1
|
Patias NS, de Queiroz EAIF, Ferrarini SR, Bomfim GF, Aguiar DH, Sinhorin AP, Bello AA, da Silva GVF, Cavalheiro L, Sinhorin VDG. Effect of Liposomal Protium heptaphyllum (Alb.) March Extract in the Treatment of Obesity Induced by High-Calorie Diet. BIOLOGY 2024; 13:535. [PMID: 39056728 PMCID: PMC11274057 DOI: 10.3390/biology13070535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/22/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024]
Abstract
Obesity, a chronic disease, resulted from excessive consumption of high-calorie foods, leading to an energy imbalance. Protium heptaphyllum (P. heptaphyllum) was used in folk medicine for its analgesic, anti-inflammatory, and healing properties. The association of the extract from P. heptaphyllum with nanotechnology was innovative for combining high technology with active ingredients that are easily accessible in the Amazon region. This study evaluated the effect of liposomes containing the ethyl acetate fraction of the crude extract of P. heptaphyllum leaves on obesity. Male Wistar rats treated with a high-calorie diet for 8 weeks to induce obesity received treatment with the liposome formulation containing P. heptaphyllum extract (1 mg/kg/day, via gavage) for 14 days. Morphological, metabolic, redox status, immunological, and histological parameters were evaluated in the adipose and liver tissue of the animals. The groups were divided as follows: C: control; P: liposomes containing extract; O: obese, and OP: obese + liposomes containing extract. The obesity model resulted in increases in body weight, caloric intake, body fat weight, and in the lipid profile. In adipose tissue, P decreased SOD (superoxide dismutase) activity in obese animals. In the liver, a positive modulation of the extract was observed in relation to glucose, amino acids, lactate, hepatoprotective action, and anti-inflammatory activity, with a decrease in interleukin 1β (IL-1β) in obese animals. The results showed an improvement in the functional and inflammatory aspects, but the treatment was not effective in alleviating general changes related to obesity, such as weight gain, fat, glucose, triglycerides, and inflammation in adipose tissue, highlighting the complexity of responses in different organs during obesity and treatment with P. heptaphyllum.
Collapse
Affiliation(s)
- Naiéle Sartori Patias
- Postgraduate Program in Biotechnology and Biodiversity of the Pro Centro-Oeste Network, Federal University of Mato Grosso, Sinop 78550-728, MT, Brazil; (N.S.P.); (A.P.S.)
| | | | - Stela Regina Ferrarini
- Pharmaceutical Nanotechnology Laboratory, Postgraduate Program in Health Sciences, Federal University of Mato Grosso, Sinop 78550-728, MT, Brazil;
| | - Gisele Facholi Bomfim
- NUPADS—Health Research and Teaching Support Center, Institute of Health Science, Federal University of Mato Grosso, Sinop 78550-728, MT, Brazil (G.F.B.)
| | - Danilo Henrique Aguiar
- Institute of Natural, Human and Social Sciences, Federal University of Mato Grosso, Sinop 78550-728, MT, Brazil; (D.H.A.); (L.C.)
| | - Adilson Paulo Sinhorin
- Postgraduate Program in Biotechnology and Biodiversity of the Pro Centro-Oeste Network, Federal University of Mato Grosso, Sinop 78550-728, MT, Brazil; (N.S.P.); (A.P.S.)
| | - Alexandre Aymberé Bello
- Institute of Health Science, Federal University of Mato Grosso, Sinop 78550-728, MT, Brazil; (A.A.B.); (G.V.F.d.S.)
| | | | - Larissa Cavalheiro
- Institute of Natural, Human and Social Sciences, Federal University of Mato Grosso, Sinop 78550-728, MT, Brazil; (D.H.A.); (L.C.)
| | - Valéria Dornelles Gindri Sinhorin
- Postgraduate Program in Biotechnology and Biodiversity of the Pro Centro-Oeste Network, Federal University of Mato Grosso, Sinop 78550-728, MT, Brazil; (N.S.P.); (A.P.S.)
| |
Collapse
|
2
|
Ahlborn NG, Montoya CA, Roy D, Roy NC, Stroebinger N, Ye A, Samuelsson LM, Moughan PJ, McNabb WC. Differences in small intestinal apparent amino acid digestibility of raw bovine, caprine, and ovine milk are explained by gastric amino acid retention in piglets as an infant model. Front Nutr 2023; 10:1226638. [PMID: 37731403 PMCID: PMC10507170 DOI: 10.3389/fnut.2023.1226638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/21/2023] [Indexed: 09/22/2023] Open
Abstract
Background The rate of stomach emptying of milk from different ruminant species differs, suggesting that the small intestinal digestibility of nutrients could also differ across these milk types. Objective To determine the small intestinal amino acid (AA) digestibility of raw bovine, caprine, and ovine milk in the piglet as an animal model for the infant. Methods Seven-day-old piglets (n = 12) consumed either bovine, caprine, or ovine milk diets for 15 days (n = 4 piglets/milk). On day 15, fasted piglets received a single meal of fresh raw milk normalized for protein content and containing the indigestible marker titanium dioxide. Entire gastrointestinal tract contents were collected at 210 min postprandially. Apparent AA digestibility (disappearance) in different regions of the small intestine was determined. Results On average, 35% of the dietary AAs were apparently taken up in the small intestine during the first 210 min post-feeding, with 67% of the AA digestibility occurring in the first quarter (p ≤ 0.05) and 33% in the subsequent two quarters. Overall, except for isoleucine, valine, phenylalanine, and tyrosine, the small intestinal apparent digestibility of all AAs at 210 min postprandially in piglets fed ovine milk was, on average, 29% higher (p ≤ 0.05) than for those fed bovine milk. Except for lysine, there was no difference in the apparent digestibility (p > 0.05) of any AAs between piglets fed caprine milk or ovine milk. The apparent digestibility of alanine was higher (p ≤ 0.05) in piglets fed caprine milk than those fed bovine milk. When apparent digestibility was corrected for gastric AA retention, only small differences in the small intestinal apparent digestibility of AAs were observed across milk types. Conclusion Bovine, caprine and ovine milk had different apparent small intestinal AA digestibility at 210 min postprandially. When corrected for gastric AA retention, the differences in apparent digestibility across species largely disappeared. The apparent AA digestibility differed across small intestinal locations.
Collapse
Affiliation(s)
- Natalie G. Ahlborn
- Riddet Institute, Massey University, Palmerston North, New Zealand
- School of Food and Advanced Technology, Massey University, Palmerston North, New Zealand
- Smart Foods and Bioproducts Group, AgResearch Ltd, Palmerston North, New Zealand
| | - Carlos A. Montoya
- Riddet Institute, Massey University, Palmerston North, New Zealand
- Smart Foods and Bioproducts Group, AgResearch Ltd, Palmerston North, New Zealand
| | - Debashree Roy
- Riddet Institute, Massey University, Palmerston North, New Zealand
- School of Food and Advanced Technology, Massey University, Palmerston North, New Zealand
| | - Nicole C. Roy
- Riddet Institute, Massey University, Palmerston North, New Zealand
- Department of Human Nutrition, University of Otago, Dunedin, New Zealand
- High-Value Nutrition National Science Challenge, Auckland, New Zealand
| | | | - Aiqian Ye
- Riddet Institute, Massey University, Palmerston North, New Zealand
- School of Food and Advanced Technology, Massey University, Palmerston North, New Zealand
| | - Linda M. Samuelsson
- Smart Foods and Bioproducts Group, AgResearch Ltd, Palmerston North, New Zealand
| | - Paul J. Moughan
- Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Warren C. McNabb
- Riddet Institute, Massey University, Palmerston North, New Zealand
- High-Value Nutrition National Science Challenge, Auckland, New Zealand
| |
Collapse
|
3
|
Szabó J, Maróti G, Solymosi N, Andrásofszky E, Tuboly T, Bersényi A, Bruckner G, Hullár I. Fructose, glucose and fat interrelationships with metabolic pathway regulation and effects on the gut microbiota. Acta Vet Hung 2021; 69:134-156. [PMID: 34224398 DOI: 10.1556/004.2021.00022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 06/04/2021] [Indexed: 12/14/2022]
Abstract
The purpose of this 30-day feeding study was to elucidate the changes, correlations, and mechanisms caused by the replacement of the starch content of the AIN-93G diet (St) with glucose (G), fructose (F) or lard (L) in body and organ weights, metabolic changes and caecal microbiota composition in rats (Wistar, SPF). The body weight gain of rats on the F diet was 12% less (P = 0.12) than in the St group. Rats on the L diet consumed 18.6% less feed, 31% more energy and gained 58.4% more than the animals on the St diet, indicating that, in addition to higher energy intake, better feed utilisation is a key factor in the obesogenic effect of diets of high nutrient and energy density. The G, F and L diets significantly increased the lipid content of the liver (St: 7.01 ± 1.48; G: 14.53 ± 8.77; F: 16.73 ± 8.77; L: 19.86 ± 4.92% of DM), suggesting that lipid accumulation in the liver is not a fructose-specific process. Relative to the St control, specific glucose effects were the decreasing serum glucagon (-41%) concentrations and glucagon/leptin ratio and the increasing serum leptin concentrations (+26%); specific fructose effects were the increased weights of the kidney, spleen, epididymal fat and the decreased weight of retroperitoneal fat and the lower immune response, as well as the increased insulin (+26%), glucagon (+26%) and decreased leptin (-25%) levels. This suggests a mild insulin resistance and catabolic metabolism in F rats. Specific lard effects were the decreased insulin (-9.14%) and increased glucagon (+40.44%) and leptin (+44.92%) levels. Relative to St, all diets increased the operational taxonomic units of the phylum Bacteroidetes. G and L decreased, while F increased the proportion of Firmicutes. F and L diets decreased the proportions of Actinobacteria, Proteobacteria and Verrucomicrobia. Correlation and centrality analyses were conducted to ascertain the positive and negative correlations and relative weights of the 32 parameters studied in the metabolic network. These correlations and the underlying potential mechanisms are discussed.
Collapse
Affiliation(s)
- József Szabó
- 1Department of Animal Breeding, Nutrition and Laboratory Animal Science, University of Veterinary Medicine, P. O. Box 2, H-1400 Budapest, Hungary
| | - Gergely Maróti
- 2Biological Research Centre, Institute of Plant Biology, Szeged, Hungary
| | - Norbert Solymosi
- 3Centre for Bioinformatics, University of Veterinary Medicine, Budapest, Hungary
| | - Emese Andrásofszky
- 1Department of Animal Breeding, Nutrition and Laboratory Animal Science, University of Veterinary Medicine, P. O. Box 2, H-1400 Budapest, Hungary
| | - Tamás Tuboly
- 4Department of Microbiology and Infectious Diseases, University of Veterinary Medicine, Budapest, Hungary
| | - András Bersényi
- 1Department of Animal Breeding, Nutrition and Laboratory Animal Science, University of Veterinary Medicine, P. O. Box 2, H-1400 Budapest, Hungary
| | - Geza Bruckner
- 5Department of Athletic Training and Clinical Nutrition, University of Kentucky, Lexington, KY, USA
| | - István Hullár
- 1Department of Animal Breeding, Nutrition and Laboratory Animal Science, University of Veterinary Medicine, P. O. Box 2, H-1400 Budapest, Hungary
| |
Collapse
|
4
|
Remesar X, Alemany M. Dietary Energy Partition: The Central Role of Glucose. Int J Mol Sci 2020; 21:E7729. [PMID: 33086579 PMCID: PMC7593952 DOI: 10.3390/ijms21207729] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/15/2020] [Accepted: 10/15/2020] [Indexed: 12/17/2022] Open
Abstract
Humans have developed effective survival mechanisms under conditions of nutrient (and energy) scarcity. Nevertheless, today, most humans face a quite different situation: excess of nutrients, especially those high in amino-nitrogen and energy (largely fat). The lack of mechanisms to prevent energy overload and the effective persistence of the mechanisms hoarding key nutrients such as amino acids has resulted in deep disorders of substrate handling. There is too often a massive untreatable accumulation of body fat in the presence of severe metabolic disorders of energy utilization and disposal, which become chronic and go much beyond the most obvious problems: diabetes, circulatory, renal and nervous disorders included loosely within the metabolic syndrome. We lack basic knowledge on diet nutrient dynamics at the tissue-cell metabolism level, and this adds to widely used medical procedures lacking sufficient scientific support, with limited or nil success. In the present longitudinal analysis of the fate of dietary nutrients, we have focused on glucose as an example of a largely unknown entity. Even most studies on hyper-energetic diets or their later consequences tend to ignore the critical role of carbohydrate (and nitrogen disposal) as (probably) the two main factors affecting the substrate partition and metabolism.
Collapse
Affiliation(s)
- Xavier Remesar
- Department of Biochemistry and Molecular Biomedicine Faculty of Biology, University Barcelona, 08028 Barcelona, Spain;
- IBUB Institute of Biomedicine, University of Barcelona, 08028 Barcelona, Spain
- CIBER Obesity and Nutrition, Institute of Health Carlos III, 08028 Barcelona, Spain
| | - Marià Alemany
- Department of Biochemistry and Molecular Biomedicine Faculty of Biology, University Barcelona, 08028 Barcelona, Spain;
- IBUB Institute of Biomedicine, University of Barcelona, 08028 Barcelona, Spain
- CIBER Obesity and Nutrition, Institute of Health Carlos III, 08028 Barcelona, Spain
| |
Collapse
|
5
|
Galsgaard KD, Pedersen J, Kjeldsen SAS, Winther-Sørensen M, Stojanovska E, Vilstrup H, Ørskov C, Wewer Albrechtsen NJ, Holst JJ. Glucagon receptor signaling is not required for N-carbamoyl glutamate- and l-citrulline-induced ureagenesis in mice. Am J Physiol Gastrointest Liver Physiol 2020; 318:G912-G927. [PMID: 32174131 DOI: 10.1152/ajpgi.00294.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Glucagon regulates the hepatic amino acid metabolism and increases ureagenesis. Ureagenesis is activated by N-acetylglutamate (NAG), formed via activation of N-acetylglutamate synthase (NAGS). With the aim to identify the steps whereby glucagon both acutely and chronically regulates ureagenesis, we investigated whether glucagon receptor-mediated activation of ureagenesis is required in a situation where NAGS activity and/or NAG levels are sufficient to activate the first step of the urea cycle in vivo. Female C57BL/6JRj mice treated with a glucagon receptor antagonist (GRA), glucagon receptor knockout (Gcgr-/-) mice, and wild-type (Gcgr+/+) littermates received an intraperitoneal injection of N-carbamoyl glutamate (Car; a stable variant of NAG), l-citrulline (Cit), Car and Cit (Car + Cit), or PBS. In separate experiments, Gcgr-/- and Gcgr+/+ mice were administered N-carbamoyl glutamate and l-citrulline (wCar + wCit) in the drinking water for 8 wk. Car, Cit, and Car + Cit significantly (P < 0.05) increased plasma urea concentrations, independently of pharmacological and genetic disruption of glucagon receptor signaling (P = 0.9). Car increased blood glucose concentrations equally in GRA- and vehicle-treated mice (P = 0.9), whereas the increase upon Car + Cit was impaired in GRA-treated mice (P = 0.008). Blood glucose concentrations remained unchanged in Gcgr-/- mice upon Car (P = 0.2) and Car + Cit (P = 0.9). Eight weeks administration of wCar + wCit did not change blood glucose (P > 0.2), plasma amino acid (P > 0.4), and urea concentrations (P > 0.3) or the area of glucagon-positive cells (P > 0.3) in Gcgr-/- and Gcgr+/+ mice. Our data suggest that glucagon-mediated activation of ureagenesis is not required when NAGS activity and/or NAG levels are sufficient to activate the first step of the urea cycle.NEW & NOTEWORTHY Hepatic ureagenesis is essential in amino acid metabolism and is importantly regulated by glucagon, but the exact mechanism is unclear. With the aim to identify the steps whereby glucagon both acutely and chronically regulates ureagenesis, we here show, contrary to our hypothesis, that glucagon receptor-mediated activation of ureagenesis is not required when N-acetylglutamate synthase activity and/or N-acetylglutamate levels are sufficient to activate the first step of the urea cycle in vivo.
Collapse
Affiliation(s)
- Katrine D Galsgaard
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Pedersen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Endocrinology and Nephrology, Nordsjaellands Hospital Hilleroed, Hilleroed, Denmark
| | - Sasha A S Kjeldsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Marie Winther-Sørensen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Elena Stojanovska
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hendrik Vilstrup
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | - Cathrine Ørskov
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nicolai J Wewer Albrechtsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
6
|
Mansilla WD, Silva KE, Zhu C, Nyachoti CM, Htoo JK, Cant JP, de Lange CFM. Ammonia-Nitrogen Added to Low-Crude-Protein Diets Deficient in Dispensable Amino Acid-Nitrogen Increases the Net Release of Alanine, Citrulline, and Glutamate Post-Splanchnic Organ Metabolism in Growing Pigs. J Nutr 2018; 148:1081-1087. [PMID: 29878142 DOI: 10.1093/jn/nxy076] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 03/20/2018] [Indexed: 01/27/2023] Open
Abstract
Background Dietary ammonia is rapidly absorbed but poorly used for urea synthesis in pigs fed low-crude-protein (low-CP) diets deficient in dispensable amino acid (DAA)-nitrogen. Objective We explored the effect of dietary ammonia on net amino acid (AA) balances in portal-drained viscera (PDV) and livers of pigs fed a diet deficient in DAA-nitrogen. Methods Eight barrows with an initial body weight (BW) of 26.5 ± 1.4 kg (mean + SD) were surgically fitted with 4 catheters each (portal, hepatic, and mesenteric veins and carotid artery). The pigs were restricted-fed (2.8 × 191 kcal/kg BW0.60) for 7 d, and every 8 h a diet deficient in DAA-nitrogen supplemented with increasing amounts of ammonia-nitrogen (CP = 7.76%, 9.27%, and 10.77% for the control and low- and high-ammonia diets, respectively). The treatment sequence was based on a 3 × 3 Latin-square design with 3 consecutive periods. On the last day of each period, blood flows in portal and hepatic veins were determined with a continuous infusion of ρ-amino hippuric acid into the mesenteric vein. Consecutive blood samples were taken for AA concentration in blood plasma, and AA balances were calculated for PDV and the liver. Results Cumulative release of citrulline (Cit) and proline (Pro) increased with ammonia supplementation in PDV but decreased for glutamine (Gln) and glycine (Gly) (Gln: -19.32 ± 3.56, -32.50 ± 3.73, and -42.11 ± 3.55 mmol/meal for the control and low- and high-ammonia groups, respectively; P ≤ 0.05). Cumulative release of alanine (Ala), glutamic acid (Glu), and Gln increased with ammonia supplementation across the liver (P ≤ 0.05). When combined, PDV+liver, the cumulative release of Ala, Cit, and Glu increased with ammonia-nitrogen supplementation (P ≤ 0.05). Conclusion Dietary ammonia could be used as a nitrogen supplement to increase the synthesis of Ala, Cit, and Glu across splanchnic organs in pigs fed a diet deficient in DAA-nitrogen.
Collapse
Affiliation(s)
- Wilfredo D Mansilla
- Department of Animal Biosciences, University of Guelph, Guelph, Ontario, Canada
| | - Kayla E Silva
- Department of Animal Biosciences, University of Guelph, Guelph, Ontario, Canada
| | - Cuilan Zhu
- Department of Animal Biosciences, University of Guelph, Guelph, Ontario, Canada
| | - Charles M Nyachoti
- Department of Animal Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - John K Htoo
- Evonik Nutrition and Care GmbH, Hanau-Wolfgang, Germany
| | - John P Cant
- Department of Animal Biosciences, University of Guelph, Guelph, Ontario, Canada
| | | |
Collapse
|
7
|
Garcia Caraballo SC, Comhair TM, Dejong CHC, Lamers WH, Koehler SE. Dietary treatment of fatty liver: High dietary protein content has an antisteatotic and antiobesogenic effect in mice. Biochim Biophys Acta Mol Basis Dis 2017; 1863:1789-1804. [PMID: 28457799 DOI: 10.1016/j.bbadis.2017.04.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 04/19/2017] [Accepted: 04/25/2017] [Indexed: 12/11/2022]
Abstract
Few studies have assessed the effect of changing ratios of dietary macronutrients on fat accumulation in adipose tissue and organs such as the liver in a 3×n(n≥3) factorial design. We investigated the effects of 7 diets from a single manufacturer containing 11-58en% protein (casein), 0-81en% carbohydrates (CHO; sucrose, maltrodextrin-10 and corn starch), and 8-42en% fat (triheptanoin, olive oil or cocoa butter) in C57BL/6J mice, a good model for diet-induced obesity and fatty liver. The diets were fed for 3weeks to wild-type and hyperlipidemic male and female mice. Caloric intake was mainly determined by dietary fat. Body weight, liver lipid and cholesterol content, NFκB activation, and fat-pad size decreased only in mice fed a high-protein diet. A high dietary protein:CHO ratio reduced plasma FGF21 concentration, and increased liver PCK1 protein content and plasma triglyceride concentration. The dietary protein:CHO ratio determined hepatic expression of Pck1 and Ppargc1a in males, and Fgf21 in females, whereas the dietary CHO:fat ratio determined that of Fasn, Acaca1, and Scd1 in females. Hepatic glycogen content was determined by all three dietary components. Both hepatic PCK1 and plasma FGF21 correlated strongly and inversely with hepatic TG content, suggesting a key role for PCK1 and increased gluconeogenesis in resolving steatosis with a high-protein diet, with FGF21 expression reflecting declining cell stress. We propose that a diet containing ~35en% protein, 5-10en% fat, and 55-60en% carbohydrate will prevent fatty liver in mice without inducing side effects.
Collapse
Affiliation(s)
- Sonia C Garcia Caraballo
- Department of Anatomy & Embryology, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Tine M Comhair
- Department of Anatomy & Embryology, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands; Nutrigenomics Consortium, Top Institute Food and Nutrition, Wageningen, The Netherlands
| | - Cornelis H C Dejong
- Department of General Surgery, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands; Nutrigenomics Consortium, Top Institute Food and Nutrition, Wageningen, The Netherlands
| | - Wouter H Lamers
- Department of Anatomy & Embryology, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands; Nutrigenomics Consortium, Top Institute Food and Nutrition, Wageningen, The Netherlands; Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - S Eleonore Koehler
- Department of Anatomy & Embryology, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
8
|
Garcia Caraballo SC, Comhair TM, Houten SM, Dejong CHC, Lamers WH, Koehler SE. High-protein diets prevent steatosis and induce hepatic accumulation of monomethyl branched-chain fatty acids. J Nutr Biochem 2014; 25:1263-74. [PMID: 25287814 DOI: 10.1016/j.jnutbio.2014.07.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Revised: 06/09/2014] [Accepted: 07/03/2014] [Indexed: 12/15/2022]
Abstract
The hallmark of nonalcoholic fatty liver disease is steatosis of unknown etiology. To test how dietary protein decreases steatosis, we fed female C57BL/6 J mice low-fat (8 en%) or high-fat (42 en%) combined with low-protein (11 en%), high-protein (HP; 35 en%) or extra-high-protein (HPX; 58 en%) diets for 3 weeks. The 35 en% protein diets reduced hepatic triglyceride, free fatty acid, cholesterol and phospholipid contents to ~50% of that in 11 en% protein diets. Every additional 10 en% protein reduced hepatic fat content ~1.5 g%. HP diets had no effect on lipogenic or fatty acid-oxidizing genes except Ppargc1α (+30%), increased hepatic PCK1 content 3- to 5-fold, left plasma glucose and hepatic glycogen concentration unchanged, and decreased inflammation and cell stress (decreased Fgf21 and increased Gsta expression). The HP-mediated decrease in steatosis correlated inversely with plasma branched-chain amino-acid (BCAA) concentrations and hepatic content of BCAA-derived monomethyl branched-chain fatty acids (mmBCFAs) 14-methylpentadecanoic (14-MPDA; valine-derived) and, to a lesser extent, 14-methylhexadecanoic acid (isoleucine-derived). Liver lipid content was 1.6- to 1.8-fold higher in females than in males, but the anti-steatotic effect of HP diets was equally strong. The strong up-regulation of PCK1 and literature data showing an increase in phosphoenolpyruvate and a decline in tricarboxylic acid cycle intermediates in liver reveal that an increased efflux of these intermediates from mitochondria represents an important effect of an HP diet. The HP diet-induced increase in 14-MPDA and the dietary response in gene expression were more pronounced in females than males. Our findings are compatible with a facilitating role of valine-derived mmBCFAs in the antisteatotic effect of HP diets.
Collapse
Affiliation(s)
- Sonia C Garcia Caraballo
- Department of Anatomy & Embryology, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University, Maastricht, the Netherlands
| | - Tine M Comhair
- Department of Anatomy & Embryology, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University, Maastricht, the Netherlands; Nutrigenomics Consortium, Top Institute of Food and Nutrition, Wageningen, the Netherlands
| | - Sander M Houten
- Laboratory Genetic Metabolic Diseases, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Cornelis H C Dejong
- Department of General Surgery, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University, Maastricht, the Netherlands
| | - Wouter H Lamers
- Department of Anatomy & Embryology, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University, Maastricht, the Netherlands; Tytgat Institute for Liver and Gastrointestinal Diseases, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands; Nutrigenomics Consortium, Top Institute of Food and Nutrition, Wageningen, the Netherlands
| | - S Eleonore Koehler
- Department of Anatomy & Embryology, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
9
|
Garcia-Caraballo SC, Comhair TM, Verheyen F, Gaemers I, Schaap FG, Houten SM, Hakvoort TBM, Dejong CHC, Lamers WH, Koehler SE. Prevention and reversal of hepatic steatosis with a high-protein diet in mice. Biochim Biophys Acta Mol Basis Dis 2013; 1832:685-95. [PMID: 23410526 DOI: 10.1016/j.bbadis.2013.02.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 12/28/2012] [Accepted: 02/04/2013] [Indexed: 12/11/2022]
Abstract
UNLABELLED The hallmark of NAFLD is steatosis of unknown etiology. We tested the effect of a high-protein (HP)(2) diet on diet-induced steatosis in male C57BL/6 mice with and without pre-existing fatty liver. Mice were fed all combinations of semisynthetic low-fat (LF) or high-fat (HF) and low-protein (LP) or HP diets for 3weeks. To control for reduced energy intake by HF/HP-fed mice, a pair-fed HF/LP group was included. Reversibility of pre-existing steatosis was investigated by sequentially feeding HF/LP and HF/HP diets. HP-containing diets decreased hepatic lipids to ~40% of corresponding LP-containing diets, were more efficient in this respect than reducing energy intake to 80%, and reversed pre-existing diet-induced steatosis. Compared to LP-containing diets, mice fed HP-containing diets showed increased mitochondrial oxidative capacity (elevated Pgc1α, mAco, and Cpt1 mRNAs, complex-V protein, and decreased plasma free and short-chain acyl-carnitines, and [C0]/[C16+C18] carnitine ratio); increased gluconeogenesis and pyruvate cycling (increased PCK1 protein and fed plasma-glucose concentration without increased G6pase mRNA); reduced fatty-acid desaturation (decreased Scd1 expression and [C16:1n-7]/[C16:0] ratio) and increased long-chain PUFA elongation; a selective increase in plasma branched-chain amino acids; a decrease in cell stress (reduced phosphorylated eIF2α, and Fgf21 and Chop expression); and a trend toward less inflammation (lower Mcp1 and Cd11b expression and less phosphorylated NFκB). CONCLUSION HP diets prevent and reverse steatosis independently of fat and carbohydrate intake more efficiently than a 20% reduction in energy intake. The effect appears to result from fuel-generated, highly distributed small, synergistic increases in lipid and BCAA catabolism, and a decrease in cell stress.
Collapse
|
10
|
Nakamura H, Kawamata Y, Kuwahara T, Torii K, Sakai R. Nitrogen in dietary glutamate is utilized exclusively for the synthesis of amino acids in the rat intestine. Am J Physiol Endocrinol Metab 2013; 304:E100-8. [PMID: 23115079 DOI: 10.1152/ajpendo.00331.2012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although previous studies have shown that virtually the entire carbon skeleton of dietary glutamate (glutamate-C) is metabolized in the gut for energy production and amino acid synthesis, little is known regarding the fate of dietary glutamate nitrogen (glutamate-N). In this study, we hypothesized that dietary glutamate-N is an effective nitrogen source for amino acid synthesis and investigated the fate of dietary glutamate-N using [(15)N]glutamate. Fischer male rats were given hourly meals containing [U-(13)C]- or [(15)N]glutamate. The concentration and isotopic enrichment of several amino acids were measured after 0-9 h of feeding, and the net release of each amino acid into the portal vein was calculated. Most of the dietary glutamate-C was metabolized into CO(2), lactate, or alanine (56, 13, and 12% of the dietary input, respectively) in the portal drained viscera (PDV). Most of the glutamate-N was utilized for the synthesis of other amino acids such as alanine and citrulline (75 and 3% of dietary input, respectively) in the PDV, and only minor amounts were released into the portal vein in the form of ammonia and glutamate (2 and 3% of the dietary input, respectively). Substantial incorporation of (15)N into systemic amino acids such as alanine, glutamine, and proline, amino acids of the urea cycle, and branched-chain amino acids was also evident. These results provide quantitative evidence that dietary glutamate-N distributes extensively to amino acids synthesized in the PDV and, consequently, to circulating amino acids.
Collapse
|
11
|
Mercury chloride increases hepatic alanine aminotransferase and glucose 6-phosphatase activities in newborn rats in vivo. Cell Biol Int 2012; 36:561-6. [PMID: 22413763 DOI: 10.1042/cbi20100475] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This work investigated the in vivo and in vitro effects of HgCl2 and ZnCl2 on metabolic enzymes from tissues of young rats to verify whether the physiological and biochemical alterations induced by mercury and prevented by zinc are related to hepatic and renal glucose metabolism. Wistar rats received (subcutaneous) saline or ZnCl2 (27 mg/kg/day) from 3 to 7 days old and saline or HgCl2 (5.0 mg/kg/day) from 8 to 12 days old. Mercury exposure increased the hepatic alanine aminotransferase (∼6-fold) and glucose 6-phosphatase (75%) activity; zinc pre-exposure prevented totally and partially these mercury alterations respectively. In vitro, HgCl2 inhibited the serum (22%, 10 μM) and liver (54%, 100 μM) alanine aminotransferase, serum (53%) and liver (64%) lactate dehydrogenase (10 μM), and liver (53%) and kidney (41%) glucose 6-phosphatase (100 μM) from 10- to 13-day-old rats. The results show that mercury induces distinct alterations in these enzymes when tested in vivo or in vitro as well as when different sources were used. The increase of both hepatic alanine aminotransferase and glucose 6-phosphatase activity suggests that the mercury-exposed rats have increased gluconeogenic activity in the liver. Zinc prevents the in vivo effects on metabolic changes induced by mercury.
Collapse
|
12
|
Freudenberg A, Petzke KJ, Klaus S. Dietary l-leucine and l-alanine supplementation have similar acute effects in the prevention of high-fat diet-induced obesity. Amino Acids 2012; 44:519-28. [DOI: 10.1007/s00726-012-1363-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 07/06/2012] [Indexed: 10/28/2022]
|
13
|
Nässl AM, Rubio-Aliaga I, Sailer M, Daniel H. The intestinal peptide transporter PEPT1 is involved in food intake regulation in mice fed a high-protein diet. PLoS One 2011; 6:e26407. [PMID: 22031831 PMCID: PMC3198773 DOI: 10.1371/journal.pone.0026407] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 09/26/2011] [Indexed: 01/04/2023] Open
Abstract
High-protein diets are effective in achieving weight loss which is mainly explained by increased satiety and thermogenic effects. Recent studies suggest that the effects of protein-rich diets on satiety could be mediated by amino acids like leucine or arginine. Although high-protein diets require increased intestinal amino acid absorption, amino acid and peptide absorption has not yet been considered to contribute to satiety effects. We here demonstrate a novel finding that links intestinal peptide transport processes to food intake, but only when a protein-rich diet is provided. When mice lacking the intestinal peptide transporter PEPT1 were fed diets containing 8 or 21 energy% of protein, no differences in food intake and weight gain were observed. However, upon feeding a high-protein (45 energy%) diet, Pept1(-/-) mice reduced food intake much more pronounced than control animals. Although there was a regain in food consumption after a few days, no weight gain was observed which was associated with a reduced intestinal energy assimilation and increased fecal energy losses. Pept1(-/-) mice on high-protein diet displayed markedly reduced plasma leptin levels during the period of very low food intake, suggesting a failure of leptin signaling to increase energy intake. This together with an almost two-fold elevated plasma arginine level in Pept1(-/-) but not wildtype mice, suggests that a cross-talk of arginine with leptin signaling in brain, as described previously, could cause these striking effects on food intake.
Collapse
Affiliation(s)
- Anna-Maria Nässl
- ZIEL Research Center of Nutrition and Food Sciences, Abteilung Biochemie, Technische Universität München, Freising, Germany
| | - Isabel Rubio-Aliaga
- ZIEL Research Center of Nutrition and Food Sciences, Abteilung Biochemie, Technische Universität München, Freising, Germany
| | - Manuela Sailer
- ZIEL Research Center of Nutrition and Food Sciences, Abteilung Biochemie, Technische Universität München, Freising, Germany
| | - Hannelore Daniel
- ZIEL Research Center of Nutrition and Food Sciences, Abteilung Biochemie, Technische Universität München, Freising, Germany
- * E-mail:
| |
Collapse
|
14
|
The postprandial use of dietary amino acids as an energy substrate is delayed after the deamination process in rats adapted for 2 weeks to a high protein diet. Amino Acids 2010; 40:1461-72. [PMID: 20890620 DOI: 10.1007/s00726-010-0756-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Accepted: 09/16/2010] [Indexed: 11/27/2022]
Abstract
The aim of this study was to determine the contribution of dietary amino acids (AA) to energy metabolism under high protein (HP) diets, using a double tracer method to follow simultaneously the metabolic fate of α-amino groups and carbon skeletons. Sixty-seven male Wistar rats were fed a normal (NP) or HP diet for 14 days. Fifteen of them were equipped with a permanent catheter. On day 15, after fasting overnight, they received a 4-g meal extrinsically labeled with a mixture of 20 U-[(15)N]-[(13)C] AA. Energy metabolism, dietary AA deamination and oxidation and their transfer to plasma glucose were measured kinetically for 4 h in the catheterized rats. The transfer of dietary AA to liver glycogen was determined at 4 h. The digestive kinetics of dietary AA, their transfer into liver AA and proteins and the liver glycogen content were measured in the 52 other rats that were killed sequentially hourly over a 4-h period. [(15)N] and [(13)C] kinetics in the splanchnic protein pools were perfectly similar. Deamination increased fivefold in HP rats compared to NP rats. In the latter, all deaminated AA were oxidized. In HP rats, the oxidation rate was slower than deamination, so that half of the deaminated AA was non-oxidized within 4 h. Non-oxidized carbon skeletons were poorly sequestrated in glycogen, although there was a significant postprandial production of hepatic glycogen. Our results strongly suggest that excess dietary AA-derived carbon skeletons above the ATP production capacity, are temporarily retained in intermediate metabolic pools until the oxidative capacities of the liver are no longer overwhelmed by an excess of substrates.
Collapse
|
15
|
van de Poll MCG, Ligthart-Melis GC, Boelens PG, Deutz NEP, van Leeuwen PAM, Dejong CHC. Intestinal and hepatic metabolism of glutamine and citrulline in humans. J Physiol 2007; 581:819-27. [PMID: 17347276 PMCID: PMC2075174 DOI: 10.1113/jphysiol.2006.126029] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Glutamine plays an important role in nitrogen homeostasis and intestinal substrate supply. It has been suggested that glutamine is a precursor for arginine through an intestinal-renal pathway involving inter-organ transport of citrulline. The importance of intestinal glutamine metabolism for endogenous arginine synthesis in humans, however, has remained unaddressed. The aim of this study was to investigate the intestinal conversion of glutamine to citrulline and the effect of the liver on splanchnic citrulline metabolism in humans. Eight patients undergoing upper gastrointestinal surgery received a primed continuous intravenous infusion of [2-(15)N]glutamine and [ureido-(13)C-(2)H(2)]citrulline. Arterial, portal venous and hepatic venous blood were sampled and portal and hepatic blood flows were measured. Organ specific amino acid uptake (disposal), production and net balance, as well as whole body rates of plasma appearance were calculated according to established methods. The intestines consumed glutamine at a rate that was dependent on glutamine supply. Approximately 13% of glutamine taken up by the intestines was converted to citrulline. Quantitatively glutamine was the only important precursor for intestinal citrulline release. Both glutamine and citrulline were consumed and produced by the liver, but net hepatic flux of both amino acids was not significantly different from zero. Plasma glutamine was the precursor of 80% of plasma citrulline and plasma citrulline in turn was the precursor of 10% of plasma arginine. In conclusion, glutamine is an important precursor for the synthesis of arginine after intestinal conversion to citrulline in humans.
Collapse
Affiliation(s)
- Marcel C G van de Poll
- Department of Surgery, University Hospital Maastricht and Nutrition and Toxicology Research Institute Maastricht (NUTRIM), Maastricht University, PO Box 616, 6200 MD, Maastricht, the Netherlands
| | | | | | | | | | | |
Collapse
|
16
|
van de Poll MCG, Siroen MPC, van Leeuwen PAM, Soeters PB, Melis GC, Boelens PG, Deutz NEP, Dejong CHC. Interorgan amino acid exchange in humans: consequences for arginine and citrulline metabolism. Am J Clin Nutr 2007; 85:167-72. [PMID: 17209193 DOI: 10.1093/ajcn/85.1.167] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND The liver plays a central role in amino acid metabolism. However, because of limited accessibility of the portal vein, human data on this subject are scarce. OBJECTIVE We studied hepatic amino acid metabolism in noncirrhotic fasting patients undergoing liver surgery. DESIGN Twenty patients undergoing hepatectomy for colorectal metastases in a normal liver were studied. Before resection, blood was sampled from a radial artery, portal vein, hepatic vein, and renal vein. Organ blood flow was measured by duplex ultrasound scan. RESULTS The intestine consumed glutamine and released citrulline. Citrulline was taken up by the kidney. This was accompanied by renal arginine release, which supports the view that glutamine is a precursor for arginine synthesis through an intestinal-renal pathway. The liver was found to extract citrulline from this pathway at a rate that was dependent on intestinal citrulline release (P < 0.0001) and hepatic citrulline influx (P = 0.03). Fractional hepatic extractions of citrulline (8.4%) and arginine (11.5%) were not significantly different. Eighty-eight percent of arginine reaching the liver passed it unchanged. Splanchnic citrulline release could account for one-third of renal citrulline uptake. CONCLUSIONS This is the first study of hepatic and interorgan amino acid metabolism in humans with a normal liver. The data indicate that glutamine is a precursor of ornithine, which can be converted to citrulline by the intestine; citrulline is transformed in the kidneys to arginine. Hepatic citrulline uptake limits the amount of gut-derived citrulline reaching the kidney. These findings may have implications for interventions aimed at increasing systemic arginine concentrations.
Collapse
Affiliation(s)
- Marcel C G van de Poll
- Department of Surgery, Nutrition and Toxicology Institute Maastricht, Maastricht University and University Hospital Maastricht, Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Azzout-Marniche D, Gaudichon C, Blouet C, Bos C, Mathé V, Huneau JF, Tomé D. Liver glyconeogenesis: a pathway to cope with postprandial amino acid excess in high-protein fed rats? Am J Physiol Regul Integr Comp Physiol 2006; 292:R1400-7. [PMID: 17158265 DOI: 10.1152/ajpregu.00566.2006] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
This paper provides molecular evidence for a liver glyconeogenic pathway, that is, a concomitant activation of hepatic gluconeogenesis and glycogenesis, which could participate in the mechanisms that cope with amino acid excess in high-protein (HP) fed rats. This evidence is based on the concomitant upregulation of phosphoenolpyruvate carboxykinase (PEPCK) gene expression, downregulation of glucose 6-phosphatase catalytic subunit (G6PC1) gene expression, an absence of glucose release from isolated hepatocytes and restored hepatic glycogen stores in the fed state in HP fed rats. These effects are mainly due to the ability of high physiological concentrations of portal blood amino acids to counteract glucagon-induced liver G6PC1 but not PEPCK gene expression. These results agree with the idea that the metabolic pathway involved in glycogen synthesis is dependent upon the pattern of nutrient availability. This nonoxidative glyconeogenic disposal pathway of gluconeogenic substrates copes with amino excess and participates in adjusting both amino acid and glucose homeostasis. In addition, the pattern of PEPCK and G6PC1 gene expression provides evidence that neither the kidney nor the small intestine participated in gluconeogenic glucose production under our experimental conditions. Moreover, the main glucose-6-phosphatase (G6Pase) isoform expressed in the small intestine is the ubiquitous isoform of G6Pase (G6PC3) rather than the G6PC1 isoform expressed in gluconeogenic organs.
Collapse
Affiliation(s)
- Dalila Azzout-Marniche
- INRA, AgroParisTech, UMR914 Nutrition Physiology and Ingestive Behavior, 16 rue Claude Bernard, Paris, F75005, France
| | | | | | | | | | | | | |
Collapse
|
18
|
Windmueller HG. Glutamine utilization by the small intestine. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2006; 53:201-37. [PMID: 7036679 DOI: 10.1002/9780470122983.ch6] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
19
|
Sabboh H, Besson C, Tressol JC, Coudray C, Horcajada MN, Coxam V, Rémésy C, Demigné C. Organic potassium salts or fibers effects on mineral balance and digestive fermentations in rats adapted to an acidogenic diet. Eur J Nutr 2006; 45:342-8. [PMID: 16763746 DOI: 10.1007/s00394-006-0604-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2005] [Accepted: 05/10/2006] [Indexed: 11/25/2022]
Abstract
BACKGROUND Fibers and potassium (K) organic salts in plant foods are liable to affect Ca and Mg balance at digestive and renal levels, respectively. K organic salts could counteract the acidifying effects of western diets and consequences of excess NaCl. AIM OF THE STUDY To study this question, male rats were adapted to a basal acidifying low-K (LK) diet, or to diets supplemented with a fiber mix (LK/F), or K citrate (HK) or both (HK/F). RESULTS HK and HK/F diets displayed a marked alkalinizing effect in urine and promoted citraturia, but this effect was not modulated by fibers. The effect of fibers on Ca digestive absorption was more potent than K citrate effect on Ca renal excretion. In contrast, K citrate effect on kidney Mg excretion was more effective than that of fibers on Mg digestive absorption, a maximal effect on Mg balance was observed in rats fed the HK/F diet. Digestive fermentations in rats fed the LK/F diet were characterized by high-propionic acid fermentations and succinate accumulation. In rats adapted to the HK/F diet, K citrate supplementation depressed succinate and increased butyrate concentrations. CONCLUSION Organic anions arising from digestive fermentations seem to be not directly involved in the alkalinizing effects of plant foods. Fibers and organic K salts exert distinct effects on Ca and Mg metabolism, but with interesting interactions as to Mg balance, digestive fermentations and urine pH.
Collapse
Affiliation(s)
- Houda Sabboh
- Unité des Maladies Métaboliques et Micronutriments, INRA de Clermont-Ferrand/Theix (CRNH d'Auvergne), 63122, St-Genes-Champanelle, France
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Vedavathi M, Girish KS, Kumar MK. A novel low molecular weight alanine aminotransferase from fasted rat liver. BIOCHEMISTRY (MOSCOW) 2006; 71 Suppl 1:S105-12. [PMID: 16487061 DOI: 10.1134/s0006297906130189] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Alanine is the most effective precursor for gluconeogenesis among amino acids, and the initial reaction is catalyzed by alanine aminotransferase (AlaAT). Although the enzyme activity increases during fasting, this effect has not been studied extensively. The present study describes the purification and characterization of an isoform of AlaAT from rat liver under fasting. The molecular mass of the enzyme is 17.7 kD with an isoelectric point of 4.2; glutamine is the N-terminal residue. The enzyme showed narrow substrate specificity for L-alanine with Km values for alanine of 0.51 mM and for 2-oxoglutarate of 0.12 mM. The enzyme is a glycoprotein. Spectroscopic and inhibition studies showed that pyridoxal phosphate (PLP) and free -SH groups are involved in the enzymatic catalysis. PLP activated the enzyme with a Km of 0.057 mM.
Collapse
Affiliation(s)
- M Vedavathi
- Department of Biochemistry, University of Mysore, Manasagangotri, Mysore 570006, India
| | | | | |
Collapse
|
21
|
Sabboh H, Horcajada MN, Coxam V, Tressol JC, Besson C, Rémésy C, Demigné C. Effect of potassium salts in rats adapted to an acidogenic high-sulfur amino acid diet. Br J Nutr 2005; 94:192-7. [PMID: 16115352 DOI: 10.1079/bjn20051474] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Low-grade metabolic acidosis, consecutive to excessive catabolism of sulfur amino acids and a high dietary Na:K ratio, is a common feature of Western food habits. This metabolic alteration may exert various adverse physiological effects, especially on bone, muscle and kidneys. To assess the actual effects of various K salts, a model of the Westernised diet has been developed in rats: slight protein excess (20 % casein); cations provided as non-alkalinising salts; high Na:K ratio. This diet resulted in acidic urine (pH 5.5) together with a high rate of divalent cation excretion in urine, especially Mg. Compared with controls, K supplementation as KCl accentuated Ca excretion, whereas potassium bicarbonate or malate reduced Mg and Ca excretion and alkalinised urine pH (up to 8). In parallel, citraturia was strongly increased, together with 2-ketoglutarate excretion, by potassium bicarbonate or malate in the diet. Basal sulfate excretion, in the range of 1 mmol/d, was slightly enhanced in rats fed the potassium malate diet. The present model of low-grade metabolic acidosis indicates that potassium malate may be as effective as KHCO3 to counteract urine acidification, to limit divalent cation excretion and to ensure high citrate concentration in urine.
Collapse
Affiliation(s)
- Houda Sabboh
- Unité des Maladies Métaboliques et Micronutriments, INRA de Clermont-Ferrand/Theix and CRNH d'Auvergne, 63122 St-Genès-Champanelle, France
| | | | | | | | | | | | | |
Collapse
|
22
|
Masanés RM, Rafecas I, Remesar X. The hepatic amino acid system A transport activity, is up-regulated in obese Zucker rats. J Nutr Biochem 2005; 10:716-22. [PMID: 15539271 DOI: 10.1016/s0955-2863(99)00061-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/1999] [Accepted: 09/09/1999] [Indexed: 11/24/2022]
Abstract
The utilization of L-alanine by liver is dependent on amino acid uptake from blood. This uptake, mainly mediated by the A transport system, may be regulated by different nutritional and physiologic conditions. The regulation of this transport system by diets with different protein content was tested in lean and obese Zucker rats. High-protein (HP) and low-protein (LP) diets led to changes in the rats' growth patterns, especially in lean animals. However, homeostasis was relatively well maintained, as seen in plasma values, in spite of the increased urea production in the HP groups and increased triacylglycerides in the LP groups. The obese animals took up L-alanine at a higher rate than the lean animals. Obesity led to the emergence of a high-affinity component (K(M) approximately 0.1-0.2 mM) in the transport system, which was not dependent on the protein content of the diet. This component has a 10-fold increase in affinity for L-alanine, but with an approximately 3- to 5-fold reduction in maximal velocity of transport.
Collapse
Affiliation(s)
- R M Masanés
- Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | | | | |
Collapse
|
23
|
Morris KL, Namey TC, Zemel MB. Effects of dietary carbohydrate on the development of obesity in heterozygous Zucker rats. J Nutr Biochem 2003; 14:32-9. [PMID: 12559475 DOI: 10.1016/s0955-2863(02)00249-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Rats carrying one copy of the fa allele are predisposed to diet-induced metabolic disturbances which contribute to hyperinsulinemia, obesity and dyslipidemia. To investigate the role of dietary carbohydrate and fat in the development of these conditions, we fed 6-week old male heterozygous (fa/+) lean rats carbohydrate-free diets containing primarily saturated fat either ad libitum or pair-fed. These diets were compared to standard chow and to a high saturated fat mixed diet containing 10% energy from sucrose for 4 weeks. The carbohydrate-free diet resulted in significantly lower circulating glucose levels compared to all other groups (p = 0.006). Weight gain was negligible in the carbohydrate free groups compared to standard diet and 10% sucrose diet (p = 0.03). This was reflected in energy efficiency which was markedly reduced (90%) in the carbohydrate-free groups compared to the other groups (p = 0.04). Corresponding changes were noted in fat pad mass. The subscapular and epididymal fat pads were increased 42% and 44%, respectively, in animals consuming the 10% sucrose diet compared to all other groups (p < 0.01). Comparable changes in fatty acid synthase (FAS) mRNA were observed in response to the carbohydrate-free diet, which resulted in a 53% decrease in adipocyte FAS mRNA (p < 0.001). Addition of 10% sucrose to the diet completely reversed this effect resulting in a 69% increase in adipocyte FAS mRNA compared to the carbohydrate-free groups (p = 0.01). Similarly, hepatic FAS mRNA was elevated by 51% and 66% in the 10% sucrose and standard diet groups respectively, compared to the carbohydrate-free groups. Therefore, diets that contain minimal carbohydrate may minimize net lipid storage and adiposity.
Collapse
Affiliation(s)
- Kristin L Morris
- Department of Nutrition, The University of Tennessee, Knoxville, TN 37996, USA
| | | | | |
Collapse
|
24
|
Croset M, Rajas F, Zitoun C, Hurot JM, Montano S, Mithieux G. Rat small intestine is an insulin-sensitive gluconeogenic organ. Diabetes 2001; 50:740-6. [PMID: 11289037 DOI: 10.2337/diabetes.50.4.740] [Citation(s) in RCA: 133] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
At variance with the current view that only liver and kidney are gluconeogenic organs, because both are the only tissues to express glucose-6-phosphatase (Glc6Pase), we have recently demonstrated that the Glc6Pase gene is expressed in the small intestine in rats and humans and that it is induced in insulinopenic states such as fasting and diabetes. We used a combination of arteriovenous balance and isotopic techniques, reverse transcription-polymerase chain reaction, Northern blot analysis, and enzymatic activity assays. We report that rat small intestine can release neosynthesized glucose in mesenteric blood in insulinopenia, contributing 20-25% of total endogenous glucose production. Like liver glucose production, small intestine glucose production is acutely suppressed by insulin infusion. In the small intestine, glutamine and, to a much lesser extent, glycerol are the precursors of glucose, whereas alanine and lactate are the main precursors in liver. Accounting for these metabolic fluxes: 1) the phosphoenolpyruvate carboxykinase gene (required for the utilization of glutamine) is strongly induced at the mRNA and enzyme levels in insulinopenia; 2) the glycerokinase gene is expressed, but not induced; 3) the pyruvate carboxylase gene (required for the utilization of alanine and lactate) is repressed by 80% at the enzyme level in insulinopenia. These studies identify small intestine as a new insulin-sensitive tissue and a third gluconeogenic organ, possibly involved in the pathophysiology of diabetes.
Collapse
Affiliation(s)
- M Croset
- Institut National de la Santé et de la Recherche Médicale, Faculté de Médecine RTH Laennec, Lyon, France
| | | | | | | | | | | |
Collapse
|
25
|
Abstract
The liver shows net glutamine uptake after a protein-containing meal, during uncontrolled diabetes, sepsis and short-term starvation, but changes to net release during long-term starvation and metabolic acidosis. Some studies report a small net release of glutamate by the liver. The differential expression of glutamine synthetase (perivenous) and glutaminase (periportal) within the liver indicates that glutamine is used for urea synthesis in periportal cells, whereas glutamine synthesis serves to detoxify any residual ammonia in perivenous cells. Experiments in vivo suggest that changes in net hepatic glutamine balance are due predominantly to regulation of glutaminase activity, with the flux through glutamine synthetase being relatively constant.
Collapse
Affiliation(s)
- M Watford
- Department of Nutritional Sciences, Cook College, Rutgers University, New Brunswick, NJ, USA
| |
Collapse
|
26
|
O'Sullivan D, Brosnan JT, Brosnan ME. Catabolism of arginine and ornithine in the perfused rat liver: effect of dietary protein and of glucagon. Am J Physiol Endocrinol Metab 2000; 278:E516-21. [PMID: 10710507 DOI: 10.1152/ajpendo.2000.278.3.e516] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The rates of oxidation of arginine and ornithine that occurred through a reaction pathway involving the enzyme ornithine aminotransferase (EC 2.6.1.13) were determined using (14)C-labeled amino acids in the isolated nonrecirculating perfused rat liver. At physiological concentrations of these amino acids, their catabolism is subject to chronic regulation by the level of protein consumed in the diet. (14)CO(2) production from [U-(14)C]ornithine (0.1 mM) and from [U-(14)C]arginine (0.2 mM) was increased about fourfold in livers from rats fed 60% casein diets for 3-4 days. The catabolism of arginine in the perfused rat liver, but not that of ornithine, is subject to acute regulation by glucagon (10(-7) M), which stimulated arginine catabolism by approximately 40%. Dibutyryl cAMP (0.1 mM) activated arginine catabolism to a similar extent. In retrograde perfusions, glucagon caused a twofold increase in the rate of arginine catabolism, suggesting an effect of glucagon on arginase in the perivenous cells.
Collapse
Affiliation(s)
- D O'Sullivan
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | | | | |
Collapse
|
27
|
Lavoinne A, Meisse D, Quillard M, Husson A, Renouf S, Yassad A. Glutamine and regulation of gene expression in rat hepatocytes: the role of cell swelling. Biochimie 1998; 80:807-11. [PMID: 9893939 DOI: 10.1016/s0300-9084(00)88875-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Glutamine is able to regulate the expression of various genes in rat hepatocytes. This includes genes coding for proteins involved in glutamine utilization, such as argininosuccinate synthetase (ureagenesis) or phosphoenolpyruvate carboxykinase (gluconeogenesis). Moreover, glutamine is also able to stimulate the expression of genes involved in the acute-phase response, such as the alpha 2-macroglobulin gene. The effect of glutamine on the regulation of gene expression may be explained, at least in part, by the cell swelling due to its sodium-dependent transport. The physiological significance of the effect of glutamine is discussed.
Collapse
Affiliation(s)
- A Lavoinne
- Groupe de Biochimie et Physiopathologie Digestive et Nutritionnelle (GBPDN), Institut Fédératif de Recherche Multidisciplinaire sur les Peptides n(o) 23 (IFRMP), UFR Médecine-Pharmacie de Rouen, France
| | | | | | | | | | | |
Collapse
|
28
|
Vu H, Cianflone K, Zhang Z, Kalant D, Sniderman AD. Characterization and modulation of LP(a) in human hepatoma HEPG2 cells. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1349:97-108. [PMID: 9421183 DOI: 10.1016/s0005-2760(97)00125-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
HepG2 cells have been widely used to study factors which affect the secretion of apoB100 lipoprotein particles. The objectives of this study were to determine if Lp(a) particles were present in conditioned medium from HepG2 cells and if so, was this accumulation affected by factors which alter apoB100 lipoprotein metabolism. The data demonstrate that Lp(a) accumulated in the medium in a time dependent manner over a 48 h incubation period. Ultracentrifugation fractionation and Western blot analysis demonstrated that lipoprotein particles containing apo(a) in complex with apoB100 were present at a density consistent with human plasma Lp(a). Incubation of the HepG2 cells with LDL or VLDL caused increases in Lp(a) accumulation in the medium (+33% +/- 14%, P NS and 56% +/- 21%, P < 0.05, respectively). In contrast, apo(a) mRNA decreased (-17% +/- 3%, P < 0.01 for both LDL and VLDL incubation). Increasing concentrations of amino acids in the medium resulted in progressively less Lp(a) and apoB100 in the medium, the effect being greater on apoB100. ApoB100 mRNA levels decreased with incubation of HepG2 cells with amino acids (-22% +/- 10%, P < 0.06) whereas apo(a) mRNA levels increased significantly (+47% +/- 14%, P < 0.005). Taken together, our data show that HepG2 cells express mRNA for apo(a), and accumulate Lp(a) in the medium. The close correlation of medium Lp(a) levels with medium apoB100 levels, and not with apo(a) mRNA levels, suggests that medium Lp(a) accumulation may be a function of lipoprotein synthesis and secretion and is consistent with extracellular assembly of Lp(a) lipoprotein particles.
Collapse
Affiliation(s)
- H Vu
- Mike Rosenbloom Laboratory for Cardiovascular Research, Royal Victoria Hospital, McGill University, Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|
29
|
Triguero A, Barber T, García C, Puertes IR, Sastre J, Viña JR. Liver intracellular L-cysteine concentration is maintained after inhibition of the trans-sulfuration pathway by propargylglycine in rats. Br J Nutr 1997; 78:823-31. [PMID: 9389904 DOI: 10.1079/bjn19970198] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
To study the fate of L-cysteine and amino acid homeostasis in liver after the inhibition of the trans-sulfuration pathway, rats were treated with propargylglycine (PPG). At 4 h after the administration of PPG, liver cystathionase (EC 4.4.1.1) activity was undetectable, L-cystathionine levels were significantly higher, L-cysteine was unchanged and GSH concentration was significantly lower than values found in livers from control rats injected intraperitoneally with 0.15 M-NaCl. The hepatic levels of amino acids that are intermediates of the urea cycle, L-ornithine, L-citrulline and L-arginine and blood urea were significantly greater. Ura excretion was also higher in PPG-treated rats when compared with control rats. These data suggest a stimulation of ureagenesis in PPG-treated rats. The inhibition of gamma-cystathionase was reflected in the blood levels of amino acids, because the L-methionine: L-cyst(e)ine ratio was significantly higher in PPG-treated rats than in control rats; blood concentration of cystathionine was also greater. Histological examination of liver and kidney showed no changes in PPG-treated rats when compared with controls. The administration of N-acetylcysteine (NAC) to PPG-treated rats reversed the changes in blood urea and in liver GSH. These data suggest that when liver L-cysteine production was impaired by the blockage of the trans-sulfuration pathway, the concentration of this amino acid was maintained mainly by an increase in protein degradation and by a depletion in GSH concentration that may spare L-cysteine.
Collapse
Affiliation(s)
- A Triguero
- Departamento de Bioquímica y Biología Molecular, Universidad de Valencia, Spain
| | | | | | | | | | | |
Collapse
|
30
|
Novak DA, Kilberg MS, Beveridge MJ. Ontogeny and plasma-membrane domain localization of amino acid transport system L in rat liver. Biochem J 1994; 301 ( Pt 3):671-4. [PMID: 8053892 PMCID: PMC1137041 DOI: 10.1042/bj3010671] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Na(+)-independent hepatic transport of branched-chain amino acids occurs via at least two distinct transport processes. System L1, characterized by micromolar Km values, predominates in hepatoma and fetal hepatocytes, whereas System L2, distinguished by Km values in the millimolar range and sensitivity to inhibition by N-ethylmaleimide (NEM), predominates in adult hepatocytes. To determine the plasma-membrane domain localization and ontogeny of System L activity in the rat, we prepared membrane vesicles from the livers of suckling (10 days old) and adult rats enriched for either basolateral (BLMV) or canalicular (CMV) domains. The initial rate of [3H]leucine uptake into BLMV and CMV derived from adult liver was significantly inhibited by the addition of 5 mM NEM; transport into BLMV and CMV derived from 10-day-old rat liver was not affected. Michaelis-Menten kinetic parameters estimated in BLMV derived from adult liver were consistent with System L2 (Km = 2.16 +/- 0.62 mM, Vmax. = 781 +/- 109 pmol/5 s per mg of protein), as were those estimated in adult CMV (Km = 0.83 +/- 0.21 mM, Vmax. = 385 +/- 38 pmol/5 s per mg of protein). Conversely, kinetic parameters estimated in BLMV derived from livers of suckling rats were consistent with System L1 (Km = 0.041 +/- 0.024 mM, Vmax. = 8.8 +/- 1.5 pmol/5 s per mg of protein), as were those from CMV of suckling rats (Km = 0.023 +/- 0.09 mM, Vmax. = 28.1 +/- 2.1 pmol/5 s per mg of protein). We conclude that NEM-inhibitable Na(+)-independent leucine transport activity consistent with System L2 is present in both BLMV and CMV derived from adult rat liver, whereas System L1 predominates in 10-day-old rat liver tissue.
Collapse
Affiliation(s)
- D A Novak
- Department of Pediatrics, University of Florida College of Medicine, Gainesville 32610
| | | | | |
Collapse
|
31
|
Pennington AM, Corpe CP, Kellett GL. Rapid regulation of rat jejunal glucose transport by insulin in a luminally and vascularly perfused preparation. J Physiol 1994; 478 ( Pt 2):187-93. [PMID: 7965840 PMCID: PMC1155677 DOI: 10.1113/jphysiol.1994.sp020241] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
1. The regulation of glucose transport by physiological concentrations of insulin was investigated using a preparation of rat jejunum perfused in situ with 5 mM glucose on both sides. 2. Luminal uptake was 87% inhibited (P < 0.001) by 0.2 mM phlorizin, indicating that it occurred by means of the Na(+)-D-glucose cotransporter. Vascular uptake was completely abolished by 0.2 mM phloretin, indicating that it was facilitated in nature. 3. When infused into the vascular circuit, insulin (10(-11) to 10(-7) M) stimulated vascular, and inhibited luminal, glucose uptake to a similar extent. Maximal stimulation of vascular uptake was increased by 40% compared with control infusions (P < 0.01) and occurred at 10(-10) M insulin. These effects were independent of changes in metabolism and vascular glucose concentration. 4. The time taken for half-maximal stimulation of vascular uptake was 6.3 +/- 0.7 min and preceded that for inhibition of luminal uptake by 6.5 +/- 1.3 min (P < 0.02). 5. The rapid inhibition of luminal glucose uptake by the acute administration of insulin was also detected by perfusion of jejunal loops in vivo. 6. It is concluded that the transport steps involved in intestinal glucose uptake are subject to rapid regulation by physiological concentrations of insulin and that the initial site of action is on the vascular side.
Collapse
|
32
|
Laouari D, Jurkovitz C, Burtin M, Bois B, Vassault A, Kleinknecht C. Uremia-induced disturbances in hepatic carbohydrate metabolism: enhancement by sucrose feeding. Metabolism 1994; 43:403-12. [PMID: 8159094 DOI: 10.1016/0026-0495(94)90067-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A high-sucrose (S) diet accentuates anorexia and stunts growth in uremic (U) rats, and an oral S load induces a greater hyperfructosemia in U rats than in control (C) rats. Four studies were performed to determine the roles of S feeding and an acute S load on liver carbohydrate (CHO) metabolism in U and C rats (eight to 10 rats per group). We also examined the plasma responses to either water or a S load. Levels of the main metabolites of glycolysis, gluconeogenesis, and glycogenesis were measured under basal conditions (7 hours' postmeal) in U and C rats fed either a cornstarch diet (study I) or S diet (study II) and at 30 and 60 minutes after an intragastric S load (studies III and IV) in s-fed U and C rats. The weight gain, food intake, and plasma creatinine and urea levels of the rats in the four studies were comparable. Weight gain and liver weight (g/100 g body weight) were lower in U than in C rats. In the plasma, baseline levels of lactate were decreased by uremia and S feeding and those of glucose (G) were increased by S feeding. The increases in plasma G and fructose (F) levels after a S load were greater in U rats than in C rats, whereas those of plasma lactate were comparable. In the liver under basal conditions, uremia markedly decreased levels of glycogen, F-1,6-diphosphate (F-1,6-diP), F-2,6-diP, 3-glycero-phosphate (3-glycero-P), dihydroxyacetone phosphate (DHAP), pyruvate, lactate, and adenosine triphosphate (ATP), and the phosphorylation state (ATP/adenosine diphosphate [ADP] x inorganic phosphorus [PI]), increased phosphoenolpyruvate (PEP), ADP, and Pi levels, but did not affect the cytosolic redox state (pyruvate/lactate). In addition to uremia, S feeding further decreased levels of glycogen, F-2,6-diP, 3-glycero-P, and ATP. After S loading, liver F levels increased more in U than in C rats, but glycogen and 3-glycero-P levels increased less in U than in C rats. Liver lactate and pyruvate levels increased more in U than in C rats, and the pyruvate/lactate and DHAP/3-glycero-P ratios were higher in U than in C rats after a S load. The ATP level and the phosphorylation state in U rats increased 30 minutes later in U than in C rats. Our findings indicate that uremia causes a depletion in liver glycogen, which is enhanced by S feeding and could be partially attributed to decreased glycogen synthesis.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- D Laouari
- INSERM U.192, Hôpital des Enfants Malades, Paris, France
| | | | | | | | | | | |
Collapse
|
33
|
Cheeseman CI, Shariff S, O'Neill D. Evidence for a lactate-anion exchanger in the rat jejunal basolateral membrane. Gastroenterology 1994; 106:559-66. [PMID: 8119524 DOI: 10.1016/0016-5085(94)90686-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND/AIMS The mechanism by which lactate, absorbed from the intestinal lumen or generated within the epithelium, crosses the basolateral membrane of the enterocyte and enters the bloodstream has not previously been characterized in detail. METHODS L-lactate uptake into and efflux from isolated jejunal basolateral membrane vesicles was investigated at room temperature using rapid filtration techniques. RESULTS Furosemide sensitive uptake of L-lactate was unaffected by cis sodium or proton gradients but could be stimulated by a trans gradient of bicarbonate and chloride. Kinetic analysis showed uptake to consist of a saturable component with a Michaelis constant (Km) of 3.2 mmol/L and a maximum velocity (Vmax) of 67 pmol.mg protein-1 x s-1 and a nonsaturable alpha-4-hydroxy-cinnamic acid insensitive component. Pyruvate, butyrate, acetate, valerate, and propionate competitively inhibited lactate uptake into the vesicles. Efflux of lactate from preloaded vesicles was furosemide sensitive and accelerated by a trans bicarbonate gradient as well as by 10 mmol/L acetate, butyrate, and pyruvate. CONCLUSIONS It is concluded that there is a short chain-fatty acid carrier system in the intestinal basolateral membrane, which operates as an anion exchanger.
Collapse
Affiliation(s)
- C I Cheeseman
- Department of Physiology, University of Alberta, Edmonton, Canada
| | | | | |
Collapse
|
34
|
|
35
|
Khoja SM, Kellett GL. Effect of hypothyroidism on glucose transport and metabolism in rat small intestine. BIOCHIMICA ET BIOPHYSICA ACTA 1993; 1179:76-80. [PMID: 8399353 DOI: 10.1016/0167-4889(93)90073-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The effect of experimental hypothyroidism on the absorption, transmural transport and metabolism of glucose was studied by perfusion of isolated loops of rat jejunum in vitro. When expressed on a dry weight basis, the rate of absorption was enhanced by 32% (P < 0.01); when expressed on a length basis there was no significant change, since the enhancement per unit weight was almost exactly compensated by a diminution in mass per unit length in the hypothyroid state. When expressed in either units, there was a significant enhancement in transmural transport (+123% and +77%, respectively, both P < 0.001), which reflected in part a diminution in the rate of glucose utilization (-29%, P < 0.01 and -43%, P < 0.001, respectively). The changes in glucose utilization were matched by changes in lactate production. Three factors contributed to the diminution in glucose utilization in the hypothyroid state: a diminution in the concentration of 6-phosphofructo-1-kinase (-35%, P < 0.05), and increase in the S0.5 of 6-phosphofructo-1-kinase for fructose 6-phosphate from 0.4 to 0.6 mM and a fall in the mucosal concentration of fructose 2,6-bisphosphate (-56%, P < 0.05). From the point of view of the whole animal, there is little if any change in the capacity of the intestine to absorb glucose from the lumen, but there is a large enhancement of transmural transport that is metabolically driven.
Collapse
Affiliation(s)
- S M Khoja
- Department of Biochemistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | | |
Collapse
|
36
|
Moro MA, Michelena P, Sánchez-García P, Palmer R, Moncada S, García AG. Activation of adrenal medullary L-arginine: nitric oxide pathway by stimuli which induce the release of catecholamines. Eur J Pharmacol 1993; 246:213-8. [PMID: 7693497 DOI: 10.1016/0922-4106(93)90033-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The activation of the L-arginine: nitric oxide (NO) pathway in the cat adrenal medulla by different stimuli which induce the release of catecholamines was studied. Stimuli that evoke catecholamine release, such as electrical stimulation of splanchnic nerves (50 V, 5 Hz, 1 ms), methacholine (100 microM), dimethyl-4-phenylpiperazinium iodide (DMPP; 10 microM), high K+ (35 mM) and alamethicin (15 micrograms ml-1) also caused a rise in cyclic GMP in the perfused cat adrenal medulla. NG-nitro-L-arginine methyl ester (L-NAME; 1 mM) abolished the rise in cyclic GMP induced by these stimuli without affecting the catecholamine release. Bovine adrenal medulla cytosol contained an NO synthase which was L-arginine- and Ca(2+)-dependent. In conclusion cat and bovine adrenal medulla stimulated with a variety of secretagogues synthesize NO from L-arginine to activate the soluble guanylate cyclase. The present data do not rule out a role for cyclic GMP in the regulation of catecholamine secretion; however, it seems more plausible that cyclic GMP may play a role in controlling local blood flow and thus the access of the released catecholamines to the systemic circulation during stressful conflicts.
Collapse
Affiliation(s)
- M A Moro
- Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, Spain
| | | | | | | | | | | |
Collapse
|
37
|
Vincent N, Martin G, Baverel G. Glycine, a new regulator of glutamine metabolism in isolated rat-liver cells. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1175:13-20. [PMID: 1482692 DOI: 10.1016/0167-4889(92)90004-u] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Glycine (0.1-10 mM) caused a dose-dependent increase in the removal of 5 mM [1-14C]glutamine by isolated rat-liver cells; at low concentrations of glycine, an increase in the formation of 14CO2, urea and glucose from glutamine occurred. At 2-10 mM, glycine also caused an accumulation of ammonia, a well-established activator of glutaminase (E.C. 3.5.1.2) and, at concentrations found in the presence of glutamine plus glycine, ammonia stimulated glutamine removal. The inhibition of urea synthesis from glutamine observed with 10 mM glycine was relieved by the addition of ornithine, suggesting that this inhibition occurred by reducing the availability of ornithine for the ornithine transcarbamoylase reaction. The metabolism of glycine as sole substrate led to a small increase in the accumulation of ammonia. Glycine did not alter hepatic glutaminase activity but swelling of rat hepatocytes, a factor considered to stimulate glutamine metabolism, was observed in the presence of glycine (1 mM). It is concluded that stimulation by glycine of hepatic utilization of glutamine is mediated by the accumulation of ammonia arising from both glycine and glutamine metabolism and by hepatocyte osmotic swelling secondary to glycine transport.
Collapse
Affiliation(s)
- N Vincent
- Centre National de la Recherche Scientifique, Laboratoire de Physiologie Rénale et Métabolique, Faculté de Médecine Alexis Carrel, Lyon, France
| | | | | |
Collapse
|
38
|
Viña J, Gimenez A, Puertes IR, Gasco E, Viña JR. Impairment of cysteine synthesis from methionine in rats exposed to surgical stress. Br J Nutr 1992; 68:421-9. [PMID: 1445821 DOI: 10.1079/bjn19920099] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The activity of liver cystathionase (EC 4.4.1.1) was decreased after 3 d of stress induced by surgery. The rate of L-cysteine synthesis from L-methionine was significantly higher in isolated hepatocytes from controls than in hepatocytes from rats suffering from surgical stress. The half-life of L-[2(n)-3H]methionine was significantly higher in rats submitted to surgical stress than in controls. Plasma L-methionine:L-cystine ratio was higher in stressed rats than in controls. L-cystine uptake was significantly increased in the surgically-stressed rats when compared with the controls. All these facts are consistent with the hypothesis that the observed inhibition of cystathionase is physiologically important and that L-cysteine might be considered as an essential amino acid in cases of surgical stress.
Collapse
Affiliation(s)
- J Viña
- Departamento de Fisiología, Facultad de Medicina, Valencia, Spain
| | | | | | | | | |
Collapse
|
39
|
Dejong CH, Kampman MT, Deutz NE, Soeters PB. Altered glutamine metabolism in rat portal drained viscera and hindquarter during hyperammonemia. Gastroenterology 1992; 102:936-48. [PMID: 1347032 DOI: 10.1016/0016-5085(92)90180-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In normal rats, muscle is the major glutamine releasing organ and gut is the major glutamine consuming organ. It has been suggested that enhanced muscle ammonia detoxification and gut ammonia production occurs during liver insufficiency-induced hyperammonemia. Therefore, ammonia and amino acid fluxes across portal-drained viscera and hindquarter, and muscle concentrations were measured in portacaval shunted and acute liver ischemia rats. Arterial ammonia and most amino acids were increased after portacaval shunting and increased progressively during liver ischemia, but net hindquarter ammonia uptake was not observed. Net hindquarter glutamine efflux was increased during portacaval shunting, but it decreased during liver ischemia, while muscle glutamine concentrations increased. The comparable net portal drained viscera glutamine uptake in normal and portacaval shunted rats changed during liver ischemia from net uptake to release, coinciding with release of most other amino acids. These results cast doubt on the ammonia detoxifying role of muscle during acute liver ischemia-induced hyperammonemia in the rat. The portal drained viscera glutamine release during severe hyperammonemia could be due to intestinal damage.
Collapse
Affiliation(s)
- C H Dejong
- Department of Surgery, University of Limburg, Maastricht, The Netherlands
| | | | | | | |
Collapse
|
40
|
Moundras C, Bercovici D, Rémésy C, Demigné C. Influence of glucogenic amino acids on the hepatic metabolism of threonine. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1115:212-9. [PMID: 1739735 DOI: 10.1016/0304-4165(92)90056-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The supplementation of a low-protein diet with L-threonine leads to a marked accumulation of threonine in plasma and liver, whereas increasing dietary protein generally leads to an induction of threonine dehydratase in the liver, hence depressed availability for extrasplanchnic tissues. The aim of the present study was, thus, to further investigate the factors which control the utilization of threonine by the liver. Increasing the dietary supply of threonine led to parallel increases in the afferent and hepatic concentrations and in the rate of utilization by the liver; however, the fractional extraction tended to decrease. It appears that the addition of a mixture of glucogenic amino acids to the diet prevented the accumulation of threonine in plasma induced by exogenous threonine. The glucogenic amino acids increased the fractional hepatic uptake of threonine, and counteracted its accumulation in the liver. These effects reflect the fact that the glucogenic amino acids elicited a potent induction of the threonine dehydratase, whereas threonine alone was uneffective. Our results suggest that, besides the well-established effect of glucogenic conditions, the availability of some glucogenic amino acids is an important factor in the control of threonine catabolism.
Collapse
Affiliation(s)
- C Moundras
- Laboratoire des Maladies Métaboliques, I.N.R.A. de Clermont Ferrand-Theix, Ceyrat, France
| | | | | | | |
Collapse
|
41
|
Abstract
Liver parenchyma shows a remarkable heterogeneity of the hepatocytes along the porto-central axis with respect to ultrastructure and enzyme activities resulting in different cellular functions within different zones of the liver lobuli. According to the concept of metabolic zonation, the spatial organization of the various metabolic pathways and functions forms the basis for the efficient adaptation of liver metabolism to the different nutritional requirements of the whole organism in different metabolic states. The present review summarizes current knowledge about this heterogeneity, its development and determination, as well as about its significance for the understanding of all aspects of liver function and pathology, especially of intermediary metabolism, biotransformation of drugs and zonal toxicity of hepatotoxins.
Collapse
Affiliation(s)
- R Gebhardt
- Physiologisch-Chemisches Institut, University of Tübingen, Germany
| |
Collapse
|
42
|
Morand C, Remesy C, Besson C, Demigne C. Control of glycogen metabolism by gluconeogenic and ketogenic substrates in isolated hepatocytes from fed rats. THE INTERNATIONAL JOURNAL OF BIOCHEMISTRY 1992; 24:159-67. [PMID: 1582529 DOI: 10.1016/0020-711x(92)90242-s] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
1. This study was conducted to examine the effects of gluconeogenic and ketogenic substrates on the activities of the glycogen-metabolizing enzymes and on glycogenolysis in isolated hepatocytes from fed rats. 2. Gluconeogenic substrates like fructose, dihydroxyacetone or lactate turned out to stimulate the glucose-induced activation of glycogen synthase and this effect may be linked, to some extent, to the increase of the cellular glucose 6-phosphate concentration. 3. The effect of fructose was accompanied by the onset of glycogen synthesis. 4. Energetic substrates like fatty acids were also potent activators of glycogen synthase, especially in the presence of glucose. 5. When fatty acids were added alone or together with a physiological concentration of glucose, they induced or potentiated the inhibition of glycogen phosphorylase-a. 6. This inhibitory effect was mediated by a decrease of lactate release. 7. The stimulatory effect of amino acids on glycogen synthase seemed to be direct, non mediated by an inhibition of the phosphorylase-a activity although hepatic glycogenolysis markedly decreased. 8. Moreover, the amino acid action could be linked to their capacities to induce cell swelling and/or to limit proteolysis.
Collapse
Affiliation(s)
- C Morand
- Laboratoires des Maladies Métaboliques, I.N.R.A. Theix, Ceyrat, France
| | | | | | | |
Collapse
|
43
|
Ruiz B, Felipe A, Casado J, Pastor-Anglada M. Amino acid uptake by liver of genetically obese Zucker rats. Biochem J 1991; 280 ( Pt 2):367-72. [PMID: 1684102 PMCID: PMC1130555 DOI: 10.1042/bj2800367] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Alanine and glutamine uptake by the liver of 50-52-day-old genetically obese Zucker rats and their lean littermates has been studied. The net uptake in vivo of L-alanine is 2-fold higher in the obese animals. No significant change in L-glutamine net balance was found. We also studied the Na(+)-dependent uptake of L-alanine and L-glutamine into plasma-membrane vesicles isolated from either obese- or lean-rat livers. Vmax. values of both L-alanine and L-glutamine transport were 2-fold higher in those preparations from obese rats. No change in Km was observed. As suggested by inhibition studies, this seemed to be mediated by an enhancement of the activities of systems A, ASC and N. We conclude that the liver of the obese Zucker rat is extremely efficient in taking up neutral amino acids from the afferent blood, which results in an enhanced net uptake of L-alanine in vivo. The changes in transport activities at the plasma-membrane level might contribute to increase amino acid disposal by liver, probably for lipogenic purposes, as recently reported by Terrettaz & Jeanrenaud [Biochem. J. (1990) 270, 803-807].
Collapse
Affiliation(s)
- B Ruiz
- Departament de Bioquímica i Fisiologia, Universitat de Barcelona, Spain
| | | | | | | |
Collapse
|
44
|
Chen MK, Salloum RM, Austgen TR, Bland JB, Bland KI, Copeland EM, Souba WW. Tumor regulation of hepatic glutamine metabolism. JPEN J Parenter Enteral Nutr 1991; 15:159-64. [PMID: 1675697 DOI: 10.1177/0148607191015002159] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Fast-growing tumors are major glutamine consumers and may alter host glutamine metabolism to benefit the tumor. Previous studies from our laboratory have demonstrated that the liver switches from an organ of glutamine balance to one of glutamine release with progressive malignant growth. However, the regulation of this change is unclear. This study examined tumor modulation of hepatic glutamine metabolism by determining the activities of glutaminase, the principle enzyme of glutamine degradation, and glutamine synthetase, the principal enzyme of glutamine synthesis. Hepatic glutamine content was also determined. Rats with a fast-growing subcutaneous fibrosarcoma (TBR) and pair-fed controls were studied at 2 and 3 weeks after tumor or sham implantation, when the tumors comprised approximately 5% and 20% of total body weight. Arterial glutamine fell with progressive tumor growth (608 +/- 26 mumol/L in controls vs 494 +/- 15 in TBR, p less than 0.005) and was not attributable to a diminished food intake. Hepatic glutamine content was increased 45% (p less than 0.01) in tumor rats at 2 weeks due in part to a 35% fall in liver glutaminase activity. At 3 weeks, glutamine synthetase activity increased by 43% (0.58 +/- 0.07 mumol/mg of protein/hr in controls vs 0.83 +/- 0.04 in TBR, p less than 0.01) whereas glutaminase remained depressed (2.68 +/- 0.12 mumol/mg of protein/hr in controls vs 2.22 +/- 0.15 in TBR, p less than 0.05) and glutamine content fell compared to 2 week tumor-bearing rats, consistent with accelerated hepatic glutamine release. Tumors may alter liver glutamine metabolism by modulating hepatic enzyme activity in order to provide circulating glutamine for the growing malignancy.
Collapse
Affiliation(s)
- M K Chen
- Department of Surgery, University of Florida College of Medicine, Gainesville
| | | | | | | | | | | | | |
Collapse
|
45
|
|
46
|
Nguyen DT, Keast D. Energy metabolism and the skin. THE INTERNATIONAL JOURNAL OF BIOCHEMISTRY 1991; 23:1175-83. [PMID: 1794442 DOI: 10.1016/0020-711x(91)90213-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- D T Nguyen
- Department of Microbiology, University of Western Australia, Nedlands
| | | |
Collapse
|
47
|
|
48
|
Casado J, Fernández-López JA, Esteve M, Rafecas I, Argilés JM, Alemany M. Rat splanchnic net oxygen consumption, energy implications. J Physiol 1990; 431:557-69. [PMID: 2129230 PMCID: PMC1181791 DOI: 10.1113/jphysiol.1990.sp018347] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
1. The blood flow, PO2, pH and PCO2 have been estimated in portal and suprahepatic veins as well as in hepatic artery of fed and overnight starved rats given an oral glucose load. From these data the net intestinal, hepatic and splanchnic balances for oxygen and bicarbonate were calculated. The oxygen consumption of the intact animal has also been measured under comparable conditions. 2. The direct utilization of oxygen balances as energy equivalents when establishing the contribution of energy metabolism of liver and intestine to the overall energy expenses of the rat, has been found to be incorrect, since it incorporates the intrinsic error of interorgan proton transfer through bicarbonate. Liver and intestine produced high net bicarbonate balances in all situations tested, implying the elimination (by means of oxidative pathways, i.e. consuming additional oxygen) of high amounts of H+ generated with bicarbonate. The equivalence in energy output of the oxygen balances was then corrected for bicarbonate production to 11-54% lower values. 3. Intestine and liver consume a high proportion of available oxygen, about one-half in basal (fed or starved) conditions and about one-third after gavage, the intestine consumption being about 15% in all situations tested and the liver decreasing its oxygen consumption with gavage.
Collapse
Affiliation(s)
- J Casado
- Department de Bioquímica i Fisiologia, Universitat de Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
49
|
Fafournoux P, Remesy C, Demigne C. Fluxes and membrane transport of amino acids in rat liver under different protein diets. THE AMERICAN JOURNAL OF PHYSIOLOGY 1990; 259:E614-25. [PMID: 2240200 DOI: 10.1152/ajpendo.1990.259.5.e614] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The aim of the present work was to evaluate in vivo the role of the transport step in hepatic amino acid metabolism. To vary hepatic utilization of amino acids, rats were adapted to diets containing various concentrations of casein (5, 15, and 60%). In rats fed 5 or 15% casein diets, Gln and Glu were released by the liver, and there was a significant uptake of Ala. Hepatic fluxes of amino acids increased considerably after adaptation to high-casein diet (up to 1.55 mumol.min-1.g liver-1 for Ala), because of the rise in afferent concentrations as well as enhanced uptake percentage (peaking at 60-75% for most glucogenic amino acids). Adaptation to a high-protein diet led to induction of not only system A but also of most of the other transport systems (Gly, anionic, T, y+, and to a lesser extent system N); only systems ASC and L were unchanged. The study of amino acid repartition between liver and plasma with different diets indicates that transport could modulate utilization of Ala, Ser, Thr, Gly, Gln, and Asp. For Arg and Asn, present in very low concentrations in liver under any condition, the transport step should be the major locus of control of their metabolism. For amino acids chiefly transported by nonconcentrative systems, such as aromatic amino acids, cellular metabolism could also be limited by the transport process. In conclusion, during adaptation to a high-protein diet, there is apparently a coordinated adaptation of amino acid transport and of their intracellular metabolism. For some amino acids, induction of catabolic enzymes seems greater than that of transport, so that the transport step may play an important role in control of metabolic fluxes. For example, concentration of amino acids such as Thr may be markedly depressed in rats adapted to a high-protein diet.
Collapse
Affiliation(s)
- P Fafournoux
- Laboratoire des Maladies Métaboliques, Institut National de la Recherche Agronomique, Ceyrat, France
| | | | | |
Collapse
|
50
|
Affiliation(s)
- M Watford
- Department of Nutritional Sciences, Cook College, Rutgers University, New Brunswick, NJ 08903
| |
Collapse
|