular mechanism of NiCl2 -induced hepatotoxicity.
Collapse
Affiliation(s)
- Hongrui Guo
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Chengdu, China
| | - Ling Wei
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yihan Wang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Hengmin Cui
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Chengdu, China
| | - Huidan Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Chengdu, China
| | - Yanqiu Zhu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Junliang Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Chengdu, China
| | - Yi Geng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ping Ouyang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Weiming Lai
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zongjun Du
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Xueqin Ni
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Heng Yin
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Jing Fang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Chengdu, China
| | - Zhicai Zuo
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Chengdu, China
| |
Collapse
|
42
|
Lv MW, Zhang C, Ge J, Sun XH, Li JY, Li JL. Resveratrol protects against cadmium-induced cerebrum toxicity through modifications of the cytochrome P450 enzyme system in microsomes. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023. [PMID: 37115015 DOI: 10.1002/jsfa.12668] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 05/14/2023]
Abstract
BACKGROUND Cadmium (Cd), known as a vital contaminant in the environment, penetrates the blood-brain barrier and accumulates in the cerebrum. Acute toxicosis of Cd, which leads to lethal cerebral edema, intracellular accumulation and cellular dysfunction, remains to be illuminated with regard to the exact molecular mechanism of cerebral toxicity. Resveratrol (RES), present in the edible portions of numerous plants, is a simply acquirable and correspondingly less toxic natural compound with neuroprotective potential, which provides some theoretical bases for antagonizing Cd-induced cerebral toxicity. RESULTS This work was executed to research the protective effects of RES against Cd-induced toxicity in chicken cerebrum. Markedly, these lesions were increased in the Cd group, which also exhibited a thinner cortex, reduced granule cells, vacuolar degeneration, and an enlarged medullary space in the cerebrum. Furthermore, Cd induced CYP450 enzyme metabolism disorders by disrupting the nuclear xenobiotic receptor response (NXRs), enabling the cerebrum to reduce the ability to metabolize exogenous substances, eventually leading to Cd accumulation. Meanwhile, accumulated Cd promoted oxidative damage and synergistically promoted the damage to neurons and glial cells. CONCLUSION RES initiated NXRs (especially for aromatic receptor and pregnancy alkane X receptor), decreasing the expression of CYP450 genes, changing the content of CYP450, maintaining CYP450 enzyme normal activities, and exerting antagonistic action against the Cd-induced abnormal response of nuclear receptors. These results suggest that the cerebrum toxicity caused by Cd was reduced by pretreatment with RES. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Mei-Wei Lv
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, PR China
| | - Cong Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, PR China
| | - Jing Ge
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, PR China
- College of Animal Science and Technology, Yangzhou University, Yangzhou, PR China
| | - Xiao-Han Sun
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, PR China
| | - Jin-Yang Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, PR China
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, PR China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, PR China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, PR China
| |
Collapse
|
43
|
Srivastava A, Tomar B, Sharma D, Rath SK. Mitochondrial dysfunction and oxidative stress: Role in chronic kidney disease. Life Sci 2023; 319:121432. [PMID: 36706833 DOI: 10.1016/j.lfs.2023.121432] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/18/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023]
Abstract
Chronic kidney disease (CKD) is associated with a variety of distinct disease processes that permanently change the function and structure of the kidney across months or years. CKD is characterized as a glomerular filtration defect or proteinuria that lasts longer than three months. In most instances, CKD leads to end-stage kidney disease (ESKD), necessitating kidney transplantation. Mitochondrial dysfunction is a typical response to damage in CKD patients. Despite the abundance of mitochondria in the kidneys, variations in mitochondrial morphological and functional characteristics have been associated with kidney inflammatory responses and injury during CKD. Despite these variations, CKD is frequently used to define some classic signs of mitochondrial dysfunction, including altered mitochondrial shape and remodeling, increased mitochondrial oxidative stress, and a marked decline in mitochondrial biogenesis and ATP generation. With a focus on the most significant developments and novel understandings of the involvement of mitochondrial remodeling in the course of CKD, this article offers a summary of the most recent advances in the sources of procured mitochondrial dysfunction in the advancement of CKD. Understanding mitochondrial biology and function is crucial for developing viable treatment options for CKD.
Collapse
Affiliation(s)
- Anjali Srivastava
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Bhawna Tomar
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Divyansh Sharma
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Srikanta Kumar Rath
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
44
|
Huang J, Liang Y, Zhou L. Natural products for kidney disease treatment: Focus on targeting mitochondrial dysfunction. Front Pharmacol 2023; 14:1142001. [PMID: 37007023 PMCID: PMC10050361 DOI: 10.3389/fphar.2023.1142001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/06/2023] [Indexed: 03/17/2023] Open
Abstract
The patients with kidney diseases are increasing rapidly all over the world. With the rich abundance of mitochondria, kidney is an organ with a high consumption of energy. Hence, renal failure is highly correlated with the breakup of mitochondrial homeostasis. However, the potential drugs targeting mitochondrial dysfunction are still in mystery. The natural products have the superiorities to explore the potential drugs regulating energy metabolism. However, their roles in targeting mitochondrial dysfunction in kidney diseases have not been extensively reviewed. Herein, we reviewed a series of natural products targeting mitochondrial oxidative stress, mitochondrial biogenesis, mitophagy, and mitochondrial dynamics. We found lots of them with great medicinal values in kidney disease. Our review provides a wide prospect for seeking the effective drugs targeting kidney diseases.
Collapse
|
45
|
Makarov M, Korkotian E. Differential Role of Active Compounds in Mitophagy and Related Neurodegenerative Diseases. Toxins (Basel) 2023; 15:202. [PMID: 36977093 PMCID: PMC10058020 DOI: 10.3390/toxins15030202] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/28/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
Neurodegenerative diseases, such as Alzheimer's disease or Parkinson's disease, significantly reduce the quality of life of patients and eventually result in complete maladjustment. Disruption of the synapses leads to a deterioration in the communication of nerve cells and decreased plasticity, which is associated with a loss of cognitive functions and neurodegeneration. Maintaining proper synaptic activity depends on the qualitative composition of mitochondria, because synaptic processes require sufficient energy supply and fine calcium regulation. The maintenance of the qualitative composition of mitochondria occurs due to mitophagy. The regulation of mitophagy is usually based on several internal mechanisms, as well as on signals and substances coming from outside the cell. These substances may directly or indirectly enhance or weaken mitophagy. In this review, we have considered the role of some compounds in process of mitophagy and neurodegeneration. Some of them have a beneficial effect on the functions of mitochondria and enhance mitophagy, showing promise as novel drugs for the treatment of neurodegenerative pathologies, while others contribute to a decrease in mitophagy.
Collapse
Affiliation(s)
| | - Eduard Korkotian
- Department of Brain Sciences, The Weizmann Institute of Science, Rehovot 7630031, Israel
| |
Collapse
|
46
|
Wen S, Xu M, Zhang W, Song R, Zou H, Gu J, Liu X, Bian J, Liu Z, Yuan Y. Cadmium induces mitochondrial dysfunction via SIRT1 suppression-mediated oxidative stress in neuronal cells. ENVIRONMENTAL TOXICOLOGY 2023; 38:743-753. [PMID: 36527706 DOI: 10.1002/tox.23724] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/25/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
Cadmium is a widespread environmental contaminant and its neurotoxicity has raised serious concerns. Mitochondrial dysfunction is a key event in Cd-induced nervous system disease; however, the exact molecular mechanism involved has not been fully elucidated. Increasing evidences have shown that Sirtuin 1 (SIRT1) is the key target protein impaired in Cd-induced mitochondrial dysfunction. In this study, the role of SIRT1 in Cd-induced mitochondrial dysfunction and cell death and the underlying mechanisms were evaluated in vitro using PC12 cells and primary rat cerebral cortical neurons. The results showed that Cd exposure caused cell death by inhibiting SIRT1 expression, thus inducing oxidative stress and mitochondrial dysfunction in vitro. However, inhibition of oxidative stress by the antioxidant puerarin alleviated Cd-induced mitochondrial dysfunction. Furthermore, activation of SIRT1 using the agonist Srt1720 significantly abolished Cd-induced oxidative stress and mitochondrial dysfunction and ultimately alleviated Cd-induced neuronal cell death. Collectively, our data indicate that Cd induced mitochondrial dysfunction via SIRT1 suppression-mediated oxidative stress, leading to the death of PC12 cells and primary rat cerebral cortical neurons. These findings suggest a novel mechanism for Cd-induced neurotoxicity.
Collapse
Affiliation(s)
- Shuangquan Wen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, People's Republic of China
| | - Mingchang Xu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, People's Republic of China
| | - Wenhua Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, People's Republic of China
| | - Ruilong Song
- College of Veterinary Medicine, Yangzhou University, Yangzhou, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, People's Republic of China
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, People's Republic of China
| | - Jianhong Gu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, People's Republic of China
| | - Xuezhong Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, People's Republic of China
| | - Jianchun Bian
- College of Veterinary Medicine, Yangzhou University, Yangzhou, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, People's Republic of China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, People's Republic of China
| | - Yan Yuan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, People's Republic of China
| |
Collapse
|
47
|
Bai H, Fang Y, Cao H, Xing C, Zhang C, Zhuang Y, Guo X, Li G, Hu M, Hu G, Yang F. Inhibition of the BNIP3/NIX-dependent mitophagy aggravates copper-induced mitochondrial dysfunction in duck renal tubular epithelial cells. ENVIRONMENTAL TOXICOLOGY 2023; 38:579-590. [PMID: 36378575 DOI: 10.1002/tox.23704] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
The accumulation of copper (Cu) in the organisms could lead to kidney damage by causing mitochondrial dysfunction. Given that mitochondria are one of the targets of Cu poisoning, this study aimed to investigate the role of mitophagy in Cu-induced mitochondrial dysfunction in renal tubular epithelial cells to understand the mechanism of Cu nephrotoxicity. Hence, the cells were treated with different concentrations of Cu sulfate (CuSO4 ) (0, 100, and 200 μM), and mitophagy inhibitor (Cyclosporine A, 0.5 μM) and/or 200 μM CuSO4 in the combination for 12 h. Results showed that Cu caused mitochondrial swelling, vacuoles, and cristae fracture; increased the number of mitochondrial and lysosome fluorescent aggregation points; upregulated the mRNA levels of mitophagy-associated genes (LC3A, LC3B, P62, BNIP3, NIX, OPTN, NDP52, Cyp D LAMP1, and LAMP2) and protein levels of LC3II/LC3I, BNIP3, and NIX, downregulated the mRNA and protein levels of P62; reduced the mitochondrial membrane potential (MMP), ATP content, mitochondrial respiratory control rate (RCR), mitochondrial respiratory control rate (OPR), and the mRNA and protein levels of PGC-1α, TOMM20, and Mfn2, but increased the mRNA and protein levels of Drp1. Besides, cotreatment with Cu and CsA dramatically decreased the level of mitophagy, but increased mitochondrial division, further reduced MMP, ATP content, RCR, and OPR, mitochondrial fusion and thereby reduced mitochondrial biogenesis. Taken together, these data indicated that Cu exposure induced BNIP3/NIX-dependent mitophagy in duck renal tubular epithelial cells, and inhibition of mitophagy aggravated Cu-induced mitochondrial dysfunction.
Collapse
Affiliation(s)
- He Bai
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, People's Republic of China
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, People's Republic of China
| | - Yukun Fang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, People's Republic of China
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, China
| | - Huabin Cao
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, People's Republic of China
| | - Chenghong Xing
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, People's Republic of China
| | - Caiying Zhang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, People's Republic of China
| | - Yu Zhuang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, People's Republic of China
| | - Xiaoquan Guo
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, People's Republic of China
| | - Guyue Li
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, People's Republic of China
| | - Mingwen Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, People's Republic of China
| | - Guoliang Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, People's Republic of China
| | - Fan Yang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, People's Republic of China
| |
Collapse
|
48
|
Bi SS, Talukder M, Sun XT, Lv MW, Ge J, Zhang C, Li JL. Cerebellar injury induced by cadmium via disrupting the heat-shock response. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:22550-22559. [PMID: 36301385 DOI: 10.1007/s11356-022-23771-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Cadmium (Cd) is a food contaminant that poses serious threats to animal health, including birds. It is also an air pollutant with well-known neurotoxic effects on humans. However, knowledge on the neurotoxic effects of chronic Cd exposure on chicken is limited. Thus, this study assessed the neurotoxic effects of chronic Cd on chicken cerebellum. Chicks were exposed to 0 (control), 35 (low), and 70 (high) mg/kg of Cd for 90 days, and the expression of genes related to the heat-shock response was investigated. The chickens showed clinical symptoms of ataxia, and histopathology revealed that Cd exposure decreased the number of Purkinje cells and induced degeneration of Purkinje cells with pyknosis, and some dendrites were missing. Moreover, Cd exposure increased the expression of heat-shock factors, HSF1, HSF2, and HSF3, and heat-shock proteins, HSP60, HSP70, HSP90, and HSP110. These changes indicate that HSPs improve the tolerance of the cerebellum to Cd. Conversely, the expressions of HSP10, HSP25, and HSP40 were decreased significantly, which indicated that Cd inhibits the expression of small heat-shock proteins. However, HSP27 and HSP47 were upregulated following low-dose Cd exposure, but downregulated under high-dose Cd exposure. This work sheds light on the toxic effects of Cd on the cerebellum, and it may provide evidence for health risks posed by Cd. Additionally, this work also identified a novel target of Cd exposure in that Cd induces cerebellar injury by disrupting the heat-shock response. Cd can be absorbed into chicken's cerebellum through the food chain, which eventually caused cerebellar injury. This study provided a new insight that chronic Cd-induced neurotoxicity in the cerebellum is associated with alterations in heat-shock response-related genes, which indicated that Cd through disturbing heat-shock response induced cerebellar injury.
Collapse
Affiliation(s)
- Shao-Shuai Bi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, 237012, People's Republic of China
| | - Milton Talukder
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
- Department of Physiology and Pharmacology, Faculty of Animal Science and Veterinary Medicine, Patuakhali Science and Technology University, Barishal, 8210, Bangladesh
| | - Xue-Tong Sun
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Mei-Wei Lv
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Jing Ge
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Cong Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, People's Republic of China
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| |
Collapse
|
49
|
Hu W, Li G, He J, Zhao H, Zhang H, Lu H, Liu J, Huang F. Association of exposure to multiple serum metals with the risk of chronic kidney disease in the elderly: a population-based case-control study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:17245-17256. [PMID: 36194333 DOI: 10.1007/s11356-022-23303-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
In the world, chronic kidney disease (CKD) has been recognized as one of the critical public health problems, and the prevalence is higher in the elderly people. However, there are few studies on the association between exposure to multiple serum metal levels and CKD. A case-control study, we established, for elderly people in Anhui Province, China, to explore the effects of different metals and analyze the effect of mixed exposure on CKD. In this study, 287 cases of CKD and 287 controls were selected in the elderly health physical examination project in Tongling City, Anhui Province. Questionnaire survey, physical examination, and blood collection were conducted. Graphite furnace atomic absorption spectrometry (GFAAS) and inductively coupled plasma optical emission spectrometry (ICP-OES) were used to measure the concentration of serum metals. After selecting by least absolute shrinkage and selection operator (LASSO), 5 metals were brought into the multi-metal model. After adjusting all potential covariates additionally, the concentrations of lead (Pb), cadmium (Cd), cobalt (Co), and manganese (Mn) were significantly associated with CKD risk, whereas Pb, Se, and Cd had significant non-linearity with CKD. Besides, patients with highest quartiles of cobalt (Co), lead (Pb), and manganese (Mn) were 1.64, 1.39, and 0.64 times more possible to have CKD, respectively, as compared with the lowest levels. In the Bayesian kernel machine regression (BKMR) model, cadmium (Cd) had a combined effect with lead (Pb) possibly. This study suggested that the CKD risk was associated with exposure of multiple metals in elderly people. The underlying mechanisms of serum metals and CKD need more experimental and prospective studies to elucidate.
Collapse
Affiliation(s)
- Wenlei Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Shushan District, Hefei, 230032, Anhui, China
| | - Guoao Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Shushan District, Hefei, 230032, Anhui, China
| | - Jialiu He
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Shushan District, Hefei, 230032, Anhui, China
| | - Huanhuan Zhao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Shushan District, Hefei, 230032, Anhui, China
| | - Hanshuang Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Shushan District, Hefei, 230032, Anhui, China
| | - Huanhuan Lu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Shushan District, Hefei, 230032, Anhui, China
| | - Jianjun Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Shushan District, Hefei, 230032, Anhui, China
| | - Fen Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Shushan District, Hefei, 230032, Anhui, China.
| |
Collapse
|
50
|
Balakrishnan KN, Ramiah SK, Zulkifli I. Heat Shock Protein Response to Stress in Poultry: A Review. Animals (Basel) 2023; 13:ani13020317. [PMID: 36670857 PMCID: PMC9854570 DOI: 10.3390/ani13020317] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/07/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Compared to other animal species, production has dramatically increased in the poultry sector. However, in intensive production systems, poultry are subjected to stress conditions that may compromise their well-being. Much like other living organisms, poultry respond to various stressors by synthesising a group of evolutionarily conserved polypeptides named heat shock proteins (HSPs) to maintain homeostasis. These proteins, as chaperones, play a pivotal role in protecting animals against stress by re-establishing normal protein conformation and, thus, cellular homeostasis. In the last few decades, many advances have been made in ascertaining the HSP response to thermal and non-thermal stressors in poultry. The present review focuses on what is currently known about the HSP response to thermal and non-thermal stressors in poultry and discusses the factors that modulate its induction and regulatory mechanisms. The development of practical strategies to alleviate the detrimental effects of environmental stresses on poultry will benefit from detailed studies that describe the mechanisms of stress resilience and enhance our understanding of the nature of heat shock signalling proteins and gene expression.
Collapse
Affiliation(s)
- Krishnan Nair Balakrishnan
- Laboratory of Sustainable Animal Production and Biodiversity, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia
| | - Suriya Kumari Ramiah
- Laboratory of Sustainable Animal Production and Biodiversity, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia
| | - Idrus Zulkifli
- Laboratory of Sustainable Animal Production and Biodiversity, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia
- Correspondence: ; Tel.: +603-9769-4882
| |
Collapse
|