1
|
Mignon K, Galle M, Van der Eecken R, Haesaerts S, Demulder M, De Greve H, De Veylder L, Loris R. Purification and characterization of the intrinsically disordered Arabidopsis thaliana protein SOG1. Protein Expr Purif 2025; 229:106678. [PMID: 39892530 DOI: 10.1016/j.pep.2025.106678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/24/2025] [Accepted: 01/25/2025] [Indexed: 02/03/2025]
Abstract
SOG1, a transcription factor consisting of a folded NAC (NAM-ATAF-CUC2) domain and an intrinsically disordered C-terminal domain (CTD), co-ordinates the DNA damage response in plants. Here we compare different methods to express and purify recombinant full length Arabidopsis thaliana SOG1. Expression in Sf9 insect cells results in a protein that contains a phosphorylated site that is possibly located on the T423 site in the CTD. This site is reported to be phosphorylated in planta upon aluminium toxicity stress and may affect the transcriptional activity of SOG1 in an yet undetermined way. Expression of SOG1 in E. coli BL21 (DE3) leads to the formation of inclusion bodies, a problem that is resolved by using a cleavable SUMO solubility tag. The resulting protein is not phosphorylated and represents the transcriptional inactive state of SOG1. Both protein preparations show similar CD spectra and melting temperatures. SEC-MALS determined that the proteins, like other NAC transcription factors, form a dimer in solution. Both proteins are also highly non-globular as determined by analytical SEC and are likely stretched out due to their disordered CTD. In electromobility shift assays, both insect and E. coli purified SOG1 proteins bind to a DNA fragment from the promoter region of SMR5, a well established target gene of SOG1, showing the functionality of both purified proteins.
Collapse
Affiliation(s)
- Kim Mignon
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, B-1050, Brussel, Belgium; Center for Structural Biology, VIB, Pleinlaan 2, B-1050, Brussel, Belgium
| | - Margot Galle
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, B-1050, Brussel, Belgium; Center for Structural Biology, VIB, Pleinlaan 2, B-1050, Brussel, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
| | - Rani Van der Eecken
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, B-1050, Brussel, Belgium; Center for Structural Biology, VIB, Pleinlaan 2, B-1050, Brussel, Belgium
| | - Sarah Haesaerts
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, B-1050, Brussel, Belgium; Center for Structural Biology, VIB, Pleinlaan 2, B-1050, Brussel, Belgium
| | - Manon Demulder
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, B-1050, Brussel, Belgium; Center for Structural Biology, VIB, Pleinlaan 2, B-1050, Brussel, Belgium
| | - Henri De Greve
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, B-1050, Brussel, Belgium
| | - Lieven De Veylder
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium; Center for Plant Systems Biology, VIB, Gent, Belgium
| | - Remy Loris
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, B-1050, Brussel, Belgium; Center for Structural Biology, VIB, Pleinlaan 2, B-1050, Brussel, Belgium.
| |
Collapse
|
2
|
Borah P, Sharma A, Sharma AK, Khurana P, Khurana JP. SCFOsFBK1 E3 ligase mediates jasmonic acid-induced turnover of OsATL53 and OsCCR14 to regulate lignification of rice anthers and roots. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6188-6204. [PMID: 36317370 DOI: 10.1093/jxb/erac434] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
The rice F-box protein OsFBK1, which mediates the turnover of a cinnamoyl CoA-reductase, OsCCR14, has previously been shown to regulate anther and root lignification. Here, we identify OsATL53, a member of the ATL family of RING-H2 proteins that interacts with OsCCR14 in the cytoplasm. OsATL53 was identified in the same yeast two-hybrid library screening as reported previously for OsCCR14, and we show it to have cytoplasmic localization and E3 ligase ubiquitination properties. SCFOsFBK1 mediates turnover of OsATL53 in the cytoplasm and the nucleus, and that of OsCCR14 only in the nucleus, as shown by cell-free degradation assays. Confocal fluorescence lifetime imaging microscopy analyses demonstrate that in presence of jasmonic acid (JA), which plays a role in anther dehiscence, OsATL53-OsCCR14 undergoes conformational changes that trigger the complex to accumulate around the nuclear periphery and signals OsFBK1 to initiate degradation of the proteins in the respective cellular compartments. OsATL53 decreases the enzymatic activity of OsCCR14 and sequesters it in the cytoplasm, thereby regulating the lignification process. Transgenic rice with knockdown of OsATL53 display increased lignin deposition in the anthers and roots compared to the wild type, whilst knockdown of OsCCR14 results in decreased lignin content. Our results show that OsATL53 affects the activity of OsCCR14, and that their JA-induced degradation by SCFOsFBK1 regulates lignification of rice anthers and roots.
Collapse
Affiliation(s)
- Pratikshya Borah
- Interdisciplinary Centre for Plant Genomics, University of Delhi South Campus, New Delhi - 110021, India
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi - 110021, India
| | - Aishwarye Sharma
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi - 110021, India
| | - Arun Kumar Sharma
- Interdisciplinary Centre for Plant Genomics, University of Delhi South Campus, New Delhi - 110021, India
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi - 110021, India
| | - Paramjit Khurana
- Interdisciplinary Centre for Plant Genomics, University of Delhi South Campus, New Delhi - 110021, India
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi - 110021, India
| | - Jitendra Paul Khurana
- Interdisciplinary Centre for Plant Genomics, University of Delhi South Campus, New Delhi - 110021, India
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi - 110021, India
| |
Collapse
|
3
|
Fu C, Liu M. Genome-wide identification and molecular evolution of NAC gene family in Dendrobium nobile. FRONTIERS IN PLANT SCIENCE 2023; 14:1232804. [PMID: 37670854 PMCID: PMC10475575 DOI: 10.3389/fpls.2023.1232804] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 07/31/2023] [Indexed: 09/07/2023]
Abstract
NAC transcription factors are an important genes that regulate plant growth and development, and can regulate functions such as fruit ripening in plants. Based on genome data of Dendrobium nobile, the NAC gene family was identified and analyzed by bioinformatics methods. In this study, we identified 85 NAC genes in Dendrobium nobile genome, and systematically analyzed the NAC gene family. We found that they were distributed unevenly in the nineteen chromosomes. The amino acid length of D. nobile NAC gene family (DnoNACs) ranged from 80 to 1065, molecular weight ranged from 22.17 to 119.02 kD, and isoelectric point ranged from 4.61~9.26. Its promoter region contains multiple stress responsive elements, including light responsive, gibberellin-responsive, abscisic acid responsiveness, MeJA-responsiveness and drought-inducibility elements. Phylogenetic analysis indicates that the D. nobile NAC gene family is most closely related to Dendrobium catenatum and Dendrobium chrysotoxum. Analysis of SSR loci indicates that the fraction of mononucleotide repeats was the largest, as was the frequency of A/T. Non-coding RNA analysis showed that these 85 NAC genes contain 397 miRNAs. The collinearity analysis shows that 9 collinear locis were found on the chromosomes of D. nobile with Arabidopsis thaliana, and 75 collinear locis with D.chrysotoxum. QRT-PCR experiment under different salt concentration and temperature conditions verified the response mechanism of DnoNAC gene family under stress conditions. Most DnoNAC genes are sensitive to salt stress and temperature stress. The results of this study provide a reference for further understanding the function of NAC gene in D. nobile.
Collapse
|
4
|
Ray S, Basnet A, Bhattacharya S, Banerjee A, Biswas K. A comprehensive analysis of NAC gene family in Oryza sativa japonica: a structural and functional genomics approach. J Biomol Struct Dyn 2023; 41:856-870. [PMID: 34931596 DOI: 10.1080/07391102.2021.2014968] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
NAC gene family regulates diverse aspects of plant growth and developmental processes. The NAC DNA binding domains together with cis-acting elements play inter-related roles in regulating gene expression. In this study, an in silico approach for genome wide analysis of NAC gene in Oryza sativa japonica lead to an identification of 11 NAC genes, distributed over 12 chromosomes. A detailed analysis of phylogenetic relationship, motifs, gene structure, duplication patterns, positive-selection pressure and cis-elements of 11 OsNAC genes were performed. Three pairs of NAC genes with a high degree of homology in terminal nodes were observed and were inferred to be paralogous pairs. One conserved NAC domain was analyzed in all the NAC proteins. Only one gene was studied to be intronless and the majority had 2 introns. Segmental gene duplication pattern was predominant in 11 NAC genes. Ka/Ks ratio of 3 pairs of segmentally duplicated gene was substantially lower than 1, suggesting that the OsNAC sequences are under strong purifying selection pressure. NAC74 and NAC71 gene showed the maximum responsiveness for several factors. The paralogous genes, NAC2 and NAC67 were found to have maximum mya values, respectively. They showed maximum difference amongst themselves in all the categories of responsiveness. Responsiveness towards abscisic acid was observed to be absent in NAC67, but present in NAC2, while responsiveness to meristem inducibility was observed to remain absent in NAC2 but present in NAC67. These results would provide a platform for the future identification and analysis of NAC genes in Oryza sativa japonica.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sujay Ray
- Amity Institute of Biotechnology, Amity University, Kolkata, India
| | - Abishek Basnet
- Amity Institute of Biotechnology, Amity University, Kolkata, India
| | - Shreya Bhattacharya
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati, India
| | - Arundhati Banerjee
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, India
| | - Koustav Biswas
- Amity Institute of Biotechnology, Amity University, Kolkata, India
| |
Collapse
|
5
|
Mondal B, Mukherjee A, Mazumder M, De A, Ghosh S, Basu D. Inducible expression of truncated NAC62 provides tolerance against Alternaria brassicicola and imparts developmental changes in Indian mustard. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 324:111425. [PMID: 36007630 DOI: 10.1016/j.plantsci.2022.111425] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/19/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
Indian mustard (Brassica juncea) faces significant yield loss due to the 'Black Spot Disease,' caused by a fungus Alternaria brassicicola. In plants, NAC transcription factors (NAC TFs) are known for their roles in development and stress tolerance. One such NAC TF, NAC 62, was induced during A. brassicicola challenge in Sinapis alba, a non-host resistant plant against this fungus. Sequence analyses of BjuNAC62 from B. juncea showed that it belonged to the membrane-bound class of transcription factors. Gene expression study revealed differential protein processing of NAC62 between B. juncea and S. alba on pathogen challenge. Furthermore, NAC62 processing to 25 kDa protein was found to be unique to the resistant plant during pathogenesis. Conditional expression of BjuNAC62ΔC, which lacks its transmembrane domain, in B. juncea showed improved tolerance to A. brassicicola. BjuNAC62ΔC processing to 25 kDa product was also observed in tolerant transgenic plants. Additionally, transgenic plants showed induced expression of genes associated with defense-related phytohormone signaling pathways on pathogen challenge. Again, altered phenotypes suggest a possible developmental effect of BjuNAC62∆C in transgenic plants. The overall results suggest that the processing of BjuNAC62 might be playing a crucial role in resistance response against Black Spot disease by modulating defense-associated genes.
Collapse
Affiliation(s)
- Banani Mondal
- Division of Plant Biology, Bose Institute, P-1/12, CIT Rd, Scheme VIIM, Kolkata, West Bengal 700054, India.
| | - Amrita Mukherjee
- Division of Plant Biology, Bose Institute, P-1/12, CIT Rd, Scheme VIIM, Kolkata, West Bengal 700054, India
| | - Mrinmoy Mazumder
- Division of Plant Biology, Bose Institute, P-1/12, CIT Rd, Scheme VIIM, Kolkata, West Bengal 700054, India
| | - Aishee De
- Division of Plant Biology, Bose Institute, P-1/12, CIT Rd, Scheme VIIM, Kolkata, West Bengal 700054, India
| | - Swagata Ghosh
- Division of Plant Biology, Bose Institute, P-1/12, CIT Rd, Scheme VIIM, Kolkata, West Bengal 700054, India.
| | - Debabrata Basu
- Division of Plant Biology, Bose Institute, P-1/12, CIT Rd, Scheme VIIM, Kolkata, West Bengal 700054, India.
| |
Collapse
|
6
|
Wang Y, Hu H, Yuan S, LI Y, Cao K, Sun H, Liu Y. Cuprous Ions can Disrupt Structure and Functions of the RING Finger Domain of RNF11. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00631f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Copper is an essential element that plays crucial roles in a variety of biological processes, while excessive copper is harmful to cells. RNF11 is a RING finger protein associated with...
Collapse
|
7
|
Cai W, Yang S, Wu R, Cao J, Shen L, Guan D, Shuilin H. Pepper NAC-type transcription factor NAC2c balances the trade-off between growth and defense responses. PLANT PHYSIOLOGY 2021; 186:2169-2189. [PMID: 33905518 PMCID: PMC8331138 DOI: 10.1093/plphys/kiab190] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 04/10/2021] [Indexed: 05/27/2023]
Abstract
Plant responses to pathogen attacks and high-temperature stress (HTS) are distinct in nature but generally share several signaling components. How plants produce specific responses through these common signaling intermediates remains elusive. With the help of reverse-genetics approaches, we describe here the mechanism underlying trade-offs in pepper (Capsicum annuum) between growth, immunity, and thermotolerance. The NAC-type transcription factor CaNAC2c was induced by HTS and Ralstonia solanacearum infection (RSI). CaNAC2c-inhibited pepper growth, promoted immunity against RSI by activating jasmonate-mediated immunity and H2O2 accumulation, and promoted HTS responses by activating Heat shock factor A5 (CaHSFA5) transcription and blocking H2O2 accumulation. We show that CaNAC2c physically interacts with CaHSP70 and CaNAC029 in a context-specific manner. Upon HTS, CaNAC2c-CaHSP70 interaction in the nucleus protected CaNAC2c from degradation and resulted in the activation of thermotolerance by increasing CaNAC2c binding and transcriptional activation of its target promoters. CaNAC2c did not induce immunity-related genes under HTS, likely due to the degradation of CaNAC029 by the 26S proteasome. Upon RSI, CaNAC2c interacted with CaNAC029 in the nucleus and activated jasmonate-mediated immunity but was prevented from activating thermotolerance-related genes. In non-stressed plants, CaNAC2c was tethered outside the nucleus by interaction with CaHSP70, and thus was unable to activate either immunity or thermotolerance. Our results indicate that pepper growth, immunity, and thermotolerance are coordinately and tightly regulated by CaNAC2c via its inducible expression and differential interaction with CaHSP70 and CaNAC029.
Collapse
Affiliation(s)
- Weiwei Cai
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Sheng Yang
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Ruijie Wu
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Jianshen Cao
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Lei Shen
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Deyi Guan
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - He Shuilin
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| |
Collapse
|
8
|
Sun L, Liu LP, Wang YZ, Yang L, Wang MJ, Liu JX. NAC103, a NAC family transcription factor, regulates ABA response during seed germination and seedling growth in Arabidopsis. PLANTA 2020; 252:95. [PMID: 33130990 DOI: 10.1007/s00425-020-03502-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 10/21/2020] [Indexed: 06/11/2023]
Abstract
The Arabidopsis transcription factor NAC103 is up-regulated and its encoding protein is stabilized by ABA treatment, which positively regulates several ABA-responsive downstream genes during seed germination and seedlings growth. The Arabidopsis transcription factor NAC103 was previously found to be involved in endoplasmic reticulum (ER) stress and DNA damage responses. In this study, we report the new biological function of NAC103 in abscisic acid (ABA) response during seed germination and seedling growth in Arabidopsis. The expression of NAC103 was up-regulated and the NAC103 protein was stabilized by ABA treatment. Both the loss-of-function mutants of NAC103, created by targeted gene-editing, and the over-expression plants of NAC103 have no obvious germination-related phenotype under normal growth conditions. However, under exogenous ABA treatment conditions, the NAC103 mutants were less sensitive to ABA during seed germination; in contrast, the NAC103 over-expression plants were more sensitive to ABA during seed germination and young seedling growth. Further, NAC103 regulated several ABA-responsive downstream genes including MYB78, MYB3, PLP3, AMY1, and RGL2. These results demonstrate that NAC103 positively regulates ABA response in Arabidopsis.
Collapse
Affiliation(s)
- Ling Sun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China.
| | - Li-Ping Liu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Ya-Zhen Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Lei Yang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Mei-Jing Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Jian-Xiang Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
9
|
Abstract
The regium-π interaction is an attractive noncovalent force between group 11 elements (Cu, Ag, and Au) acting as Lewis acids and aromatic surfaces. Herein, we report for the first time experimental (Protein Data Bank analysis) and theoretical (RI-MP2/def2-TZVP level of theory) evidence of regium-π bonds involving Au(I) and aromatic amino acids (Phe, Tyr, Trp, and His). These findings might be important in the field of drug design and for retrospectively understanding the role of gold in proteins.
Collapse
Affiliation(s)
- María de Las Nieves Piña
- Department of Chemistry, Universitat de les Illes Balears, Crta. de Valldemossa km 7.5, 07122 Palma (Baleares), Spain
| | - Antonio Frontera
- Department of Chemistry, Universitat de les Illes Balears, Crta. de Valldemossa km 7.5, 07122 Palma (Baleares), Spain
| | - Antonio Bauzá
- Department of Chemistry, Universitat de les Illes Balears, Crta. de Valldemossa km 7.5, 07122 Palma (Baleares), Spain
| |
Collapse
|
10
|
Mohanta TK, Yadav D, Khan A, Hashem A, Tabassum B, Khan AL, Abd_Allah EF, Al-Harrasi A. Genomics, molecular and evolutionary perspective of NAC transcription factors. PLoS One 2020; 15:e0231425. [PMID: 32275733 PMCID: PMC7147800 DOI: 10.1371/journal.pone.0231425] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 03/23/2020] [Indexed: 01/05/2023] Open
Abstract
NAC (NAM, ATAF1,2, and CUC2) transcription factors are one of the largest transcription factor families found in the plants and are involved in diverse developmental and signalling events. Despite the availability of comprehensive genomic information from diverse plant species, the basic genomic, biochemical, and evolutionary details of NAC TFs have not been established. Therefore, NAC TFs family proteins from 160 plant species were analyzed in the current study. Study revealed, Brassica napus (410) encodes highest number and Klebsormidium flaccidum (3) encodes the lowest number of TFs. The study further revealed the presence of NAC TF in the Charophyte algae K. flaccidum. On average, the monocot plants encode higher number (141.20) of NAC TFs compared to the eudicots (125.04), gymnosperm (75), and bryophytes (22.66). Furthermore, our analysis revealed that several NAC TFs are membrane bound and contain monopartite, bipartite, and multipartite nuclear localization signals. NAC TFs were also found to encode several novel chimeric proteins and regulate a complex interactome network. In addition to the presence of NAC domain, several NAC proteins were found to encode other functional signature motifs as well. Relative expression analysis of NAC TFs in A. thaliana revealed root tissue treated with urea and ammonia showed higher level of expression and leaf tissues treated with urea showed lower level of expression. The synonymous codon usage is absent in the NAC TFs and it appears that they have evolved from orthologous ancestors and undergone vivid duplications to give rise to paralogous NAC TFs. The presence of novel chimeric NAC TFs are of particular interest and the presence of chimeric NAC domain with other functional signature motifs in the NAC TF might encode novel functional properties in the plants.
Collapse
Affiliation(s)
- Tapan Kumar Mohanta
- Natural and Medicinal Plant Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Dhananjay Yadav
- Dept. of Medical Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
| | - Adil Khan
- Natural and Medicinal Plant Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Abeer Hashem
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
- Mycology and Plant Disease Survey Department, Plant Pathology Research Institute, ARC, Giza, Egypt
| | - Baby Tabassum
- Department of Zoology, Toxicology laboratory, Raza P.G. College, Rampur, Uttar Pradesh, India
| | - Abdul Latif Khan
- Natural and Medicinal Plant Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Elsayed Fathi Abd_Allah
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed Al-Harrasi
- Natural and Medicinal Plant Sciences Research Center, University of Nizwa, Nizwa, Oman
| |
Collapse
|
11
|
Qi X, Tang X, Liu W, Fu X, Luo H, Ghimire S, Zhang N, Si H. A potato RING-finger protein gene StRFP2 is involved in drought tolerance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 146:438-446. [PMID: 31812009 DOI: 10.1016/j.plaphy.2019.11.042] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 11/29/2019] [Accepted: 11/29/2019] [Indexed: 05/16/2023]
Abstract
The ubiquitin/26S proteasome pathway is widely related to plant growth and metabolism and response to treatment by specifically degrading ubiquitin-modified proteins, including RING-finger-type E3 ubiquitin ligase (RING). The RING finger protein (RFP) gene family, determining the specificity of the ubiquitination process, is numerous and complex in function. In this study, we constructed a pCEGFP-StRFP2 fusion protein expression vector and transformed it into tobacco to achieve transient expression, thereby confirming that StRFP2 is localized in the cell membrane and cytoplasm. The result of qRT-PCR analysis showed that StRFP2 gene was significantly expressed in potato leaves, and the expression level of StRFP2 was significantly up-regulated under drought treatment. The transgenic plants of overexpressing StRFP2 gene were obtained with Agrobacterium tumefaciens-mediated transformation. Plant height, stem diameter, root length, fresh weight and root-shoot ratio of transgenic plants were significantly higher than those of non-transgenic plants (WT), indicating that the growth of plants was significantly promoted after overexpression of StRFP2 gene. Under PEG osmotic stress, the expressional level of StRFP2 in transgenic potato plants was significantly higher than that of WT. Furthermore, the free proline content and CAT activity in transgenic plants were higher than WT, on the contrary, MDA was lower than WT, and transgenic plants have stronger water retention capacity under simulated drought stress treatment, which indicated that StRFP2 could strengthen the tolerance of plants responding to drought stress. The above evidence strongly suggested that the StRFP2 gene is obviously up-regulated expression by drought stress, thereby enhancing the drought tolerance of the potato.
Collapse
Affiliation(s)
- Xuehong Qi
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China; Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China
| | - Xun Tang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China; Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China
| | - Weigang Liu
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China; College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, China
| | - Xue Fu
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China; College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, China
| | - Hongyu Luo
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Shantwana Ghimire
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China; College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, China
| | - Ning Zhang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Huaijun Si
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China; Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China.
| |
Collapse
|
12
|
Hoang XLT, Nguyen NC, Nguyen YNH, Watanabe Y, Tran LSP, Thao NP. The Soybean GmNAC019 Transcription Factor Mediates Drought Tolerance in Arabidopsis in an Abscisic Acid-Dependent Manner. Int J Mol Sci 2019; 21:E286. [PMID: 31906240 PMCID: PMC6981368 DOI: 10.3390/ijms21010286] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 12/27/2019] [Indexed: 12/27/2022] Open
Abstract
Being master regulators of gene expression, transcription factors (TFs) play important roles in determining plant growth, development and reproduction. To date, many TFs have been shown to positively mediate plant responses to environmental stresses. In the current study, the biological functions of a stress-responsive NAC [NAM (No Apical Meristem), ATAF1/2 (Arabidopsis Transcription Activation Factor1/2), CUC2 (Cup-shaped Cotyledon2)]-TF encoding gene isolated from soybean (GmNAC019) in relation to plant drought tolerance and abscisic acid (ABA) responses were investigated. By using a heterologous transgenic system, we revealed that transgenic Arabidopsis plants constitutively expressing the GmNAC019 gene exhibited higher survival rates in a soil-drying assay, which was associated with lower water loss rate in detached leaves, lower cellular hydrogen peroxide content and stronger antioxidant defense under water-stressed conditions. Additionally, the exogenous treatment of transgenic plants with ABA showed their hypersensitivity to this phytohormone, exhibiting lower rates of seed germination and green cotyledons. Taken together, these findings demonstrated that GmNAC019 functions as a positive regulator of ABA-mediated plant response to drought, and thus, it has potential utility for improving plant tolerance through molecular biotechnology.
Collapse
Affiliation(s)
- Xuan Lan Thi Hoang
- Applied Biotechnology for Crop Development Research Unit, School of Biotechnology, International University–Vietnam National University HCMC, Ho Chi Minh 700000, Vietnam; (X.L.T.H.); (N.C.N.); (Y.-N.H.N.)
| | - Nguyen Cao Nguyen
- Applied Biotechnology for Crop Development Research Unit, School of Biotechnology, International University–Vietnam National University HCMC, Ho Chi Minh 700000, Vietnam; (X.L.T.H.); (N.C.N.); (Y.-N.H.N.)
| | - Yen-Nhi Hoang Nguyen
- Applied Biotechnology for Crop Development Research Unit, School of Biotechnology, International University–Vietnam National University HCMC, Ho Chi Minh 700000, Vietnam; (X.L.T.H.); (N.C.N.); (Y.-N.H.N.)
| | - Yasuko Watanabe
- Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan;
| | - Lam-Son Phan Tran
- Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan;
- Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang 550000, Vietnam
| | - Nguyen Phuong Thao
- Applied Biotechnology for Crop Development Research Unit, School of Biotechnology, International University–Vietnam National University HCMC, Ho Chi Minh 700000, Vietnam; (X.L.T.H.); (N.C.N.); (Y.-N.H.N.)
| |
Collapse
|
13
|
Sharma G, Upadyay AK, Biradar H, Sonia, Hittalmani S. OsNAC-like transcription factor involved in regulating seed-storage protein content at different stages of grain filling in rice under aerobic conditions. J Genet 2019. [DOI: 10.1007/s12041-019-1066-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Liu J, Liu T, Liang L, He J, Zhang M, Ge Y, Liao S, Zhou Y, Zhang K. Clinical relationships between the rs2212020 and rs189897 polymorphisms of the ITGA9 gene and epithelial ovarian cancer. J Genet 2019; 98:28. [PMID: 30945681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
To better understand the role of integrin subunit alpha 9 (ITGA9) gene polymorphism in epithelial ovarian cancer (EOC), we investigated the distribution of ITGA9 gene polymorphisms (rs2212020 and rs189897) and revealed whether these polymorphisms were associated with a curative effect in EOC. It was found that rs2212020 and rs189897 were correlated significantly with EOC incidence. The frequency of the C allele of rs2212020 was significantly higher in EOC patients than in the control group (P = 0.009, χ2 = 6.857). The population with the C allele of rs2212020 had a higher EOC risk than the population with the T allele (hazard ratio = 1.97, 95.0% CI = 1.178-3.299). Further, our results showed that the CC genotype was a risk factor for EOC. Regarding the association between ITGA9 and the sensitivity to platinum-based chemotherapy in EOC, there were no statistically significant differences in the frequencies of the rs189897 and rs2212020 polymorphisms between the chemosensitive group and the control group. In multivariate analysis, the patients with the TT genotype of rs189897 had longer progression free survival (PFS) than the patients without this genotype (P = 0.010, OR = 2.491). The AT genotype of rs189897 was a risk factor for PFS in EOC. These findings suggested that rs189897 and rs2212020 could play important roles in EOC diagnosis and prognosis.
Collapse
MESH Headings
- Adenocarcinoma, Clear Cell/genetics
- Adenocarcinoma, Clear Cell/pathology
- Adenocarcinoma, Mucinous/genetics
- Adenocarcinoma, Mucinous/pathology
- Biomarkers, Tumor/genetics
- Case-Control Studies
- Cystadenocarcinoma, Serous/genetics
- Cystadenocarcinoma, Serous/pathology
- Endometrial Neoplasms/genetics
- Endometrial Neoplasms/pathology
- Female
- Follow-Up Studies
- Genotype
- Humans
- Integrins/genetics
- Middle Aged
- Neoplasm Recurrence, Local/genetics
- Neoplasm Recurrence, Local/pathology
- Ovarian Neoplasms/genetics
- Ovarian Neoplasms/pathology
- Polymorphism, Single Nucleotide
- Prognosis
- Survival Rate
Collapse
Affiliation(s)
- Jinyang Liu
- Department of Gynecologic Oncology Ward 5, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410006, People's Republic of China. ,
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Jiménez-López D, Muñóz-Belman F, González-Prieto JM, Aguilar-Hernández V, Guzmán P. Repertoire of plant RING E3 ubiquitin ligases revisited: New groups counting gene families and single genes. PLoS One 2018; 13:e0203442. [PMID: 30169501 PMCID: PMC6118397 DOI: 10.1371/journal.pone.0203442] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 08/21/2018] [Indexed: 01/12/2023] Open
Abstract
E3 ubiquitin ligases of the ubiquitin proteasome system (UPS) mediate recognition of substrates and later transfer the ubiquitin (Ub). They are the most expanded components of the system. The Really Interesting New Gene (RING) domain contains 40-60 residues that are highly represented among E3 ubiquitin ligases. The Arabidopsis thaliana E3 ubiquitin ligases with a RING finger primarily contain RING-HC or RING-H2 type domains or less frequently RING-v, RING-C2, RING-D, RING-S/T and RING-G type domains. Our previous work on three E3 ubiquitin ligase families with a RING-H2 type domain, ATL, BTL, and CTL, suggested that a phylogenetic distribution based on the RING domain allowed for the creation a catalog of known domains or unknown conserved motifs. This work provided a useful and comprehensive view of particular families of RING E3 ubiquitin ligases. We updated the annotation of A. thaliana RING proteins and surveyed RING proteins from 30 species across eukaryotes. Based on domain architecture profile of the A. thaliana proteins, we catalogued 4711 RING finger proteins into 107 groups, including 66 previously described gene families or single genes and 36 novel families or undescribed genes. Forty-four groups were specific to a plant lineage while 41 groups consisted of proteins found in all eukaryotic species. Our present study updates the current classification of plant RING finger proteins and reiterates the importance of these proteins in plant growth and adaptation.
Collapse
Affiliation(s)
- Domingo Jiménez-López
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato, Irapuato, Gto., México
- Biotecnología Vegetal, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa, Tamaulipas, México
| | - Francisco Muñóz-Belman
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato, Irapuato, Gto., México
| | - Juan Manuel González-Prieto
- Biotecnología Vegetal, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa, Tamaulipas, México
| | - Victor Aguilar-Hernández
- CONACYT, Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Col. Chuburná de Hidalgo, Mérida, Yucatán, México
| | - Plinio Guzmán
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato, Irapuato, Gto., México
| |
Collapse
|
16
|
Mathew IE, Agarwal P. May the Fittest Protein Evolve: Favoring the Plant-Specific Origin and Expansion of NAC Transcription Factors. Bioessays 2018; 40:e1800018. [PMID: 29938806 DOI: 10.1002/bies.201800018] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 05/26/2018] [Indexed: 12/12/2022]
Abstract
Plant-specific NAC transcription factors (TFs) evolve during the transition from aquatic to terrestrial plant life and are amplified to become one of the biggest TF families. This is because they regulate genes involved in water conductance and cell support. They also control flower and fruit formation. The review presented here focuses on various properties, regulatory intricacies, and developmental roles of NAC family members. Processes controlled by NACs depend majorly on their transcriptional properties. NACs can function as both activators and/or repressors. Additionally, their homo/hetero dimerization abilities can also affect DNA binding and activation properties. The active protein levels are dependent on the regulatory cascades. Because NACs regulate both development and stress responses in plants, in-depth knowledge about them has the potential to help guide future crop improvement studies.
Collapse
Affiliation(s)
- Iny Elizebeth Mathew
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Pinky Agarwal
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India
| |
Collapse
|
17
|
Park YC, Chapagain S, Jang CS. A Negative Regulator in Response to Salinity in Rice: Oryza sativa Salt-, ABA- and Drought-Induced RING Finger Protein 1 (OsSADR1). PLANT & CELL PHYSIOLOGY 2018; 59:575-589. [PMID: 29361060 DOI: 10.1093/pcp/pcy009] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 01/12/2018] [Indexed: 05/20/2023]
Abstract
RING (Really Interesting New Gene) finger proteins play crucial roles in abiotic stress responses in plants. We report the RING finger E3 ligase gene, an Oryza sativa salt, ABA and drought stress-induced RING finger protein 1 gene (OsSADR1). We demonstrated that although OsSAR1 possesses E3 ligase activity, a single amino acid substitution (OsSADR1C168A) in the RING domain resulted in no E3 ligase activity, suggesting that the activity of most E3s is specified by the RING domain. Additional assays substantiated that OsSADR1 interacts with three substrates-no E3 ligase acti and OsPIRIN, and mediates their proteolysis via the 26S proteasome pathway. For OsSADR1, approximately 62% of the transient signals were in the cytosol and 38% in the nucleus. However, transiently expressed OsSADR1 was primarily expressed in the nucleus (70%) in 200 mM salt-treated rice protoplasts. The two nucleus-localized proteins (OsSNAC2 and OsGRAS44) interacted with OsSADR1 in the cytosol and nucleus. Heterogeneous overexpression of OsSADR1 in Arabidopsis resulted in sensitive phenotypes for salt- and mannitol-responsive seed germination and seedling growth. With ABA, OsSADR1 overexpression in plants produced highly tolerant phenotypes, with morphological changes in root length and stomatal closure. The ABA-tolerant transgenic plants also showed hypersensitivity phenotypes under severe water deficit conditions. Taken together, OsSADR1 may act as a regulator in abiotic stress responses by modulating target protein levels.
Collapse
Affiliation(s)
- Yong Chan Park
- Plant Genomics Lab, Department of Applied Plant Sciences, Kangwon National University, Chuncheon 200-713, Republic of Korea
| | - Sandeep Chapagain
- Plant Genomics Lab, Department of Applied Plant Sciences, Kangwon National University, Chuncheon 200-713, Republic of Korea
| | - Cheol Seong Jang
- Plant Genomics Lab, Department of Applied Plant Sciences, Kangwon National University, Chuncheon 200-713, Republic of Korea
| |
Collapse
|
18
|
Wang H, Li S, Teng S, Liang H, Xin H, Gao H, Huang D, Lang Z. Transcriptome profiling revealed novel transcriptional regulators in maize responses to Ostrinia furnacalis and jasmonic acid. PLoS One 2017; 12:e0177739. [PMID: 28520800 PMCID: PMC5433750 DOI: 10.1371/journal.pone.0177739] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Accepted: 05/02/2017] [Indexed: 12/12/2022] Open
Abstract
Chewing insects cause severe yield losses in crop production worldwide. Crop plants counteract chewing insects by transcriptionally promoting a repertoire of defense gene products that are either toxic to, or attractive to the natural enemies of, pest insects. However, the complexity of the transcriptional reprogramming in plant defense response against chewing insects is still not well understood. In this study, the genome-wide early responses in maize seedlings to Asian corn borer (ACB, Ostrinia furnacalis) and also to jasmonic acid(JA), the pivotal phytohormone controlling plant defense response against herbivory, were transcriptionally profiled by RNA-Seq. Clustering of differentially expressed genes (DEGs) along with functional enrichment analysis revealed important biological processes regulated in response to ACB infestation and/or jasmonic acid. Moreover, DEGs with distinct expression patterns were differentially enriched with diverse families of cis-elements on their promoters. Multiple inventories of differentially expressed transcription factors (DETFs) in each DEG group were also analyzed. A transient expression assay using transfected maize protoplastswas established to examine the potential roles of DETFs in maize defense response and JA signaling, and this was used to show that ZmNAC60, an ACB- and JA-inducible DETF, represented a novel positive regulator of JA and defense pathway genes. This study provided a comprehensive transcriptional picture for the early dynamics of maize defense responses and JA signaling, and the identification of DETFs offered potential targets for further functional genomics investigation of master regulators in maize defense responses against herbivory.
Collapse
Affiliation(s)
- Hai Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Shengyan Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Shouzhen Teng
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Haisheng Liang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Hongjia Xin
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Hongjiang Gao
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Dafang Huang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Zhihong Lang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| |
Collapse
|
19
|
Wang YX, Liu ZW, Wu ZJ, Li H, Zhuang J. Transcriptome-Wide Identification and Expression Analysis of the NAC Gene Family in Tea Plant [Camellia sinensis (L.) O. Kuntze]. PLoS One 2016; 11:e0166727. [PMID: 27855193 PMCID: PMC5113971 DOI: 10.1371/journal.pone.0166727] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 11/02/2016] [Indexed: 11/18/2022] Open
Abstract
In plants, the NAC (NAM-ATAF1/2-CUC) family of proteins constitutes several transcription factors and plays vital roles in diverse biological processes, such as growth, development, and adaption to adverse factors. Tea, as a non-alcoholic drink, is known for its bioactive ingredients and health efficacy. Currently, knowledge about NAC gene family in tea plant remains very limited. In this study, a total of 45 CsNAC genes encoding NAC proteins including three membrane-bound members were identified in tea plant through transcriptome analysis. CsNAC factors and Arabidopsis counterparts were clustered into 17 subgroups after phylogenetic analysis. Conserved motif analysis revealed that CsNAC proteins with a close evolutionary relationship possessed uniform or similar motif compositions. The distribution of NAC family MTFs (membrane-associated transcription factors) among higher plants of whose genome-wide has been completed revealed that the existence of doubled TMs (transmembrane motifs) may be specific to fabids. Transcriptome analysis exhibited the expression profiles of CsNAC genes in different tea plant cultivars under non-stress conditions. Nine CsNAC genes, including the predicted stress-related and membrane-bound genes, were examined through qRT-PCR (quantitative real time polymerase chain reaction) in two tea plant cultivars, namely, 'Huangjinya' and 'Yingshuang'. The expression patterns of these genes were investigated in different tissues (root, stem, mature leaf, young leaf and bud) and under diverse environmental stresses (drought, salt, heat, cold and abscisic acid). Several CsNAC genes, including CsNAC17 and CsNAC30 that are highly orthologous to known stress-responsive ANAC072/RD26 were identified as highly responsive to abiotic stress. This study provides a global survey of tea plant NAC proteins, and would be helpful for the improvement of stress resistance in tea plant via genetic engineering.
Collapse
Affiliation(s)
- Yong-Xin Wang
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhi-Wei Liu
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhi-Jun Wu
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Hui Li
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jing Zhuang
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- * E-mail:
| |
Collapse
|
20
|
Miao L, Zhang L, Raboanatahiry N, Lu G, Zhang X, Xiang J, Gan J, Fu C, Li M. Transcriptome Analysis of Stem and Globally Comparison with Other Tissues in Brassica napus. FRONTIERS IN PLANT SCIENCE 2016; 7:1403. [PMID: 27708656 PMCID: PMC5030298 DOI: 10.3389/fpls.2016.01403] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 09/02/2016] [Indexed: 05/25/2023]
Abstract
Brassica napus is one of the most important oilseed crops in the world. However, there is currently no enough stem transcriptome information and comparative transcriptome analysis of different tissues, which impedes further functional genomics research on B. napus. In this study, the stem transcriptome of B. napus was characterized by RNA-seq technology. Approximately 13.4 Gb high-quality clean reads with an average length of 100 bp were generated and used for comparative transcriptome analysis with the existing transcriptome sequencing data of roots, leaves, flower buds, and immature embryos of B. napus. All the transcripts were annotated against GO and KEGG databases. The common genes in five tissues, differentially expressed genes (DEGs) of the common genes between stems and other tissues, and tissue-specific genes were detected, and the main biochemical activities and pathways implying the common genes, DEGs and tissue-specific genes were investigated. Accordingly, the common transcription factors (TFs) in the five tissues and tissue-specific TFs were identified, and a TFs-based regulation network between TFs and the target genes involved in 'Phenylpropanoid biosynthesis' pathway were constructed to show several important TFs and key nodes in the regulation process. Collectively, this study not only provided an available stem transcriptome resource in B. napus, but also revealed valuable comparative transcriptome information of five tissues of B. napus for future investigation on specific processes, functions and pathways.
Collapse
Affiliation(s)
- Liyun Miao
- School of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
- Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang Normal UniversityHuanggang, China
| | - Libin Zhang
- School of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
| | - Nadia Raboanatahiry
- School of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
| | - Guangyuan Lu
- Oil Crops Research Institute, Chinese Academy of Agricultural SciencesWuhan, China
| | - Xuekun Zhang
- Oil Crops Research Institute, Chinese Academy of Agricultural SciencesWuhan, China
| | - Jun Xiang
- Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang Normal UniversityHuanggang, China
| | - Jianping Gan
- Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang Normal UniversityHuanggang, China
| | - Chunhua Fu
- School of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
| | - Maoteng Li
- School of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
- Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang Normal UniversityHuanggang, China
| |
Collapse
|
21
|
Abstract
NAC transcription factors comprise a large plant-specific gene family. Increasing evidence suggests that members of this family have diverse functions in plant growth and development. In this study, we performed a genomewide survey of NAC type genes in maize (Zea mays L.). A complete set of 148 nonredundant NAC genes (ZmNAC1-ZmNAC148) were identifiedin the maize genome using Blast search tools, and divided into 12 groups (a-l) based on phylogeny. Chromosomal location of these genes revealed that they are distributed unevenly across all 10 chromosomes. Segmental and tandem duplication contributed largely to the expansion of the maize NAC gene family. The Ka/Ks ratio suggested that the duplicated genes of maize NAC family mainly experienced purifying selection, with limited functional divergence after duplication events.Microarray analysis indicated most of the maize NAC genes were expressed across different developmental stages. Moreover,19 maize NAC genes grouped with published stress-responsive genes from other plants were found to contain putative stress-responsive cis-elements in their promoter regions. All these stress-responsive genes belonged to the group d (stress-related).Further, these genes showed differential expression patterns over time in response to drought treatments by quantitative real-time PCR analysis. Our results reveal a comprehensive overview of the maize NAC, and form the foundation for future functional research to uncover their roles in maize growth and development.
Collapse
|
22
|
Mathew IE, Das S, Mahto A, Agarwal P. Three Rice NAC Transcription Factors Heteromerize and Are Associated with Seed Size. FRONTIERS IN PLANT SCIENCE 2016; 7:1638. [PMID: 27872632 PMCID: PMC5098391 DOI: 10.3389/fpls.2016.01638] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 10/17/2016] [Indexed: 05/18/2023]
Abstract
NACs are plant-specific transcription factors (TFs) involved in multiple aspects of development and stress. In rice, three NAC TF encoding genes, namely ONAC020, ONAC026, and ONAC023 express specifically during seed development, at extremely high levels. They exhibit significantly strong association with seed size/weight with the sequence variations located in the upstream regulatory region. Concomitantly, their expression pattern/levels during seed development vary amongst different accessions with variation in seed size. The alterations in the promoter sequences of the three genes, amongst the five rice accessions, correlate with the expression levels to a certain extent only. In terms of transcriptional properties, the three NAC TFs can activate and/or suppress downstream genes, though to different extents. Only ONAC026 is localized to the nucleus while ONAC020 and ONAC023 are targeted to the ER and cytoplasm, respectively. Interestingly, these two proteins interact with ONAC026 and the dimers localize in the nucleus. Trans-splicing between ONAC020 and ONAC026 results in three additional forms of ONAC020. The transcriptional properties including activation, repression, subcellular localization and heterodimerization of trans-spliced forms of ONAC020 and ONAC026 are different, indicating toward their role as competitors. The analysis presented in this paper helps to conclude that the three NAC genes, which are associated with seed size, have independent as well as overlapping roles during the process and can be exploited as potential targets for crop improvement.
Collapse
|
23
|
Pandurangaiah M, Lokanadha Rao G, Sudhakarbabu O, Nareshkumar A, Kiranmai K, Lokesh U, Thapa G, Sudhakar C. Overexpression of horsegram (Macrotyloma uniflorum Lam.Verdc.) NAC transcriptional factor (MuNAC4) in groundnut confers enhanced drought tolerance. Mol Biotechnol 2015; 56:758-69. [PMID: 24748414 DOI: 10.1007/s12033-014-9754-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The NAC family being the largest plant-specific transcription factors functions in diverse and vital physiological processes during development. NAC proteins are known to be crucial in imparting tolerance to plants against abiotic stresses, such as drought and salinity, but the functions of most of them are still elusive. In this study, we report for the first time expression of the MuNAC4, a member of NAC transcription factor from horsegram (Macrotyloma uniflorum) conferring drought tolerance. The groundnut (Arachis hypogaea) transgenics were generated using recombinant MuNAC4 binary vector transformation approach. Molecular analysis of these transgenic lines confirmed the stable gene integration and expression of the MuNAC4 gene. Twelve lines of T5 generation exhibited significantly enhanced tolerance to drought stress with proliferated lateral root growth as compared to wild types. Transgenics exposed to long-term desiccation stress assays showed increased lateral roots and greenish growth. The physiological parameters analysis also suggests that overexpression of MuNAC4 plays a significant role in improving the water stress tolerance of transgenic groundnut, reducing the damage to membrane structures and enhancing osmotic adjustment and antioxidative enzyme regulation under stress. This study validates MuNAC4 as an important candidate gene for future phytoengineering approaches for drought tolerance in crop plants.
Collapse
Affiliation(s)
- Merum Pandurangaiah
- Department of Botany, Sri Krishnadevaraya University, Anantapuram, 515003, India
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Guo W, Zhang J, Zhang N, Xin M, Peng H, Hu Z, Ni Z, Du J. The Wheat NAC Transcription Factor TaNAC2L Is Regulated at the Transcriptional and Post-Translational Levels and Promotes Heat Stress Tolerance in Transgenic Arabidopsis. PLoS One 2015; 10:e0135667. [PMID: 26305210 PMCID: PMC4549282 DOI: 10.1371/journal.pone.0135667] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 07/24/2015] [Indexed: 01/01/2023] Open
Abstract
Heat stress poses a serious threat to global crop production. In efforts that aim to mitigate the adverse effects of heat stress on crops, a variety of genetic tools are being used to develop plants with improved thermotolerance. The characterization of important regulators of heat stress tolerance provides essential information for this aim. In this study, we examine the wheat (Triticum aestivum) NAC transcription factor gene TaNAC2L. High temperature induced TaNAC2L expression in wheat and overexpression of TaNAC2L in Arabidopsis thaliana enhanced acquired heat tolerance without causing obvious alterations in phenotype compared with wild type under normal conditions. TaNAC2L overexpression also activated the expression of heat-related genes in the transgenic Arabidopsis plants, suggesting that TaNAC2L may improve heat tolerance by regulating the expression of stress-responsive genes. Notably, TaNAC2L is also regulated at the post-translational level and might be degraded via a proteasome-mediated pathway. Thus, this wheat transcription factor may have potential uses in enhancing thermotolerance in crops.
Collapse
Affiliation(s)
- Weiwei Guo
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre (Beijing), Beijing, 100193, China
| | - Jinxia Zhang
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre (Beijing), Beijing, 100193, China
| | - Ning Zhang
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre (Beijing), Beijing, 100193, China
| | - Mingming Xin
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre (Beijing), Beijing, 100193, China
| | - Huiru Peng
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre (Beijing), Beijing, 100193, China
| | - Zhaorong Hu
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre (Beijing), Beijing, 100193, China
| | - Zhongfu Ni
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre (Beijing), Beijing, 100193, China
| | - Jinkun Du
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre (Beijing), Beijing, 100193, China
- * E-mail:
| |
Collapse
|
25
|
Wang B, Guo X, Wang C, Ma J, Niu F, Zhang H, Yang B, Liang W, Han F, Jiang YQ. Identification and characterization of plant-specific NAC gene family in canola (Brassica napus L.) reveal novel members involved in cell death. PLANT MOLECULAR BIOLOGY 2015; 87:395-411. [PMID: 25616736 DOI: 10.1007/s11103-015-0286-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 01/16/2015] [Indexed: 05/10/2023]
Abstract
NAC transcription factors are plant-specific and play important roles in plant development processes, response to biotic and abiotic cues and hormone signaling. However, to date, little is known about the NAC genes in canola (or oilseed rape, Brassica napus L.). In this study, a total of 60 NAC genes were identified from canola through a systematical analysis and mining of expressed sequence tags. Among these, the cDNA sequences of 41 NAC genes were successfully cloned. The translated protein sequences of canola NAC genes with the NAC genes from representative species were phylogenetically clustered into three major groups and multiple subgroups. The transcriptional activities of these BnaNAC proteins were assayed in yeast. In addition, by quantitative real-time RT-PCR, we further observed that some of these BnaNACs were regulated by different hormone stimuli or abiotic stresses. Interestingly, we successfully identified two novel BnaNACs, BnaNAC19 and BnaNAC82, which could elicit hypersensitive response-like cell death when expressed in Nicotiana benthamiana leaves, which was mediated by accumulation of reactive oxygen species. Overall, our work has laid a solid foundation for further characterization of this important NAC gene family in canola.
Collapse
Affiliation(s)
- Boya Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, and College of Life Sciences, Northwest A & F University, Yangling, 712100, Shaanxi, China,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Genome-wide identification and expression analysis of the CaNAC family members in chickpea during development, dehydration and ABA treatments. PLoS One 2014; 9:e114107. [PMID: 25479253 PMCID: PMC4257607 DOI: 10.1371/journal.pone.0114107] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 11/02/2014] [Indexed: 02/07/2023] Open
Abstract
The plant-specific NAC transcription factors (TFs) play important roles in regulation of diverse biological processes, including development, growth, cell division and responses to environmental stimuli. In this study, we identified the members of the NAC TF family of chickpea (Cicer arietinum) and assess their expression profiles during plant development and under dehydration and abscisic acid (ABA) treatments in a systematic manner. Seventy-one CaNAC genes were detected from the chickpea genome, including 8 membrane-bound members of which many might be involved in dehydration responses as judged from published literature. Phylogenetic analysis of the chickpea and well-known stress-related Arabidopsis and rice NACs enabled us to predict several putative stress-related CaNACs. By exploring available transcriptome data, we provided a comprehensive expression atlas of CaNACs in various tissues at different developmental stages. With the highest interest in dehydration responses, we examined the expression of the predicted stress-related and membrane-bound CaNACs in roots and leaves of chickpea seedlings, subjected to well-watered (control), dehydration and ABA treatments, using real-time quantitative PCR (RT-qPCR). Nine-teen of the 23 CaNACs examined were found to be dehydration-responsive in chickpea roots and/or leaves in either ABA-dependent or -independent pathway. Our results have provided a solid foundation for selection of promising tissue-specific and/or dehydration-responsive CaNAC candidates for detailed in planta functional analyses, leading to development of transgenic chickpea varieties with improved productivity under drought.
Collapse
|
27
|
Jensen MK, Skriver K. NAC transcription factor gene regulatory and protein-protein interaction networks in plant stress responses and senescence. IUBMB Life 2014; 66:156-166. [PMID: 24659537 DOI: 10.1002/iub.1256] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 02/28/2014] [Indexed: 12/18/2022]
Abstract
Plant-specific NAM/ATAF/CUC (NAC) transcription factors (TFs) have recently received considerable attention due to their significant roles in plant development and stress signaling. Here, we summarize progress in understanding NAC TFs in stress responses and senescence. We focus on interactions between the DNA-binding NAC domain and target genes, and between the large, mostly disordered transcription regulatory domain of NAC TFs and protein interaction partners. Recent studies have identified both up-stream regulators of NAC genes and down-stream NAC target genes, outlining regulatory networks associated with NAC-protein interactions. This connects molecular interactions and signal pathway intersections with biological functions with promising use in agriculture. © 2014 IUBMB Life, 66(3):156-166, 2014.
Collapse
Affiliation(s)
- Michael K Jensen
- Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, Copenhagen, Denmark
| | - Karen Skriver
- Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, Copenhagen, Denmark
| |
Collapse
|
28
|
Nuruzzaman M, Sharoni AM, Kikuchi S. Roles of NAC transcription factors in the regulation of biotic and abiotic stress responses in plants. Front Microbiol 2013; 4:248. [PMID: 24058359 PMCID: PMC3759801 DOI: 10.3389/fmicb.2013.00248] [Citation(s) in RCA: 464] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 08/05/2013] [Indexed: 12/25/2022] Open
Abstract
NAC transcription factors are one of the largest families of transcriptional regulators in plants, and members of the NAC gene family have been suggested to play important roles in the regulation of the transcriptional reprogramming associated with plant stress responses. A phylogenetic analysis of NAC genes, with a focus on rice and Arabidopsis, was performed. Herein, we present an overview of the regulation of the stress responsive NAC SNAC/(IX) group of genes that are implicated in the resistance to different stresses. SNAC factors have important roles for the control of biotic and abiotic stresses tolerance and that their overexpression can improve stress tolerance via biotechnological approaches. We also review the recent progress in elucidating the roles of NAC transcription factors in plant biotic and abiotic stresses. Modification of the expression pattern of transcription factor genes and/or changes in their activity contribute to the elaboration of various signaling pathways and regulatory networks. However, a single NAC gene often responds to several stress factors, and their protein products may participate in the regulation of several seemingly disparate processes as negative or positive regulators. Additionally, the NAC proteins function via auto-regulation or cross-regulation is extensively found among NAC genes. These observations assist in the understanding of the complex mechanisms of signaling and transcriptional reprogramming controlled by NAC proteins.
Collapse
Affiliation(s)
- Mohammed Nuruzzaman
- Plant Genome Research Unit, Division of Genome and Biodiversity Research, Agrogenomics Research Center, National Institute of Agrobiological Sciences Tsukuba, Japan ; Graduate School of Science and Engineering, Institute for Environmental Science and Technology, Saitama University Saitama, Japan
| | | | | |
Collapse
|
29
|
Lindemose S, O’Shea C, Jensen MK, Skriver K. Structure, function and networks of transcription factors involved in abiotic stress responses. Int J Mol Sci 2013; 14:5842-78. [PMID: 23485989 PMCID: PMC3634440 DOI: 10.3390/ijms14035842] [Citation(s) in RCA: 182] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 03/05/2013] [Accepted: 03/05/2013] [Indexed: 12/03/2022] Open
Abstract
Transcription factors (TFs) are master regulators of abiotic stress responses in plants. This review focuses on TFs from seven major TF families, known to play functional roles in response to abiotic stresses, including drought, high salinity, high osmolarity, temperature extremes and the phytohormone ABA. Although ectopic expression of several TFs has improved abiotic stress tolerance in plants, fine-tuning of TF expression and protein levels remains a challenge to avoid crop yield loss. To further our understanding of TFs in abiotic stress responses, emerging gene regulatory networks based on TFs and their direct targets genes are presented. These revealed components shared between ABA-dependent and independent signaling as well as abiotic and biotic stress signaling. Protein structure analysis suggested that TFs hubs of large interactomes have extended regions with protein intrinsic disorder (ID), referring to their lack of fixed tertiary structures. ID is now an emerging topic in plant science. Furthermore, the importance of the ubiquitin-proteasome protein degradation systems and modification by sumoylation is also apparent from the interactomes. Therefore; TF interaction partners such as E3 ubiquitin ligases and TF regions with ID represent future targets for engineering improved abiotic stress tolerance in crops.
Collapse
Affiliation(s)
- Søren Lindemose
- Biomolecular Sciences, Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, DK-2200 Copenhagen N, Denmark; E-Mails: (S.L.); (C.O.)
| | - Charlotte O’Shea
- Biomolecular Sciences, Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, DK-2200 Copenhagen N, Denmark; E-Mails: (S.L.); (C.O.)
| | - Michael Krogh Jensen
- Functional Genomics, Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, DK-2200 Copenhagen N, Denmark; E-Mail:
| | - Karen Skriver
- Biomolecular Sciences, Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, DK-2200 Copenhagen N, Denmark; E-Mails: (S.L.); (C.O.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +45-35321712
| |
Collapse
|
30
|
Huang W, Miao M, Kud J, Niu X, Ouyang B, Zhang J, Ye Z, Kuhl JC, Liu Y, Xiao F. SlNAC1, a stress-related transcription factor, is fine-tuned on both the transcriptional and the post-translational level. THE NEW PHYTOLOGIST 2013; 197:1214-1224. [PMID: 23278405 DOI: 10.1111/nph.12096] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 11/11/2012] [Indexed: 05/02/2023]
Abstract
The plant-specific NAC (NAM, ATAF1,2, CUC2) transcription factors play significant roles in diverse physiological processes. In this study, we determined the regulation of a stress-related tomato (Solanum lycopersicum) NAC1 (SlNAC1) transcription factor at both the transcriptional and the post-translational level. The SlNAC1 protein was found to be stable in the presence of proteasome-specific inhibitor MG132 or MG115 and ubiquitinated in plant cells, suggesting that the SlNAC1 is subject to the ubiquitin-proteasome system-mediated degradation. Deletion analysis identified a short segment of 10 amino acids (aa261-270) that was required for ubiquitin-proteasome system-mediated degradation, among which two leucine residues (L268 and L269) were critical for the protein instability of SlNAC1. Fusion of the degron (SlNAC1(191-270) ) containing these 10 amino acids to green fluorescent protein was found to be sufficient to trigger the degradation of the fusion protein. In addition, the SlNAC1 gene is strongly upregulated during Pseudomonas infection, while repression of the NAC1 ortholog in Nicotiana benthamiana resulted in enhanced susceptibility to Pseudomonas bacteria. These results suggest that rapid upregulation of the NAC1 gene resulting in more protein production is likely one of the strategies plants use to defend themselves against pathogen infection.
Collapse
Affiliation(s)
- Weizao Huang
- Department of Plant, Soil and Entomological Sciences, University of Idaho, Moscow, ID, 83844-2339, USA
- Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, 610066, China
| | - Min Miao
- Ministry of Education Key Laboratory for Bio-resource and Eco-environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Joanna Kud
- Department of Plant, Soil and Entomological Sciences, University of Idaho, Moscow, ID, 83844-2339, USA
| | - Xiangli Niu
- Department of Plant, Soil and Entomological Sciences, University of Idaho, Moscow, ID, 83844-2339, USA
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Bo Ouyang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Junhong Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Zhibiao Ye
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Joseph C Kuhl
- Department of Plant, Soil and Entomological Sciences, University of Idaho, Moscow, ID, 83844-2339, USA
| | - Yongsheng Liu
- Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, 610066, China
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Fangming Xiao
- Department of Plant, Soil and Entomological Sciences, University of Idaho, Moscow, ID, 83844-2339, USA
| |
Collapse
|
31
|
Ricachenevsky FK, Menguer PK, Sperotto RA. kNACking on heaven's door: how important are NAC transcription factors for leaf senescence and Fe/Zn remobilization to seeds? FRONTIERS IN PLANT SCIENCE 2013; 4:226. [PMID: 23847632 PMCID: PMC3696727 DOI: 10.3389/fpls.2013.00226] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 06/10/2013] [Indexed: 05/18/2023]
Abstract
Senescence is a coordinated process where a plant, or a part of it, engages in programmed cell death to salvage nutrients by remobilizing them to younger tissues or to developing seeds. As Fe and Zn deficiency are the two major nutritional disorders in humans, increased concentration of these nutrients through biofortification in cereal grains is a long-sought goal. Recent evidences point to a link between the onset of leaf senescence and increased Fe and Zn remobilization. In wheat, one member of the NAC (NAM, ATAF, and CUC) transcription factor (TF) family (NAM-B1) has a major role in the process, probably regulating key genes for the early onset of senescence, which results in higher Fe and Zn concentrations in grains. In rice, the most important staple food for nearly half of the world population, the NAM-B1 ortholog does not have the same function. However, other NAC proteins are related to senescence, and could be playing roles on the same remobilization pathway. Thus, these genes are potential tools for biofortification strategies in rice. Here we review the current knowledge on the relationship between senescence, Fe and Zn remobilization and the role of NAC TFs, with special attention to rice. We also propose a working model for OsNAC5, which would act on the regulation of nicotianamine (NA) synthesis and metal-NA remobilization.
Collapse
Affiliation(s)
- Felipe Klein Ricachenevsky
- Centro de Biotecnologia, Universidade Federal do Rio Grande do SulPorto Alegre, Rio Grande do Sul, Brazil
| | - Paloma Koprovski Menguer
- Departamento de Botânica, Universidade Federal do Rio Grande do SulPorto Alegre, Rio Grande do Sul, Brazil
| | - Raul Antonio Sperotto
- Centro de Ciências Biológicas e da Saúde, Programa de Pós-Graduação em Biotecnologia, Centro Universitário UNIVATESLajeado, Rio Grande do Sul, Brazil
- *Correspondence: Raul Antonio Sperotto, Centro de Ciências Biológicas e da Saúde, Programa de Pós-Graduação em Biotecnologia, Centro Universitário UNIVATES, Rua Avelino Tallini 171, Lajeado, Rio Grande do Sul 95.900-000, Brazil e-mail:
| |
Collapse
|
32
|
Di Giacomo E, Serino G, Frugis G. Emerging role of the ubiquitin proteasome system in the control of shoot apical meristem function(f). JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2013; 55:7-20. [PMID: 23164365 DOI: 10.1111/jipb.12010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The shoot apical meristem (SAM) is a population of undifferentiated cells at the tip of the shoot axis that establishes early during plant embryogenesis and gives rise to all shoot organs throughout the plant's life. A plethora of different families of transcription factors (TFs) play a key role in establishing the equilibrium between cell differentiation and stem cell maintenance in the SAM. Fine tuning of these regulatory proteins is crucial for a proper and fast SAM response to environmental and hormonal cues, and for development progression. One effective way to rapidly inactivate TFs involves regulated proteolysis by the ubiquitin/26S proteasome system (UPS). However, a possible role of UPS-dependent protein degradation in the regulation of key SAM TFs has not been thoroughly investigated. Here, we summarize recent evidence supporting a role for the UPS in SAM maintenance and function. We integrate this survey with an in silico analysis of publicly-available microarray databases which identified ubiquitin ligases that are expressed in specific areas within the SAM, suggesting that they may regulate or act downstream of meristem-specific factors.
Collapse
Affiliation(s)
- Elisabetta Di Giacomo
- Istituto di Biologia e Biotecnologia Agraria, UOS Roma, Consiglio Nazionale delle Ricerche, Monterotondo Scalo, Roma 00015, Italy
| | | | | |
Collapse
|
33
|
Jeong JS, Kim YS, Redillas MCFR, Jang G, Jung H, Bang SW, Choi YD, Ha SH, Reuzeau C, Kim JK. OsNAC5 overexpression enlarges root diameter in rice plants leading to enhanced drought tolerance and increased grain yield in the field. PLANT BIOTECHNOLOGY JOURNAL 2013; 11:101-14. [PMID: 23094910 DOI: 10.1111/pbi.12011] [Citation(s) in RCA: 241] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 09/19/2012] [Accepted: 09/19/2012] [Indexed: 05/02/2023]
Abstract
Drought conditions are among the most serious challenges to crop production worldwide. Here, we report the results of field evaluations of transgenic rice plants overexpressing OsNAC5, under the control of either the root-specific (RCc3) or constitutive (GOS2) promoters. Field evaluations over three growing seasons revealed that the grain yield of the RCc3:OsNAC5 and GOS2:OsNAC5 plants were increased by 9%-23% and 9%-26% under normal conditions, respectively. Under drought conditions, however, RCc3:OsNAC5 plants showed a significantly higher grain yield of 22%-63%, whilst the GOS2:OsNAC5 plants showed a reduced or similar yield to the nontransgenic (NT) controls. Both the RCc3:OsNAC5 and GOS2:OsNAC5 plants were found to have larger roots due to an enlarged stele and aerenchyma at flowering stage. Cell numbers per cortex layer and stele of developing roots were higher in both transgenic plants than NT controls, contributing to the increase in root diameter. The root diameter was enlarged to a greater extent in the RCc3:OsNAC5, suggesting the importance of this phenotype for enhanced drought tolerance. Microarray experiments identified 25 up-regulated genes by more than three-fold (P < 0.01) in the roots of both transgenic lines. Also identified were 19 and 18 up-regulated genes that are specific to the RCc3:OsNAC5 and GOS2:OsNAC5 roots, respectively. Of the genes specifically up-regulated in the RCc3:OsNAC5 roots, GLP, PDX, MERI5 and O-methyltransferase were implicated in root growth and development. Our present findings demonstrate that the root-specific overexpression of OsNAC5 enlarges roots significantly and thereby enhances drought tolerance and grain yield under field conditions.
Collapse
Affiliation(s)
- Jin Seo Jeong
- School of Biotechnology and Environmental Engineering, Myongji University, Yongin, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Zheng N, Huang X, Yin B, Wang D, Xie Q. An effective system for detecting protein-protein interaction based on in vivo cleavage by PPV NIa protease. Protein Cell 2012; 3:921-8. [PMID: 23096592 DOI: 10.1007/s13238-012-2101-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 09/25/2012] [Indexed: 01/02/2023] Open
Abstract
Detection of protein-protein interaction can provide valuable information for investigating the biological function of proteins. The current methods that applied in protein-protein interaction, such as co-immunoprecipitation and pull down etc., often cause plenty of working time due to the burdensome cloning and purification procedures. Here we established a system that characterization of protein-protein interaction was accomplished by co-expression and simply purification of target proteins from one expression cassette within E. coli system. We modified pET vector into co-expression vector pInvivo which encoded PPV NIa protease, two cleavage site F and two multiple cloning sites that flanking cleavage sites. The target proteins (for example: protein A and protein B) were inserted at multiple cloning sites and translated into polyprotein in the order of MBP tag-protein A-site F-PPV NIa protease-site F-protein B-His(6) tag. PPV NIa protease carried out intracellular cleavage along expression, then led to the separation of polyprotein components, therefore, the interaction between protein A-protein B can be detected through one-step purification and analysis. Negative control for protein B was brought into this system for monitoring interaction specificity. We successfully employed this system to prove two cases of reported protien-protein interaction: RHA2a/ANAC and FTA/FTB. In conclusion, a convenient and efficient system has been successfully developed for detecting protein-protein interaction.
Collapse
Affiliation(s)
- Nuoyan Zheng
- Department of Nephrology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510000, China
| | | | | | | | | |
Collapse
|
35
|
Han JJ, Lin W, Oda Y, Cui KM, Fukuda H, He XQ. The proteasome is responsible for caspase-3-like activity during xylem development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 72:129-41. [PMID: 22680239 DOI: 10.1111/j.1365-313x.2012.05070.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Xylem development is a process of xylem cell terminal differentiation that includes initial cell division, cell expansion, secondary cell wall formation and programmed cell death (PCD). PCD in plants and apoptosis in animals share many common characteristics. Caspase-3, which displays Asp-Glu-Val-Asp (DEVD) specificity, is a crucial executioner during animal cells apoptosis. Although a gene orthologous to caspase-3 is absent in plants, caspase-3-like activity is involved in many cases of PCD and developmental processes. However, there is no direct evidence that caspase-3-like activity exists in xylem cell death. In this study, we showed that caspase-3-like activity is present and is associated with secondary xylem development in Populus tomentosa. The protease responsible for the caspase-3-like activity was purified from poplar secondary xylem using hydrophobic interaction chromatography (HIC), Q anion exchange chromatography and gel filtration chromatography. After identification by liquid chromatography-tandem mass spectrometry (LC-MS/MS), it was revealed that the 20S proteasome (20SP) was responsible for the caspase-3-like activity in secondary xylem development. In poplar 20SP, there are seven α subunits encoded by 12 genes and seven β subunits encoded by 12 genes. Pharmacological assays showed that Ac-DEVD-CHO, a caspase-3 inhibitor, suppressed xylem differentiation in the veins of Arabidopsis cotyledons. Furthermore, clasto-lactacystin β-lactone, a proteasome inhibitor, inhibited PCD of tracheary element in a VND6-induced Arabidopsis xylogenic culture. In conclusion, the 20S proteasome is responsible for caspase-3-like activity and is involved in xylem development.
Collapse
Affiliation(s)
- Jia-Jia Han
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | | | | | | | | | | |
Collapse
|
36
|
Shan W, Kuang JF, Chen L, Xie H, Peng HH, Xiao YY, Li XP, Chen WX, He QG, Chen JY, Lu WJ. Molecular characterization of banana NAC transcription factors and their interactions with ethylene signalling component EIL during fruit ripening. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:5171-87. [PMID: 22888129 PMCID: PMC3430993 DOI: 10.1093/jxb/ers178] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The plant-specific NAC (NAM, ATAF1/2, and CUC2) transcription factors (TFs) play important roles in plant growth, development, and stress responses. However, the precise role of NAC TFs in relation to fruit ripening is poorly understood. In this study, six NAC genes, designated MaNAC1-MaNAC6, were isolated and characterized from banana fruit. Subcellular localization showed that MaNAC1-MaNAC5 proteins localized preferentially to the nucleus, while MaNAC6 was distributed throughout the entire cell. A transactivation assay in yeast demonstrated that MaNAC4 and MaNAC6, as well as their C-terminal regions, possessed trans-activation activity. Gene expression profiles in fruit with four different ripening characteristics, including natural, ethylene-induced, 1-methylcyclopropene (1-MCP)-delayed, and a combination of 1-MCP with ethylene treatment, revealed that the MaNAC genes were differentially expressed in peel and pulp during post-harvest ripening. MaNAC1 and MaNAC2 were apparently upregulated by ethylene in peel and pulp, consistent with the increase in ethylene production. In contrast, MaNAC3 in peel and pulp and MaNAC5 in peel were constitutively expressed, and transcripts of MaNAC4 in peel and pulp and MaNAC6 in peel decreased, while MaNAC5 or MaNAC6 in pulp increased slightly during fruit ripening. Furthermore, the MaNAC2 promoter was activated after ethylene application, further enhancing the involvement of MaNAC2 in fruit ripening. More importantly, yeast two-hybrid and bimolecular fluorescence complementation analyses confirmed that MaNAC1/2 physically interacted with a downstream component of ethylene signalling, ethylene insensitive 3 (EIN3)-like protein, termed MaEIL5, which was downregulated during ripening. Taken together, these results suggest that MaNACs such as MaNAC1/MaNAC2, may be involved in banana fruit ripening via interaction with ethylene signalling components.
Collapse
Affiliation(s)
- Wei Shan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Key Laboratory for Postharvest Science, College of Horticultural ScienceSouth China Agricultural University, Guangzhou 510642, PR China
- These authors contributed equally to this work
| | - Jian-fei Kuang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Key Laboratory for Postharvest Science, College of Horticultural ScienceSouth China Agricultural University, Guangzhou 510642, PR China
- These authors contributed equally to this work
| | - Lei Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Key Laboratory for Postharvest Science, College of Horticultural ScienceSouth China Agricultural University, Guangzhou 510642, PR China
| | - Hui Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Key Laboratory for Postharvest Science, College of Horticultural ScienceSouth China Agricultural University, Guangzhou 510642, PR China
| | - Huan-huan Peng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Key Laboratory for Postharvest Science, College of Horticultural ScienceSouth China Agricultural University, Guangzhou 510642, PR China
| | - Yun-yi Xiao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Key Laboratory for Postharvest Science, College of Horticultural ScienceSouth China Agricultural University, Guangzhou 510642, PR China
| | - Xue-ping Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Key Laboratory for Postharvest Science, College of Horticultural ScienceSouth China Agricultural University, Guangzhou 510642, PR China
| | - Wei-xin Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Key Laboratory for Postharvest Science, College of Horticultural ScienceSouth China Agricultural University, Guangzhou 510642, PR China
| | - Quan-guang He
- Institute of Agro-food Science & Technology, Guangxi Academy of Agricultural SciencesNanning 530007, PR China
| | - Jian-ye Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Key Laboratory for Postharvest Science, College of Horticultural ScienceSouth China Agricultural University, Guangzhou 510642, PR China
- To whom correspondence should be addressed. E-mail: or
| | - Wang-jin Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Key Laboratory for Postharvest Science, College of Horticultural ScienceSouth China Agricultural University, Guangzhou 510642, PR China
- To whom correspondence should be addressed. E-mail: or
| |
Collapse
|
37
|
Aslam M, Grover A, Sinha VB, Fakher B, Pande V, Yadav PV, Gupta SM, Anandhan S, Ahmed Z. Isolation and characterization of cold responsive NAC gene from Lepidium latifolium. Mol Biol Rep 2012; 39:9629-38. [PMID: 22733493 DOI: 10.1007/s11033-012-1828-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Accepted: 06/10/2012] [Indexed: 11/28/2022]
Abstract
Cold stress is one of the major limiting factor in crop productivity. Plants growing in colder regions acclimatize to severe conditions owing to the presence of 'cold stress tolerant genes'. Isolation and functional characterization of these genes are important before their exploitation in modern agricultural practices. Here, we have cloned full length NAC gene (1,388 bp) from Lepidium latifolium (LlaNAC). This gene belongs to NAP sub-group which also includes ANAC056 of Arabidopsis thaliana, nearest relative of LlaNAC. Upstream analysis and microarray data analysis of ANAC056 suggested that LlaNAC might also be ABA-regulated. However, quantitative transcript expression analysis revealed that LlaNAC transcript upregulated by cold stress and downregulated in response to varying concentrations of abscisic acid, salicylic acid, calcium chloride and ethylene. There is also a possibility that the gene may be getting regulated by a pathway whose components are still unknown. Any further investigations to understand the mechanism of regulation of LlaNAC gene expression are likely to find immense importance in plant biotechnology and crop improvement.
Collapse
Affiliation(s)
- Mohammad Aslam
- Defence Institute of Bio-Energy Research, Goraparao, Haldwani 263139, India.
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Puranik S, Sahu PP, Srivastava PS, Prasad M. NAC proteins: regulation and role in stress tolerance. TRENDS IN PLANT SCIENCE 2012; 17:369-81. [PMID: 22445067 DOI: 10.1016/j.tplants.2012.02.004] [Citation(s) in RCA: 639] [Impact Index Per Article: 49.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Revised: 01/31/2012] [Accepted: 02/16/2012] [Indexed: 05/17/2023]
Abstract
The plant-specific NAC (NAM, ATAF1,2 and CUC2) proteins constitute a major transcription factor family renowned for their roles in several developmental programs. Despite their highly conserved DNA-binding domains, their remarkable diversification across plants reflects their numerous functions. Lately, they have received much attention as regulators in various stress signaling pathways which may include interplay of phytohormones. This review summarizes the recent progress in research on NACs highlighting the proteins' potential for engineering stress tolerance against various abiotic and biotic challenges. We discuss regulatory components and targets of NAC proteins in the context of their prospective role for crop improvement strategies via biotechnological intervention.
Collapse
Affiliation(s)
- Swati Puranik
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India
| | | | | | | |
Collapse
|
39
|
DNA binding by the plant-specific NAC transcription factors in crystal and solution: a firm link to WRKY and GCM transcription factors. Biochem J 2012; 444:395-404. [DOI: 10.1042/bj20111742] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
NAC (NAM/ATAF/CUC) plant transcription factors regulate essential processes in development, stress responses and nutrient distribution in important crop and model plants (rice, Populus, Arabidopsis), which makes them highly relevant in the context of crop optimization and bioenergy production. The structure of the DNA-binding NAC domain of ANAC019 has previously been determined by X-ray crystallography, revealing a dimeric and predominantly β-fold structure, but the mode of binding to cognate DNA has remained elusive. In the present study, information from low resolution X-ray structures and small angle X-ray scattering on complexes with oligonucleotides, mutagenesis and (DNase I and uranyl photo-) footprinting, is combined to form a structural view of DNA-binding, and for the first time provide experimental evidence for the speculated relationship between plant-specific NAC proteins, WRKY transcription factors and the mammalian GCM (Glial cell missing) transcription factors, which all use a β-strand motif for DNA-binding. The structure shows that the NAC domain inserts the edge of its core β-sheet into the major groove, while leaving the DNA largely undistorted. The structure of the NAC–DNA complex and a new crystal form of the unbound NAC also indicate limited flexibility of the NAC dimer arrangement, which could be important in recognizing suboptimal binding sites.
Collapse
|
40
|
Comprehensive gene expression analysis of the NAC gene family under normal growth conditions, hormone treatment, and drought stress conditions in rice using near-isogenic lines (NILs) generated from crossing Aday Selection (drought tolerant) and IR64. Mol Genet Genomics 2012; 287:389-410. [PMID: 22526427 PMCID: PMC3336058 DOI: 10.1007/s00438-012-0686-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 03/26/2012] [Indexed: 12/27/2022]
Abstract
The NAC (NAM, ATAF1/2 and CUC2) genes are plant-specific transcriptional factors known to play diverse roles in various plant developmental processes. We describe the rice (Oryza sativa) OsNAC genes expression profiles (GEPs) under normal and water-deficit treatments (WDTs). The GEPs of the OsNAC genes were analyzed in 25 tissues covering the entire life cycle of Minghui 63. High expression levels of 17 genes were demonstrated in certain tissues under normal conditions suggesting that these genes may play important roles in specific organs. We determined that 16 genes were differentially expressed under at least 1 phytohormone (NAA, GA3, KT, SA, ABA, and JA) treatment. To investigate the GEPs in the root, leaf, and panicle of three rice genotypes [e.g., 2 near-isogenic lines (NILs) and IR64], we used two NILs from a common genetic combination backcross developed by Aday Selection and IR64. WDTs were applied using the fraction of transpirable soil water at severe, mild, and control conditions. Transcriptomic analysis using a 44K oligoarray from Agilent was performed on all the tissue samples. We identified common and specific genes in all tissues from the two NILs under both WDTs, and the majority of the OsNAC genes that were activated were in the drought-tolerant IR77298-14-1-2-B-10 line compared with the drought-susceptible IR77298-14-1-2-B-13 or IR64. In IR77298-14-1-2-B-10, seventeen genes were very specific in their expression levels. Approximately 70 % of the genes from subgroups SNAC and NAM/CUC3 were activated in the leaf, but 37 % genes from subgroup SND were inactivated in the root compared with the control under severe stress conditions. These results provide a useful reference for the cloning of candidate genes from the specific subgroup for further functional analysis.
Collapse
|
41
|
Molecular cloning and characterization of a novel RING zinc-finger protein gene up-regulated under in vitro salt stress in cassava. Mol Biol Rep 2012; 39:6513-9. [PMID: 22307786 DOI: 10.1007/s11033-012-1479-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 01/24/2012] [Indexed: 01/14/2023]
Abstract
Cassava (Manihot esculenta Crantz) is one of the world's most important food crops. It is cultivated mainly in developing countries of tropics, since its root is a major source of calories for low-income people due to its high productivity and resistance to many abiotic and biotic factors. A previous study has identified a partial cDNA sequence coding for a putative RING zinc finger in cassava storage root. The RING zinc finger protein is a specialized type of zinc finger protein found in many organisms. Here, we isolated the full-length cDNA sequence coding for M. esculenta RZF (MeRZF) protein by a combination of 5' and 3' RACE assays. BLAST analysis showed that its deduced amino acid sequence has a high level of similarity to plant proteins of RZF family. MeRZF protein contains a signature sequence motif for a RING zinc finger at its C-terminal region. In addition, this protein showed a histidine residue at the fifth coordination site, likely belonging to the RING-H2 subgroup, as confirmed by our phylogenetic analysis. There is also a transmembrane domain in its N-terminal region. Finally, semi-quantitative RT-PCR assays showed that MeRZF expression is increased in detached leaves treated with sodium chloride. Here, we report the first evidence of a RING zinc finger gene of cassava showing potential role in response to salt stress.
Collapse
|
42
|
Kjaersgaard T, Jensen MK, Christiansen MW, Gregersen P, Kragelund BB, Skriver K. Senescence-associated barley NAC (NAM, ATAF1,2, CUC) transcription factor interacts with radical-induced cell death 1 through a disordered regulatory domain. J Biol Chem 2011; 286:35418-35429. [PMID: 21856750 DOI: 10.1074/jbc.m111.247221] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Senescence in plants involves massive nutrient relocation and age-related cell death. Characterization of the molecular components, such as transcription factors (TFs), involved in these processes is required to understand senescence. We found that HvNAC005 and HvNAC013 of the plant-specific NAC (NAM, ATAF1,2, CUC) TF family are up-regulated during senescence in barley (Hordeum vulgare). Both HvNAC005 and HvNAC013 bound the conserved NAC DNA target sequence. Computational and biophysical analyses showed that both proteins are intrinsically disordered in their large C-terminal domains, which are transcription regulatory domains (TRDs) in many NAC TFs. Using motif searches and interaction studies in yeast we identified an evolutionarily conserved sequence, the LP motif, in the TRD of HvNAC013. This motif was sufficient for transcriptional activity. In contrast, HvNAC005 did not function as a transcriptional activator suggesting that an involvement of HvNAC013 and HvNAC005 in senescence will be different. HvNAC013 interacted with barley radical-induced cell death 1 (RCD1) via the very C-terminal part of its TRD, outside of the region containing the LP motif. No significant secondary structure was induced in the HvNAC013 TRD upon interaction with RCD1. RCD1 also interacted with regions dominated by intrinsic disorder in TFs of the MYB and basic helix-loop-helix families. We propose that RCD1 is a regulatory protein capable of interacting with many different TFs by exploiting their intrinsic disorder. In addition, we present the first structural characterization of NAC C-terminal domains and relate intrinsic disorder and sequence motifs to activity and protein-protein interactions.
Collapse
Affiliation(s)
- Trine Kjaersgaard
- Department of Biology, University of Copenhagen, Ole Maaloesvej 5, Copenhagen DK-2200
| | - Michael K Jensen
- Department of Biology, University of Copenhagen, Ole Maaloesvej 5, Copenhagen DK-2200
| | - Michael W Christiansen
- Department of Genetics and Biotechnology, University of Aarhus, Research Center Flakkebjerg, 4200 Slagelse, Denmark
| | - Per Gregersen
- Department of Genetics and Biotechnology, University of Aarhus, Research Center Flakkebjerg, 4200 Slagelse, Denmark
| | - Birthe B Kragelund
- Department of Biology, University of Copenhagen, Ole Maaloesvej 5, Copenhagen DK-2200
| | - Karen Skriver
- Department of Biology, University of Copenhagen, Ole Maaloesvej 5, Copenhagen DK-2200.
| |
Collapse
|
43
|
Le DT, Nishiyama R, Watanabe Y, Mochida K, Yamaguchi-Shinozaki K, Shinozaki K, Tran LSP. Genome-wide survey and expression analysis of the plant-specific NAC transcription factor family in soybean during development and dehydration stress. DNA Res 2011; 18:263-76. [PMID: 21685489 PMCID: PMC3158466 DOI: 10.1093/dnares/dsr015] [Citation(s) in RCA: 259] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2011] [Accepted: 05/24/2011] [Indexed: 01/17/2023] Open
Abstract
Plant-specific NAC transcription factors (TFs) play important roles in regulating diverse biological processes, including development, senescence, growth, cell division and responses to environmental stress stimuli. Within the soybean genome, we identified 152 full-length GmNAC TFs, including 11 membrane-bound members. In silico analysis of the GmNACs, together with their Arabidopsis and rice counterparts, revealed similar NAC architecture. Next, we explored the soybean Affymetrix array and Illumina transcriptome sequence data to analyse tissue-specific expression profiles of GmNAC genes. Phylogenetic analysis using stress-related NAC TFs from Arabidopsis and rice as seeding sequences identified 58 of the 152 GmNACs as putative stress-responsive genes, including eight previously reported dehydration-responsive GmNACs. We could design gene-specific primers for quantitative real-time PCR verification of 38 out of 50 newly predicted stress-related genes. Twenty-five and six GmNACs were found to be induced and repressed 2-fold or more, respectively, in soybean roots and/or shoots in response to dehydration. GmNAC085, whose amino acid sequence was 39%; identical to that of well-known SNAC1/ONAC2, was the most induced gene upon dehydration, showing 390-fold and 20-fold induction in shoots and roots, respectively. Our systematic analysis has identified excellent tissue-specific and/or dehydration-responsive candidate GmNAC genes for in-depth characterization and future development of improved drought-tolerant transgenic soybeans.
Collapse
Affiliation(s)
- Dung Tien Le
- Signaling Pathway Research Unit, Plant Science Center, RIKEN Yokohama Institute, 1-7-22, Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
- Agricultural Genetics Institute, Vietnamese Academy of Agricultural Science, Pham-Van-Dong Str., Hanoi, Vietnam
| | - Rie Nishiyama
- Signaling Pathway Research Unit, Plant Science Center, RIKEN Yokohama Institute, 1-7-22, Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | - Yasuko Watanabe
- Signaling Pathway Research Unit, Plant Science Center, RIKEN Yokohama Institute, 1-7-22, Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | - Keiichi Mochida
- Gene Discovery Research Group, Plant Science Center, RIKEN Yokohama Institute, 1-7-22, Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | | | - Kazuo Shinozaki
- Gene Discovery Research Group, Plant Science Center, RIKEN Yokohama Institute, 1-7-22, Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | - Lam-Son Phan Tran
- Signaling Pathway Research Unit, Plant Science Center, RIKEN Yokohama Institute, 1-7-22, Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| |
Collapse
|
44
|
Fujita Y, Fujita M, Shinozaki K, Yamaguchi-Shinozaki K. ABA-mediated transcriptional regulation in response to osmotic stress in plants. JOURNAL OF PLANT RESEARCH 2011; 124:509-25. [PMID: 21416314 DOI: 10.1007/s10265-011-0412-3] [Citation(s) in RCA: 605] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Accepted: 02/15/2011] [Indexed: 05/18/2023]
Abstract
The plant hormone abscisic acid (ABA) plays a pivotal role in a variety of developmental processes and adaptive stress responses to environmental stimuli in plants. Cellular dehydration during the seed maturation and vegetative growth stages induces an increase in endogenous ABA levels, which control many dehydration-responsive genes. In Arabidopsis plants, ABA regulates nearly 10% of the protein-coding genes, a much higher percentage than other plant hormones. Expression of the genes is mainly regulated by two different families of bZIP transcription factors (TFs), ABI5 in the seeds and AREB/ABFs in the vegetative stage, in an ABA-responsive-element (ABRE) dependent manner. The SnRK2-AREB/ABF pathway governs the majority of ABA-mediated ABRE-dependent gene expression in response to osmotic stress during the vegetative stage. In addition to osmotic stress, the circadian clock and light conditions also appear to participate in the regulation of ABA-mediated gene expression, likely conferring versatile tolerance and repressing growth under stress conditions. Moreover, various other TFs belonging to several classes, including AP2/ERF, MYB, NAC, and HD-ZF, have been reported to engage in ABA-mediated gene expression. This review mainly focuses on the transcriptional regulation of ABA-mediated gene expression in response to osmotic stress during the vegetative growth stage in Arabidopsis.
Collapse
Affiliation(s)
- Yasunari Fujita
- Biological Resources Division, Japan International Research Center for Agricultural Sciences, 1-1 Ohwashi, Tsukuba, Ibaraki 305-8686, Japan
| | | | | | | |
Collapse
|
45
|
Ohnuma T, Numata T, Osawa T, Mizuhara M, Lampela O, Juffer AH, Skriver K, Fukamizo T. A class V chitinase from Arabidopsis thaliana: gene responses, enzymatic properties, and crystallographic analysis. PLANTA 2011; 234:123-37. [PMID: 21390509 DOI: 10.1007/s00425-011-1390-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2010] [Accepted: 02/21/2011] [Indexed: 05/24/2023]
Abstract
Expression of a class V chitinase gene (At4g19810, AtChiC) in Arabidopsis thaliana was examined by quantitative real-time PCR and by analyzing microarray data available at Genevestigator. The gene expression was induced by the plant stress-related hormones abscisic acid (ABA) and jasmonic acid (JA) and by the stress resulting from the elicitor flagellin, NaCl, and osmosis. The recombinant AtChiC protein was produced in E. coli, purified, and characterized with respect to the structure and function. The recombinant AtChiC hydrolyzed N-acetylglucosamine oligomers producing dimers from the non-reducing end of the substrates. The crystal structure of AtChiC was determined by the molecular replacement method at 2.0 Å resolution. AtChiC was found to adopt an (β/α)(8) fold with a small insertion domain composed of an α-helix and a five-stranded β-sheet. From docking simulation of AtChiC with pentameric substrate, the amino acid residues responsible for substrate binding were found to be well conserved when compared with those of the class V chitinase from Nicotiana tabacum (NtChiV). All of the structural and functional properties of AtChiC are quite similar to those obtained for NtChiV, and seem to be common to class V chitinases from higher plants.
Collapse
Affiliation(s)
- Takayuki Ohnuma
- Department of Advanced Bioscience, Kinki University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Hao YJ, Song QX, Chen HW, Zou HF, Wei W, Kang XS, Ma B, Zhang WK, Zhang JS, Chen SY. Plant NAC-type transcription factor proteins contain a NARD domain for repression of transcriptional activation. PLANTA 2010; 232:1033-43. [PMID: 20683728 DOI: 10.1007/s00425-010-1238-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Accepted: 07/12/2010] [Indexed: 05/02/2023]
Abstract
Plant-specific transcription factor NAC proteins play essential roles in many biological processes such as development, senescence, morphogenesis, and stress signal transduction pathways. In the NAC family, some members function as transcription activators while others act as repressors. In the present study we found that though the full-length GmNAC20 from soybean did not have transcriptional activation activity, the carboxy-terminal activation domain of GmNAC20 had high transcriptional activation activity in the yeast assay system. Deletion experiments revealed an active repression domain with 35 amino acids, named NARD (NAC Repression Domain), in the d subdomain of NAC DNA-binding domain. NARD can reduce the transcriptional activation ability of diverse transcription factors when fused to either the amino-terminal or the carboxy-terminal of the transcription factors. NARD-like sequences are also present in other NAC family members and they are functional repression domain when fused to VP16 in plant protoplast assay system. Mutation analysis of conserved amino acid residues in NARD showed that the hydrophobic LVFY motif may partially contribute to the repression function. It is hypothesized that the interactions between the repression domain NARD and the carboxy-terminal activation domain may finally determine the ability of NAC family proteins to regulate downstream gene expressions.
Collapse
Affiliation(s)
- Yu-Jun Hao
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Nuruzzaman M, Manimekalai R, Sharoni AM, Satoh K, Kondoh H, Ooka H, Kikuchi S. Genome-wide analysis of NAC transcription factor family in rice. Gene 2010; 465:30-44. [PMID: 20600702 DOI: 10.1016/j.gene.2010.06.008] [Citation(s) in RCA: 455] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Revised: 06/09/2010] [Accepted: 06/16/2010] [Indexed: 12/19/2022]
Abstract
We investigated 151 non-redundant NAC genes in rice and 117 in Arabidopsis. A complete overview of this gene family in rice is presented, including gene structures, phylogenies, genome localizations, and expression profiles. We also performed a comparative analysis of these genes in rice and Arabidopsis. Conserved amino acid residues and phylogeny construction using the NAC conserved domain sequence suggest that OsNAC gene family was classified broadly into two major groups (A and B) and sixteen subgroups in rice. We presented more specific phylogenetic analysis of OsNAC proteins based on the DNA-binding domain and known gene function, respectively. Loss of introns was observed in the segmental duplication. Homologous, paralogous, and orthologous searches of rice and Arabidopsis revealed that the major functional diversification within the NAC gene family predated the divergence of monocots and dicots. The chromosomal localizations of OsNAC genes indicated nine segmental duplication events involving 18 genes; 32 non-redundant OsNAC genes were involved in tandem duplications. Expression levels of this gene family were checked under various abiotic stresses (cold, drought, submergence, laid-down submergence, osmotic, salinity and hormone) and biotic stresses [infection with rice viruses such as RSV (rice stripe virus) and RTSV (rice tungro spherical virus)]. Biotic stresses are novel work and increase the possibilities for finding the best candidate genes. A preliminary search based on our microarray (22K and 44K) data suggested that more than 45 and 26 non-redundant genes in this family were upregulated in response to abiotic and biotic stresses, respectively. All of the genes were further investigated for their stress responsiveness by RT-PCR analysis. Six genes showed preferential expression under both biotic RSV and RTSV stress. Eleven genes were upregulated by at least three abiotic treatments. Our study provides a very useful reference for cloning and functional analysis of members of this gene family in rice.
Collapse
Affiliation(s)
- Mohammed Nuruzzaman
- Plant Genome Research Unit, Division of Genome and Biodiversity Research, National Institute of Agrobiological Sciences (NIAS), Tsukuba, Ibaraki 305-8602, Japan
| | | | | | | | | | | | | |
Collapse
|
48
|
Yamaguchi M, Ohtani M, Mitsuda N, Kubo M, Ohme-Takagi M, Fukuda H, Demura T. VND-INTERACTING2, a NAC domain transcription factor, negatively regulates xylem vessel formation in Arabidopsis. THE PLANT CELL 2010; 22:1249-63. [PMID: 20388856 PMCID: PMC2879754 DOI: 10.1105/tpc.108.064048] [Citation(s) in RCA: 250] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The Arabidopsis thaliana NAC domain transcription factor VASCULAR-RELATED NAC-DOMAIN7 (VND7) acts as a master regulator of xylem vessel differentiation. To understand the mechanism by which VND7 regulates xylem vessel differentiation, we used a yeast two-hybrid system to screen for proteins that interact with VND7 and identified cDNAs encoding two NAC domain proteins, VND-INTERACTING1 (VNI1) and VNI2. Binding assays demonstrated that VNI2 effectively interacts with VND7 and the VND family proteins, VND1-5, as well as with other NAC domain proteins at lower affinity. VNI2 is expressed in both xylem and phloem cells in roots and inflorescence stems. The expression of VNI2 overlaps with that of VND7 in elongating vessel precursors in roots. VNI2 contains a predicted PEST motif and a C-terminally truncated VNI2 protein, which lacks part of the PEST motif, is more stable than full-length VNI2. Transient reporter assays showed that VNI2 is a transcriptional repressor and can repress the expression of vessel-specific genes regulated by VND7. Expression of C-terminally truncated VNI2 under the control of the VND7 promoter inhibited the normal development of xylem vessels in roots and aerial organs. These data suggest that VNI2 regulates xylem cell specification as a transcriptional repressor that interacts with VND proteins and possibly also with other NAC domain proteins.
Collapse
Affiliation(s)
- Masatoshi Yamaguchi
- RIKEN Plant Science Center, Yokohama, Kanagawa 230-0045, Japan
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Misato Ohtani
- RIKEN Plant Science Center, Yokohama, Kanagawa 230-0045, Japan
- RIKEN Biomass Engineering Program, Yokohama, Kanagawa 230-0045, Japan
| | - Nobutaka Mitsuda
- Research Institute of Genome-Based Biofactory, National Insitute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8562, Japan
| | - Minoru Kubo
- RIKEN Plant Science Center, Yokohama, Kanagawa 230-0045, Japan
| | - Masaru Ohme-Takagi
- Research Institute of Genome-Based Biofactory, National Insitute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8562, Japan
| | - Hiroo Fukuda
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan
| | - Taku Demura
- RIKEN Plant Science Center, Yokohama, Kanagawa 230-0045, Japan
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
- RIKEN Biomass Engineering Program, Yokohama, Kanagawa 230-0045, Japan
- Address correspondence to
| |
Collapse
|
49
|
The Arabidopsis thaliana NAC transcription factor family: structure-function relationships and determinants of ANAC019 stress signalling. Biochem J 2010; 426:183-96. [PMID: 19995345 DOI: 10.1042/bj20091234] [Citation(s) in RCA: 255] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
TFs (transcription factors) are modular proteins minimally containing a DBD (DNA-binding domain) and a TRD (transcription regulatory domain). NAC [for NAM (no apical meristem), ATAF, CUC (cup-shaped cotyledon)] proteins comprise one of the largest plant TF families. They are key regulators of stress perception and developmental programmes, and most share an N-terminal NAC domain. On the basis of analyses of gene expression data and the phylogeny of Arabidopsis thaliana NAC TFs we systematically decipher structural and functional specificities of the conserved NAC domains and the divergent C-termini. Nine of the ten NAC domains analysed bind a previously identified conserved DNA target sequence with a CGT[GA] core, although with different affinities. Likewise, all but one of the NAC proteins analysed is dependent on the C-terminal region for transactivational activity. In silico analyses show that the NAC TRDs contain group-specific sequence motifs and are characterized by a high degree of intrinsic disorder. Furthermore, ANAC019 was identified as a new positive regulator of ABA (abscisic acid) signalling, conferring ABA hypersensitivity when ectopically expressed in plants. Interestingly, ectopic expression of the ANAC019 DBD or TRD alone also resulted in ABA hypersensitivity. Expression of stress-responsive marker genes [COR47 (cold-responsive 47), RD29b (responsive-to-desiccation 29b) and ERD11 (early-responsive-to-dehydration 11)] were also induced by full-length and truncated ANAC019. Domain-swapping experiments were used to analyse the specificity of this function. Chimaeric proteins, where the NAC domain of ANAC019 was replaced with the analogous regions from other NAC TFs, also have the ability to positively regulate ABA signalling. In contrast, replacing the ANAC019 TRD with other TRDs abolished ANAC019-mediated ABA hypersensitivity. In conclusion, our results demonstrate that the biochemical and functional specificity of NAC TFs is associated with both the DBDs and the TRDs.
Collapse
|
50
|
Pinheiro GL, Marques CS, Costa MDBL, Reis PAB, Alves MS, Carvalho CM, Fietto LG, Fontes EPB. Complete inventory of soybean NAC transcription factors: sequence conservation and expression analysis uncover their distinct roles in stress response. Gene 2009; 444:10-23. [PMID: 19497355 DOI: 10.1016/j.gene.2009.05.012] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Revised: 05/26/2009] [Accepted: 05/27/2009] [Indexed: 10/20/2022]
Abstract
We performed an inventory of soybean NAC transcription factors, in which 101 NAC domain-containing proteins were annotated into 15 different subgroups, showing a clear relationship between structure and function. The six previously described GmNAC proteins (GmNAC1 to GmNAC6) were located in the nucleus and a transactivation assay in yeast confirmed that GmNAC2, GmNAC3, GmNAC4 and GmNAC5 function as transactivators. We also analyzed the expression of the six NAC genes in response to a variety of stress conditions. GmNAC2, GmNAC3 and GmNAC4 were strongly induced by osmotic stress. GmNAC3 and GmNAC4 were also induced by ABA, JA and salinity but differed in their response to cold. Consistent with an involvement in cell death programs, the transient expression of GmNAC1, GmNAC5 and GmNAC6 in tobacco leaves resulted in cell death and enhanced expression of senescence markers. Our results indicate that the described soybean NACs are functionally non-redundant transcription factors involved in response to abiotic stresses and in cell death events in soybean.
Collapse
Affiliation(s)
- Guilherme L Pinheiro
- Departamento de Bioquímica e Biologia Molecular, Laboratório de Biologia Molecular de Plantas, BIOAGRO, Universidade Federal de Viçosa, 36570.000, Viçosa, Minas Gerais, Brazil
| | | | | | | | | | | | | | | |
Collapse
|