1
|
Watermann P, Kalsi GK, Dringen R, Arend C. Differential Effects of Itaconate and its Esters on the Glutathione and Glucose Metabolism of Cultured Primary Rat Astrocytes. Neurochem Res 2024; 50:24. [PMID: 39562371 PMCID: PMC11576791 DOI: 10.1007/s11064-024-04263-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/09/2024] [Accepted: 10/07/2024] [Indexed: 11/21/2024]
Abstract
Itaconate is produced as endogenous metabolite by decarboxylation of the citric acid cycle intermediate cis-aconitate. As itaconate has anti-microbial and anti-inflammatory properties, this substance is considered as potential therapeutic drug for the treatment of inflammation in various diseases including traumatic brain injury and stroke. To test for potential adverse effects of itaconate on the viability and metabolism of brain cells, we investigated whether itaconate or its membrane permeable derivatives dimethyl itaconate (DI) and 4-octyl itaconate (OI) may affect the basal glucose and glutathione (GSH) metabolism of cultured primary astrocytes. Acute exposure of astrocytes to itaconate, DI or OI in concentrations of up to 300 µM for up to 6 h did not compromise cell viability. Of the tested substances, only OI stimulated aerobic glycolysis as shown by a time- and concentration-dependent increase in glucose-consumption and lactate release. None of the tested itaconates affected the pentose-phosphate pathway-dependent reduction of the water-soluble tetrazolium salt 1 (WST1). In contrast, both DI and OI, but not itaconate, depleted cellular GSH in a time- and concentration-dependent manner. For OI this depletion was accompanied by a matching increase in the extracellular GSH content that was completely prevented in the presence of the multidrug resistance protein 1 (Mrp1)-inhibitor MK571, while in DI-treated cultures GSH was depleted both in cells and medium. These data suggest that OI stimulates Mrp1-mediated astrocytic GSH export, while DI reacts with GSH to a conjugate that is not detectable by the GSH assay applied. The data presented demonstrate that itaconate, DI and OI differ strongly in their effects on the GSH and glucose metabolism of cultured astrocytes. Such results should be considered in the context of the discussed potential use of such compounds as therapeutic agents.
Collapse
Affiliation(s)
- Patrick Watermann
- Centre for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, 28359, Bremen, Germany
- Centre for Environmental Research and Sustainable Technology, University of Bremen, 28359, Bremen, Germany
| | - Gurleen K Kalsi
- Centre for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, 28359, Bremen, Germany
| | - Ralf Dringen
- Centre for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, 28359, Bremen, Germany
- Centre for Environmental Research and Sustainable Technology, University of Bremen, 28359, Bremen, Germany
| | - Christian Arend
- Centre for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, 28359, Bremen, Germany.
- Centre for Environmental Research and Sustainable Technology, University of Bremen, 28359, Bremen, Germany.
| |
Collapse
|
2
|
Chen SY, Wu J, Chen Y, Wang YE, Setayeshpour Y, Federico C, Mestre AA, Lin CC, Chi JT. NINJ1 regulates ferroptosis via xCT antiporter interaction and CoA modulation. Cell Death Dis 2024; 15:755. [PMID: 39424803 PMCID: PMC11489787 DOI: 10.1038/s41419-024-07135-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/21/2024]
Abstract
Ninjurin-1 (NINJ1), initially identified as a stress-induced protein in neurons, recently emerged as a key mediator of plasma membrane rupture (PMR) during apoptosis, necrosis, and pyroptosis. However, its involvement in ferroptosis is less well elucidated. Here, we demonstrate that NINJ1 also plays a crucial role in ferroptosis, but through a distinct mechanism. NINJ1 knockdown significantly protected cancer cells against ferroptosis induced only by xCT inhibitors but no other classes of ferroptosis-inducing compounds (FINs). Glycine, known to inhibit canonical NINJ1-mediated membrane rupture in other cell deaths, had no impact on ferroptosis. A compound screen revealed that the ferroptosis protective effect caused by NINJ1 knockdown can be abolished by pantothenate kinase inhibitor (PANKi), buthionine sulfoximine (BSO), and diethylmaleate (DEM). These results suggest that this ferroptosis protection is mediated via Coenzyme A (CoA) and glutathione (GSH), both of which were found to be elevated upon NINJ1 knockdown. Furthermore, we discovered that NINJ1 interacts with the xCT antiporter, which is responsible for cystine uptake for the biosynthesis of CoA and GSH. The removal of NINJ1 increased xCT levels and stability, enhancing cystine uptake and thereby providing protection against ferroptosis. Conversely, NINJ1 overexpression reduced xCT levels and sensitized ferroptosis. These findings reveal that NINJ1 regulates ferroptosis via a non-canonical mechanism, distinct from other regulated cell deaths.
Collapse
Affiliation(s)
- Ssu-Yu Chen
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Jianli Wu
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Yubin Chen
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Ya-En Wang
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Yasaman Setayeshpour
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Chiara Federico
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Alexander A Mestre
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Chao-Chieh Lin
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, 27710, USA.
| | - Jen-Tsan Chi
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, 27710, USA.
- Center for Advanced Genomic Technologies, Duke University School of Medicine, Durham, NC, 27710, USA.
| |
Collapse
|
3
|
Van Kessel ATM, Cosa G. Lipid-derived electrophiles inhibit the function of membrane channels during ferroptosis. Proc Natl Acad Sci U S A 2024; 121:e2317616121. [PMID: 38743627 PMCID: PMC11127018 DOI: 10.1073/pnas.2317616121] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 04/16/2024] [Indexed: 05/16/2024] Open
Abstract
The therapeutic targeting of ferroptosis requires full understanding of the molecular mechanism of this regulated cell death pathway. While lipid-derived electrophiles (LDEs), including 4-hydroxy-2-nonenal (4-HNE), are important biomarkers of ferroptosis, a functional role for these highly reactive species in ferroptotic cell death execution has not been established. Here, through mechanistic characterization of LDE-detoxification impairment, we demonstrate that LDEs mediate altered protein function during ferroptosis. Applying live cell fluorescence imaging, we first identified that export of glutathione-LDE-adducts through multidrug resistance-associated protein (MRP) channels is inhibited following exposure to a panel of ferroptosis inducers (FINs) with different modes of action (type I-IV FINs erastin, RSL3, FIN56, and FINO2). This channel inhibition was recreated by both initiation of lipid peroxidation and treatment with 4-HNE. Importantly, treatment with radical-trapping antioxidants prevented impaired LDE-adduct export when working with both FINs and lipid peroxidation initiators but not 4-HNE, pinpointing LDEs as the cause of this inhibited MRP activity observed during ferroptosis. Our findings, when combined with reports of widespread LDE alkylation of key proteins following ferroptosis induction, including MRP1, set a precedent for LDEs as critical mediators of ferroptotic cell damage. Lipid hydroperoxide breakdown to form truncated phospholipids and LDEs may fully explain membrane permeabilization and modified protein function downstream of lipid peroxidation, offering a unified explanation of the molecular cell death mechanism of ferroptosis.
Collapse
Affiliation(s)
- Antonius T. M. Van Kessel
- Department of Chemistry, Centre for Structural Biology Research (CRBS) and Quebec Centre for Advanced Materials (QCAM), McGill University, Montreal, QCH3A 0B8, Canada
| | - Gonzalo Cosa
- Department of Chemistry, Centre for Structural Biology Research (CRBS) and Quebec Centre for Advanced Materials (QCAM), McGill University, Montreal, QCH3A 0B8, Canada
| |
Collapse
|
4
|
Chen SY, Lin CC, Wu J, Chen Y, Wang YE, Setayeshpour Y, Mestre A, Chi JT. NINJ1 regulates ferroptosis via xCT antiporter interaction and CoA modulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.22.581432. [PMID: 38464226 PMCID: PMC10925083 DOI: 10.1101/2024.02.22.581432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Ninjurin-1 (NINJ1), initially identified as a stress-induced protein in neurons, recently emerged as a key mediator of plasma membrane rupture during apoptosis, necrosis, and pyroptosis. However, its involvement in ferroptosis remains unknown. Here, we demonstrate that NINJ1 also plays a crucial role in ferroptosis, but through a distinct mechanism. NINJ1 knockdown significantly protected cancer cells against ferroptosis induced by xCT inhibitors but no other classes of ferroptosis-inducing compounds (FINs). Glycine, known to inhibit canonical NINJ1-mediated membrane rupture in other cell deaths, had no impact on ferroptosis. A compound screen revealed that NINJ1-mediated ferroptosis protection can be abolished by pantothenate kinase inhibitor (PANKi), buthionine sulfoximine (BSO), and diethylmaleate (DEM). These results suggest that this ferroptosis protection is mediated via Coenzyme A (CoA) and glutathione (GSH), both of which were found to be elevated upon NINJ1 knockdown. Furthermore, we discovered that NINJ1 interacts with the xCT antiporter, which is responsible for cystine uptake for the biosynthesis of CoA and GSH. The removal of NINJ1 increased xCT levels and stability, enhanced cystine uptake, and contributed to elevated CoA and GSH levels, collectively contributing to ferroptosis protection. These findings reveal that NINJ1 regulates ferroptosis via a non-canonical mechanism, distinct from other regulated cell deaths.
Collapse
Affiliation(s)
- Ssu-Yu Chen
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Chao-Chieh Lin
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Jianli Wu
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Yubin Chen
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Ya-En Wang
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Yasaman Setayeshpour
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Alexander Mestre
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Jen-Tsan Chi
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
- Center for Advanced Genomic Technologies, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
5
|
Chai YC, Mieyal JJ. Glutathione and Glutaredoxin-Key Players in Cellular Redox Homeostasis and Signaling. Antioxidants (Basel) 2023; 12:1553. [PMID: 37627548 PMCID: PMC10451691 DOI: 10.3390/antiox12081553] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/25/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023] Open
Abstract
This Special Issue of Antioxidants on Glutathione (GSH) and Glutaredoxin (Grx) was designed to collect review articles and original research studies focused on advancing the current understanding of the roles of the GSH/Grx system in cellular homeostasis and disease processes. The tripeptide glutathione (GSH) is the most abundant non-enzymatic antioxidant/nucleophilic molecule in cells. In addition to various metabolic reactions involving GSH and its oxidized counterpart GSSG, oxidative post-translational modification (PTM) of proteins has been a focal point of keen interest in the redox field over the last few decades. In particular, the S-glutathionylation of proteins (protein-SSG formation), i.e., mixed disulfides between GSH and protein thiols, has been studied extensively. This reversible PTM can act as a regulatory switch to interconvert inactive and active forms of proteins, thereby mediating cell signaling and redox homeostasis. The unique architecture of the GSH molecule enhances its relative abundance in cells and contributes to the glutathionyl specificity of the primary catalytic activity of the glutaredoxin enzymes, which play central roles in redox homeostasis and signaling, and in iron metabolism in eukaryotes and prokaryotes under physiological and pathophysiological conditions. The class-1 glutaredoxins are characterized as cytosolic GSH-dependent oxidoreductases that catalyze reversible protein S-glutathionylation specifically, thereby contributing to the regulation of redox signal transduction and/or the protection of protein thiols from irreversible oxidation. This Special Issue includes nine other articles: three original studies and six review papers. Together, these ten articles support the central theme that GSH/Grx is a unique system for regulating thiol-redox hemostasis and redox-signal transduction, and the dysregulation of the GSH/Grx system is implicated in the onset and progression of various diseases involving oxidative stress. Within this context, it is important to appreciate the complementary functions of the GSH/Grx and thioredoxin systems not only in thiol-disulfide regulation but also in reversible S-nitrosylation. Several potential clinical applications have emerged from a thorough understanding of the GSH/Grx redox regulatory system at the molecular level, and in various cell types in vitro and in vivo, including, among others, the concept that elevating Grx content/activity could serve as an anti-fibrotic intervention; and discovering small molecules that mimic the inhibitory effects of S-glutathionylation on dimer association could identify novel anti-viral agents that impact the key protease activities of the HIV and SARS-CoV-2 viruses. Thus, this Special Issue on Glutathione and Glutaredoxin has focused attention and advanced understanding of an important aspect of redox biology, as well as spawning questions worthy of future study.
Collapse
Affiliation(s)
- Yuh-Cherng Chai
- Department of Chemistry, John Carroll University, University Heights, OH 44118, USA;
| | - John J. Mieyal
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
6
|
Tiwari M, Gautam N, Indoliya Y, Kidwai M, Mishra AK, Chakrabarty D. A tau class GST, OsGSTU5, interacts with VirE2 and modulates the Agrobacterium-mediated transformation in rice. PLANT CELL REPORTS 2022; 41:873-891. [PMID: 35067774 DOI: 10.1007/s00299-021-02824-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/08/2021] [Indexed: 05/27/2023]
Abstract
OsGSTU5 interacts and glutathionylates the VirE2 protein of Agrobacterium and its (OsGSTU5) overexpression and downregulation showed a low and high AMT efficiency in rice, respectively. During Agrobacterium-mediated transformation (AMT), T-DNA along with several virulence proteins such as VirD2, VirE2, VirE3, VirD5, and VirF enter the plant cytoplasm. VirE2 serves as a single-stranded DNA binding (SSB) protein that assists the cytoplasmic trafficking of T-DNA inside the host cell. Though the regulatory roles of VirE2 have been established, the cellular reaction of their host, especially in monocots, has not been characterized in detail. This study identified a cellular interactor of VirE2 from the cDNA library of rice. The identified plant protein encoded by the gene cloned from rice was designated OsGSTU5, it interacted specifically with VirE2 in the host cytoplasm. OsGSTU5 was upregulated during Agrobacterium infection and involved in the post-translational glutathionylation of VirE2 (gVirE2). Interestingly, the in silico analysis showed that the 'gVirE2 + ssDNA' complex was structurally less stable than the 'VirE2 + ssDNA' complex. The gel shift assay also confirmed the attenuated SSB property of gVirE2 over VirE2. Moreover, knock-down and overexpression of OsGSTU5 in rice showed increased and decreased T-DNA expression, respectively after Agrobacterium infection. The present finding establishes the role of OsGSTU5 as an important target for modulation of AMT efficiency in rice.
Collapse
Affiliation(s)
- Madhu Tiwari
- Biotechnology and Molecular Biology Division, CSIR-National Botanical Research Institute, Lucknow, 226001, India
- Laboratory of Microbial Genetics, Department of Botany, Banaras Hindu University, Varanasi, 221005, India
| | - Neelam Gautam
- Biotechnology and Molecular Biology Division, CSIR-National Botanical Research Institute, Lucknow, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Yuvraj Indoliya
- Biotechnology and Molecular Biology Division, CSIR-National Botanical Research Institute, Lucknow, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Maria Kidwai
- Biotechnology and Molecular Biology Division, CSIR-National Botanical Research Institute, Lucknow, 226001, India
| | - Arun Kumar Mishra
- Laboratory of Microbial Genetics, Department of Botany, Banaras Hindu University, Varanasi, 221005, India
| | - Debasis Chakrabarty
- Biotechnology and Molecular Biology Division, CSIR-National Botanical Research Institute, Lucknow, 226001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
7
|
Cheng X, Xu HD, Ran HH, Liang G, Wu FG. Glutathione-Depleting Nanomedicines for Synergistic Cancer Therapy. ACS NANO 2021; 15:8039-8068. [PMID: 33974797 DOI: 10.1021/acsnano.1c00498] [Citation(s) in RCA: 212] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Cancer cells frequently exhibit resistance to various molecular and nanoscale drugs, which inevitably affects the drugs' therapeutic outcomes. Overexpression of glutathione (GSH) has been observed in many cancer cells, and solid evidence has corroborated the resulting tumor resistance to a variety of anticancer therapies, suggesting that this biochemical characteristic of cancer cells can be developed as a potential target for cancer treatments. The single treatment of GSH-depleting agents can potentiate the responses of the cancer cells to different cell death stimuli; therefore, as an adjunctive strategy, GSH depletion is usually combined with mainstream cancer therapies for enhancing the therapeutic outcomes. Propelled by the rapid development of nanotechnology, GSH-depleting agents can be readily constructed into anticancer nanomedicines, which have shown a steep rise over the past decade. Here, we review the common GSH-depleting nanomedicines which have been widely applied in synergistic cancer treatments in recent years. Some current challenges and future perspectives for GSH depletion-based cancer therapies are also presented. With the understanding of the structure-property relationship and action mechanisms of these biomaterials, we hope that the GSH-depleting nanotechnology will be further developed to realize more effective disease treatments and even achieve successful clinical translations.
Collapse
Affiliation(s)
- Xiaotong Cheng
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, P.R. China
| | - Hai-Dong Xu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, P.R. China
| | - Huan-Huan Ran
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, P.R. China
| | - Gaolin Liang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, P.R. China
| | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, P.R. China
| |
Collapse
|
8
|
Musaogullari A, Chai YC. Redox Regulation by Protein S-Glutathionylation: From Molecular Mechanisms to Implications in Health and Disease. Int J Mol Sci 2020; 21:ijms21218113. [PMID: 33143095 PMCID: PMC7663550 DOI: 10.3390/ijms21218113] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 12/19/2022] Open
Abstract
S-glutathionylation, the post-translational modification forming mixed disulfides between protein reactive thiols and glutathione, regulates redox-based signaling events in the cell and serves as a protective mechanism against oxidative damage. S-glutathionylation alters protein function, interactions, and localization across physiological processes, and its aberrant function is implicated in various human diseases. In this review, we discuss the current understanding of the molecular mechanisms of S-glutathionylation and describe the changing levels of expression of S-glutathionylation in the context of aging, cancer, cardiovascular, and liver diseases.
Collapse
|
9
|
Rosito M, Testi C, Parisi G, Cortese B, Baiocco P, Di Angelantonio S. Exploring the Use of Dimethyl Fumarate as Microglia Modulator for Neurodegenerative Diseases Treatment. Antioxidants (Basel) 2020; 9:antiox9080700. [PMID: 32756501 PMCID: PMC7465338 DOI: 10.3390/antiox9080700] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/01/2020] [Accepted: 08/02/2020] [Indexed: 12/12/2022] Open
Abstract
The maintenance of redox homeostasis in the brain is critical for the prevention of the development of neurodegenerative diseases. Drugs acting on brain redox balance can be promising for the treatment of neurodegeneration. For more than four decades, dimethyl fumarate (DMF) and other derivatives of fumaric acid ester compounds have been shown to mitigate a number of pathological mechanisms associated with psoriasis and relapsing forms of multiple sclerosis (MS). Recently, DMF has been shown to exert a neuroprotective effect on the central nervous system (CNS), possibly through the modulation of microglia detrimental actions, observed also in multiple brain injuries. In addition to the hypothesis that DMF is linked to the activation of NRF2 and NF-kB transcription factors, the neuroprotective action of DMF may be mediated by the activation of the glutathione (GSH) antioxidant pathway and the regulation of brain iron homeostasis. This review will focus on the role of DMF as an antioxidant modulator in microglia processes and on its mechanisms of action in the modulation of different pathways to attenuate neurodegenerative disease progression.
Collapse
Affiliation(s)
- Maria Rosito
- Center for Life Nanoscience, Istituto Italiano di Tecnologia, 00161 Rome, Italy; (M.R.); (C.T.); (G.P.)
| | - Claudia Testi
- Center for Life Nanoscience, Istituto Italiano di Tecnologia, 00161 Rome, Italy; (M.R.); (C.T.); (G.P.)
| | - Giacomo Parisi
- Center for Life Nanoscience, Istituto Italiano di Tecnologia, 00161 Rome, Italy; (M.R.); (C.T.); (G.P.)
| | - Barbara Cortese
- Nanotechnology Institute, CNR-Nanotechnology Institute, Sapienza University, 00185 Rome, Italy;
| | - Paola Baiocco
- Department of Biochemical Sciences “A. Rossi Fanelli” Sapienza University, 00185 Rome, Italy
- Correspondence: (P.B.); (S.D.A.)
| | - Silvia Di Angelantonio
- Center for Life Nanoscience, Istituto Italiano di Tecnologia, 00161 Rome, Italy; (M.R.); (C.T.); (G.P.)
- Department of Physiology and Pharmacology, Sapienza University, 00185 Rome, Italy
- Correspondence: (P.B.); (S.D.A.)
| |
Collapse
|
10
|
Chia SB, Elko EA, Aboushousha R, Manuel AM, van de Wetering C, Druso JE, van der Velden J, Seward DJ, Anathy V, Irvin CG, Lam YW, van der Vliet A, Janssen-Heininger YMW. Dysregulation of the glutaredoxin/ S-glutathionylation redox axis in lung diseases. Am J Physiol Cell Physiol 2019; 318:C304-C327. [PMID: 31693398 DOI: 10.1152/ajpcell.00410.2019] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Glutathione is a major redox buffer, reaching millimolar concentrations within cells and high micromolar concentrations in airways. While glutathione has been traditionally known as an antioxidant defense mechanism that protects the lung tissue from oxidative stress, glutathione more recently has become recognized for its ability to become covalently conjugated to reactive cysteines within proteins, a modification known as S-glutathionylation (or S-glutathiolation or protein mixed disulfide). S-glutathionylation has the potential to change the structure and function of the target protein, owing to its size (the addition of three amino acids) and charge (glutamic acid). S-glutathionylation also protects proteins from irreversible oxidation, allowing them to be enzymatically regenerated. Numerous enzymes have been identified to catalyze the glutathionylation/deglutathionylation reactions, including glutathione S-transferases and glutaredoxins. Although protein S-glutathionylation has been implicated in numerous biological processes, S-glutathionylated proteomes have largely remained unknown. In this paper, we focus on the pathways that regulate GSH homeostasis, S-glutathionylated proteins, and glutaredoxins, and we review methods required toward identification of glutathionylated proteomes. Finally, we present the latest findings on the role of glutathionylation/glutaredoxins in various lung diseases: idiopathic pulmonary fibrosis, asthma, and chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
- Shi B Chia
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont
| | - Evan A Elko
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont
| | - Reem Aboushousha
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont
| | - Allison M Manuel
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont
| | - Cheryl van de Wetering
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont
| | - Joseph E Druso
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont
| | - Jos van der Velden
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont
| | - David J Seward
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont
| | - Vikas Anathy
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont
| | - Charles G Irvin
- Department of Medicine, University of Vermont, Burlington, Vermont
| | - Ying-Wai Lam
- Department of Biology, University of Vermont, Burlington, Vermont
| | - Albert van der Vliet
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont
| | | |
Collapse
|
11
|
Affiliation(s)
- K.H. Nahm
- Feed and Nutrition Laboratory, College of Agriculture, Taegu University, Gyong San, 713–714 Korea Republic
| |
Collapse
|
12
|
Boosting GSH Using the Co-Drug Approach: I-152, a Conjugate of N-acetyl-cysteine and β-mercaptoethylamine. Nutrients 2019; 11:nu11061291. [PMID: 31181621 PMCID: PMC6627109 DOI: 10.3390/nu11061291] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/04/2019] [Accepted: 06/05/2019] [Indexed: 12/22/2022] Open
Abstract
Glutathione (GSH) has poor pharmacokinetic properties; thus, several derivatives and biosynthetic precursors have been proposed as GSH-boosting drugs. I-152 is a conjugate of N-acetyl-cysteine (NAC) and S-acetyl-β-mercaptoethylamine (SMEA) designed to release the parent drugs (i.e., NAC and β-mercaptoethylamine or cysteamine, MEA). NAC is a precursor of L-cysteine, while MEA is an aminothiol able to increase GSH content; thus, I-152 represents the very first attempt to combine two pro-GSH molecules. In this review, the in-vitro and in-vivo metabolism, pro-GSH activity and antiviral and immunomodulatory properties of I-152 are discussed. Under physiological GSH conditions, low I-152 doses increase cellular GSH content; by contrast, high doses cause GSH depletion but yield a high content of NAC, MEA and I-152, which can be used to resynthesize GSH. Preliminary in-vivo studies suggest that the molecule reaches mouse organs, including the brain, where its metabolites, NAC and MEA, are detected. In cell cultures, I-152 replenishes experimentally depleted GSH levels. Moreover, administration of I-152 to C57BL/6 mice infected with the retroviral complex LP-BM5 is effective in contrasting virus-induced GSH depletion, exerting at the same time antiviral and immunomodulatory functions. I-152 acts as a pro-GSH agent; however, GSH derivatives and NAC cannot completely replicate its effects. The co-delivery of different thiol species may lead to unpredictable outcomes, which warrant further investigation.
Collapse
|
13
|
Wong HS, Benoit B, Brand MD. Mitochondrial and cytosolic sources of hydrogen peroxide in resting C2C12 myoblasts. Free Radic Biol Med 2019; 130:140-150. [PMID: 30389498 DOI: 10.1016/j.freeradbiomed.2018.10.448] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 10/27/2018] [Accepted: 10/29/2018] [Indexed: 10/28/2022]
Abstract
The relative contributions of different mitochondrial and cytosolic sources of superoxide and hydrogen peroxide in cells are not well established because of a lack of suitable quantitative assays. To address this problem using resting C2C12 myoblasts we measured the effects of specific inhibitors that do not affect other pathways on the rate of appearance of hydrogen peroxide in the extracellular medium. We used inhibitors of NADPH oxidases (NOXs), suppressors of site IQ electron leak (S1QELs) at mitochondrial Complex I, and suppressors of site IIIQo electron leak (S3QELs) at mitochondrial Complex III. Around 40% of net cellular hydrogen peroxide release was from NOXs and approximately 45% was from the two mitochondrial sites; 30% from site IIIQo and 15% from site IQ. As expected, decreasing cytosolic antioxidant capacity by lowering glutathione levels increased the absolute rates from all sites without changing their proportions, whereas decreasing antioxidant defenses in the mitochondrial matrix increased only the absolute and relative contributions of the two mitochondrial sites. These results show directly that mitochondria are a major contributor to cytosolic hydrogen peroxide in resting C2C12 myoblasts, and provide the first direct evidence of superoxide/hydrogen peroxide production from site IQ in unstressed cells.
Collapse
Affiliation(s)
- Hoi-Shan Wong
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA 94945, USA.
| | - Bérengère Benoit
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA 94945, USA.
| | - Martin D Brand
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA 94945, USA.
| |
Collapse
|
14
|
García-Giménez JL, Romá-Mateo C, Pérez-Machado G, Peiró-Chova L, Pallardó FV. Role of glutathione in the regulation of epigenetic mechanisms in disease. Free Radic Biol Med 2017; 112:36-48. [PMID: 28705657 DOI: 10.1016/j.freeradbiomed.2017.07.008] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 06/29/2017] [Accepted: 07/06/2017] [Indexed: 12/14/2022]
Abstract
Epigenetics is a rapidly growing field that studies gene expression modifications not involving changes in the DNA sequence. Histone H3, one of the basic proteins in the nucleosomes that make up chromatin, is S-glutathionylated in mammalian cells and tissues, making Gamma-L-glutamyl-L-cysteinylglycine, glutathione (GSH), a physiological antioxidant and second messenger in cells, a new post-translational modifier of the histone code that alters the structure of the nucleosome. However, the role of GSH in the epigenetic mechanisms likely goes beyond a mere structural function. Evidence supports the hypothesis that there is a link between GSH metabolism and the control of epigenetic mechanisms at different levels (i.e., substrate availability, enzymatic activity for DNA methylation, changes in the expression of microRNAs, and participation in the histone code). However, little is known about the molecular pathways by which GSH can control epigenetic events. Studying mutations in enzymes involved in GSH metabolism and the alterations of the levels of cofactors affecting epigenetic mechanisms appears challenging. However, the number of diseases induced by aberrant epigenetic regulation is growing, so elucidating the intricate network between GSH metabolism, oxidative stress and epigenetics could shed light on how their deregulation contributes to the development of neurodegeneration, cancer, metabolic pathologies and many other types of diseases.
Collapse
Affiliation(s)
- José Luis García-Giménez
- Center for Biomedical Network Research on Rare Diseases (CIBERER) Institute of Health Carlos III, Valencia, Spain; Mixed Unit INCLIVA-CIPF Research Institutes, Valencia, Spain; Dept. Physiology, School of Medicine and Dentistry, Universitat de València (UV), Valencia, Spain; Epigenetics Research Platform (CIBERER/UV), Valencia, Spain.
| | - Carlos Romá-Mateo
- Center for Biomedical Network Research on Rare Diseases (CIBERER) Institute of Health Carlos III, Valencia, Spain; Mixed Unit INCLIVA-CIPF Research Institutes, Valencia, Spain; Dept. Physiology, School of Medicine and Dentistry, Universitat de València (UV), Valencia, Spain; Epigenetics Research Platform (CIBERER/UV), Valencia, Spain; Faculty of Biomedicine and Health Sciences, Universidad Europea de Valencia, Valencia, Spain
| | - Gisselle Pérez-Machado
- Dept. Physiology, School of Medicine and Dentistry, Universitat de València (UV), Valencia, Spain; Epigenetics Research Platform (CIBERER/UV), Valencia, Spain
| | | | - Federico V Pallardó
- Center for Biomedical Network Research on Rare Diseases (CIBERER) Institute of Health Carlos III, Valencia, Spain; Mixed Unit INCLIVA-CIPF Research Institutes, Valencia, Spain; Dept. Physiology, School of Medicine and Dentistry, Universitat de València (UV), Valencia, Spain; Epigenetics Research Platform (CIBERER/UV), Valencia, Spain.
| |
Collapse
|
15
|
Melvin P, Bankapalli K, D'Silva P, Shivaprasad PV. Methylglyoxal detoxification by a DJ-1 family protein provides dual abiotic and biotic stress tolerance in transgenic plants. PLANT MOLECULAR BIOLOGY 2017; 94:381-397. [PMID: 28444544 DOI: 10.1007/s11103-017-0613-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 04/18/2017] [Indexed: 05/15/2023]
Abstract
Methylglyoxal (MG) is a key signaling molecule resulting from glycolysis and other metabolic pathways. During abiotic stress, MG levels accumulate to toxic levels in affected cells. However, MG is routinely detoxified through the action of DJ1/PARK7/Hsp31 proteins that are highly conserved across kingdoms and mutations in such genes are associated with neurodegenerative diseases. Here, we report for the first time that, similar to abiotic stresses, MG levels increase during biotic stresses in plants, likely contributing to enhanced susceptibility to a wide range of stresses. We show that overexpression of yeast Heat shock protein 31 (Hsp31), a DJ-1 homolog with robust MG detoxifying capabilities, confers dual biotic and abiotic stress tolerance in model plant Nicotiana tabacum. Strikingly, overexpression of Hsp31 in tobacco imparts robust stress tolerance against diverse biotic stress inducers such as viruses, bacteria and fungi, in addition to tolerance against a range of abiotic stress inducers. During stress, Hsp31 was targeted to mitochondria and induced expression of key stress-related genes. These results indicate that Hsp31 is a novel attractive tool to engineer plants against both biotic and abiotic stresses.
Collapse
Affiliation(s)
- Prasad Melvin
- National Centre for Biological Sciences, GKVK Campus, Bangalore, 560 065, India
| | - Kondalarao Bankapalli
- Department of Biochemistry, Indian Institute of Science, C.V. Raman Avenue, Bangalore, 560 012, India
| | - Patrick D'Silva
- Department of Biochemistry, Indian Institute of Science, C.V. Raman Avenue, Bangalore, 560 012, India
| | - P V Shivaprasad
- National Centre for Biological Sciences, GKVK Campus, Bangalore, 560 065, India.
| |
Collapse
|
16
|
Przybylak KR, Schultz TW, Richarz AN, Mellor CL, Escher SE, Cronin MT. Read-across of 90-day rat oral repeated-dose toxicity: A case study for selected β-olefinic alcohols. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.comtox.2016.11.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
Smith GJ, Cichocki JA, Doughty BJ, Manautou JE, Jordt SE, Morris JB. Effects of Acetaminophen on Oxidant and Irritant Respiratory Tract Responses to Environmental Tobacco Smoke in Female Mice. ENVIRONMENTAL HEALTH PERSPECTIVES 2016; 124:642-50. [PMID: 26452297 PMCID: PMC4858387 DOI: 10.1289/ehp.1509851] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 10/05/2015] [Indexed: 06/05/2023]
Abstract
BACKGROUND Although it is known that acetaminophen causes oxidative injury in the liver, it is not known whether it causes oxidative stress in the respiratory tract. If so, this widely used analgesic may potentiate the adverse effects of oxidant air pollutants. OBJECTIVES The goal of this study was to determine if acetaminophen induces respiratory tract oxidative stress and/or potentiates the oxidative stress and irritant responses to an inhaled oxidant: environmental tobacco smoke (ETS). METHODS Acetaminophen [100 mg/kg intraperitoneal (ip)] and/or sidestream tobacco smoke (as a surrogate for ETS, 5 mg/m3 for 10 min) were administered to female C57Bl/6J mice, and airway oxidative stress was assessed by loss of tissue antioxidants [estimated by nonprotein sulfhydryl (NPSH) levels] and/or induction of oxidant stress response genes. In addition, the effects of acetaminophen on airway irritation reflex responses to ETS were examined by plethysmography. RESULTS Acetaminophen diminished NPSH in nasal, thoracic extrapulmonary, and lung tissues; it also induced the oxidant stress response genes glutamate-cysteine ligase, catalytic subunit, and NAD(P)H dehydrogenase, quinone 1, in these sites. ETS produced a similar response. The response to acetaminophen plus ETS was equal to or greater than the sum of the responses to either agent alone. Although it had no effect by itself, acetaminophen greatly increased the reflex irritant response to ETS. CONCLUSIONS At supratherapeutic levels, acetaminophen induced oxidative stress throughout the respiratory tract and appeared to potentiate some responses to environmentally relevant ETS exposure in female C57Bl/6J mice. These results highlight the potential for this widely used drug to modulate responsiveness to oxidant air pollutants. CITATION Smith GJ, Cichocki JA, Doughty BJ, Manautou JE, Jordt SE, Morris JB. 2016. Effects of acetaminophen on oxidant and irritant respiratory tract responses to environmental tobacco smoke in female mice. Environ Health Perspect 124:642-650; http://dx.doi.org/10.1289/ehp.1509851.
Collapse
Affiliation(s)
- Gregory J. Smith
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut, USA
| | - Joseph A. Cichocki
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut, USA
| | - Bennett J. Doughty
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut, USA
| | - Jose E. Manautou
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut, USA
| | - Sven-Eric Jordt
- Department of Anesthesiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - John B. Morris
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut, USA
| |
Collapse
|
18
|
Trolox and ascorbic acid reduce direct and indirect oxidative stress in the IPEC-J2 cells, an in vitro model for the porcine gastrointestinal tract. PLoS One 2015; 10:e0120485. [PMID: 25745867 PMCID: PMC4351986 DOI: 10.1371/journal.pone.0120485] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 01/23/2015] [Indexed: 12/21/2022] Open
Abstract
Oxidative stress in the small intestinal epithelium is a major cause of barrier malfunction and failure to regenerate. This study presents a functional in vitro model using the porcine small intestinal epithelial cell line IPEC-J2 to examine the effects of oxidative stress and to estimate the antioxidant and regenerative potential of Trolox, ascorbic acid and glutathione monoethyl ester. Hydrogen peroxide and diethyl maleate affected the tight junction (zona occludens-1) distribution, significantly increased intracellular oxidative stress (CM-H2DCFDA) and decreased the monolayer integrity (transepithelial electrical resistance and FD-4 permeability), viability (neutral red) and wound healing capacity (scratch assay). Trolox (2 mM) and 1 mM ascorbic acid pre-treatment significantly reduced intracellular oxidative stress, increased wound healing capacity and reduced FD-4 permeability in oxidatively stressed IPEC-J2 cell monolayers. All antioxidant pre-treatments increased transepithelial electrical resistance and viability only in diethyl maleate-treated cells. Glutathione monoethyl ester (10 mM) pre-treatment significantly decreased intracellular oxidative stress and monolayer permeability only in diethyl maleate-treated cells. These data demonstrate that the IPEC-J2 oxidative stress model is a valuable tool to screen antioxidants before validation in piglets.
Collapse
|
19
|
Diethyl maleate inhibits MCA+TPA transformed cell growth via modulation of GSH, MAPK, and cancer pathways. Chem Biol Interact 2014; 219:37-47. [DOI: 10.1016/j.cbi.2014.04.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 04/22/2014] [Accepted: 04/28/2014] [Indexed: 02/02/2023]
|
20
|
Kumar SM, Swaminathan K, Clemens DL, Dey A. GSH protects against oxidative stress and toxicity in VL-17A cells exposed to high glucose. Eur J Nutr 2014; 54:223-34. [PMID: 24756473 DOI: 10.1007/s00394-014-0703-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 04/10/2014] [Indexed: 01/09/2023]
Abstract
PURPOSE The deficiency of glutathione (GSH) has been linked to several diseases. The study investigated the role of GSH as a protective factor against hyperglycemia-mediated injury in VL-17A cells treated with 50 mM glucose. METHODS The cell viability and different oxidative stress parameters including glyoxalase I activity were measured. RESULTS GSH supplementation with 2 mM N-acetyl cysteine (NAC) or 0.1 mM ursodeoxycholic acid (UDCA) increased the viability, GSH level and the GSH-dependent glyoxalase I activity in 50 mM glucose-treated VL-17A cells. Further, pretreatment of 50 mM glucose-treated VL-17A cells with NAC or UDCA decreased oxidative stress (levels of reactive oxygen species and protein carbonylation), apoptosis (caspase 3 activity and annexin V-propidium iodide positive cells) and glutathionylated protein formation, a measure of oxidative stress. GSH depletion with 0.4 mM buthionine sulfoximine (BSO) or 1 mM diethyl maleate (DEM) potentiated the decrease in viability, glyoxalase I activity and increase in oxidative stress and apoptosis, with decreased GSH levels in 50 mM glucose-treated VL-17A cells. CONCLUSION Thus, changes in GSH levels with exogenous agents such as NAC, UDCA, BSO or DEM modulate hyperglycemia-mediated injury in a cell model of VL-17A liver cells.
Collapse
Affiliation(s)
- S Mathan Kumar
- Life Science Division, AU-KBC Research Centre, MIT Campus of Anna University, Chromepet, Chennai, 600044, India
| | | | | | | |
Collapse
|
21
|
Effects of dental methacrylates on oxygen consumption and redox status of human pulp cells. BIOMED RESEARCH INTERNATIONAL 2014; 2014:956579. [PMID: 24693541 PMCID: PMC3944953 DOI: 10.1155/2014/956579] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 11/13/2013] [Accepted: 11/22/2013] [Indexed: 11/18/2022]
Abstract
Several studies have already demonstrated that the incomplete polymerization of resin-based dental materials causes the release of monomers which might affect cell metabolism. The aim of this study was to investigate the effects of triethylene glycol dimethacrylate, 1,4-butanediol dimethacrylate, urethane dimethacrylate, and 2-hydroxyethyl methacrylate on (1) cellular energy metabolism, evaluating oxygen consumption rate, glucose consumption, glucose 6-phosphate dehydrogenase activity, and lactate production, and (2) cellular redox status, through the evaluation of glutathione concentration and of the activities of enzymes regulating glutathione metabolism. Methods. Human pulp cells were used and oxygen consumption was measured by means of a Clark electrode. Moreover, reactive oxygen species production was quantified. Enzymatic activity and glucose and lactate concentrations were determined through a specific kit. Results. Triethylene glycol dimethacrylate, 1,4-butanediol dimethacrylate, and 2-hydroxyethyl methacrylate induced a decrease in oxygen consumption rate, an enhancement of glucose consumption, and lactate production, whilst glucose 6-phosphate dehydrogenase and glutathione reductase activity were not significantly modified. Moreover, the monomers induced an increase of reactive oxygen species production with a consequent increase of superoxide dismutase and catalase enzymatic activities. A depletion of both reduced and total glutathione was also observed. Conclusion. The obtained results indicate that dental monomers might alter energy metabolism and glutathione redox balance in human pulp cells.
Collapse
|
22
|
Nyström-Persson J, Igarashi Y, Ito M, Morita M, Nakatsu N, Yamada H, Mizuguchi K. Toxygates: interactive toxicity analysis on a hybrid microarray and linked data platform. Bioinformatics 2013; 29:3080-6. [DOI: 10.1093/bioinformatics/btt531] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
23
|
Spagnuolo G, Desiderio C, Rivieccio V, Amato M, Rossetti DV, D’Antò V, Schweikl H, Lupi A, Rengo S, Nocca G. In vitro cellular detoxification of triethylene glycol dimethacrylate by adduct formation with N-acetylcysteine. Dent Mater 2013; 29:e153-60. [DOI: 10.1016/j.dental.2013.04.023] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 02/25/2013] [Accepted: 04/25/2013] [Indexed: 01/19/2023]
|
24
|
Mahboubi H, Seganathy E, Kong D, Stochaj U. Identification of Novel Stress Granule Components That Are Involved in Nuclear Transport. PLoS One 2013; 8:e68356. [PMID: 23826389 PMCID: PMC3694919 DOI: 10.1371/journal.pone.0068356] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 05/31/2013] [Indexed: 11/30/2022] Open
Abstract
Background Importin-α1 belongs to a subfamily of nuclear transport adaptors and participates in diverse cellular functions. Best understood for its role in protein transport, importin-α1 also contributes to other biological processes. For instance, arsenite treatment causes importin-α1 to associate with cytoplasmic stress granules (SGs) in mammalian cells. These stress-induced compartments contain translationally arrested mRNAs, small ribosomal subunits and numerous proteins involved in mRNA transport and metabolism. At present, it is not known whether members of all three importin-α subfamilies locate to SGs in response to stress. Results Here, we demonstrate that the oxidant diethyl maleate (DEM), arsenite and heat shock, promote the formation of cytoplasmic SGs that contain nuclear transport factors. Specifically, importin-α1, α4 and α5, which belong to distinct subfamilies, and importin-β1 were targeted by all of these stressors to cytoplasmic SGs, but not to P-bodies. Importin-α family members have been implicated in transcriptional regulation, which prompted us to analyze their ability to interact with poly(A)-RNA in growing cells. Our studies show that importin-α1, but not α4, α5, importin-β1 or CAS, associated with poly(A)-RNA under nonstress conditions. Notably, this interaction was significantly reduced when cells were treated with DEM. Additional studies suggest that importin-α1 is likely connected to poly(A)-RNA through an indirect interaction, as the adaptor did not bind homopolymer RNA specifically in vitro. Significance Our studies establish that members of three importin-α subfamilies are bona fide SG components under different stress conditions. Furthermore, importin-α1 is unique in its ability to interact with poly(A)-RNA in a stress-dependent fashion, and in vitro experiments indicate that this association is indirect. Collectively, our data emphasize that nuclear transport factors participate in a growing number of cellular activities that are modulated by stress.
Collapse
Affiliation(s)
- Hicham Mahboubi
- Department of Physiology, McGill University, Montreal, Quebec, Canada
| | | | - Dekun Kong
- Department of Physiology, McGill University, Montreal, Quebec, Canada
| | - Ursula Stochaj
- Department of Physiology, McGill University, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
25
|
Geter DR, Zhang F, Schisler MR, Wood AJ, Kan HL, Jeong YC, Bartels MJ, McFadden L, Gollapudi BB. Genetic damage, but limited evidence of oxidative stress markers in diethyl maleate-induced glutathione depleted mouse lymphoma L5178Y (TK(+/-)) cell cultures. Toxicol Mech Methods 2012; 22:547-54. [PMID: 22564015 DOI: 10.3109/15376516.2012.692111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Depletion of glutathione (GSH) in cells exposed to certain xenobiotics has been proposed to result in oxidative stress, which could lead to damage of cellular macromolecules such as proteins, lipids, and DNA. Diethyl maleate (DEM) is known to conjugate with GSH and rapidly lower cellular GSH levels. The objective of this study was to investigate the influence of DEM-induced GSH depletion on various genotoxicity and gene expression end points in mouse lymphoma L5178Y (TK(+/-)) cell cultures. Cells were exposed to DEM for 4 h at concentrations of 0, 6.7, 13.5, 26.9, 53.8, 107.6, 215.3, and 430.6 µg/mL (0.039-2.5 mM). Genotoxicity was evaluated by examining the induction of in vitro micronuclei (20 h post-treatment) and DNA strand breaks as measured by comet (immediately following treatment), and correlating these observations to cellular GSH levels. In the current study, GSH was decreased more than 50% at the lowest test concentration (6.7 µg/mL) and more than 95% at ≥ 107.6 µg/mL. A significant increase in micronuclei and DNA strand breaks was observed at concentrations of ≥ 26.9 µg/mL. Gene expression of seven apoptosis and oxidative-stress related genes showed significant alterations in only three genes only at the highest test concentration. Quantifiable levels of 8-OH-dG (≥ 2 adducts per 1 × 10(8) NT) were not detected at any treatment concentration. These results demonstrate an association between DEM-induced genotoxicity and GSH depletion in mouse lymphoma L5178Y (TK(+/-)) cells, but not with other oxidative markers.
Collapse
Affiliation(s)
- David R Geter
- Toxicology and Environmental Research & Consulting, The Dow Chemical Company, Midland, Michigan, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Nocca G, Ragno R, Carbone V, Martorana GE, Rossetti DV, Gambarini G, Giardina B, Lupi A. Identification of glutathione-methacrylates adducts in gingival fibroblasts and erythrocytes by HPLC–MS and capillary electrophoresis. Dent Mater 2011; 27:e87-98. [DOI: 10.1016/j.dental.2011.01.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Revised: 12/07/2010] [Accepted: 01/24/2011] [Indexed: 01/30/2023]
|
27
|
Schwöbel JAH, Koleva YK, Enoch SJ, Bajot F, Hewitt M, Madden JC, Roberts DW, Schultz TW, Cronin MTD. Measurement and Estimation of Electrophilic Reactivity for Predictive Toxicology. Chem Rev 2011; 111:2562-96. [DOI: 10.1021/cr100098n] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Johannes A. H. Schwöbel
- School of Pharmacy and Chemistry, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, England
| | - Yana K. Koleva
- School of Pharmacy and Chemistry, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, England
| | - Steven J. Enoch
- School of Pharmacy and Chemistry, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, England
| | - Fania Bajot
- School of Pharmacy and Chemistry, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, England
| | - Mark Hewitt
- School of Pharmacy and Chemistry, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, England
| | - Judith C. Madden
- School of Pharmacy and Chemistry, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, England
| | - David W. Roberts
- School of Pharmacy and Chemistry, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, England
| | - Terry W. Schultz
- College of Veterinary Medicine, Department of Comparative Medicine, The University of Tennessee, 2407 River Drive, Knoxville, Tennessee 37996-4543, United States
| | - Mark T. D. Cronin
- School of Pharmacy and Chemistry, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, England
| |
Collapse
|
28
|
Hepatic transcriptome and proteome responses against diethyl maleate-induced glutathione depletion in the rat. Arch Toxicol 2010; 85:1045-56. [DOI: 10.1007/s00204-010-0632-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Accepted: 11/24/2010] [Indexed: 10/18/2022]
|
29
|
Shamova EV, Gorudko IV, Drozd ES, Chizhik SA, Martinovich GG, Cherenkevich SN, Timoshenko AV. Redox regulation of morphology, cell stiffness, and lectin-induced aggregation of human platelets. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2010; 40:195-208. [PMID: 21079947 DOI: 10.1007/s00249-010-0639-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Revised: 10/11/2010] [Accepted: 10/20/2010] [Indexed: 01/24/2023]
Abstract
Redox regulation and carbohydrate recognition are potent molecular mechanisms which can contribute to platelet aggregation in response to various stimuli. The purpose of this study is to investigate the relationship between these mechanisms and to examine whether cell surface glycocalyx and cell stiffness of human platelets are sensitive to the redox potential formed by glutathione. To this end, human platelets were treated with different concentrations (0.05 μM to 6 mM) and ratios of reduced or oxidized glutathione (GSH or GSSG), and platelet morphological, mechanical, and functional properties were determined using conventional light microscopy, atomic force microscopy, and lectin-induced cell aggregation analysis. It was found that lowering the glutathione redox potential changed platelet morphology and increased platelet stiffness as well as modulated nonuniformly platelet aggregation in response to plant lectins with different carbohydrate-binding specificity including wheat germ agglutinin, Sambucus nigra agglutinin, and Canavalia ensiformis agglutinin. Extracellular redox potential and redox buffering capacity of the GSSG/2GSH couple were shown to control the availability of specific lectin-binding glycoligands on the cell surface, while the intracellular glutathione redox state affected the general functional ability of platelets to be aggregated independently of the type of lectins. Our data provide the first experimental evidence that glutathione as a redox molecule can affect the mechanical stiffness of human platelets and induce changes of the cell surface glycocalyx, which may represent a new mechanism of redox regulation of intercellular contacts.
Collapse
Affiliation(s)
- Ekaterina V Shamova
- Department of Biophysics, Belarusian State University, Nezavisimosti Ave. 4, 220030 Minsk, Belarus.
| | | | | | | | | | | | | |
Collapse
|
30
|
Schmidt MM, Dringen R. Fumaric acid diesters deprive cultured primary astrocytes rapidly of glutathione. Neurochem Int 2010; 57:460-7. [DOI: 10.1016/j.neuint.2010.01.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Revised: 11/24/2009] [Accepted: 01/13/2010] [Indexed: 12/18/2022]
|
31
|
Sinha V, Wijewickrama GT, Chandrasena REP, Xu H, Edirisinghe PD, Schiefer IT, Thatcher GRJ. Proteomic and mass spectroscopic quantitation of protein S-nitrosation differentiates NO-donors. ACS Chem Biol 2010; 5:667-80. [PMID: 20524644 PMCID: PMC2941763 DOI: 10.1021/cb100054m] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Protein S-nitrosation has been argued to be the most important signaling pathway mediating the bioactivity of NO. This post-translational modification of protein thiols is the result of chemical nitrosation of cysteine residues. The term NO-donors covers very different chemical classes, from clinical therapeutics to probes of routine use in chemical biology; their different chemistry is predicted to result in distinctive biology regulated by protein S-nitrosation. To measure the extent of protein S-nitrosation by NO-donors, a proteomic mass spectrometry method was developed, which quantitates free thiol versus nitrosothiol for each modified cysteine residue, coined d-Switch. This method is adapted from the biotin switch (BST) method, used extensively to identify S-nitrosated proteins in complex biological mixtures; however, BST does not quantitate free thiol. Since glutathione-S-transferase P1-1 (GST-P1) has been proposed to be a biological "NO-carrier", GST-P1 was used as a reporter protein. The 5 different chemical classes of NO-donors compared by d-Switch demonstrated very different profiles of protein S-nitrosation and response to O(2) and cysteine, although all NO-donors were oxidants toward GST-P1. The low limits of detection and the ability to use established MS database searching allowed facile generalization of the d-Switch method. Therefore after incubation of neuronal cell cultures with nitrosothiol, it was possible to quantitate not only S-nitrosation of GST-P1 but also many other proteins, including novel targets such as ubiquitin carboxyl-terminal esterase L1 (UCHL1). Moreover, d-Switch also allowed identification of non-nitrosated proteins and quantitation of degree of nitrosation for individual protein thiols.
Collapse
Affiliation(s)
| | | | | | - Hua Xu
- Department of Medicinal Chemistry and Pharmacognosy (M/C 781) College of Pharmacy, University of Illinois at Chicago 833 S. Wood Street, Chicago, Illinois 60612-7231
| | - Praneeth D. Edirisinghe
- Department of Medicinal Chemistry and Pharmacognosy (M/C 781) College of Pharmacy, University of Illinois at Chicago 833 S. Wood Street, Chicago, Illinois 60612-7231
| | - Isaac T. Schiefer
- Department of Medicinal Chemistry and Pharmacognosy (M/C 781) College of Pharmacy, University of Illinois at Chicago 833 S. Wood Street, Chicago, Illinois 60612-7231
| | - Gregory R. J. Thatcher
- Department of Medicinal Chemistry and Pharmacognosy (M/C 781) College of Pharmacy, University of Illinois at Chicago 833 S. Wood Street, Chicago, Illinois 60612-7231
| |
Collapse
|
32
|
Markovic J, García-Gimenez JL, Gimeno A, Viña J, Pallardó FV. Role of glutathione in cell nucleus. Free Radic Res 2010; 44:721-33. [DOI: 10.3109/10715762.2010.485989] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
33
|
Fumaric acid dialkyl esters deprive cultured rat oligodendroglial cells of glutathione and upregulate the expression of heme oxygenase 1. Neurosci Lett 2010; 475:56-60. [DOI: 10.1016/j.neulet.2010.03.048] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2010] [Revised: 03/10/2010] [Accepted: 03/18/2010] [Indexed: 11/17/2022]
|
34
|
The depletion of nuclear glutathione impairs cell proliferation in 3t3 fibroblasts. PLoS One 2009; 4:e6413. [PMID: 19641610 PMCID: PMC2712766 DOI: 10.1371/journal.pone.0006413] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2008] [Accepted: 06/10/2009] [Indexed: 12/14/2022] Open
Abstract
Background Glutathione is considered essential for survival in mammalian cells and yeast but not in prokaryotic cells. The presence of a nuclear pool of glutathione has been demonstrated but its role in cellular proliferation and differentiation is still a matter of debate. Principal Findings We have studied proliferation of 3T3 fibroblasts for a period of 5 days. Cells were treated with two well known depleting agents, diethyl maleate (DEM) and buthionine sulfoximine (BSO), and the cellular and nuclear glutathione levels were assessed by analytical and confocal microscopic techniques, respectively. Both agents decreased total cellular glutathione although depletion by BSO was more sustained. However, the nuclear glutathione pool resisted depletion by BSO but not with DEM. Interestingly, cell proliferation was impaired by DEM, but not by BSO. Treating the cells simultaneously with DEM and with glutathione ethyl ester to restore intracellular GSH levels completely prevented the effects of DEM on cell proliferation. Conclusions Our results demonstrate the importance of nuclear glutathione in the control of cell proliferation in 3T3 fibroblasts and suggest that a reduced nuclear environment is necessary for cells to progress in the cell cycle.
Collapse
|
35
|
Belton M, Prato FS, Rozanski C, Carson JJL. Effect of 100 mT homogeneous static magnetic field on [Ca2+]c response to ATP in HL-60 cells following GSH depletion. Bioelectromagnetics 2009; 30:322-9. [PMID: 19204977 DOI: 10.1002/bem.20475] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Calcium is an important molecule in a number of biological systems. Often these systems are signal transduction cascades involving molecules such as ATP. ATP activates second messengers which can interact with ion channels on the endoplasmic/sarcoplasmic reticulum resulting in the emptying of the intracellular calcium stores and an increase in cytosolic free calcium concentration ([Ca2+]c). Changes in [Ca2+]c can be influenced by external factors such as a static magnetic field (SMF). One hypothesis suggests that a SMF affects the cells through the radical pair mechanism. By reducing the number of antioxidant molecules like glutathione (GSH), the proportion of free radicals in the cells is increased and may lead to a greater probability of a biological response to a SMF. The purpose of this study was to determine if the [Ca2+]c response to ATP was affected by depletion of GSH by diethylmaleate (DEM) and the absence or presence of a 100 mT homogeneous SMF. Undifferentiated HL-60 cells were loaded with fura-2 AM. [Ca2+]c was measured in real time using a ratiometric fluorescence spectroscopy system. Various (DEM) ranging from 1 to 15 mM were added to deplete GSH. Cells were either exposed to sham or magnetic field (100 mT) for 13 min (780 s) and challenged with 1 microM ATP. The data show that [Ca2+]c was elevated following treatment with DEM with greater [Ca2+]c at higher [DEM]. The [Ca2+]c response to ATP was decreased as the DEM concentration increased. However, there was no effect of a 100 mT SMF on the average [Ca2+]c peak following ATP activation or the full width at half maximum (FWHM) of the [Ca2+]c response and recovery after ATP activation.
Collapse
Affiliation(s)
- Michelle Belton
- Imaging Program, Lawson Health Research Institute, London, Ontario, Canada
| | | | | | | |
Collapse
|
36
|
Townsend DM, Manevich Y, He L, Hutchens S, Pazoles CJ, Tew KD. Novel role for glutathione S-transferase pi. Regulator of protein S-Glutathionylation following oxidative and nitrosative stress. J Biol Chem 2009; 284:436-445. [PMID: 18990698 PMCID: PMC2610519 DOI: 10.1074/jbc.m805586200] [Citation(s) in RCA: 256] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Revised: 11/06/2008] [Indexed: 12/26/2022] Open
Abstract
Glutathione S-transferase Pi (GSTpi) is a marker protein in many cancers and high levels are linked to drug resistance, even when the selecting drug is not a substrate. S-Glutathionylation of proteins is critical to cellular stress response, but characteristics of the forward reaction are not known. Our results show that GSTpi potentiates S-glutathionylation reactions following oxidative and nitrosative stress in vitro and in vivo. Mutational analysis indicated that the catalytic activity of GST is required. GSTpi is itself redox-regulated. S-Glutathionylation on Cys47 and Cys101 autoregulates GSTpi, breaks ligand binding interactions with c-Jun NH2-terminal kinase (JNK), and causes GSTpi multimer formation, all critical to stress response. Catalysis of S-glutathionylation at low pK cysteines in proteins is a novel property for GSTpi and may be a cause for its abundance in tumors and cells resistant to a range of mechanistically unrelated anticancer drugs.
Collapse
Affiliation(s)
- Danyelle M Townsend
- Departments of Pharmaceutical and Biomedical Sciences and Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina 29425 and Novelos Inc., Newton, Massachusetts 02458
| | - Yefim Manevich
- Departments of Pharmaceutical and Biomedical Sciences and Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina 29425 and Novelos Inc., Newton, Massachusetts 02458
| | - Lin He
- Departments of Pharmaceutical and Biomedical Sciences and Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina 29425 and Novelos Inc., Newton, Massachusetts 02458
| | - Steven Hutchens
- Departments of Pharmaceutical and Biomedical Sciences and Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina 29425 and Novelos Inc., Newton, Massachusetts 02458
| | - Christopher J Pazoles
- Departments of Pharmaceutical and Biomedical Sciences and Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina 29425 and Novelos Inc., Newton, Massachusetts 02458
| | - Kenneth D Tew
- Departments of Pharmaceutical and Biomedical Sciences and Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina 29425 and Novelos Inc., Newton, Massachusetts 02458.
| |
Collapse
|
37
|
Affiliation(s)
- Sami Ahmad
- Department of Entomology and Economic Zoology, Cook College Rutgers-The State University of New Jersey, New Brunswick, New Jersey, 08903
| | - Andrew J. Forgash
- Department of Entomology and Economic Zoology, Cook College Rutgers-The State University of New Jersey, New Brunswick, New Jersey, 08903
| |
Collapse
|
38
|
Adams T, Gavin CL, Taylor S, Waddell W, Cohen S, Feron V, Goodman J, Rietjens I, Marnett L, Portoghese P, Smith R. The FEMA GRAS assessment of α,β-unsaturated aldehydes and related substances used as flavor ingredients. Food Chem Toxicol 2008; 46:2935-67. [DOI: 10.1016/j.fct.2008.06.082] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2008] [Revised: 06/06/2008] [Accepted: 06/26/2008] [Indexed: 10/21/2022]
|
39
|
Kodiha M, Tran D, Qian C, Morogan A, Presley JF, Brown CM, Stochaj U. Oxidative stress mislocalizes and retains transport factor importin-α and nucleoporins Nup153 and Nup88 in nuclei where they generate high molecular mass complexes. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:405-18. [DOI: 10.1016/j.bbamcr.2007.10.022] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2007] [Revised: 10/30/2007] [Accepted: 10/31/2007] [Indexed: 12/29/2022]
|
40
|
Randle LE, Goldring CEP, Benson CA, Metcalfe PN, Kitteringham NR, Park BK, Williams DP. Investigation of the effect of a panel of model hepatotoxins on the Nrf2-Keap1 defence response pathway in CD-1 mice. Toxicology 2007; 243:249-60. [PMID: 18078705 DOI: 10.1016/j.tox.2007.10.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2007] [Revised: 10/04/2007] [Accepted: 10/04/2007] [Indexed: 01/27/2023]
Abstract
The Keap1-Nrf2-ARE signalling pathway has emerged as an important regulator of the mammalian defence system to enable detoxification and clearance of foreign chemicals. Recent studies by our group using paracetamol (APAP), diethylmaleate and buthionine sulphoximine have shown that for a given xenobiotic molecule, Nrf2 induction in the murine liver is associated with protein reactivity and glutathione depletion. Here, we have investigated, in vivo, whether the ability of four murine hepatotoxins, paracetamol, bromobenzene (BB), carbon tetrachloride (CCl4) and furosemide (FS) to deplete hepatic glutathione (GSH) is related to induction of hepatic Nrf2 nuclear translocation and Nrf2-dependent gene expression. Additionally, we studied whether hepatic Nrf2 nuclear translocation is a general response during the early stages of acute hepatic chemical stress in vivo. Male CD-1 mice were administered APAP (3.5 mmol/kg), FS (1.21 mmol/kg), BB (4.8 mmol/kg) and CCl4 (1 mmol/kg) for 1, 5 and 24h. Each compound elicited significant serum ALT increases after 24h (ALT U/L: APAP, 3036+/-1462; BB, 5308+/-2210; CCl4, 5089+/-1665; FS, 2301+/-1053), accompanied by centrilobular damage as assessed by histopathology. Treatment with APAP also elicited toxicity at a much earlier time point (5h) than the other hepatotoxins (ALT U/L: APAP, 1780+/-661; BB, 161+/-15; CCl4, 90+/-23; FS, 136+/-27). Significant GSH depletion was seen with APAP (9.6+/-1.7% of control levels) and BB (52.8+/-6.2% of control levels) 1h after administration, but not with FS and CCl4. Western Blot analysis revealed an increase in nuclear Nrf2, 1h after administration of BB (209+/-10% control), CCl4 (146+/-3% control) and FS (254+/-41% control), however this was significantly lower than the levels observed in the APAP-treated mice (462+/-36% control). The levels of Nrf2-dependent gene induction were also analysed by quantitative real-time PCR and Western blotting. Treatment with APAP for 1h caused a significant increase in the levels of haem oxygenase-1 (HO-1; 2.85-fold) and glutamate cysteine ligase (GCLC; 1.62-fold) mRNA. BB and FS did not affect the mRNA levels of either gene after 1h of treatment; however CCl4 significantly increased HO-1 mRNA at this time point. After 24h treatment with the hepatotoxins, there was evidence for the initiation of a late defence response. BB significantly increased both HO-1 and GCLC protein at this time point, CCl4 increased GCLC protein alone, although FS did not alter either of these proteins. In summary, we have demonstrated that the hepatotoxins BB, CCl4 and FS can induce a small but significant increase in Nrf2 accumulation in hepatic nuclei. However, this was associated with modest changes in hepatic GSH, a delayed development of toxicity and was insufficient to activate an early functional adaptive response to these hepatotoxins.
Collapse
Affiliation(s)
- Laura E Randle
- Drug Safety Research Group, Department of Pharmacology & Therapeutics, The University of Liverpool, Sherrington Buildings, Ashton Street, Liverpool L69 3GE, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
41
|
Lou H, Kaplowitz N. Glutathione depletion down-regulates tumor necrosis factor alpha-induced NF-kappaB activity via IkappaB kinase-dependent and -independent mechanisms. J Biol Chem 2007; 282:29470-81. [PMID: 17690092 DOI: 10.1074/jbc.m706145200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Reduced glutathione (GSH) plays a crucial role in hepatocyte function, and GSH depletion by diethyl maleate was shown previously to inhibit expression of NF-kappaB target genes induced by tumor necrosis factor alpha (TNFalpha) and sensitize primary cultured mouse hepatocytes to TNF-mediated apoptotic killing. Here we demonstrate in the same system that GSH depletion down-regulates TNF-induced NF-kappaB transactivation via two mechanisms, depending on the extent of the depletion. With moderate GSH depletion (approximately 50%), the down-regulation is IkappaB kinase (IKK)-independent and likely acts on NF-kappaB transcriptional activity because TNF-induced IKK activation, IkappaBalpha phosphorylation and degradation, NF-kappaB nuclear translocation, NF-kappaB DNA binding in vitro, and NF-kappaB subunit RelA(p65) recruitment to kappaB sites of target gene promoters all appear unaltered. On the other hand, with profound GSH depletion (approximately 80%), the down-regulation also is IKK-dependent, and a timeline is established linking the inhibition of polyubiquitination of receptor-interacting protein 1 in TNF receptor 1 complex to partial blockage of IKK activation, IkappaBalpha phosphorylation and degradation, and NF-kappaB nuclear translocation. Of note, pretreatment with antioxidant trolox protects against the inhibitory effect of profound GSH depletion on IKK activation and NF-kappaB nuclear translocation but fails to restore expression of NF-kappaB target genes, revealing both IKK-dependent and -independent inhibition. These findings provide new insights into the complex effects of oxidative stress and redox perturbations on the NF-kappaB pathway.
Collapse
Affiliation(s)
- Huan Lou
- Research Center for Liver Diseases, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, USA
| | | |
Collapse
|
42
|
KIYOSAWA N, UEHARA T, GAO W, OMURA K, HIRODE M, SHIMIZU T, MIZUKAWA Y, ONO A, MIYAGISHIMA T, NAGAO T, URUSHIDANI T. IDENTIFICATION OF GLUTATHIONE DEPLETION-RESPONSIVE GENES USING PHORONE-TREATED RAT LIVER. J Toxicol Sci 2007; 32:469-86. [DOI: 10.2131/jts.32.469] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Naoki KIYOSAWA
- Toxicogenomics Project, National Institute of Biomedical Innovation
| | - Takeki UEHARA
- Toxicogenomics Project, National Institute of Biomedical Innovation
| | - Weihua GAO
- Toxicogenomics Project, National Institute of Biomedical Innovation
| | - Ko OMURA
- Toxicogenomics Project, National Institute of Biomedical Innovation
| | - Mitsuhiro HIRODE
- Toxicogenomics Project, National Institute of Biomedical Innovation
| | | | - Yumiko MIZUKAWA
- Toxicogenomics Project, National Institute of Biomedical Innovation
- Department of Pathophysiology, Faculty of Pharmaceutical Sciences
| | - Atsushi ONO
- Toxicogenomics Project, National Institute of Biomedical Innovation
| | | | | | - Tetsuro URUSHIDANI
- Toxicogenomics Project, National Institute of Biomedical Innovation
- Department of Pathophysiology, Faculty of Pharmaceutical Sciences
| |
Collapse
|
43
|
Jakoby WB. The glutathione S-transferases: a group of multifunctional detoxification proteins. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2006; 46:383-414. [PMID: 345769 DOI: 10.1002/9780470122914.ch6] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The physiological roles of the glutathione S-transferases, by whatever name, seem to result in detoxification. As is true of albumin, members of this group of proteins bind an enormous number of compounds that appear to have in common only hydrophobic topography; the binding of bilirubin is an example of a major function common to all higher species. If the ligand bears a sufficiently electrophilic center, it will be attacked by the nucleophile GSH; such compounds would be the substrates of the enzyme. And should such a ligand be extraordinarily reactive--as, for example, some of the epoxide carcinogens generated by the cytochrome P450-linked, mixed-function oxidases, or even 1-chloro-2,4-dinitrobenzene--then reaction may occur either with GSH or irreversibly with the transferase itself. By reason of the wide distribution and high intracellular concentration of these proteins, there appears to be sufficient enzyme for all three roles in detoxification.
Collapse
|
44
|
Boyland E, Chasseaud LF. The role of glutathione and glutathione S-transferases in mercapturic acid biosynthesis. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2006; 32:173-219. [PMID: 4892500 DOI: 10.1002/9780470122778.ch5] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
45
|
Chen T, Pearce LL, Peterson J, Stoyanovsky D, Billiar TR. Glutathione depletion renders rat hepatocytes sensitive to nitric oxide donor-mediated toxicity. Hepatology 2005; 42:598-607. [PMID: 16116630 DOI: 10.1002/hep.20813] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Nitric oxide (NO) can be either cytoprotective or cytotoxic in hepatocytes, depending on conditions within the cell. We hypothesized that redox status is a determinant of NO effects on cell viability. To cause the disturbance of redox homeostasis in the hepatocytes, cells were treated with the following glutathione (GSH) depleting agents: (1) chronic depletion by 18 hours pretreatment with buthionine sulfoximine (BSO), which depletes GSH by blocking its biosynthesis; and (2) acute depletion by 1 hour pretreatment with diethyl maleate (DEM), which conjugates GSH by the GSH-S-transferase catalyzed reaction. S-nitroso-N-acetyl-D,L-penicillamine (SNAP), a NO donor, was added after removal of GSH-depleting agents. Individual treatment with either SNAP or GSH depletion did not appreciably affect viability. A significant increase of cytotoxicity in hepatocytes was observed with the combination of a concentration and time course regimen of SNAP and GSH depletion. SNAP treatment of GSH-depleted hepatocytes led to an increase in LDH release and oxidative stress, disruption of mitochondrial membrane potential, the presence of nitrotyrosine (an indicator of peroxynitrite (ONOO-) generation), and a decrease in adenosine triphosphate (ATP) content. The interference of mitochondrial respiratory enzymes, especially with the combination treatments, indicated different levels of disturbance of electron transfer, superoxide generation, and ATP production. Other commonly used NO donors were found to exhibit lower and slower toxicity in the setting of GSH depletion than that evident with SNAP. In conclusion, the disruption of cellular redox homeostasis by GSH depletion leads hepatocytes to be more susceptible to NO (especially S-nitrosothiols) and subsequent necrotic cell death.
Collapse
Affiliation(s)
- Tracy Chen
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | | | | | | | | |
Collapse
|
46
|
Phimister AJ, Williams KJ, Van Winkle LS, Plopper CG. Consequences of abrupt glutathione depletion in murine Clara cells: ultrastructural and biochemical investigations into the role of glutathione loss in naphthalene cytotoxicity. J Pharmacol Exp Ther 2005; 314:506-13. [PMID: 15845860 DOI: 10.1124/jpet.105.084533] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Glutathione plays many critical roles within the cell, including offering protection from reactive chemicals. The bioactivated toxicant naphthalene forms chemically reactive intermediates that can deplete glutathione and covalently bind to cellular proteins. Naphthalene selectively injures the nonciliated epithelial cells of the intrapulmonary airways (i.e., Clara cells). This study attempted to define what role glutathione loss plays in naphthalene cytotoxicity by comparing Swiss-Webster mice treated with naphthalene with those treated with the glutathione depletor diethylmaleate. High-resolution imaging techniques were used to evaluate acute changes in Clara cell ultrastructure, membrane permeability, and cytoskeleton structure. A single dose of either diethylmaleate (1000 mg/kg) or naphthalene (200 mg/kg) caused similar glutathione losses in intrapulmonary airways (< 20% of control). Diethylmaleate did not increase membrane permeability, disrupt mitochondria, or lead to cell death--hallmark features of naphthalene cytotoxicity. However, diethylmaleate treatment did cause Clara cell swelling, plasma membrane blebs, and actin cytoskeleton disruptions similar to naphthalene treatment. Structural changes in mitochondria and Golgi bodies also were noted. Changes in ATP levels were measured as an indication of overall cell function, in isolated airway explants incubated with diethylmaleate, naphthalene, or naphthalene metabolites in vitro. Only the reactive metabolites of naphthalene caused significant ATP losses. Unlike the lethal injury caused by naphthalene, the disruptive cellular changes associated with glutathione loss from diethylmaleate seemed to be reversible after recovery of glutathione levels. This suggests that glutathione depletion may be responsible for some aspects of naphthalene cytotoxicity, but it is not sufficient to cause cell death without further stresses.
Collapse
Affiliation(s)
- Andrew J Phimister
- Department of Molecular Biosciences, University of California, Davis, CA 95616, USA.
| | | | | | | |
Collapse
|
47
|
Neely MD, Boutte A, Milatovic D, Montine TJ. Mechanisms of 4-hydroxynonenal-induced neuronal microtubule dysfunction. Brain Res 2005; 1037:90-8. [PMID: 15777756 DOI: 10.1016/j.brainres.2004.12.027] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2004] [Revised: 12/13/2004] [Accepted: 12/17/2004] [Indexed: 11/24/2022]
Abstract
We have previously demonstrated that neuronal microtubules are exquisitely sensitive to the lipid peroxidation product 4-hydroxynonenal (HNE). The mechanism, however, by which HNE disrupts the microtubules, is not known. Sulfhydryl groups of protein-cysteines constitute main targets of HNE. Indeed, HNE is mainly detoxified by conjugation to glutathione (GSH), a reaction that leads to depletion of cellular GSH. GSH maintains protein sulfhydryl groups in the reduced form and has been implicated in the regulation of cytoskeletal function. Here, we assess what role depletion of cellular GSH plays in the HNE-induced microtubule disruption. We demonstrate that HNE and its intracellularly activated tri-ester analog, HNE(Ac)(3), cause substantial GSH depletion in Neuro2A cells. However, other compounds inducing GSH depletion had no effect on the microtubule network. Therefore, HNE-induced depletion of cellular GSH does not contribute to the HNE-induced microtubule disruption. We previously demonstrated that another main cellular target of HNE is tubulin, the core protein of microtubules containing abundant cysteines. The functional relevance of this adduction, however, had not been evaluated. Here, we demonstrate that exposure of Neuro 2A cells to HNE or HNE(Ac)(3) results in the inhibition of cytosolic taxol-induced tubulin polymerization. These and our previous observations strongly support the hypothesis that HNE-adduction to tubulin is the primary mechanism involved in the HNE-induced loss of the highly dynamic neuronal microtubule network.
Collapse
Affiliation(s)
- M Diana Neely
- Department of Psychiatry, Vanderbilt University Medical Center, 313 PHV, 1601 23rd Avenue South, Nashville, TN 37212, USA.
| | | | | | | |
Collapse
|
48
|
Letizia CS, Cocchiara J, Lapczynski A, Lalko J, Api AM. Fragrance material review on cinnamic acid. Food Chem Toxicol 2005; 43:925-43. [PMID: 15811573 DOI: 10.1016/j.fct.2004.09.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2004] [Revised: 09/03/2004] [Accepted: 09/24/2004] [Indexed: 10/25/2022]
Abstract
A toxicologic and dermatologic review of cinnamic acid when used as a fragrance ingredient is presented.
Collapse
Affiliation(s)
- C S Letizia
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ 07677, USA.
| | | | | | | | | |
Collapse
|
49
|
Cocchiara J, Letizia CS, Lalko J, Lapczynski A, Api AM. Fragrance material review on cinnamaldehyde. Food Chem Toxicol 2005; 43:867-923. [PMID: 15811572 DOI: 10.1016/j.fct.2004.09.014] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2004] [Revised: 09/03/2004] [Accepted: 09/24/2004] [Indexed: 10/25/2022]
Abstract
A toxicologic and dermatologic review of cinnamaldehyde when used as a fragrance ingredient is presented.
Collapse
Affiliation(s)
- J Cocchiara
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ 07677, USA
| | | | | | | | | |
Collapse
|
50
|
Esposito F, Chirico G, Montesano Gesualdi N, Posadas I, Ammendola R, Russo T, Cirino G, Cimino F. Protein kinase B activation by reactive oxygen species is independent of tyrosine kinase receptor phosphorylation and requires SRC activity. J Biol Chem 2003; 278:20828-34. [PMID: 12682076 DOI: 10.1074/jbc.m211841200] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Reactive oxygen species (ROS) participate as second messengers in the mitogenic signal transduction. Most of the experimental data supporting the role of ROS as signaling molecules have been obtained by using H2O2. Exposure of cells to H2O2 rapidly increases tyrosine phosphorylation of tyrosine kinase receptors (TKRs) in the absence of growth factor binding, thus inducing the activation of downstream signaling cascades, like that of protein kinase B (AKT). Another molecule able to induce an increase of intracellular ROS levels is diethylmaleate (DEM), which acts by depleting the ROS scavenger reduced glutathione (GSH). A comparison of the effects exerted by H2O2 and DEM shows that the latter induces redox modifications milder than those generated by H2O2. We also demonstrated that DEM-induced redox modifications are not accompanied by platelet-derived growth factor-receptor (PDGF-R) and epidermal growth factor-receptor Tyr phosphorylation, although they are able to activate ERKs and AKT, with kinetics different from those observed following H2O2 treatment. The activation of these two pathways is not blocked by AG1296, a selective inhibitor of PDGF-R Tyr kinase, thus confirming that the effects of DEM are not mediated by the TKR phosphorylation. On the contrary, PP2 (4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazole[3,4-d]pyrimidine), an inhibitor of Src kinase, completely prevents DEM- and H2O2-induced AKT activation but has no effect on the pathway of ERKs. Finally, nitration of Tyr residues in PDGF-R is observed in DEM-treated cells, thus suggesting that ROS-induced modifications different from Tyr phosphorylation can occur at the growth factor-receptor level and can be involved in the regulation of signaling pathways.
Collapse
Affiliation(s)
- Franca Esposito
- Dipartimento di Biochimica e Biotecnologie Mediche, Universitá di Napoli Federico II, Via Pansini 5, Naples 80131, Italy.
| | | | | | | | | | | | | | | |
Collapse
|