1
|
Hatamfayazi M, Mahdavi M, Moradi Dehaghi S, Khoshneviszadeh M, Iraji A. Synthesis and biological assessment of benzimidazole-acrylonitrile-1,2,3-triazole derivatives as α-glucosidase inhibitors. Bioorg Chem 2024; 154:108060. [PMID: 39719821 DOI: 10.1016/j.bioorg.2024.108060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/22/2024] [Accepted: 12/10/2024] [Indexed: 12/26/2024]
Abstract
In the pursuit of developing potent α-glucosidase inhibitors for managing diabetes, a series of novel benzimidazole-acrylonitrile-1,2,3-triazole derivatives were designed. Sixteen derivatives (12a-p) were synthesized by varying substituents on the phenyl ring of the N-phenylacetamide moiety. Among these, compound 12m emerged as highly effective against α-glucosidase, displaying an IC50 value of 6.0 ± 0.2 μM, significantly outperforming the positive control acarbose (IC50 = 752.0 ± 2.0 μM). The kinetic evaluation revealed that 12m acts as a reversible competitive inhibitor with a Ki value of 4.5 µM. Molecular modeling and dynamics simulations underscored favorable binding energies, highlighting interactions of these compounds with critical amino acids within the α-glucosidase active site. These findings position 12m as a promising candidate for the development of α-glucosidase inhibitors with potent anti-diabetic potential.
Collapse
Affiliation(s)
- Mahdi Hatamfayazi
- Faculty of Chemistry, Tehran North Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mehdi Khoshneviszadeh
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Aida Iraji
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Persian Medicine, School of Medicine, Research Center for Traditional Medicine and History of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
2
|
Ghasemi M, Iraji A, Dehghan M, Lotfi Nosood Y, Irajie C, Bagherian Khouzani N, Mojtabavi S, Faramarzi MA, Mahdavi M, Al-Harrasi A. Rational design of new quinoline-benzimidazole scaffold bearing piperazine acetamide derivatives as antidiabetic agents. Bioorg Chem 2024; 153:107908. [PMID: 39509791 DOI: 10.1016/j.bioorg.2024.107908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/14/2024] [Accepted: 10/20/2024] [Indexed: 11/15/2024]
Abstract
In this study, a series of fifteen compounds (7a-o) based on a quinoline-benzimidazole scaffold bearing piperazine acetamide derivatives were synthesized and evaluated for their potential as α-glucosidase inhibitors, which are important therapeutic agents in the management of type 2 diabetes mellitus. Among the synthesized compounds, 7m exhibited the most potent inhibitory activity, demonstrating a 28-fold greater efficacy than the standard clinical inhibitor, acarbose. Molecular docking studies indicated strong binding interactions between 7m and the α-glucosidase active site, including hydrogen bonding, π-π stacking, and π-cation interactions. Furthermore, molecular dynamics simulations revealed that compound 7m formed a highly stable complex with the enzyme. These findings suggest that compound 7m is a promising candidate for further development as an effective antidiabetic agent, offering valuable insights into the design of potent α-glucosidase inhibitors based on the quinoline-benzimidazole framework.
Collapse
Affiliation(s)
- Mehran Ghasemi
- Natural and Medical Sciences Research Center, University of Nizwa, P. O. Box 33, Birkat Al Mauz, Nizwa, Oman
| | - Aida Iraji
- Research Center for Traditional Medicine and History of Medicine, Department of Persian Medicine, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Dehghan
- School of Chemistry, College of Science, University of Tehran, 14155-6455 Tehran, Iran
| | - Yazdanbakhsh Lotfi Nosood
- Natural and Medical Sciences Research Center, University of Nizwa, P. O. Box 33, Birkat Al Mauz, Nizwa, Oman
| | - Cambyz Irajie
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nafiseh Bagherian Khouzani
- Department of Pharmaceutical Chemistry, College of Pharmacy, Al-Zahraa University for Women, Karbala, Iraq
| | - Somayeh Mojtabavi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Faramarzi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, P. O. Box 33, Birkat Al Mauz, Nizwa, Oman.
| |
Collapse
|
3
|
Sankar R, Sharmila TM. Co, Cu, Ni, and Zn complexes of N-[(3-phenoxy phenyl)methylidene]-l-valine as α-glycosidase and α-amylase inhibitors: Synthesis, molecular docking & antimicrobial evaluation. Bioorg Chem 2024; 154:108010. [PMID: 39631113 DOI: 10.1016/j.bioorg.2024.108010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 11/23/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024]
Abstract
The ligand N-[(3-phenoxyphenyl)methylidene]-l-valine (HL) and its Co, Ni, Cu, and Zn derivatives (1-4) were synthesized and characterized. These compounds were tested for α-glucosidase and α-amylase inhibition activity, showing IC50 values of 10.51-51.36 µg/mL and 15.38-46.74 µg/mL, respectively, compared to Ascarbose. In silico molecular docking studies revealed strong binding affinities for α-glucosidase (-207.78 to -222.04 kcal/mol) and α-amylase (-159.5 to -161.82 kcal/mol), and potential anticancer activity against CDK2 (-119.6 to -126.53 kcal/mol). Antimicrobial assays against E. coli and C. albicans demonstrated significant activity, with inhibition zones of 12.5-16.8 mm and 13.5-20.05 mm, respectively. The results reveal a fascinating array of pharmacological properties of these compounds and suggest their potential for future drug development.
Collapse
Affiliation(s)
- Raji Sankar
- Department of Chemistry, Noorul Islaam Centre for Higher Education, Kumaracoil 629180, Kanyakumari District, Tamil Nadu, India.
| | - T M Sharmila
- Department of Chemistry, Noorul Islaam Centre for Higher Education, Kumaracoil 629180, Kanyakumari District, Tamil Nadu, India
| |
Collapse
|
4
|
Soleimani Z, Mohammadi M, Halimi M, Safapoor S, Dastyafteh N, Safaie E, Mojtabavi S, Faramarzi MA, Bozorgi-Koushalshahi M, Larijani B, Mohammadi-Khanaposhtani M, Mahdavi M. Design of new α-glucosidase inhibitors based on the bis-4-hydroxycoumarin skeleton: Synthesis, evaluation, and in silico studies. Sci Rep 2024; 14:18693. [PMID: 39134641 PMCID: PMC11319329 DOI: 10.1038/s41598-024-69592-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 08/06/2024] [Indexed: 08/15/2024] Open
Abstract
In this work, we have reported the design, synthesis, in vitro, and in silico enzymatic evaluation of new bis-4-hydroxycoumarin-based phenoxy-1,2,3-triazole-N-phenylacetamide derivatives 5a-m as potent α-glucosidase inhibitors. All the synthesized analogues showed high inhibition effects against α-glucosidase (IC50 values ranging between 6.0 ± 0.2 and 85.4 ± 2.3 µM) as compared to the positive control acarbose (IC50 = 750.0 ± 0.6 µM). Among the newly synthesized compounds 5a-m, 2,4-dichloro-N-phenylacetamide derivative 5i with inhibition effect around 125-folds more than the acarbose was identified as the most potent entry. A structure-activity relationship (SAR) study about the title compounds 5a-m demonstrated that the inhibition effects of these compounds depend on the pattern of substitution on the N-phenylacetamide ring. The interaction modes and binding energies in the active site of enzyme of the important analogues (in term of SAR study) were evaluated through molecular docking study. Molecular dynamics and prediction of pharmacokinetic properties and toxicity of the most potent compound 5i also evaluated and the obtained data was compared with the acarbose.
Collapse
Affiliation(s)
- Zahra Soleimani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mohammadi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Halimi
- Department of Biology, Babol Branch, Islamic Azad University, Babol, Iran
| | - Sajedeh Safapoor
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Navid Dastyafteh
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Elham Safaie
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Somayeh Mojtabavi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy and Biotechnology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Faramarzi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy and Biotechnology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Bozorgi-Koushalshahi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Mohammadi-Khanaposhtani
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Biyiklioglu Z, Bas H, Seyhan G, Barut B. Non-aggregated and water soluble non-peripherally octa substituted Co(II) and Cu(II) phthalocyanines: Synthesis and α-glucosidase inhibitory effects. J Inorg Biochem 2024; 257:112581. [PMID: 38718499 DOI: 10.1016/j.jinorgbio.2024.112581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/29/2024] [Accepted: 04/29/2024] [Indexed: 06/09/2024]
Abstract
Type 2 diabetes (T2DM) is a progressive metabolic disease associated with high blood sugar levels that affects 537 million people worldwide. This study aim is to investigate the potential for use in the treatment of T2DM by examining the in vitro glucosidase inhibitory effects of novel synthesized metallophthalocyanines. For this reason, we have synthesized cobalt(II), copper(II) phthalocyanines (3PY-ON-CoQ, 3PY-ON-CuQ) that are both water-soluble and do not aggregate in water. These compounds were characterized by using various spectroscopic methods. The α-glucosidase inhibitory properties of 3PY-ON-CoQ and 3PY-ON-CuQ were carried out using the spectrophotometric method. Then, Lineweaver-Burk and Dixon plots were examined to determine the inhibitory type and constant (Ki). The IC50 values of 3PY-ON-CoQ and 3PY-ON-CuQ were 6.85 ± 1.25 μM and 55.09 ± 2.64 μM, respectively. Both compounds displayed mixed inhibitory effects on α-glucosidase according to Lineweaver-Burk plots. The Ki values of 3PY-ON-CoQ and 3PY-ON-CuQ were calculated as 6.30 ± 1.55 μM and 54.25 ± 1.20 μM, respectively. The results of this work may lead to the discovery of new compounds for the treatment of T2DM.
Collapse
Affiliation(s)
- Zekeriya Biyiklioglu
- Karadeniz Technical University, Faculty of Science, Department of Chemistry, Trabzon, Türkiye.
| | - Hüseyin Bas
- Karadeniz Technical University, Faculty of Science, Department of Chemistry, Trabzon, Türkiye
| | - Gökçe Seyhan
- Karadeniz Technical University, Faculty of Pharmacy, Department of Biochemistry, Trabzon, Türkiye
| | - Burak Barut
- Karadeniz Technical University, Faculty of Pharmacy, Department of Biochemistry, Trabzon, Türkiye
| |
Collapse
|
6
|
Feng Y, Liu J, Gong L, Han Z, Zhang Y, Li R, Liao H. Inonotus obliquus (Chaga) against HFD/STZ-induced glucolipid metabolism disorders and abnormal renal functions by regulating NOS-cGMP-PDE5 signaling pathway. Chin J Nat Med 2024; 22:619-631. [PMID: 39059831 DOI: 10.1016/s1875-5364(24)60571-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Indexed: 07/28/2024]
Abstract
Our prior investigations have established that Inonotus obliquus (Chaga) possesses hypoglycemic effects. Persistent hyperglycemia is known to precipitate renal function abnormalities. The functionality of the kidneys is intricately linked to the levels of cyclic guanosine-3',5'-monophosphate (cGMP), which are influenced by the activities of nitric oxide synthase (NOS) and phosphodiesterase (PDE). Enhanced cGMP levels can be achieved either through the upregulation of NOS activity or the downregulation of PDE activity. The objective of the current study is to elucidate the effects of Chaga on disorders of glucolipid metabolism and renal abnormalities in rats with type 2 diabetes mellitus (T2DM), while concurrently examining the NOS-cGMP-PDE5 signaling pathway. A model of T2DM was developed in rats using a high-fat diet (HFD) combined with streptozotocin (STZ) administration, followed by treatment with Chaga extracts at doses of 50 and 100 mg·kg-1 for eight weeks. The findings revealed that Chaga not only mitigated metabolic dysfunctions, evidenced by improvements in fasting blood glucose, total cholesterol, triglycerides, and insulin resistance, but also ameliorated renal function markers, including serum creatinine, urine creatinine (UCr), blood urea nitrogen, 24-h urinary protein, and estimated creatinine clearance. Additionally, enhancements in glomerular volume, GBM thickness, podocyte foot process width (FPW), and the mRNA and protein expressions of podocyte markers, such as nephrin and wilms tumor-1, were observed. Chaga was found to elevate cGMP levels in both serum and kidney tissues by increasing mRNA and protein expressions of renal endothelial NOS and neural NOS, while simultaneously reducing the expressions of renal inducible NOS and PDE5. In summary, Chaga counteracts HFD/STZ-induced glucolipid metabolism and renal function disturbances by modulating the NOS-cGMP-PDE5 signaling pathway. This research supports the potential application of Chaga in the clinical prevention and treatment of T2DM and diabetic nephropathy (DN), with cGMP serving as a potential therapeutic target.
Collapse
Affiliation(s)
- Yating Feng
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China
| | - Jing Liu
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China
| | - Le Gong
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China
| | - Zhaodi Han
- Drug Clinical Trial Institution, The Fifth Hospital of Shanxi Medical University (Shanxi Provincial People's Hospital), Taiyuan 030012, China
| | - Yan Zhang
- Department of Nephrology, The Fifth Hospital of Shanxi Medical University (Shanxi Provincial People's Hospital), Taiyuan 030012, China
| | - Rongshan Li
- Department of Nephrology, The Fifth Hospital of Shanxi Medical University (Shanxi Provincial People's Hospital), Taiyuan 030012, China
| | - Hui Liao
- Drug Clinical Trial Institution, The Fifth Hospital of Shanxi Medical University (Shanxi Provincial People's Hospital), Taiyuan 030012, China.
| |
Collapse
|
7
|
Makanyane DM, Maikoo S, Van Heerden FR, Rhyman L, Ramasami P, Mabuza LP, Ngubane P, Khathi A, Mambanda A, Booysen IN. Bovine serum albumin uptake and polypeptide disaggregation studies of hypoglycemic ruthenium(II) uracil Schiff-base complexes. J Inorg Biochem 2024; 255:112541. [PMID: 38554578 DOI: 10.1016/j.jinorgbio.2024.112541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 02/13/2024] [Accepted: 03/22/2024] [Indexed: 04/01/2024]
Abstract
Our prior studies have illustrated that the uracil ruthenium(II) diimino complex, [Ru(H3ucp)Cl(PPh3)] (1) (H4ucp = 2,6-bis-((6-amino-1,3-dimethyluracilimino)methylene)pyridine) displayed high hypoglycemic effects in diet-induced diabetic rats. To rationalize the anti-diabetic effects of 1, three new derivatives have been prepared, cis-[Ru(bpy)2(urdp)]Cl2 (2) (urdp = 2,6-bis-((uracilimino)methylene)pyridine), trans-[RuCl2(PPh3)(urdp)] (3), and cis-[Ru(bpy)2(H4ucp)](PF6)2 (4). Various physicochemical techniques were utilized to characterize the structures of the novel ruthenium compounds. Prior to biomolecular interactions or in vitro studies, the stabilities of 1-4 were monitored in anhydrous DMSO, aqueous phosphate buffer containing 2% DMSO, and dichloromethane (DCM) via UV-Vis spectrophotometry. Time-dependent stability studies showed ligand exchange between DMSO nucleophiles and chloride co-ligands of 1 and 3, which was suppressed in the presence of an excess amount of chloride ions. In addition, the metal complexes 1 and 3 are stable in both DCM and an aqueous phosphate buffer containing 2% DMSO. In the case of compounds 2 and 4 with no chloride co-ligands within their coordination spheres, high stability in aqueous phosphate buffer containing 2% DMSO was observed. Fluorescence emission titrations of the individual ruthenium compounds with bovine serum albumin (BSA) showed that the metal compounds interact non-discriminately within the protein's hydrophobic cavities as moderate to strong binders. The metal complexes were capable of disintegrating mature amylin amyloid fibrils. In vivo glucose metabolism studies in liver (Chang) cell lines confirmed enhanced glucose metabolism as evidenced by the increased glucose utilization and glycogen synthesis in liver cell lines in the presence of complexes 2-4.
Collapse
Affiliation(s)
- Daniel M Makanyane
- School of Chemistry and Physics, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - Sanam Maikoo
- School of Chemistry and Physics, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - Fanie R Van Heerden
- School of Chemistry and Physics, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - Lydia Rhyman
- Computational Chemistry Group, Department of Chemistry, Faculty of Science, University of Mauritius, Réduit 80837, Mauritius; Centre of Natural Product, Department of Chemical Sciences, University of Johannesburg, Doornfontein, Johannesburg 2028, South Africa
| | - Ponnadurai Ramasami
- Computational Chemistry Group, Department of Chemistry, Faculty of Science, University of Mauritius, Réduit 80837, Mauritius; Centre of Natural Product, Department of Chemical Sciences, University of Johannesburg, Doornfontein, Johannesburg 2028, South Africa
| | - Lindokuhle P Mabuza
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa.
| | - Phikelelani Ngubane
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Andile Khathi
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Allen Mambanda
- School of Chemistry and Physics, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - Irvin N Booysen
- School of Chemistry and Physics, University of KwaZulu-Natal, Pietermaritzburg, South Africa.
| |
Collapse
|
8
|
Łyczko K, Pogorzelska A, Częścik U, Koronkiewicz M, Rode JE, Bednarek E, Kawęcki R, Węgrzyńska K, Baraniak A, Milczarek M, Dobrowolski JC. Tricarbonyl rhenium(i) complexes with 8-hydroxyquinolines: structural, chemical, antibacterial, and anticancer characteristics. RSC Adv 2024; 14:18080-18092. [PMID: 38841398 PMCID: PMC11152041 DOI: 10.1039/d4ra03141e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 05/24/2024] [Indexed: 06/07/2024] Open
Abstract
Twelve tricarbonyl rhenium(i) complexes in the '2 + 1' system with the anionic bidentate N,O-donor ligand (deprotonated 8-hydroxyquinoline (HQ) or its 2-methyl (MeHQ) or 5-chloro (ClHQ) derivative) and neutral N-donor diazoles (imidazole (Him), 2-methylimidazole (MeHim), 3,5-dimethylpyrazole (Hdmpz), and 3-phenylpyrazole (HPhpz)) were synthesized: [Re(CO)3(LN,O)LN] (LN,O = Q-, MeQ-, ClQ-; LN = Him, MeHim, Hdmpz, HPhpz). Their crystal structures were determined by the scXRD method, compared with the DFT-calculated ones, and characterized by analytical (EA) and spectroscopic techniques (FT-IR, NMR, and UV-Vis) interpreted with DFT and TD-DFT calculations. Most of the Re(i) complexes did not show relevant antibacterial activity against Gram-negative and Gram-positive bacterial strains. Only [Re(CO)3(MeQ)Him] demonstrated significant action 4-fold better against Gram-negative Pseudomonas aeruginosa than the free MeHQ ligand. The cytotoxicity of the compounds was estimated using human acute promyelocytic leukemia (HL-60), ovarian (SKOV-3), prostate (PC-3), and breast (MCF-7) cancer, and breast non-cancerous (MCF-10A) cell lines. Only HQ and ClHQ ligands and [Re(CO)3(Q)Hdmpz] complex had good selectivity toward MCF-7 cell line. HL-60 cells were sensitive to all complexes (IC50 = 1.5-14 μM). Still, pure HQ and ClHQ ligands were slightly more active than the complexes.
Collapse
Affiliation(s)
- Krzysztof Łyczko
- Institute of Nuclear Chemistry and Technology Dorodna 16 03-195 Warsaw Poland
| | - Anna Pogorzelska
- National Medicines Institute Chełmska 30/34 00-725 Warsaw Poland
| | - Urszula Częścik
- National Medicines Institute Chełmska 30/34 00-725 Warsaw Poland
| | | | - Joanna E Rode
- Institute of Nuclear Chemistry and Technology Dorodna 16 03-195 Warsaw Poland
| | | | - Robert Kawęcki
- Faculty of Science, University of Siedlce 3 Maja 54 08-110 Siedlce Poland
| | | | - Anna Baraniak
- National Medicines Institute Chełmska 30/34 00-725 Warsaw Poland
| | | | | |
Collapse
|
9
|
Avcı D, Özge Ö, Sönmez F, Tamer Ö, Başoğlu A, Atalay Y, Kurt BZ. In vitro α-glucosidase, docking and density functional theory studies on novel azide metal complexes. Future Med Chem 2024; 16:1109-1125. [PMID: 38916564 PMCID: PMC11229344 DOI: 10.1080/17568919.2024.2342650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/04/2024] [Indexed: 06/26/2024] Open
Abstract
Aim: The goal of this study is to synthesize new metal complexes containing N-methyl-1-(pyridin-2-yl)methanimine and azide ligands as α-glucosidase inhibitors for Type 2 diabetes. Materials & methods: The target complexes (12-16) were synthesized by reacting N-methyl-1-(pyridin-2-yl)methanimine (L1) with sodium azide in the presence of corresponding metal salts. The investigation of target protein interactions, vibrational, electronic and nonlinear optical properties for these complexes was performed by molecular docking and density functional theory studies. Results: Among these complexes, complex 13 (IC50 = 0.2802 ± 0.62 μM) containing Hg ion showed the highest α-glucosidase inhibitory property. On the other hand, significant results were detected for complexes containing Cu and Ag ions. Conclusion: Complex 13 may be an alternate anti-diabetic inhibitor according to in vitro/docking results.
Collapse
Affiliation(s)
- Davut Avcı
- Sakarya University, Faculty of Science, Department of Physics, 54187, Sakarya, Turkey
| | - Özgen Özge
- Sakarya University, Faculty of Science, Department of Physics, 54187, Sakarya, Turkey
- Cappadocia University, Health Vocational School, Ürgüp, 50400, Nevşehir, Turkey
| | - Fatih Sönmez
- Sakarya University of Applied Sciences, Pamukova Vocational High School, 54055, Sakarya, Turkey
| | - Ömer Tamer
- Sakarya University, Faculty of Science, Department of Physics, 54187, Sakarya, Turkey
| | - Adil Başoğlu
- Sakarya University, Faculty of Science, Department of Physics, 54187, Sakarya, Turkey
| | - Yusuf Atalay
- Sakarya University, Faculty of Science, Department of Physics, 54187, Sakarya, Turkey
| | - Belma Zengin Kurt
- Bezmialem Vakif University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, 34093Istanbul, Turkey
| |
Collapse
|
10
|
Khalili Ghomi M, Noori M, Mirahmad M, Iraji A, Sadr AS, Dastyafteh N, Asili P, Gholami M, Javanshir S, Lotfi M, Mojtabavi S, Faramarzi MA, Asadi M, Nasli-Esfahani E, Palimi M, Larijani B, Meshkatalsadat MH, Mahdavi M. Evaluation of novel 2-(quinoline-2-ylthio)acetamide derivatives linked to diphenyl-imidazole as α-glucosidase inhibitors: Insights from in silico, in vitro, and in vivo studies on their anti-diabetic properties. Eur J Med Chem 2024; 269:116332. [PMID: 38508120 DOI: 10.1016/j.ejmech.2024.116332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 03/05/2024] [Accepted: 03/13/2024] [Indexed: 03/22/2024]
Abstract
The inhibition of the α-glucosidase enzyme is crucial for targeting type 2 diabetes mellitus (DM). This study introduces a series of synthetic analogs based on thiomethylacetamide-quinoline derivatives linked to diphenyl-imidazole as highly potential α-glucosidase inhibitors. Twenty derivatives were synthesized and screened in vitro against α-glucosidase, revealing IC50 values ranging from 0.18 ± 0.00 to 2.10 ± 0.07 μM, in comparison to the positive control, acarbose. Among these derivatives, compound 10c (IC50 = 0.180 μM) demonstrated the highest potency and revealed a competitive inhibitory mechanism in kinetic studies (Ki = 0.15 μM). Docking and molecular dynamic evaluations elucidated the binding mode of 10c with the active site residues of the α-glucosidase enzyme. Moreover, in vivo assessments on a rat model of DM affirmed the anti-diabetic efficacy of 10c, evidenced by reduced fasting and overall blood glucose levels. The histopathological evaluation enhanced pancreatic islet architecture and hepatocytes in liver sections. In conclusion, novel 2-(quinoline-2-ylthio)acetamide derivatives as potent α-glucosidase inhibitors were developed. Compound 10c emerged as a promising candidate for diabetes management, warranting further investigation for potential clinical applications and mechanistic insights.
Collapse
Affiliation(s)
- Minoo Khalili Ghomi
- Department of Chemistry, Qom University of Technology, Qom, Iran; Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Milad Noori
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran; Pharmaceutical and Heterocyclic Chemistry Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Maryam Mirahmad
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Aida Iraji
- Research Center for Traditional Medicine and History of Medicine, Department of Persian Medicine, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Shahir Sadr
- Computer Science Department, Mathematical Sciences Faculty, Shahid Beheshti University, Tehran, Iran; School of Biological Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | - Navid Dastyafteh
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran; Pharmaceutical and Heterocyclic Chemistry Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Pooria Asili
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Gholami
- Toxicology and Diseases Specialty Group, Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Shahrzad Javanshir
- Pharmaceutical and Heterocyclic Chemistry Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Maryam Lotfi
- Department of Pathology, Amir-Alam Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Somayeh Mojtabavi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Faramarzi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Asadi
- Department of Medicinal Chemistry, School of Pharmacy-International Campus, Iran University of Medical Science, Tehran, Iran
| | - Ensieh Nasli-Esfahani
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdie Palimi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
Ganjeh MS, Mazlomifar A, Shahvelayti AS, Moghaddam SK. Coumarin linked to 2-phenylbenzimidazole derivatives as potent α-glucosidase inhibitors. Sci Rep 2024; 14:7408. [PMID: 38548784 PMCID: PMC10978946 DOI: 10.1038/s41598-024-57673-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 03/20/2024] [Indexed: 04/01/2024] Open
Abstract
α-Glucosidase inhibitors have emerged as crucial agents in the management of type 2 diabetes mellitus. In the present study, a new series of coumarin-linked 2-phenylbenzimidazole derivatives 5a-m was designed, synthesized, and evaluated as anti-α-glucosidase agents. Among these derivatives, compound 5k (IC50 = 10.8 µM) exhibited a significant inhibitory activity in comparison to the positive control acarbose (IC50 = 750.0 µM). Through kinetic analysis, it was revealed that compound 5k exhibited a competitive inhibition pattern against α-glucosidase. To gain insights into the interactions between the title compounds and α-glucosidase molecular docking was employed. The obtained results highlighted crucial interactions that contribute to the inhibitory activities of the compounds against α-glucosidase. These derivatives show immense potential as promising starting points for developing novel α-glucosidase inhibitors.
Collapse
Affiliation(s)
- Mina Sadeghi Ganjeh
- Department of Chemistry, College of Basic Sciences, Yadegar-e-Imam Khomeini (RAH) Shahre Rey Branch, Islamic Azad University, Tehran, Iran
| | - Ali Mazlomifar
- Department of Chemistry, College of Basic Sciences, Yadegar-e-Imam Khomeini (RAH) Shahre Rey Branch, Islamic Azad University, Tehran, Iran.
| | - Ashraf Sadat Shahvelayti
- Department of Chemistry, College of Basic Sciences, Yadegar-e-Imam Khomeini (RAH) Shahre Rey Branch, Islamic Azad University, Tehran, Iran
| | - Shiva Khalili Moghaddam
- Department of Biology, College of Basic Sciences, Yadegar-e-Imam Khomeini (RAH) Shahre Rey Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
12
|
Azmi A, Noori M, Khalili Ghomi M, Nazari Montazer M, Iraji A, Dastyafteh N, Oliyaei N, Khoramjouy M, Rezaei Z, Javanshir S, Mojtabavi S, Faramarzi MA, Asadi M, Faizi M, Mahdavi M. Alpha-glucosidase inhibitory and hypoglycemic effects of imidazole-bearing thioquinoline derivatives with different substituents: In silico, in vitro, and in vivo evaluations. Bioorg Chem 2024; 144:107106. [PMID: 38244380 DOI: 10.1016/j.bioorg.2024.107106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/29/2023] [Accepted: 01/06/2024] [Indexed: 01/22/2024]
Abstract
Type 2 diabetes mellitus (T2DM) is a chronic metabolic disorder characterized by high blood sugar levels. It was shown that modulating the activity of α-glucosidase, an enzyme involved in carbohydrate digestion and absorption, can improve blood sugar control and overall metabolic health in individuals with T2DM. As a result, in the current study, a series of imidazole bearing different substituted thioquinolines were designed and synthesized as α-glucosidase inhibitors. All derivatives exhibited significantly better potency (IC50 = 12.1 ± 0.2 to 102.1 ± 4.9 µM) compared to the standard drug acarbose (IC50 = 750.0 ± 5.0 µM). 8g as the most potent analog, indicating a competitive inhibition with Ki = 9.66 µM. Also, the most potent derivative was subjected to molecular docking and molecular dynamic simulation against α-glucosidase to determine its mode of action in the enzyme and study the complex's behavior over time. In vivo studies showed that 8g did not cause acute toxicity at 2000 mg/kg doses. Additionally, in a diabetic rat model, treatment with 8g significantly reduced fasting blood glucose levels and decreased blood glucose levels following sucrose loading compared to acarbose, a standard drug used for blood sugar control. The findings suggest that the synthesized compound 8g holds promise as an α-glucosidase inhibitor for improving blood sugar control and metabolic health.
Collapse
Affiliation(s)
- Anita Azmi
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Milad Noori
- Pharmaceutical and Heterocyclic Chemistry Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran; Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Minoo Khalili Ghomi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Nazari Montazer
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Aida Iraji
- Research Center for Traditional Medicine and History of Medicine, Department of Persian Medicine, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Navid Dastyafteh
- Pharmaceutical and Heterocyclic Chemistry Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran; Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Najmeh Oliyaei
- Department of Food Science and Technology, School of Agriculture Shiraz University, Shiraz, Iran
| | - Mona Khoramjouy
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Rezaei
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahrzad Javanshir
- Pharmaceutical and Heterocyclic Chemistry Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Somayeh Mojtabavi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Faramarzi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Asadi
- Department of Medicinal Chemistry, School of Pharmacy-International Campus, Iran University of Medical Science, Tehran, Iran
| | - Mehrdad Faizi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
13
|
Kim Y, Li H, Choi J, Boo J, Jo H, Hyun JY, Shin I. Glycosidase-targeting small molecules for biological and therapeutic applications. Chem Soc Rev 2023; 52:7036-7070. [PMID: 37671645 DOI: 10.1039/d3cs00032j] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
Glycosidases are ubiquitous enzymes that catalyze the hydrolysis of glycosidic linkages in oligosaccharides and glycoconjugates. These enzymes play a vital role in a wide variety of biological events, such as digestion of nutritional carbohydrates, lysosomal catabolism of glycoconjugates, and posttranslational modifications of glycoproteins. Abnormal glycosidase activities are associated with a variety of diseases, particularly cancer and lysosomal storage disorders. Owing to the physiological and pathological significance of glycosidases, the development of small molecules that target these enzymes is an active area in glycoscience and medicinal chemistry. Research efforts carried out thus far have led to the discovery of numerous glycosidase-targeting small molecules that have been utilized to elucidate biological processes as well as to develop effective chemotherapeutic agents. In this review, we describe the results of research studies reported since 2018, giving particular emphasis to the use of fluorescent probes for detection and imaging of glycosidases, activity-based probes for covalent labelling of these enzymes, glycosidase inhibitors, and glycosidase-activatable prodrugs.
Collapse
Affiliation(s)
- Yujun Kim
- Department of Chemistry, Yonsei University, 03722 Seoul, Republic of Korea.
| | - Hui Li
- Department of Chemistry, Yonsei University, 03722 Seoul, Republic of Korea.
| | - Joohee Choi
- Department of Chemistry, Yonsei University, 03722 Seoul, Republic of Korea.
| | - Jihyeon Boo
- Department of Chemistry, Yonsei University, 03722 Seoul, Republic of Korea.
| | - Hyemi Jo
- Department of Chemistry, Yonsei University, 03722 Seoul, Republic of Korea.
- Department of Drug Discovery, Data Convergence Drug Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea.
| | - Ji Young Hyun
- Department of Drug Discovery, Data Convergence Drug Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea.
| | - Injae Shin
- Department of Chemistry, Yonsei University, 03722 Seoul, Republic of Korea.
| |
Collapse
|
14
|
Luo X, Sun J, Pan H, Zhou D, Huang P, Tang J, Shi R, Ye H, Zhao Y, Zhang A. Establishment and health management application of a prediction model for high-risk complication combination of type 2 diabetes mellitus based on data mining. PLoS One 2023; 18:e0289749. [PMID: 37552706 PMCID: PMC10409378 DOI: 10.1371/journal.pone.0289749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 07/26/2023] [Indexed: 08/10/2023] Open
Abstract
In recent years, the prevalence of T2DM has been increasing annually, in particular, the personal and socioeconomic burden caused by multiple complications has become increasingly serious. This study aimed to screen out the high-risk complication combination of T2DM through various data mining methods, establish and evaluate a risk prediction model of the complication combination in patients with T2DM. Questionnaire surveys, physical examinations, and biochemical tests were conducted on 4,937 patients with T2DM, and 810 cases of sample data with complications were retained. The high-risk complication combination was screened by association rules based on the Apriori algorithm. Risk factors were screened using the LASSO regression model, random forest model, and support vector machine. A risk prediction model was established using logistic regression analysis, and a dynamic nomogram was constructed. Receiver operating characteristic (ROC) curves, harrell's concordance index (C-Index), calibration curves, decision curve analysis (DCA), and internal validation were used to evaluate the differentiation, calibration, and clinical applicability of the models. This study found that patients with T2DM had a high-risk combination of lower extremity vasculopathy, diabetic foot, and diabetic retinopathy. Based on this, body mass index, diastolic blood pressure, total cholesterol, triglyceride, 2-hour postprandial blood glucose and blood urea nitrogen levels were screened and used for the modeling analysis. The area under the ROC curves of the internal and external validations were 0.768 (95% CI, 0.744-0.792) and 0.745 (95% CI, 0.669-0.820), respectively, and the C-index and AUC value were consistent. The calibration plots showed good calibration, and the risk threshold for DCA was 30-54%. In this study, we developed and evaluated a predictive model for the development of a high-risk complication combination while uncovering the pattern of complications in patients with T2DM. This model has a practical guiding effect on the health management of patients with T2DM in community settings.
Collapse
Affiliation(s)
- Xin Luo
- Department of Health Management, School of Public Health, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jijia Sun
- Department of Mathematics and Physics, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hong Pan
- Department of Health Management, School of Public Health, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dian Zhou
- Department of Health Management, School of Public Health, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ping Huang
- Department of Health Management, School of Public Health, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jingjing Tang
- Department of Health Management, School of Public Health, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Rong Shi
- Department of Health Management, School of Public Health, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hong Ye
- Department of Mathematics and Physics, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ying Zhao
- Department of Mathematics and Physics, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - An Zhang
- Department of Health Management, School of Public Health, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
15
|
Avula S, Ullah S, Halim SA, Khan A, Anwar MU, Csuk R, Al-Harrasi A, Rostami A. Meldrum-Based-1 H-1,2,3-Triazoles as Antidiabetic Agents: Synthesis, In Vitro α-Glucosidase Inhibition Activity, Molecular Docking Studies, and In Silico Approach. ACS OMEGA 2023; 8:24901-24911. [PMID: 37483205 PMCID: PMC10357758 DOI: 10.1021/acsomega.3c01291] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 05/19/2023] [Indexed: 07/25/2023]
Abstract
A series of novel alkyl derivatives (2-5a,b) and 1H-1,2,3-triazole analogues (7a-k) of Meldrum's acid were synthesized in a highly effective way by using "click" chemistry and screened for in vitro α-glucosidase inhibitory activity to examine their antidiabetic potential. 1H NMR, 13C-NMR, and high-resolution electrospray ionization mass spectra (HR-ESI-MS) were used to analyze each of the newly synthesized compounds. Interestingly, these compounds demonstrated high to moderate α-glucosidase inhibitory potency having an IC50 range of 4.63-80.21 μM. Among these derivatives, compound 7i showed extraordinary inhibitory activity and was discovered to be several times more potent than the parent compound Meldrum (1) and the standard drug acarbose. Later, molecular docking was performed to understand the binding mode and the binding strength of all the compounds with the target enzyme, which revealed that all compounds are well fitted in the active site of α-glucosidase. To further ascertain the structure of compounds, suitable X-ray single crystals of compounds 5a, 7a, and 7h were developed and studied. The current investigation has shown that combining 1H-1,2,3-triazole with the Meldrum moiety is beneficial. Furthermore, this is the first time that the aforementioned activity of these compounds has been reported.
Collapse
Affiliation(s)
- Satya
Kumar Avula
- Natural
and Medical Sciences Research Center, University
of Nizwa, P.O. Box 33,
Postal Code 616, Birkat Al Mauz, Nizwa, Sultanate of Oman
| | - Saeed Ullah
- Natural
and Medical Sciences Research Center, University
of Nizwa, P.O. Box 33,
Postal Code 616, Birkat Al Mauz, Nizwa, Sultanate of Oman
| | - Sobia Ahsan Halim
- Natural
and Medical Sciences Research Center, University
of Nizwa, P.O. Box 33,
Postal Code 616, Birkat Al Mauz, Nizwa, Sultanate of Oman
| | - Ajmal Khan
- Natural
and Medical Sciences Research Center, University
of Nizwa, P.O. Box 33,
Postal Code 616, Birkat Al Mauz, Nizwa, Sultanate of Oman
| | - Muhammad U. Anwar
- Natural
and Medical Sciences Research Center, University
of Nizwa, P.O. Box 33,
Postal Code 616, Birkat Al Mauz, Nizwa, Sultanate of Oman
| | - René Csuk
- Organic
Chemistry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 2, D-06120 Halle (Saale), Germany
| | - Ahmed Al-Harrasi
- Natural
and Medical Sciences Research Center, University
of Nizwa, P.O. Box 33,
Postal Code 616, Birkat Al Mauz, Nizwa, Sultanate of Oman
| | - Ali Rostami
- Natural
and Medical Sciences Research Center, University
of Nizwa, P.O. Box 33,
Postal Code 616, Birkat Al Mauz, Nizwa, Sultanate of Oman
| |
Collapse
|
16
|
Forozan R, Ghomi MK, Iraji A, Montazer MN, Noori M, Dastyafteh N, Mojtabavi S, Faramarzi MA, Sadat-Ebrahimi SE, Larijani B, Javanshir S, Mahdavi M. Synthesis, in vitro inhibitor screening, structure-activity relationship, and molecular dynamic simulation studies of novel thioquinoline derivatives as potent α-glucosidase inhibitors. Sci Rep 2023; 13:7819. [PMID: 37188744 DOI: 10.1038/s41598-023-35140-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 05/13/2023] [Indexed: 05/17/2023] Open
Abstract
New series of thioquinoline structures bearing phenylacetamide 9a-p were designed, synthesized and the structure of all derivatives was confirmed using different spectroscopic techniques including FTIR, 1H-NMR, 13C-NMR, ESI-MS and elemental analysis. Next, the α-glucosidase inhibitory activities of derivatives were also determined and all the synthesized compounds (IC50 = 14.0 ± 0.6-373.85 ± 0.8 μM) were more potent than standard inhibitors acarbose (IC50 = 752.0 ± 2.0 μM) against α-glucosidase. Structure-activity relationships (SARs) were rationalized by analyzing the substituents effects and it was shown that mostly, electron-donating groups at the R position are more favorable compared to the electron-withdrawing group. Kinetic studies of the most potent derivative, 9m, carrying 2,6-dimethylphenyl exhibited a competitive mode of inhibition with Ki value of 18.0 µM. Furthermore, based on the molecular dynamic studies, compound 9m depicted noticeable interactions with the α-glucosidase active site via several H-bound, hydrophobic and hydrophilic interactions. These interactions cause interfering catalytic potential which significantly decreased the α-glucosidase activity.
Collapse
Affiliation(s)
- RasaDokht Forozan
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Minoo Khalili Ghomi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Aida Iraji
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Central Research Laboratory, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Nazari Montazer
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Milad Noori
- Pharmaceutical and Heterocyclic Chemistry Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Navid Dastyafteh
- Pharmaceutical and Heterocyclic Chemistry Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Somayeh Mojtabavi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy and Biotechnology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Faramarzi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy and Biotechnology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Esmaeil Sadat-Ebrahimi
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahrzad Javanshir
- Pharmaceutical and Heterocyclic Chemistry Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran.
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
17
|
Shayegan N, Haghipour S, Tanideh N, Moazzam A, Mojtabavi S, Faramarzi MA, Irajie C, Parizad S, Ansari S, Larijani B, Hosseini S, Iraji A, Mahdavi M. Synthesis, in vitro α-glucosidase inhibitory activities, and molecular dynamic simulations of novel 4-hydroxyquinolinone-hydrazones as potential antidiabetic agents. Sci Rep 2023; 13:6304. [PMID: 37072431 PMCID: PMC10113378 DOI: 10.1038/s41598-023-32889-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 04/04/2023] [Indexed: 05/03/2023] Open
Abstract
In the present study, new structural variants of 4-hydroxyquinolinone-hydrazones were designed and synthesized. The structure elucidation of the synthetic derivatives 6a-o was carried out using different spectroscopic techniques including FTIR, 1H-NMR, 13C-NMR, and elemental analysis, and their α-glucosidase inhibitory activity was also determined. The synthetic molecules 6a-o exhibited good α-glucosidase inhibition with IC50 values ranging between 93.5 ± 0.6 to 575.6 ± 0.4 µM as compared to the standard acarbose (IC50 = 752.0 ± 2.0 µM). Structure-activity relationships of this series were established which is mainly based on the position and nature of the substituent on the benzylidene ring. A kinetic study of the active compounds 6l and 6m as the most potent derivatives were also carried out to confirm the mode of inhibition. The binding interactions of the most active compounds within the active site of the enzyme were determined by molecular docking and molecular dynamic simulations.
Collapse
Affiliation(s)
- Nahal Shayegan
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Sirous Haghipour
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Nader Tanideh
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Moazzam
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Somayeh Mojtabavi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Faramarzi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Cambyz Irajie
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sara Parizad
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shirin Ansari
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Samanehsadat Hosseini
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Aida Iraji
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Central Research Laboratory, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
18
|
Moghadam Farid S, Iraji A, Mojtabavi S, Ghasemi M, Faramarzi MA, Mahdavi M, Barazandeh Tehrani M, Akbarzadeh T, Saeedi M. Quinazolinone-1,2,3-triazole-acetamide conjugates as potent α-glucosidase inhibitors: synthesis, enzyme inhibition, kinetic analysis, and molecular docking study. RSC Med Chem 2023; 14:520-533. [PMID: 36970140 PMCID: PMC10033893 DOI: 10.1039/d2md00297c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 01/04/2023] [Indexed: 01/15/2023] Open
Abstract
In this study, new hybrids of quinazolinone-1,2,3-triazole-acetamide were designed, synthesized, and screened for their α-glucosidase inhibitory activity. The results obtained from the in vitro screening indicated that all analogs exhibited significant inhibitory activity against α-glucosidase (IC50 values ranging from 4.8-140.2 μM) in comparison to acarbose (IC50 = 750.0 μM). The limited structure-activity relationships suggested the variation in the inhibitory activities of the compounds affected by different substitutions on the aryl moiety. The enzyme kinetic studies of the most potent compound 9c, revealed that it inhibited α-glucosidase in a competitive mode with a K i value of 4.8 μM. In addition, molecular docking studies investigated the structural perturbation and behavior of all derivatives inside the α-glucosidase active site. Next, molecular dynamic simulations of the most potent compound 9c, were performed to study the behavior of the 9c-complex during the time. The results showed that these compounds can be considered as potential antidiabetic agents.
Collapse
Affiliation(s)
- Sara Moghadam Farid
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences Tehran Iran
| | - Aida Iraji
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences Shiraz Iran
- Central Research Laboratory, Shiraz University of Medical Sciences Shiraz Iran
| | - Somayeh Mojtabavi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences P.O. Box 14155-6451 Tehran 1417614411 Iran
| | - Mehrnaz Ghasemi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences Tehran Iran
| | - Mohammad Ali Faramarzi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences P.O. Box 14155-6451 Tehran 1417614411 Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences Tehran Iran
| | - Maliheh Barazandeh Tehrani
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences Tehran Iran
| | - Tahmineh Akbarzadeh
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences Tehran Iran
- Persian Medicine and Pharmacy Research Center, Tehran University of Medical Sciences Tehran Iran
| | - Mina Saeedi
- Persian Medicine and Pharmacy Research Center, Tehran University of Medical Sciences Tehran Iran
- Medicinal Plants Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences Tehran Iran
| |
Collapse
|
19
|
Moghadam Farid S, Noori M, Nazari Montazer M, Khalili Ghomi M, Mollazadeh M, Dastyafteh N, Irajie C, Zomorodian K, Mirfazli SS, Mojtabavi S, Faramarzi MA, Larijani B, Iraji A, Mahdavi M. Synthesis and structure-activity relationship studies of benzimidazole-thioquinoline derivatives as α-glucosidase inhibitors. Sci Rep 2023; 13:4392. [PMID: 36928433 PMCID: PMC10020548 DOI: 10.1038/s41598-023-31080-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 03/06/2023] [Indexed: 03/18/2023] Open
Abstract
In this article, different s-substituted benzimidazole-thioquinoline derivatives were designed, synthesized, and evaluated for their possible α-glucosidase inhibitory activities. The most active compound in this series, 6j (X = 4-bromobenzyl) exhibited significant potency with an IC50 value of 28.0 ± 0.6 µM compared to acarbose as the positive control with an IC50 value of 750.0 µM. The kinetic study showed a competitive inhibition pattern against α-glucosidase for the 6j derivative. Also, the molecular dynamic simulations were performed to determine key interactions between compounds and the targeted enzyme. The in silico pharmacodynamics and ADMET properties were executed to illustrate the druggability of the novel derivatives. In general, it can be concluded that these derivatives can serve as promising leads to the design of potential α-glucosidase inhibitors.
Collapse
Affiliation(s)
- Sara Moghadam Farid
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Milad Noori
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Nazari Montazer
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Minoo Khalili Ghomi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Marjan Mollazadeh
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Navid Dastyafteh
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Cambyz Irajie
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Kamiar Zomorodian
- Department of Medical Mycology and Parasitology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyedeh Sara Mirfazli
- Department of Medicinal Chemistry, School of Pharmacy, Iran University of Medical Sciences, Tehran, Iran
| | - Somayeh Mojtabavi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Faramarzi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Aida Iraji
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Central Research Laboratory, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
20
|
Park GM, Kong SJ, Park JH, Kang JE, An SH, Kim HS, Kim IS, Boggu PR, Jung YH. Synthesis and evaluation of ent-Conduramine C-1 derivatives as α-glucosidase inhibitors via CSI-mediated amination reaction. Carbohydr Res 2023; 524:108746. [PMID: 36682231 DOI: 10.1016/j.carres.2023.108746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 01/19/2023]
Abstract
Concise synthesis of ent-conduramine C-1 and its derivatives has been achieved by using commercially available d-ribose. The key steps in the synthesis are regioselective and diastereoselective amination of polybenzyl ethers by chlorosulfonyl isocyanate (CSI), chelation-controlled carbonyl addition, and intramolecular olefin metathesis. All of the synthesized compounds were evaluated for inhibitory activity against α-glucosidase. The derivatives 18 (IC50 = 0.65 ± 0.03 mM) and 19 (IC50 = 0.26 ± 0.01 mM) were identified to be more potent than well-known α-glucosidase inhibitor acarbose (IC50 = 1.05 ± 0.17 mM) as a positive control.
Collapse
Affiliation(s)
- Gi Min Park
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Sun Ju Kong
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Jae Hyeon Park
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Ji Eun Kang
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Sung Hwan An
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Hyung Sik Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - In Su Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Pulla Reddy Boggu
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea.
| | - Young Hoon Jung
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea.
| |
Collapse
|
21
|
Cheenpracha S, Chokchaisiri R, Ganranoo L, Bureekaew S, Limtharakul T, Laphookhieo S. Cassane diterpenoids with α-glucosidase inhibitory activity from the fruits of Pterolobium macropterum. Beilstein J Org Chem 2023; 19:658-665. [PMID: 37205128 PMCID: PMC10186258 DOI: 10.3762/bjoc.19.47] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 04/28/2023] [Indexed: 05/21/2023] Open
Abstract
Two new cassane diterpenoids, 14β-hydroxycassa-11(12),13(15)-dien-12,16-olide (1) and 6'-acetoxypterolobirin B (3), together with a known analogue, identified as 12α,14β-dihydroxycassa-13(15)-en-12,16-olide (2), were isolated from the fruits of Pterolobium macropterum. Compound 1 is a cassane diterpenoid with a Δ11(12) double bond conjugated with an α,β-butenolide-type, whereas compound 3 is a dimeric caged cassane diterpenoid with unique 6/6/6/6/6/5/6/6/6 nonacyclic ring system. The structures of 1 and 3 were characterized by extensive spectroscopic analysis combined with computational ECD analyses. The α-glucosidase inhibitory activity of isolated compounds was evaluated, and compounds 1 and 3 showed significant α-glucosidase inhibitory activity with IC50 values of 66 and 44 μM.
Collapse
Affiliation(s)
- Sarot Cheenpracha
- Division of Chemistry, School of Science, University of Phayao, Phayao 56000, Thailand
| | | | - Lucksagoon Ganranoo
- Division of Chemistry, School of Science, University of Phayao, Phayao 56000, Thailand
| | - Sareeya Bureekaew
- Department of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan, Rayong 21210, Thailand
| | - Thunwadee Limtharakul
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, the Graduate School and Research Center on Chemistry for Development of Health Promoting Products from Northern Resources, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Surat Laphookhieo
- Center of Chemical Innovation for Sustainability (CIS) and School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
- Medicinal Plants Innovation Center of Mae Fah Luang University, Chiang Rai 57100, Thailand
| |
Collapse
|
22
|
Ramos-Inza S, Plano D, Sanmartín C. Metal-based compounds containing selenium: An appealing approach towards novel therapeutic drugs with anticancer and antimicrobial effects. Eur J Med Chem 2022; 244:114834. [PMID: 36215861 DOI: 10.1016/j.ejmech.2022.114834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/22/2022] [Accepted: 10/02/2022] [Indexed: 11/17/2022]
|
23
|
Moheb M, Iraji A, Dastyafteh N, Khalili Ghomi M, Noori M, Mojtabavi S, Faramarzi MA, Rasekh F, Larijani B, Zomorodian K, Sadat-Ebrahimi SE, Mahdavi M. Synthesis and bioactivities evaluation of quinazolin-4(3H)-one derivatives as α-glucosidase inhibitors. BMC Chem 2022; 16:97. [DOI: 10.1186/s13065-022-00885-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/27/2022] [Indexed: 11/16/2022] Open
Abstract
AbstractThe development of new antidiabetes agents is necessary to obtain optimal glycemic control and overcome its complications. Different quinazolin-4(3H)-one bearing phenoxy-acetamide derivatives (7a–r) were designed and synthesized to develop α-glucosidase inhibitors. All the synthesized derivatives were evaluated against α-glucosidase in vitro and among them, compound 7b showed the highest α-glucosidase inhibition with an IC50 of 14.4 µM, which was ∼53 times stronger than that of acarbose. The inhibition kinetic studies showed that the inhibitory mechanism of compound 7b was a competitive type towards α-glucosidase. Also, molecular docking studies analyzed the interaction between the most potent derivative and α-glucosidase. Current findings indicate the new potential of quinazolin-4(3H)-ones that could be used for the development of novel agents against diabetes mellitus.
Collapse
|
24
|
Design, synthesis, and in silico studies of quinoline-based-benzo[d]imidazole bearing different acetamide derivatives as potent α-glucosidase inhibitors. Sci Rep 2022; 12:14019. [PMID: 35982225 PMCID: PMC9386204 DOI: 10.1038/s41598-022-18455-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 08/11/2022] [Indexed: 11/23/2022] Open
Abstract
In this study, 18 novel quinoline-based-benzo[d]imidazole derivatives were synthesized and screened for their α-glucosidase inhibitory potential. All compounds in the series except 9q showed a significant α-glucosidase inhibition with IC50 values in the range of 3.2 ± 0.3–185.0 ± 0.3 µM, as compared to the standard drug acarbose (IC50 = 750.0 ± 5.0 µM). A kinetic study indicated that compound 9d as the most potent derivative against α-glucosidase was a competitive type inhibitor. Furthermore, the molecular docking study revealed the effective binding interactions of 9d with the active site of the α-glucosidase enzyme. The results indicate that the designed compounds have the potential to be further studied as new anti-diabetic agents.
Collapse
|
25
|
Pedrood K, Rezaei Z, Khavaninzadeh K, Larijani B, Iraji A, Hosseini S, Mojtabavi S, Dianatpour M, Rastegar H, Faramarzi MA, Hamedifar H, Hajimiri MH, Mahdavi M. Design, synthesis, and molecular docking studies of diphenylquinoxaline-6-carbohydrazide hybrids as potent α-glucosidase inhibitors. BMC Chem 2022; 16:57. [PMID: 35909126 PMCID: PMC9341091 DOI: 10.1186/s13065-022-00848-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/08/2022] [Indexed: 03/19/2024] Open
Abstract
A novel series of diphenylquinoxaline-6-carbohydrazide hybrids 7a-o were rationally designed and synthesized as anti-diabetic agents. All synthesized compounds 7a-o were screened as possible α-glucosidase inhibitors and exhibited good inhibitory activity with IC50 values in the range of 110.6 ± 6.0 to 453.0 ± 4.7 µM in comparison with acarbose as the positive control (750.0 ± 10.5 µM). An exception in this trend came back to a compound 7k with IC50 value > 750 µM. Furthermore, the most potent derivative 7e bearing 3-fluorophenyl moiety was further explored by kinetic studies and showed the competitive type of inhibition. Additionally, the molecular docking of all derivatives was performed to get an insight into the binding mode of these derivatives within the active site of the enzyme. In silico assessments exhibited that 7e was well occupied in the binding pocket of the enzyme through favorable interactions with residues, correlating to the experimental results.
Collapse
Affiliation(s)
- Keyvan Pedrood
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Rezaei
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Kimia Khavaninzadeh
- Department of Medicinal Chemistry, School of Pharmacy, Iran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Aida Iraji
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Central Research Laboratory, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Samanesadat Hosseini
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Somayeh Mojtabavi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy & Biotechnology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Dianatpour
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hossein Rastegar
- Cosmetic Products Research Center, Iranian Food and Drug Administration, MOHE, Tehran, Iran
| | - Mohammad Ali Faramarzi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy & Biotechnology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Haleh Hamedifar
- CinnaGen Medical Biotechnology Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Mir Hamed Hajimiri
- Nano Alvand Company, Tehran University of Medical Sciences, Avicenna Tech Park, Tehran, Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
26
|
Zarenezhad E, Montazer MN, Tabatabaee M, Irajie C, Iraji A. New solid phase methodology for the synthesis of biscoumarin derivatives: experimental and in silico approaches. BMC Chem 2022; 16:53. [PMID: 35820918 PMCID: PMC9275028 DOI: 10.1186/s13065-022-00844-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 06/28/2022] [Indexed: 12/29/2022] Open
Abstract
The simple and greener one-pot approach for the synthesis of biscoumarin derivatives using catalytic amounts of nano-MoO3 catalyst under mortar-pestle grinding was described. The use of non-toxic and mild catalyst, cost-effectiveness, ordinary grinding, and good to the excellent yield of the final product makes this procedure a more attractive pathway for the synthesis of biologically remarkable pharmacophores. Accordingly, biscoumarin derivatives were successfully extended in the developed protocols. Next, a computational investigation was performed to identify the potential biological targets of this set of compounds. In this case, first, a similarity search on different virtual libraries was performed to find an ideal biological target for these derivatives. Results showed that the synthesized derivatives can be α-glucosidase inhibitors. In another step, molecular docking studies were carried out against human lysosomal acid-alpha-glucosidase (PDB ID: 5NN8) to determine the detailed binding modes and critical interactions with the proposed target. In silico assessments showed the gold score value in the range of 17.56 to 29.49. Additionally, molecular dynamic simulations and the MM-GBSA method of the most active derivative against α-glucosidase were conducted to study the behavior of selected compounds in the biological system. Ligand 1 stabilized after around 30 ns and participated in various interactions with Trp481, Asp518, Asp616, His674, Phe649, and Leu677 residues.
Collapse
Affiliation(s)
- Elham Zarenezhad
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Mohammad Nazari Montazer
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Cambyz Irajie
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Aida Iraji
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran. .,Central Research Laboratory, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
27
|
Shayegan N, Iraji A, Bakhshi N, Moazzam A, Faramarzi MA, Mojtabavi S, Pour SMM, Tehrani MB, Larijani B, Rezaei Z, Yousefi P, Khoshneviszadeh M, Mahdavi M. Design, synthesis, and in silico studies of benzimidazole bearing phenoxyacetamide derivatives as α-glucosidase and α-amylase inhibitors. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|