1
|
Zhang H, Liu H, Liu X, Song A, Jiang H, Wang X. Progress on Carbon Dots with Intrinsic Bioactivities for Multimodal Theranostics. Adv Healthc Mater 2024:e2402285. [PMID: 39440645 DOI: 10.1002/adhm.202402285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/10/2024] [Indexed: 10/25/2024]
Abstract
Carbon dots (CDs) with intrinsic bioactivities are candidates for bioimaging and disease therapy due to their diverse bioactivities, high biocompatibility, and multiple functionalities in multimodal theranostics. It is a multidisciplinary research hotspot that includes biology, physics, materials science, and chemistry. This progress report discusses the CDs with intrinsic bioactivities and their applications in multimodal theranostics. The relationship between the synthesis and structure of CDs is summarized and analyzed from a material and chemical perspective. The bioactivities of CDs including anti-tumor, antibacterial, anti-inflammatory etc. are discussed from biological points of view. Subsequently, the optical and electronic properties of CDs that can be applied in the biomedical field are summarized from a physical perspective. Based on the functional review of CDs, their applications in the biomedical field are reviewed, including optical diagnosis and treatment, biological activity, etc. Unlike previous reviews, this review combines multiple disciplines to gain a more comprehensive understanding of the mechanisms, functions, and applications of CDs with intrinsic bioactivities.
Collapse
Affiliation(s)
- Hao Zhang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China
| | - Hao Liu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China
| | - Xiaohui Liu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China
| | - Aiguo Song
- School of Instrument Science and Engineering, Southeast University, Nanjing, 210023, China
| | - Hui Jiang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China
| | - Xuemei Wang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China
| |
Collapse
|
2
|
Wardhani K, Levina A, Grau GER, Lay PA. Fluorescent, phosphorescent, magnetic resonance contrast and radioactive tracer labelling of extracellular vesicles. Chem Soc Rev 2024; 53:6779-6829. [PMID: 38828885 DOI: 10.1039/d2cs00238h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
This review focusses on the significance of fluorescent, phosphorescent labelling and tracking of extracellular vesicles (EVs) for unravelling their biology, pathophysiology, and potential diagnostic and therapeutic uses. Various labeling strategies, such as lipid membrane, surface protein, luminal, nucleic acid, radionuclide, quantum dot labels, and metal complex-based stains, are evaluated for visualizing and characterizing EVs. Direct labelling with fluorescent lipophilic dyes is simple but generally lacks specificity, while surface protein labelling offers selectivity but may affect EV-cell interactions. Luminal and nucleic acid labelling strategies have their own advantages and challenges. Each labelling approach has strengths and weaknesses, which require a suitable probe and technique based on research goals, but new tetranuclear polypyridylruthenium(II) complexes as phosphorescent probes have strong phosphorescence, selective staining, and stability. Future research should prioritize the design of novel fluorescent probes and labelling platforms that can significantly enhance the efficiency, accuracy, and specificity of EV labeling, while preserving their composition and functionality. It is crucial to reduce false positive signals and explore the potential of multimodal imaging techniques to gain comprehensive insights into EVs.
Collapse
Affiliation(s)
- Kartika Wardhani
- School of Chemistry, The University of Sydney, Sydney, New South Wales, 2006, Australia.
- Biochemistry and Biotechnology (B-TEK) Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545, USA
| | - Aviva Levina
- School of Chemistry, The University of Sydney, Sydney, New South Wales, 2006, Australia.
| | - Georges E R Grau
- Sydney Nano, The University of Sydney, Sydney, New South Wales, 2006, Australia
- Sydney Cancer Network, The University of Sydney, Sydney, New South Wales, 2006, Australia
- Marie Bashir Institute, The University of Sydney, Sydney, New South Wales, 2006, Australia
- Vascular Immunology Unit, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Peter A Lay
- School of Chemistry, The University of Sydney, Sydney, New South Wales, 2006, Australia.
- Sydney Nano, The University of Sydney, Sydney, New South Wales, 2006, Australia
- Sydney Cancer Network, The University of Sydney, Sydney, New South Wales, 2006, Australia
- Marie Bashir Institute, The University of Sydney, Sydney, New South Wales, 2006, Australia
- Sydney Analytical, The University of Sydney, Sydney, New South Wales, 2006, Australia
| |
Collapse
|
3
|
Lucchetti D, Colella F, Artemi G, Haque S, Sgambato A, Pellicano R, Fagoonee S. Smart nano-sized extracellular vesicles for cancer therapy: Potential theranostic applications in gastrointestinal tumors. Crit Rev Oncol Hematol 2023; 191:104121. [PMID: 37690633 DOI: 10.1016/j.critrevonc.2023.104121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 01/27/2023] [Accepted: 09/04/2023] [Indexed: 09/12/2023] Open
Abstract
Extracellular vesicles (EVs) have gained tremendous interest in the search for next-generation therapeutics for the treatment of a range of pathologies, including cancer, especially due to their small size, biomolecular cargo, ability to mediate intercellular communication, high physicochemical stability, low immunogenicity and biocompatibility. The theranostic potential of EVs have been enhanced by adopting several strategies such as genetic or metabolic engineering, parental cell modification or direct functionalization to incorporate therapeutic compounds into these nanoplatforms. The smart nano-sized EVs indeed offer huge opportunities in the field of cancer, and current research is set at overcoming the existing pitfalls. Smart EVs are already being applied in the clinics despite the challenges faced. We provide, herein, an update on the technologies employed for EV functionalization in order to achieve optimal tumor cell targeting and EV tracking in vivo with bio-imaging modalities, as well as the preclinical and clinical studies making use of these modified EVs, in the context of gastrointestinal tumors.
Collapse
Affiliation(s)
- Donatella Lucchetti
- Fondazione Policlinico Universitario 'Agostino Gemelli' IRCCS, Rome, Italy; Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Filomena Colella
- Fondazione Policlinico Universitario 'Agostino Gemelli' IRCCS, Rome, Italy
| | - Giulia Artemi
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan 45142, Saudi Arabia; Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut 1102 2801, Lebanon; Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman 13306, United Arab Emirates
| | - Alessandro Sgambato
- Fondazione Policlinico Universitario 'Agostino Gemelli' IRCCS, Rome, Italy; Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy.
| | - Rinaldo Pellicano
- Gastroenterology Unit, Città della salute e della Scienza Hospital, Turin, Italy
| | - Sharmila Fagoonee
- Institute of Biostructure and Bioimaging (CNR), Molecular Biotechnology Center, Turin, Italy
| |
Collapse
|
4
|
Bao C, Xiang H, Chen Q, Zhao Y, Gao Q, Huang F, Mao L. A Review of Labeling Approaches Used in Small Extracellular Vesicles Tracing and Imaging. Int J Nanomedicine 2023; 18:4567-4588. [PMID: 37588627 PMCID: PMC10426735 DOI: 10.2147/ijn.s416131] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/26/2023] [Indexed: 08/18/2023] Open
Abstract
Small extracellular vesicles (sEVs), a subset of extracellular vesicles (EVs) originating from the endosomal compartment, are a kind of lipid bilayer vesicles released by almost all types of cells, serving as natural carriers of nucleic acids, proteins, and lipids for intercellular communication and transfer of bioactive molecules. The current findings suggest their vital role in physiological and pathological processes. Various sEVs labeling techniques have been developed for the more advanced study of the function, mode of action, bio-distribution, and related information of sEVs. In this review, we summarize the existing and emerging sEVs labeling techniques, including fluorescent labeling, radioisotope labeling, nanoparticle labeling, chemical contrast agents labeling, and label-free technique. These approaches will pave the way for an in-depth study of sEVs. We present a systematic and comprehensive review of the principles, advantages, disadvantages, and applications of these techniques, to help promote applications of these labeling approaches in future research on sEVs.
Collapse
Affiliation(s)
- Chenxuan Bao
- Department of Laboratory Medicine, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu, People’s Republic of China
| | - Huayuan Xiang
- Department of Laboratory Medicine, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu, People’s Republic of China
| | - Qiaoqiao Chen
- Department of Laboratory Medicine, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu, People’s Republic of China
- Department of Laboratory Medicine, the Affiliated People’s Hospital, Jiangsu University, Zhenjiang, Jiangsu, People’s Republic of China
| | - Yuxue Zhao
- Department of Laboratory Medicine, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu, People’s Republic of China
- Department of Laboratory Medicine, the Affiliated People’s Hospital, Jiangsu University, Zhenjiang, Jiangsu, People’s Republic of China
| | - Qianqian Gao
- Department of Laboratory Medicine, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu, People’s Republic of China
| | - Feng Huang
- Department of Laboratory Medicine, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu, People’s Republic of China
| | - Lingxiang Mao
- Department of Laboratory Medicine, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu, People’s Republic of China
- Department of Laboratory Medicine, the Affiliated People’s Hospital, Jiangsu University, Zhenjiang, Jiangsu, People’s Republic of China
| |
Collapse
|
5
|
Tumor microenvironment-triggered intratumoral in-situ biosynthesis of inorganic nanomaterials for precise tumor diagnostics. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
6
|
Xu Z, Chen J, Li Y, Hu T, Fan L, Xi J, Han J, Guo R. Yolk-shell Fe 3O 4@Carbon@Platinum-Chlorin e6 nanozyme for MRI-assisted synergistic catalytic-photodynamic-photothermal tumor therapy. J Colloid Interface Sci 2022; 628:1033-1043. [PMID: 35970129 DOI: 10.1016/j.jcis.2022.08.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/08/2022] [Accepted: 08/01/2022] [Indexed: 12/21/2022]
Abstract
HYPOTHESIS Tumor treatments based on phototherapy, such as photodynamic therapy (PDT) and photothermal therapy (PTT), are promising anticancer strategies. However, their dependence on light also poses several limitations for their application. Therefore, the establishment of a multifunctional nanotheranostic platform based on light therapy is needed to improve applicability of the technology. EXPERIMENTS We designed yolk-shell magnetic Fe3O4@Carbon@Platinum-Chlorin e6 nanoparticles (MCPtCe6), which may be used for Magnetic resonance imaging (MRI) and synergistic catalytic-photodynamic-photothermal (catalytic-PDT-PTT) tumor therapy. FINDINGS We designed to compound multiple nanozymes and solve the drawbacks of single nanozyme and give additional functionalization to nanozymes for tumor therapy. Fe3O4 has T2 weighted MRI ability. The designed yolk-shell structure can disperse Fe3O4 in the carbon shell layer, which in turn can act as a carrier for PtNPs and improve the dispersion of both Fe3O4 and Pt. Pt nanoparticles attached to the surface of N-doped carbon spheres enhanced the catalytic ability of the nanozyme to generate reactive oxygen species (ROS). The covalently linked photosensitizer chlorin e6 (Ce6) on the Fe3O4@C@Pt (MCPt) nanozyme is essential for the therapeutic effects of PDT. MCPtCe6 can be specifically activated by the microenvironment through an enzyme-like catalytic process and extend PDT/PTT in acidic and H2O2-rich microenvironments. The results showed that MCPtCe6 had a high photothermal conversion efficiency (η = 28.28%), indicating its feasibility for PTT. Further cellular and animal studies have revealed that catalytic-PDT-PTT therapy can effectively inhibit tumors both in vitro and in vivo.
Collapse
Affiliation(s)
- Zhilong Xu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China
| | - Jie Chen
- Institute of Translational Medicine, Department of Pharmacology, School of Medicine, Yangzhou University, Yangzhou, 225002, China
| | - Yanan Li
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China
| | - Ting Hu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China
| | - Lei Fan
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China.
| | - Juqun Xi
- Institute of Translational Medicine, Department of Pharmacology, School of Medicine, Yangzhou University, Yangzhou, 225002, China
| | - Jie Han
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China
| | - Rong Guo
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China
| |
Collapse
|
7
|
Liang X, Zhang Y, Zhou J, Bu Z, Liu J, Zhang K. Tumor microenvironment-triggered intratumoral in situ construction of theranostic supramolecular self-assembly. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
8
|
Srivastava A, Rathore S, Munshi A, Ramesh R. Organically derived exosomes as carriers of anticancer drugs and imaging agents for cancer treatment. Semin Cancer Biol 2022; 86:80-100. [PMID: 35192929 PMCID: PMC9388703 DOI: 10.1016/j.semcancer.2022.02.020] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 12/14/2022]
Abstract
Extracellular vesicles (EVs), is the umbrella term used for different types of vesicles produced by the cells, among which exosomes form the largest group. Exosomes perform intercellular communication by carrying several biologics from donor or parental cells and delivering them to recipient cells. Their unique cargo-carrying capacity has recently been explored for use as delivery vehicles of anticancer drugs and imaging agents. Being naturally produced, exosomes have many advantages over synthetic lipid-based nanoparticles currently being used clinically to treat cancer and other diseases. The finding of the role of exosomes in human diseases has led to numerous preclinical and clinical studies exploring their use as an amenable drug delivery vehicle and a theranostic in cancer diagnosis and treatment. However, there are certain limitations associated with exosomes, with the most important being the selection of the biological source for producing highly biocompatible exosomes on a large scale. This review article explores the various sources from which therapeutically viable exosomes can be isolated for use as drug carriers for cancer treatment. The methods of exosome isolation and the process of loading them with cancer therapeutics and imaging agents are also discussed in the follow-up sections. Finally, the article concludes with future directions for exosome-based applications in cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Akhil Srivastava
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Shipra Rathore
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Graduate Program in Biomedical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Anupama Munshi
- Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Rajagopal Ramesh
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Graduate Program in Biomedical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
9
|
Li C, Qin S, Wen Y, Zhao W, Huang Y, Liu J. Overcoming the blood-brain barrier: Exosomes as theranostic nanocarriers for precision neuroimaging. J Control Release 2022; 349:902-916. [PMID: 35932883 DOI: 10.1016/j.jconrel.2022.08.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/31/2022] [Accepted: 08/01/2022] [Indexed: 10/16/2022]
Abstract
Exosomes are cell-derived vesicles with a lipid bilayer membrane that play important roles in intercellular communication. They provide an unprecedented opportunity for the development of drug delivery nanoplatforms due to their low immunogenicity, low toxicity, biocompatibility, stability, and ability to change the functions of recipient cells. In addition, exosomes can penetrate the blood-brain barrier and then target and accumulate in relevant pathological brain regions. However, few studies have focused on the applications of exosomes as nanocarriers for use in precision neuroimaging studies. Thus, this report presents the feasibility of fabricating specific exosome-based diagnostic reagents for the application of personalized/precision radiology in the central nervous system based on important recent fundamental discoveries and technological advances.
Collapse
Affiliation(s)
- Chang Li
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha 410000, PR China
| | - Shenghui Qin
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha 410000, PR China
| | - Yu Wen
- School of Materials Science and Engineering, Central South University, Changsha 410000, PR China
| | - Wei Zhao
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha 410000, PR China
| | - Yijie Huang
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha 410000, PR China
| | - Jun Liu
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha 410000, PR China.
| |
Collapse
|
10
|
Arifin DR, Witwer KW, Bulte JWM. Non-Invasive imaging of extracellular vesicles: Quo vaditis in vivo? J Extracell Vesicles 2022; 11:e12241. [PMID: 35844061 PMCID: PMC9289215 DOI: 10.1002/jev2.12241] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 06/12/2022] [Accepted: 06/16/2022] [Indexed: 01/11/2023] Open
Abstract
Extracellular vesicles (EVs) are lipid-bilayer delimited vesicles released by nearly all cell types that serve as mediators of intercellular signalling. Recent evidence has shown that EVs play a key role in many normal as well as pathological cellular processes. EVs can be exploited as disease biomarkers and also as targeted, cell-free therapeutic delivery and signalling vehicles for use in regenerative medicine and other clinical settings. Despite this potential, much remains unknown about the in vivo biodistribution and pharmacokinetic profiles of EVs after administration into living subjects. The ability to non-invasively image exogeneous EVs, especially in larger animals, will allow a better understanding of their in vivo homing and retention patterns, blood and tissue half-life, and excretion pathways, all of which are needed to advance clinical diagnostic and/or therapeutic applications of EVs. We present the current state-of-the-art methods for labeling EVs with various diagnostic contrast agents and tracers and the respective imaging modalities that can be used for their in vivo visualization: magnetic resonance imaging (MRI), X-ray computed tomography (CT) imaging, magnetic particle imaging (MPI), single-photon emission computed tomography (SPECT), positron emission tomography (PET), and optical imaging (fluorescence and bioluminescence imaging). We review here the strengths and weaknesses of each of these EV imaging approaches, with special emphasis on clinical translation.
Collapse
Affiliation(s)
- Dian R. Arifin
- Russell H. Morgan Department of Radiology and Radiological ScienceDivision of MR Researchthe Johns Hopkins University School of MedicineBaltimoreMarylandUSA
- Cellular Imaging Section and Vascular Biology ProgramInstitute for Cell Engineeringthe Johns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Kenneth W. Witwer
- Department of Molecular and Comparative Pathobiologythe Johns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of Neurologythe Johns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Jeff W. M. Bulte
- Russell H. Morgan Department of Radiology and Radiological ScienceDivision of MR Researchthe Johns Hopkins University School of MedicineBaltimoreMarylandUSA
- Cellular Imaging Section and Vascular Biology ProgramInstitute for Cell Engineeringthe Johns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of Oncologythe Johns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of Chemical & Biomolecular Engineeringthe Johns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of Biomedical Engineeringthe Johns Hopkins University School of MedicineBaltimoreMarylandUSA
| |
Collapse
|
11
|
Wang M, Guo Z, Zeng J, Liu L, Wang Y, Wang J, Lu H, Zhang H, Jiang H, Wang X. Bio-assembled smart nanocapsules for targeted delivery of KRAS shRNA and cancer cell bioimage. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.06.074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
12
|
Lima TSM, Souza W, Geaquinto LRO, Sanches PL, Stepień EL, Meneses J, Fernández-de Gortari E, Meisner-Kober N, Himly M, Granjeiro JM, Ribeiro AR. Nanomaterial Exposure, Extracellular Vesicle Biogenesis and Adverse Cellular Outcomes: A Scoping Review. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1231. [PMID: 35407349 PMCID: PMC9000848 DOI: 10.3390/nano12071231] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/26/2022] [Accepted: 03/28/2022] [Indexed: 02/01/2023]
Abstract
The progressively increasing use of nanomaterials (NMs) has awakened issues related to nanosafety and its potential toxic effects on human health. Emerging studies suggest that NMs alter cell communication by reshaping and altering the secretion of extracellular vesicles (EVs), leading to dysfunction in recipient cells. However, there is limited understanding of how the physicochemical characteristics of NMs alter the EV content and their consequent physiological functions. Therefore, this review explored the relevance of EVs in the nanotoxicology field. The current state of the art on how EVs are modulated by NM exposure and the possible regulation and modulation of signaling pathways and physiological responses were assessed in detail. This review followed the manual for reviewers produced by The Joanna Brigs Institute for Scoping Reviews and the PRISMA extension for Scoping Reviews (PRISMA-ScR): checklist and explanation. The research question, "Do NMs modulate cellular responses mediated by EVs?" was analyzed following the PECO model (P (Population) = EVs, E (Exposure) = NMs, C (Comparator) = EVs without exposure to NMs, O (Outcome) = Cellular responses/change in EVs) to help methodologically assess the association between exposure and outcome. For each theme in the PECO acronym, keywords were defined, organized, and researched in PubMed, Science Direct, Scopus, Web of Science, EMBASE, and Cochrane databases, up to 30 September 2021. In vitro, in vivo, ex vivo, and clinical studies that analyzed the effect of NMs on EV biogenesis, cargo, and cellular responses were included in the analysis. The methodological quality assessment was conducted using the ToxRTool, ARRIVE guideline, Newcastle Ottawa and the EV-TRACK platform. The search in the referred databases identified 2944 articles. After applying the eligibility criteria and two-step screening, 18 articles were included in the final review. We observed that depending on the concentration and physicochemical characteristics, specific NMs promote a significant increase in EV secretion as well as changes in their cargo, especially regarding the expression of proteins and miRNAs, which, in turn, were involved in biological processes that included cell communication, angiogenesis, and activation of the immune response, etc. Although further studies are necessary, this work suggests that molecular investigations on EVs induced by NM exposure may become a potential tool for toxicological studies since they are widely accessible biomarkers that may form a bridge between NM exposure and the cellular response and pathological outcome.
Collapse
Affiliation(s)
- Thais S. M. Lima
- Directory of Life Sciences Applied Metrology, National Institute of Metrology Quality and Technology, Rio de Janeiro 25250-020, Brazil; (T.S.M.L.); (W.S.); (L.R.O.G.); (P.L.S.)
- Postgraduate Program in Biotechnology, National Institute of Metrology Quality and Technology, Rio de Janeiro 25250-020, Brazil
| | - Wanderson Souza
- Directory of Life Sciences Applied Metrology, National Institute of Metrology Quality and Technology, Rio de Janeiro 25250-020, Brazil; (T.S.M.L.); (W.S.); (L.R.O.G.); (P.L.S.)
- Postgraduate Program in Biotechnology, National Institute of Metrology Quality and Technology, Rio de Janeiro 25250-020, Brazil
| | - Luths R. O. Geaquinto
- Directory of Life Sciences Applied Metrology, National Institute of Metrology Quality and Technology, Rio de Janeiro 25250-020, Brazil; (T.S.M.L.); (W.S.); (L.R.O.G.); (P.L.S.)
- Postgraduate Program in Biotechnology, National Institute of Metrology Quality and Technology, Rio de Janeiro 25250-020, Brazil
| | - Priscila L. Sanches
- Directory of Life Sciences Applied Metrology, National Institute of Metrology Quality and Technology, Rio de Janeiro 25250-020, Brazil; (T.S.M.L.); (W.S.); (L.R.O.G.); (P.L.S.)
- Postgraduate Program in Translational Biomedicine, University Grande Rio, Duque de Caxias 25071-202, Brazil
| | - Ewa. L. Stepień
- Faculty of Physics, Astronomy, and Applied Computer Science, Jagiellonian University, 30-348 Kraków, Poland;
| | - João Meneses
- NanoSafety Group, International Iberian Nanotechnology Laboratory, 4715-330 Braga, Portugal; (J.M.); (E.F.-d.G.)
| | - Eli Fernández-de Gortari
- NanoSafety Group, International Iberian Nanotechnology Laboratory, 4715-330 Braga, Portugal; (J.M.); (E.F.-d.G.)
| | - Nicole Meisner-Kober
- Department of Biosciences & Medical Biology, University of Salzburg, 5020 Salzburg, Austria; (N.M.-K.); (M.H.)
| | - Martin Himly
- Department of Biosciences & Medical Biology, University of Salzburg, 5020 Salzburg, Austria; (N.M.-K.); (M.H.)
| | - José M. Granjeiro
- Directory of Life Sciences Applied Metrology, National Institute of Metrology Quality and Technology, Rio de Janeiro 25250-020, Brazil; (T.S.M.L.); (W.S.); (L.R.O.G.); (P.L.S.)
- Postgraduate Program in Biotechnology, National Institute of Metrology Quality and Technology, Rio de Janeiro 25250-020, Brazil
- Postgraduate Program in Translational Biomedicine, University Grande Rio, Duque de Caxias 25071-202, Brazil
- Dental School, Fluminense Federal University, Niterói 24020-140, Brazil
| | - Ana R. Ribeiro
- Postgraduate Program in Biotechnology, National Institute of Metrology Quality and Technology, Rio de Janeiro 25250-020, Brazil
- NanoSafety Group, International Iberian Nanotechnology Laboratory, 4715-330 Braga, Portugal; (J.M.); (E.F.-d.G.)
| |
Collapse
|
13
|
Yang L, Patel KD, Rathnam C, Thangam R, Hou Y, Kang H, Lee KB. Harnessing the Therapeutic Potential of Extracellular Vesicles for Biomedical Applications Using Multifunctional Magnetic Nanomaterials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2104783. [PMID: 35132796 PMCID: PMC9344859 DOI: 10.1002/smll.202104783] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 01/12/2022] [Indexed: 04/14/2023]
Abstract
Extracellular vesicles (e.g., exosomes) carrying various biomolecules (e.g., proteins, lipids, and nucleic acids) have rapidly emerged as promising platforms for many biomedical applications. Despite their enormous potential, their heterogeneity in surfaces and sizes, the high complexity of cargo biomolecules, and the inefficient uptake by recipient cells remain critical barriers for their theranostic applications. To address these critical issues, multifunctional nanomaterials, such as magnetic nanomaterials, with their tunable physical, chemical, and biological properties, may play crucial roles in next-generation extracellular vesicles (EV)-based disease diagnosis, drug delivery, tissue engineering, and regenerative medicine. As such, one aims to provide cutting-edge knowledge pertaining to magnetic nanomaterials-facilitated isolation, detection, and delivery of extracellular vesicles and their associated biomolecules. By engaging the fields of extracellular vesicles and magnetic nanomaterials, it is envisioned that their properties can be effectively combined for optimal outcomes in biomedical applications.
Collapse
Affiliation(s)
- Letao Yang
- Department of Chemistry and Chemical Biology, Rutgers-the State University of New Jersey, 123 Bevier Road, Piscataway, NJ 08854, USA
| | - Kapil D. Patel
- Department of Materials Science and Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Christopher Rathnam
- Department of Chemistry and Chemical Biology, Rutgers-the State University of New Jersey, 123 Bevier Road, Piscataway, NJ 08854, USA
| | - Ramar Thangam
- Department of Materials Science and Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Yannan Hou
- Department of Chemistry and Chemical Biology, Rutgers-the State University of New Jersey, 123 Bevier Road, Piscataway, NJ 08854, USA
| | - Heemin Kang
- Department of Materials Science and Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Ki-Bum Lee
- Department of Chemistry and Chemical Biology, Rutgers-the State University of New Jersey, 123 Bevier Road, Pis cataway, NJ 08854, USA
| |
Collapse
|
14
|
Functionalized nanomaterials in separation and analysis of extracellular vesicles and their contents. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
15
|
Feng T, Karges J, Liao X, Ji L, Chao H. Engineered exosomes as a natural nanoplatform for cancer targeted delivery of metal-based drugs. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214325] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
16
|
Limongi T, Susa F, Marini M, Allione M, Torre B, Pisano R, di Fabrizio E. Lipid-Based Nanovesicular Drug Delivery Systems. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3391. [PMID: 34947740 PMCID: PMC8707227 DOI: 10.3390/nano11123391] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/07/2021] [Accepted: 12/13/2021] [Indexed: 12/14/2022]
Abstract
In designing a new drug, considering the preferred route of administration, various requirements must be fulfilled. Active molecules pharmacokinetics should be reliable with a valuable drug profile as well as well-tolerated. Over the past 20 years, nanotechnologies have provided alternative and complementary solutions to those of an exclusively pharmaceutical chemical nature since scientists and clinicians invested in the optimization of materials and methods capable of regulating effective drug delivery at the nanometer scale. Among the many drug delivery carriers, lipid nano vesicular ones successfully support clinical candidates approaching such problems as insolubility, biodegradation, and difficulty in overcoming the skin and biological barriers such as the blood-brain one. In this review, the authors discussed the structure, the biochemical composition, and the drug delivery applications of lipid nanovesicular carriers, namely, niosomes, proniosomes, ethosomes, transferosomes, pharmacosomes, ufasomes, phytosomes, catanionic vesicles, and extracellular vesicles.
Collapse
|
17
|
Luo R, Liu M, Tan T, Yang Q, Wang Y, Men L, Zhao L, Zhang H, Wang S, Xie T, Tian Q. Emerging Significance and Therapeutic Potential of Extracellular vesicles. Int J Biol Sci 2021; 17:2476-2486. [PMID: 34326688 PMCID: PMC8315015 DOI: 10.7150/ijbs.59296] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 05/27/2021] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles (EVs), are membrane-bound vesicles that have many advantages over traditional nanocarriers for drug and gene delivery. Evidence from recent studies indicate that EVs have therapeutic capability with chemical or biological modification. Tumor-derived exosomes (TEXs) were used as a new type of antigens or tumor vaccines in anti-tumor immunotherapy. With superior characteristics, modified EVs were applied to loaded and delivered synthetic drugs, silencing RNA, and microRNA for treatment. Different surface functionalization strategies have been proposed to improve the therapeutic functions of EVs. Appropriately modified EVs for disease intervention provide new avenues for effective clinical treatment strategies. Therefore, this review aimed at elucidating the therapeutic functions of EVs to generate new ideas for treatment and to unlock their hidden potential in translational medicine.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Shuling Wang
- ✉ Corresponding authors: Shuling Wang (), Tian Xie (), Qingchang Tian ()
| | - Tian Xie
- ✉ Corresponding authors: Shuling Wang (), Tian Xie (), Qingchang Tian ()
| | - Qingchang Tian
- ✉ Corresponding authors: Shuling Wang (), Tian Xie (), Qingchang Tian ()
| |
Collapse
|
18
|
Sun Z, Yang J, Li H, Wang C, Fletcher C, Li J, Zhan Y, Du L, Wang F, Jiang Y. Progress in the research of nanomaterial-based exosome bioanalysis and exosome-based nanomaterials tumor therapy. Biomaterials 2021; 274:120873. [PMID: 33989972 DOI: 10.1016/j.biomaterials.2021.120873] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 04/13/2021] [Accepted: 05/02/2021] [Indexed: 12/18/2022]
Abstract
Exosomes and their internal components have been proven to play critical roles in cell-cell interactions and intrinsic cellular regulations, showing promising prospects in both biomedical and clinical fields. Although conventional methods have so far been utilized to great effect, accurate bioanalysis remains a major challenge. In recent years, the fast-paced development of nanomaterials with unique physiochemical properties has led to a boom in the potential bioapplications of such materials. In particular, the application of nanomaterials in exosome bioanalysis provides a great opportunity to overcome the current challenges and limitations of conventional methods. A timely review of the research progress in this field is thus of great significance to the continued development of new methods. This review outlines the properties and potential uses of exosomes, and discusses the conventional methods currently used for their analysis. We then focus on exploring the current state of the art regarding the use of nanomaterials for the isolation, detection and even the subsequent profiling of exosomes. The main methods are based on principles including fluorescence, surface-enhanced Raman spectroscopy, colorimetry, electrochemistry, and surface plasmon resonance. Additionally, research on exosome-based nanomaterials tumor therapy is also promising from a clinical perspective, so the research progress in this branch is also summarized. Finally, we look at ways in which the field might develop in the future.
Collapse
Affiliation(s)
- Zhiwei Sun
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan, China
| | - Jingjing Yang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan, China
| | - Hui Li
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan, China
| | - Chuanxin Wang
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, China; Tumor Marker Detection Engineering Technology Research Center of Shandong Province, Jinan, China; Shandong Engineering & Technology Research Center for Tumor Marker Detection, Jinan, China; Shandong Provincial Clinical Medicine Research Center for Clinical Laboratory, Jinan, China
| | - Cameron Fletcher
- School of Chemical Engineering, University of New South Wales, Sydney, Australia
| | - Juan Li
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, China; Tumor Marker Detection Engineering Technology Research Center of Shandong Province, Jinan, China; Shandong Engineering & Technology Research Center for Tumor Marker Detection, Jinan, China; Shandong Provincial Clinical Medicine Research Center for Clinical Laboratory, Jinan, China
| | - Yao Zhan
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, China; Tumor Marker Detection Engineering Technology Research Center of Shandong Province, Jinan, China; Shandong Engineering & Technology Research Center for Tumor Marker Detection, Jinan, China; Shandong Provincial Clinical Medicine Research Center for Clinical Laboratory, Jinan, China
| | - Lutao Du
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, China; Tumor Marker Detection Engineering Technology Research Center of Shandong Province, Jinan, China; Shandong Engineering & Technology Research Center for Tumor Marker Detection, Jinan, China; Shandong Provincial Clinical Medicine Research Center for Clinical Laboratory, Jinan, China.
| | - Fenglong Wang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan, China.
| | - Yanyan Jiang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan, China.
| |
Collapse
|
19
|
Barjesteh T, Mansur S, Bao Y. Inorganic Nanoparticle-Loaded Exosomes for Biomedical Applications. Molecules 2021; 26:1135. [PMID: 33672706 PMCID: PMC7924372 DOI: 10.3390/molecules26041135] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/05/2021] [Accepted: 02/16/2021] [Indexed: 12/11/2022] Open
Abstract
Exosomes are intrinsic cell-derived membrane vesicles in the size range of 40-100 nm, serving as great biomimetic nanocarriers for biomedical applications. These nanocarriers are known to bypass biological barriers, such as the blood-brain barrier, with great potential in treating brain diseases. Exosomes are also shown to be closely associated with cancer metastasis, making them great candidates for tumor targeting. However, the clinical translation of exosomes are facing certain critical challenges, such as reproducible production and in vivo tracking of their localization, distribution, and ultimate fate. Recently, inorganic nanoparticle-loaded exosomes have been shown great benefits in addressing these issues. In this review article, we will discuss the preparation methods of inorganic nanoparticle-loaded exosomes, and their applications in bioimaging and therapy. In addition, we will briefly discuss their potentials in exosome purification.
Collapse
Affiliation(s)
| | | | - Yuping Bao
- Department of Chemical and Biological Engineering, The University of Alabama, Box 870203, Tuscaloosa, AL 35487, USA; (T.B.); (S.M.)
| |
Collapse
|
20
|
Exosomes and Extracellular Vesicles as Emerging Theranostic Platforms in Cancer Research. Cells 2020; 9:cells9122569. [PMID: 33271820 PMCID: PMC7761021 DOI: 10.3390/cells9122569] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/19/2020] [Accepted: 11/30/2020] [Indexed: 12/16/2022] Open
Abstract
Exosomes are endosome-derived nanovesicles produced by healthy as well as diseased cells. Their proteic, lipidic and nucleic acid composition is related to the cell of origin, and by vehiculating bioactive molecules they are involved in cell-to-cell signaling, both in healthy and pathologic conditions. Being nano-sized, non-toxic, biocompatible, scarcely immunogenic, and possessing targeting ability and organotropism, exosomes have been proposed as nanocarriers for their potential application in diagnosis and therapy. Among the different techniques exploited for exosome isolation, the sequential ultracentrifugation/ultrafiltration method seems to be the gold standard; alternatively, commercially available kits for exosome selective precipitation from cell culture media are frequently employed. To load a drug or a detectable agent into exosomes, endogenous or exogenous loading approaches have been developed, while surface engineering procedures, such as click chemistry, hydrophobic insertion and exosome display technology, allow for obtaining actively targeted exosomes. This review reports on diagnostic or theranostic platforms based on exosomes or exosome-mimetic vesicles, highlighting the diverse preparation, loading and surface modification methods applied, and the results achieved so far.
Collapse
|
21
|
Lorenc T, Chrzanowski J, Olejarz W. Current Perspectives on Clinical Use of Exosomes as a Personalized Contrast Media and Theranostics. Cancers (Basel) 2020; 12:E3386. [PMID: 33207614 PMCID: PMC7698051 DOI: 10.3390/cancers12113386] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/08/2020] [Accepted: 11/14/2020] [Indexed: 02/07/2023] Open
Abstract
An appropriate combination of biomarkers and imaging technologies will become standard practice in the future. Because the incidence of and mortality from cancers is rising, the further study of new approaches for the early detection and precise characterization of tumors is essential. Extracellular vesicles (EVs), including exosomes, prove to have great potential when it comes to diagnosis and targeted therapy. Due to their natural ability to pass through biological barriers, depending on their origin, EVs can accumulate at defined sites, including tumors, preferentially. This manuscript discusses the difficulties and simplicities of processing cell-derived materials, packaging diverse groups of agents in EVs, and activating the biological complex. Developing exosome-based diagnostic techniques to detect disease precisely and early as well as treat disease marks a new era of personalized radiology and nuclear medicine. As circulating drug delivery vehicles for novel therapeutic modalities, EVs offer a new platform for cancer theranostic.
Collapse
Affiliation(s)
- Tomasz Lorenc
- Ist Department of Clinical Radiology, Medical University of Warsaw, 5 Chalubinskiego Street, 02-004 Warsaw, Poland
| | - Julian Chrzanowski
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, 02-097 Warsaw, Poland; (J.C.); (W.O.)
- Centre for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Wioletta Olejarz
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, 02-097 Warsaw, Poland; (J.C.); (W.O.)
- Centre for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland
| |
Collapse
|