1
|
Gerevich Z, Kovács R, Liotta A, Hasam-Henderson LA, Weh L, Wallach I, Berndt N. Metabolic implications of axonal demyelination and its consequences for synchronized network activity: An in silico and in vitro study. J Cereb Blood Flow Metab 2023; 43:1571-1587. [PMID: 37125487 PMCID: PMC10414014 DOI: 10.1177/0271678x231170746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/13/2023] [Accepted: 03/22/2023] [Indexed: 05/02/2023]
Abstract
Myelination enhances the conduction velocity of action potentials (AP) and increases energy efficiency. Thick myelin sheaths are typically found on large-distance axonal connections or in fast-spiking interneurons, which are critical for synchronizing neuronal networks during gamma-band oscillations. Loss of myelin sheath is associated with multiple alterations in axonal architecture leading to impaired AP propagation. While numerous studies are devoted to the effects of demyelination on conduction velocity, the metabolic effects and the consequences for network synchronization have not been investigated. Here we present a unifying computational model for electrophysiology and metabolism of the myelinated axon. The computational model suggested that demyelination not only decreases the AP speed but AP propagation in demyelinated axons requires compensatory processes like mitochondrial mass increase and a switch from saltatory to continuous propagation to rescue axon functionality at the cost of reduced AP propagation speed and increased energy expenditure. Indeed, these predictions were proven to be true in a culture model of demyelination where the pharmacologically-induced loss of myelin was associated with increased oxygen consumption rates, and a significant broadening of bandwidth as well as a decrease in the power of gamma oscillations.
Collapse
Affiliation(s)
- Zoltan Gerevich
- Institute of Neurophysiology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Richard Kovács
- Institute of Neurophysiology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Agustin Liotta
- Institute of Neurophysiology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Anesthesiology and Intensive Care, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Institute of Computer-assisted Cardiovascular Medicine, Deutsches Herzzentrum der Charité (DHZC), Berlin, Germany
| | - Luisa A Hasam-Henderson
- Institute of Neurophysiology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ludwig Weh
- Institute of Biochemistry, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Iwona Wallach
- Institute of Computer-assisted Cardiovascular Medicine, Deutsches Herzzentrum der Charité (DHZC), Berlin, Germany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Nikolaus Berndt
- Institute of Computer-assisted Cardiovascular Medicine, Deutsches Herzzentrum der Charité (DHZC), Berlin, Germany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
2
|
Dziadkowiak E, Nowakowska-Kotas M, Rałowska-Gmoch W, Budrewicz S, Koszewicz M. Molecular, Electrophysiological, and Ultrasonographic Differences in Selected Immune-Mediated Neuropathies with Therapeutic Implications. Int J Mol Sci 2023; 24:ijms24119180. [PMID: 37298132 DOI: 10.3390/ijms24119180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/16/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023] Open
Abstract
The spectrum of immune-mediated neuropathies is broad and the different subtypes are still being researched. With the numerous subtypes of immune-mediated neuropathies, establishing the appropriate diagnosis in normal clinical practice is challenging. The treatment of these disorders is also troublesome. The authors have undertaken a literature review of chronic inflammatory demyelinating polyradiculoneuropathy (CIDP), Guillain-Barre syndrome (GBS) and multifocal motor neuropathy (MMN). The molecular, electrophysiological and ultrasound features of these autoimmune polyneuropathies are analyzed, highlighting the differences in diagnosis and ultimately treatment. The immune dysfunction can lead to damage to the peripheral nervous system. In practice, it is suspected that these disorders are caused by autoimmunity to proteins located in the node of Ranvier or myelin components of peripheral nerves, although disease-associated autoantibodies have not been identified for all disorders. The electrophysiological presence of conduction blocks is another important factor characterizing separate subgroups of treatment-naive motor neuropathies, including multifocal CIDP (synonyms: multifocal demyelinating neuropathy with persistent conduction block), which differs from multifocal motor neuropathy with conduction block (MMN) in both responses to treatment modalities and electrophysiological features. Ultrasound is a reliable method for diagnosing immune-mediated neuropathies, particularly when alternative diagnostic examinations yield inconclusive results. In overall terms, the management of these disorders includes immunotherapy such as corticosteroids, intravenous immunoglobulin or plasma exchange. Improvements in clinical criteria and the development of more disease-specific immunotherapies should expand the therapeutic possibilities for these debilitating diseases.
Collapse
Affiliation(s)
- Edyta Dziadkowiak
- Department of Neurology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland
| | - Marta Nowakowska-Kotas
- Department of Neurology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland
| | - Wiktoria Rałowska-Gmoch
- Department of Neurology, The St. Jadwiga's Regional Specialist Neuropsychiatric Centre, Wodociągowa 4, 45-221 Opole, Poland
| | - Sławomir Budrewicz
- Department of Neurology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland
| | - Magdalena Koszewicz
- Department of Neurology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland
| |
Collapse
|
3
|
Appeltshauser L, Linke J, Heil HS, Karus C, Schenk J, Hemmen K, Sommer C, Doppler K, Heinze KG. Super-resolution imaging pinpoints the periodic ultrastructure at the human node of Ranvier and its disruption in patients with polyneuropathy. Neurobiol Dis 2023; 182:106139. [PMID: 37146836 DOI: 10.1016/j.nbd.2023.106139] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/13/2023] [Accepted: 04/25/2023] [Indexed: 05/07/2023] Open
Abstract
The node of Ranvier is the key element in saltatory conduction along myelinated axons, but its specific protein organization remains elusive in the human species. To shed light on nanoscale anatomy of the human node of Ranvier in health and disease, we assessed human nerve biopsies of patients with polyneuropathy by super-resolution fluorescence microscopy. We applied direct stochastic optical reconstruction microscopy (dSTORM) and supported our data by high-content confocal imaging combined with deep learning-based analysis. As a result, we revealed a ~ 190 nm periodic protein arrangement of cytoskeletal proteins and axoglial cell adhesion molecules in human peripheral nerves. In patients with polyneuropathy, periodic distances increased at the paranodal region of the node of Ranvier, both at the axonal cytoskeleton and at the axoglial junction. In-depth image analysis revealed a partial loss of proteins of the axoglial complex (Caspr-1, neurofascin-155) in combination with detachment from the cytoskeletal anchor protein ß2-spectrin. High content analysis showed that such paranodal disorganization occurred especially in acute and severe axonal neuropathy with ongoing Wallerian degeneration and related cytoskeletal damage. We provide nanoscale and protein-specific evidence for the prominent, but vulnerable role of the node of Ranvier for axonal integrity. Furthermore, we show that super-resolution imaging can identify, quantify and map elongated periodic protein distances and protein interaction in histopathological tissue samples. We thus introduce a promising tool for further translational applications of super resolution microscopy.
Collapse
Affiliation(s)
| | - Janis Linke
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany; Rudolf Virchow Center, Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Hannah S Heil
- Rudolf Virchow Center, Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany; Optical Cell Biology, Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Christine Karus
- Rudolf Virchow Center, Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Joachim Schenk
- Rudolf Virchow Center, Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Katherina Hemmen
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Claudia Sommer
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Kathrin Doppler
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany.
| | - Katrin G Heinze
- Rudolf Virchow Center, Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany.
| |
Collapse
|
4
|
Zhou LX, Lin SW, Qiu RH, Lin L, Guo YF, Luo DS, Li YQ, Wang F. Blood-nerve barrier disruption and coagulation system activation induced by mechanical compression injury participate in the peripheral sensitization of trigeminal neuralgia. Front Mol Neurosci 2022; 15:1059980. [PMID: 36618827 PMCID: PMC9810503 DOI: 10.3389/fnmol.2022.1059980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022] Open
Abstract
Introduction The aim of this study was to investigate the effect and possible mechanisms of the blood-nerve barrier (BNB) and the coagulation-anticoagulation system in modulating the mechanical allodynia in a trigeminal neuralgia (TN) rat model induced by chronic compression of the trigeminal root entry zone (TREZ). Methods Von Frey filaments were applied to determine the orofacial mechanical allodynia threshold. The BNB permeability was evaluated by Evans blue extravasation test. Immunohistochemical staining and laser confocal microscopy were used to measure the length of the depletion zones of the nodes of Ranvier in the TREZ, the diameter of nerve fibers and the length of the nodal gap. The transcriptional levels of prothrombin and endogenous thrombin inhibitor protease nexin-1 (PN-1) in the TREZ of TN rats were assessed by RT-qPCR. A Western blotting assay was performed to detect the expression of paranodal proteins neurofascin-155 (NF155) and neurofascin-125 (NF125) in the TREZ. The spatiotemporal expression pattern of thrombin activated receptor (i.e. protease activated receptor 1, PAR1) in TREZ were defined by immunostaining and immunoblotting assays. PAR1 receptor inhibitors SCH79797 were administrated to TN rats to analyze the effect of thrombin-PAR1 on orofacial hyperalgesia. Results A compression injury of a rat's TREZ successfully induced TN-like behavior and was accompanied by the destruction of the permeability of the BNB and the promotion of prothrombin and thrombin inhibitor protease nexin-1 (PN-1) expression. The expression of the paranodal proteins neurofascin-155 (NF155) and neurofascin-125 (NF125) was increased, while the nodal gap length of the nodes of Ranvier was widened and the length of node-depleted zones was shortened. Moreover, the expression of PAR1 within the TREZ was upregulated at an early stage of TN, and administration of the PAR1 antagonist SCH79797 effectively ameliorated orofacial mechanical allodynia. Conclusion A compression injury of the TREZ increased the permeability of the BNB and induced disturbances in the local coagulation-anticoagulation system, concomitant with the structural changes in the nodes of Ranvier, thrombin-PAR1 may play a critical role in modulating orofacial mechanical hyperalgesia in a TN rat model.
Collapse
Affiliation(s)
- Lu-Xi Zhou
- Laboratory of Clinical Applied Anatomy, Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Shao-Wei Lin
- Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Rong-Hui Qiu
- Laboratory of Clinical Applied Anatomy, Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Ling Lin
- Laboratory of Clinical Applied Anatomy, Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, China,Public Technology Service Center, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Yue-Feng Guo
- Laboratory of Clinical Applied Anatomy, Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Dao-Shu Luo
- Laboratory of Clinical Applied Anatomy, Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, China,Dao-Shu Luo,
| | - Yun-Qing Li
- Laboratory of Clinical Applied Anatomy, Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, China,Public Technology Service Center, Fujian Medical University, Fuzhou, Fujian Province, China,Yun-Qing Li,
| | - Feng Wang
- Laboratory of Clinical Applied Anatomy, Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, China,*Correspondence: Feng Wang,
| |
Collapse
|
5
|
Boahen F, Doyon N, Deteix J. Sensitivity of the electrical response of a node of Ranvier model to alterations of the myelin sheath geometry. J Math Biol 2022; 86:17. [PMID: 36534161 DOI: 10.1007/s00285-022-01841-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 08/31/2022] [Accepted: 11/21/2022] [Indexed: 12/23/2022]
Abstract
Nodes of Ranvier play critical roles in the generation and transmission of action potentials. Alterations in node properties during pathology and/or development are known to affect the speed and quality of electrical transmission. From a modelling standpoint, nodes of Ranvier are often described by systems of ordinary differential equations neglecting or greatly simplifying their geometric structure. These approaches fail to accurately describe how fine scale alteration in the node geometry or in myelin thickness in the paranode region will impact action potential generation and transmission. Here, we rely on a finite element approximation to describe the three dimensional geometry of a node of Ranvier. With this, we are able to investigate how sensitive is the electrical response to alterations in the myelin sheath and paranode geometry. We could in particular investigate irregular loss of myelin, which might be more physiologically relevant than the uniform loss often described through simpler modelling approaches.
Collapse
Affiliation(s)
- Frank Boahen
- Groupe Interdisciplinaire de Recherche en Éléments Finis (GIREF), Département de mathématiques et statistique, Université Laval Pavillon Vachon, 1045 Avenue de la médecine, Université Laval, Québec, QC, Canada
| | - Nicolas Doyon
- Groupe Interdisciplinaire de Recherche en Éléments Finis (GIREF), Département de mathématiques et statistique, Université Laval Pavillon Vachon, 1045 Avenue de la médecine, Université Laval, Québec, QC, Canada.
| | - Jean Deteix
- Groupe Interdisciplinaire de Recherche en Éléments Finis (GIREF), Département de mathématiques et statistique, Université Laval Pavillon Vachon, 1045 Avenue de la médecine, Université Laval, Québec, QC, Canada
| |
Collapse
|
6
|
Coelho MA, Jeyaraman M, Jeyaraman N, Rajendran RL, Sugano AA, Mosaner T, Santos GS, Bizinotto Lana JV, Lana AVSD, da Fonseca LF, Domingues RB, Gangadaran P, Ahn BC, Lana JFSD. Application of Sygen® in Diabetic Peripheral Neuropathies—A Review of Biological Interactions. Bioengineering (Basel) 2022; 9:bioengineering9050217. [PMID: 35621495 PMCID: PMC9138133 DOI: 10.3390/bioengineering9050217] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/14/2022] [Accepted: 05/16/2022] [Indexed: 12/15/2022] Open
Abstract
This study investigates the role of Sygen® in diabetic peripheral neuropathy, a severe disease that affects the peripheral nervous system in diabetic individuals. This disorder often impacts the lower limbs, causing significant discomfort and, if left untreated, progresses into more serious conditions involving chronic ulcers and even amputation in many cases. Although there are management strategies available, peripheral neuropathies are difficult to treat as they often present multiple causes, especially due to metabolic dysfunction in diabetic individuals. Gangliosides, however, have long been studied and appreciated for their role in neurological diseases. The monosialotetrahexosylganglioside (GM1) ganglioside, popularly known as Sygen, provides beneficial effects such as enhanced neuritic sprouting, neurotrophism, neuroprotection, anti-apoptosis, and anti-excitotoxic activity, being particularly useful in the treatment of neurological complications that arise from diabetes. This product mimics the roles displayed by neurotrophins, improving neuronal function and immunomodulation by attenuating exacerbated inflammation in neurons. Furthermore, Sygen assists in axonal stabilization and keeps nodal and paranodal regions of myelin fibers organized. This maintains an adequate propagation of action potentials and restores standard peripheral nerve function. Given the multifactorial nature of this complicated disorder, medical practitioners must carefully screen the patient to avoid confusion and misdiagnosis. There are several studies analyzing the role of Sygen in neurological disorders. However, the medical literature still needs more robust investigations such as randomized clinical trials regarding the administration of this compound for diabetic peripheral neuropathies, specifically.
Collapse
Affiliation(s)
- Marcelo Amaral Coelho
- Department of Orthopaedics, Brazilian Institute of Regenerative Medicine, Indaiatuba 13334-170, Brazil; (M.A.C.); (A.A.S.); (T.M.); (G.S.S.); (L.F.d.F.); (R.B.D.); (J.F.S.D.L.)
| | - Madhan Jeyaraman
- Department of Orthopaedics, Faculty of Medicine-Sri Lalithambigai Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai 600095, Tamil Nadu, India
- Correspondence: (M.J.); (P.G.); (B.-C.A.)
| | - Naveen Jeyaraman
- Fellow in Joint Replacement, Department of Orthopaedics, Atlas Hospitals, Tiruchirappalli 620002, Tamil Nadu, India;
| | - Ramya Lakshmi Rajendran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea;
| | - André Atsushi Sugano
- Department of Orthopaedics, Brazilian Institute of Regenerative Medicine, Indaiatuba 13334-170, Brazil; (M.A.C.); (A.A.S.); (T.M.); (G.S.S.); (L.F.d.F.); (R.B.D.); (J.F.S.D.L.)
| | - Tomas Mosaner
- Department of Orthopaedics, Brazilian Institute of Regenerative Medicine, Indaiatuba 13334-170, Brazil; (M.A.C.); (A.A.S.); (T.M.); (G.S.S.); (L.F.d.F.); (R.B.D.); (J.F.S.D.L.)
| | - Gabriel Silva Santos
- Department of Orthopaedics, Brazilian Institute of Regenerative Medicine, Indaiatuba 13334-170, Brazil; (M.A.C.); (A.A.S.); (T.M.); (G.S.S.); (L.F.d.F.); (R.B.D.); (J.F.S.D.L.)
| | - João Vitor Bizinotto Lana
- Medical Specialties School Centre, Centro Universitário Max Planck, Indaiatuba 13343-060, Brazil; (J.V.B.L.); (A.V.S.D.L.)
| | | | - Lucas Furtado da Fonseca
- Department of Orthopaedics, Brazilian Institute of Regenerative Medicine, Indaiatuba 13334-170, Brazil; (M.A.C.); (A.A.S.); (T.M.); (G.S.S.); (L.F.d.F.); (R.B.D.); (J.F.S.D.L.)
- Department of Orthopaedics, The Federal University of São Paulo, São Paulo 04024-002, Brazil
| | - Rafael Barnabé Domingues
- Department of Orthopaedics, Brazilian Institute of Regenerative Medicine, Indaiatuba 13334-170, Brazil; (M.A.C.); (A.A.S.); (T.M.); (G.S.S.); (L.F.d.F.); (R.B.D.); (J.F.S.D.L.)
| | - Prakash Gangadaran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea;
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, Korea
- Correspondence: (M.J.); (P.G.); (B.-C.A.)
| | - Byeong-Cheol Ahn
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea;
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, Korea
- Correspondence: (M.J.); (P.G.); (B.-C.A.)
| | - José Fábio Santos Duarte Lana
- Department of Orthopaedics, Brazilian Institute of Regenerative Medicine, Indaiatuba 13334-170, Brazil; (M.A.C.); (A.A.S.); (T.M.); (G.S.S.); (L.F.d.F.); (R.B.D.); (J.F.S.D.L.)
| |
Collapse
|
7
|
El-Abassi RN, Soliman M, Levy MH, England JD. Treatment and Management of Autoimmune Neuropathies. Neuromuscul Disord 2022. [DOI: 10.1016/b978-0-323-71317-7.00015-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
8
|
Panganiban CH, Barth JL, Tan J, Noble KV, McClaskey CM, Howard BA, Jafri SH, Dias JW, Harris KC, Lang H. Two distinct types of nodes of Ranvier support auditory nerve function in the mouse cochlea. Glia 2021; 70:768-791. [DOI: 10.1002/glia.24138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 11/12/2021] [Accepted: 12/17/2021] [Indexed: 11/09/2022]
Affiliation(s)
- Clarisse H. Panganiban
- Department of Pathology and Laboratory Medicine Medical University of South Carolina Charleston South Carolina USA
- Wolfson Centre for Age‐Related Diseases King's College London London UK
| | - Jeremy L. Barth
- Department of Regenerative Medicine and Cell Biology Medical University of South Carolina Charleston South Carolina USA
| | - Junying Tan
- Department of Pathology and Laboratory Medicine Medical University of South Carolina Charleston South Carolina USA
| | - Kenyaria V. Noble
- Department of Pathology and Laboratory Medicine Medical University of South Carolina Charleston South Carolina USA
| | - Carolyn M. McClaskey
- Department of Otolaryngology & Head and Neck Surgery Medical University of South Carolina Charleston South Carolina USA
| | - Blake A. Howard
- Department of Pathology and Laboratory Medicine Medical University of South Carolina Charleston South Carolina USA
| | - Shabih H. Jafri
- Department of Pathology and Laboratory Medicine Medical University of South Carolina Charleston South Carolina USA
| | - James W. Dias
- Department of Otolaryngology & Head and Neck Surgery Medical University of South Carolina Charleston South Carolina USA
| | - Kelly C. Harris
- Department of Otolaryngology & Head and Neck Surgery Medical University of South Carolina Charleston South Carolina USA
| | - Hainan Lang
- Department of Pathology and Laboratory Medicine Medical University of South Carolina Charleston South Carolina USA
| |
Collapse
|
9
|
Zangari A, Micheli D, Galeazzi R, Tozzi A, Balzano V, Bellavia G, Caristo ME. Photons detected in the active nerve by photographic technique. Sci Rep 2021; 11:3022. [PMID: 33542392 PMCID: PMC7862265 DOI: 10.1038/s41598-021-82622-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 01/08/2021] [Indexed: 01/30/2023] Open
Abstract
The nervous system is one of the most complex expressions of biological evolution. Its high performance mostly relies on the basic principle of the action potential, a sequential activation of local ionic currents along the neural fiber. The implications of this essentially electrical phenomenon subsequently emerged in a more comprehensive electromagnetic perspective of neurotransmission. Several studies focused on the possible role of photons in neural communication and provided evidence of the transfer of photons through myelinated axons. A hypothesis is that myelin sheath would behave as an optical waveguide, although the source of photons is controversial. In a previous work, we proposed a model describing how photons would arise at the node of Ranvier. In this study we experimentally detected photons in the node of Ranvier by Ag+ photoreduction measurement technique, during electrically induced nerve activity. Our results suggest that in association to the action potential a photonic radiation takes place in the node.
Collapse
Affiliation(s)
- Andrea Zangari
- Pediatric Surgery and Urology Unit, Azienda Ospedaliera San Camillo Forlanini, Circonvallazione Gianicolense 87, 00152, Rome, Italy
| | - Davide Micheli
- Wireless Access Engineering Department, TIM S.P.A., Via Oriolo Romano, 240, 00189, Rome, Italy
| | - Roberta Galeazzi
- Departement of Life and Environmental Science, Università Politecnica delle Marche, via Brecce Bianche, 60131, Ancona, Italy.
| | - Antonio Tozzi
- UOC Fisica Sanitaria, Azienda USL Toscana Sud Est, via Senese 161, 58100, Grosseto, Italy
| | - Vittoria Balzano
- UOC Anatomy and Pathological Histology, Azienda Ospedaliera San Camillo Forlanini, Circonvallazione Gianicolense 87, 00152, Rome, Italy
| | | | - Maria Emiliana Caristo
- Centro Ricerche Sperimentali, Università Cattolica del Sacro Cuore, Largo Agostino Gemelli, 1, 00168, Rome, Italy
| |
Collapse
|
10
|
Liu CH, Stevens SR, Teliska LH, Stankewich M, Mohler PJ, Hund TJ, Rasband MN. Nodal β spectrins are required to maintain Na + channel clustering and axon integrity. eLife 2020; 9:52378. [PMID: 32052742 PMCID: PMC7018506 DOI: 10.7554/elife.52378] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 01/17/2020] [Indexed: 12/14/2022] Open
Abstract
Clustered ion channels at nodes of Ranvier are critical for fast action potential propagation in myelinated axons. Axon-glia interactions converge on ankyrin and spectrin cytoskeletal proteins to cluster nodal Na+ channels during development. However, how nodal ion channel clusters are maintained is poorly understood. Here, we generated mice lacking nodal spectrins in peripheral sensory neurons to uncouple their nodal functions from their axon initial segment functions. We demonstrate a hierarchy of nodal spectrins, where β4 spectrin is the primary spectrin and β1 spectrin can substitute; each is sufficient for proper node organization. Remarkably, mice lacking nodal β spectrins have normal nodal Na+ channel clustering during development, but progressively lose Na+ channels with increasing age. Loss of nodal spectrins is accompanied by an axon injury response and axon deformation. Thus, nodal spectrins are required to maintain nodal Na+ channel clusters and the structural integrity of axons.
Collapse
Affiliation(s)
- Cheng-Hsin Liu
- Department of Neuroscience, Baylor College of Medicine, Houston, United States.,Program in Developmental Biology, Baylor College of Medicine, Houston, United States
| | - Sharon R Stevens
- Department of Neuroscience, Baylor College of Medicine, Houston, United States
| | - Lindsay H Teliska
- Department of Neuroscience, Baylor College of Medicine, Houston, United States
| | | | - Peter J Mohler
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, United States
| | - Thomas J Hund
- Biomedical Engineering, The Ohio State University, Columbus, United States
| | - Matthew N Rasband
- Department of Neuroscience, Baylor College of Medicine, Houston, United States.,Program in Developmental Biology, Baylor College of Medicine, Houston, United States
| |
Collapse
|
11
|
Sleutjes BTHM, Kovalchuk MO, Durmus N, Buitenweg JR, van Putten MJAM, van den Berg LH, Franssen H. Simulating perinodal changes observed in immune-mediated neuropathies: impact on conduction in a model of myelinated motor and sensory axons. J Neurophysiol 2019; 122:1036-1049. [PMID: 31291151 DOI: 10.1152/jn.00326.2019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Immune-mediated neuropathies affect myelinated axons, resulting in conduction slowing or block that may affect motor and sensory axons differently. The underlying mechanisms of these neuropathies are not well understood. Using a myelinated axon model, we studied the impact of perinodal changes on conduction. We extended a longitudinal axon model (41 nodes of Ranvier) with biophysical properties unique to human myelinated motor and sensory axons. We simulated effects of temperature and axonal diameter on conduction and strength-duration properties. We then studied effects of impaired nodal sodium channel conductance and paranodal myelin detachment by reducing periaxonal resistance, as well as their interaction, on conduction in the 9 middle nodes and enclosed paranodes. Finally, we assessed the impact of reducing the affected region (5 nodes) and adding nodal widening. Physiological motor and sensory conduction velocities and changes to axonal diameter and temperature were observed. The sensory axon had a longer strength-duration time constant. Reducing sodium channel conductance and paranodal periaxonal resistance induced progressive conduction slowing. In motor axons, conduction block occurred with a 4-fold drop in sodium channel conductance or a 7.7-fold drop in periaxonal resistance. In sensory axons, block arose with a 4.8-fold drop in sodium channel conductance or a 9-fold drop in periaxonal resistance. This indicated that motor axons are more vulnerable to developing block. A boundary of block emerged when the two mechanisms interacted. This boundary shifted in opposite directions for a smaller affected region and nodal widening. These differences may contribute to the predominance of motor deficits observed in some immune-mediated neuropathies.NEW & NOTEWORTHY Immune-mediated neuropathies may affect myelinated motor and sensory axons differently. By the development of a computational model, we quantitatively studied the impact of perinodal changes on conduction in motor and sensory axons. Simulations of increasing nodal sodium channel dysfunction and paranodal myelin detachment induced progressive conduction slowing. Sensory axons were more resistant to block than motor axons. This could explain the greater predisposition of motor axons to functional deficits observed in some immune-mediated neuropathies.
Collapse
Affiliation(s)
- Boudewijn T H M Sleutjes
- Department of Neurology, Brain Center Utrecht, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Maria O Kovalchuk
- Department of Neurology, Brain Center Utrecht, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Naric Durmus
- Biomedical Signals and Systems, MIRA, Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands.,Department of Clinical Neurophysiology, University of Twente, Enschede, The Netherlands
| | - Jan R Buitenweg
- Biomedical Signals and Systems, MIRA, Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | - Michel J A M van Putten
- Department of Clinical Neurophysiology, University of Twente, Enschede, The Netherlands.,Department of Neurology and Clinical Neurophysiology, Medisch Spectrum Twente, Enschede, The Netherlands
| | - Leonard H van den Berg
- Department of Neurology, Brain Center Utrecht, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Hessel Franssen
- Department of Neurology, Brain Center Utrecht, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
12
|
Griggs RB, Yermakov LM, Drouet DE, Nguyen DVM, Susuki K. Methylglyoxal Disrupts Paranodal Axoglial Junctions via Calpain Activation. ASN Neuro 2019; 10:1759091418766175. [PMID: 29673258 PMCID: PMC5944142 DOI: 10.1177/1759091418766175] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Nodes of Ranvier and associated paranodal and juxtaparanodal domains along myelinated axons are essential for normal function of the peripheral and central nervous systems. Disruption of these domains as well as increases in the reactive carbonyl species methylglyoxal are implicated as a pathophysiology common to a wide variety of neurological diseases. Here, using an ex vivo nerve exposure model, we show that increasing methylglyoxal produces paranodal disruption, evidenced by disorganized immunostaining of axoglial cell-adhesion proteins, in both sciatic and optic nerves from wild-type mice. Consistent with previous studies showing that increase of methylglyoxal can alter intracellular calcium homeostasis, we found upregulated activity of the calcium-activated protease calpain in sciatic nerves after methylglyoxal exposure. Methylglyoxal exposure altered clusters of proteins that are known as calpain substrates: ezrin in Schwann cell microvilli at the perinodal area and zonula occludens 1 in Schwann cell autotypic junctions at paranodes. Finally, treatment with the calpain inhibitor calpeptin ameliorated methylglyoxal-evoked ezrin loss and paranodal disruption in both sciatic and optic nerves. Our findings strongly suggest that elevated methylglyoxal levels and subsequent calpain activation contribute to the disruption of specialized axoglial domains along myelinated nerve fibers in neurological diseases.
Collapse
Affiliation(s)
- Ryan B Griggs
- 1 Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| | - Leonid M Yermakov
- 1 Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| | - Domenica E Drouet
- 1 Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| | - Duc V M Nguyen
- 1 Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| | - Keiichiro Susuki
- 1 Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| |
Collapse
|
13
|
Yermakov LM, Hong LA, Drouet DE, Griggs RB, Susuki K. Functional Domains in Myelinated Axons. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1190:65-83. [PMID: 31760639 DOI: 10.1007/978-981-32-9636-7_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Propagation of action potentials along axons is optimized through interactions between neurons and myelinating glial cells. Myelination drives division of the axons into distinct molecular domains including nodes of Ranvier. The high density of voltage-gated sodium channels at nodes generates action potentials allowing for rapid and efficient saltatory nerve conduction. At paranodes flanking both sides of the nodes, myelinating glial cells interact with axons, forming junctions that are essential for node formation and maintenance. Recent studies indicate that the disruption of these specialized axonal domains is involved in the pathophysiology of various neurological diseases. Loss of paranodal axoglial junctions due to genetic mutations or autoimmune attack against the paranodal proteins leads to nerve conduction failure and neurological symptoms. Breakdown of nodal and paranodal proteins by calpains, the calcium-dependent cysteine proteases, may be a common mechanism involved in various nervous system diseases and injuries. This chapter reviews recent progress in neurobiology and pathophysiology of specialized axonal domains along myelinated nerve fibers.
Collapse
Affiliation(s)
- Leonid M Yermakov
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| | - Lulu A Hong
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| | - Domenica E Drouet
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| | - Ryan B Griggs
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| | - Keiichiro Susuki
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA.
| |
Collapse
|
14
|
Smith MA, Plyler ES, Dengler-Crish CM, Meier J, Crish SD. Nodes of Ranvier in Glaucoma. Neuroscience 2018; 390:104-118. [PMID: 30149050 DOI: 10.1016/j.neuroscience.2018.08.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 08/15/2018] [Accepted: 08/17/2018] [Indexed: 01/13/2023]
Abstract
Retinal ganglion cell axons of the DBA/2J mouse model of glaucoma, a model characterized by extensive neuroinflammation, preserve synaptic contacts with their subcortical targets for a time after onset of anterograde axonal transport deficits, axon terminal hypertrophy, and cytoskeletal alterations. Though retrograde axonal transport is still evident in these axons, it is unknown if they retain their ability to transmit visual information to the brain. Using a combination of in vivo multiunit electrophysiology, neuronal tract tracing, multichannel immunofluorescence, and transmission electron microscopy, we report that eye-brain signaling deficits precede transport loss and axonal degeneration in the DBA/2J retinal projection. These deficits are accompanied by node of Ranvier pathology - consisting of increased node length and redistribution of the voltage-gated sodium channel Nav1.6 that parallel changes seen early in multiple sclerosis (MS) axonopathy. Further, with age, axon caliber and neurofilament density increase without corresponding changes in myelin thickness. In contrast to these findings in DBA/2J mice, node pathologies were not observed in the induced microbead occlusion model of glaucoma - a model that lacks pre-existing inflammation. After one week of systemic treatment with fingolimod, an immunosuppressant therapy for relapsing-remitting MS, DBA/2J mice showed a substantial reduction in node pathology and mild effects on axon morphology. These data suggest that neurophysiological deficits in the DBA/2J may be due to defects in intact axons and targeting node pathology may be a promising intervention for some types of glaucoma.
Collapse
Affiliation(s)
- M A Smith
- Northeast Ohio Medical University, Rootstown, OH 44272, United States
| | - E S Plyler
- Northeast Ohio Medical University, Rootstown, OH 44272, United States; Kent State Biomedical Sciences Graduate Program, United States
| | - C M Dengler-Crish
- Northeast Ohio Medical University, Rootstown, OH 44272, United States
| | - J Meier
- Northeast Ohio Medical University, Rootstown, OH 44272, United States
| | - S D Crish
- Northeast Ohio Medical University, Rootstown, OH 44272, United States.
| |
Collapse
|
15
|
Experimental Traumatic Brain Injury Identifies Distinct Early and Late Phase Axonal Conduction Deficits of White Matter Pathophysiology, and Reveals Intervening Recovery. J Neurosci 2018; 38:8723-8736. [PMID: 30143572 PMCID: PMC6181309 DOI: 10.1523/jneurosci.0819-18.2018] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 06/15/2018] [Accepted: 07/10/2018] [Indexed: 01/26/2023] Open
Abstract
Traumatic brain injury (TBI) patients often exhibit slowed information processing speed that can underlie diverse symptoms. Processing speed depends on neural circuit function at synapses, in the soma, and along axons. Long axons in white matter (WM) tracts are particularly vulnerable to TBI. We hypothesized that disrupted axon–myelin interactions that slow or block action potential conduction in WM tracts may contribute to slowed processing speed after TBI. Concussive TBI in male/female mice was used to produce traumatic axonal injury in the corpus callosum (CC), similar to WM pathology in human TBI cases. Compound action potential velocity was slowed along myelinated axons at 3 d after TBI with partial recovery by 2 weeks, suggesting early demyelination followed by remyelination. Ultrastructurally, dispersed demyelinated axons and disorganized myelin attachment to axons at paranodes were apparent within CC regions exhibiting traumatic axonal injury. Action potential conduction is exquisitely sensitive to paranode abnormalities. Molecular identification of paranodes and nodes of Ranvier detected asymmetrical paranode pairs and abnormal heminodes after TBI. Fluorescent labeling of oligodendrocyte progenitors in NG2CreER;mTmG mice showed increased synthesis of new membranes extended along axons to paranodes, indicating remyelination after TBI. At later times after TBI, an overall loss of conducting axons was observed at 6 weeks followed by CC atrophy at 8 weeks. These studies identify a progression of both myelinated axon conduction deficits and axon–myelin pathology in the CC, implicating WM injury in impaired information processing at early and late phases after TBI. Furthermore, the intervening recovery reveals a potential therapeutic window. SIGNIFICANCE STATEMENT Traumatic brain injury (TBI) is a major global health concern. Across the spectrum of TBI severities, impaired information processing can contribute to diverse functional deficits that underlie persistent symptoms. We used experimental TBI to exploit technical advantages in mice while modeling traumatic axonal injury in white matter tracts, which is a key pathological feature of human TBI. A combination of approaches revealed slowed and failed signal conduction along with damage to the structure and molecular composition of myelinated axons in the white matter after TBI. An early regenerative response was not sustained yet reveals a potential time window for intervention. These insights into white matter abnormalities underlying axon conduction deficits can inform strategies to improve treatment options for TBI patients.
Collapse
|
16
|
Marin MA, Carmichael ST. Stroke in CNS white matter: Models and mechanisms. Neurosci Lett 2018; 684:193-199. [PMID: 30098384 DOI: 10.1016/j.neulet.2018.07.039] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 07/03/2018] [Accepted: 07/30/2018] [Indexed: 12/14/2022]
Abstract
White matter stroke (WMS) is a debilitating disorder, which is characterized by the formation of ischemic lesions along subcortical white matter tracts of the central nervous system. Initial infarction during the early stages of the disease is often asymptomatic and is thus considered a form of silent stroke. However, over time lesions accumulate, resulting in severe cognitive and motor decline of which there are no known therapies. Functional imaging and post mortem analysis of patients demonstrates a loss of oligodendrocytes and the subsequent damage of myelin as a primary hallmark of WMS lesions. Though the adult mammalian brain maintains the capacity to regenerate adult oligodendrocytes, this process is blocked in the infarcted white matter thereby preventing remyelination. Recent evidence suggests that activation of neural circuits via motor training or direct stimulation drives oligodendrogenesis and de novo myelin synthesis, opening a potential avenue for therapy in WMS.
Collapse
Affiliation(s)
- Miguel Alejandro Marin
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 9009, United States.
| | - S Thomas Carmichael
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 9009, United States.
| |
Collapse
|
17
|
Oliveira ICF, de Paula MO, Lastra HCB, Alves BDB, Moreno DAN, Yoshida EH, Amaral Filho J, Cogo JC, Varanda EA, Rai M, Santos CAD, Oshima-Franco Y. Activity of silver nanoparticles on prokaryotic cells and Bothrops jararacussu snake venom. Drug Chem Toxicol 2018; 42:60-64. [PMID: 29961355 DOI: 10.1080/01480545.2018.1478850] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Nanoparticle-conjugated venom-toxins of venomous animals and its therapeutic efficacy against emerging or neglecting diseases is a promising strategy. In this study, silver nanoparticles (AgNPs ∼50 nm, 0.081 mg mL-1) were studied against the neuromuscular blockade, myotoxic effects induced by Bothrops jararacussu venom (60 µg mL-1) and also against prokaryotic cells. The neurotoxicity was evaluated on ex vivo mouse phrenic nerve-diaphragm using traditional myographic technique, able to obtain functional contractile responses and to check the neurotransmission. The myotoxicity on mammalian cells was evaluated in muscles resulting from pharmacological assays using routine histological techniques and light microscopy. The toxicity to prokaryotic cells was evaluated on Salmonella typhimurium TA100 without metabolic activation. The in vitro preincubation model between AgNPs and venom was enough to abolish toxic effects of B. jararacussu venom, but mammalian cells were highly sensitive to AgNPs more than prokaryotic cells, by acting as dose-independently and dose-dependently parameters, respectively. These results allowed us to conclude that AgNPs showed promising activity as antivenom agent but for its safer use, the toxicity should be evaluated on experimental animals.
Collapse
Affiliation(s)
| | | | | | - Bruno de Brito Alves
- c Post-Graduate Program in Pharmaceutical Sciences , University of Sorocaba (UNISO) , Sorocaba , Brazil
| | | | - Edson Hideaki Yoshida
- c Post-Graduate Program in Pharmaceutical Sciences , University of Sorocaba (UNISO) , Sorocaba , Brazil
| | - Jorge Amaral Filho
- c Post-Graduate Program in Pharmaceutical Sciences , University of Sorocaba (UNISO) , Sorocaba , Brazil
| | - José Carlos Cogo
- d Bioengineering and Biomedical Engineering Programs, Technological and Scientific Institute , Brazil University , Itaquera, São Paulo , Brazil
| | - Eliana Aparecida Varanda
- e Pharmaceutical Sciences Faculty of Araraquara , São Paulo State University (UNESP) , Araraquara , Brazil
| | - Mahendra Rai
- f Department of Biotechnology , SGB Amravati University , Amravati , India
| | - Carolina Alves Dos Santos
- c Post-Graduate Program in Pharmaceutical Sciences , University of Sorocaba (UNISO) , Sorocaba , Brazil
| | - Yoko Oshima-Franco
- c Post-Graduate Program in Pharmaceutical Sciences , University of Sorocaba (UNISO) , Sorocaba , Brazil
| |
Collapse
|
18
|
Ryan MC, Sherman P, Rowland LM, Wijtenburg SA, Acheson A, Fieremans E, Veraart J, Novikov DS, Hong LE, Sladky J, Peralta PD, Kochunov P, McGuire SA. Miniature pig model of human adolescent brain white matter development. J Neurosci Methods 2018; 296:99-108. [PMID: 29277719 PMCID: PMC5817010 DOI: 10.1016/j.jneumeth.2017.12.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 12/21/2017] [Accepted: 12/21/2017] [Indexed: 12/14/2022]
Abstract
BACKGROUND Neuroscience research in brain development and disorders can benefit from an in vivo animal model that portrays normal white matter (WM) development trajectories and has a sufficiently large cerebrum for imaging with human MRI scanners and protocols. NEW METHOD Twelve three-month-old Sinclair™ miniature pigs (Sus scrofa domestica) were longitudinally evaluated during adolescent development using advanced diffusion weighted imaging (DWI) focused on cerebral WM. Animals had three MRI scans every 23.95 ± 3.73 days using a 3-T scanner. The DWI imaging protocol closely modeled advanced human structural protocols and consisted of fifteen b-shells (b = 0-3500 s/mm2) with 32-directions/shell. DWI data were analyzed using diffusion kurtosis and bi-exponential modeling that provided measurements that included fractional anisotropy (FA), radial kurtosis, kurtosis anisotropy (KA), axial kurtosis, tortuosity, and permeability-diffusivity index (PDI). RESULTS Significant longitudinal effects of brain development were observed for whole-brain average FA, KA, and PDI (all p < 0.001). There were expected regional differences in trends, with corpus callosum fibers showing the highest rate of change. COMPARISON WITH EXISTING METHOD(S) Pigs have a large, gyrencephalic brain that can be studied using clinical MRI scanners/protocols. Pigs are less complex than non-human primates thus satisfying the "replacement" principle of animal research. CONCLUSIONS Longitudinal effects were observed for whole-brain and regional diffusion measurements. The changes in diffusion measurements were interepreted as evidence for ongoing myelination and maturation of cerebral WM. Corpus callosum and superficial cortical WM showed the expected higher rates of change, mirroring results in humans.
Collapse
Affiliation(s)
- Meghann C Ryan
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, 55 Wade Avenue, Catonsville, MD 21228, United States
| | - Paul Sherman
- U.S. Air Force School of Aerospace Medicine, Aeromedical Research Department, 2510 5th Street, Building 840, Wright-Patterson AFB, OH 45433-7913, United States
| | - Laura M Rowland
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, 55 Wade Avenue, Catonsville, MD 21228, United States
| | - S Andrea Wijtenburg
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, 55 Wade Avenue, Catonsville, MD 21228, United States
| | - Ashley Acheson
- Department of Psychiatry, University of Arkansas for Medical Sciences, 4301 W Markham St, Little Rock, AR 72205, United States
| | - Els Fieremans
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, 660 1st Avenue, New York, NY 10016, United States
| | - Jelle Veraart
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, 660 1st Avenue, New York, NY 10016, United States
| | - Dmitry S Novikov
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, 660 1st Avenue, New York, NY 10016, United States
| | - L Elliot Hong
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, 55 Wade Avenue, Catonsville, MD 21228, United States
| | - John Sladky
- U.S. Air Force School of Aerospace Medicine, Aeromedical Research Department, 2510 5th Street, Building 840, Wright-Patterson AFB, OH 45433-7913, United States; Department of Neurology, 59th Medical Wing, 2200 Bergquist Drive, Suite 1, Joint Base San Antonio-Lackland AFB, TX 78236, United States
| | - P Dana Peralta
- Department of Neurology, 59th Medical Wing, 2200 Bergquist Drive, Suite 1, Joint Base San Antonio-Lackland AFB, TX 78236, United States
| | - Peter Kochunov
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, 55 Wade Avenue, Catonsville, MD 21228, United States.
| | - Stephen A McGuire
- U.S. Air Force School of Aerospace Medicine, Aeromedical Research Department, 2510 5th Street, Building 840, Wright-Patterson AFB, OH 45433-7913, United States; Department of Neurology, 59th Medical Wing, 2200 Bergquist Drive, Suite 1, Joint Base San Antonio-Lackland AFB, TX 78236, United States
| |
Collapse
|
19
|
Noise-Induced Dysregulation of Quaking RNA Binding Proteins Contributes to Auditory Nerve Demyelination and Hearing Loss. J Neurosci 2018; 38:2551-2568. [PMID: 29437856 DOI: 10.1523/jneurosci.2487-17.2018] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 01/22/2018] [Accepted: 01/29/2018] [Indexed: 11/21/2022] Open
Abstract
Noise exposure causes auditory nerve (AN) degeneration and hearing deficiency, though the proximal biological consequences are not entirely understood. Most AN fibers and spiral ganglion neurons are ensheathed by myelinating glia that provide insulation and ensure rapid transmission of nerve impulses from the cochlea to the brain. Here we show that noise exposure administered to mice of either sex rapidly affects myelinating glial cells, causing molecular and cellular consequences that precede nerve degeneration. This response is characterized by demyelination, inflammation, and widespread expression changes in myelin-related genes, including the RNA splicing regulator Quaking (QKI) and numerous QKI target genes. Analysis of mice deficient in QKI revealed that QKI production in cochlear glial cells is essential for proper myelination of spiral ganglion neurons and AN fibers, and for normal hearing. Our findings implicate QKI dysregulation as a critical early component in the noise response, influencing cochlear glia function that leads to AN demyelination and, ultimately, to hearing deficiency.SIGNIFICANCE STATEMENT Auditory glia cells ensheath a majority of spiral ganglion neurons with myelin, protect auditory neurons, and allow for fast conduction of electrical impulses along the auditory nerve. Here we show that noise exposure causes glial dysfunction leading to myelin abnormality and altered expression of numerous genes in the auditory nerve, including QKI, a gene implicated in regulating myelination. Study of a conditional mouse model that specifically depleted QKI in glia showed that QKI deficiency alone was sufficient to elicit myelin-related abnormality and auditory functional declines. These results establish QKI as a key molecular target in the noise response and a causative agent in hearing loss.
Collapse
|
20
|
Daneshi Kohan E, Lashkari BS, Sparrey CJ. The effects of paranodal myelin damage on action potential depend on axonal structure. Med Biol Eng Comput 2017; 56:395-411. [PMID: 28770425 DOI: 10.1007/s11517-017-1691-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 07/17/2017] [Indexed: 12/31/2022]
Abstract
Biophysical computational models of axons provide an important tool for quantifying the effects of injury and disease on signal conduction characteristics. Several studies have used generic models to study the average behavior of healthy and injured axons; however, few studies have included the effects of normal structural variation on the simulated axon's response to injury. The effects of variations in physiological characteristics on axonal function were mapped by altering the structure of the nodal, paranodal, and juxtaparanodal regions across reported values in three different caliber axons (1, 2, and 5.7 μm). Myelin detachment and retraction were simulated to quantify the effects of each injury mechanism on signal conduction. Conduction velocity was most affected by axonal fiber diameter (89%), while membrane potential amplitude was most affected by nodal length (86%) in healthy axons. Postinjury axonal functionality was most affected by myelin detachment in the paranodal and juxtaparanodal regions when retraction and detachment were modeled simultaneously. The efficacy of simulated potassium channel blockers on restoring membrane potential and velocity varied with axonal caliber and injury type. The structural characteristics of axons affect their functional response to myelin retraction and detachment and their subsequent response to potassium channel blocker treatment.
Collapse
Affiliation(s)
- Ehsan Daneshi Kohan
- Mechatronic Systems Engineering, Simon Fraser University, 250-13450 102 Avenue, Surrey, BC, V3T 0A3, Canada.,International Collaboration on Repair Discoveries (ICORD), Faculty of Medicine, University of British Columbia, 5th floor, 5200, 818 West 10th Avenue, Vancouver, BC, V5Z 1M9, Canada
| | - Behnia Shadab Lashkari
- International Collaboration on Repair Discoveries (ICORD), Faculty of Medicine, University of British Columbia, 5th floor, 5200, 818 West 10th Avenue, Vancouver, BC, V5Z 1M9, Canada
| | - Carolyn Jennifer Sparrey
- Mechatronic Systems Engineering, Simon Fraser University, 250-13450 102 Avenue, Surrey, BC, V3T 0A3, Canada. .,International Collaboration on Repair Discoveries (ICORD), Faculty of Medicine, University of British Columbia, 5th floor, 5200, 818 West 10th Avenue, Vancouver, BC, V5Z 1M9, Canada.
| |
Collapse
|
21
|
Yoshimura T, Hayashi A, Handa-Narumi M, Yagi H, Ohno N, Koike T, Yamaguchi Y, Uchimura K, Kadomatsu K, Sedzik J, Kitamura K, Kato K, Trapp BD, Baba H, Ikenaka K. GlcNAc6ST-1 regulates sulfation of N-glycans and myelination in the peripheral nervous system. Sci Rep 2017; 7:42257. [PMID: 28186137 PMCID: PMC5301494 DOI: 10.1038/srep42257] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 01/05/2017] [Indexed: 01/09/2023] Open
Abstract
Highly specialized glial cells wrap axons with a multilayered myelin membrane in vertebrates. Myelin serves essential roles in the functioning of the nervous system. Axonal degeneration is the major cause of permanent neurological disability in primary myelin diseases. Many glycoproteins have been identified in myelin, and a lack of one myelin glycoprotein results in abnormal myelin structures in many cases. However, the roles of glycans on myelin glycoproteins remain poorly understood. Here, we report that sulfated N-glycans are involved in peripheral nervous system (PNS) myelination. PNS myelin glycoproteins contain highly abundant sulfated N-glycans. Major sulfated N-glycans were identified in both porcine and mouse PNS myelin, demonstrating that the 6-O-sulfation of N-acetylglucosamine (GlcNAc-6-O-sulfation) is highly conserved in PNS myelin between these species. P0 protein, the most abundant glycoprotein in PNS myelin and mutations in which at the glycosylation site cause Charcot-Marie-Tooth neuropathy, has abundant GlcNAc-6-O-sulfated N-glycans. Mice deficient in N-acetylglucosamine-6-O-sulfotransferase-1 (GlcNAc6ST-1) failed to synthesize sulfated N-glycans and exhibited abnormal myelination and axonal degeneration in the PNS. Taken together, this study demonstrates that GlcNAc6ST-1 modulates PNS myelination and myelinated axonal survival through the GlcNAc-6-O-sulfation of N-glycans on glycoproteins. These findings may provide novel insights into the pathogenesis of peripheral neuropathy.
Collapse
Affiliation(s)
- Takeshi Yoshimura
- Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
- Department of Physiological Sciences, School of Life Sciences, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Kanagawa 240-0193, Japan
| | - Akiko Hayashi
- Department of Molecular Neurobiology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Mai Handa-Narumi
- Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
- Department of Physiological Sciences, School of Life Sciences, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Kanagawa 240-0193, Japan
| | - Hirokazu Yagi
- Department of Structural Biology and Biomolecular Engineering, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi 467-8603, Japan
| | - Nobuhiko Ohno
- Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
- Department of Physiological Sciences, School of Life Sciences, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Kanagawa 240-0193, Japan
| | - Takako Koike
- Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
| | - Yoshihide Yamaguchi
- Department of Molecular Neurobiology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Kenji Uchimura
- Department of Biochemistry, Graduate School of Medicine, Nagoya University, Nagoya, Aichi 466-8550, Japan
| | - Kenji Kadomatsu
- Department of Biochemistry, Graduate School of Medicine, Nagoya University, Nagoya, Aichi 466-8550, Japan
| | - Jan Sedzik
- Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
- Department of Chemical Engineering and Technology, Protein Crystallization Facility, Royal Institute of Technology, KTH, Stockholm 10044, Sweden
| | - Kunio Kitamura
- Faculty of Health and Medical Care, Saitama Medical University, Hidaka, Saitama 350-1241, Japan
| | - Koichi Kato
- Department of Structural Biology and Biomolecular Engineering, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi 467-8603, Japan
- Institute for Molecular Science and Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
| | - Bruce D. Trapp
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Hiroko Baba
- Department of Molecular Neurobiology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Kazuhiro Ikenaka
- Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
- Department of Physiological Sciences, School of Life Sciences, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Kanagawa 240-0193, Japan
| |
Collapse
|
22
|
Otani Y, Yermakov LM, Dupree JL, Susuki K. Chronic peripheral nerve compression disrupts paranodal axoglial junctions. Muscle Nerve 2016; 55:544-554. [PMID: 27463510 DOI: 10.1002/mus.25273] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Revised: 07/13/2016] [Accepted: 07/26/2016] [Indexed: 11/06/2022]
Abstract
INTRODUCTION Peripheral nerves are often exposed to mechanical stress leading to compression neuropathies. The pathophysiology underlying nerve dysfunction by chronic compression is largely unknown. METHODS We analyzed molecular organization and fine structures at and near nodes of Ranvier in a compression neuropathy model in which a silastic tube was placed around the mouse sciatic nerve. RESULTS Immunofluorescence study showed that clusters of cell adhesion complex forming paranodal axoglial junctions were dispersed and overlapped frequently with juxtaparanodal components. These paranodal changes occurred without internodal myelin damage. The distribution and pattern of paranodal disruption suggests that these changes are the direct result of mechanical stress. Electron microscopy confirmed loss of paranodal axoglial junctions. CONCLUSIONS Our data show that chronic nerve compression disrupts paranodal junctions and axonal domains required for proper peripheral nerve function. These results provide important clues toward better understanding of the pathophysiology underlying nerve dysfunction in compression neuropathies. Muscle Nerve 55: 544-554, 2017.
Collapse
Affiliation(s)
- Yoshinori Otani
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, Wright State University, 3640 Colonel Glenn Highway, Dayton, Ohio, 45435, USA
| | - Leonid M Yermakov
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, Wright State University, 3640 Colonel Glenn Highway, Dayton, Ohio, 45435, USA
| | - Jeffrey L Dupree
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Keiichiro Susuki
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, Wright State University, 3640 Colonel Glenn Highway, Dayton, Ohio, 45435, USA
| |
Collapse
|
23
|
Griggs RB, Yermakov LM, Susuki K. Formation and disruption of functional domains in myelinated CNS axons. Neurosci Res 2016; 116:77-87. [PMID: 27717670 DOI: 10.1016/j.neures.2016.09.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 09/19/2016] [Accepted: 09/23/2016] [Indexed: 12/15/2022]
Abstract
Communication in the central nervous system (CNS) occurs through initiation and propagation of action potentials at excitable domains along axons. Action potentials generated at the axon initial segment (AIS) are regenerated at nodes of Ranvier through the process of saltatory conduction. Proper formation and maintenance of the molecular structure at the AIS and nodes are required for sustaining conduction fidelity. In myelinated CNS axons, paranodal junctions between the axolemma and myelinating oligodendrocytes delineate nodes of Ranvier and regulate the distribution and localization of specialized functional elements, such as voltage-gated sodium channels and mitochondria. Disruption of excitable domains and altered distribution of functional elements in CNS axons is associated with demyelinating diseases such as multiple sclerosis, and is likely a mechanism common to other neurological disorders. This review will provide a brief overview of the molecular structure of the AIS and nodes of Ranvier, as well as the distribution of mitochondria in myelinated axons. In addition, this review highlights important structural and functional changes within myelinated CNS axons that are associated with neurological dysfunction.
Collapse
Affiliation(s)
- Ryan B Griggs
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
| | - Leonid M Yermakov
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
| | - Keiichiro Susuki
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States.
| |
Collapse
|
24
|
Verden D, Macklin WB. Neuroprotection by central nervous system remyelination: Molecular, cellular, and functional considerations. J Neurosci Res 2016; 94:1411-1420. [PMID: 27618492 DOI: 10.1002/jnr.23923] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 08/09/2016] [Accepted: 08/24/2016] [Indexed: 12/27/2022]
Abstract
Oligodendrocytes and their myelin sheaths play an intricate role in axonal health and function. The prevalence of white matter pathology in a wide variety of central nervous system disorders has gained attention in recent years. Remyelination has therefore become a major target of therapeutic research, with the aim of protecting axons from further damage. The axon-myelin unit is elaborate, and demyelination causes profound changes in axonal molecular domains, signal transmission, and metabolism. Remyelination is known to restore some of these changes, but many of its outcomes remain unknown. Understanding how different aspects of the axon-myelin unit are restored by remyelination is important for making effective, targeted therapeutics for white matter dysfunction. Additionally, understanding how subtle deficits relate to axonal function during demyelination and remyelination may provide clues into the impact of myelin on neuronal circuits. In this review, we discuss the current knowledge of the neuroprotective effects of remyelination, as well as gaps in our knowledge. Finally, we propose systems with unique myelin profiles that may serve as useful models for investigating remyelination efficacy. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Dylan Verden
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, Colorado
| | - Wendy B Macklin
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, Colorado.
| |
Collapse
|
25
|
Abstract
Myelinated axons are divided into polarized subdomains including axon initial segments and nodes of Ranvier. These domains initiate and propagate action potentials and regulate the trafficking and localization of somatodendritic and axonal proteins. Formation of axon initial segments and nodes of Ranvier depends on intrinsic (neuronal) and extrinsic (glial) interactions. Several levels of redundancy in both mechanisms and molecules also exist to ensure efficient node formation. Furthermore, the establishment of polarized domains at and near nodes of Ranvier reflects the intrinsic polarity of the myelinating glia responsible for node assembly. Here, we discuss the various polarized domains of myelinated axons, how they are established by both intrinsic and extrinsic interactions, and the polarity of myelinating glia.
Collapse
Affiliation(s)
- Daniel R Zollinger
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030;
| | - Kelli L Baalman
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030;
| | - Matthew N Rasband
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030;
| |
Collapse
|
26
|
Supramaximal Stimulus Intensity as a Diagnostic Tool in Chronic Demyelinating Neuropathy. NEUROSCIENCE JOURNAL 2016; 2016:6796270. [PMID: 27413732 PMCID: PMC4927946 DOI: 10.1155/2016/6796270] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 05/29/2016] [Indexed: 12/12/2022]
Abstract
Objective. The ability to correctly identify chronic demyelinating neuropathy can have important therapeutic and prognostic significance. The stimulus intensity value required to obtain a supramaximal compound muscle action potential amplitude is a commonly acquired data point that has not been formally assessed as a diagnostic tool in routine nerve conduction studies to identify chronic neuropathies. We postulated that this value was significantly elevated in chronic demyelinating neuropathy. Methods. We retrospectively reviewed electrophysiology laboratory records to compare the stimulus intensity values recorded during median and ulnar motor nerve conduction studies. The groups studied included normal controls (n = 42) and the following diagnostic categories: chronic inflammatory demyelinating neuropathy (CIDP) (n = 20), acquired inflammatory demyelinating neuropathy (AIDP) (n = 13), Charcot Marie Tooth (CMT) type 1 or 4C (n = 15), carpal tunnel syndrome (CTS) (n = 11), and amyotrophic lateral sclerosis (ALS) (n = 18). Results. Supramaximal intensities were significantly higher in patients with CMT (median nerve: 43.4 mA) and CIDP (median nerve: 38.9 mA), whereas values similar to normal controls (median nerve: 25.3 mA) were obtained in ALS, CTS, and AIDP. Conclusions. Supramaximal stimulus intensity may be used as an additional criterion to identify the pathophysiology of neuropathy. We postulate that endoneurial hypertrophic changes may increase electrical impedance and thus the threshold of excitation at nodes of Ranvier.
Collapse
|
27
|
Takagishi Y, Katanosaka K, Mizoguchi H, Murata Y. Disrupted axon-glia interactions at the paranode in myelinated nerves cause axonal degeneration and neuronal cell death in the aged Caspr mutant mouse shambling. Neurobiol Aging 2016; 43:34-46. [PMID: 27255813 DOI: 10.1016/j.neurobiolaging.2016.03.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 03/15/2016] [Accepted: 03/16/2016] [Indexed: 12/16/2022]
Abstract
Emerging evidence suggests that axonal degeneration is a disease mechanism in various neurodegenerative diseases and that the paranodes at the nodes of Ranvier may be the initial site of pathogenesis. We investigated the pathophysiology of the disease process in the central and peripheral nervous systems of a Caspr mutant mouse, shambling (shm), which is affected by disrupted paranodal structures and impaired nerve conduction of myelinated nerves. The shm mice manifest a progressive neurological phenotype as mice age. We found extensive axonal degeneration and a loss of neurons in the central nervous system and peripheral nervous system in aged shm mice. Axonal alteration of myelinated nerves was defined by abnormal distribution and expression of neurofilaments and derangements in the status of phosphorylated and non/de-phosphorylated neurofilaments. Autophagy-related structures were also accumulated in degenerated axons and neurons. In conclusion, our results suggest that disrupted axon-glia interactions at the paranode cause the cytoskeletal alteration in myelinated axons leading to neuronal cell death, and the process involves detrimental autophagy and aging as factors that promote the pathogenesis.
Collapse
Affiliation(s)
- Yoshiko Takagishi
- Department of Genetics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan.
| | - Kimiaki Katanosaka
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Hiroyuki Mizoguchi
- Research Center for Next-Generation Drug Development, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Yoshiharu Murata
- Department of Genetics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| |
Collapse
|
28
|
Susuki K, Kuba H. Activity-dependent regulation of excitable axonal domains. J Physiol Sci 2016; 66:99-104. [PMID: 26464228 PMCID: PMC10717305 DOI: 10.1007/s12576-015-0413-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 09/30/2015] [Indexed: 01/04/2023]
Abstract
Rapid action potential propagation along myelinated axons requires voltage-gated Na(+) channel clustering at the axon initial segments (AISs) and nodes of Ranvier. The AIS is intrinsically defined by cytoskeletal proteins expressed in axons, whereas nodes of Ranvier are formed by interaction between neurons and myelinating glia. These axonal domains have long been considered stable structures, but recent studies revealed that they are plastic and contribute to fine adjustment of neuronal activities and circuit function. The AIS changes its distribution and maintains neural circuit activity at a constant level. Morphological changes in myelinated nerve structures presumably modulate the excitability of nodal regions and regulate the timing of activity, thereby optimizing signal processing in a neural circuit. This review highlights recent findings on the structural plasticity of these excitable axonal domains.
Collapse
Affiliation(s)
- Keiichiro Susuki
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine, Wright State University, 3640 Colonel Glenn Highway, Dayton, OH, 45435, USA.
| | - Hiroshi Kuba
- Department of Cell Physiology, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan.
- PRESTO, JST, Saitama, Japan.
| |
Collapse
|
29
|
Hwang JY, Kim YJ, Choi BY, Kim BJ, Han BG. Meta analysis identifies a novel susceptibility locus associated with heel bone strength in the Korean population. Bone 2016; 84:47-51. [PMID: 26686025 DOI: 10.1016/j.bone.2015.12.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 12/04/2015] [Accepted: 12/10/2015] [Indexed: 10/22/2022]
Abstract
INTRODUCTION Calcaneal quantitative ultrasound has been recognized as a non-invasive method for evaluation of bone strength and prediction of osteoporotic fracture. METHODS To extend a thorough genetic catalog for osteoporotic bone properties, we performed a genome-wide association study (rural cohort I, n=1895) of speed of sound (SOS) using the 1000 genome-based imputation in the discovery stage and then carried out in silico lookups (rural cohort II and III, n=2,967) and de novo genotyping (rural cohort IV, n=4,296) in the replication stage. RESULTS In the combined meta-analysis (n=9,158), we identified a novel variant associated with SOS (rs2445771 in the GLDN gene, P=2.27×10(-9)) reaching genome-wide significance in the Korean population. We further demonstrated that allele-specific regulatory modifications found to be associated with functional enrichments by ENCODE annotations. CONCLUSION Our findings could provide additional insights into understanding of genetic and epigenetic regulations on bone metabolism.
Collapse
Affiliation(s)
- Joo-Yeon Hwang
- Center for Genome Science, National Institute of Health, Osong Health Technology Administration Complex, Chungcheongbuk-do, Republic of Korea
| | - Young Jin Kim
- Center for Genome Science, National Institute of Health, Osong Health Technology Administration Complex, Chungcheongbuk-do, Republic of Korea
| | - Bo Youl Choi
- Department of Preventive Medicine, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Bong-Jo Kim
- Center for Genome Science, National Institute of Health, Osong Health Technology Administration Complex, Chungcheongbuk-do, Republic of Korea.
| | - Bok-Ghee Han
- Center for Genome Science, National Institute of Health, Osong Health Technology Administration Complex, Chungcheongbuk-do, Republic of Korea.
| |
Collapse
|
30
|
Freeman SA, Desmazières A, Fricker D, Lubetzki C, Sol-Foulon N. Mechanisms of sodium channel clustering and its influence on axonal impulse conduction. Cell Mol Life Sci 2016; 73:723-35. [PMID: 26514731 PMCID: PMC4735253 DOI: 10.1007/s00018-015-2081-1] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 10/21/2015] [Accepted: 10/22/2015] [Indexed: 12/16/2022]
Abstract
The efficient propagation of action potentials along nervous fibers is necessary for animals to interact with the environment with timeliness and precision. Myelination of axons is an essential step to ensure fast action potential propagation by saltatory conduction, a process that requires highly concentrated voltage-gated sodium channels at the nodes of Ranvier. Recent studies suggest that the clustering of sodium channels can influence axonal impulse conduction in both myelinated and unmyelinated fibers, which could have major implications in disease, particularly demyelinating pathology. This comprehensive review summarizes the mechanisms governing the clustering of sodium channels at the peripheral and central nervous system nodes and the specific roles of their clustering in influencing action potential conduction. We further highlight the classical biophysical parameters implicated in conduction timing, followed by a detailed discussion on how sodium channel clustering along unmyelinated axons can impact axonal impulse conduction in both physiological and pathological contexts.
Collapse
Affiliation(s)
- Sean A Freeman
- ICM-GHU Pitié-Salpêtrière, Sorbonne Universités UPMC Univ Paris 06, UMR_S 1127, 75013, Paris, France.
- Inserm U1127, 75013, Paris, France.
- CNRS UMR7225, 75013, Paris, France.
| | - Anne Desmazières
- ICM-GHU Pitié-Salpêtrière, Sorbonne Universités UPMC Univ Paris 06, UMR_S 1127, 75013, Paris, France.
- Inserm U1127, 75013, Paris, France.
- CNRS UMR7225, 75013, Paris, France.
| | - Desdemona Fricker
- ICM-GHU Pitié-Salpêtrière, Sorbonne Universités UPMC Univ Paris 06, UMR_S 1127, 75013, Paris, France.
- Inserm U1127, 75013, Paris, France.
- CNRS UMR7225, 75013, Paris, France.
| | - Catherine Lubetzki
- ICM-GHU Pitié-Salpêtrière, Sorbonne Universités UPMC Univ Paris 06, UMR_S 1127, 75013, Paris, France.
- Inserm U1127, 75013, Paris, France.
- CNRS UMR7225, 75013, Paris, France.
- Assistance Publique-Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Paris, France.
| | - Nathalie Sol-Foulon
- ICM-GHU Pitié-Salpêtrière, Sorbonne Universités UPMC Univ Paris 06, UMR_S 1127, 75013, Paris, France.
- Inserm U1127, 75013, Paris, France.
- CNRS UMR7225, 75013, Paris, France.
| |
Collapse
|
31
|
Susuki K, Otani Y, Rasband MN. Submembranous cytoskeletons stabilize nodes of Ranvier. Exp Neurol 2016; 283:446-51. [PMID: 26775177 DOI: 10.1016/j.expneurol.2015.11.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 11/10/2015] [Accepted: 11/23/2015] [Indexed: 01/22/2023]
Abstract
Rapid action potential propagation along myelinated axons requires voltage-gated Na(+) (Nav) channel clustering at nodes of Ranvier. At paranodes flanking nodes, myelinating glial cells interact with axons to form junctions. The regions next to the paranodes called juxtaparanodes are characterized by high concentrations of voltage-gated K(+) channels. Paranodal axoglial junctions function as barriers to restrict the position of these ion channels. These specialized domains along the myelinated nerve fiber are formed by multiple molecular mechanisms including interactions between extracellular matrix, cell adhesion molecules, and cytoskeletal scaffolds. This review highlights recent findings into the roles of submembranous cytoskeletal proteins in the stabilization of molecular complexes at and near nodes. Axonal ankyrin-spectrin complexes stabilize Nav channels at nodes. Axonal protein 4.1B-spectrin complexes contribute to paranode and juxtaparanode organization. Glial ankyrins enriched at paranodes facilitate node formation. Finally, disruption of spectrins or ankyrins by genetic mutations or proteolysis is involved in the pathophysiology of various neurological or psychiatric disorders.
Collapse
Affiliation(s)
- Keiichiro Susuki
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States.
| | - Yoshinori Otani
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
| | - Matthew N Rasband
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States.
| |
Collapse
|
32
|
Uncini A, Kuwabara S. Nodopathies of the peripheral nerve: an emerging concept. J Neurol Neurosurg Psychiatry 2015; 86:1186-95. [PMID: 25699569 DOI: 10.1136/jnnp-2014-310097] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 01/31/2015] [Indexed: 12/17/2022]
Abstract
Peripheral nerve diseases are traditionally classified as demyelinating or axonal. It has been recently proposed that microstructural changes restricted to the nodal/paranodal region may be the key to understanding the pathophysiology of antiganglioside antibody mediated neuropathies. We reviewed neuropathies with different aetiologies (dysimmune, inflammatory, ischaemic, nutritional, toxic) in which evidence from nerve conductions, excitability studies, pathology and animal models, indicate the involvement of the nodal region in the pathogenesis. For these neuropathies, the classification in demyelinating and axonal is inadequate or even misleading, we therefore propose a new category of nodopathy that has the following features: (1) it is characterised by a pathophysiological continuum from transitory nerve conduction block to axonal degeneration; (2) the conduction block may be due to paranodal myelin detachment, node lengthening, dysfunction or disruption of Na(+) channels, altered homeostasis of water and ions, or abnormal polarisation of the axolemma; (3) the conduction block may be promptly reversible without development of excessive temporal dispersion; (4) axonal degeneration, depending on the specific disorder and its severity, eventually follows the conduction block. The term nodopathy focuses to the site of primary nerve injury, avoids confusion with segmental demyelinating neuropathies and circumvents the apparent paradox that something axonal may be reversible and have a good prognosis.
Collapse
Affiliation(s)
- Antonino Uncini
- Department of Neuroscience, Imaging and Clinical Sciences, University "G d'Annunzio", Chieti-Pescara, Chieti, Italy
| | - Satoshi Kuwabara
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
33
|
Rasband MN, Peles E. The Nodes of Ranvier: Molecular Assembly and Maintenance. Cold Spring Harb Perspect Biol 2015; 8:a020495. [PMID: 26354894 DOI: 10.1101/cshperspect.a020495] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Action potential (AP) propagation in myelinated nerves requires clustered voltage gated sodium and potassium channels. These channels must be specifically localized to nodes of Ranvier where the AP is regenerated. Several mechanisms have evolved to facilitate and ensure the correct assembly and stabilization of these essential axonal domains. This review highlights the current understanding of the axon intrinsic and glial extrinsic mechanisms that control the formation and maintenance of the nodes of Ranvier in both the peripheral nervous system (PNS) and central nervous system (CNS).
Collapse
Affiliation(s)
- Matthew N Rasband
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
| | - Elior Peles
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
34
|
Xu DE, Zhang WM, Yang ZZ, Zhu HM, Yan K, Li S, Bagnard D, Dawe GS, Ma QH, Xiao ZC. Amyloid precursor protein at node of Ranvier modulates nodal formation. Cell Adh Migr 2015; 8:396-403. [PMID: 25482638 DOI: 10.4161/cam.28802] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Amyloid precursor protein (APP), commonly associated with Alzheimer disease, is upregulated and distributes evenly along the injured axons, and therefore, also known as a marker of demyelinating axonal injury and axonal degeneration. However, the physiological distribution and function of APP along myelinated axons was unknown. We report that APP aggregates at nodes of Ranvier (NOR) in the myelinated central nervous system (CNS) axons but not in the peripheral nervous system (PNS). At CNS NORs, APP expression co-localizes with tenascin-R and is flanked by juxtaparanodal potassium channel expression demonstrating that APP localized to NOR. In APP-knockout (KO) mice, nodal length is significantly increased, while sodium channels are still clustered at NORs. Moreover, APP KO and APP-overexpressing transgenic (APP TG) mice exhibited a decreased and an increased thickness of myelin in spinal cords, respectively, although the changes are limited in comparison to their littermate WT mice. The thickness of myelin in APP KO sciatic nerve also increased in comparison to that in WT mice. Our observations indicate that APP acts as a novel component at CNS NORs, modulating nodal formation and has minor effects in promoting myelination.
Collapse
Affiliation(s)
- De-En Xu
- a Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases ; Institute of Neuroscience; the Second Affiliated Hospital; Soochow University ; Suzhou , China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Wright SN, Hong LE, Winkler AM, Chiappelli J, Nugent K, Muellerklein F, Du X, Rowland LM, Wang DJJ, Kochunov P. Perfusion shift from white to gray matter may account for processing speed deficits in schizophrenia. Hum Brain Mapp 2015; 36:3793-804. [PMID: 26108347 DOI: 10.1002/hbm.22878] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 05/23/2015] [Accepted: 06/04/2015] [Indexed: 12/16/2022] Open
Abstract
Reduced speed of cerebral information processing is a cognitive deficit associated with schizophrenia. Normal information processing speed (PS) requires intact white matter (WM) physiology to support information transfer. In a cohort of 107 subjects (47/60 patients/controls), we demonstrate that PS deficits in schizophrenia patients are explained by reduced WM integrity, which is measured using diffusion tensor imaging, mediated by the mismatch in WM/gray matter blood perfusion, and measured using arterial spin labeling. Our findings are specific to PS, and testing this hypothesis for patient-control differences in working memory produces no explanation. We demonstrate that PS deficits in schizophrenia can be explained by neurophysiological alterations in cerebral WM. Whether the disproportionately low WM integrity in schizophrenia is due to illness or secondary due to this disorder deserves further examination.
Collapse
Affiliation(s)
- Susan N Wright
- Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - L Elliot Hong
- Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Anderson M Winkler
- Oxford Centre for Functional Magnetic Resonance Imaging of the Brain, University of Oxford, Oxford, United Kingdom
| | - Joshua Chiappelli
- Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Katie Nugent
- Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Florian Muellerklein
- Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Xioming Du
- Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Laura M Rowland
- Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, Maryland.,Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Psychology, University of Maryland, Baltimore County, Maryland
| | - Danny J J Wang
- Department of Neurology, University of California, Los Angeles, California
| | - Peter Kochunov
- Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, Maryland.,Department of Physics, University of Maryland, Baltimore County, Maryland
| |
Collapse
|
36
|
Normand EA, Rasband MN. Subcellular patterning: axonal domains with specialized structure and function. Dev Cell 2015; 32:459-68. [PMID: 25710532 DOI: 10.1016/j.devcel.2015.01.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Myelinated axons are patterned into discrete and often-repeating domains responsible for the efficient and rapid transmission of electrical signals. These domains include nodes of Ranvier and axon initial segments. Disruption of axonal patterning leads to nervous system dysfunction. In this review, we introduce the concept of subcellular patterning as applied to axons and discuss how these patterning events depend on both intrinsic, cytoskeletal mechanisms and extrinsic, myelinating glia-dependent mechanisms.
Collapse
Affiliation(s)
- Elizabeth A Normand
- Department of Neuroscience Baylor College of Medicine, Houston, TX 77030, USA
| | - Matthew N Rasband
- Department of Neuroscience Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
37
|
Pathogenesis of immune-mediated neuropathies. Biochim Biophys Acta Mol Basis Dis 2015; 1852:658-66. [DOI: 10.1016/j.bbadis.2014.06.013] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 06/09/2014] [Indexed: 11/20/2022]
|
38
|
Trimmer JS. Subcellular localization of K+ channels in mammalian brain neurons: remarkable precision in the midst of extraordinary complexity. Neuron 2015; 85:238-56. [PMID: 25611506 DOI: 10.1016/j.neuron.2014.12.042] [Citation(s) in RCA: 155] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Potassium channels (KChs) are the most diverse ion channels, in part due to extensive combinatorial assembly of a large number of principal and auxiliary subunits into an assortment of KCh complexes. Their structural and functional diversity allows KChs to play diverse roles in neuronal function. Localization of KChs within specialized neuronal compartments defines their physiological role and also fundamentally impacts their activity, due to localized exposure to diverse cellular determinants of channel function. Recent studies in mammalian brain reveal an exquisite refinement of KCh subcellular localization. This includes axonal KChs at the initial segment, and near/within nodes of Ranvier and presynaptic terminals, dendritic KChs found at sites reflecting specific synaptic input, and KChs defining novel neuronal compartments. Painting the remarkable diversity of KChs onto the complex architecture of mammalian neurons creates an elegant picture of electrical signal processing underlying the sophisticated function of individual neuronal compartments, and ultimately neurotransmission and behavior.
Collapse
Affiliation(s)
- James S Trimmer
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, Davis, CA 95616, USA; Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA 95616, USA.
| |
Collapse
|
39
|
Berger M. Optimizing immunoglobulin G therapy in chronic autoimmune neuropathies. Clin Exp Immunol 2014; 178 Suppl 1:144-5. [PMID: 25546798 DOI: 10.1111/cei.12547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
- M Berger
- Global Immunology R&D, CSL Behring, King of Prussia, PA, USA
| |
Collapse
|
40
|
Ho TSY, Zollinger DR, Chang KJ, Xu M, Cooper EC, Stankewich MC, Bennett V, Rasband MN. A hierarchy of ankyrin-spectrin complexes clusters sodium channels at nodes of Ranvier. Nat Neurosci 2014; 17:1664-72. [PMID: 25362473 PMCID: PMC4271271 DOI: 10.1038/nn.3859] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 10/08/2014] [Indexed: 02/02/2023]
Abstract
The scaffolding protein ankyrin-G is required for Na(+) channel clustering at axon initial segments. It is also considered essential for Na(+) channel clustering at nodes of Ranvier to facilitate fast and efficient action potential propagation. However, notwithstanding these widely accepted roles, we show here that ankyrin-G is dispensable for nodal Na(+) channel clustering in vivo. Unexpectedly, in the absence of ankyrin-G, erythrocyte ankyrin (ankyrin-R) and its binding partner βI spectrin substitute for and rescue nodal Na(+) channel clustering. In addition, channel clustering is also rescued after loss of nodal βIV spectrin by βI spectrin and ankyrin-R. In mice lacking both ankyrin-G and ankyrin-R, Na(+) channels fail to cluster at nodes. Thus, ankyrin R-βI spectrin protein complexes function as secondary reserve Na(+) channel clustering machinery, and two independent ankyrin-spectrin protein complexes exist in myelinated axons to cluster Na(+) channels at nodes of Ranvier.
Collapse
Affiliation(s)
- Tammy Szu-Yu Ho
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030
| | | | - Kae-Jiun Chang
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030
| | - Mingxuan Xu
- Department of Neurology, Baylor College of Medicine, Houston, TX 77030
| | - Edward C. Cooper
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030
- Department of Neurology, Baylor College of Medicine, Houston, TX 77030
| | | | - Vann Bennett
- Department of Cell Biology, Duke University, Durham, NC 27710
| | - Matthew N. Rasband
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030
| |
Collapse
|
41
|
Acheson A, Tagaments M, Rowland LM, Mathias CW, Wright SN, Hong LE, Kochunov P, Dougherty DM. Increased forebrain activations in youths with family histories of alcohol and other substance use disorders performing a Go/NoGo task. Alcohol Clin Exp Res 2014; 38:2944-51. [PMID: 25406902 PMCID: PMC4293305 DOI: 10.1111/acer.12571] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Accepted: 09/06/2014] [Indexed: 12/12/2022]
Abstract
BACKGROUND Youths with a family history of alcohol and other drug use disorders (FH+) are at a greater risk of developing substance use disorders than their peers with no such family histories (FH-), and this increased risk may be related to impaired maturation of forebrain circuitry. FH+ individuals have shown altered forebrain activity at rest and while performing cognitive tasks. However, it is not fully understood how forebrain activity is altered in FH+ individuals, and ultimately how these alterations may contribute to substance use disorder risk. METHODS In this study, we tested 72 FH+ and 32 FH- youths performing a go/no-go task and examined activations in blocks with only go trials (Go Only), blocks with 50% go and 50% no-go trials (Go/NoGo), and a contrast of those 2 blocks. RESULTS FH+ youths had significantly greater cerebral activations in both the Go and Go/NoGo blocks than FH- youths in regions including the posterior cingulate/precuneus, bilateral middle/superior temporal gyrus, and medial superior frontal gyrus with no significant group differences in the subtraction between Go Only and Go/NoGo blocks. Additionally, FH+ youths had moderately slower reaction times on go trials in the Go Only blocks. CONCLUSIONS Our findings suggest that global activation increase in FH+ youths are modulated by FH density and are not specific to the inhibitory components of the task. This pattern of increased activations in FH+ youths may be at least partially due to impaired forebrain white matter development leading to greater activations/less efficient neural communication during task performance.
Collapse
Affiliation(s)
- Ashley Acheson
- Department of Psychiatry, University of Texas Health Science Center at San Antonio, San Antonio, TX
- Research Imaging Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX
| | - Malle Tagaments
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD
| | - Laura M. Rowland
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD
| | - Charles W. Mathias
- Department of Psychiatry, University of Texas Health Science Center at San Antonio, San Antonio, TX
| | - Susan N. Wright
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD
| | - L. Elliot Hong
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD
| | - Peter Kochunov
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD
| | - Donald M. Dougherty
- Department of Psychiatry, University of Texas Health Science Center at San Antonio, San Antonio, TX
| |
Collapse
|
42
|
Stimulation-induced ectopicity and propagation windows in model damaged axons. J Comput Neurosci 2014; 37:523-31. [PMID: 25110188 PMCID: PMC4224747 DOI: 10.1007/s10827-014-0521-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 07/21/2014] [Accepted: 07/23/2014] [Indexed: 12/04/2022]
Abstract
Neural tissue injuries render voltage-gated Na+ channels (Nav) leaky, thereby altering excitability, disrupting propagation and causing neuropathic pain related ectopic activity. In both recombinant systems and native excitable membranes, membrane damage causes the kinetically-coupled activation and inactivation processes of Nav channels to undergo hyperpolarizing shifts. This damage-intensity dependent change, called coupled left-shift (CLS), yields a persistent or “subthreshold” Nav window conductance. Nodes of Ranvier simulations involving various degrees of mild CLS showed that, as the system’s channel/pump fluxes attempt to re-establish ion homeostasis, the CLS elicits hyperexcitability, subthreshold oscillations and neuropathic type action potential (AP) bursts. CLS-induced intermittent propagation failure was studied in simulations of stimulated axons, but pump contributions were ignored, leaving open an important question: does mild-injury (small CLS values, pumps functioning well) render propagation-competent but still quiescent axons vulnerable to further impairments as the system attempts to cope with its normal excitatory inputs? We probe this incipient diffuse axonal injury scenario using a 10-node myelinated axon model. Fully restabilized nodes with mild damage can, we show, become ectopic signal generators (“ectopic nodes”) because incoming APs stress Na+/K+ gradients, thereby altering spike thresholds. Comparable changes could contribute to acquired sodium channelopathies as diverse as epileptic phenomena and to the neuropathic amplification of normally benign sensory inputs. Input spike patterns, we found, propagate with good fidelity through an ectopically firing site only when their frequencies exceed the ectopic frequency. This “propagation window” is a robust phenomenon, occurring despite Gaussian noise, large jitter and the presence of several consecutive ectopic nodes.
Collapse
|
43
|
The node of Ranvier in CNS pathology. Acta Neuropathol 2014; 128:161-75. [PMID: 24913350 PMCID: PMC4102831 DOI: 10.1007/s00401-014-1305-z] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 05/27/2014] [Accepted: 05/27/2014] [Indexed: 12/11/2022]
Abstract
Healthy nodes of Ranvier are crucial for action potential propagation along myelinated axons, both in the central and in the peripheral nervous system. Surprisingly, the node of Ranvier has often been neglected when describing CNS disorders, with most pathologies classified simply as being due to neuronal defects in the grey matter or due to oligodendrocyte damage in the white matter. However, recent studies have highlighted changes that occur in pathological conditions at the node of Ranvier, and at the associated paranodal and juxtaparanodal regions where neurons and myelinating glial cells interact. Lengthening of the node of Ranvier, failure of the electrically resistive seal between the myelin and the axon at the paranode, and retraction of myelin to expose voltage-gated K+ channels in the juxtaparanode, may contribute to altering the function of myelinated axons in a wide range of diseases, including stroke, spinal cord injury and multiple sclerosis. Here, we review the principles by which the node of Ranvier operates and its molecular structure, and thus explain how defects at the node and paranode contribute to neurological disorders.
Collapse
|
44
|
Amor V, Feinberg K, Eshed-Eisenbach Y, Vainshtein A, Frechter S, Grumet M, Rosenbluth J, Peles E. Long-term maintenance of Na+ channels at nodes of Ranvier depends on glial contact mediated by gliomedin and NrCAM. J Neurosci 2014; 34:5089-98. [PMID: 24719088 PMCID: PMC3983794 DOI: 10.1523/jneurosci.4752-13.2014] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Clustering of Na(+) channels at the nodes of Ranvier is coordinated by myelinating glia. In the peripheral nervous system, axoglial contact at the nodes is mediated by the binding of gliomedin and glial NrCAM to axonal neurofascin 186 (NF186). This interaction is crucial for the initial clustering of Na(+) channels at heminodes. As a result, it is not clear whether continued axon-glial contact at nodes of Ranvier is required to maintain these channels at the nodal axolemma. Here, we report that, in contrast to mice that lack either gliomedin or NrCAM, absence of both molecules (and hence the glial clustering signal) resulted in a gradual loss of Na(+) channels and other axonal components from the nodes, the formation of binary nodes, and dysregulation of nodal gap length. Therefore, these mice exhibit neurological abnormalities and slower nerve conduction. Disintegration of the nodes occurred in an orderly manner, starting with the disappearance of neurofascin 186, followed by the loss of Na(+) channels and ankyrin G, and then βIV spectrin, a sequence that reflects the assembly of nodes during development. Finally, the absence of gliomedin and NrCAM led to the invasion of the outermost layer of the Schwann cell membrane beyond the nodal area and the formation of paranodal-like junctions at the nodal gap. Our results reveal that axon-glial contact mediated by gliomedin, NrCAM, and NF186 not only plays a role in Na(+) channel clustering during development, but also contributes to the long-term maintenance of Na(+) channels at nodes of Ranvier.
Collapse
Affiliation(s)
- Veronique Amor
- 1Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel;
| | - Konstantin Feinberg
- 1Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel;
| | - Yael Eshed-Eisenbach
- 1Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel;
| | - Anya Vainshtein
- 1Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel;
| | - Shahar Frechter
- 1Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel;
| | - Martin Grumet
- 2 W.M. Keck Center for Collaborative Neuroscience, Rutgers University, Piscataway, New Jersey 08854; and
| | - Jack Rosenbluth
- 3Department of Neuroscience and Physiology, New York University School of Medicine, New York, New York 10016
| | - Elior Peles
- 1Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel;
| |
Collapse
|
45
|
Bitanihirwe BKY, Woo TUW. Perineuronal nets and schizophrenia: the importance of neuronal coatings. Neurosci Biobehav Rev 2014; 45:85-99. [PMID: 24709070 DOI: 10.1016/j.neubiorev.2014.03.018] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 02/19/2014] [Accepted: 03/25/2014] [Indexed: 12/17/2022]
Abstract
Schizophrenia is a complex brain disorder associated with deficits in synaptic connectivity. The insidious onset of this illness during late adolescence and early adulthood has been reported to be dependent on several key processes of brain development including synaptic refinement, myelination and the physiological maturation of inhibitory neural networks. Interestingly, these events coincide with the appearance of perineuronal nets (PNNs), reticular structures composed of components of the extracellular matrix that coat a variety of cells in the mammalian brain. Until recently, the functions of the PNN had remained enigmatic, but are now considered to be important in development of the central nervous system, neuronal protection and synaptic plasticity, all elements which have been associated with schizophrenia. Here, we review the emerging evidence linking PNNs to schizophrenia. Future studies aimed at further elucidating the functions of PNNs will provide new insights into the pathophysiology of schizophrenia leading to the identification of novel therapeutic targets with the potential to restore normal synaptic integrity in the brain of patients afflicted by this illness.
Collapse
Affiliation(s)
| | - Tsung-Ung W Woo
- Program in Cellular Neuropathology, McLean Hospital, Belmont, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA; Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA.
| |
Collapse
|