1
|
Yang G, Liu L, Xiao L, Ke S, Yang H, Lu Q. Accelerated scarless wound healing by dynamical regulation of angiogenesis and inflammation with immobilized asiaticoside and magnesium ions in silk nanofiber hydrogels. J Mater Chem B 2024; 12:11670-11684. [PMID: 39380345 DOI: 10.1039/d4tb01584c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
It remains a challenge to effectively regulate the complicated microenvironment during the wound healing process. The optimization of synergistic action of angiogenesis and inflammation is considered critical for quicker scarless wound regeneration. Here, the silk nanofiber (SNF) acts as a multifunctional carrier to load hydrophobic asiaticoside (AC) and hydrophilic Mg2+, and also serves as an element to assemble injectable hydrogels, forming a bioactive matrix with improved angiogenic and anti-inflammatory capacities (SNF-AC-Mg). Mg2+ and AC distributed homogeneously inside the silk nanofiber hydrogels without compromising the mechanical performance. Both Mg2+ and AC released slowly to continuously tune both angiogenic and inflammatory behaviors. The hydrogels exhibited good biocompatibility, inflammation inhibition, and pro-angiogenic properties in vitro, suggesting the synergistic bioactivity of AC and Mg2+. In vivo analysis revealed that the synergistic action of AC and Mg2+ resulted in better M2-type polarization of macrophages and angiogenesis during the inflammatory phase, while effectively achieving the inhibition of excessive accumulation of collagen and scar formation during the remodeling phases. The quicker scarless regeneration of the defects treated with SNF-AC-Mg implies the priority of SNFs in designing bioactive niches with complicated cues, which will favor the functional recovery of different tissues in the future.
Collapse
Affiliation(s)
- Gongwen Yang
- State Key Laboratory of Radiation Medicine and Radiation Protection, Institutes for Translational Medicine, Soochow University, Suzhou 215123, People's Republic of China.
| | - Lutong Liu
- Beijing Allgens Medical Science and Technology Co., Ltd., Beijing 100176, People's Republic of China
| | - Liying Xiao
- State Key Laboratory of Radiation Medicine and Radiation Protection, Institutes for Translational Medicine, Soochow University, Suzhou 215123, People's Republic of China.
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People's Republic of China
| | - Shiyu Ke
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People's Republic of China
| | - Huaxiang Yang
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People's Republic of China
| | - Qiang Lu
- State Key Laboratory of Radiation Medicine and Radiation Protection, Institutes for Translational Medicine, Soochow University, Suzhou 215123, People's Republic of China.
| |
Collapse
|
2
|
Liu L, Hao X, Zhang J, Li S, Han S, Qian P, Zhang Y, Yu H, Kang Y, Yin Y, Zhang W, Chen J, Yu Y, Jiang H, Chai J, Yin H, Chai W. The wound healing of deep partial-thickness burn in Bama miniature pigs is accelerated by a higher dose of hUCMSCs. Stem Cell Res Ther 2024; 15:437. [PMID: 39563365 PMCID: PMC11575178 DOI: 10.1186/s13287-024-04063-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 11/11/2024] [Indexed: 11/21/2024] Open
Abstract
BACKGROUND Deep partial-thickness burns have a significant impact on both the physical and mental health of patients. Our previous study demonstrated human Umbilical Cord Mesenchymal stem cells (hUCMSCs) could enhance the healing of severe burns in small animal burn models, such as rats. Furthermore, our team has developed a deep partial-thickness burn model in Bama miniature pigs, which can be utilized for assessing drug efficacy in preclinical trials for wound healing. Therefore, this study further determine the optimal dosage of hUCMSCs in future clinical practice by comparing the efficacy of low-to-high doses of hUCMSCs on deep partial-thickness burn wounds in Bama miniature pigs. MATERIALS AND METHODS The male Bama miniature pigs (N = 8, weight: 23-28 kg and length: 71-75 cm) were used to establish deep partial-thickness burn models, which used a continuous pressure of 1 kg and contact times of 35 s by the invented electronic burn instrument at 100℃ to prepare 10 round burn wounds with diameter of 5 cm according to our previous report. And then, 0 × 10^7, 1 × 10^7, 2 × 10^7, 5 × 10^7 and 1 × 10^8 doses of hUCMSCs were respectively injected into burn wounds of their corresponding groups. After treatment for 7, 14 and 21 days, the burned wound tissues were obtained for histological evaluation, including HE staining for histopathological changes, immunohistochemistry for neutrophil (MPO+) infiltration and microvessel (CD31+) quantity, as well as Masson staining for collagen deposition. The levels of inflammatory factors TNF-α, IL-1β, IL-10 and angiogenesis factors angiopoietin-2 (Ang-2), vascular endothelial growth factor (VEGF), as well as collagen type-I/type-III of the wound tissues were quantified by ELISA. RESULTS All of doses hUCMSCs can significantly increase wound healing rate and shorten healing time of the deep partial-thickness burn pigs in a dose-dependent manner. Furthermore, all of doses hUCMSCs can significantly promote epithelialization and decreased inflammatory reaction of wound, including infiltration of inflammatory cells and levels inflammatory factors. Meanwhile, the amounts of microvessel were increased in all of doses hUCMSCs group than those in the burn group. Furthermore, the collagen structure was disordered and partially necrotized, and ratios of collagen type-I and type-III were significantly decreased in burn group (4:1 in normal skin tissue), and those of all hUCMSCs groups were significantly improved in a dose-dependent manner. In a word, 1 × 10^8 dose of hUCMSCs could regenerate the deep partial-thickness burn wounds most efficaciously compared to other dosages groups and the burn group. CONCLUSION This regenerative cell therapy study using hUCMSCs demonstrates the best efficacy toward a high dose, that is dose of 1 × 10^8 of hUCMSCs was used as a reference therapeutic dose for treating 20 cm2 deep partial-thickness burns wound in future clinical practice.
Collapse
Affiliation(s)
- Lingying Liu
- Department of Nutrition, The Fourth Medical Center Affiliated to PLA General Hospital, No. 51 Fucheng Road, Haidian District, Beijing, 100037, China.
- Inner Mongolia Medical University, Hohhot, Inner Mongolia, 010110, China.
- Hebei North University, Zhangjiakou, Hebei, 075000, China.
| | - Xingxia Hao
- Inner Mongolia Medical University, Hohhot, Inner Mongolia, 010110, China
| | - Jing Zhang
- Inner Mongolia Medical University, Hohhot, Inner Mongolia, 010110, China
| | - Shaozeng Li
- Department of Clinical Laboratory, The Fourth Medical Center Affiliated to PLA General Hospital, Beijing, 100037, China
| | - Shaofang Han
- Department of Nutrition, The Fourth Medical Center Affiliated to PLA General Hospital, No. 51 Fucheng Road, Haidian District, Beijing, 100037, China
| | - Peipei Qian
- Department of Nutrition, The Fourth Medical Center Affiliated to PLA General Hospital, No. 51 Fucheng Road, Haidian District, Beijing, 100037, China
| | - Yong Zhang
- Department of Nutrition, The Fourth Medical Center Affiliated to PLA General Hospital, No. 51 Fucheng Road, Haidian District, Beijing, 100037, China.
| | - Huaqing Yu
- Department of Nutrition, The Fourth Medical Center Affiliated to PLA General Hospital, No. 51 Fucheng Road, Haidian District, Beijing, 100037, China
| | - Yuxin Kang
- Hebei North University, Zhangjiakou, Hebei, 075000, China
| | - Yue Yin
- Inner Mongolia Medical University, Hohhot, Inner Mongolia, 010110, China
| | - Weiouwen Zhang
- Department of Nutrition, The Fourth Medical Center Affiliated to PLA General Hospital, No. 51 Fucheng Road, Haidian District, Beijing, 100037, China
| | - Jianmei Chen
- Department of Health Medicine, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, 100037, China
| | - Yang Yu
- Department of Traditional Chinese Medical Science, The Sixth Medical Center of the Chinese PLA General Hospital, Beijing, China
| | - Hua Jiang
- Department of Endocrinology, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jiake Chai
- Senior Department of Burns and Plastic Surgery, The Fourth Medical Center of PLA General Hospital, Beijing, 100037, China
| | - Huinan Yin
- Senior Department of Burns and Plastic Surgery, The Fourth Medical Center of PLA General Hospital, Beijing, 100037, China
| | - Wei Chai
- Senior Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, Beijing, 100037, China
| |
Collapse
|
3
|
Abedanzadeh M, Abolmaali SS, Heidari R, Aalaei E, Kaviani M, Dara M, Mohammadi S, Azarpira N, Tamaddon AM. Photo-crosslinked hyaluronic acid hydrogels designed for simultaneous delivery of mesenchymal stem cells and tannic acid: Advancing towards scarless wound healing. Int J Biol Macromol 2024; 281:136394. [PMID: 39406324 DOI: 10.1016/j.ijbiomac.2024.136394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/26/2024] [Accepted: 10/05/2024] [Indexed: 10/25/2024]
Abstract
The quest for scarless wound healing is imperative in healthcare, aiming to diminish the challenges of conventional wound treatment. Hyaluronic acid (HA), a key component of the skin's extracellular matrix, plays a pivotal role in wound healing and skin rejuvenation. Leveraging the advantages of HA hydrogels, this research focuses first on tuning the physicochemical and mechanical properties of photo-crosslinkable methacrylated HA (MAHA) by varying the methacrylation degree, polymer concentration, photo-crosslinker concentration, and UV exposure time. The optimized hydrogel, featuring suitable porosity, swelling ratio, degradability, and mechanical properties, was then used for the combined delivery of tannic acid (TA), known for its hemostatic, antibacterial, and antioxidant properties, and Wharton's jelly-derived mesenchymal stem cells (WJ-MSCs) cultured on the MAHA-TA hydrogel to enhance skin regeneration. The composite MAHA-TA-MSC hydrogel demonstrated favorable pores and biocompatibility, evidenced by cell viability, and promoted cell proliferation. When applied to dorsal wounds in rats, this composite hydrogel accelerated wound healing and reduced scarring. Additionally, molecular and histopathological analyses revealed increased expression of IL-10, the TGF-β3/TGF-β1 ratio, and the Collagen III/Collagen I ratio. These findings suggest that the MAHA-TA-MSC hydrogel is a promising candidate for scarless acute wound healing.
Collapse
Affiliation(s)
- Mozhgan Abedanzadeh
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Samira Sadat Abolmaali
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Ehsan Aalaei
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA.
| | - Maryam Kaviani
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahintaj Dara
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Samaneh Mohammadi
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Mohammad Tamaddon
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutics Departments, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
4
|
Mulder PPG, Hooijmans CR, Vlig M, Middelkoop E, Joosten I, Koenen HJPM, Boekema BKHL. Kinetics of Inflammatory Mediators in the Immune Response to Burn Injury: Systematic Review and Meta-Analysis of Animal Studies. J Invest Dermatol 2024; 144:669-696.e10. [PMID: 37806443 DOI: 10.1016/j.jid.2023.09.269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/31/2023] [Accepted: 09/20/2023] [Indexed: 10/10/2023]
Abstract
Burns are often accompanied by a dysfunctional immune response, which can lead to systemic inflammation, shock, and excessive scarring. The objective of this study was to provide insight into inflammatory pathways associated with burn-related complications. Because detailed information on the various inflammatory mediators is scattered over individual studies, we systematically reviewed animal experimental data for all reported inflammatory mediators. Meta-analyses of 352 studies revealed a strong increase in cytokines, chemokines, and growth factors, particularly 19 mediators in blood and 12 in burn tissue. Temporal kinetics showed long-lasting surges of proinflammatory cytokines in blood and burn tissue. Significant time-dependent effects were seen for IL-1β, IL-6, TGF-β1, and CCL2. The response of anti-inflammatory mediators was limited. Burn technique had a profound impact on systemic response levels. Large burn size and scalds further increased systemic, but not local inflammation. Animal characteristics greatly affected inflammation, for example, IL-1β, IL-6, and TNF-α levels were highest in young, male rats. Time-dependent effects and dissimilarities in response demonstrate the importance of appropriate study design. Collectively, this review presents a general overview of the burn-induced immune response exposing inflammatory pathways that could be targeted through immunotherapy for burn patients and provides guidance for experimental set-ups to advance burn research.
Collapse
Affiliation(s)
- Patrick P G Mulder
- Preclinical Research, Association of Dutch Burn Centres (ADBC), Beverwijk, The Netherlands; Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Carlijn R Hooijmans
- Meta-Research Team, Department of Anesthesiology, Pain and Palliative Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marcel Vlig
- Preclinical Research, Association of Dutch Burn Centres (ADBC), Beverwijk, The Netherlands
| | - Esther Middelkoop
- Preclinical Research, Association of Dutch Burn Centres (ADBC), Beverwijk, The Netherlands; Department of Plastic, Reconstructive and Hand Surgery, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Tissue Function and Regeneration, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Irma Joosten
- Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Hans J P M Koenen
- Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Bouke K H L Boekema
- Preclinical Research, Association of Dutch Burn Centres (ADBC), Beverwijk, The Netherlands; Department of Plastic, Reconstructive and Hand Surgery, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
5
|
Li W, Huang P, Wei J, Tan S, Liu G, Yang Q, Wang G. Down-regulation of miR-21-5p by pirfenidone to inhibit fibroblast proliferation in the treatment of acquired tracheal stenosis. THE CLINICAL RESPIRATORY JOURNAL 2024; 18:e13727. [PMID: 38151323 PMCID: PMC10775887 DOI: 10.1111/crj.13727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 12/10/2023] [Indexed: 12/29/2023]
Abstract
OBJECTIVE Treatment options for acquired tracheal stenosis (ATS) are limited due to a series of pathophysiological changes including inflammation and cell proliferation. Micro ribonucleic acid-21-5p (miR-21-5p) may promote the excessive proliferation of fibroblasts. However, various types of fibrosis can be prevented with pirfenidone (PFD). Currently, the effect of PFD on miR-21-5p and its biological function has not been clarified. In this study, PFD was evaluated as a potential treatment for ATS by inducing fibroblast proliferation in lipopolysaccharide (LPS)-induced fibroblasts by targeting miR-21-5p. METHODS For 48 h, 1 g/ml LPS was used to generate fibroblasts in vitro, followed by the separation of cells into four groups: control, PFD, mimic, and mimic + PFD. The Cell Counting Kit-8 (CCK-8) technique was adopted to measure the proliferation of fibroblasts. Real-time quantitative polymerase chain reaction (RT-qPCR) and Western blot (WB) were used to measure the relative expressions of tumor necrosis factor-α (TNF-α), transforming growth factor-β1 (TGF-β1), drosophila mothers against decapentaplegic 7 (Smad7) and collagen type I alpha 1(COL1A1) messenger RNA (mRNA) and proteins, respectively. RESULTS (1) At 0, 24, 48, and 72 h, fibroblast growth was assessed using the CCK-8 method. Compared with the control group, the mimic group showed the highest fibroblast viability, and the PFD group showed the lowest fibroblast viability. However, fibroblast viability increased in the mimic + PFD group but decreased in the mimic one. (2) RT-qPCR and WB showed that the mimic group exhibited a significant up-regulation in the relative expressions of TNF-α, TGF-β1, and COL1A1 mRNA and proteins but a down-regulation in the relative expression of Smad7 mRNA and protein compared with the control one. In the PFD group, the results were the opposite. Nevertheless, the relative expressions of TNF-α, TGF-β1, and COL1A1 mRNA and proteins were increased, whereas that of Smad7 mRNA was decreased in the mimic + PFD group. The change was less in the mimic group. CONCLUSION PFD may have a preventive and curative effect on ATS by inhibiting fibroblast proliferation and the fibrotic process and possibly through down-regulating miR-21-5p and up-regulating Smad7 and its mediated fibrotic and inflammatory responses.
Collapse
Affiliation(s)
- Wentao Li
- Department of Respiratory and Critical Care MedicineThe Second Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Pingping Huang
- Department of Respiratory and Critical Care MedicineThe Second Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Jinmei Wei
- Department of Respiratory and Critical Care MedicineThe Second Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Sen Tan
- Department of Respiratory and Critical Care MedicineThe Second Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Guangnan Liu
- Department of Respiratory and Critical Care MedicineThe Second Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Qiu Yang
- Department of OphthalmologyRuikang Hospital Affiliated to Guangxi University of Chinese MedicineNanningChina
| | - Guangfa Wang
- Department of Respiratory and Critical Care MedicinePeking University First HospitalBeijingChina
| |
Collapse
|
6
|
Tottoli EM, Benedetti L, Riva F, Chiesa E, Pisani S, Bruni G, Genta I, Conti B, Ceccarelli G, Dorati R. Electrospun Fibers Loaded with Pirfenidone: An Innovative Approach for Scar Modulation in Complex Wounds. Polymers (Basel) 2023; 15:4045. [PMID: 37896289 PMCID: PMC10610295 DOI: 10.3390/polym15204045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/03/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023] Open
Abstract
Hypertrophic scars (HTSs) are pathological structures resulting from chronic inflammation during the wound healing process, particularly in complex injuries like burns. The aim of this work is to propose Biofiber PF (biodegradable fiber loaded with Pirfenidone 1.5 w/w), an electrospun advanced dressing, as a solution for HTSs treatment in complex wounds. Biofiber has a 3-day antifibrotic action to modulate the fibrotic process and enhance physiological healing. Its electrospun structure consists of regular well-interconnected Poly-L-lactide-co-poly-ε-caprolactone (PLA-PCL) fibers (size 2.83 ± 0.46 µm) loaded with Pirfenidone (PF, 1.5% w/w), an antifibrotic agent. The textured matrix promotes the exudate balance through mild hydrophobic wettability behavior (109.3 ± 2.3°), and an appropriate equilibrium between the absorbency % (610.2 ± 171.54%) and the moisture vapor transmission rate (0.027 ± 0.036 g/min). Through its finer mechanical properties, Biofiber PF is conformable to the wound area, promoting movement and tissue oxygenation. These features also enhance the excellent elongation (>500%) and tenacity, both in dry and wet conditions. The ancillary antifibrotic action of PF on hypertrophic scar fibroblast (HSF) for 3 days downregulates the cell proliferation over time and modulates the gene expression of transforming growth factor β1 (TGF-β1) and α-smooth muscle actin (α-SMA) at 48-72 h. After 6 days of treatment, a decrement of α-SMA protein levels was detected, proving the potential of biofiber as a valid therapeutic treatment for HTSs in an established wound healing process.
Collapse
Affiliation(s)
- Erika Maria Tottoli
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy; (E.M.T.); (E.C.); (S.P.); (I.G.); (B.C.)
| | - Laura Benedetti
- Department of Public Health, Experimental Medicine and Forensic, Human Anatomy Unit, University of Pavia, 27100 Pavia, Italy; (L.B.); (G.C.)
- CHT Center for Health Technologies, University of Pavia, 27100 Pavia, Italy
| | - Federica Riva
- Department of Public Health, Experimental Medicine and Forensic, Histology and Embryology Unit, University of Pavia, 27100 Pavia, Italy;
| | - Enrica Chiesa
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy; (E.M.T.); (E.C.); (S.P.); (I.G.); (B.C.)
| | - Silvia Pisani
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy; (E.M.T.); (E.C.); (S.P.); (I.G.); (B.C.)
| | - Giovanna Bruni
- Physical-Chemistry Section, Department of Chemistry, University of Pavia, 27100 Pavia, Italy;
| | - Ida Genta
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy; (E.M.T.); (E.C.); (S.P.); (I.G.); (B.C.)
- CHT Center for Health Technologies, University of Pavia, 27100 Pavia, Italy
| | - Bice Conti
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy; (E.M.T.); (E.C.); (S.P.); (I.G.); (B.C.)
- CHT Center for Health Technologies, University of Pavia, 27100 Pavia, Italy
| | - Gabriele Ceccarelli
- Department of Public Health, Experimental Medicine and Forensic, Human Anatomy Unit, University of Pavia, 27100 Pavia, Italy; (L.B.); (G.C.)
- CHT Center for Health Technologies, University of Pavia, 27100 Pavia, Italy
| | - Rossella Dorati
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy; (E.M.T.); (E.C.); (S.P.); (I.G.); (B.C.)
| |
Collapse
|
7
|
Luo P, Shu L, Huang Z, Huang Y, Wu C, Pan X, Hu P. Utilization of Lyotropic Liquid Crystalline Gels for Chronic Wound Management. Gels 2023; 9:738. [PMID: 37754419 PMCID: PMC10530416 DOI: 10.3390/gels9090738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/07/2023] [Accepted: 09/09/2023] [Indexed: 09/28/2023] Open
Abstract
Management of chronic wounds is becoming a serious health problem worldwide. To treat chronic wounds, a suitable healing environment and sustained delivery of growth factors must be guaranteed. Different therapies have been applied for the treatment of chronic wounds such as debridement and photodynamic therapy. Among them, growth factors are widely used therapeutic drugs. However, at present, growth factor delivery systems cannot meet the demand of clinical practice; therefore new methods should be developed to meet the emerging need. For this reason, researchers have tried to modify hydrogels through some methods such as chemical synthesis and molecule modifications to enhance their properties. However, there are still a large number of limitations in practical use like byproduct problems, difficulty to industrialize, and instability of growth factor. Moreover, applications of new materials like lyotropic liquid crystalline (LLC) on chronic wounds have emerged as a new trend. The structure of LLC is endowed with many excellent properties including low cost, ordered structure, and excellent loading efficiency. LLC can provide a moist local environment for the wound, and its lattice structure can embed the growth factors in the water channel. Growth factor is released from the high-concentration carrier to the low-concentration release medium, which can be precisely regulated. Therefore, it can provide sustained and stable delivery of growth factors as well as a suitable healing environment for wounds, which is a promising candidate for chronic wound healing and has a broad prospective application. In conclusion, more reliable and applicable drug delivery systems should be designed and tested to improve the therapy and management of chronic wounds.
Collapse
Affiliation(s)
- Peili Luo
- College of Pharmacy, Jinan University, Guangzhou 511443, China; (P.L.); (L.S.); (C.W.); (P.H.)
| | - Lei Shu
- College of Pharmacy, Jinan University, Guangzhou 511443, China; (P.L.); (L.S.); (C.W.); (P.H.)
| | - Zhengwei Huang
- College of Pharmacy, Jinan University, Guangzhou 511443, China; (P.L.); (L.S.); (C.W.); (P.H.)
| | - Ying Huang
- College of Pharmacy, Jinan University, Guangzhou 511443, China; (P.L.); (L.S.); (C.W.); (P.H.)
| | - Chuanbin Wu
- College of Pharmacy, Jinan University, Guangzhou 511443, China; (P.L.); (L.S.); (C.W.); (P.H.)
| | - Xin Pan
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China;
| | - Ping Hu
- College of Pharmacy, Jinan University, Guangzhou 511443, China; (P.L.); (L.S.); (C.W.); (P.H.)
| |
Collapse
|
8
|
Ding JY, Sun L, Zhu ZH, Wu XC, Xu XL, Xiang YW. Nano drug delivery systems: a promising approach to scar prevention and treatment. J Nanobiotechnology 2023; 21:268. [PMID: 37568194 PMCID: PMC10416511 DOI: 10.1186/s12951-023-02037-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
Scar formation is a common physiological process that occurs after injury, but in some cases, pathological scars can develop, leading to serious physiological and psychological effects. Unfortunately, there are currently no effective means to intervene in scar formation, and the structural features of scars and their unclear mechanisms make prevention and treatment even more challenging. However, the emergence of nanotechnology in drug delivery systems offers a promising avenue for the prevention and treatment of scars. Nanomaterials possess unique properties that make them well suited for addressing issues related to transdermal drug delivery, drug solubility, and controlled release. Herein, we summarize the recent progress made in the use of nanotechnology for the prevention and treatment of scars. We examine the mechanisms involved and the advantages offered by various types of nanomaterials. We also highlight the outstanding challenges and questions that need to be addressed to maximize the potential of nanotechnology in scar intervention. Overall, with further development, nanotechnology could significantly improve the prevention and treatment of pathological scars, providing a brighter outlook for those affected by this condition.
Collapse
Affiliation(s)
- Jia-Ying Ding
- Center of Rehabilitation Medicine, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Lu Sun
- Center of Rehabilitation Medicine, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Zhi-Heng Zhu
- Center of Rehabilitation Medicine, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xi-Chen Wu
- Center of Rehabilitation Medicine, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xiao-Ling Xu
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, 310015, PR China.
| | - Yan-Wei Xiang
- Center of Rehabilitation Medicine, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
9
|
Chung EP, Nguyen JQ, Tellkamp-Schehr T, Goebel K, Ollek A, Krein C, Wells AR, Sebastian EA, Goebel A, Niese S, Leung KP. A Soft Skin Adhesive (SSA) Patch for Extended Release of Pirfenidone in Burn Wounds. Pharmaceutics 2023; 15:1842. [PMID: 37514029 PMCID: PMC10386754 DOI: 10.3390/pharmaceutics15071842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/14/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
As much as half or more of deep partial-thickness burn wounds develop hypertrophic scarring and contracture. Once formed, treatments are only minimally effective. Pirfenidone (Pf), indicated for treatment of idiopathic pulmonary fibrosis, is an anti-inflammatory and anti-fibrotic small molecule that potentially can be repurposed as a preventative against scarring in burn wounds. We present a drug-in-matrix patch with a soft skin adhesive (SSA) wound-contacting layer for multi-day drug delivery of Pf into burn wounds at the point of injury. Our patch construction consists of an SSA adhesive layer (Liveo™ MG7-9850, Dupont, Wilmington, DE, USA) for wound fixation, an acrylic co-polymer drug matrix (DURO-TAK 87-2852, Henkel, Düsseldorf, Germany) as the drug (Pf) reservoir, and an outermost protective polyurethane backing. By employing a drug-in-matrix patch design, Pf can be loaded as high as 2 mg/cm2. Compared to the acrylic co-polymer adhesive patch preparations and commercial films, adding an SSA layer markedly reduces skin stripping observed under scanning electron microscopy (SEM). Moreover, the addition of varying SSA thicknesses did not interfere with the in vitro release kinetics or drug permeation in ex vivo porcine skin. The Pf patch can be easily applied onto and removed from deep partial-thickness burn wounds on Duroc pigs. Continuous multi-day dosing of Pf by the patches (>200 μg/cm2/day) reduced proinflammatory biomarkers in porcine burn wounds. Pf patches produced by the manual laboratory-scale process showed excellent stability, maintaining intact physical patch properties and in vitro biological activity for up to one year under long-term (25 °C at 60% RH) and 6 months under accelerated (40 °C at 75% RH) test conditions. To manufacture our wound safe-and-extended-release patch, we present scale-up processes using a machine-driven automated roll-to-roll pilot scale coater.
Collapse
Affiliation(s)
- Eugene P Chung
- Combat Wound Care Group, US Army Institute of Surgical Research, JBSA, Fort Sam Houston, TX 78234, USA
- Department of Bioengineering, Rice University, Houston, TX 77005, USA
| | - Jesse Q Nguyen
- Combat Wound Care Group, US Army Institute of Surgical Research, JBSA, Fort Sam Houston, TX 78234, USA
| | | | - Katja Goebel
- Labtec GmbH, Raiffeisenstrasse 4, 40764 Langenfeld, Germany
| | - Anita Ollek
- Labtec GmbH, Raiffeisenstrasse 4, 40764 Langenfeld, Germany
| | - Cliff Krein
- Labtec GmbH, Raiffeisenstrasse 4, 40764 Langenfeld, Germany
| | - Adrienne R Wells
- Combat Wound Care Group, US Army Institute of Surgical Research, JBSA, Fort Sam Houston, TX 78234, USA
- MicRoN Core, Harvard Medical School, Boston, MA 02215, USA
| | - Eliza A Sebastian
- Combat Wound Care Group, US Army Institute of Surgical Research, JBSA, Fort Sam Houston, TX 78234, USA
| | - Anja Goebel
- Labtec GmbH, Raiffeisenstrasse 4, 40764 Langenfeld, Germany
| | - Svenja Niese
- Labtec GmbH, Raiffeisenstrasse 4, 40764 Langenfeld, Germany
| | - Kai P Leung
- Combat Wound Care Group, US Army Institute of Surgical Research, JBSA, Fort Sam Houston, TX 78234, USA
| |
Collapse
|
10
|
Shah S, Joga R, Kolipaka T, Sabnis Dushyantrao C, Khairnar P, Phatale V, Pandey G, Srivastava S, Kumar S. Paradigm of lyotropic liquid crystals in tissue regeneration. Int J Pharm 2023; 634:122633. [PMID: 36690130 DOI: 10.1016/j.ijpharm.2023.122633] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/12/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023]
Abstract
The liquid crystalline phase has attracted tremendous attention from researchers across the globe due to its intriguing properties. In this article, we enumerate the different classes of liquid crystals. Lyotropic liquid crystals (LLCs) exhibit their liquid crystalline nature based on the surrounding solvent media, which opens novel horizons in drug delivery and tissue regeneration. The advantages of LLCs in the said fields and the thermodynamic mechanistic insights responsible for their structural stabilization have been conveyed. Various fabrication and characterization techniques, along with factors influencing the formation of LLCs, have been discussed. Applications in novel therapeutic avenues like bone extracellular matrix, cardiac remodeling, wound management, and implants have been unveiled. Also, regulatory considerations, patent, and clinical portfolios to circumvent the hurdles of clinical translation have been discussed. LLCs could be a promising approach in diverse avenues of tissue regeneration.
Collapse
Affiliation(s)
- Saurabh Shah
- Pharmaceutical Innovation and Translational Research Laboratory (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Ramesh Joga
- Department of Regulatory Affairs, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Tejaswini Kolipaka
- Pharmaceutical Innovation and Translational Research Laboratory (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Chetan Sabnis Dushyantrao
- Department of Regulatory Affairs, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Pooja Khairnar
- Pharmaceutical Innovation and Translational Research Laboratory (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Vivek Phatale
- Pharmaceutical Innovation and Translational Research Laboratory (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Giriraj Pandey
- Pharmaceutical Innovation and Translational Research Laboratory (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Saurabh Srivastava
- Department of Regulatory Affairs, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India.
| | - Sandeep Kumar
- Department of Regulatory Affairs, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India.
| |
Collapse
|
11
|
Blanco-Fernández G, Blanco-Fernandez B, Fernández-Ferreiro A, Otero-Espinar FJ. Lipidic lyotropic liquid crystals: Insights on biomedical applications. Adv Colloid Interface Sci 2023; 313:102867. [PMID: 36889183 DOI: 10.1016/j.cis.2023.102867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/26/2023] [Accepted: 02/26/2023] [Indexed: 03/04/2023]
Abstract
Liquid crystals (LCs) possess unique physicochemical properties, translatable into a wide range of applications. To date, lipidic lyotropic LCs (LLCs) have been extensively explored in drug delivery and imaging owing to the capability to encapsulate and release payloads with different characteristics. The current landscape of lipidic LLCs in biomedical applications is provided in this review. Initially, the main properties, types, methods of fabrication and applications of LCs are showcased. Then, a comprehensive discussion of the main biomedical applications of lipidic LLCs accordingly to the application (drug and biomacromolecule delivery, tissue engineering and molecular imaging) and route of administration is examined. Further discussion of the main limitations and perspectives of lipidic LLCs in biomedical applications are also provided. STATEMENT OF SIGNIFICANCE: Liquid crystals (LCs) are those systems between a solid and liquid state that possess unique morphological and physicochemical properties, translatable into a wide range of biomedical applications. A short description of the properties of LCs, their types and manufacturing procedures is given to serve as a background to the topic. Then, the latest and most innovative research in the field of biomedicine is examined, specifically the areas of drug and biomacromolecule delivery, tissue engineering and molecular imaging. Finally, prospects of LCs in biomedicine are discussed to show future trends and perspectives that might be utilized. This article is an ampliation, improvement and actualization of our previous short forum article "Bringing lipidic lyotropic liquid crystal technology into biomedicine" published in TIPS.
Collapse
Affiliation(s)
- Guillermo Blanco-Fernández
- Pharmacology, Pharmacy and Pharmaceutical Technology Department, Faculty of Pharmacy, University of Santiago de Compostela (USC), Santiago de Compostela, Spain; Paraquasil Group, Health Research Institute of Santiago de Compostela (FIDIS), Santiago de Compostela, Spain; Institute of Materials (iMATUS), University of Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Bárbara Blanco-Fernandez
- CIBER in Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Madrid, Spain; Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, Barcelona 08028, Spain.
| | - Anxo Fernández-Ferreiro
- Pharmacology Group, Health Research Institute of Santiago de Compostela (FIDIS), Santiago de Compostela, Spain; Pharmacy Department, University Clinical Hospital of Santiago de Compostela (SERGAS), Santiago de Compostela, Spain.
| | - Francisco J Otero-Espinar
- Pharmacology, Pharmacy and Pharmaceutical Technology Department, Faculty of Pharmacy, University of Santiago de Compostela (USC), Santiago de Compostela, Spain; Paraquasil Group, Health Research Institute of Santiago de Compostela (FIDIS), Santiago de Compostela, Spain; Institute of Materials (iMATUS), University of Santiago de Compostela (USC), Santiago de Compostela, Spain.
| |
Collapse
|
12
|
Bakhrushina EO, Shumkova MM, Sergienko FS, Novozhilova EV, Demina NB. Spray Film-Forming systems as promising topical in situ Systems: A review. Saudi Pharm J 2023; 31:154-169. [PMID: 36685308 PMCID: PMC9845128 DOI: 10.1016/j.jsps.2022.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/18/2022] [Indexed: 11/24/2022] Open
Abstract
Spray film-forming systems (SFFSs) provide great potential for the treatment of various types of wounds. Such systems afford to prolong the action of active substances, to prevent cross-contamination, and to ensure accelerated wound healing. Spray films are known since the mid-20th century, and nowadays they are widely used to treat minor skin injuries, but numerous clinical cases describe their successful use in the treatment of burns, wounds, bedsores, etc. The current level of polymer development and composite synthesis has greatly expanded the possibilities of creating compositions of spray film-forming systems. Scattered information and lack of standardization of such delivery systems creates difficulties for pharmaceutical development. This review highlights most of the existing requirements and suggestions from studies to standardize the characteristics of SFFSs and classify them based on scientific sources and regulatory documentation, as well as the position of such systems in the pharmaceutical market. The search and evaluation of known characterization methods and their modifications, as well as the approval of their list (separately for development and for standardization) can potentially increase the research interest in the problem of spray film-forming systems development and contribute to the registration of new drugs and medical devices in this promising dosage form, including with its own pharmacological effect.
Collapse
|
13
|
Katiyar S, Singh D, Kumari S, Srivastava P, Mishra A. Novel strategies for designing regenerative skin products for accelerated wound healing. 3 Biotech 2022; 12:316. [PMID: 36276437 PMCID: PMC9547767 DOI: 10.1007/s13205-022-03331-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/23/2022] [Indexed: 11/01/2022] Open
Abstract
Healthy skin protects from pathogens, water loss, ultraviolet rays, and also maintains homeostasis conditions along with sensory perceptions in normal circumstances. Skin wound healing mechanism is a multi-phased biodynamic process that ultimately triggers intercellular and intracellular mechanisms. Failure to implement the normal and effective healing process may result in chronic injuries and aberrant scarring. Chronic wounds lead to substantial rising healthcare expenditure, and innovative methods to diagnose and control severe consequences are urgently needed. Skin tissue engineering (STE) has achieved several therapeutic accomplishments during the last few decades, demonstrating tremendous development. The engineered skin substitutes provide instant coverage for extensive wounds and facilitate the prevention of microbial infections and fluid loss; furthermore, they help in fighting inflammation and allow rapid neo-tissue formation. The current review primarily focused on the wound recovery and restoration process and the current conditions of STE with various advancements and complexities associated with different strategies such as cell sources, biopolymers, innovative fabrication techniques, and growth factors delivery systems.
Collapse
Affiliation(s)
- Soumya Katiyar
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005 India
| | - Divakar Singh
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005 India
| | - Shikha Kumari
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005 India
| | - Pradeep Srivastava
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005 India
| | - Abha Mishra
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005 India
| |
Collapse
|
14
|
Cristodor PL, Nechifor A, Fotea S, Nadasdy T, Bahloul Y, Nicolescu AC, Tatu AL. New Antifibroblastic Medication in Dermatology: Could Nintedanib Treat Scarring? Int J Gen Med 2022; 15:7169-7172. [PMID: 36118185 PMCID: PMC9480593 DOI: 10.2147/ijgm.s377073] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/23/2022] [Indexed: 11/23/2022] Open
Abstract
There are a wide variety of disfiguring dermatological conditions whose pathologic substrate is represented by the unwanted deposition of collagen from dermal fibroblasts. Pirfenidone has demonstrated efficiency in the treatment of disordered collagen production when applied topically. Due to a similar mechanism of action, we also hypothesize that a similar medication, nintedanib, might have similar applications. We also propose that a liposomal technology may assist in the penetration of nintedanib and enhance its clinical effects.
Collapse
Affiliation(s)
- Patricia Liana Cristodor
- Center for the Morphologic Study of the Skin MORPHODERM, University of Medicine and Pharmacy “Victor Babeș”, Timișoara, TM, Romania
- Dermatology Department, Spitalul Clinic Municipal de Urgenta Timisoara, Timişoara, TM, Romania
| | - Alexandru Nechifor
- Clinical Medical Department, Faculty of Medicine and Pharmacy, “Dunarea de Jos” University, Galati, GL, Romania
| | - Silvia Fotea
- Clinical Medical Department, Faculty of Medicine and Pharmacy, “Dunarea de Jos” University, Galati, GL, Romania
| | - Thomas Nadasdy
- Dermatology Department, Spitalul Clinic Municipal de Urgenta Timisoara, Timişoara, TM, Romania
- Multidisciplinary Integrative Center for Dermatologic Interface Research MIC-DIR, Galati, GL, Romania
- Correspondence: Thomas Nadasdy; Yousef Bahloul, Dermatology Department, Spitalul Clinic Municipal de Urgenta Timisoara, str. Ofcea nr.24, Timişoara, TM, 300558, Romania, Tel +40 751609000, Email ;
| | - Yousef Bahloul
- Dermatology Department, Spitalul Clinic Municipal de Urgenta Timisoara, Timişoara, TM, Romania
- PhD Studies Department, University of Medicine and Pharmacy, Victor Babeș” Timișoara, Timișoara, TM, Romania
| | - Alin Codrut Nicolescu
- Department of Dermatology, ‘Roma’ Medical Center for Diagnosis and Treatment, Bucharest, Romania
| | - Alin Laurentiu Tatu
- Clinical Medical Department, Faculty of Medicine and Pharmacy, “Dunarea de Jos” University, Galati, GL, Romania
- Multidisciplinary Integrative Center for Dermatologic Interface Research MIC-DIR, Galati, GL, Romania
- Dermatology Department, “Sf. Cuvioasa Parascheva” Clinical Hospital of Infectious Diseases, Galati, GL, Romania
- Research Center in the Field of Medical and Pharmaceutical Sciences ReFORM-UDJ, Galati, GL, Romania
| |
Collapse
|
15
|
Titanium carbide MXene-based hybrid hydrogel for chemo-photothermal combinational treatment of localized bacterial infection. Acta Biomater 2022; 142:113-123. [PMID: 35189382 DOI: 10.1016/j.actbio.2022.02.019] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/27/2022] [Accepted: 02/15/2022] [Indexed: 12/16/2022]
Abstract
With the increased emergence and threat of multi-drug resistant microorganisms, MXenes have become not only an emerging class of two-dimensional functional nanomaterials, but also potential nanomedicines (i.e., antimicrobial agents) that deserve further exploration. Very recently, Ti3C2 MXene was observed to offer a unique membrane-disruption effect and superior light-to-heat conversion efficiency, but its antibacterial property remains unsatisfactory due to poor MXene-bacteria interactions, low photothermal therapy efficiency, and occurrence of bacterial rebound in vivo. Herein, the cationic antibiotic ciprofloxacin (Cip) is combined with Ti3C2 MXene, and a hybrid hydrogel was constructed by incorporating Cip-Ti3C2 nanocomposites into the network structure of a Cip-loaded hydrogels to effectively trap and kill bacteria. We found that the Cip-Ti3C2 nanocomposites achieved an impressive in vitro bactericidal efficiency of >99.99999% (7.03 log10) for the inhibition of methicillin-resistant Staphylococcus aureus (MRSA) by combining chemotherapy with photothermal therapy. In an MRSA-induced murine abscess model, the hybrid hydrogel simultaneously achieved high-efficiency sterilization and long-term inhibition effects, avoiding the rebound of bacteria after photothermal therapy, and thus maximized the in vivo therapeutic efficacy of Ti3C2 MXene-based systems. Overall, this work provides a strategy for efficiently combating localized bacterial infection by rationally designing MXene-based hybrid hydrogels. STATEMENT OF SIGNIFICANCE: Two-dimensional Ti3C2 MXene was recently regarded as a promising functional nanomaterial, however, its antibacterial applications are limited by the poor MXene-bacteria interactions, low photothermal therapy efficiency, and the occurrence of bacterial rebound in vivo. This work aims to construct a Ti3C2 MXene-based hybrid hydrogel for chemo-photothermal therapy and enhance the antimicrobial performance via a combination of the high-efficiency sterilization of ciprofloxacin-Ti3C2 nanocomposites with the long-term inhibition effect of ciprofloxacin hydrogel. The present study provides an example of efficient MXene-based antimicrobials to treat localized bacterial infection such as methicillin-resistant Staphylococcus aureus (MRSA)-induced skin abscess.
Collapse
|
16
|
Lyotropic Liquid Crystals: A Biocompatible and Safe Material for Local Cardiac Application. Pharmaceutics 2022; 14:pharmaceutics14020452. [PMID: 35214184 PMCID: PMC8879243 DOI: 10.3390/pharmaceutics14020452] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/03/2022] [Accepted: 02/17/2022] [Indexed: 02/01/2023] Open
Abstract
The regeneration of cardiac tissue is a multidisciplinary research field aiming to improve the health condition of the post-heart attack patient. Indeed, myocardial tissue has a poor ability to self-regenerate after severe damage. The scientific efforts focused on the research of a biomaterial able to adapt to heart tissue, thus guaranteeing the in situ release of active substances or growth promoters. Many types of hydrogels were proposed for this purpose, showing several limitations. The aim of this study was to suggest a new usage for glyceryl monooleate-based lyotropic liquid crystals (LLCs) as a biocompatible and inert material for a myocardial application. The main advantages of LLCs are mainly related to their easy in situ injection as lamellar phase and their instant in situ transition in the cubic phase. In vivo studies proved the biocompatibility and the inertia of LLCs after their application on the myocardial tissue of mice. In detail, the cardiac activity was monitored through 28 days, and no significant alterations were recorded in the heart anatomy and functionality. Moreover, gross anatomy showed the ability of LLCs to be bio-degraded in a suitable time frame. Overall, these results permitted us to suppose a potential use of LLCs as materials for cardiac drug delivery.
Collapse
|
17
|
Wang C, Chen J, Yue X, Xia X, Zhou Z, Wang G, Zhang X, Hu P, Huang Y, Pan X, Wu C. Improving Water-Absorption and Mechanical Strength: Lyotropic Liquid Crystalline-Based Spray Dressings as a Candidate Wound Management System. AAPS PharmSciTech 2022; 23:68. [PMID: 35106685 DOI: 10.1208/s12249-021-02205-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/15/2021] [Indexed: 01/04/2023] Open
Abstract
A spray dressing based on lyotropic liquid crystalline (LLC) with adjustable crystalline lattices was investigated in this study. It possesses water-triggering phase transition property and ease of spraying on wound, as well as stable drug encapsulation and controllable drug release. When it comes to wound with exudate, adequate water absorption and sustainable mechanical strength after water absorption was important for a good dressing, while most of the normal LLC dressings were still unable to meet such standards. Herein, a type of hyaluronic acid (HA)-incorporated LLC-based spray dressing (HLCSD) was developed to overcome the above limitations. After comparing HAs with different molecular weights (MWs) and concentrations, 3% HA with MW of 800~1000 kD was chosen as an ideal amount of excipients to add into the HLCSD. The water absorption of HLCSD precursor increased by 150% with the appearance of enlarged water channels. The complex modulus of HLCSD gel also increased from 1 to 100 kPa, which suggested lasting wound coverage and good patient compliance when used clinically. The spraying and phase transition properties of HLCSD was studied and showed acceptable changes. Moreover, good safety comparable with the commercial product Purilon® was also demonstrated in an in vivo acute skin irritation test. Thus, the improved HLCSD was a promising dressing for exudation wound treatment.
Collapse
|
18
|
Gan D, Cheng W, Ke L, Sun AR, Jia Q, Chen J, Xu Z, Xu J, Zhang P. Biphasic Effect of Pirfenidone on Angiogenesis. Front Pharmacol 2022; 12:804327. [PMID: 35069215 PMCID: PMC8766764 DOI: 10.3389/fphar.2021.804327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/20/2021] [Indexed: 12/19/2022] Open
Abstract
Pirfenidone (PFD), a synthetic arsenic compound, has been found to inhibit angiogenesis at high concentrations. However, the biphasic effects of different PFD concentrations on angiogenesis have not yet been elucidated, and the present study used an in vitro model to explore the mechanisms underlying this biphasic response. The effect of PFD on the initial angiogenesis of vascular endothelial cells was investigated through a Matrigel tube formation assay, and the impact of PFD on endothelial cell migration was evaluated through scratch and transwell migration experiments. Moreover, the expression of key migration cytokines, matrix metalloproteinase (MMP)-2 and MMP-9, was examined. Finally, the biphasic mechanism of PFD on angiogenesis was explored through cell signaling and apoptosis analyses. The results showed that 10–100 μM PFD has a significant and dose-dependent inhibitory effect on tube formation and migration, while 10 nM–1 μM PFD significantly promoted tube formation and migration, with 100 nM PFD having the strongest effect. Additionally, we found that a high concentration of PFD could significantly inhibit MMP-2 and MMP-9 expression, while low concentrations of PFD significantly promoted their expression. Finally, we found that high concentrations of PFD inhibited EA.hy926 cell tube formation by promoting apoptosis, while low concentrations of PFD promoted tube formation by increasing MMP-2 and MMP-9 protein expression predominantly via the EGFR/p-p38 pathway. Overall, PFD elicits a biphasic effect on angiogenesis through different mechanisms, could be used as a new potential drug for the treatment of vascular diseases.
Collapse
Affiliation(s)
- Donghao Gan
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,School of Medicine, The Southern University of Science and Technology, Shenzhen, China
| | - Wenxiang Cheng
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Liqing Ke
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Antonia RuJia Sun
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Qingyun Jia
- Second Ward of Trauma Surgery Department, Linyi People's Hospital, Linyi, China
| | - Jianhai Chen
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zhanwang Xu
- Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Juan Xu
- Department of Stomatology, SijingHospital, Shanghai, China
| | - Peng Zhang
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,Shenzhen Engineering Research Center for Medical Bioactive Materials, Shenzhen, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
19
|
Bala R, Sindhu RK, Kaundle B, Madaan R, Cavalu S. The prospective of liquid crystals in nano formulations for drug delivery systems. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.131117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Mei L, Wang H, Chen J, Zhang Z, Li F, Xie Y, Huang Y, Peng T, Cheng G, Pan X, Wu C. Self-assembled lyotropic liquid crystal gel for osteoarthritis treatment via anti-inflammation and cartilage protection. Biomater Sci 2021; 9:7205-7218. [PMID: 34554160 DOI: 10.1039/d1bm00727k] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Osteoarthritis (OA) is a chronic joint disease with occurrence of articular inflammation and cartilage degeneration. An ideal drug delivery system for effective treatment of OA should integrate inflammation alleviation with cartilage protection. Herein, a lyotropic liquid crystal (LLC) precursor co-loading hyaluronic acid (HA) and celecoxib, formulated as the HLC precursor, was developed for the combined therapeutic efficacy. The in situ gelling property of the HLC precursor effectively prolongs drug retention in the articular cavity to achieve a long-term anti-inflammation effect. Based on the rheological tests, HLC gel with a cubic lattice structure endows it with a spring-like effect to buffer joint shock and shows great potential in providing cartilage protection by resisting mechanical destruction, lubricating joint, and decomposing intensive stress (about 50%). Meanwhile, the pharmacodynamics study on the OA-induced SD rats demonstrated that HLC gel was the most effective to reduce inflammation levels and to protect the cartilage against abrasion and degeneration. Furthermore, the in vivo degradation behavior and the intra-articular irritation results of LLC/HLC gel demonstrated that it was biodegradable and biocompatible. These results collectively demonstrated that HLC gel with anti-inflammation and cartilage protection performance provides a useful approach to treat OA.
Collapse
Affiliation(s)
- Liling Mei
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Hui Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Jintian Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Ziqian Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Feng Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Yecheng Xie
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Ying Huang
- College of Pharmacy, Jinan University, Guangzhou 510632, PR China.
| | - Tingting Peng
- College of Pharmacy, Jinan University, Guangzhou 510632, PR China.
| | - Guohua Cheng
- College of Pharmacy, Jinan University, Guangzhou 510632, PR China.
| | - Xin Pan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Chuanbin Wu
- College of Pharmacy, Jinan University, Guangzhou 510632, PR China.
| |
Collapse
|
21
|
Wang H, Peng T, Wu H, Chen J, Chen M, Mei L, Li F, Wang W, Wu C, Pan X. In situ biomimetic lyotropic liquid crystal gel for full-thickness cartilage defect regeneration. J Control Release 2021; 338:623-632. [PMID: 34481927 DOI: 10.1016/j.jconrel.2021.08.062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 08/23/2021] [Accepted: 08/31/2021] [Indexed: 12/27/2022]
Abstract
There is a great challenge in regenerating cartilage defects, which usually involve absent bearing capacity and poor adaptation to joint movement, further exacerbating subchondral bone damage. Therefore, ideal tissue-engineering cartilage scaffolds should be endowed with biomimetic and sustained-release function for promoting long-term chondrogenesis while protecting subchondral bone. Herein, in situ self-assembling gel based on glyceryl monooleate (GMO)-hyaluronic acid (HA) composite lyotropic liquid crystal (HLC) was developed as the biomimetic scaffold to deliver kartogenin for long-term cartilage regeneration. Compared to the GMO based (LLC) gel, HLC gel with modified lattice structure exhibited improved rheological properties for better joint protection by increasing mechanical strength, elasticity and lubrication. Besides, HLC gel successfully prolonged drug release and retention in the joint cavity over 4 weeks to provide combined effect of kartogenin and HA for cartilage repair. Pharmacodynamic studies demonstrated that HLC gel was the most effective to promote chondrogenesis and protect subchondral bone, making the damaged bone tissue restored to normal in divergent features as evidenced by the MRI, Micro-CT and histological results. Therefore, the HLC gel with joint protection and controlled drug release can serve as a firm scaffold for providing long-term cartilage repair.
Collapse
Affiliation(s)
- Hui Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Tingting Peng
- College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Haofeng Wu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Jintian Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Minglong Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Liling Mei
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Feng Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Wenhao Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Chuanbin Wu
- College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Xin Pan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China.
| |
Collapse
|
22
|
Yue X, Zhang X, Wang C, Huang Y, Hu P, Wang G, Cui Y, Xia X, Zhou Z, Pan X, Wu C. A bacteria-resistant and self-healing spray dressing based on lyotropic liquid crystals to treat infected post-operative wounds. J Mater Chem B 2021; 9:8121-8137. [PMID: 34494632 DOI: 10.1039/d1tb01201k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The delayed healing of infected post-operative wounds has turned into a worldwide medical problem. In the clinical treatment, effective bacterial clearance and promoted wound healing were considered as two crucial aspects. However, the effect of current dressings with antibacterial activity was limited due to the declined efficacy against antibiotic-resistant bacteria, and poor mechanical property during skin extension and compression movement. In this project, a lyotropic liquid crystal (LLC)-based bacteria-resistant and self-healing spray dressing loaded with ε-polylysine (PLL) was designed. Owing to the unique antibacterial mechanism, PLL was expected to kill antibiotic-resistant bacteria efficiently, even the "superbug" methicillin-resistant Staphylococcus aureus (MRSA). The cubic cells of LLC were applied to encapsulate PLL to improve its stability and induce a sustained release, further realizing a long-term antibacterial effect. Meanwhile, the LLC precursor (LLCP) could extend to the irregular edges of the wound, and spontaneously transited to a cubic phase gel once exposed to physiological fluid. This 3D structure was also endowed with mechanically responsive viscoelasticity that formed a robust and flexible defense for wounds. An excellent antibacterial activity with more than 99% MRSA killed in 3 h was demonstrated by a killing kinetics study. The long-term effect was also proved by measuring the bacteriostatic circle test within 48 h. In addition, the unique sol-gel phase transition behavior and superior self-healing capacity of PLL-LLCP was verified with the rheological study and self-recoverable conformal deformation test in vivo. In the infected post-operative wound model, satisfactory bacterial clearance and prominent wound healing promotion were realized by PLL-LLCP, with the survival of the bacteria at lower than 0.1% and the wound closure at higher than 90%. Thus, PLL-LLCP was believed to be an excellent candidate for the therapy of infected post-operative wounds.
Collapse
Affiliation(s)
- Xiao Yue
- College of Pharmacy, Jinan University, Guangzhou 511443, Guangdong, P. R. China. .,School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, Guangdong, P. R. China.
| | - Xuejuan Zhang
- College of Pharmacy, Jinan University, Guangzhou 511443, Guangdong, P. R. China.
| | - Chen Wang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, Guangdong, P. R. China.
| | - Ying Huang
- College of Pharmacy, Jinan University, Guangzhou 511443, Guangdong, P. R. China.
| | - Ping Hu
- College of Pharmacy, Jinan University, Guangzhou 511443, Guangdong, P. R. China.
| | - Guanlin Wang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, Guangdong, P. R. China.
| | - Yingtong Cui
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, Guangdong, P. R. China.
| | - Xiao Xia
- College of Pharmacy, Jinan University, Guangzhou 511443, Guangdong, P. R. China.
| | - Ziqiang Zhou
- College of Pharmacy, Jinan University, Guangzhou 511443, Guangdong, P. R. China.
| | - Xin Pan
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, Guangdong, P. R. China.
| | - Chuanbin Wu
- College of Pharmacy, Jinan University, Guangzhou 511443, Guangdong, P. R. China.
| |
Collapse
|
23
|
Islam MS, Islam JMM, Rahman MF, Rahman MM, Khan MA. Gelatin-based instant gel-forming volatile spray for wound-dressing application. Prog Biomater 2021; 10:235-243. [PMID: 34542831 DOI: 10.1007/s40204-021-00166-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 09/13/2021] [Indexed: 02/01/2023] Open
Abstract
This study was a successful endeavor to develop and investigate the suitability of a bioadhesive wound-healing gel based on gelatin for first-aid purposes. Polyethylene glycol (PEG) was used to prepare a denser phase of gelatin chains, and diethyl ether (DEE) was used to introduce high volatility to the solution. The prepared solution was stable in the storage container but rapidly formed (within 3 s) a protective and bioadhesive gel around the wound surface by being sprayed over the wound. Besides, it also suppressed pain and showed moderate antimicrobial activity against S. aureus. It was also found highly biocompatible and non-toxic. All the results revealed that the prepared solution could be an effective candidate for treating minor injuries or burn, especially for a first-aid purpose.
Collapse
Affiliation(s)
- Mohammed Shahidul Islam
- Institute of Radiation and Polymer Technology, Bangladesh Atomic Energy Commission, Savar, Dhaka, 1349, Bangladesh.,Department of Applied Chemistry and Chemical Engineering, University of Dhaka, Dhaka, 2000, Bangladesh.,Department of Chemistry and Biochemistry, Texas Tech University, 1204 Boston Avenue, Lubbock, TX, 79409, USA
| | - Jahid M M Islam
- Institute of Radiation and Polymer Technology, Bangladesh Atomic Energy Commission, Savar, Dhaka, 1349, Bangladesh.,School of Science, Monash University Malaysia, 47500, Subang Jaya, Selangor, Malaysia
| | - M Fizur Rahman
- Institute of Radiation and Polymer Technology, Bangladesh Atomic Energy Commission, Savar, Dhaka, 1349, Bangladesh
| | - Mohammed Mizanur Rahman
- Department of Applied Chemistry and Chemical Engineering, University of Dhaka, Dhaka, 2000, Bangladesh
| | - Mubarak A Khan
- Institute of Radiation and Polymer Technology, Bangladesh Atomic Energy Commission, Savar, Dhaka, 1349, Bangladesh.
| |
Collapse
|
24
|
Lin L, Chi J, Yan Y, Luo R, Feng X, Zheng Y, Xian D, Li X, Quan G, Liu D, Wu C, Lu C, Pan X. Membrane-disruptive peptides/peptidomimetics-based therapeutics: Promising systems to combat bacteria and cancer in the drug-resistant era. Acta Pharm Sin B 2021; 11:2609-2644. [PMID: 34589385 PMCID: PMC8463292 DOI: 10.1016/j.apsb.2021.07.014] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/08/2021] [Accepted: 07/12/2021] [Indexed: 02/05/2023] Open
Abstract
Membrane-disruptive peptides/peptidomimetics (MDPs) are antimicrobials or anticarcinogens that present a general killing mechanism through the physical disruption of cell membranes, in contrast to conventional chemotherapeutic drugs, which act on precise targets such as DNA or specific enzymes. Owing to their rapid action, broad-spectrum activity, and mechanisms of action that potentially hinder the development of resistance, MDPs have been increasingly considered as future therapeutics in the drug-resistant era. Recently, growing experimental evidence has demonstrated that MDPs can also be utilized as adjuvants to enhance the therapeutic effects of other agents. In this review, we evaluate the literature around the broad-spectrum antimicrobial properties and anticancer activity of MDPs, and summarize the current development and mechanisms of MDPs alone or in combination with other agents. Notably, this review highlights recent advances in the design of various MDP-based drug delivery systems that can improve the therapeutic effect of MDPs, minimize side effects, and promote the co-delivery of multiple chemotherapeutics, for more efficient antimicrobial and anticancer therapy.
Collapse
Affiliation(s)
- Liming Lin
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
- College of Pharmacy, Jinan University, Guangzhou 511443, China
| | - Jiaying Chi
- College of Pharmacy, Jinan University, Guangzhou 511443, China
| | - Yilang Yan
- College of Pharmacy, Jinan University, Guangzhou 511443, China
| | - Rui Luo
- College of Pharmacy, Jinan University, Guangzhou 511443, China
| | - Xiaoqian Feng
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
- College of Pharmacy, Jinan University, Guangzhou 511443, China
| | - Yuwei Zheng
- College of Pharmacy, Jinan University, Guangzhou 511443, China
| | - Dongyi Xian
- College of Pharmacy, Jinan University, Guangzhou 511443, China
| | - Xin Li
- The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Guilan Quan
- College of Pharmacy, Jinan University, Guangzhou 511443, China
| | - Daojun Liu
- Shantou University Medical College, Shantou 515041, China
| | - Chuanbin Wu
- College of Pharmacy, Jinan University, Guangzhou 511443, China
| | - Chao Lu
- College of Pharmacy, Jinan University, Guangzhou 511443, China
| | - Xin Pan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
25
|
Liu L, Ding Z, Yang Y, Zhang Z, Lu Q, Kaplan DL. Asiaticoside-laden silk nanofiber hydrogels to regulate inflammation and angiogenesis for scarless skin regeneration. Biomater Sci 2021; 9:5227-5236. [PMID: 34190240 PMCID: PMC8319114 DOI: 10.1039/d1bm00904d] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Scarless skin regeneration remains a challenge due to the complicated microenvironment involved in wound healing. Here, the hydrophobic drug, asiaticoside (AC), was loaded inside silk nanofiber hydrogels to achieve bioactive and injectable matrices for skin regeneration. AC was dispersed in aqueous silk nanofiber hydrogels with retention of biological functions that regulated inflammatory reactions and vascularization in vitro. After implantation in full-thickness wound defects, these AC-laden hydrogel matrices achieved scarless wound repair. Inflammatory reactions and angiogenesis were regulated during inflammation and remodeling, which was responsible for wound regeneration similar to normal skin. Both in vitro and in vivo studies demonstrated promising applications of these AC-laden silk hydrogels towards scarless tissue regeneration.
Collapse
Affiliation(s)
- Lutong Liu
- National Engineering Laboratory for Modern Silk &Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215213, People's Republic of China.
| | - Zhaozhao Ding
- National Engineering Laboratory for Modern Silk &Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215213, People's Republic of China.
| | - Yan Yang
- Department of Dermatology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China.
| | - Zhen Zhang
- Department of Dermatology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China.
| | - Qiang Lu
- National Engineering Laboratory for Modern Silk &Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215213, People's Republic of China.
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, USA
| |
Collapse
|
26
|
Myofibroblasts: Function, Formation, and Scope of Molecular Therapies for Skin Fibrosis. Biomolecules 2021; 11:biom11081095. [PMID: 34439762 PMCID: PMC8391320 DOI: 10.3390/biom11081095] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 07/16/2021] [Accepted: 07/20/2021] [Indexed: 12/11/2022] Open
Abstract
Myofibroblasts are contractile, α-smooth muscle actin-positive cells with multiple roles in pathophysiological processes. Myofibroblasts mediate wound contractions, but their persistent presence in tissues is central to driving fibrosis, making them attractive cell targets for the development of therapeutic treatments. However, due to shared cellular markers with several other phenotypes, the specific targeting of myofibroblasts has long presented a scientific and clinical challenge. In recent years, myofibroblasts have drawn much attention among scientific research communities from multiple disciplines and specialisations. As further research uncovers the characterisations of myofibroblast formation, function, and regulation, the realisation of novel interventional routes for myofibroblasts within pathologies has emerged. The research community is approaching the means to finally target these cells, to prevent fibrosis, accelerate scarless wound healing, and attenuate associated disease-processes in clinical settings. This comprehensive review article describes the myofibroblast cell phenotype, their origins, and their diverse physiological and pathological functionality. Special attention has been given to mechanisms and molecular pathways governing myofibroblast differentiation, and updates in molecular interventions.
Collapse
|
27
|
Ogen-Shtern N, Chumin K, Silberstein E, Borkow G. Copper Ions Ameliorated Thermal Burn-Induced Damage in ex vivo Human Skin Organ Culture. Skin Pharmacol Physiol 2021; 34:317-327. [PMID: 34237749 DOI: 10.1159/000517194] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 05/12/2021] [Indexed: 11/19/2022]
Abstract
INTRODUCTION The zone of stasis is formed around the coagulation zone following skin burning and is characterized by its unique potential for salvation. The cells in this zone may die or survive depending on the severity of the burn and therefore are target for the local treatments of burns. Their low survival rate is consistent with decreased tissue perfusion, hypotension, infection, and/or edema, resulting in a significant increase in the wound size following burning. Copper is an essential trace mineral needed for the normal function of almost all body tissues, including the skin. OBJECTIVE The aim of the work was to study the effect copper ions have on skin burn pathophysiology. METHODS Skin obtained from healthy patients undergoing abdominoplasty surgery was cut into 8 × 8 mm squares, and round 0.8-mm diameter burn wounds were inflicted on the skin explants. The burned and control intact skin samples were cultured up to 27 days after wounding. Immediately following injury and then again every 48 h, saline only or containing 0.02 or 1 µM copper ions was added onto the skin explant burn wounds. RESULTS We found that exposing the wounded sites immediately after burn infliction to 0.02 or 1 µM copper ions reduced the deterioration of the zone of stasis and the increase in wound size. The presence of the copper ions prevented the dramatic increase of pro-inflammatory cytokines (interleukin (IL)-6 and IL-8) and transforming growth factor beta-1 that followed skin burning. We also detected re-epithelialization of the skin tissue and a greater amount of collagen fibers upon copper treatment. CONCLUSION The deterioration of the zone of stasis and the increase in wound size following burning may be prevented or reduced by using copper ion-based therapeutic interventions.
Collapse
Affiliation(s)
- Navit Ogen-Shtern
- The Skin research institute, The Dead-Sea & Arava Science Center, Masada, Israel.,Eilat Campus, Ben-Gurion University of the Negev, Eilat, Israel
| | - Katerina Chumin
- The Skin research institute, The Dead-Sea & Arava Science Center, Masada, Israel
| | - Eldad Silberstein
- Plastic and Reconstructive Surgery, Soroka University Medical Center, Ben Gurion University of the Negev, Beer-Sheva, Israel
| | | |
Collapse
|
28
|
Hao D, Nourbakhsh M. Recent Advances in Experimental Burn Models. BIOLOGY 2021; 10:526. [PMID: 34204763 PMCID: PMC8231482 DOI: 10.3390/biology10060526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 12/13/2022]
Abstract
Experimental burn models are essential tools for simulating human burn injuries and exploring the consequences of burns or new treatment strategies. Unlike clinical studies, experimental models allow a direct comparison of different aspects of burns under controlled conditions and thereby provide relevant information on the molecular mechanisms of tissue damage and wound healing, as well as potential therapeutic targets. While most comparative burn studies are performed in animal models, a few human or humanized models have been successfully employed to study local events at the injury site. However, the consensus between animal and human studies regarding the cellular and molecular nature of systemic inflammatory response syndrome (SIRS), scarring, and neovascularization is limited. The many interspecies differences prohibit the outcomes of animal model studies from being fully translated into the human system. Thus, the development of more targeted, individualized treatments for burn injuries remains a major challenge in this field. This review focuses on the latest progress in experimental burn models achieved since 2016, and summarizes the outcomes regarding potential methodological improvements, assessments of molecular responses to injury, and therapeutic advances.
Collapse
Affiliation(s)
| | - Mahtab Nourbakhsh
- Department of Geriatric Medicine, RWTH Aachen University Hospital, 52074 Aachen, Germany;
| |
Collapse
|
29
|
Rapalli VK, Waghule T, Hans N, Mahmood A, Gorantla S, Dubey SK, Singhvi G. Insights of lyotropic liquid crystals in topical drug delivery for targeting various skin disorders. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113771] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
30
|
Silvestrini AVP, Caron AL, Viegas J, Praça FG, Bentley MVLB. Advances in lyotropic liquid crystal systems for skin drug delivery. Expert Opin Drug Deliv 2020; 17:1781-1805. [DOI: 10.1080/17425247.2020.1819979] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | - Angelo Luis Caron
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirão Preto, SP, Brazil
| | - Juliana Viegas
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirão Preto, SP, Brazil
| | - Fabíola Garcia Praça
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirão Preto, SP, Brazil
| | | |
Collapse
|