1
|
Wang L, Zhang C, Hao Z, Yao S, Bai L, Oliveira JM, Wang P, Zhang K, Zhang C, He J, Reis RL, Li D. Bioaugmented design and functional evaluation of low damage implantable array electrodes. Bioact Mater 2025; 47:18-31. [PMID: 39872211 PMCID: PMC11762938 DOI: 10.1016/j.bioactmat.2024.12.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/16/2024] [Accepted: 12/31/2024] [Indexed: 01/30/2025] Open
Abstract
Implantable neural electrodes are key components of brain-computer interfaces (BCI), but the mismatch in mechanical and biological properties between electrode materials and brain tissue can lead to foreign body reactions and glial scarring, and subsequently compromise the long-term stability of electrical signal transmission. In this study, we proposed a new concept for the design and bioaugmentation of implantable electrodes (bio-array electrodes) featuring a heterogeneous gradient structure. Different composite polyaniline-gelatin-alginate based conductive hydrogel formulations were developed for electrode surface coating. In addition, the design, materials, and performance of the developed electrode was optimized through a combination of numerical simulations and physio-chemical characterizations. The long-term biological performance of the bio-array electrodes were investigated in vivo using a C57 mouse model. It was found that compared to metal array electrodes, the surface charge of the bio-array electrodes increased by 1.74 times, and the impedance at 1 kHz decreased by 63.17 %, with a doubling of the average capacitance. Long-term animal experiments showed that the bio-array electrodes could consistently record 2.5 times more signals than those of the metal array electrodes, and the signal-to-noise ratio based on action potentials was 2.1 times higher. The study investigated the mechanisms of suppressing the scarring effect by the bioaugmented design, revealing reduces brain damage as a result of the interface biocompatibility between the bio-array electrodes and brain tissue, and confirmed the long-term in vivo stability of the bio-array electrodes.
Collapse
Affiliation(s)
- Ling Wang
- State Key Laboratory for Manufacturing System Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, China
- State Industry-Education Integration Center for Medical Innovations, Xi'an Jiaotong University, China
| | - Chenrui Zhang
- State Key Laboratory for Manufacturing System Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, China
- State Industry-Education Integration Center for Medical Innovations, Xi'an Jiaotong University, China
| | - Zhiyan Hao
- State Key Laboratory for Manufacturing System Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, China
- State Industry-Education Integration Center for Medical Innovations, Xi'an Jiaotong University, China
- Department of Intelligent Manufacture, Yantai Vocational College, 264670, China
| | - Siqi Yao
- State Key Laboratory for Manufacturing System Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, China
- State Industry-Education Integration Center for Medical Innovations, Xi'an Jiaotong University, China
| | - Luge Bai
- State Key Laboratory for Manufacturing System Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, China
- State Industry-Education Integration Center for Medical Innovations, Xi'an Jiaotong University, China
| | - Joaquim Miguel Oliveira
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandra, Barco, 4805-017, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Pan Wang
- Department of Anatomy, Histology and Embryology and K.K. Leung Brain Research Centre, The Fourth Military 9 Medical University, 710032, Xi'an, China
| | - Kun Zhang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China
| | - Chen Zhang
- Tianjin Medical Devices Quality Supervision and Testing Center, Tianjin, 300384, China
| | - Jiankang He
- State Key Laboratory for Manufacturing System Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, China
- State Industry-Education Integration Center for Medical Innovations, Xi'an Jiaotong University, China
| | - Rui L. Reis
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandra, Barco, 4805-017, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Dichen Li
- State Key Laboratory for Manufacturing System Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, China
- State Industry-Education Integration Center for Medical Innovations, Xi'an Jiaotong University, China
| |
Collapse
|
2
|
Pal S, Salzman EE, Ramirez D, Chen H, Perez CA, Dale K, Ghosh SK, Lin L, Messersmith PB. Versatile Solid-State Medical Superglue Precursors of α-Lipoic Acid. J Am Chem Soc 2025. [PMID: 40208013 DOI: 10.1021/jacs.4c18448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
α-Lipoic acid (αLA) is an attractive building block for medical adhesives. However, due to poor water solubility of αLA and high hydrophobicity of poly(αLA), elevated temperatures, organic solvents, or complex preparations are typically required to obtain and deliver αLA-based adhesives to biological tissue. Here, we report αLA-based powder and low-viscosity liquid superglues that polymerize and bond rapidly upon contact with wet tissue. A monomeric mixture of αLA, sodium lipoate, and an activated ester of lipoic acid was used to formulate the versatile adhesives. Stress-strain measurements of the wet adhesives confirmed the high flexibility of the adhesive. Moreover, a small molecule regenerative drug was successfully incorporated into and released from the adhesive without altering the physical and adhesive properties. In vitro and in vivo studies of the developed adhesives confirmed their cell and tissue compatibility, biodegradability, and potential for sustained drug delivery. Moreover, due to the inherent ionic nature of the adhesives, they demonstrated high electric conductivity and sensitivity to deformation, allowing for the development of a tissue-adherent strain sensor.
Collapse
Affiliation(s)
- Subhajit Pal
- Department of Bioengineering, University of California, Berkeley, California 94720, United States
| | - Erika E Salzman
- Department of Materials Science and Engineering, University of California, Berkeley, California 94720, United States
| | - Dominic Ramirez
- Department of Bioengineering, University of California, Berkeley, California 94720, United States
| | - Hannah Chen
- Department of Materials Science and Engineering, University of California, Berkeley, California 94720, United States
| | - Cynthia A Perez
- Department of Bioengineering, University of California, Berkeley, California 94720, United States
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco. San Francisco, California 94143, United States
| | - Katelyn Dale
- Department of Bioengineering, University of California, Berkeley, California 94720, United States
| | - Sujoy K Ghosh
- Department of Mechanical Engineering & Berkeley Sensor & Actuator Center, University of California, Berkeley, California 94720, United States
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur 603203, India
| | - Liwei Lin
- Department of Mechanical Engineering & Berkeley Sensor & Actuator Center, University of California, Berkeley, California 94720, United States
| | - Phillip B Messersmith
- Department of Bioengineering, University of California, Berkeley, California 94720, United States
- Department of Materials Science and Engineering, University of California, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
3
|
Roy A, Afshari R, Jain S, Zheng Y, Lin MH, Zenkar S, Yin J, Chen J, Peppas NA, Annabi N. Advances in conducting nanocomposite hydrogels for wearable biomonitoring. Chem Soc Rev 2025; 54:2595-2652. [PMID: 39927792 DOI: 10.1039/d4cs00220b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
Recent advancements in wearable biosensors and bioelectronics have led to innovative designs for personalized health management devices, with biocompatible conducting nanocomposite hydrogels emerging as a promising building block for soft electronics engineering. In this review, we provide a comprehensive framework for advancing biosensors using these engineered nanocomposite hydrogels, highlighting their unique properties such as high electrical conductivity, flexibility, self-healing, biocompatibility, biodegradability, and tunable architecture, broadening their biomedical applications. We summarize key properties of nanocomposite hydrogels for thermal, biomechanical, electrophysiological, and biochemical sensing applications on the human body, recent progress in nanocomposite hydrogel design and synthesis, and the latest technologies in developing flexible and wearable devices. This review covers various sensor types, including strain, physiological, and electrochemical sensors, and explores their potential applications in personalized healthcare, from daily activity monitoring to versatile electronic skin applications. Furthermore, we highlight the blueprints of design, working procedures, performance, detection limits, and sensitivity of these soft devices. Finally, we address challenges, prospects, and future outlook for advanced nanocomposite hydrogels in wearable sensors, aiming to provide a comprehensive overview of their current state and future potential in healthcare applications.
Collapse
Affiliation(s)
- Arpita Roy
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, California, 90095, USA.
| | - Ronak Afshari
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, California, 90095, USA.
| | - Saumya Jain
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, California, 90095, USA.
| | - Yuting Zheng
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, California, 90095, USA.
| | - Min-Hsuan Lin
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, California, 90095, USA.
| | - Shea Zenkar
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, California, 90095, USA.
| | - Junyi Yin
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California, 90095, USA
| | - Jun Chen
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California, 90095, USA
| | - Nicholas A Peppas
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX 78712, USA
- Department of Pediatrics, Surgery and Perioperative Care, Dell Medical School, The University of Texas at Austin, Austin, TX, 78712, USA
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Nasim Annabi
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, California, 90095, USA.
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California, 90095, USA
| |
Collapse
|
4
|
Li J, Du C, Yang X, Yao Y, Qin D, Meng F, Yang S, Tan Y, Chen X, Jiang W, Liu Y. Instantaneous Self-Healing Chitosan Hydrogels with Enhanced Drug Leakage Resistance for Infected Stretchable Wounds Healing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409641. [PMID: 39935197 DOI: 10.1002/smll.202409641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 02/05/2025] [Indexed: 02/13/2025]
Abstract
Self-healing hydrogels are intelligent wound dressings to repair structural damage caused by limb movement, demonstrating advantages in stretchable wound management. Chitosan is widely used in the preparation of hydrogels due to the biocompatibility and biodegradability. However, the self-healing efficiency and mechanical strength of chitosan hydrogels are not ideal. To address the issues, three self-healing hydrogels: the single schiff base network hydrogels (OH), the double schiff-base bond network hydrogel (OHD), and borate ester bond/schiff base bond (OHPB) are designed. The self-healing time of OHPB is only 0.7 s measured by real-time electrochemical test, while the self-healing time of OH and OHD is 3.5 h and 1.5 h. Furthermore, OHPB hydrogel exhibits the desirable mechanical strength and tissue adhesion. Following the destruction-repair process, CIP and exosome loaded OHPB (ec⊂OHPB) hydrogel displays approximate 100% drug leakage resistance to achieve long-term antibacterial, cells migration promotion and M2 polarization. ec⊂OHPB hydrogel significantly accelerates infected stretchable wounds healing by relieving inflammation, facilitating angiogenesis and collagen deposition, promoting epidermal remodeling. Consequently, OHPB hydrogel with instantaneous self-healing property and enhanced drug leakage resistance performance makes it possible to broaden the application prospects of chitosan hydrogel dressings.
Collapse
Affiliation(s)
- Jiajia Li
- College of Marine Life Science, Ocean University of China, Qingdao, Shandong, 266003, China
| | - Chen Du
- College of Marine Life Science, Ocean University of China, Qingdao, Shandong, 266003, China
| | - Xiaoping Yang
- Qingdao Traditional Chinese Medicine Hospital, Qingdao Hiser Hospital Affiliated of Qingdao University, Qingdao, Shandong, 266000, China
- College of First Clinical Medical, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250355, China
| | - Yingxia Yao
- College of Marine Life Science, Ocean University of China, Qingdao, Shandong, 266003, China
| | - Di Qin
- College of Marine Life Science, Ocean University of China, Qingdao, Shandong, 266003, China
| | - Fanhu Meng
- College of Marine Life Science, Ocean University of China, Qingdao, Shandong, 266003, China
| | - Shuangshuang Yang
- Shandong Qilu Cell Therapy Engineering Technology Co., Ltd, Jinan, Shandong, 250000, China
| | - Yi Tan
- Shandong Qilu Cell Therapy Engineering Technology Co., Ltd, Jinan, Shandong, 250000, China
| | - Xiguang Chen
- College of Marine Life Science, Ocean University of China, Qingdao, Shandong, 266003, China
| | - Wenqing Jiang
- Qingdao Traditional Chinese Medicine Hospital, Qingdao Hiser Hospital Affiliated of Qingdao University, Qingdao, Shandong, 266000, China
| | - Ya Liu
- College of Marine Life Science, Ocean University of China, Qingdao, Shandong, 266003, China
| |
Collapse
|
5
|
Cheng QS, Xu PY, Luo SC, Chen AZ. Advances in Adhesive Materials for Oral and Maxillofacial Soft Tissue Diseases. Macromol Biosci 2025; 25:e2400494. [PMID: 39588806 DOI: 10.1002/mabi.202400494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/15/2024] [Indexed: 11/27/2024]
Abstract
Oral diseases represent a prevalent global health burden, profoundly affecting patients' quality of life. Given the involvement of oral mucosa and muscles in diverse physiological functions, coupled with clinical aesthetics considerations, repairing oral and maxillofacial soft tissue defects poses a formidable challenge. Wet-adhesive materials are regarded as promising oral repair materials due to their unique advantages in easily overcoming physical and biological barriers in the oral cavity. This review first introduces the intricate wet-state environment prevalent in the oral cavity, meticulously explaining the fundamental physical and chemical adhesion mechanisms that underpin adhesive materials. It then comprehensively summarizes the diverse types of adhesives utilized in stomatology, encompassing polysaccharide, protein, and synthetic polymer adhesive materials. The review further evaluates the latest research advancements in utilizing these materials to treat various oral and maxillofacial soft tissue diseases, including oral mucosal diseases, periodontitis, peri-implantitis, oral and maxillofacial skin defects, and maxillofacial tumors. Finally, it also highlights the promising future prospects and pivotal challenges related to stomatology application of multifunctional adhesive materials.
Collapse
Affiliation(s)
- Qiu-Shuang Cheng
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian, 361021, P. R. China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, Fujian, 361021, P. R. China
| | - Pei-Yao Xu
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian, 361021, P. R. China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, Fujian, 361021, P. R. China
| | - Sheng-Chang Luo
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian, 361021, P. R. China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, Fujian, 361021, P. R. China
| | - Ai-Zheng Chen
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian, 361021, P. R. China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, Fujian, 361021, P. R. China
| |
Collapse
|
6
|
Yang YA, Ni YF, Chakravarthy RD, Wu K, Yeh MY, Lin HC. Engineering Hydrogels with Enhanced Adhesive Strength Through Optimization of Poly(Ethylene Glycol) Molecular Weight. Polymers (Basel) 2025; 17:589. [PMID: 40076083 PMCID: PMC11902555 DOI: 10.3390/polym17050589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 03/14/2025] Open
Abstract
Hydrogels are extensively utilized in biomedical fields because of their remarkable properties, including biocompatibility, high water content, flexibility, and elasticity. However, despite substantial progress in hydrogel research, creating a hydrogel adhesive that integrates high stretchability, fatigue resistance, and reversible adhesion continues to pose significant challenges. In this study, we aimed to address these challenges by preparing hydrogels using a combination of acrylic acid, acrylamide, carboxymethylcellulose methacrylate, thiol-functionalized polyhedral oligomeric silsesquioxane, and poly(ethylene glycol) dimethacrylate (PEGDM). By systematically varying the molecular weight of PEG, we were able to precisely adjust the mechanical and adhesive properties of the hydrogels. Our research revealed that a PEG molecular weight of 2000 (resulting in P1 hydrogel) provided a notable adhesive strength of 717.2 kPa on glass surfaces. This performance is particularly impressive given the challenges associated with achieving high adhesive strength while maintaining other desirable hydrogel properties. Beyond its strong adhesive capabilities, the P1 hydrogel also demonstrated exceptional stretchability, support, and fatigue resistance. These characteristics are crucial for applications where the adhesive needs to endure repeated stress and deformation without losing effectiveness. The successful development of P1 hydrogel underscores its potential as a multifunctional adhesive material with a broad range of applications. The ability to tailor the properties of hydrogels through molecular weight adjustments offers a promising approach to creating advanced adhesive solutions that meet the demanding requirements of modern biomedical and industrial applications.
Collapse
Affiliation(s)
- Yin-An Yang
- Department of Chemistry, Chung Yuan Christian University, Taoyuan City 320314, Taiwan; (Y.-A.Y.); (Y.-F.N.)
| | - Yu-Feng Ni
- Department of Chemistry, Chung Yuan Christian University, Taoyuan City 320314, Taiwan; (Y.-A.Y.); (Y.-F.N.)
| | - Rajan Deepan Chakravarthy
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan;
| | - Karl Wu
- Department of Orthopaedic Surgery, Far Eastern Memorial Hospital, New Taipei City 220216, Taiwan
| | - Mei-Yu Yeh
- Department of Chemistry, Chung Yuan Christian University, Taoyuan City 320314, Taiwan; (Y.-A.Y.); (Y.-F.N.)
| | - Hsin-Chieh Lin
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan;
- Center for Intelligent Drug Systems and Smart Bio-Devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan
| |
Collapse
|
7
|
Cai Z, Xiao X, Wei Y, Yin J. Stretchable Polymer Hydrogels Based Flexible Triboelectric Nanogenerators for Self-Powered Bioelectronics. Biomacromolecules 2025; 26:787-813. [PMID: 39777943 DOI: 10.1021/acs.biomac.4c01709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
The rapid development of flexible electronics has led to unprecedented social and economic improvements. But conventional power devices cannot adapt to the advances of flexible electronics. Triboelectric nanogenerators (TENGs) have been used as robust power sources to transform ambient mechanical energy into electricity, thus meeting the power requirements of flexible electronics. Hydrogels are widely used for soft bioelectronics owing to the decent stretchability and biocompatibility. This Review presents the recent progress in the use of hydrogels for TENGs and self-powered hydrogel bioelectronics, including hydrogel synthesis, hydrogel TENGs fabrication, and their applications in wearable electricity generation, self-powered active sensing, and therapeutics. Hydrogel-enabled TENGs are emerging as a novel form of soft bioelectronics. We provided a critical analysis of hydrogel TENGs and insights into future opportunities and directions of this rapidly evolving field. These advancements will push the boundaries of hydrogel bioelectronics and contribute to the development of personalized healthcare solutions.
Collapse
Affiliation(s)
- Zhixiang Cai
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
- Future Food Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, China
| | - Xiao Xiao
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore
| | - Yue Wei
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Junyi Yin
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
8
|
Liu Y, Fu S, Jin K, Cheng Y, Li Y, Zhao Y, Liu R, Tian Y. Advances in polysaccharide-based conductive hydrogel for flexible electronics. Carbohydr Polym 2025; 348:122836. [PMID: 39562110 DOI: 10.1016/j.carbpol.2024.122836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 11/21/2024]
Abstract
Polysaccharides, being the most abundant natural polymers, play a pivotal role in the development of hydrogel materials. Polysaccharide-based conductive hydrogels have found extensive applications in flexible electronics due to their excellent conductivity and biocompatibility. This review highlights recent advancements in this area, starting with an overview of polysaccharide materials such as chitosan, cellulose, starch, cyclodextrin, alginate, hyaluronic acid, and agarose. It then explores different classifications of conductive hydrogels: ionic conductive, electronic conductive, and ionic-electronic composite types. The review also covers key characteristics of these hydrogels, including mechanical properties, self-healing, adhesion, structural color, antibacterial, responsiveness, biocompatibility and anti-swelling. Representative applications, such as flexible sensors, triboelectric nanogenerators, supercapacitors, and flexible electronic wound dressings, are summarized. Finally, the review addresses current challenges and provides guidance for future research, aiming to advance the field of polysaccharide-based conductive hydrogels in flexible electronics.
Collapse
Affiliation(s)
- Yiying Liu
- Department of Intelligent Medical Engineering, College of Life and Health Management, Shenyang City University, Shenyang 110112, China
| | - Simian Fu
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China
| | - Kaiming Jin
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China
| | - Yugui Cheng
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China
| | - Yiqi Li
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China
| | - Yunjun Zhao
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China
| | - Ruonan Liu
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China.
| | - Ye Tian
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China; Foshan Graduate School of Innovation, Northeastern University, Foshan 528300, China.
| |
Collapse
|
9
|
Zha XJ, Pan KQ, Jia J, Pu JH, Ke K, Bao RY, Liu ZY, Xu J, Yang W. Anisotropic Nanofluidic Ionic Skin for Pressure-Independent Thermosensing. ACS NANO 2025; 19:1845-1855. [PMID: 39749714 DOI: 10.1021/acsnano.4c17386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Ionic skin can mimic human skin to sense both temperature and pressure simultaneously. However, a significant challenge remains in creating precise ionic skins resistant to external stimuli interference when subjected to pressure. In this study, we present an innovative approach to address this challenge by introducing a highly anisotropic nanofluidic ionic skin (ANIS) composed of carboxylated cellulose nanofibril (CNF)-reinforced poly(vinyl alcohol) (PVA) nanofibrillar network achieved through a straightforward one-step hot drawing method. The inherent anisotropic nanostructures endowed the ANIS with a modulus (20.9 ± 4.9 MPa) comparable to that of human cartilage and skin, alongside higher fracture energy (41.4 ± 0.3 kJ/m2) and fatigue threshold (1360 J/m2). Incorporating carboxylated CNF not only improves the negative potential but also increases the ionic conductivity of ANIS up to 0.001 S/cm, even at very low ionic concentration (1.0 × 10-6 M). Furthermore, the ANIS exhibits pressure-independent temperature sensitivity due to its high deformation-resistant performance. Thus, this work introduces a facile strategy for fabricating ANIS with pressure-independent thermosensing properties, promising prospects for practical healthcare applications.
Collapse
Affiliation(s)
- Xiang-Jun Zha
- Department of Ultrasound, Medical Research Center, Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu 610031 Sichuan, China
| | | | - Jin Jia
- College of Polymer Science and Engineering, Sichuan University, State Key Laboratory of Polymer Materials Engineering, Chengdu 610065 Sichuan, China
| | | | - Kai Ke
- College of Polymer Science and Engineering, Sichuan University, State Key Laboratory of Polymer Materials Engineering, Chengdu 610065 Sichuan, China
| | - Rui-Ying Bao
- College of Polymer Science and Engineering, Sichuan University, State Key Laboratory of Polymer Materials Engineering, Chengdu 610065 Sichuan, China
| | - Zheng-Ying Liu
- College of Polymer Science and Engineering, Sichuan University, State Key Laboratory of Polymer Materials Engineering, Chengdu 610065 Sichuan, China
| | | | - Wei Yang
- College of Polymer Science and Engineering, Sichuan University, State Key Laboratory of Polymer Materials Engineering, Chengdu 610065 Sichuan, China
| |
Collapse
|
10
|
Chen J, Li Z, Chen X, Sun Y, Cheng J, Li A, Lu S, Xing T. Bioinspired Design of an Underwater Adhesive Based on Tea Polyphenol-Modified Silk Fibroin. ACS Biomater Sci Eng 2025; 11:343-353. [PMID: 39730304 DOI: 10.1021/acsbiomaterials.4c01659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2024]
Abstract
Adhesives have garnered significant interest recently due to their application in the field of biomedical applications. Nonetheless, developing adhesives that exhibit robust underwater adhesion and possess antimicrobial properties continues to pose a significant challenge. In this study, motivated by the adhesive mechanism observed in mussels in aquatic environments, dopamine (DA) was added to modify the silk fibroin (SF) solution. Subsequently, tea polyphenol (TP) was incorporated to form a sticky mixture, resulting in a biomimetic adhesive (TP-DA/SF). TP-DA/SF demonstrated rapid, robust, and indiscriminate adhesion to a wide array of substrates and even biological tissues (39 kPa). TP-DA/SF exhibits the ability to replicate the mussel adhesion mechanism of mussels underwater thanks to its biomimetic design. This characteristic provides the material with robust adhesion (40 kPa), notable reusability (at least 10 times), and long-lasting stability, especially in aquatic settings. It is worth noting that TP-DA/SF also demonstrated high adhesion in various water environments, even in solutions with a pH of 7.4 and buffered saline (PBS), which is one of the most widely used buffers in biochemistry research, offering salt-balancing and adjustable pH buffering capabilities. Meanwhile, TP-DA/SF exhibits excellent antibacterial and antioxidant properties due to its tea polyphenol content. After 15 days of wound closure in SD rats, the healing rate in the experimental group reached 93.4%, compared to 83.9% in the control group. Thus, the TP-DA/SF adhesive holds promising potential for biomedical applications, including sutureless wound closure and tissue adhesion.
Collapse
Affiliation(s)
- Jialuo Chen
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Zhipeng Li
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Xinpeng Chen
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Yurong Sun
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Jin Cheng
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Aijing Li
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Shenzhou Lu
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Tieling Xing
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| |
Collapse
|
11
|
Bhavsar A, Pati F, Chakraborty P. Supramolecular Conductive Hydrogels for Tissue Engineering Applications. Chembiochem 2025; 26:e202400733. [PMID: 39462202 DOI: 10.1002/cbic.202400733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 10/24/2024] [Indexed: 10/29/2024]
Abstract
Owing to their unique attributes, including reversibility, specificity, directionality, and tunability, supramolecular biomaterials have evolved as an excellent alternative to conventional biomaterials like polymers, ceramics, and metals. Supramolecular hydrogels, in particular, have garnered significant interest because their fibrous architecture, high water content, and interconnected 3D network resemble the extracellular matrix to some extent. Consequently, supramolecular hydrogels have been used to develop biomaterials for tissue engineering. Supramolecular conductive hydrogels combine the advantages of supramolecular soft materials with the electrical properties of metals, making them highly relevant for electrogenic tissue engineering. Given the versatile applications of these hydrogels, it is essential to periodically review high-quality research in this area. In this review, we focus on recent advances in supramolecular conductive hydrogels, particularly their applications in tissue engineering. We discuss the conductive components of these hydrogels and highlight notable reports on their use in cardiac, skin, and neural tissue engineering. Additionally, we outline potential future developments in this field.
Collapse
Affiliation(s)
- Aashwini Bhavsar
- Centre for Interdisciplinary Programs, Indian Institute of Technology Hyderabad, Kandi, 502284, Sangareddy, Telangana, India
| | - Falguni Pati
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, 502284, Sangareddy, Telangana, India
| | - Priyadarshi Chakraborty
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, 502284, Sangareddy, Telangana, India
| |
Collapse
|
12
|
Cheng Y, Lu Y. Physical stimuli-responsive polymeric patches for healthcare. Bioact Mater 2025; 43:342-375. [PMID: 39399837 PMCID: PMC11470481 DOI: 10.1016/j.bioactmat.2024.08.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/21/2024] [Accepted: 08/24/2024] [Indexed: 10/15/2024] Open
Abstract
Many chronic diseases have become severe public health problems with the development of society. A safe and efficient healthcare method is to utilize physical stimulus-responsive polymer patches, which may respond to physical stimuli, including light, electric current, temperature, magnetic field, mechanical force, and ultrasound. Under certain physical stimuli, these patches have been widely used in therapy for diabetes, cancer, wounds, hair loss, obesity, and heart diseases since they could realize controllable treatment and reduce the risks of side effects. This review sketches the design principles of polymer patches, including composition, properties, and performances. Besides, control methods of using different kinds of physical stimuli were introduced. Then, the fabrication methods and characterization of patches were explored. Furthermore, recent applications of these patches in the biomedical field were demonstrated. Finally, we discussed the challenges and prospects for its clinical translation. We anticipate that physical stimulus-responsive polymer patches will open up new avenues for healthcare by acting as a platform with multiple functions.
Collapse
Affiliation(s)
- Yifan Cheng
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, 100084, China
| | - Yuan Lu
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
13
|
Zheng X, Chen J, Huang X. Epidermal Sensors Constructed by a Stabilized Nanosilver Hydrogel with Self-Healing, Antimicrobial, and Temperature-Responsive Properties. ACS OMEGA 2024; 9:49001-49012. [PMID: 39713616 PMCID: PMC11656214 DOI: 10.1021/acsomega.3c10135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/26/2024] [Accepted: 03/01/2024] [Indexed: 12/24/2024]
Abstract
The development of conductive hydrogels has garnered significant attention in the field of wearable devices and smart sensors. However, the fabrication of hydrogels that possess both multifunctionality and structural stability remains a challenging task. In this study, a novel hydrogel, PAgHCB, was synthesized using a mild method and exhibited outstanding characteristics such as electrical conductivity, self-healing capability, antimicrobial activity, dimensional stability, and temperature sensitivity. The exceptional mechanical performance (∼120 kPa at a strain of 450%) of PAgHCB is attributed to the incorporation of hydroxypropylmethylcellulose (HPMC) and the mechanical reinforcement of the gel network by carboxylated carbon nanotubes (CNT-COOH). The borate bonds between or within poly(vinyl alcohol) (PVA) chains confer self-healing capabilities upon PAgHCB, with a healing efficiency of 74.1%. The in situ reduction of silver nanoparticles through ultraviolet irradiation imparts antimicrobial characteristics to the hydrogel [against Escherichia coli, zone of inhibition (ZOI) = 3.7 mm; against Staphylococcus aureus, ZOI = 6.3 mm]. The linear temperature responsiveness of the PAgHCB hydrogel (R = -3.99T + 608.84 and COD = 0.9988) arises from the migration of silver ions within the gel matrix and the dissociation of borate bonds. Furthermore, PAgHCB was seamlessly integrated into sensors designed for monitoring human motion. The gel-based sensors exhibited three distinct sensing strain ranges corresponding to three different gauge factors (GF1 = 2.976, GF2 = 1.063, and GF3 = 2.97). Notably, PAgHCB gel sensors demonstrated the capability to detect electrical signals generated by finger and wrist joint movements and even discerned signals arising from subtle deformations induced by activities such as speaking. Additionally, the PAgHCB gel was utilized as a pressure sensor to detect external pressures applied to the skin (from 0.373 to 15.776 kPa). This work expands the avenues for designing and synthesizing multifunctional conductive hydrogels, promoting the application of hydrogel sensors with comfortable wear and high sensitivity.
Collapse
Affiliation(s)
- Xiongbiao Zheng
- School
of Materials Science and Engineering, Zhengzhou
University, Zhengzhou, Henan 450001, P. R. China
| | - Jiachang Chen
- Henan
Provincial Institute of Cultural Relics and Archaeology, Zhengzhou, Henan 450000, P. R. China
| | - Xia Huang
- School
of Materials Science and Engineering, Zhengzhou
University, Zhengzhou, Henan 450001, P. R. China
| |
Collapse
|
14
|
Kim J, Cha GD, Kim M, Lee S, Sunwoo S, Kim D. Soft Cardiac Patch Using a Bifacial Architecture of Adhesive/Low‐Impedance Hydrogel Nanocomposites and Highly Conductive Elastomer Nanocomposites. ADVANCED NANOBIOMED RESEARCH 2024. [DOI: 10.1002/anbr.202400143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
Soft implantable multichannel cardiac electrode arrays that establish direct monolithic interfaces with the heart are key components for advanced cardiac monitoring and electrical modulation. A significant technological advancement in this area is the development of stretchable conductive nanocomposites, fabricated through the integration of metallic nanomaterials and elastic polymers, aimed at achieving both high electrical conductivity and mechanical elasticity. Despite these advances, further progress in material performance and device designs is required to ensure seamless, reliable, biocompatible, and high‐fidelity cardiac interfacing. Herein, the development of a soft multichannel cardiac patch based on a bifacial architecture of adhesive/low‐impedance hydrogel nanocomposites and highly conductive elastomer nanocomposites is reported. The bifacial design facilitates the integration of the cardiac patch between the heart and other tissues/organs can be achieved. The hydrogel nanocomposite layer, positioned on the epicardial side, provides stable adhesion to the target cardiac tissue and enables low‐impedance biocompatible interfacing with the heart, while the elastomer nanocomposite layer, positioned on the opposite side, offers high electrical conductivity for facile electrophysiological signal transfer and a low‐friction surface minimizing unwanted interactions with surrounding tissues. The effectiveness of this bifacial patch in multiple applications involving various cardiac signal recordings and electromechanical modulation demonstrations is showcased.
Collapse
Affiliation(s)
- Jeeyoung Kim
- Center for Nanoparticle Research Institute for Basic Science (IBS) Seoul 08826 Republic of Korea
- School of Chemical and Biological Engineering Institute of Chemical Processes Seoul National University Seoul 08826 Republic of Korea
| | - Gi Doo Cha
- Department of Systems Biotechnology Chung‐Ang University Ansung 17546 Republic of Korea
| | - Minsung Kim
- Center for Nanoparticle Research Institute for Basic Science (IBS) Seoul 08826 Republic of Korea
- School of Chemical and Biological Engineering Institute of Chemical Processes Seoul National University Seoul 08826 Republic of Korea
| | - Seung‐Pyo Lee
- Center for Nanoparticle Research Institute for Basic Science (IBS) Seoul 08826 Republic of Korea
- Division of Cardiology Department of Internal Medicine Seoul National University Hospital Seoul 03080 Republic of Korea
- Department of Internal Medicine Seoul National University College of Medicine Seoul 03080 Republic of Korea
| | - Sung‐Hyuk Sunwoo
- Center for Nanoparticle Research Institute for Basic Science (IBS) Seoul 08826 Republic of Korea
- Department of Chemical Engineering Kumoh National Institute of Technology Gumi 39177 Republic of Korea
| | - Dae‐Hyeong Kim
- Center for Nanoparticle Research Institute for Basic Science (IBS) Seoul 08826 Republic of Korea
- School of Chemical and Biological Engineering Institute of Chemical Processes Seoul National University Seoul 08826 Republic of Korea
| |
Collapse
|
15
|
Ji J, Wu S, Su H, An S, Ruan J, Zeng D. Research progress of PVA conductive hydrogel-based wearable biosensors in sweat detection. Chem Eng Sci 2024; 300:120620. [DOI: 10.1016/j.ces.2024.120620] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
16
|
Lee M, Choi Y, Bae YM, Nam S, Shin K. Stretchable and Shape-Transformable Organohydrogel with Gallium Mesh Frame. Gels 2024; 10:769. [PMID: 39727527 DOI: 10.3390/gels10120769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/18/2024] [Accepted: 11/23/2024] [Indexed: 12/28/2024] Open
Abstract
Shape-memory materials are widely utilized in biomedical devices and tissue engineering, particularly for their ability to undergo predefined shape changes in response to external stimuli. In this study, a shape-transformable organohydrogel was developed by incorporating a gallium mesh into a polyacrylamide/alginate/glycerol matrix. The gallium mesh, which transitions between solid and liquid states at moderate temperatures (~29.8 °C), enhanced the hydrogel's mechanical properties and enabled shape-memory functionality. The composite organohydrogel exhibited a high elastic modulus of ~900 kPa in the solid gallium state and ~30 kPa in the liquid gallium state, enabling reversible deformation and structural stability. Glycerol improved the hydrogel's moisture retention, maintaining stretchability and repeated heating and cooling cycles. After multiple cycles of the shape-changing process, the organohydrogel retained its mechanical integrity, achieving shape-fixation and recovery ratios of ~96% and 95%, respectively. This combination of shape-memory functionality, stretchability, and mechanical stability makes this organohydrogel highly suitable for applications in flexible electronics, soft robotics, and biomedical devices, where adaptability and shape retention are essential.
Collapse
Affiliation(s)
- Mincheol Lee
- Electro-Medical Equipment Research Division, Korea Electrotechnology Research Institute (KERI), Ansan 15588, Republic of Korea
| | - Youngjin Choi
- Electro-Medical Equipment Research Division, Korea Electrotechnology Research Institute (KERI), Ansan 15588, Republic of Korea
| | - Young Min Bae
- Electro-Medical Equipment Research Division, Korea Electrotechnology Research Institute (KERI), Ansan 15588, Republic of Korea
| | - Seonghyeon Nam
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
| | - Kiyoung Shin
- Electro-Medical Equipment Research Division, Korea Electrotechnology Research Institute (KERI), Ansan 15588, Republic of Korea
| |
Collapse
|
17
|
Xin L, Cai Y, Liu J, Jia W, Fang L, Liu C. Design and in vitro/in vivo evaluation of chitosan-polyvinyl alcohol copolymer material cross-linked by dynamic borate ester covalent for pregabalin film-forming delivery system. Int J Biol Macromol 2024; 281:136433. [PMID: 39414217 DOI: 10.1016/j.ijbiomac.2024.136433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 09/26/2024] [Accepted: 10/07/2024] [Indexed: 10/18/2024]
Abstract
This research introduced a novel polymer synthesized by combining chitosan and modified polyvinyl alcohol, cross-linked with boric acid using dynamic covalent bonds. The polymer was developed to formulate a pregabalin Film-forming system (FFS) for treating postherpetic neuralgia via topical application, showcasing notable skin adhesion and drug delivery properites. The chitosan-boric acid-modified polyvinyl alcohol polymer was analyzed using NMR, FTIR. The exceptional features of the optimized FFS were evaluated through rheometer, Differential scanning calorimetry (Tg = 45.98 °C), contact angle (θ = 78.62°). The elongation (60.05 ± 3.67 %), cohesion (56.94 ± 4.65 MPa) and skin adhesion (58.12 ± 2.99 kPa) of chitosan-boric acid-modified polyvinyl alcohol were found to be 5.2, 6.8, and 8.3 times higher than those of the pure chitosan film, attributed to the double network structure formed by the cross-linked reversible dynamic covalent bond. The optimized pregabalin FFS exhibited increased in vitro (86.25 ± 1.87 μg/g) and in vivo (100.42 ± 7.44 μg/g) skin retention amounts compared to in vivo oral administration (28.43 ± 4.61 μg/g). In summary, the utilization of borate ester dynamic covalent bonds in developing chitosan-based film-forming polymer proved beneficial in improving skin adhesion and topical therapeutic effectiveness, thereby mitigating the risk of systemic side effects associated with oral administration.
Collapse
Affiliation(s)
- Liying Xin
- Department of Pharmaceutical Sciences, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, China
| | - Yu Cai
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, 977 Gongyuan Road, Yanji 133002, China
| | - Jingjing Liu
- Department of Pharmaceutical Sciences, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, China
| | - Wenxuan Jia
- Department of Pharmaceutical Sciences, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, China
| | - Liang Fang
- Department of Pharmaceutical Sciences, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, China
| | - Chao Liu
- Department of Pharmaceutical Sciences, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, China.
| |
Collapse
|
18
|
Wang Y, Liu Y, Yang H, Fu Y, Huan L, Zhu F, Wang D, Liu C, Han D. Thermal responsive sodium alginate/polyacrylamide/poly (N-isopropylacrylamide) ionic hydrogel composite via seeding calcium carbonate microparticles for the engineering of ultrasensitive wearable sensors. Int J Biol Macromol 2024; 280:135909. [PMID: 39313056 DOI: 10.1016/j.ijbiomac.2024.135909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 08/18/2024] [Accepted: 09/20/2024] [Indexed: 09/25/2024]
Abstract
The design of polyelectrolyte hydrogel with unique tensile and adhesive properties which can be applied across disciplines has gradually become a popular trend. However, the phenomenon of global warming and the emergence of extreme weather, it still faces some urgent problems that should be solved, such as the optimal utilization of polyelectrolyte hydrogel across a wide range of temperatures. Herein, a wide temperature sensitivity and conductivity hydrogel based on sodium alginate, acrylamide and N-isopropylacrylamide was constructed, which exhibited excellent adhesion and temperature conductivity. It is worth noting that after the inclusion of CaCO3 and NaCl in the hydrogel, the hydrogel showed excellent tensile properties (fracture strain >2000 %). Within a wide temperature range (-15-50 °C), it exhibits exceptional electrical conductivity (2.75 S ∗ m-1) and sensitivity (GF = 8.76 under high strain). This innovative intelligent polyelectrolyte hydrogel provides suitable strategy for flexible sensors, smart wearable devices and medical monitoring equipment.
Collapse
Affiliation(s)
- Yirong Wang
- College of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China
| | - Yan Liu
- College of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin City 132022, Jilin Province, China
| | - Hongyu Yang
- College of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin City 132022, Jilin Province, China
| | - Yan Fu
- College of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin City 132022, Jilin Province, China
| | - Lianhao Huan
- College of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin City 132022, Jilin Province, China
| | - Feng Zhu
- College of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China
| | - Dongxu Wang
- College of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China
| | - Changling Liu
- College of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin City 132022, Jilin Province, China.
| | - Dandan Han
- College of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China; College of Biology & Food Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China.
| |
Collapse
|
19
|
Ye Z, Sun L, Xiang Q, Hao Y, Liu H, He Q, Yang X, Liao W. Advancements of Biomacromolecular Hydrogel Applications in Food Nutrition and Health. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:23689-23708. [PMID: 39410660 DOI: 10.1021/acs.jafc.4c05903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
Hydrogels exhibit remarkable degradability, biocompatibility and functionality, which position them as highly promising materials for applications within the food and pharmaceutical industries. Although many relevant studies on hydrogels have been reported in the chemical industry, materials, and other fields, there have been few reviews on their potential applications in food nutrition and human health. This study aims to address this gap by reviewing the functional properties of hydrogels and assessing their value in terms of food nutrition and human health. The use of hydrogels in preserving bioactive ingredients, food packaging and food distribution is delved into specifically in this review. Hydrogels can serve as cutting-edge materials for food packaging and delivery, ensuring the preservation of nutritional activity within food products, facilitating targeted delivery of bioactive compounds and regulating the digestion and absorption processes in the human body, thereby promoting human health. Moreover, hydrogels find applications in in vitro cell and tissue culture, human tissue repair, as well as chronic disease prevention and treatment. These broad applications have attracted great attention in the fields of human food nutrition and health. Ultimately, this paper serves as a valuable reference for further utilization and exploration of hydrogels in these respective fields.
Collapse
Affiliation(s)
- Zichong Ye
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China
| | - Linye Sun
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China
| | - Qianru Xiang
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China
| | - Yuting Hao
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China
| | - Hongji Liu
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China
| | - Qi He
- Food Safety and Health Research Center, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, P. R. China
| | - Xingfen Yang
- Food Safety and Health Research Center, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, P. R. China
| | - Wenzhen Liao
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China
| |
Collapse
|
20
|
Shi C, Niu H, Zhao C, Zhou Y, He L, Pan A. Calcium-Based Mineralized Hydrogels for Temporary Reinforcement and Conservation of Ancient Ivory Relics. ACS APPLIED MATERIALS & INTERFACES 2024; 16:57946-57953. [PMID: 39380252 DOI: 10.1021/acsami.4c14901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Ancient ivory serves as an important witness of time and historical events, offering highly significant insights into the fields of paleontology, mineralogy, materials science, and geochemistry. However, ancient ivory has undergone groundwater corrosion and has a loose porous structure and reduced mechanical strength due to being buried for a long time. Therefore, the temporary reinforcement and preservation of ancient ivory artifacts are a well-known challenge. A methodology was presented in this article for the synthesis of calcium-based mineralized hydrogels (Ca-gel), which possess controllable adhesive strength, beneficial compatibility, environmentally friendly and noninvasive protection, as well as efficient and rapid adhesion for ancient ivory cultural relics. By manipulating the various components of Ca-gel, it was possible to achieve a controllable gel time and gel state. Additionally, the hydrogel possessing a substantial water content has the potential to establish a humid environment suitable for the preservation of ancient ivory, thereby overcoming the challenges associated with water loss and weathering that may arise during excavation processes. It is noteworthy that Ca-gel possessed universality and temporary adhesive properties that could be employed in the temporary reinforcement of cultural relics from different materials. A method has been proposed in this study to facilitate the temporary reinforcement process while ensuring the protection of authenticity, integrity, and continuity for cultural relics.
Collapse
Affiliation(s)
- Chengyu Shi
- School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| | - Heqiang Niu
- Gansu Provincial Research Center for Conservation of Dunhuang Cultural Heritage (Dunhuang Academy), Jiuquan 736200, China
| | - Chunyu Zhao
- School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| | - Ying Zhou
- School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| | - Ling He
- School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| | - Aizhao Pan
- School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
21
|
Li N, He J. Hydrogel-based therapeutic strategies for spinal cord injury repair: Recent advances and future prospects. Int J Biol Macromol 2024; 277:134591. [PMID: 39127289 DOI: 10.1016/j.ijbiomac.2024.134591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/06/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Spinal cord injury (SCI) is a debilitating condition that can result in significant functional impairment and loss of quality of life. There is a growing interest in developing new therapies for SCI, and hydrogel-based multimodal therapeutic strategies have emerged as a promising approach. They offer several advantages for SCI repair, including biocompatibility, tunable mechanical properties, low immunogenicity, and the ability to deliver therapeutic agents. This article provides an overview of the recent advances in hydrogel-based therapy strategies for SCI repair, particularly within the past three years. We summarize the SCI hydrogels with varied characteristics such as phase-change hydrogels, self-healing hydrogel, oriented fibers hydrogel, and self-assembled microspheres hydrogel, as well as different functional hydrogels such as conductive hydrogels, stimuli-responsive hydrogels, adhesive hydrogel, antioxidant hydrogel, sustained-release hydrogel, etc. The composition, preparation, and therapeutic effect of these hydrogels are briefly discussed and comprehensively evaluated. In the end, the future development of hydrogels in SCI repair is prospected to inspire more researchers to invest in this promising field.
Collapse
Affiliation(s)
- Na Li
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao 266113, China
| | - Jintao He
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao 266113, China.
| |
Collapse
|
22
|
Hu Z, Tang W, Ji X. Application of Organic Gel on Skin Realized by Hydrogel/Organic Gel Adhesion. Macromol Rapid Commun 2024; 45:e2400371. [PMID: 38879779 DOI: 10.1002/marc.202400371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/10/2024] [Indexed: 06/27/2024]
Abstract
Diversity in solvent selection bestows the organic gel with appealing characteristics embracing antidrying, anti-icing, and antifouling abilities. However, organic gel, subjected to the "toxic" inherent property of solvent, is not able to be manipulated on skin. Herein, introducing the hydrogel layer amid organic gel and skin is envisaged to realize application of organic gel on skin. Hydrogel, inserted as the medium layer, works for the coupling role between skin and organic gel, also avoids the direct contact of organic gel toward skin. First, hydrogel system composed of acrylic acid is fabricated, meanwhile organic gel is prepared employing 2-hydroxyethyl methacrylate, ethylene glycol (EG) as solvent. Organic gel is able to adhere to hydrogel by hydrogen bonding resulting from carboxyl groups of polyacrylic acid chains and hydroxyl groups occurring on 2-hydroxyethyl methacrylate or EG. Additionally, hydrogen bonding enables the hydrogel to be firmly attached to skin, thus organic gel/hydrogel/skin assembly is produced. The further application of organic gel is exploited by incorporating stimuli-responsive dyes including spiropyran and rhodamine derivative.
Collapse
Affiliation(s)
- Ziqing Hu
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, State Key Laboratory of Materials Processing and Die & Mould Technology, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Wei Tang
- Key Laboratory of Human-Machine-Intelligence Synergic System, Research Center for Neural Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| | - Xiaofan Ji
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, State Key Laboratory of Materials Processing and Die & Mould Technology, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
23
|
Mo F, Zhou P, Lin S, Zhong J, Wang Y. A Review of Conductive Hydrogel-Based Wearable Temperature Sensors. Adv Healthc Mater 2024; 13:e2401503. [PMID: 38857480 DOI: 10.1002/adhm.202401503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/04/2024] [Indexed: 06/12/2024]
Abstract
Conductive hydrogel has garnered significant attention as an emergent candidate for diverse wearable sensors, owing to its remarkable and tailorable properties such as flexibility, biocompatibility, and strong electrical conductivity. These attributes make it highly suitable for various wearable sensor applications (e.g., biophysical, bioelectrical, and biochemical sensors) that can monitor human health conditions and provide timely interventions. Among these applications, conductive hydrogel-based wearable temperature sensors are especially important for healthcare and disease surveillance. This review aims to provide a comprehensive overview of conductive hydrogel-based wearable temperature sensors. First, this work summarizes different types of conductive fillers-based hydrogel, highlighting their recent developments and advantages as wearable temperature sensors. Next, this work discusses the sensing characteristics of conductive hydrogel-based wearable temperature sensors, focusing on sensitivity, dynamic stability, stretchability, and signal output. Then, state-of-the-art applications are introduced, ranging from body temperature detection and wound temperature detection to disease monitoring. Finally, this work identifies the remaining challenges and prospects facing this field. By addressing these challenges with potential solutions, this review hopes to shed some light on future research and innovations in this promising field.
Collapse
Affiliation(s)
- Fan Mo
- Department of Biotechnology and Food Engineering, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong, 515063, China
| | - Pengcheng Zhou
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong, 515063, China
- Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Shihong Lin
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong, 515063, China
| | - Junwen Zhong
- Department of Electromechanical Engineering, University of Macau, Macau, 999078, China
| | - Yan Wang
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong, 515063, China
- Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
- Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong, 515063, China
| |
Collapse
|
24
|
Luo J, Jin Y, Li L, Chang B, Zhang B, Li K, Li Y, Zhang Q, Wang H, Wang J, Yin S, Wang H, Hou C. A selective frequency damping and Janus adhesive hydrogel as bioelectronic interfaces for clinical trials. Nat Commun 2024; 15:8478. [PMID: 39353938 PMCID: PMC11445415 DOI: 10.1038/s41467-024-52833-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 09/24/2024] [Indexed: 10/03/2024] Open
Abstract
Maintaining stillness is essential for accurate bioelectrical signal acquisition, but dynamic noise from breathing remains unavoidable. Isotropic adhesives are often used as bioelectronic interfaces to ensure signal fidelity, but they can leave irreversible residues, compromising device accuracy. We propose a hydrogel with selective frequency damping and asymmetric adhesion as a bioelectronic interface. This hydrogel mitigates dynamic noise from breathing, with a damping effect in the breathing frequency range 60 times greater than at other frequencies. It also exhibits an asymmetric adhesion difference of up to 537 times, preventing residues. By homogenizing ion distribution, extending Debye length, and densifying the electric field, the hydrogel ensures stable signal transmission over 10,000 cycles. Additionally, it can non-invasively diagnose otitis media with higher sensitivity than invasive probes and has been effective in clinical polysomnography monitoring, aiding in the diagnosis of obstructive sleep apnea.
Collapse
Affiliation(s)
- Jiabei Luo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, P. R. China
| | - Yuefan Jin
- Shanghai Key Laboratory of Sleep Disordered Breathing, Department of Orolaryngology-Head and Neck Surgery, Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
| | - Linpeng Li
- Shanghai Key Laboratory of Sleep Disordered Breathing, Department of Orolaryngology-Head and Neck Surgery, Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China.
| | - Boya Chang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, P. R. China
| | - Bin Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, P. R. China
| | - Kerui Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, P. R. China
| | - Yaogang Li
- Engineering Research Center of Advanced Glasses Manufacturing Technology, Ministry of Education, Donghua University, Shanghai, P. R. China
| | - Qinghong Zhang
- Engineering Research Center of Advanced Glasses Manufacturing Technology, Ministry of Education, Donghua University, Shanghai, P. R. China
| | - Hongzhi Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, P. R. China
| | - Jing Wang
- Institute of Environmental Engineering, ETH Zürich, Zürich, Switzerland
- Laboratory for Advanced Analytical Technologies, Empa - Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland
| | - Shankai Yin
- Shanghai Key Laboratory of Sleep Disordered Breathing, Department of Orolaryngology-Head and Neck Surgery, Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
| | - Hui Wang
- Shanghai Key Laboratory of Sleep Disordered Breathing, Department of Orolaryngology-Head and Neck Surgery, Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China.
| | - Chengyi Hou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, P. R. China.
| |
Collapse
|
25
|
Tang H, Li Y, Liao S, Liu H, Qiao Y, Zhou J. Multifunctional Conductive Hydrogel Interface for Bioelectronic Recording and Stimulation. Adv Healthc Mater 2024; 13:e2400562. [PMID: 38773929 DOI: 10.1002/adhm.202400562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/11/2024] [Indexed: 05/24/2024]
Abstract
The past few decades have witnessed the rapid advancement and broad applications of flexible bioelectronics, in wearable and implantable electronics, brain-computer interfaces, neural science and technology, clinical diagnosis, treatment, etc. It is noteworthy that soft and elastic conductive hydrogels, owing to their multiple similarities with biological tissues in terms of mechanics, electronics, water-rich, and biological functions, have successfully bridged the gap between rigid electronics and soft biology. Multifunctional hydrogel bioelectronics, emerging as a new generation of promising material candidates, have authentically established highly compatible and reliable, high-quality bioelectronic interfaces, particularly in bioelectronic recording and stimulation. This review summarizes the material basis and design principles involved in constructing hydrogel bioelectronic interfaces, and systematically discusses the fundamental mechanism and unique advantages in bioelectrical interfacing with the biological surface. Furthermore, an overview of the state-of-the-art manufacturing strategies for hydrogel bioelectronic interfaces with enhanced biocompatibility and integration with the biological system is presented. This review finally exemplifies the unprecedented advancement and impetus toward bioelectronic recording and stimulation, especially in implantable and integrated hydrogel bioelectronic systems, and concludes with a perspective expectation for hydrogel bioelectronics in clinical and biomedical applications.
Collapse
Affiliation(s)
- Hao Tang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 518107, P. R. China
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Yuanfang Li
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 518107, P. R. China
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Shufei Liao
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 518107, P. R. China
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Houfang Liu
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, China
| | - Yancong Qiao
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 518107, P. R. China
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Jianhua Zhou
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 518107, P. R. China
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| |
Collapse
|
26
|
Tang CG, Wu R, Chen Y, Zhou Z, He Q, Li T, Wu X, Hou K, Kousseff CJ, McCulloch I, Leong WL. A Universal Biocompatible and Multifunctional Solid Electrolyte in p-Type and n-Type Organic Electrochemical Transistors for Complementary Circuits and Bioelectronic Interfaces. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405556. [PMID: 39021303 DOI: 10.1002/adma.202405556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/20/2024] [Indexed: 07/20/2024]
Abstract
The development of soft and flexible devices for collection of bioelectrical signals is gaining momentum for wearable and implantable applications. Among these devices, organic electrochemical transistors (OECTs) stand out due to their low operating voltage and large signal amplification capable of transducing weak biological signals. While liquid electrolytes have demonstrated efficacy in OECTs, they limit its operating temperature and pose challenges for electronic packaging due to potential leakage. Conversely, solid electrolytes offer advantages such as mechanical flexibility, robustness against environmental factors, and ability to bridge the interface between rigid dry electronics systems and soft wet biological tissues. However, few systems have demonstrated generality and compatibility with a wide range of state-of-the-art organic mixed ionic-electronic conductors (OMIECs). This paper introduces a highly stretchable, flexible, biocompatible, self-healable gelatin-based solid-state electrolyte, compatible with both p- and n-type OMIEC channels while maintaining high performance and excellent stability. Furthermore, this nonvolatile electrolyte is stable up to 120 °C and exhibits high ionic conductivity even in dry environment. Additionally, an OECT-based complementary inverter with a record-high normalized-gain of 228 V-1 and a corresponding ultralow static power consumption of 1 nW is demonstrated. These advancements pave the way for versatile applications ranging from bioelectronics to power-efficient implants.
Collapse
Affiliation(s)
- Cindy G Tang
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Ruhua Wu
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Yingjun Chen
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Zhongliang Zhou
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Qiang He
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Ting Li
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Xihu Wu
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Kunqi Hou
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | | | - Iain McCulloch
- Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
- Andlinger Center for Energy and the Environment, and Department of Electrical and Computer Engineering, Princeton University, Princeton, NJ, 08544, USA
| | - Wei Lin Leong
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|
27
|
Liu J, Li S, Li S, Tian J, Li H, Pan Z, Lu L, Mao Y. Recent Advances in Natural-Polymer-Based Hydrogels for Body Movement and Biomedical Monitoring. BIOSENSORS 2024; 14:415. [PMID: 39329790 PMCID: PMC11430138 DOI: 10.3390/bios14090415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/12/2024] [Accepted: 08/23/2024] [Indexed: 09/28/2024]
Abstract
In recent years, the interest in medical monitoring for human health has been rapidly increasing due to widespread concern. Hydrogels are widely used in medical monitoring and other fields due to their excellent mechanical properties, electrical conductivity and adhesion. However, some of the non-degradable materials in hydrogels may cause some environmental damage and resource waste. Therefore, organic renewable natural polymers with excellent properties of biocompatibility, biodegradability, low cost and non-toxicity are expected to serve as an alternative to those non-degradable materials, and also provide a broad application prospect for the development of natural-polymer-based hydrogels as flexible electronic devices. This paper reviews the progress of research on many different types of natural-polymer-based hydrogels such as proteins and polysaccharides. The applications of natural-polymer-based hydrogels in body movement detection and biomedical monitoring are then discussed. Finally, the present challenges and future prospects of natural polymer-based hydrogels are summarized.
Collapse
Affiliation(s)
- Jing Liu
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou 450001, China
| | - Saisai Li
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou 450001, China
| | - Shuoze Li
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou 450001, China
| | - Jinyue Tian
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou 450001, China
| | - Hang Li
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou 450001, China
| | - Zhifeng Pan
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou 450001, China
| | - Lijun Lu
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou 450001, China
| | - Yanchao Mao
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
28
|
Huang Y, Yao K, Zhang Q, Huang X, Chen Z, Zhou Y, Yu X. Bioelectronics for electrical stimulation: materials, devices and biomedical applications. Chem Soc Rev 2024; 53:8632-8712. [PMID: 39132912 DOI: 10.1039/d4cs00413b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Bioelectronics is a hot research topic, yet an important tool, as it facilitates the creation of advanced medical devices that interact with biological systems to effectively diagnose, monitor and treat a broad spectrum of health conditions. Electrical stimulation (ES) is a pivotal technique in bioelectronics, offering a precise, non-pharmacological means to modulate and control biological processes across molecular, cellular, tissue, and organ levels. This method holds the potential to restore or enhance physiological functions compromised by diseases or injuries by integrating sophisticated electrical signals, device interfaces, and designs tailored to specific biological mechanisms. This review explains the mechanisms by which ES influences cellular behaviors, introduces the essential stimulation principles, discusses the performance requirements for optimal ES systems, and highlights the representative applications. From this review, we can realize the potential of ES based bioelectronics in therapy, regenerative medicine and rehabilitation engineering technologies, ranging from tissue engineering to neurological technologies, and the modulation of cardiovascular and cognitive functions. This review underscores the versatility of ES in various biomedical contexts and emphasizes the need to adapt to complex biological and clinical landscapes it addresses.
Collapse
Affiliation(s)
- Ya Huang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Kuanming Yao
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Qiang Zhang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Xingcan Huang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Zhenlin Chen
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Yu Zhou
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong, China.
| | - Xinge Yu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
29
|
Xie F. Natural polymer starch-based materials for flexible electronic sensor development: A review of recent progress. Carbohydr Polym 2024; 337:122116. [PMID: 38710566 DOI: 10.1016/j.carbpol.2024.122116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/11/2024] [Accepted: 03/30/2024] [Indexed: 05/08/2024]
Abstract
In response to the burgeoning interest in the development of highly conformable and resilient flexible electronic sensors capable of transducing diverse physical stimuli, this review investigates the pivotal role of natural polymers, specifically those derived from starch, in crafting sustainable and biocompatible sensing materials. Expounding on cutting-edge research, the exploration delves into innovative strategies employed to leverage the distinctive attributes of starch in conjunction with other polymers for the fabrication of advanced sensors. The comprehensive discussion encompasses a spectrum of starch-based materials, spanning all-starch-based gels to starch-based soft composites, meticulously scrutinizing their applications in constructing resistive, capacitive, piezoelectric, and triboelectric sensors. These intricately designed sensors exhibit proficiency in detecting an array of stimuli, including strain, temperature, humidity, liquids, and enzymes, thereby playing a pivotal role in the continuous and non-invasive monitoring of human body motions, physiological signals, and environmental conditions. The review highlights the intricate interplay between material properties, sensor design, and sensing performance, emphasizing the unique advantages conferred by starch-based materials, such as self-adhesiveness, self-healability, and re-processibility facilitated by dynamic bonding. In conclusion, the paper outlines current challenges and future research opportunities in this evolving field, offering valuable insights for prospective investigations.
Collapse
Affiliation(s)
- Fengwei Xie
- Department of Chemical Engineering, University of Bath, Bath BA2 7AY, United Kingdom.
| |
Collapse
|
30
|
Li P, Huang Z, Yang J, Zhang C, Tang S, Ma Y, Liu W. Optimizing Silver Paste Conductivity with Controlled Convection for Nanowrinkle Growth. ACS APPLIED MATERIALS & INTERFACES 2024; 16:34181-34191. [PMID: 38885088 DOI: 10.1021/acsami.4c07047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Conductive silver paste plays a crucial role as an interconnecting material between electrodes and circuits in electronic circuits and solar cells. The quality of the silver paste is greatly influenced by the preparation of the conductive-phase silver powder and the sintering process. This study investigated the impact of fluid dynamics on the preparation of silver powder. Combined with X-ray diffractometer characterization and molecular dynamics simulation, the formation mechanism of wrinkled silver powder was explained. The wrinkled silver powder replaced the traditional smooth spherical silver powder, and the point contact between the smooth silver powder turned into a line and surface contact. After mixing and sintering with the micrometer flake silver powder, the electrical conductivity and sintering morphology of the silver paste were improved. Compared with the silver content of conventional silver paste (≥75 wt %), the silver paste of (9.23 ± 0.68) × 10-6 Ω cm can be prepared by curing at 250 °C for 45 min when wrinkled powder/flake powder = 1:1 and silver paste content was only 66.7%. This research work provides a new idea for the morphology control of submicrometer silver powder, which has important applications in the field of low-temperature silver paste for new N-type batteries.
Collapse
Affiliation(s)
- Panzhen Li
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, Hunan, China
| | - Zhe Huang
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, Hunan, China
| | - Jin Yang
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, Hunan, China
| | - Chenhe Zhang
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, Hunan, China
| | - Siwei Tang
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, Hunan, China
| | - Yunzhu Ma
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, Hunan, China
| | - Wensheng Liu
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, Hunan, China
| |
Collapse
|
31
|
Jiang H, Huang X, Yang J, Yu X, Yang W, Song Y, Wen N, Wang Y, Long J, Lu S, Zheng X, Lin Z. Dual network composite hydrogels with robust antibacterial and antifouling capabilities for efficient wound healing. J Mater Chem B 2024; 12:4909-4921. [PMID: 38682601 DOI: 10.1039/d3tb03061j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Wound dressings play a critical role in the wound healing process; however, conventional dressings often address singular functions, lacking versatility in meeting diverse wound healing requirements. Herein, dual-network, multifunctional hydrogels (PSA/CS-GA) have been designed and synthesized through a one-pot approach. The in vitro and in vivo experiments demonstrate that the optimized hydrogels have exceptional antifouling properties, potent antibacterial effects and rapid hemostatic capabilities. Notably, in a full-thickness rat wound model, the hydrogel group displays a remarkable wound healing rate exceeding 95% on day 10, surpassing both the control group and the commercial 3M group. Furthermore, the hydrogels exert an anti-inflammatory effect by reducing inflammatory factors interleukin 6 (IL-6) and tumor necrosis factor-α (TNF-α), enhance the release of the vascular endothelial growth factor (VEGF) to promote blood vessel proliferation, and augment collagen deposition in the wound, thus effectively accelerating wound healing in vivo. These innovative hydrogels present a novel and highly effective approach to wound healing.
Collapse
Affiliation(s)
- Hongzhi Jiang
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350116, China.
| | - Xueping Huang
- Department of Gastroenterology, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, China.
- Department of Gastroenterology, Fujian Provincial Hospital, Fuzhou, Fujian, China
| | - Jiachao Yang
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350116, China.
| | - Xunbin Yu
- Department of Pathology, Fujian Provincial Hospital, Fuzhou, Fujian, China
| | - Weibo Yang
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350116, China.
| | - Yunhao Song
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350116, China.
| | - Na Wen
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350116, China.
| | - Ying Wang
- State Key Lab of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, 350108, China
| | - Jinlin Long
- State Key Lab of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, 350108, China
| | - Shiyun Lu
- Department of Gastroenterology, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, China.
- Department of Gastroenterology, Fujian Provincial Hospital, Fuzhou, Fujian, China
| | - Xiaoling Zheng
- Department of Digestive Endoscopy, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, China.
- Department of Digestive Endoscopy, Fujian Provincial Hospital, Fuzhou, Fujian, China
| | - Zhihui Lin
- Department of Gastroenterology, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, China.
- Department of Gastroenterology, Fujian Provincial Hospital, Fuzhou, Fujian, China
| |
Collapse
|
32
|
Xiong J, Duan M, Zou X, Gao S, Guo J, Wang X, Li Q, Li W, Wang X, Yan F. Biocompatible Tough Ionogels with Reversible Supramolecular Adhesion. J Am Chem Soc 2024; 146:13903-13913. [PMID: 38721817 DOI: 10.1021/jacs.4c01758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Cohesive and interfacial adhesion energies are difficult to balance to obtain reversible adhesives with both high mechanical strength and high adhesion strength, although various methods have been extensively investigated. Here, a biocompatible citric acid/L-(-)-carnitine (CAC)-based ionic liquid was developed as a solvent to prepare tough and high adhesion strength ionogels for reversible engineered and biological adhesives. The prepared ionogels exhibited good mechanical properties, including tensile strength (14.4 MPa), Young's modulus (48.1 MPa), toughness (115.2 MJ m-3), and high adhesion strength on the glass substrate (24.4 MPa). Furthermore, the ionogels can form mechanically matched tough adhesion at the interface of wet biological tissues (interfacial toughness about 191 J m-2) and can be detached by saline solution on demand, thus extending potential applications in various clinical scenarios such as wound adhesion and nondestructive transfer of organs.
Collapse
Affiliation(s)
- Jiaofeng Xiong
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Minzhi Duan
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xiuyang Zou
- School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian 223300, China
| | - Shuna Gao
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Jiangna Guo
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Xiaowei Wang
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Qingning Li
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Weizheng Li
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Xiaoliang Wang
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Feng Yan
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
33
|
Li Z, Lu J, Ji T, Xue Y, Zhao L, Zhao K, Jia B, Wang B, Wang J, Zhang S, Jiang Z. Self-Healing Hydrogel Bioelectronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306350. [PMID: 37987498 DOI: 10.1002/adma.202306350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/07/2023] [Indexed: 11/22/2023]
Abstract
Hydrogels have emerged as powerful building blocks to develop various soft bioelectronics because of their tissue-like mechanical properties, superior bio-compatibility, the ability to conduct both electrons and ions, and multiple stimuli-responsiveness. However, hydrogels are vulnerable to mechanical damage, which limits their usage in developing durable hydrogel-based bioelectronics. Self-healing hydrogels aim to endow bioelectronics with the property of repairing specific functions after mechanical failure, thus improving their durability, reliability, and longevity. This review discusses recent advances in self-healing hydrogels, from the self-healing mechanisms, material chemistry, and strategies for multiple properties improvement of hydrogel materials, to the design, fabrication, and applications of various hydrogel-based bioelectronics, including wearable physical and biochemical sensors, supercapacitors, flexible display devices, triboelectric nanogenerators (TENGs), implantable bioelectronics, etc. Furthermore, the persisting challenges hampering the development of self-healing hydrogel bioelectronics and their prospects are proposed. This review is expected to expedite the research and applications of self-healing hydrogels for various self-healing bioelectronics.
Collapse
Affiliation(s)
- Zhikang Li
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an, 710049, China
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jijian Lu
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an, 710049, China
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Tian Ji
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an, 710049, China
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yumeng Xue
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene, Xi'an, 710072, China
| | - Libo Zhao
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an, 710049, China
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Kang Zhao
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an, 710049, China
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Boqing Jia
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an, 710049, China
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Bin Wang
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an, 710049, China
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jiaxiang Wang
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an, 710049, China
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Shiming Zhang
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong SAR, 999077, China
| | - Zhuangde Jiang
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an, 710049, China
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
34
|
Xia Y, Ma Z, Wu X, Wei H, Zhang H, Li G, Qian Y, Shahriari-Khalaji M, Hou K, Cao R, Zhu M. Advances in Stimuli-Responsive Chitosan Hydrogels for Drug Delivery Systems. Macromol Biosci 2024; 24:e2300399. [PMID: 38011585 DOI: 10.1002/mabi.202300399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/29/2023] [Indexed: 11/29/2023]
Abstract
Sustainable and controllable drug transport is one of the most efficient ways of disease treatment. Due to high biocompatibility, good biodegradability, and low costs, chitosan and its derivatives are widely used in biomedical fields. Specifically, chitosan hydrogel enables drugs to pass through biological barriers because of their abundant amino and hydroxyl groups that can interact with human tissues. Moreover, the multi-responsive nature (pH, temperature, ions strength, and magnetic field, etc.) of chitosan hydrogels makes precise drug release a possibility. Here, the synthesis methods, modification strategies, stimuli-responsive mechanisms of chitosan-based hydrogels, and their recent progress in drug delivery are summarized. Chitosan hydrogels that carry and release drugs through subcutaneous (dealing with wound dressing), oral (dealing with gastrointestinal tract), and facial (dealing with ophthalmic, ear, and brain) are reviewed. Finally, challenges toward clinic application and the future prospects of stimuli-responsive chitosan-based hydrogels are indicated.
Collapse
Affiliation(s)
- Yuhan Xia
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Zhiyuan Ma
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Xuechen Wu
- Shanghai Starriver Bilingual School, Shanghai, 201108, China
| | - Huidan Wei
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Han Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Guang Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Yuqi Qian
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Mina Shahriari-Khalaji
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Kai Hou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Ran Cao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai, 201620, P. R. China
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| |
Collapse
|
35
|
Ma H, Zou Y, Liu L, Zhang X, Yu J, Fan Y. Mussel-inspired chitin nanofiber adherable hydrogel sensor with interpenetrating network and great fatigue resistance for motion and acoustics monitoring. Int J Biol Macromol 2024; 263:130059. [PMID: 38340919 DOI: 10.1016/j.ijbiomac.2024.130059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/26/2024] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
A method for grafting dopamine onto TEMPO-oxidized chitin nanofibers (TOChN) was developed, achieving a surface grafting rate of 54 % through the EDC/NHS reaction. This process resulted in the formation of dopamine-grafted TOChN (TOChN-DA). Subsequently, an adherent, highly sensitive, fatigue-resistant conductive PAM/TOChN-PDA/Fe3+ (PTPF) hydrogel was successfully synthesized based on the composition of polyacrylamide (PAM) and TOChN-DA, which exhibited good cell compatibility, a tensile strength of 89.42 kPa, and a high adhesion strength of 62.56 kPa with 1.2 wt% TOChN-DA. Notably, the PTPF hydrogel showed stable adherence to various surfaces, such as rubber, copper, and human skin. Specifically, the addition of FeCl3 contributed to a multifunctional design in the PTPF interpenetrating network (IPN) hydrogel, endowing it with conductivity, cohesion, and antioxidant properties, which facilitated sensitive motion and acoustics monitoring. Moreover, the PTPF hydrogel demonstrated exceptional fatigue resistance and sensing stability, maintaining performance at 50 % strain over 1000 cycles. These attributes render the PTPF hydrogel a promising candidate for advanced biosensors in medical and athletic applications.
Collapse
Affiliation(s)
- Huazhong Ma
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China.
| | - Yujun Zou
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China.
| | - Liang Liu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China.
| | - Xian Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China
| | - Juan Yu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China.
| | - Yimin Fan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China.
| |
Collapse
|
36
|
Weian W, Yunxin Y, Ziyan W, Qianzhou J, Lvhua G. Gallic acid: design of a pyrogallol-containing hydrogel and its biomedical applications. Biomater Sci 2024; 12:1405-1424. [PMID: 38372381 DOI: 10.1039/d3bm01925j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Polyphenol hydrogels have garnered widespread attention due to their excellent adhesion, antioxidant, and antibacterial properties. Gallic acid (GA) is a typical derivative of pyrogallol that is used as a hydrogel crosslinker or bioactive additive and can be used to make multifunctional hydrogels with properties superior to those of widely studied catechol hydrogels. Furthermore, compared to polymeric tannic acid, gallic acid is more suitable for chemical modification, thus broadening its range of applications. This review focuses on multifunctional hydrogels containing GA, aiming to inspire researchers in future biomaterial design. We first revealed the interaction mechanisms between GA molecules and between GA and polymers, analyzed the characteristics GA imparts to hydrogels and compared GA hydrogels with hydrogels containing catechol. Subsequently, in this paper, various methods of integrating GA into hydrogels and the applications of GA in biomedicine are discussed, finally assessing the current limitations and future development potential of GA. In summary, GA, a natural small molecule polyphenol with excellent functionality and diverse interaction modes, has great potential in the field of biomedical hydrogels.
Collapse
Affiliation(s)
- Wu Weian
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Medical University, China.
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, China
| | - Ye Yunxin
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Medical University, China.
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, China
| | - Wang Ziyan
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Medical University, China.
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, China
| | - Jiang Qianzhou
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Medical University, China.
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, China
| | - Guo Lvhua
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Medical University, China.
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, China
| |
Collapse
|
37
|
Yuan Y, Zhang Z, Cao J, Zhao X, Ye L, Wang G. Self-adhesive wearable poly (vinyl alcohol)-based hybrid biofuel cell powered by human bio-fluids. Biosens Bioelectron 2024; 247:115930. [PMID: 38134624 DOI: 10.1016/j.bios.2023.115930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/03/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023]
Abstract
Advancement of wearable microelectronics demands their power source with continuous energy supply, skin-integration and miniaturization. In light of poly (vinyl alcohol) (PVA) hydrogel with nontoxicity, good biocompatibility and low cost, an advanced wearable PVA-based hybrid biofuel cells (HBFCs) with high self-adhesiveness was developed. Through the reaction between PVA molecules and succinic anhydride (SAA), the carboxylated PVA (PVA/SAA) was obtained, and by incorporation with PDA as crosslinker, the self-adhesive PVA/SAA-DA hydrogel electrolytes formed by dual covalent and hydrogen bonding. With increasing SAA and PDA content, the pore size decreased, and a uniform and dense network formed, endowing the hydrogel with a relatively high absorption capacity of PBS solution of lactate as cell fuel. Meanwhile the various functional groups of hydrogel, including catechol, quinone, amino and hydroxyl groups, contributed to impressive tissue adhesion strength against pigskin under dry and wet conditions. The PVA/SAA-DA hydrogel displayed high conductive property, and the integrated PVA-based HBFC generated open circuit voltage of 0.50 V and maximum power density of 128.76 μW/cm2 in 20 mM lactate solution, which was optimized to be 0.57 V/224.85 μW/cm2 when the pore size was enlarged. The power retention reached above 70% in one week, showing long-term stability of HBFC. The PVA-based HBFC was further adhered to human skin without extra adhesive tapes to scavenge human sweat as biofuel, and the maximum power density reached 85.34 μW/cm2, while by connected with a DC-DC converter, the HBFC could power watch, exhibiting promising application potentials as wearable electronic device to provide bioelectricity.
Collapse
Affiliation(s)
- Yaqin Yuan
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, 610065, China
| | - Zhen Zhang
- Trauma Center, Department of Orthopedic Surgery, West China Hospital, Sichuan University, Chengdu, 610000, China
| | - Jinlong Cao
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, 610065, China
| | - Xiaowen Zhao
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, 610065, China
| | - Lin Ye
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, 610065, China.
| | - Guanglin Wang
- Trauma Center, Department of Orthopedic Surgery, West China Hospital, Sichuan University, Chengdu, 610000, China.
| |
Collapse
|
38
|
Ye L, Yang R, Yu X, Sun X, Liang H. Strong and tough polysaccharide organohydrogels for strain, humidity and temperature sensors. SOFT MATTER 2024; 20:1573-1582. [PMID: 38270546 DOI: 10.1039/d3sm01281f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
To avoid the potential toxicity of monomer residues in synthetic polymer based organohydrogels, natural polysaccharide-based organohydrogels are expected to be used in multi-functional wearable sensory systems, but most of them have unsatisfactory stiffness, strength and fracture toughness. Herein, a cooking and soaking strategy is proposed to prepare novel natural polysaccharide-based organohydrogels possessing outstanding stiffness, strength, toughness, freezing resistance, heating resistance and long-term durability. The agar organohydrogel exhibits a fracture stress of 3.3 MPa, a Young's modulus of 2.26 MPa and a fracture toughness of 14.8 kJ m-2, the κ-carrageenan organohydrogel exhibits a fracture stress of 3.3 MPa, a Young's modulus of 4.34 MPa and a fracture toughness of 11.0 kJ m-2, and the gellan organohydrogel exhibits a fracture stress of 1.2 MPa, a Young's modulus of 2.81 MPa and a fracture toughness of 5.4 kJ m-2. Furthermore, the agar organohydrogels are assembled into multi-functional wearable sensors by introducing NaCl as a conducting agent exhibiting responses to strain (5-150%), temperature (-15 to 60 °C) and humidity (11-97%), and possessing exceptional multi-sensory capabilities. Therefore, the developed strategy has shown a new pathway towards strengthening polysaccharide-based organohydrogels with potential for application in wearable sensory systems.
Collapse
Affiliation(s)
- Lina Ye
- School of Materials Science and Engineering, Anhui University, Hefei, Anhui, 230601, China
| | - Ruichen Yang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui, 230026, China.
| | - Xinxin Yu
- School of Materials Science and Engineering, Anhui University, Hefei, Anhui, 230601, China
| | - Xingyue Sun
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui, 230026, China.
| | - Haiyi Liang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui, 230026, China.
- School of Civil Engineering, Anhui Jianzhu University, Hefei 230601, China
- IAT-Chungu Joint Laboratory for Additive Manufacturing, Anhui Chungu 3D Printing Institute of Intelligent Equipment and Industrial Technology, Wuhu, Anhui 241200, China
| |
Collapse
|
39
|
Chang S, Koo JH, Yoo J, Kim MS, Choi MK, Kim DH, Song YM. Flexible and Stretchable Light-Emitting Diodes and Photodetectors for Human-Centric Optoelectronics. Chem Rev 2024; 124:768-859. [PMID: 38241488 DOI: 10.1021/acs.chemrev.3c00548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2024]
Abstract
Optoelectronic devices with unconventional form factors, such as flexible and stretchable light-emitting or photoresponsive devices, are core elements for the next-generation human-centric optoelectronics. For instance, these deformable devices can be utilized as closely fitted wearable sensors to acquire precise biosignals that are subsequently uploaded to the cloud for immediate examination and diagnosis, and also can be used for vision systems for human-interactive robotics. Their inception was propelled by breakthroughs in novel optoelectronic material technologies and device blueprinting methodologies, endowing flexibility and mechanical resilience to conventional rigid optoelectronic devices. This paper reviews the advancements in such soft optoelectronic device technologies, honing in on various materials, manufacturing techniques, and device design strategies. We will first highlight the general approaches for flexible and stretchable device fabrication, including the appropriate material selection for the substrate, electrodes, and insulation layers. We will then focus on the materials for flexible and stretchable light-emitting diodes, their device integration strategies, and representative application examples. Next, we will move on to the materials for flexible and stretchable photodetectors, highlighting the state-of-the-art materials and device fabrication methods, followed by their representative application examples. At the end, a brief summary will be given, and the potential challenges for further development of functional devices will be discussed as a conclusion.
Collapse
Affiliation(s)
- Sehui Chang
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Ja Hoon Koo
- Department of Semiconductor Systems Engineering, Sejong University, Seoul 05006, Republic of Korea
- Institute of Semiconductor and System IC, Sejong University, Seoul 05006, Republic of Korea
| | - Jisu Yoo
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Min Seok Kim
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Moon Kee Choi
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Graduate School of Semiconductor Materials and Devices Engineering, Center for Future Semiconductor Technology (FUST), UNIST, Ulsan 44919, Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
| | - Dae-Hyeong Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University (SNU), Seoul 08826, Republic of Korea
- Department of Materials Science and Engineering, SNU, Seoul 08826, Republic of Korea
- Interdisciplinary Program for Bioengineering, SNU, Seoul 08826, Republic of Korea
| | - Young Min Song
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Artificial Intelligence (AI) Graduate School, GIST, Gwangju 61005, Republic of Korea
| |
Collapse
|
40
|
Wu SJ, Wu J, Kaser SJ, Roh H, Shiferaw RD, Yuk H, Zhao X. A 3D printable tissue adhesive. Nat Commun 2024; 15:1215. [PMID: 38331971 PMCID: PMC10853267 DOI: 10.1038/s41467-024-45147-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/15/2024] [Indexed: 02/10/2024] Open
Abstract
Tissue adhesives are promising alternatives to sutures and staples for joining tissues, sealing defects, and immobilizing devices. However, existing adhesives mostly take the forms of glues or hydrogels, which offer limited versatility. We report a direct-ink-write 3D printable tissue adhesive which can be used to fabricate bioadhesive patches and devices with programmable architectures, unlocking new potential for application-specific designs. The adhesive is conformable and stretchable, achieves robust adhesion with wet tissues within seconds, and exhibits favorable biocompatibility. In vivo rat trachea and colon defect models demonstrate the fluid-tight tissue sealing capability of the printed patches, which maintained adhesion over 4 weeks. Moreover, incorporation of a blood-repelling hydrophobic matrix enables the printed patches to seal actively bleeding tissues. Beyond wound closure, the 3D printable adhesive has broad applicability across various tissue-interfacing devices, highlighted through representative proof-of-concept designs. Together, this platform offers a promising strategy toward developing advanced tissue adhesive technologies.
Collapse
Affiliation(s)
- Sarah J Wu
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Jingjing Wu
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Samuel J Kaser
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Heejung Roh
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Ruth D Shiferaw
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Hyunwoo Yuk
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- SanaHeal, Inc., Cambridge, MA, USA.
| | - Xuanhe Zhao
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
41
|
Sau S, Kundu S. Fabrication of highly stretchable salt and solvent blended PEDOT:PSS/PVA free-standing films: non-linear to linear electrical conduction response. RSC Adv 2024; 14:5193-5206. [PMID: 38332796 PMCID: PMC10851924 DOI: 10.1039/d3ra08260a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/02/2024] [Indexed: 02/10/2024] Open
Abstract
Nowadays, ductile and conducting polymeric materials are highly utilizable in the realm of stretchable organic electronics. Here, mechanically ductile and electrically conducting free-standing films are fabricated by blending different solvents such as dimethyl sulfoxide (DMSO), diethylene glycol (DEG) and N,N-dimethylformamide (DMF), and salts such as silver nitrate (AgNO3), zinc chloride (ZnCl2), copper chloride (CuCl2) and indium chloride (InCl3) with the homogeneous solution of poly(3,4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS) and poly(vinyl alcohol) (PVA) through solution casting method. The presence of salt modifies the PEDOT conformation from benzoid to quinoid, and induces the evolution of different morphologies. ZnCl2 or AgNO3 blended films have lower surface roughness and good miscibility with polymers, while CuCl2 or InCl3 blended films have relatively higher surface roughness as well as irregularly distributed surface morphology. Some crystalline domains are also formed due to the salt agglomeration. The presence of salt inside PEDOT:PSS/PVA/solvent system changes the current-voltage response from non-linear to linear. Among all the films, zinc salt blended PEDOT:PSS/PVA/DMSO, PEDOT:PSS/PVA/DEG and PEDOT:PSS/PVA/DMF films have higher conductivity, and zinc salt blended PEDOT:PSS/PVA/DEG film shows the highest conductivity of 0.041 ± 0.0014 S cm-1, while silver salt blended PEDOT:PSS/PVA/DMSO, PEDOT:PSS/PVA/DEG and PEDOT:PSS/PVA/DMF films have higher elongation at break, and silver salt blended PEDOT:PSS/PVA/DMSO film shows the highest elongation at break of 670 ± 31%. Both the charge carriers, i.e., electrons and ions, contribute to the electrical conduction, and the presence of hydrogen bonds and ionic interactions among PEDOT+, PSS-, PVA, residual solvent, salt cations and anions modifies the film behaviours. Among all the films, ZnCl2 blended PEDOT:PSS/PVA/DMSO film offers relatively superior behaviours having higher conductivity (0.025 ± 0.0013 S cm-1) and elongation at break (517 ± 15%), and therefore can have potential applications in the fields of wearable devices, bioelectronics, etc.
Collapse
Affiliation(s)
- Sanjib Sau
- Soft Nano Laboratory, Physical Sciences Division, Institute of Advanced Study in Science and Technology Vigyan Path, Paschim Boragaon, Garchuk Guwahati Assam 781035 India
| | - Sarathi Kundu
- Soft Nano Laboratory, Physical Sciences Division, Institute of Advanced Study in Science and Technology Vigyan Path, Paschim Boragaon, Garchuk Guwahati Assam 781035 India
| |
Collapse
|
42
|
Zhang X, Ding H, Li Z, Bai Y, Zhang L. A "Mesh Scaffold" that regulates the mechanical properties and restricts the phase transition-induced volume change of the PNIPAM-based hydrogel for wearable sensors. MATERIALS HORIZONS 2024; 11:835-846. [PMID: 38037353 DOI: 10.1039/d3mh01638b] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Poly(N-isopropylacrylamide) (PNIPAM) is capable of improving the reversibility and responsiveness of flexible electronics. However, its phase transition-induced volume variation and poor adhesiveness remain limitations for expending its applications. Herein, a pressure-sensitive adhesive (PSA), which is a type of mesh scaffold, is constructed inside the network of PNIPAM, providing the hydrogel with a constant volume in response to different temperatures, in situ tunable mechanical properties, and superior adhesiveness. The reversible density of the mesh scaffold adjusts the aggregation state of the hydrogel chains, whereupon it is capable of changing its mechanical modulus from 6.7 kPa to 45.3 kPa. This mechanical mechanism contributes to hydrogel-based flexible devices for multiple applications, especially in pressure-related sensors. The mesh scaffold restricts the phase-transition-induced volume variation, which allows the hydrogel sensor to stably monitor the external pressure at various temperatures. The high adhesion enables the effective interfacial interaction with the skin, avoiding the loss of sensing signals during the detection of human body movements. When it is assembled into an electronic device, it can transmit information and recognize sign language via Morse code. Thus, herein, we report a hydrogel sensor that is promising for pressure detection in temperature-unstable environments, especially for managing the health of patients who require emergency medical care through sign language recognition.
Collapse
Affiliation(s)
- Xiaoyong Zhang
- School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan, Anhui 232001, P. R. China.
| | - Haoran Ding
- School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan, Anhui 232001, P. R. China.
| | - Zhaozhao Li
- School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan, Anhui 232001, P. R. China.
| | - Yongping Bai
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150000, P. R. China
| | - Lidong Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China.
| |
Collapse
|
43
|
Adorinni S, Gentile S, Bellotto O, Kralj S, Parisi E, Cringoli MC, Deganutti C, Malloci G, Piccirilli F, Pengo P, Vaccari L, Geremia S, Vargiu AV, De Zorzi R, Marchesan S. Peptide Stereochemistry Effects from p Ka-Shift to Gold Nanoparticle Templating in a Supramolecular Hydrogel. ACS NANO 2024; 18:3011-3022. [PMID: 38235673 DOI: 10.1021/acsnano.3c08004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
The divergent supramolecular behavior of a series of tripeptide stereoisomers was elucidated through spectroscopic, microscopic, crystallographic, and computational techniques. Only two epimers were able to effectively self-organize into amphipathic structures, leading to supramolecular hydrogels or crystals, respectively. Despite the similarity between the two peptides' turn conformations, stereoconfiguration led to different abilities to engage in intramolecular hydrogen bonding. Self-assembly further shifted the pKa value of the C-terminal side chain. As a result, across the pH range 4-6, only one epimer predominated sufficiently as a zwitterion to reach the critical molar fraction, allowing gelation. By contrast, the differing pKa values and higher dipole moment of the other epimer favored crystallization. The four stereoisomers were further tested for gold nanoparticle (AuNP) formation, with the supramolecular hydrogel being the key to control and stabilize AuNPs, yielding a nanocomposite that catalyzed the photodegradation of a dye. Importantly, the AuNP formation occurred without the use of reductants other than the peptide, and the redox chemistry was investigated by LC-MS, NMR, and infrared scattering-type near field optical microscopy (IR s-SNOM). This study provides important insights for the rational design of simple peptides as minimalistic and green building blocks for functional nanocomposites.
Collapse
Affiliation(s)
- Simone Adorinni
- Chemical Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy
| | - Serena Gentile
- Chemical Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy
| | - Ottavia Bellotto
- Chemical Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy
| | - Slavko Kralj
- Materials Synthesis Department, Jožef Stefan Institute, 1000 Ljubljana, Slovenia
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Evelina Parisi
- Chemical Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy
| | - Maria C Cringoli
- Chemical Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy
| | - Caterina Deganutti
- Chemical Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy
| | - Giuliano Malloci
- Physics Department, University of Cagliari, 09042 Monserrato, Cagliari, Italy
| | - Federica Piccirilli
- Elettra Sincrotrone Trieste, 34149 Basovizza, Italy
- Area Science Park, Padriciano 99, 34149 Trieste, Italy
| | - Paolo Pengo
- Chemical Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy
| | - Lisa Vaccari
- Elettra Sincrotrone Trieste, 34149 Basovizza, Italy
| | - Silvano Geremia
- Chemical Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy
| | - Attilio V Vargiu
- Physics Department, University of Cagliari, 09042 Monserrato, Cagliari, Italy
| | - Rita De Zorzi
- Chemical Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy
| | - Silvia Marchesan
- Chemical Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy
- Unit of Trieste, INSTM, 34127 Trieste, Italy
| |
Collapse
|
44
|
Zhong Y, Zhang Y, Lu B, Deng Z, Zhang Z, Wang Q, Zhang J. Hydrogel Loaded with Components for Therapeutic Applications in Hypertrophic Scars and Keloids. Int J Nanomedicine 2024; 19:883-899. [PMID: 38293605 PMCID: PMC10824614 DOI: 10.2147/ijn.s448667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/12/2024] [Indexed: 02/01/2024] Open
Abstract
Hypertrophic scars and keloids are common fibroproliferative diseases following injury. Patients with pathologic scars suffer from impaired quality of life and psychological health due to appearance disfiguration, itch, pain, and movement disorders. Recently, the advancement of hydrogels in biomedical fields has brought a variety of novel materials, methods and therapeutic targets for treating hypertrophic scars and keloids, which exhibit broad prospects. This review has summarized current research on hydrogels and loaded components used in preventing and treating hypertrophic scars and keloids. These hydrogels attenuate keloid and hypertrophic scar formation and progression by loading organic chemicals, drugs, or bioactive molecules (such as growth factors, genes, proteins/peptides, and stem cells/exosomes). Among them, smart hydrogels (a very promising method for loading many types of bioactive components) are currently favoured by researchers. In addition, combining hydrogels and current therapy (such as laser or radiation therapy, etc.) could improve the treatment of hypertrophic scars and keloids. Then, the difficulties and limitations of the current research and possible suggestions for improvement are listed. Moreover, we also propose novel strategies for facilitating the construction of target multifunctional hydrogels in the future.
Collapse
Affiliation(s)
- Yixiu Zhong
- Department of Dermatology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, People’s Republic of China
| | - Youfan Zhang
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Beibei Lu
- Department of Dermatology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, People’s Republic of China
| | - Zhenjun Deng
- Department of Dermatology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, People’s Republic of China
| | - Zhiwen Zhang
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Qi Wang
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Jianglin Zhang
- Department of Dermatology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, People’s Republic of China
| |
Collapse
|
45
|
Zhang Z, Yang J, Wang H, Wang C, Gu Y, Xu Y, Lee S, Yokota T, Haick H, Someya T, Wang Y. A 10-micrometer-thick nanomesh-reinforced gas-permeable hydrogel skin sensor for long-term electrophysiological monitoring. SCIENCE ADVANCES 2024; 10:eadj5389. [PMID: 38198560 PMCID: PMC10781413 DOI: 10.1126/sciadv.adj5389] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 12/12/2023] [Indexed: 01/12/2024]
Abstract
Hydrogel-enabled skin bioelectronics that can continuously monitor health for extended periods is crucial for early disease detection and treatment. However, it is challenging to engineer ultrathin gas-permeable hydrogel sensors that can self-adhere to the human skin for long-term daily use (>1 week). Here, we present a ~10-micrometer-thick polyurethane nanomesh-reinforced gas-permeable hydrogel sensor that can self-adhere to the human skin for continuous and high-quality electrophysiological monitoring for 8 days under daily life conditions. This research involves two key steps: (i) material design by gelatin-based thermal-dependent phase change hydrogels and (ii) robust thinness geometry achieved through nanomesh reinforcement. The resulting ultrathin hydrogels exhibit a thickness of ~10 micrometers with superior mechanical robustness, high skin adhesion, gas permeability, and anti-drying performance. To highlight the potential applications in early disease detection and treatment that leverage the collective features, we demonstrate the use of ultrathin gas-permeable hydrogels for long-term, continuous high-precision electrophysiological monitoring under daily life conditions up to 8 days.
Collapse
Affiliation(s)
- Zongman Zhang
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, China
- The Wolfson Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Jiawei Yang
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, China
- The Wolfson Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Haoyang Wang
- Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Bunkyo-ku, Tokyo 112-8656, Japan
| | - Chunya Wang
- State Key Laboratory of Heavy Oil Processing, College of Carbon Neutrality Future Technology, China University of Petroleum (Beijing), Beijing 102249, China
| | - Yuheng Gu
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, China
- The Wolfson Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Yumiao Xu
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, China
- The Wolfson Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Sunghoon Lee
- Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Bunkyo-ku, Tokyo 112-8656, Japan
| | - Tomoyuki Yokota
- Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Bunkyo-ku, Tokyo 112-8656, Japan
| | - Hossam Haick
- The Wolfson Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Takao Someya
- Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Bunkyo-ku, Tokyo 112-8656, Japan
| | - Yan Wang
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, China
- The Wolfson Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
- Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, China
- Guangdong Provincial Key Laboratory of Science and Engineering for Health and Medicine, Guangdong Technion-Israel Institute of Technology, Shantou, Guangdong 515063, China
| |
Collapse
|
46
|
Sun L, Zhou J, Lai J, Zheng X, Zhang LM. Multifunctional chitosan-based gel sponge with efficient antibacterial, hemostasis and strong adhesion. Int J Biol Macromol 2024; 256:128505. [PMID: 38040147 DOI: 10.1016/j.ijbiomac.2023.128505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/03/2023]
Abstract
Developing wound dressings with solid adhesive properties that enable efficient, painless hemostasis and prevent wound infection remain a huge challenge. Herein, the tris(hydroxymethyl) methyl glycine-modified chitosan derivative (CTMG) was prepared and freeze-dried after simply adjusting the concentration of CTMG to obtain the chitosan-based gel sponge with desired multi-hollow structure, special antibacterial and biocompatibility. The adhesion strength on porcine skin was impressive up to 113 KPa, much higher than fibrin glue. It can withstand the pressure that far exceeds blood pressure. CTMG exhibits bacteriostatic abilities as demonstrated in a bacteriostatic assay, and alongside biocompatibility, as shown in cytotoxicity and hemolytic assays. Moreover, CTMG gel sponge showed hemostatic properties in both in vivo and in vitro hemostasis experiments. During an experiment on liver hemorrhage in rats, CTMG gel sponge proved to be more effective in controlling bleeding than other hemostatic sponges available on the market, indicating its promising hemostatic properties. CTMG gel sponge possesses the potential to function as a wound dressing and hemostatic material, making it suitable for various clinical applications.
Collapse
Affiliation(s)
- Lanfang Sun
- DSAPM Lab and PCFM Lab, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Junyi Zhou
- DSAPM Lab and PCFM Lab, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Jieying Lai
- DSAPM Lab and PCFM Lab, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Xue Zheng
- DSAPM Lab and PCFM Lab, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Li-Ming Zhang
- DSAPM Lab and PCFM Lab, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China.
| |
Collapse
|
47
|
Wang J, Liu Z, Zhou Y, Zhu S, Gao C, Yan X, Wei K, Gao Q, Ding C, Luo T, Yang R. A multifunctional sensor for real-time monitoring and pro-healing of frostbite wounds. Acta Biomater 2023; 172:330-342. [PMID: 37806374 DOI: 10.1016/j.actbio.2023.10.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/28/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023]
Abstract
Flexible epidermal sensors based on conductive hydrogels hold great promise for various applications, such as wearable electronics and personal healthcare monitoring. However, the integration of conductive hydrogel epidermal sensors into multiple applications remains challenging. In this study, a multifunctional PAAm/PEG/hydrolyzed keratin (Hereinafter referred to as HK)/MXene conductive hydrogel (PPHM hydrogel) was designed as a high-performance therapeutic all-in-one epidermal sensor. This sensor not only accelerates wound healing but also provides wearable human-computer interaction. The developed sensor possesses highly sensitive sensing properties (Gauge Factor = 4.82 at high strain), strong mechanical tensile properties (capable of achieving a maximum elongation at break of 600 %), rapid self-healing capability, stable self-adhesive capability, biocompatibility, freeze resistance at -20 °C, and adjustable photo-thermal conversion capability. This therapeutic all-in-one sensor can sensitively monitor human movements, enabling the detection of small electrophysiological signals for diagnosing relevant activities and diseases. Furthermore, using a rat frostbite model, we demonstrated that the composite hydrogel sensor can serve as an effective wound dressing to accelerate the healing process. This study serves as a valuable reference for the development of multifunctional flexible epidermal sensors for personal smart health monitoring. STATEMENT OF SIGNIFICANCE: Accelerated wound healing reduces the risk of wound infection, and conductive hydrogel-based sensors can monitor physiological signals. The multifunctional application of conductive hydrogel sensors combined with wound diagnostic and therapeutic capabilities can meet personalized medical requirements for wound healing and sensor monitoring. The aim of this study is to develop a multifunctional hydrogel patch. The multifunctional hydrogel can be assembled into a flexible wearable high-performance diagnostic and therapeutic integrated sensor that can effectively accelerate the healing of frostbite wounds and satisfy the real-time monitoring of multi-application scenarios. We expect that this study will inform efforts to integrate wound therapy and sensor monitoring.
Collapse
Affiliation(s)
- Jian Wang
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, China
| | - Zhenyu Liu
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, China
| | - Yang Zhou
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, China
| | - Shilu Zhu
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, China
| | - Chen Gao
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Xinze Yan
- School of Life Science, Anhui Medical University, Hefei, 230032, China
| | - Kun Wei
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, China
| | - Qian Gao
- School of Life Science, Anhui Medical University, Hefei, 230032, China.
| | - Chengbiao Ding
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, China.
| | - Tingting Luo
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, China.
| | - Runhuai Yang
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
48
|
Zhang Y, Zhang R, Tao Y. Conductive, water-retaining and knittable hydrogel fiber from xanthan gum and aniline tetramer modified-polysaccharide for strain and pressure sensors. Carbohydr Polym 2023; 321:121300. [PMID: 37739505 DOI: 10.1016/j.carbpol.2023.121300] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/13/2023] [Accepted: 08/14/2023] [Indexed: 09/24/2023]
Abstract
Herein, we explored strategies for defoaming and controllable adjustment of spinnable and mechanical properties of polyanion polysaccharide-based hydrogels to fabricate conductive, water-retaining, and knittable hydrogel fibers for next-generation flexible electronics. Xanthan gum (XG) and aniline tetramer modified-polysaccharide (TMAT38) were crosslinked with sodium trimetaphosphate (STMP) and subsequently by Fe3+/Fe2+ ions coordination to prepare conductive and spinnable hydrogels. Polypropylene glycol was introduced as chemical antifoam, and solvent displacement method was adopted to improve mechanical and water-retaining properties. The glycerol-immersed XG5-TMAT38-STMP-Fe3+/CA-PPG hydrogel exhibited conductivity of 3.55×10-3-27.30×10-3 S/cm, storage modulus at linear viscoelastic region of 573 Pa-1717 Pa and self-healing percentage of 100 %-108 %. The 2 h glycerol-immersed hydrogel fibers with good flexibility, moisture retention and freezing tolerance were ready to bend and knit into fabrics. The hydrogel fiber braid possessed better conductivity, reliability and durability than the single hydrogel fiber as strain sensors. The hydrogel fiber fabric perceived tiny vibration triggered by swallowing, speaking and writing with good sensitivity and reproducibility. Furthermore, a three-component model was developed to evaluate response sensitivity and recoverability of the hydrogel fiber fabric-based pressure sensors, which facilitated understanding transient response of polymer-based hydrogel strain and pressure sensors.
Collapse
Affiliation(s)
- Yaqi Zhang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430073, China
| | - Ruquan Zhang
- School of Mathematical and Physical Sciences, Wuhan Textile University, 430200 Wuhan, China.
| | - Yongzhen Tao
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430073, China; School of Material Science and Engineering, Wuhan Textile University, Wuhan 430073, China.
| |
Collapse
|
49
|
Chen M, Chen T, Bai J, He S, Luo M, Zeng Y, Peng W, Zhao Y, Wang J, Zhu X, Zhi W, Weng J, Zhang K, Zhang X. A Nature-Inspired Versatile Bio-Adhesive. Adv Healthc Mater 2023; 12:e2301560. [PMID: 37548628 DOI: 10.1002/adhm.202301560] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/17/2023] [Indexed: 08/08/2023]
Abstract
The application of most hydrogel bio-adhesives is greatly limited due to their high swelling, low underwater adhesion, and single function. Herein, a spatial multi-level physical-chemical and bio-inspired in-situ bonding strategy is proposed, to develop a multifunctional hydrogel bio-glue using polyglutamic acid (PGA), tyramine hydrochloride (TYR), and tannic acid (TA) as precursors and 4-(4,6-dimethoxytriazine-2-yl) -4-methylmorpholine hydrochloride(DMTMM) as condensation agent, which is used for tissue adhesion, hemostasis and repair. By introducing TYR and TA into the PGA chain, it is demonstrated that not only can the strong adhesion of bio-glue to the surface of various fresh tissues and wet materials be realized through the synergistic effect of spatial multi-level physical and chemical bonding, but also this glue can be endowed with the functions of anti-oxidation and hemostasis. The excellent performance of such bio-glue in the repair of the wound, liver, and cartilage is achieved, showing a great potential in clinical application for such bio-glue. This study will open up a brand-new avenue for the development of multifunctional hydrogel biological adhesive.
Collapse
Affiliation(s)
- Mingxia Chen
- Key Laboratory of Advance Technologies of Materials, Ministry of Education, College of Medicine, School of Materials Science and Engineering, Southwest Jiaotong University, 610031, Chengdu, China
| | - Taijun Chen
- Chengdu University of Traditional Chinese Medicine, School of Intelligent Medicine, Chengdu, 611137, China
| | - Jiafan Bai
- Key Laboratory of Advance Technologies of Materials, Ministry of Education, College of Medicine, School of Materials Science and Engineering, Southwest Jiaotong University, 610031, Chengdu, China
| | - Siyuan He
- Key Laboratory of Advance Technologies of Materials, Ministry of Education, College of Medicine, School of Materials Science and Engineering, Southwest Jiaotong University, 610031, Chengdu, China
| | - Minyue Luo
- Key Laboratory of Advance Technologies of Materials, Ministry of Education, College of Medicine, School of Materials Science and Engineering, Southwest Jiaotong University, 610031, Chengdu, China
| | - Yili Zeng
- Key Laboratory of Advance Technologies of Materials, Ministry of Education, College of Medicine, School of Materials Science and Engineering, Southwest Jiaotong University, 610031, Chengdu, China
| | - Wenzhen Peng
- Department of Biochemistry and Molecular Biology, College of Basic and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Yuancong Zhao
- Key Laboratory of Advance Technologies of Materials, Ministry of Education, College of Medicine, School of Materials Science and Engineering, Southwest Jiaotong University, 610031, Chengdu, China
| | - Jianxin Wang
- Key Laboratory of Advance Technologies of Materials, Ministry of Education, College of Medicine, School of Materials Science and Engineering, Southwest Jiaotong University, 610031, Chengdu, China
| | - Xiangdong Zhu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Wei Zhi
- Key Laboratory of Advance Technologies of Materials, Ministry of Education, College of Medicine, School of Materials Science and Engineering, Southwest Jiaotong University, 610031, Chengdu, China
| | - Jie Weng
- Key Laboratory of Advance Technologies of Materials, Ministry of Education, College of Medicine, School of Materials Science and Engineering, Southwest Jiaotong University, 610031, Chengdu, China
| | - Kai Zhang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
50
|
Askari E, Shokrollahi Barough M, Rahmanian M, Mojtabavi N, Sarrami Forooshani R, Seyfoori A, Akbari M. Cancer Immunotherapy Using Bioengineered Micro/Nano Structured Hydrogels. Adv Healthc Mater 2023; 12:e2301174. [PMID: 37612251 PMCID: PMC11468077 DOI: 10.1002/adhm.202301174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/15/2023] [Indexed: 08/25/2023]
Abstract
Hydrogels, a class of materials with a 3D network structure, are widely used in various applications of therapeutic delivery, particularly cancer therapy. Micro and nanogels as miniaturized structures of the bioengineered hydrogels may provide extensive benefits over the common hydrogels in encapsulation and controlled release of small molecular drugs, macromolecular therapeutics, and even cells. Cancer immunotherapy is rapidly developing, and micro/nanostructured hydrogels have gained wide attention regarding their engineered payload release properties that enhance systemic anticancer immunity. Additionally, they are a great candidate due to their local administration properties with a focus on local immune cell manipulation in favor of active and passive immunotherapies. Although applied locally, such micro/nanostructured can also activate systemic antitumor immune responses by releasing nanovaccines safely and effectively inhibiting tumor metastasis and recurrence. However, such hydrogels are mostly used as locally administered carriers to stimulate the immune cells by releasing tumor lysate, drugs, or nanovaccines. In this review, the latest developments in cancer immunotherapy are summarized using micro/nanostructured hydrogels with a particular emphasis on their function depending on the administration route. Moreover, the potential for clinical translation of these hydrogel-based cancer immunotherapies is also discussed.
Collapse
Affiliation(s)
- Esfandyar Askari
- Laboratory for Innovations in Micro Engineering (LiME)Department of Mechanical EngineeringUniversity of VictoriaVictoriaBC V8P 5C2Canada
| | - Mahdieh Shokrollahi Barough
- Laboratory for Innovations in Micro Engineering (LiME)Department of Mechanical EngineeringUniversity of VictoriaVictoriaBC V8P 5C2Canada
- Department of ImmunologySchool of MedicineIran University of Medical SciencesTehran1449614535Iran
- ATMP DepartmentBreast Cancer Research CenterMotamed Cancer InstituteACECRTehran1517964311Iran
| | - Mehdi Rahmanian
- Biomaterials and Tissue Engineering DepartmentBreast Cancer Research CenterMotamed Cancer InstituteACECRTehran1517964311Iran
| | - Nazanin Mojtabavi
- Department of ImmunologySchool of MedicineIran University of Medical SciencesTehran1449614535Iran
| | | | - Amir Seyfoori
- Laboratory for Innovations in Micro Engineering (LiME)Department of Mechanical EngineeringUniversity of VictoriaVictoriaBC V8P 5C2Canada
- Biomaterials and Tissue Engineering DepartmentBreast Cancer Research CenterMotamed Cancer InstituteACECRTehran1517964311Iran
- Center for Advanced Materials and Related TechnologiesUniversity of VictoriaVictoriaBC V8P 5C2Canada
| | - Mohsen Akbari
- Laboratory for Innovations in Micro Engineering (LiME)Department of Mechanical EngineeringUniversity of VictoriaVictoriaBC V8P 5C2Canada
- Center for Advanced Materials and Related TechnologiesUniversity of VictoriaVictoriaBC V8P 5C2Canada
- Center for Biomedical ResearchUniversity of VictoriaVictoriaBC V8P 5C2Canada
| |
Collapse
|