1
|
Hao J, Zhu Y, Zhang Y, Li L, Li Z, Wang L, Qu Y, Qi L, Yu H, Wang D. Structural characterization and hypolipidemic activity of a hetero-galactan purified from Sanghuangporus vaninii based on modulation of TLR4/NF-κB pathway. Carbohydr Polym 2025; 347:122702. [PMID: 39486943 DOI: 10.1016/j.carbpol.2024.122702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 09/01/2024] [Accepted: 09/02/2024] [Indexed: 11/04/2024]
Abstract
Sanghuangporus vaninii showed great activities of anti-inflammation and anti-tumor, due to its bioactive macromolecules. However, the hypolipidemic properties of polysaccharides isolated from S. vaninii have not been systematically reported. In this research, a polysaccharide of S. vaninii was obtained and its hypolipidemic activity was investigated. SVP3, a neutral hetero-galactan from S. vaninii, has a →6)-α-Galp-(1→ backbone with partial H-2 branches of α-Manp-(1→ or α-Manp-(1→2)-α-Fucp-(1→. In a hyperlipidemia mouse model, SVP3 significantly inhibited body weight gain and suppressed serum levels of total cholesterol, triglycerides, and low-density lipoprotein cholesterol. SVP3 inhibited the expansion of adipocytes in three types of white adipose tissues and attenuated hepatic injury and hepatic lipid deposition in the mice. The combined analysis of gut microbiota, serum metabolomics, and liver proteomics revealed that SVP3 effectively regulated the abundance of specific gut microbiota and serum metabolites and mediated the inhibitory effect on inflammation-associated toll-like receptor 4/nuclear factor kappa-B pathway by regulating the expression levels of glutathione S-transferase P1, stromal cell derived factor 2-like 1, ribosomal protein L10, thiosulfate sulfurtransferase, and biliverdin reductase A in liver, ultimately realizing the hypolipidemic activity. The results of the present study provide experimental evidence for the development of clinical adjuvant therapeutic drugs to treat hyperlipidemia.
Collapse
Affiliation(s)
- Jie Hao
- School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Yanfeng Zhu
- School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Yongfeng Zhang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China.
| | - Lanzhou Li
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China.
| | - Zhige Li
- School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Lu Wang
- School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Yidi Qu
- School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Liangliang Qi
- Microbiology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China.
| | - Hailong Yu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Shanghai 201403, China.
| | - Di Wang
- School of Life Sciences, Jilin University, Changchun 130012, China; Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
2
|
Wu Z, Chen J, Kong F, Zhang Y, Yi J, Li Y, Hu M, Wang D. Polypeptide of Inonotus hispidus extracts alleviates periodontitis through suppressing inflammatory bone loss. Int J Biol Macromol 2024; 287:138350. [PMID: 39645101 DOI: 10.1016/j.ijbiomac.2024.138350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 12/01/2024] [Accepted: 12/02/2024] [Indexed: 12/09/2024]
Abstract
This study aimed to characterize and evaluate the effects of a novel polypeptide isolated from Inonotus hispidus (IH) against periodontitis. The polypeptides extracted and purified from the fruiting body of IH had a uniform molar mass, including 23 types of peptides. IH polypeptide (IHP) exerted antimicrobial activity against Porphyromonas gingivalis (P. gingivalis) by damaging the cell walls and membranes of microorganisms, disturbing energy metabolism, and regulating the expression of virulence factors. IHP significantly inhibited inflammation in lipopolysaccharides (LPS)-stimulated Raw264.7 cells evidenced by the regulation of inflammatory cytokine levels. In rats with ligature-induced periodontitis, IHP treatment ameliorated alveolar bone destruction and preserved the balance between oral flora and gut microbes. The interaction between oral and intestinal flora possibly affected the relevant metabolites. Proteomics combined with confirmation experiment revealed that the β-catenin/ nuclear factor-kappa B (NF-κB) signaling may be involved in IHP-mediated anti-periodontitis in rats, which helps reduce the secretion of pro-inflammatory factors and inhibit inflammatory osteoclastic response in the periodontal tissue. Additionally, IHP improved clinical parameters, including the plaque index (PLI), pocket depth (PD), bleeding on probing (BOP), and average probing depth in individuals with periodontitis. These findings augment the understanding of the potential role of IHP in treating periodontitis.
Collapse
Affiliation(s)
- Zhina Wu
- Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun 130021, China
| | - Jianai Chen
- School of Life Sciences, Jilin University, Changchun 130012, China
| | - Fange Kong
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China; Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China 2 National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| | - Yaqin Zhang
- School of Life Sciences, Jilin University, Changchun 130012, China
| | | | - Yutong Li
- Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun 130021, China; School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Min Hu
- Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun 130021, China.
| | - Di Wang
- School of Life Sciences, Jilin University, Changchun 130012, China; Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
3
|
Song J, Zhang Y, Jin X, Zhu Y, Li Y, Hu M. Eucommia ulmoides Oliver polysaccharide alleviates glucocorticoid-induced osteoporosis by stimulating bone formation via ERK/BMP-2/SMAD signaling. Sci Rep 2024; 14:29647. [PMID: 39609585 PMCID: PMC11604974 DOI: 10.1038/s41598-024-80859-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 11/21/2024] [Indexed: 11/30/2024] Open
Abstract
Osteoporosis (OP) is a metabolic disease characterized by low bone mineral mass owing to osteoblast dysfunction. Eucommia ulmoides Oliver (EuO) is a Chinese herbal medicine traditionally used to treat OP. Here, a polysaccharide purified from the EuO cortex (EuOCP3) was administered to OP mice constructed with dexamethasone (Dex) to investigate its anti-OP activity. EuOCP3 significantly improved Dex-induced bone microarchitecture destruction, increased osteoblast numbers and surface, and stimulated an increase in the expression of osteoblast differentiation markers in the femurs of OP mice. Furthermore, EuOCP3 was applied to MC3T3-E1 cells to further explore its effects on osteoblast differentiation. EuOCP3 significantly promoted osteoblast differentiation and increased the level of phosphorylated extracellular signal-regulated kinase1/2 (ERK1/2) and SMAD1/5/8. The EuOCP3-mediated enhancement of osteoblast differentiation-related proteins and phosphorylated SMAD1/5/8 expression levels was strongly suppressed by an ERK inhibitor (PD98059), which confirmed the critical role of ERK signaling in EuOCP3-induced osteoblast differentiation. In summary, EuOCP3 can stimulate bone formation by improving osteoblast differentiation via ERK/BMP-2/SMAD signaling, indicating the potential use of EuOCP3 as a functional ingredient in food products for anti-OP treatment.
Collapse
Affiliation(s)
- Jiyu Song
- Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun, 130021, China
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, China
| | - Yongfeng Zhang
- School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Xinghui Jin
- School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Yanfeng Zhu
- School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Yutong Li
- Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun, 130021, China.
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, China.
| | - Min Hu
- Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun, 130021, China.
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, China.
| |
Collapse
|
4
|
Peng G, Wang S, Zhang H, Xie F, Jiao L, Yuan Y, Ma C, Wu H, Meng Z. Tremella aurantialba polysaccharides alleviate ulcerative colitis in mice by improving intestinal barrier via modulating gut microbiota and inhibiting ferroptosis. Int J Biol Macromol 2024; 281:135835. [PMID: 39306158 DOI: 10.1016/j.ijbiomac.2024.135835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/06/2024] [Accepted: 09/18/2024] [Indexed: 10/27/2024]
Abstract
We aimed to investigate the effect of a polysaccharide from Tremella aurantialba on ulcerative colitis (UC), which targets ferroptosis in epithelial cells. TA 2-1 (127 kDa) was isolated from T. aurantialba and consisted of Man, Xyl, GlcA, Glc, Fuc and Rha with a molar ratio of 59.2: 23.2: 13.9: 1.6: 1.7: 0.4, exhibited a 1, 3-Man structure with branch chains of T-Xylp, 1,3-Xylp, 1,4-GlcAp, and T-Manp at its O-2 position. TA 2-1 (100 μg/mL) inhibited the cell viability of ferroptosis (19.8 %) in RLS3-induced Caco-2 cells and significantly ameliorated symptoms in the colons of mice with dextran sodium sulfate (DSS)-induced UC. TA 2-1 remarkably repaired the intestinal barrier by upregulating claudin-1 and zonula occludens-1 levels. Further analysis found TA 2-1 significantly suppressed lipid peroxidation by regulating ferroptosis-related proteins in UC mice, suggesting that its protective effects are partially mediated by inhibiting ferroptosis. Further analysis of the gut microbiota and fecal microbiota transplantation revealed TA 2-1 might relieve UC symptoms or inhibit ferroptosis by modulating the gut microbiota's composition or metabolites. Results suggest the protective effects of TA 2-1 on the intestinal barrier by inhibiting ferroptosis of epithelial cells, at least by regulating the gut microbiota, highlighting the potential of TA 2-1 in UC treatment.
Collapse
Affiliation(s)
- Gong Peng
- Laboratory of Tumor Immunology, The first Hospital of Jilin University, Changchun 130021, China
| | - Sisi Wang
- Laboratory of Tumor Immunology, The first Hospital of Jilin University, Changchun 130021, China
| | - Hansi Zhang
- College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Fang Xie
- Laboratory of Tumor Immunology, The first Hospital of Jilin University, Changchun 130021, China
| | - Li Jiao
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Kunming 650000, China
| | - Ye Yuan
- Department of Laboratory Medicine, Lequn Branch, The First Hospital of Jilin University, Changchun 130031, China
| | - Cheng Ma
- Jilin Yatai Biopharmaceutical Co., Ltd., Changchun 130032, China
| | - Hui Wu
- Department of Neonatology, Children's Medical Center, First Hospital of Jilin University, Changchun 130021, China
| | - Zhaoli Meng
- Department of Neonatology, Children's Medical Center, First Hospital of Jilin University, Changchun 130021, China; Laboratory of Tumor Immunology, The first Hospital of Jilin University, Changchun 130021, China.
| |
Collapse
|
5
|
Liu X, Dong M, Li Y, Li L, Zhang Y, Wang C, Wang N, Wang D. Structural properties of glucan from Russula griseocarnosa and its immunomodulatory activities mediated via T cell differentiation. Carbohydr Polym 2024; 339:122214. [PMID: 38823900 DOI: 10.1016/j.carbpol.2024.122214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 06/03/2024]
Abstract
The polysaccharide, RGP2, was isolated from Russula griseocarnosa and its immunostimulatory effects were confirmed in cyclophosphamide (CTX)-induced immunosuppressed mice. Following purification via chromatography, structural analysis revealed that RGP2 had a molecular weight of 11.82 kDa and consisted of glucose (Glc), galactose (Gal), mannose, glucuronic acid and glucosamine. Bond structure analysis and nuclear magnetic resonance characterization confirmed that the main chain of RGP2 was formed by →6)-β-D-Glcp-(1→, →3)-β-D-Glcp-(1→ and →6)-α-D-Galp-(1→, which was substituted at O-3 of →6)-β-D-Glcp-(1→ by β-D-Glcp-(1→. RGP2 was found to ameliorate pathological damage in the spleen and enhance immune cell activity in immunosuppressed mice. Based on combined multiomics analysis, RGP2 altered the abundance of immune-related microbiota (such as Lactobacillus, Faecalibacterium, and Bacteroides) in the gut and metabolites (uridine, leucine, and tryptophan) in the serum. Compared with immunosuppressed mice, RGP2 also restored the function of antigen-presenting cells, promoted the polarization of macrophages into the M1 phenotype, positively affected the differentiation of helper T cells, and inhibited regulatory T cell differentiation through the protein kinase B (AKT)/mechanistic target of rapamycin (mTOR) pathway, ultimately exerting an immune boosting function. Overall, our findings highlight therapeutic strategies to alleviate CTX-induced immunosuppression in a clinical setting.
Collapse
Affiliation(s)
- Xin Liu
- School of Life Sciences, Jilin University, Changchun 130012, China; School of Health Science and Biomedical Engineering, Hebei University of Technology, Tianjin, 300131, China.
| | - Mingyuan Dong
- School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Yuan Li
- School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Lanzhou Li
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, School of Plant Protection, Jilin Agricultural University, Changchun 130118, China.
| | - Yongfeng Zhang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, School of Plant Protection, Jilin Agricultural University, Changchun 130118, China.
| | - Chunyue Wang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, School of Plant Protection, Jilin Agricultural University, Changchun 130118, China.
| | - Ning Wang
- School of Chinese Medicine, The University of Hong Kong, 6/F, 3 Sassoon Road, Pokfulam 000000, Hong Kong.
| | - Di Wang
- School of Life Sciences, Jilin University, Changchun 130012, China; Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, School of Plant Protection, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
6
|
Hao J, Jin X, Li Z, Zhu Y, Wang L, Jiang X, Wang D, Qi L, Jia D, Gao B. Anti-Obesity Activity of Sanghuangporus vaninii by Inhibiting Inflammation in Mice Fed a High-Fat Diet. Nutrients 2024; 16:2159. [PMID: 38999906 PMCID: PMC11243596 DOI: 10.3390/nu16132159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/29/2024] [Accepted: 07/01/2024] [Indexed: 07/14/2024] Open
Abstract
Obesity is an unhealthy condition associated with various diseases characterized by excess fat accumulation. However, in China, the prevalence of obesity is 14.1%, and it remains challenging to achieve weight loss or resolve this issue through clinical interventions. Sanghuangpours vaninii (SPV) is a nutritional fungus with multiple pharmacological activities and serves as an ideal dietary intervention for combating obesity. In this study, a long-term high-fat diet (HFD) was administered to induce obesity in mice. Different doses of SPV and the positive drug simvastatin (SV) were administered to mice to explore their potential anti-obesity effects. SPV regulated weight, serum lipids, and adipocyte size while inhibiting inflammation and hepatic steatosis. Compared with the vehicle-treated HFD-fed mice, the lowest decreases in total cholesterol (TC), triglycerides (TG), and low-density lipoprotein cholesterol (LDL-C) were 9.72%, 9.29%, and 12.29%, respectively, and the lowest increase in high-density lipoprotein cholesterol (HDL-C) was 5.88% after treatment with different doses of SPV. With SPV treatment, the analysis of gut microbiota and serum lipids revealed a significant association between lipids and inflammation-related factors, specifically sphingomyelin. Moreover, Western blotting results showed that SPV regulated the toll-like receptor (TLR4)/nuclear factor kappa B (NF-κB) signaling pathway in HFD-diet mice, which is related to inflammation and lipid metabolism. This research presents empirical proof of the impact of SPV therapy on obesity conditions.
Collapse
Affiliation(s)
- Jie Hao
- School of Life Sciences, Jilin University, Changchun 130012, China; (J.H.); (X.J.); (Z.L.); (Y.Z.); (L.W.); (D.W.)
| | - Xinghui Jin
- School of Life Sciences, Jilin University, Changchun 130012, China; (J.H.); (X.J.); (Z.L.); (Y.Z.); (L.W.); (D.W.)
| | - Zhige Li
- School of Life Sciences, Jilin University, Changchun 130012, China; (J.H.); (X.J.); (Z.L.); (Y.Z.); (L.W.); (D.W.)
| | - Yanfeng Zhu
- School of Life Sciences, Jilin University, Changchun 130012, China; (J.H.); (X.J.); (Z.L.); (Y.Z.); (L.W.); (D.W.)
| | - Lu Wang
- School of Life Sciences, Jilin University, Changchun 130012, China; (J.H.); (X.J.); (Z.L.); (Y.Z.); (L.W.); (D.W.)
| | - Xue Jiang
- College of Life Science and Technology, Changchun University of Science and Technology, Changchun 130022, China;
| | - Di Wang
- School of Life Sciences, Jilin University, Changchun 130012, China; (J.H.); (X.J.); (Z.L.); (Y.Z.); (L.W.); (D.W.)
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China
| | - Liangliang Qi
- Microbiology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China;
| | - Dongxu Jia
- School of Life Sciences, Jilin University, Changchun 130012, China; (J.H.); (X.J.); (Z.L.); (Y.Z.); (L.W.); (D.W.)
| | - Bo Gao
- School of Life Sciences, Jilin University, Changchun 130012, China; (J.H.); (X.J.); (Z.L.); (Y.Z.); (L.W.); (D.W.)
| |
Collapse
|
7
|
Xing L, Kong F, Wang C, Li L, Peng S, Wang D, Li C. The amelioration of a purified Pleurotus abieticola polysaccharide on atherosclerosis in ApoE -/- mice. Food Funct 2024; 15:79-95. [PMID: 38031758 DOI: 10.1039/d3fo02740f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
In this study, a polysaccharide known as PAPS2 was eluted from Pleurotus abieticola fruiting bodies using 0.1 M NaCl solutions. PAPS2 has a Mw of 19.64 kDa and its backbone is mainly composed of →6)-α-D-Galp-(1→, →6)-β-D-Glcp-(1→ and →2,6)-α-D-Galp-(1→ residues, and its branches mainly end with β-D-Manp-(1→, which is attached at C2 of →2,6)-α-D-Galp-(1→. PAPS2 elicited several effects in high-fat diet (HFD)-fed ApoE-/- mice. It significantly reduced the body weight, liver index, and serum levels of total cholesterol (TC) and triglycerides (TGs), and it alleviated lipid accumulation in the aorta. Intestinal microflora analysis showed that PAPS2 suppressed the abundances of Adlercreutzia, Turicibacter, and Helicobacter and enriched that of Roseburia. It also influenced lipid metabolism, suggesting that it reduced the levels of TGs, lysophosphatidylcholine (LPC), phosphatidylcholine (PC), and ceramide (Cer). Moreover, it suppressed oxidative response by increasing nuclear factor erythroid 2 (Nrf2)-related factor expression and activating the antioxidant enzymes superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) to reduce the level of reactive oxygen species (ROS). Meanwhile, it showed anti-inflammatory effects partially related to the inhibition of toll-like receptor 4 (TLR4)/nuclear factor kappa-B (NF-κB) signaling induced by lipopolysaccharide (LPS) in RAW 264.7 cells, as well as in the aorta of HFD-fed ApoE-/- mice. This study provides experimental evidence of the auxiliary applicability of PAPS2 in atherosclerosis treatment.
Collapse
Affiliation(s)
- Lei Xing
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, 130118, China.
- College of Plant Protection, Jilin Agricultural University, Changchun, 130118, China
| | - Fange Kong
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, 130118, China.
- College of Plant Protection, Jilin Agricultural University, Changchun, 130118, China
| | - Chunxia Wang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, 130118, China.
- College of Plant Protection, Jilin Agricultural University, Changchun, 130118, China
| | - Lanzhou Li
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, 130118, China.
- College of Plant Protection, Jilin Agricultural University, Changchun, 130118, China
| | - Shichao Peng
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, 130118, China.
- College of Plant Protection, Jilin Agricultural University, Changchun, 130118, China
| | - Di Wang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, 130118, China.
| | - Changtian Li
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
8
|
Zhang Y, Wu N, Wang J, Chen Z, Wu Z, Song M, Zheng Z, Wang K. Gastrointestinal metabolism characteristics and mechanism of a polysaccharide from Grifola frondosa. Int J Biol Macromol 2023; 253:126357. [PMID: 37595710 DOI: 10.1016/j.ijbiomac.2023.126357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 06/12/2023] [Accepted: 08/14/2023] [Indexed: 08/20/2023]
Abstract
Grifola frondosa polysaccharide (GFP) is mainly composed of α-1,4 glycosidic bonds and possesses multiple pharmacological activities. However, the absence of pharmacokinetic studies has limited its further development and utilization. Herein, GFP was labeled with 5-DTAF (FGFP) and cyanine 5.5 amine (GFP-Cy5.5) to investigate its gastrointestinal metabolism characteristics and mechanism. Significant distributions of the polysaccharide in the liver and kidneys were observed by near infrared imaging. To investigate the specific distribution form of the polysaccharide, in vitro digestion models were constructed and revealed that FGFP was degraded in saliva and rat small intestine extract. The metabolites were detected in the stomach and small intestine, followed by further degradation in the distal intestine in the in vivo experiment. Subsequent investigations showed that α-amylase was involved in the gastrointestinal degradation of GFP, and its metabolite finally entered the kidneys, where it was excreted directly with urine.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, 430030 Wuhan, China
| | - Niuniu Wu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, 430030 Wuhan, China
| | - Jingyi Wang
- Hubei Key Laboratory of Nature Medicinal Chemistry and Resource Evaluation, Tongji Medical College of Pharmacy, Huazhong University of Science and Technology, 430030 Wuhan, China
| | - Zehong Chen
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, 430030 Wuhan, China
| | - Zhijing Wu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, 430030 Wuhan, China
| | - Mengzi Song
- Hubei Key Laboratory of Nature Medicinal Chemistry and Resource Evaluation, Tongji Medical College of Pharmacy, Huazhong University of Science and Technology, 430030 Wuhan, China
| | - Ziming Zheng
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, 430030 Wuhan, China
| | - Kaiping Wang
- Hubei Key Laboratory of Nature Medicinal Chemistry and Resource Evaluation, Tongji Medical College of Pharmacy, Huazhong University of Science and Technology, 430030 Wuhan, China.
| |
Collapse
|
9
|
Li L, Liu H, Yu J, Sun Z, Jiang M, Yu H, Wang C. Intestinal Microbiota and Metabolomics Reveal the Role of Auricularia delicate in Regulating Colitis-Associated Colorectal Cancer. Nutrients 2023; 15:5011. [PMID: 38068869 PMCID: PMC10708550 DOI: 10.3390/nu15235011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/01/2023] [Accepted: 12/02/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND The edible fungus Auricularia delicate (ADe) is commonly employed in traditional medicine for intestinal disorders; however, its inhibitory effect on colitis-associated colorectal cancer (CAC) and the underlying mechanisms remain unexplored. (2) Methods: The inhibitory effect of ADe on CAC was investigated using a mouse model induced by azoxymethane/dextran sulfate sodium. RESULTS ADe effectively suppressed the growth and number of intestinal tumors in mice. Intestinal microbiota analyses revealed that ADe treatment increased Akkermansia and Parabacteroides while it decreased Clostridium, Turicibacter, Oscillospira, and Desulfovibrio. ADe regulated the levels of 2'-deoxyridine, creatinine, 1-palmitoyl lysophosphatidylcholine, and choline in serum. Furthermore, the levels of these metabolites were associated with the abundance of Oscillospira and Paraacteroides. ADe up-regulated the free fatty acid receptor 2 and β-Arrestin 2, inhibited the nuclear factor kappa B (NF-κB) pathway, and significantly attenuated the levels of inflammatory cytokines, thereby mitigating the inflammatory in CAC mice. CONCLUSIONS The protective effect of ADe in CAC mice is associated with the regulation of intestinal microbiota, which leads to the inhibition of NF-kB pathway and regulation of inflammation.
Collapse
Affiliation(s)
- Lanzhou Li
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China; (L.L.); (J.Y.); (Z.S.)
- School of Life Sciences, Jilin University, Changchun 130012, China;
| | - Honghan Liu
- School of Life Sciences, Jilin University, Changchun 130012, China;
| | - Jinqi Yu
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China; (L.L.); (J.Y.); (Z.S.)
| | - Zhen Sun
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China; (L.L.); (J.Y.); (Z.S.)
- School of Life Sciences, Jilin University, Changchun 130012, China;
| | - Ming Jiang
- College of Life Science and Technology, Mudanjiang Normal University, Mudanjiang 157011, China;
| | - Han Yu
- College of Agriculture, Jilin Agricultural University, Changchun 130118, China
| | - Chunyue Wang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China; (L.L.); (J.Y.); (Z.S.)
- School of Life Sciences, Jilin University, Changchun 130012, China;
| |
Collapse
|
10
|
Zhou Y, Zhu Y, Jin X, Zhang Y, Song J, Wu Z, Li Y, Yi J, Wang D, Hu M. Chroogomphus rutilus Regulates Bone Metabolism to Prevent Periodontal Bone Loss during Orthodontic Tooth Movement in Osteoporotic Rats. Nutrients 2023; 15:4906. [PMID: 38068764 PMCID: PMC10708235 DOI: 10.3390/nu15234906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/06/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Osteoporosis (OP) leads to the acceleration of tooth movement and aggravation of periodontal bone loss during orthodontic treatment. Chroogomphus rutilus (CR) is abundant in nutrients and demonstrates remarkable antioxidant and anti-inflammatory properties. In the present study, the components of CR, including 35.00% total sugar, 0.69% reducing sugar, 14.40% crude protein, 7.30% total ash, 6.10% crude fat, 0.51% total flavonoids, 1.94% total triterpenoids, 0.32% total sterol, 1.30% total saponins, 1.69% total alkaloids, and 1.02% total phenol, were first systematically examined, followed by an investigation into its regulatory effects on bone metabolism in order to mitigate bone loss during orthodontic tooth movement in osteoporotic rats. The results of the imaging tests revealed that CR treatment reduced periodontal bone loss and normalized tooth movement in the OP. In conjunction with analyses of intestinal flora and metabolomics, CR enhances the prevalence of anti-inflammatory genera while reducing the production of inflammatory metabolites. Meanwhile, CR reduced the levels of periodontal inflammatory factors, including TNF-α, IL-1β, and IL-6, by activating Wnt/β-catenin signaling, and promoted periodontal bone formation. These findings imply that CR is a potent supplementary therapy for controlling periodontal bone remodeling in patients with OP undergoing orthodontic treatment.
Collapse
Affiliation(s)
- Ying Zhou
- Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun 130021, China; (Y.Z.); (J.S.); (Z.W.); (Y.L.)
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun 130021, China
| | - Yanfeng Zhu
- School of Life Sciences, Jilin University, Changchun 130012, China; (Y.Z.); (X.J.)
| | - Xinghui Jin
- School of Life Sciences, Jilin University, Changchun 130012, China; (Y.Z.); (X.J.)
| | - Yongfeng Zhang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China;
| | - Jiyu Song
- Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun 130021, China; (Y.Z.); (J.S.); (Z.W.); (Y.L.)
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun 130021, China
| | - Zhina Wu
- Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun 130021, China; (Y.Z.); (J.S.); (Z.W.); (Y.L.)
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun 130021, China
| | - Yutong Li
- Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun 130021, China; (Y.Z.); (J.S.); (Z.W.); (Y.L.)
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun 130021, China
| | | | - Di Wang
- School of Life Sciences, Jilin University, Changchun 130012, China; (Y.Z.); (X.J.)
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China;
| | - Min Hu
- Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun 130021, China; (Y.Z.); (J.S.); (Z.W.); (Y.L.)
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun 130021, China
| |
Collapse
|
11
|
Guan Y, Shi D, Wang S, Sun Y, Song W, Liu S, Wang C. Hericium coralloides Ameliorates Alzheimer's Disease Pathologies and Cognitive Disorders by Activating Nrf2 Signaling and Regulating Gut Microbiota. Nutrients 2023; 15:3799. [PMID: 37686830 PMCID: PMC10489620 DOI: 10.3390/nu15173799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/26/2023] [Accepted: 08/27/2023] [Indexed: 09/10/2023] Open
Abstract
Alzheimer's disease (AD) is prone to onset and progression under oxidative stress conditions. Hericium coralloides (HC) is an edible medicinal fungus that contains various nutrients and possesses antioxidant properties. In the present study, the nutritional composition and neuroprotective effects of HC on APP/PS1 mice were examined. Behavioral experiments showed that HC improved cognitive dysfunction in APP/PS1 mice. Immunohistochemical and Western blotting results showed that HC reduced the levels of p-tau and amyloid-β deposition in the brain. By altering the composition of the gut microbiota, HC promoted the growth of short-chain fatty acid-producing bacteria and suppressed the growth of Helicobacter. Metabolomic results showed that HC decreased D-glutamic acid and oxidized glutathione levels. In addition, HC reduced the levels of reactive oxygen species, enhanced the secretion of superoxide dismutase, catalase, and glutathione peroxidase, inhibited the production of malondialdehyde and 4-hydroxynonenal, and activated the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway. Collectively, HC demonstrated antioxidant activity by activating Nrf2 signaling and regulating gut microbiota, further exerting neuroprotective effects. This study confirms that HC has the potential to be a clinically effective AD therapeutic agent and offers a theoretical justification for both the development and use of this fungus.
Collapse
Affiliation(s)
- Yue Guan
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, School of Plant Protection, Jilin Agricultural University, Changchun 130118, China; (Y.G.); (S.W.)
| | - Dongyu Shi
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China; (D.S.); (Y.S.); (W.S.)
| | - Shimiao Wang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, School of Plant Protection, Jilin Agricultural University, Changchun 130118, China; (Y.G.); (S.W.)
| | - Yueying Sun
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China; (D.S.); (Y.S.); (W.S.)
| | - Wanyu Song
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China; (D.S.); (Y.S.); (W.S.)
| | - Shuyan Liu
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, School of Plant Protection, Jilin Agricultural University, Changchun 130118, China; (Y.G.); (S.W.)
| | - Chunyue Wang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, School of Plant Protection, Jilin Agricultural University, Changchun 130118, China; (Y.G.); (S.W.)
| |
Collapse
|
12
|
Shi Y, Jiang M, Zhang Y, Diao Y, Li N, Liu W, Qiu Z, Qiu Y, Jia A. Hyperoside Nanomicelles Alleviate Atherosclerosis by Modulating the Lipid Profile and Intestinal Flora Structure in High-Fat-Diet-Fed Apolipoprotein-E-Deficient Mice. Molecules 2023; 28:5088. [PMID: 37446750 DOI: 10.3390/molecules28135088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/21/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Atherosclerosis (AS) is a serious threat to human health and the main pathological basis of cardiovascular disease. Hyperoside (Hyp), a flavonoid found mainly in traditional Chinese herbs, can exert antitumor, anti-inflammatory, antioxidant, and cardiovascular-protective effects. Herein, we prepared hybrid nanomicelles (HFT) comprising Hyp loaded into pluronic F-127 and polyethylene glycol 1000 vitamin E succinate and assessed their effects on AS. To establish an AS model, apolipoprotein-E-deficient (ApoE-/-) mice were fed a high-fat diet. We then analyzed the effects of HFT on AS-induced changes in aortic tissues and metabolic markers, simultaneously assessing changes in gut flora community structure. In mice with AS, HFT significantly reduced the aortic plaque area; decreased levels of total cholesterol, triglyceride, low-density lipoprotein cholesterol, inflammatory factors, and inducible nitric oxide synthase (NOS); increased high-density lipoprotein cholesterol, endothelial NOS, superoxide dismutase, catalase, and glutathione levels; and promoted the proliferation of beneficial gut bacteria. HFT could regulate intestinal flora structure and lipid metabolism and inhibit inflammatory responses. These beneficial effects may be mediated by inhibiting nuclear factor kappa B signal activation, reducing inflammatory factor expression and improving gut microflora structure and dyslipidemia. The present study provides an empirical basis for the development and clinical application of new dosage forms of Hyp.
Collapse
Affiliation(s)
- Yuwen Shi
- Pharmacy College, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Mengcheng Jiang
- Pharmacy College, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Yuhang Zhang
- Pharmacy College, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Yuanyuan Diao
- Pharmacy College, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Na Li
- Pharmacy College, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Weipeng Liu
- Pharmacy College, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Zhidong Qiu
- Pharmacy College, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Ye Qiu
- Pharmacy College, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Ailing Jia
- Pharmacy College, Changchun University of Chinese Medicine, Changchun 130117, China
| |
Collapse
|
13
|
Yuan H, Zhu B, Li C, Zhao Z. Ceramide in cerebrovascular diseases. Front Cell Neurosci 2023; 17:1191609. [PMID: 37333888 PMCID: PMC10272456 DOI: 10.3389/fncel.2023.1191609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/18/2023] [Indexed: 06/20/2023] Open
Abstract
Ceramide, a bioactive sphingolipid, serves as an important second messenger in cell signal transduction. Under stressful conditions, it can be generated from de novo synthesis, sphingomyelin hydrolysis, and/or the salvage pathway. The brain is rich in lipids, and abnormal lipid levels are associated with a variety of brain disorders. Cerebrovascular diseases, which are mainly caused by abnormal cerebral blood flow and secondary neurological injury, are the leading causes of death and disability worldwide. There is a growing body of evidence for a close connection between elevated ceramide levels and cerebrovascular diseases, especially stroke and cerebral small vessel disease (CSVD). The increased ceramide has broad effects on different types of brain cells, including endothelial cells, microglia, and neurons. Therefore, strategies that reduce ceramide synthesis, such as modifying sphingomyelinase activity or the rate-limiting enzyme of the de novo synthesis pathway, serine palmitoyltransferase, may represent novel and promising therapeutic approaches to prevent or treat cerebrovascular injury-related diseases.
Collapse
|
14
|
Song J, Zhang Y, Zhu Y, Jin X, Li L, Wang C, Zhou Y, Li Y, Wang D, Hu M. Structural characterization and anti-osteoporosis effects of polysaccharide purified from Eucommia ulmoides Oliver cortex based on its modulation on bone metabolism. Carbohydr Polym 2023; 306:120601. [PMID: 36746570 DOI: 10.1016/j.carbpol.2023.120601] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/28/2022] [Accepted: 01/16/2023] [Indexed: 01/20/2023]
Abstract
EuOCP3, with a molecular weight of 38.1 kDa, is an acidic polysaccharide purified from Eucommia ulmoides Oliver cortex. Herein, we determined that the main backbone of EuOCP3 was predominantly composed of →4)-α-GalpA-(1 → 4)-α-GalpA-(1→, →4)-α-GalpA-(1 → 5)-α-Araf-(1→, →4)-α-GalpA-(1 → 2)-α-Rhap-(1→, and →4)-α-GalpA-(1 → 5)-α-Araf-(1 → 2)-α-Rhap-(1 → repeating blocks, which were connected by →2,3,5)-α-Araf-(1→. The side chains, substituted at C-2 and C-5 of →2,3,5)-α-Araf-(1→, contained T-β-Araf→ and T-β-Araf → 4)-α-GalpA-(1 → residues. In dexamethasone (Dex)-induced osteoporosis (OP) mice, EuOCP3 treatment restored cortical bone thickness, increased mineralized bone area, enhanced the number of osteoblasts, and decreased the number of osteoclasts on the surface of cortical bone. Combining analysis of gut microflora, serum metabolite profiles, and biological detection results, we demonstrated that EuOCP3 regulated the abundance of specific species within the gut microflora, such as g_Dorea and g_Prevotella, and ameliorated oxidative stress. In turn, enhancement of osteogenic function and restoration of bone metabolism via the extracellular signal-regulated kinase (ERK)/c-Jun N-terminal kinase (JNK)/nuclear factor erythroid-2 related factor 2 (Nrf2) signaling pathway was indicated. The current findings contribute to understanding the potential of EuOCP3 in anti-OP treatment.
Collapse
Affiliation(s)
- Jiyu Song
- Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun 130021, China.
| | - Yongfeng Zhang
- School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Yanfeng Zhu
- School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Xinghui Jin
- School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Lanzhou Li
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China.
| | - Chunyue Wang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China.
| | - Ying Zhou
- Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun 130021, China.
| | - Yutong Li
- Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun 130021, China.
| | - Di Wang
- School of Life Sciences, Jilin University, Changchun 130012, China; Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China.
| | - Min Hu
- Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun 130021, China.
| |
Collapse
|
15
|
Qu Y, Yang H, Li S, Li L, Li Y, Wang D. The involvement of Th1 cell differentiation in the anti-tumor effect of purified polysaccharide from Sanghuangporus vaninii in colorectal cancer via multi-omics analysis. Int J Biol Macromol 2023; 237:123927. [PMID: 36889619 DOI: 10.1016/j.ijbiomac.2023.123927] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 02/26/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023]
Abstract
Sanghuangporus vaninii is a medicinal mushroom, which has been used as a treatment for various diseases; however, the therapeutic potential and mechanism of action of S. vaninii in colorectal cancer (CRC) remain unknown. Herein, human colon adenocarcinoma cells were used to analyze the anti-CRC effects of the purified polysaccharide of S. vaninii (SVP-A-1) in vitro. In SVP-A-1-treated B6/JGpt-Apcem1Cin (Min)/Gpt male (ApcMin/+) mice, 16S rRNA sequencing was performed on cecal feces, metabolites were examined in serum, and LC-MS/MS protein detection was performed in colorectal tumors. Protein changes were further confirmed by various biochemical detection methods. Water-soluble SVP-A-1 with a molecular weight of 22.5 kDa was first obtained. SVP-A-1 prevented gut microbiota dysbiosis related to metabolic pathways of L-arginine biosynthesis, increased L-citrulline levels in the serum of ApcMin/+ mice, mediated L-arginine synthesis, and improved antigen presentation in dendritic cells and activated CD4+ T cells; the resulting Th1 cells released IFN-γ and TNF-α to act on tumor cells and promoted the sensitivity of tumor cells to cytotoxic T lymphocytes. In summary, SVP-A-1 exerted anti-CRC effects and has excellent potential for CRC treatment.
Collapse
Affiliation(s)
- Yidi Qu
- School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Hongxin Yang
- School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Siyu Li
- School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Lanzhou Li
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China.
| | - Yu Li
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China.
| | - Di Wang
- School of Life Sciences, Jilin University, Changchun 130012, China; Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
16
|
Li L, Zhai S, Wang R, Kong F, Yang A, Wang C, Yu H, Li Y, Wang D. Anti-Obesity Effect of Auricularia delicate Involves Intestinal-Microbiota-Mediated Oxidative Stress Regulation in High-Fat-Diet-Fed Mice. Nutrients 2023; 15:nu15040872. [PMID: 36839230 PMCID: PMC9962468 DOI: 10.3390/nu15040872] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/04/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Auricularia delicate (ADe), an edible fungus belonging to the family Auriculariaceae and order Auriculariales, possesses antimicrobial, hepatoprotective, and antioxidant effects. In this study, after systematic analysis of its composition, ADe was administered to high-fat-diet (HFD)-fed mice to investigate its anti-obesity effect. ADe significantly controlled body weight; alleviated hepatic steatosis and adipocyte hypertrophy; reduced aspartate aminotransferase, total cholesterol, insulin, and resistin; and increased adiponectin levels in HFD-fed mice serum. Based on intestinal microbiota and lipidomics analysis, ADe treatment regulated the composition and abundance of 49 intestinal microorganisms and influenced the abundance of 8 lipid species compared with HFD-fed mice. Based on a correlation analysis of the intestinal microbiota and lipids, Coprococcus showed significant negative associations with ceramide (d18:0 20:0+O), phosphatidylserine (39:4), sphingomyelin (d38:4), and zymosterol (20:2). Moreover, ADe treatment decreased the levels of ROS and MDA and increased the levels of Nrf2, HO-1, and three antioxidant enzymes in HFD-fed mice livers. Collectively, the anti-obesity effect of ADe involves the regulation of oxidative stress and is mediated by the intestinal microbiota. Hence, this study provides a reference for the application of ADe as a candidate food for obesity.
Collapse
Affiliation(s)
- Lanzhou Li
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
- School of Life Sciences, Jilin University, Changchun 130012, China
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Siyu Zhai
- School of Life Sciences, Jilin University, Changchun 130012, China
| | - Ruochen Wang
- School of Life Sciences, Jilin University, Changchun 130012, China
| | - Fange Kong
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Anhui Yang
- School of Life Sciences, Jilin University, Changchun 130012, China
| | - Chunyue Wang
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Han Yu
- College of Agriculture, Jilin Agricultural University, Changchun 130118, China
- Correspondence: (H.Y.); (D.W.)
| | - Yu Li
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Di Wang
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
- School of Life Sciences, Jilin University, Changchun 130012, China
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
- Correspondence: (H.Y.); (D.W.)
| |
Collapse
|
17
|
Zhao J, Hu Y, Qian C, Hussain M, Liu S, Zhang A, He R, Sun P. The Interaction between Mushroom Polysaccharides and Gut Microbiota and Their Effect on Human Health: A Review. BIOLOGY 2023; 12:biology12010122. [PMID: 36671814 PMCID: PMC9856211 DOI: 10.3390/biology12010122] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 12/23/2022] [Accepted: 01/04/2023] [Indexed: 01/13/2023]
Abstract
Mushroom polysaccharides are a kind of biological macromolecule extracted from the fruiting body, mycelium or fermentation liquid of edible fungi. In recent years, the research on mushroom polysaccharides for alleviating metabolic diseases, inflammatory bowel diseases, cancers and other symptoms by changing the intestinal microenvironment has been increasing. Mushroom polysaccharides could promote human health by regulating gut microbiota, increasing the production of short-chain fatty acids, improving intestinal mucosal barrier, regulating lipid metabolism and activating specific signaling pathways. Notably, these biological activities are closely related to the molecular weight, monosaccharide composition and type of the glycosidic bond of mushroom polysaccharide. This review aims to summarize the latest studies: (1) Regulatory effects of mushroom polysaccharides on gut microbiota; (2) The effect of mushroom polysaccharide structure on gut microbiota; (3) Metabolism of mushroom polysaccharides by gut microbiota; and (4) Effects of mushroom polysaccharides on gut microbe-mediated diseases. It provides a theoretical basis for further exploring the mechanism of mushroom polysaccharides for regulating gut microbiota and gives a reference for developing and utilizing mushroom polysaccharides as promising prebiotics in the future.
Collapse
Affiliation(s)
- Jiahui Zhao
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yixin Hu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Chao Qian
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Muhammad Hussain
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Shizhu Liu
- Zhejiang Fangge Pharmaceutical Co., Ltd., Qingyuan 323800, China
| | - Anqiang Zhang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Rongjun He
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
- Zhejiang Fangge Pharmaceutical Co., Ltd., Qingyuan 323800, China
- Bioactives and Functional Foods Research Center, China National Light Industry, Hangzhou 310014, China
- Correspondence: (R.H.); (P.S.)
| | - Peilong Sun
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
- Zhejiang Fangge Pharmaceutical Co., Ltd., Qingyuan 323800, China
- Key Laboratory of Food Macromolecular Resources Processing Technology Research, China National Light Industry, Hangzhou 310014, China
- Correspondence: (R.H.); (P.S.)
| |
Collapse
|
18
|
Aleman RS, Moncada M, Aryana KJ. Leaky Gut and the Ingredients That Help Treat It: A Review. Molecules 2023; 28:619. [PMID: 36677677 PMCID: PMC9862683 DOI: 10.3390/molecules28020619] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/31/2022] [Accepted: 01/01/2023] [Indexed: 01/11/2023] Open
Abstract
The human body is in daily contact with potentially toxic and infectious substances in the gastrointestinal tract (GIT). The GIT has the most significant load of antigens. The GIT can protect the intestinal integrity by allowing the passage of beneficial agents and blocking the path of harmful substances. Under normal conditions, a healthy intestinal barrier prevents toxic elements from entering the blood stream. However, factors such as stress, an unhealthy diet, excessive alcohol, antibiotics, and drug consumption can compromise the composition of the intestinal microbiota and the homeostasis of the intestinal barrier function of the intestine, leading to increased intestinal permeability. Intestinal hyperpermeability can allow the entry of harmful agents through the junctions of the intestinal epithelium, which pass into the bloodstream and affect various organs and systems. Thus, leaky gut syndrome and intestinal barrier dysfunction are associated with intestinal diseases, such as inflammatory bowel disease and irritable bowel syndrome, as well as extra-intestinal diseases, including heart diseases, obesity, type 1 diabetes mellitus, and celiac disease. Given the relationship between intestinal permeability and numerous conditions, it is convenient to seek an excellent strategy to avoid or reduce the increase in intestinal permeability. The impact of dietary nutrients on barrier function can be crucial for designing new strategies for patients with the pathogenesis of leaky gut-related diseases associated with epithelial barrier dysfunctions. In this review article, the role of functional ingredients is suggested as mediators of leaky gut-related disorders.
Collapse
Affiliation(s)
- Ricardo Santos Aleman
- School of Nutrition and Food Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 28081, USA
| | - Marvin Moncada
- Department of Food, Bioprocessing & Nutrition Sciences and the Plants for Human Health Institute, North Carolina State University, North Carolina Research Campus, Kannapolis, NC 27599, USA
| | - Kayanush J. Aryana
- School of Nutrition and Food Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 28081, USA
| |
Collapse
|
19
|
Dong M, Liu H, Cao T, Li L, Sun Z, Qiu Y, Wang D. Huoxiang Zhengqi alleviates azoxymethane/dextran sulfate sodium-induced colitis-associated cancer by regulating Nrf2/NF-κB/NLRP3 signaling. Front Pharmacol 2022; 13:1002269. [PMID: 36339623 PMCID: PMC9634060 DOI: 10.3389/fphar.2022.1002269] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/10/2022] [Indexed: 11/20/2022] Open
Abstract
Colitis-associated cancer (CAC) is a subtype of inflammatory bowel disease (IBD)-associated colorectal cancer. Huoxiang Zhengqi (HXZQ) is a classical Chinese herbal medicine and has been used to treat intestinal disorders, however, anti-CAC effects and underlying mechanisms of HXZQ have not been reported. An azoxymethane/dextran sulfate sodium-induced CAC mice model was used to investigate the anti-CAC effect of HXZQ. HXZQ significantly reduced colonic inflammation, suppressed the size and number of tumors, and reduced the levels of pro-inflammatory cytokines (interleukin [IL]-1α, IL-1β, IL-6, IL-17A, IL-21, IL-23, granulocyte macrophage-colony stimulating factor, and tumor necrosis factor-α) and oxidative stress markers (reactive oxygen species and malondialdehyde), and increased the levels of anti-inflammatory cytokines (IL-10 and IL-27) in CAC mice. Intestinal microbiota and serum metabolomics analyses indicated that HXZQ altered the gut microbial composition and the abundance of 29 serum metabolites in CAC mice. Additionally, HXZQ activated the nuclear factor-erythroid factor 2-related factor 2 (Nrf2) signaling pathway and increased the levels of antioxidants such as catalase (CAT), heme oxygenase-1 (HO-1), NAD(P)H quinone oxidoreductases-1 (NQO-1), and superoxide dismutase-1 (SOD-1). HXZQ inhibited the activation of the nuclear factor kappa-B (NF-κB) signaling pathway and decreased the expression of NLR family pyrin domain containing 3 (NLRP3) by inhibiting the phosphorylation of inhibitor of nuclear factor kappa-B (IκB), inhibitor of nuclear factor kappa-B kinase (IKK), and NF-κB. In conclusion, HXZQ alleviated CAC in mice by modulating the intestinal microbiota and metabolism, activating Nrf2-mediated antioxidant response, and inhibiting NF-κB-mediated NLRP3 inflammasome activation against inflammation. The present data provide a reference for the use of HXZQ as a therapeutic or combination agent for clinical CAC treatment.
Collapse
Affiliation(s)
- Mingyuan Dong
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
- School of Life Sciences, Jilin University, Changchun, China
| | - Honghan Liu
- School of Life Sciences, Jilin University, Changchun, China
| | - Tianjiao Cao
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Lanzhou Li
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
- School of Life Sciences, Jilin University, Changchun, China
- Engineering Research Center of Chinese Ministry of Education ford Eible and Medicinal Fungi, Jilin Agricultural University, Changchun, China
| | - Zhen Sun
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
- School of Life Sciences, Jilin University, Changchun, China
| | - Ye Qiu
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Di Wang
- School of Life Sciences, Jilin University, Changchun, China
- Engineering Research Center of Chinese Ministry of Education ford Eible and Medicinal Fungi, Jilin Agricultural University, Changchun, China
| |
Collapse
|
20
|
Anti-Gouty Arthritis and Anti-Hyperuricemia Properties of Sanghuangporus vaninii and Inonotus hispidus in Rodent Models. Nutrients 2022; 14:nu14204421. [PMID: 36297105 PMCID: PMC9608739 DOI: 10.3390/nu14204421] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/13/2022] [Accepted: 10/19/2022] [Indexed: 11/07/2022] Open
Abstract
Acute inflammation and hyperuricemia are associated with gouty arthritis. As an edible and therapeutic mushroom, Sanghuangporus vaninii (SV) has an inhibitory effect on tumorigenesis, and Inonotus hispidus (IH) exhibits anti-tumor, anti-inflammatory, and antioxidant properties. In this study, uric acid (UA) and xanthine oxidase (XOD) levels in hyperuricemic mice were examined to determine the regulatory effects of SV and IH. SV and IH reversed the pathogenic state of elevated UA levels in the serum and reduced levels of XOD in the serum and liver of mice with hyperuricemia. SV and IH affected the inflammatory response in rats with acute gouty arthritis. Compared to vehicle-treated rats, monosodium urate crystals (MSU) increased the swelling ratio of the right ankle joints. SV and IH administration significantly reduced swelling and inflammatory cell infiltration. SV reduced the levels of interleukin-8 (IL-8) and chemokine ligand-2 (CCL-2), whereas IH reduced the levels of matrix metalloproteinase-9 (MMP-9), CCL-2, and tumor necrosis factor-α (TNF-α), which were confirmed in articular soft tissues by immunohistochemistry. In summary, our data provide experimental evidence for the applicability of SV and IH in gouty arthritis and hyperuricemia treatment.
Collapse
|
21
|
Pan M, Kong F, Xing L, Yao L, Li Y, Liu Y, Li C, Li L. The Structural Characterization and Immunomodulatory Activity of Polysaccharides from Pleurotus abieticola Fruiting Bodies. Nutrients 2022; 14:4410. [PMID: 36297094 PMCID: PMC9607439 DOI: 10.3390/nu14204410] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 07/25/2023] Open
Abstract
Polysaccharides obtained from mushrooms have been reported to possess immunomodulatory properties. In this study, a water-soluble polysaccharide was purified from the fruiting bodies of Pleurotus abieticola, entitled PAPS1. After its composition and structural analysis, the immunomodulatory activity was investigated in immunosuppressed mice induced by cyclophosphamide (CTX) at a dosage of 70 mg/kg by intraperitoneal injection for 7 days. After 28 days of intragastric administration, PAPS1 alleviated cyclophosphamide (CTX)-induced histopathological damage and increased the expressions of splenic CD4, CD8, CD56 and IgM in the serums of immunosuppressed mice. PAPS1 suppressed the oxidative stress indicated by preventing the increases in ROS and MDA levels. According to the intestinal microflora analysis, PAPS1 regulated 11 bacteria at the gene level, including Helicobacter and Paraprevotella, which are related to immunity and oxidative capacity. Compared with CTX-treated mice, significant increases in immune-related cytokines, such as interleukin (IL)-2, IL-6 and IL-12 in the serums of mice treated with PAPS1, were observed. Finally, PAPS1 can strongly increase the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and its downstream proteins. In conclusion, PAPS1-boosted immunity may be related to its suppression on oxidative stress via enhancing the activity of Nrf2 signaling. Thus, PAPS1 can be investigated as a candidate for immunomodulatory therapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Yang Liu
- Correspondence: (Y.L.); (C.L.); (L.L.)
| | | | | |
Collapse
|
22
|
Ren B, Wei S, Huang H. Recent advances in Grifola frondosa polysaccharides: production, properties, and bioactivities. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
23
|
Zhang SY, Sun XL, Yang XL, Shi PL, Xu LC, Guo QM. Botany, traditional uses, phytochemistry and pharmacological activity of Crataegus pinnatifida (Chinese hawthorn): a review. J Pharm Pharmacol 2022; 74:1507-1545. [PMID: 36179124 DOI: 10.1093/jpp/rgac050] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 06/18/2022] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Crataegus pinnatifida (C. pinnatifida), including C. pinnatifida Bge. and its variant C. pinnatifida Bge. var. major N, E. Br., has traditionally been used as a homologous plant for traditional medicine and food in ethnic medical systems in China. Crataegus pinnatifida, especially its fruit, has been used for more than 2000 years to treat indigestion, stagnation of meat, hyperlipidemia, blood stasis, heart tingling, sores, etc. This review aimed to provide a systematic summary on the botany, traditional uses, phytochemistry, pharmacology and clinical applications of C. pinnatifida. KEY FINDINGS This plant contains flavonoids, phenylpropanoids, terpenoids, organic acids, saccharides and essential oils. Experimental studies showed that it has hypolipidemic, antimyocardial, anti-ischemia, antithrombotic, anti-atherosclerotic, anti-inflammatory, antineoplastic neuroprotective activity, etc. Importantly, it has good effects in treating diseases of the digestive system and cardiovascular and cerebrovascular systems. SUMMARY There is convincing evidence from both in vitro and in vivo studies supporting the traditional uses of C. pinnatifida. However, multitarget network pharmacology and molecular docking technology should be used to study the interaction between the active ingredients and targets of C. pinnatifida. Furthermore, exploring the synergy of C. pinnatifida with other Chinese medicines to provide new understanding of complex diseases may be a promising strategy.
Collapse
Affiliation(s)
- Shi-Yao Zhang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiao-Lei Sun
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xing-Liang Yang
- School of Classics, Beijing University of Chinese Medicine, Beijing, China
| | - Peng-Liang Shi
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ling-Chuan Xu
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qing-Mei Guo
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
24
|
Kim JH, Lim SR, Jung DH, Kim EJ, Sung J, Kim SC, Choi CH, Kang JW, Lee SJ. Grifola frondosa Extract Containing Bioactive Components Blocks Skin Fibroblastic Inflammation and Cytotoxicity Caused by Endocrine Disrupting Chemical, Bisphenol A. Nutrients 2022; 14:nu14183812. [PMID: 36145189 PMCID: PMC9503552 DOI: 10.3390/nu14183812] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/11/2022] [Accepted: 09/13/2022] [Indexed: 12/03/2022] Open
Abstract
Grifola frondosa (GF), a species of Basidiomycotina, is widely distributed across Asia and has been used as an immunomodulatory, anti-bacterial, and anti-cancer agent. In the present study, the pharmacological activity of the GF extract against an ecotoxicological industrial chemical, bisphenol A (BPA) in normal human dermal fibroblasts (NHDFs), was investigated. GF extract containing naringin, hesperidin, chlorogenic acid, and kaempferol showed an inhibitory effect on cell death and inflammation induced by BPA in the NHDFs. For the cell death caused by BPA, GF extract inhibited the production of reactive oxygen species responsible for the unique activation of the extracellular signal-regulated kinase. In addition, GF extract attenuated the expression of apoptosis-related proteins (Bax, Bcl-2, and cleaved caspase-3) and the pro-inflammatory cytokine IL-1β by the suppression of the redox-sensitive transcription factor, nuclear factor-kappa B (NF-κB) in BPA-treated NHDFs. For the inflammation triggered by BPA, GF extract blocked the inflammasome-mediated caspase-1 activation that leads to the secretion of IL-1β protein. These results indicate that the GF extract is a functional antioxidant that prevents skin fibroblastic pyroptosis induced by BPA.
Collapse
Affiliation(s)
- Ju-Ha Kim
- Department of Public Health, Daegu Haany University, Gyeongsan 38610, Korea
| | - Seong-Ryeong Lim
- Department of Pharmaceutical Engineering, Daegu Haany University, Gyeongsan 38610, Korea
| | - Dae-Hwa Jung
- Department of Pharmaceutical Engineering, Daegu Haany University, Gyeongsan 38610, Korea
| | - Eun-Ju Kim
- Department of Pharmaceutical Engineering, Daegu Haany University, Gyeongsan 38610, Korea
| | - Junghee Sung
- RFBio Research & Development Center, RFBio Co., Ltd., Gunpo-si 15807, Korea
| | - Sang Chan Kim
- College of Korean Medicine, Daegu Haany University, Gyeongsan 38610, Korea
| | - Chang-Hyung Choi
- Division of Cosmetic Science and Technology, Daegu Haany University, Gyeongsan 38610, Korea
| | - Ji-Woong Kang
- Department of Public Health, Daegu Haany University, Gyeongsan 38610, Korea
- Correspondence: (J.-W.K.); (S.-J.L.); Tel.: +82-54-819-1806 (S.-J.L.)
| | - Sei-Jung Lee
- Department of Pharmaceutical Engineering, Daegu Haany University, Gyeongsan 38610, Korea
- Correspondence: (J.-W.K.); (S.-J.L.); Tel.: +82-54-819-1806 (S.-J.L.)
| |
Collapse
|
25
|
Inonotus hispidus Protects against Hyperlipidemia by Inhibiting Oxidative Stress and Inflammation through Nrf2/NF-κB Signaling in High Fat Diet Fed Mice. Nutrients 2022; 14:nu14173477. [PMID: 36079733 PMCID: PMC9460493 DOI: 10.3390/nu14173477] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/17/2022] [Accepted: 08/21/2022] [Indexed: 12/28/2022] Open
Abstract
Obesity is frequently associated with dysregulated lipid metabolism and lipotoxicity. Inonotus hispidus (Bull.: Fr.) P. Karst (IH) is an edible and medicinal parasitic mushroom. In this study, after a systematic analysis of its nutritional ingredients, the regulatory effects of IH on lipid metabolism were investigated in mice fed a high-fat diet (HFD). In HFD-fed mice, IH reversed the pathological state of the liver and the three types of fat and significantly decreased the levels of low-density lipoprotein cholesterol (LDL-C), total cholesterol (TC), triglycerides (TG), and leptin (LEP) and increased the level of high-density liptein cholesterol (HDL-C) in serum. Meanwhile, IH ameliorated liver damage by reducing alanine aminotransferase (ALT), aspartate aminotransferase (AST), interleukin (IL)-1β, IL-6, tumor necrosis factor-alpha (TNF-α), and plasminogen activator inhibitor-1 (PAI-1) levels in the liver and serum. Compared with HFD-fed mice, IH significantly modulated the gut microbiota, changed the relative abundances of microflora at different taxonomic levels, and regulated lipid levels. The results showed that 30 differential lipids were found. Results from Western blotting confirmed that IH regulated the nuclear factor erythroid-2 related factor 2 (Nrf2)/nuclear factor-kappa B (NF-κB) signaling pathway and oxidative stress. This study aimed to provide experimental evidence for the applicability of IH in obesity treatment.
Collapse
|
26
|
Yang H, Li S, Qu Y, Li L, Li Y, Wang D. Anti-Colorectal Cancer Effects of Inonotus hispidus (Bull.: Fr.) P. Karst. Spore Powder through Regulation of Gut Microbiota-Mediated JAK/STAT Signaling. Nutrients 2022; 14:nu14163299. [PMID: 36014805 PMCID: PMC9415721 DOI: 10.3390/nu14163299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/06/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
Inonotus hispidus (Bull.: Fr.) P. Karst. spore powder (IHS) contains polyphenols and triterpenoids with pharmacological effects. Here, we analyzed its composition, and we investigated the effects of IHS on colorectal cancer (CRC) in B6/JGpt-Apcem1Cin(min)/Gpt (ApcMin/+) mice and its potential mechanisms by analyzing gut microbiota and serum metabolomics. The enzyme-linked immunosorbent assays and Western blotting were used to confirm the changes in the cytokine and protein levels associated with IHS administration. The IHS affected the abundance of gut microbiota and the level of L-arginine (L-Arg). Furthermore, the IHS influenced T cells in ApcMin/+ mice by increasing the interleukin (IL)-2 and decreasing the IL-5, -6, and -10 levels, thus suppressing tumor development. Overall, IHS showed anti-CRC properties in ApcMin/+ mice by affecting the gut microbiota and serum metabolites, which in turn affected the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling, and regulated the abundance of CD8+ T cells. These results provide experimental support for the potential future treatment of CRC with IHS.
Collapse
Affiliation(s)
- Hongxin Yang
- School of Life Sciences, Jilin University, Changchun 130012, China
| | - Siyu Li
- School of Life Sciences, Jilin University, Changchun 130012, China
| | - Yidi Qu
- School of Life Sciences, Jilin University, Changchun 130012, China
| | - Lanzhou Li
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, School of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Yu Li
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, School of Plant Protection, Jilin Agricultural University, Changchun 130118, China
- Correspondence: (Y.L.); (D.W.)
| | - Di Wang
- School of Life Sciences, Jilin University, Changchun 130012, China
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, School of Plant Protection, Jilin Agricultural University, Changchun 130118, China
- Correspondence: (Y.L.); (D.W.)
| |
Collapse
|
27
|
The involvement of gut microbiota in the anti-tumor effect of carnosic acid via IL-17 suppression in colorectal cancer. Chem Biol Interact 2022; 365:110080. [PMID: 35926579 DOI: 10.1016/j.cbi.2022.110080] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 02/07/2023]
Abstract
Colorectal cancer (CRC) is a malignant tumor that threatens human health worldwide. Disturbance of the gut microbiota caused by various external factors is one of the leading causes. Carnosic acid (CA) is a phenolic diterpene compound, mainly isolated from rosemary plants, with anti-inflammatory and anti-tumor properties. In this study, we aimed to investigate the role of CA in CRC development and its underlying mechanisms in B6/JGpt-Apcem1Cin(min)/Gpt (ApcMin/+) mice based on the analysis of gut microbiota, serum metabolomics, and tumor proteomics. Enzyme-linked immunosorbent assay (ELISA) and Western blot were performed to confirm the changes in cytokine and protein levels related to inflammation after CA administration. CA regulated the abundance of the gut microbiota, which further caused changes in the production of dl-lactic acid. CA suppressed the inflammatory response by reducing the levels of IL-1β, -6, and -17A. Overall, CA showed anti-CRC properties via modulation of gut microbiota and serum metabolites through NF-κB/STAT3 signaling to inhibit IL-17 expression in ApcMin/+ mice. These results provide experimental evidence for the future treatment of CRC with CA.
Collapse
|
28
|
Jiang X, Hao J, Zhu Y, Liu Z, Li L, Zhou Y, Li Y, Teng L, Wang D. The anti-obesity effects of a water-soluble glucan from Grifola frondosa via the modulation of chronic inflammation. Front Immunol 2022; 13:962341. [PMID: 35967316 PMCID: PMC9367694 DOI: 10.3389/fimmu.2022.962341] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 06/29/2022] [Indexed: 11/13/2022] Open
Abstract
Polysaccharides from Grifola frondosa (G. frondosa) have anti-obesity and anti-inflammatory activities. In this study, the major type, molecular weight, homogeneity and structure of a polysaccharide purified from G. frondosa (denoted GFPA) were determined. In high-fat diet (HFD)-treated mice, 8 weeks of GFPA administration efficiently decreased body weight and blood glucose concentration and counteracted hyperlipidemia. GFPA efficiently decreased adipocyte size and ameliorated inflammatory infiltration in the three types of white adipose tissue and alleviated steatosis, fat accumulation and inflammatory infiltration in the livers of HFD-fed mice. GFPA also decreased the concentrations of aspartate aminotransferase, alanine aminotransferase and pro-inflammatory factors in the sera and livers of HFD-treated mice. Furthermore, GFPA was found to regulate lipid metabolism via the inhibition of ceramide levels in HFD-treated mice. GFPA exhibited strong anti-obesity effects via the modulation of chronic inflammation through Toll-like receptor 4/nuclear factor kappa-B signaling, which supports the use of GFPA for the treatment of obesity.
Collapse
Affiliation(s)
- Xue Jiang
- School of Life Sciences, Jilin University, Changchun, China
| | - Jie Hao
- School of Life Sciences, Jilin University, Changchun, China
| | - Yanfeng Zhu
- School of Life Sciences, Jilin University, Changchun, China
| | - Zijian Liu
- School of Life Sciences, Jilin University, Changchun, China
| | - Lanzhou Li
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, China
| | - Yulin Zhou
- School of Life Sciences, Jilin University, Changchun, China
| | - Yu Li
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, China
| | - Lirong Teng
- School of Life Sciences, Jilin University, Changchun, China
- *Correspondence: Di Wang, ; ; Lirong Teng,
| | - Di Wang
- School of Life Sciences, Jilin University, Changchun, China
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, China
- *Correspondence: Di Wang, ; ; Lirong Teng,
| |
Collapse
|
29
|
Meng W, Li Z, Zhang Y, Yang A, Wang Y, Zhou Y, Wu W, Qiu Y, Li L. ZhenQi FuZheng formula inhibits the growth of colorectal tumors by modulating intestinal microflora-mediated immune function. Aging (Albany NY) 2022; 14:4769-4785. [PMID: 35680568 PMCID: PMC9217701 DOI: 10.18632/aging.204111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/13/2022] [Indexed: 12/24/2022]
Abstract
Zhenqi Fuzheng formula (ZQFZ), of which the main ingredients are Astragalus membranaceus and Ligustrum lucidum, has immune system regulatory functions and potential anti-tumor bioactivity. The inhibition of colorectal tumor growth by ZQFZ was analyzed in inflammatory cells and B6/JGpt-Apcem1Cin(MinC)/Gpt (ApcMin/+) mice. ZQFZ exhibited anti-inflammatory activity by decreasing the phosphorylation of nuclear factor-kappa B (NF-κB) pathway-related proteins in lipopolysaccharide-induced RAW264.7 cells. After 56 days of treatment, ZQFZ alleviated the progression of colorectal cancer (CRC) and increased the body weight and thymic index values of the ApcMin/+ mice. An analysis of the intestinal microflora showed that ZQFZ affected the abundance of certain immune-related bacteria, which may explain its immunomodulatory effects. Moreover, the percentages of T cells and NK cells in peripheral blood were significantly increased and 15 immune-related cytokines were regulated in serum or the colon or both. ZQFZ upregulated the levels of CD4 and CD8 in the spleen and colorectal tumors and decreased the expression levels of cytotoxic T-lymphocyte-associated protein 4 and programmed death-ligand 1 in colorectal tumors. ZQFZ promoted an anti-tumor immune response and inhibited the occurrence and development of CRC by regulating the immune system. This study provides the experimental basis for the application of ZQFZ as a therapeutic agent for CRC.
Collapse
Affiliation(s)
- Weiqi Meng
- School of Life Sciences, Jilin University, Changchun, Jilin, P.R. China
| | - Zhiping Li
- Department of Clinical Pharmacy, The First Hospital of Jilin University, Jilin University, Changchun, Jilin, P.R. China.,School of Life Sciences, Jilin University, Changchun, Jilin, P.R. China
| | - Yiting Zhang
- School of Life Sciences, Jilin University, Changchun, Jilin, P.R. China
| | - Anhui Yang
- School of Life Sciences, Jilin University, Changchun, Jilin, P.R. China
| | - Yanzhen Wang
- School of Pharmacy and Food Science, Zhuhai College of Science and Technology, Zhuhai, P.R. China
| | - Yulin Zhou
- School of Life Sciences, Jilin University, Changchun, Jilin, P.R. China
| | - Wanyue Wu
- School of Life Sciences, Jilin University, Changchun, Jilin, P.R. China
| | - Ye Qiu
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun, Jilin, P.R. China
| | - Lanzhou Li
- School of Life Sciences, Jilin University, Changchun, Jilin, P.R. China.,Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, Jilin, P.R. China
| |
Collapse
|
30
|
Li L, Zhao C, Kong F, Li YC, Wang C, Chen S, Tan HY, Liu Y, Wang D. Calf Thymus Polypeptide Restrains the Growth of Colorectal Tumor via Regulating the Intestinal Microbiota-Mediated Immune Function. Front Pharmacol 2022; 13:898906. [PMID: 35662701 PMCID: PMC9160181 DOI: 10.3389/fphar.2022.898906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/19/2022] [Indexed: 12/12/2022] Open
Abstract
Calf thymus polypeptide (CTP), with a molecular mass of <10 kDa, is prepared from the thymus of less than 30-day-old newborn cattle. In the present study, the inhibitory function of CTP in colorectal cancer (CRC) was investigated in B6/JGpt-Apcem1Cin(MinC)/Gpt (ApcMin/+) mice. CTP hampered tumor development and enhanced the ratio of CD3e−NK1.1+ cells by 113.0% and CD3e+CD28+ cells by 84.7% in the peripheral blood of ApcMin/+ mice. CTP improved the richness, diversity, and evenness of the intestinal microbiota of ApcMin/+ mice, particularly by regulating the abundance of immune-related microorganisms. CTP effectively regulated the expression of immune-related cytokines, such as interleukin (IL)-2 (15.19% increment), IL-12 (17.47% increment), and transforming growth factor (TGF)-β (11.19% reduction). Additionally, it enhanced the levels of CD4 and CD8, as well as the ratio of helper T lymphocytes (Th)1/Th2 in the spleen and tumors of ApcMin/+ mice. In CTP-treated mice, reduced levels of programmed death-1 (PD-1), programmed cell death-ligand 1 (PD-L1), cytotoxic T lymphocyte-associated antigen 4 (CTLA4), activated nuclear factor of activated T cells 1 (NFAT1), and nuclear factor κB (NF-κB) p65 signaling were noted. Collectively, the anti-CRC effect of CTP is related to the modulation of intestinal microbiota-mediated immune function, which provides a reference for CTP as a therapeutic drug or a combination drug used in CRC treatment in a clinical setting.
Collapse
Affiliation(s)
- Lanzhou Li
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, China.,School of Life Sciences, Jilin University, Changchun, China
| | - Chenfei Zhao
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, China
| | - Fange Kong
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, China
| | - Yi-Cong Li
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, China
| | - Chunxia Wang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, China
| | - Shanshan Chen
- School of Life Sciences, Jilin University, Changchun, China
| | - Hor-Yue Tan
- Centre for Chinese Herbal Medicine Drug Development, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Yang Liu
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, China
| | - Di Wang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, China.,School of Life Sciences, Jilin University, Changchun, China
| |
Collapse
|
31
|
Wang M, Xu W, Yu J, Liu Y, Ma H, Ji C, Zhang C, Xue J, Li R, Cui H. Astaxanthin From Haematococcus pluvialis Prevents High-Fat Diet-Induced Hepatic Steatosis and Oxidative Stress in Mice by Gut-Liver Axis Modulating Properties. Front Nutr 2022; 9:840648. [PMID: 35495929 PMCID: PMC9039660 DOI: 10.3389/fnut.2022.840648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 03/01/2022] [Indexed: 12/12/2022] Open
Abstract
Scope Evidence is mounting that astaxanthin (ATX), a xanthophyll carotenoid, used as a nutritional supplement to prevent chronic metabolic diseases. The present study aims to identify the potential function of ATX supplementation in preventing steatohepatitis and hepatic oxidative stress in diet-induced obese mice. Methods and Results In this study, ATX as dose of 0.25, 0.5, and 0.75% have orally administered to mice along with a high-fat diet (HFD) to investigate the role of ATX in regulating liver lipid metabolism and gut microbiota. The study showed that ATX dose-dependently reduces body weight, lipid droplet formation, hepatic triglycerides and ameliorated hepatic steatosis and oxidative stress. 0.75% ATX altered the levels of 34 lipid metabolites related to hepatic cholesterol and fatty acid metabolism which might be associated with downregulation of lipogenesis-related genes and upregulation of bile acid biosynthesis-related genes. The result also revealed that ATX alleviates HFD-induced gut microbiota dysbiosis by significantly inhibiting the growth of obesity-related Parabacteroides and Desulfovibrio while promoting the growth of Allobaculum and Akkermansia. Conclusion The study results suggested that dietary ATX may prevent the development of hepatic steatosis and oxidative stress with the risk of metabolic disease by gut-liver axis modulating properties.
Collapse
Affiliation(s)
- Meng Wang
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Jinzhong, China
| | - Wenxin Xu
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Jinzhong, China
| | - Jie Yu
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Jinzhong, China
| | - Yingying Liu
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Jinzhong, China
| | - Haotian Ma
- Health Science Center, College of Forensic Sciences, Xi'an Jiaotong University, Xi'an, China
| | - Chunli Ji
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Jinzhong, China
| | - Chunhui Zhang
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Jinzhong, China
| | - Jinai Xue
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Jinzhong, China
| | - Runzhi Li
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Jinzhong, China.,State Key Laboratory of Integrative Sustainable Dryland Agriculture, Shanxi Agricultural University, Taiyuan, China
| | - Hongli Cui
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Jinzhong, China.,State Key Laboratory of Integrative Sustainable Dryland Agriculture, Shanxi Agricultural University, Taiyuan, China
| |
Collapse
|
32
|
Hu R. Grifola frondosa may play an anti-obesity role by affecting intestinal microbiota to increase the production of short-chain fatty acids. Front Endocrinol (Lausanne) 2022; 13:1105073. [PMID: 36733799 PMCID: PMC9886863 DOI: 10.3389/fendo.2022.1105073] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 12/29/2022] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Grifola frondosa (G. frondosa) is a fungus with good economic exploitation prospects of food and medicine homologation. This study aims to investigate the effects of G. frondosa powder suspension (GFPS) on the intestinal contents microbiota and the indexes related to oxidative stress and energy metabolism in mice, to provide new ideas for developing G. frondosa weight loss products. METHODS Twenty Kunming mice were randomly divided into control (CC), low-dose GFPS (CL), medium-dose GFPS (CM), and high-dose GFPS (CH) groups. The mice in CL, CM, and CH groups were intragastrically administered with 1.425 g/(kg·d), 2.85 g/(kg·d), and 5.735 g/(kg·d) GFPS, respectively. The mice in CC group were given the same dose of sterile water. After 8 weeks, liver and muscle related oxidative stress and energy metabolism indicators were detected, and the intestinal content microbiota of the mice was detected by 16S rRNA high-throughput sequencing. RESULTS After eight weeks of GFPS intervention, all mice lost weight. Compared with the CC group, lactate dehydrogenase (LDH) and malondialdehyde (MDA) contents in CL, CM, and CH groups were increased, while Succinate dehydrogenase (SDH) and Superoxide Dismutase (SOD) contents in the liver were decreased. The change trends of LDH and SDH in muscle were consistent with those in the liver. Among the above indexes, the change in CH is the most significant. The Chao1, ACE, Shannon, and Simpson index in CL, CM, and CH groups were increased. In the taxonomic composition, after the intervention with GFPS, the short-chain fatty acid (SCFA)-producing bacteria such as unclassified Muribaculaceae, Alloprevotella, and unclassified Lachnospiraceae increased. In linear discriminant analysis effect size (LEfSe) analysis, the characteristic bacteria in CC, CL, CM, and CH groups showed significant differences. In addition, some characteristic bacteria significantly correlated with related energy metabolism indicators. CONCLUSION The preventive effect of G. frondosa on obesity is related to changing the structure of intestinal content microbiota and promoting the growth of SCFAs. While excessive intake of G. frondosa may not be conducive to the antioxidant capacity and energy metabolism.
Collapse
|
33
|
OUP accepted manuscript. J Pharm Pharmacol 2022; 74:1296-1306. [DOI: 10.1093/jpp/rgac031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 04/13/2022] [Indexed: 11/13/2022]
|