1
|
Macone A, Cappelletti C, Incocciati A, Piacentini R, Botta S, Boffi A, Bonamore A. Challenges in Exploiting Human H Ferritin Nanoparticles for Drug Delivery: Navigating Physiological Constraints. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e2016. [PMID: 39541599 DOI: 10.1002/wnan.2016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/14/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Over the past two decades, ferritin has emerged as a promising nanoparticle for drug delivery, catalyzing the development of numerous prototypes capable of encapsulating a wide array of therapeutic agents. These ferritin-based nanoparticles exhibit selectivity for various molecular targets and are distinguished by their potential biocompatibility, unique symmetrical structure, and highly controlled size. The hollow interior of ferritin nanoparticles allows for efficient encapsulation of diverse therapeutic agents, enhancing their delivery and effectiveness. Despite these promising features, the anticipated clinical advancements have yet to be fully realized. As a physiological protein with a central role in both health and disease, ferritin can exert unexpected effects on physiology when employed as a drug delivery system. Many studies have not thoroughly evaluated the pharmacokinetic properties of the ferritin protein shell when administered in vivo, overlooking crucial aspects such as biodistribution, clearance, cellular trafficking, and immune response. Addressing these challenges is crucial for achieving the desired transition from bench to bedside. Biodistribution studies need to account for ferritin's natural accumulation in specific organs (liver, spleen, and kidneys), which may lead to off-target effects. Moreover, the mechanisms of clearance and cellular trafficking must be elucidated to optimize the delivery and reduce potential toxicity of ferritin nanoparticles. Additionally, understanding the immune response elicited by exogenous ferritin is essential to mitigate adverse reactions and enhance therapeutic efficacy. A comprehensive understanding of these physiological constraints, along with innovative solutions, is essential to fully realize the therapeutic potential of ferritin nanoparticles paving the way for their successful clinical translation.
Collapse
Affiliation(s)
- Alberto Macone
- Department of Biochemical Sciences "Alessandro Rossi Fanelli", Sapienza University of Rome, Rome, Italy
| | - Chiara Cappelletti
- Department of Biochemical Sciences "Alessandro Rossi Fanelli", Sapienza University of Rome, Rome, Italy
| | - Alessio Incocciati
- Department of Biochemical Sciences "Alessandro Rossi Fanelli", Sapienza University of Rome, Rome, Italy
| | - Roberta Piacentini
- Department of Biochemical Sciences "Alessandro Rossi Fanelli", Sapienza University of Rome, Rome, Italy
| | - Sofia Botta
- Department of Biochemical Sciences "Alessandro Rossi Fanelli", Sapienza University of Rome, Rome, Italy
| | - Alberto Boffi
- Department of Biochemical Sciences "Alessandro Rossi Fanelli", Sapienza University of Rome, Rome, Italy
| | - Alessandra Bonamore
- Department of Biochemical Sciences "Alessandro Rossi Fanelli", Sapienza University of Rome, Rome, Italy
| |
Collapse
|
2
|
Shesh BP, Connor JR. A novel view of ferritin in cancer. Biochim Biophys Acta Rev Cancer 2023; 1878:188917. [PMID: 37209958 PMCID: PMC10330744 DOI: 10.1016/j.bbcan.2023.188917] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/13/2023] [Accepted: 05/13/2023] [Indexed: 05/22/2023]
Abstract
Since its discovery more than 85 years ago, ferritin has principally been known as an iron storage protein. However, new roles, beyond iron storage, are being uncovered. Novel processes involving ferritin such as ferritinophagy and ferroptosis and as a cellular iron delivery protein not only expand our thinking on the range of contributions of this protein but present an opportunity to target these pathways in cancers. The key question we focus on within this review is whether ferritin modulation represents a useful approach for treating cancers. We discussed novel functions and processes of this protein in cancers. We are not limiting this review to cell intrinsic modulation of ferritin in cancers, but also focus on its utility in the trojan horse approach in cancer therapeutics. The novel functions of ferritin as discussed herein realize the multiple roles of ferritin in cell biology that can be probed for therapeutic opportunities and further research.
Collapse
Affiliation(s)
| | - James R Connor
- Department of Neurosurgery, Penn State Hershey Medical Center, Hershey, PA, USA.
| |
Collapse
|
3
|
Langenbacher RE, Horoszko CP, Kim M, Heller DA. Hematoxylin Nuclear Stain Reports Oxidative Stress via Near-Infrared Emission. ACS Chem Biol 2023; 18:1237-1245. [PMID: 37070948 PMCID: PMC10289833 DOI: 10.1021/acschembio.3c00156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2023]
Abstract
Hematoxylin & eosin (H&E) is the gold standard histological stain used for medical diagnosis and has been used for over a century. Herein, we examined the near-infrared II (NIR-II) fluorescence of this stain. We observed significant NIR-II emission from the hematoxylin component of the H&E stain. We found that the emission intensity, using the common aluminum(III) hematoxylin mordant, could be modulated by the availability of endogenous iron(III), and this emission intensity increased at higher oxidative stress. Our mechanistic investigations found that hematoxylin emission reported the nuclear translocation of the iron via the protein ferritin. In human tumor tissue samples, oxidative stress biomarkers correlated with hematoxylin NIR-II emission intensity. Emission response of the stain was also observed in human Alzheimer's disease brain tissue regions affected by disease progression, suggesting that ferritin nuclear translocation is preserved in these regions as an oxidative stress response. These findings indicate that NIR-II emission from the H&E stain provides a new source of redox information in tissues with implications for biomedical research and clinical practice.
Collapse
Affiliation(s)
| | | | - Mijin Kim
- Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States
| | - Daniel A. Heller
- Weill Cornell Medicine, Cornell University, New York, NY 10065, United States
- Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States
| |
Collapse
|
4
|
Di Sanzo M, Cozzolino F, Battaglia AM, Aversa I, Monaco V, Sacco A, Biamonte F, Palmieri C, Procopio F, Santamaria G, Ortuso F, Pucci P, Monti M, Faniello MC. Ferritin Heavy Chain Binds Peroxiredoxin 6 and Inhibits Cell Proliferation and Migration. Int J Mol Sci 2022; 23:12987. [PMID: 36361777 PMCID: PMC9654362 DOI: 10.3390/ijms232112987] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/18/2022] [Accepted: 10/23/2022] [Indexed: 08/04/2023] Open
Abstract
The H Ferritin subunit (FTH1), as well as regulating the homeostasis of intracellular iron, is involved in complex pathways that might promote or inhibit carcinogenesis. This function may be mediated by its ability to interact with different molecules. To gain insight into the FTH1 interacting molecules, we analyzed its interactome in HEK293T cells. Fifty-one proteins have been identified, and among them, we focused our attention on a member of the peroxiredoxin family (PRDX6), an antioxidant enzyme that plays an important role in cell proliferation and in malignancy development. The FTH1/PRDX6 interaction was further supported by co-immunoprecipitation, in HEK293T and H460 cell lines and by means of computational methods. Next, we demonstrated that FTH1 could inhibit PRDX6-mediated proliferation and migration. Then, the results so far obtained suggested that the interaction between FTH1/PRDX6 in cancer cells might alter cell proliferation and migration, leading to a less invasive phenotype.
Collapse
Affiliation(s)
- Maddalena Di Sanzo
- Research Center of Biochemistry and Advanced Molecular Biology, Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy
| | - Flora Cozzolino
- Department of Chemical Sciences, Università degli Studi di Napoli “Federico II”, Via Cinthia 21, 80126 Napoli, Italy
- CEINGE Biotecnologie Avanzate, Via G. Salvatore 486, 80145 Napoli, Italy
| | - Anna Martina Battaglia
- Research Center of Biochemistry and Advanced Molecular Biology, Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy
| | - Ilenia Aversa
- Research Center of Biochemistry and Advanced Molecular Biology, Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy
| | - Vittoria Monaco
- Department of Chemical Sciences, Università degli Studi di Napoli “Federico II”, Via Cinthia 21, 80126 Napoli, Italy
- CEINGE Biotecnologie Avanzate, Via G. Salvatore 486, 80145 Napoli, Italy
| | - Alessandro Sacco
- Research Center of Biochemistry and Advanced Molecular Biology, Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy
| | - Flavia Biamonte
- Research Center of Biochemistry and Advanced Molecular Biology, Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy
- Interdepartmental Centre of Services, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy
| | - Camillo Palmieri
- Research Center of Biochemistry and Advanced Molecular Biology, Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy
| | - Francesca Procopio
- Department of Health Science, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy
| | - Gianluca Santamaria
- Research Center of Biochemistry and Advanced Molecular Biology, Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy
| | - Francesco Ortuso
- Department of Health Science, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy
| | - Piero Pucci
- CEINGE Biotecnologie Avanzate, Via G. Salvatore 486, 80145 Napoli, Italy
| | - Maria Monti
- Department of Chemical Sciences, Università degli Studi di Napoli “Federico II”, Via Cinthia 21, 80126 Napoli, Italy
- CEINGE Biotecnologie Avanzate, Via G. Salvatore 486, 80145 Napoli, Italy
| | - Maria Concetta Faniello
- Research Center of Biochemistry and Advanced Molecular Biology, Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
5
|
Spead O, Zaepfel BL, Rothstein JD. Nuclear Pore Dysfunction in Neurodegeneration. Neurotherapeutics 2022; 19:1050-1060. [PMID: 36070178 PMCID: PMC9587172 DOI: 10.1007/s13311-022-01293-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2022] [Indexed: 10/14/2022] Open
Abstract
The nuclear pore complex (NPC) is a large multimeric structure that is interspersed throughout the membrane of the nucleus and consists of at least 33 protein components. Individual components cooperate within the nuclear pore to facilitate selective passage of materials between the nucleus and cytoplasm while simultaneously performing pore-independent roles throughout the cell. NPC dysfunction is a hallmark of neurodegenerative disorders including Alzheimer's disease, Huntington's disease, and amyotrophic lateral sclerosis (ALS). NPC components can become mislocalized or altered in expression in neurodegeneration. These alterations in NPC structure are often detrimental to the neuronal function and ultimately lead to neuronal loss. This review highlights the importance of nucleocytoplasmic transport and NPC integrity and how dysfunction of such may contribute to neurodegeneration.
Collapse
Affiliation(s)
- Olivia Spead
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Benjamin L Zaepfel
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Jeffrey D Rothstein
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
6
|
Mainini F, Bonizzi A, Sevieri M, Sitia L, Truffi M, Corsi F, Mazzucchelli S. Protein-Based Nanoparticles for the Imaging and Treatment of Solid Tumors: The Case of Ferritin Nanocages, a Narrative Review. Pharmaceutics 2021; 13:pharmaceutics13122000. [PMID: 34959283 PMCID: PMC8708614 DOI: 10.3390/pharmaceutics13122000] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 12/13/2022] Open
Abstract
Protein nanocages have been studied extensively, due to their unique architecture, exceptional biocompatibility and highly customization capabilities. In particular, ferritin nanocages (FNs) have been employed for the delivery of a vast array of molecules, ranging from chemotherapeutics to imaging agents, among others. One of the main favorable characteristics of FNs is their intrinsic targeting efficiency toward the Transferrin Receptor 1, which is overexpressed in many tumors. Furthermore, genetic manipulation can be employed to introduce novel variants that are able to improve the loading capacity, targeting capabilities and bio-availability of this versatile drug delivery system. In this review, we discuss the main characteristics of FN and the most recent applications of this promising nanotechnology in the field of oncology with a particular emphasis on the imaging and treatment of solid tumors.
Collapse
Affiliation(s)
- Francesco Mainini
- Dipartimento di Scienze Biomediche e Cliniche “L. Sacco”, Università di Milano, 20157 Milano, Italy; (F.M.); (A.B.); (M.S.); (L.S.)
| | - Arianna Bonizzi
- Dipartimento di Scienze Biomediche e Cliniche “L. Sacco”, Università di Milano, 20157 Milano, Italy; (F.M.); (A.B.); (M.S.); (L.S.)
| | - Marta Sevieri
- Dipartimento di Scienze Biomediche e Cliniche “L. Sacco”, Università di Milano, 20157 Milano, Italy; (F.M.); (A.B.); (M.S.); (L.S.)
| | - Leopoldo Sitia
- Dipartimento di Scienze Biomediche e Cliniche “L. Sacco”, Università di Milano, 20157 Milano, Italy; (F.M.); (A.B.); (M.S.); (L.S.)
| | - Marta Truffi
- Istituti Clinici Scientifici Maugeri IRCCS, 27100 Pavia, Italy;
| | - Fabio Corsi
- Dipartimento di Scienze Biomediche e Cliniche “L. Sacco”, Università di Milano, 20157 Milano, Italy; (F.M.); (A.B.); (M.S.); (L.S.)
- Istituti Clinici Scientifici Maugeri IRCCS, 27100 Pavia, Italy;
- Correspondence: (F.C.); (S.M.)
| | - Serena Mazzucchelli
- Dipartimento di Scienze Biomediche e Cliniche “L. Sacco”, Università di Milano, 20157 Milano, Italy; (F.M.); (A.B.); (M.S.); (L.S.)
- Correspondence: (F.C.); (S.M.)
| |
Collapse
|
7
|
Massai L, Ciambellotti S, Cosottini L, Messori L, Turano P, Pratesi A. Direct detection of iron clusters in L ferritins through ESI-MS experiments. Dalton Trans 2021; 50:16464-16467. [PMID: 34729572 DOI: 10.1039/d1dt03106f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Human cytoplasmic ferritins are heteropolymers of H and L subunits containing a catalytic ferroxidase center and a nucleation site for iron biomineralization, respectively. Here, ESI-MS successfully detected labile metal-protein interactions revealing the formation of tetra- and octa-iron clusters bound to L subunits, as previously underscored by X-ray crystallography.
Collapse
Affiliation(s)
- Lara Massai
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, FI, Italy.
| | - Silvia Ciambellotti
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, FI, Italy. .,Magnetic Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, FI, Italy. .,Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine (C.I.R.M.M.P.), Via Luigi Sacconi 6, 50019 Sesto Fiorentino, FI, Italy
| | - Lucrezia Cosottini
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, FI, Italy. .,Magnetic Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, FI, Italy. .,Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine (C.I.R.M.M.P.), Via Luigi Sacconi 6, 50019 Sesto Fiorentino, FI, Italy
| | - Luigi Messori
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, FI, Italy.
| | - Paola Turano
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, FI, Italy. .,Magnetic Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, FI, Italy. .,Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine (C.I.R.M.M.P.), Via Luigi Sacconi 6, 50019 Sesto Fiorentino, FI, Italy
| | - Alessandro Pratesi
- Department of Chemistry and Industrial Chemistry (DCCI), University of Pisa, Via Giuseppe Moruzzi 13, 56124 Pisa, Italy
| |
Collapse
|
8
|
Hitchler MJ, Domann FE. The epigenetic and morphogenetic effects of molecular oxygen and its derived reactive species in development. Free Radic Biol Med 2021; 170:70-84. [PMID: 33450377 PMCID: PMC8217084 DOI: 10.1016/j.freeradbiomed.2021.01.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 12/11/2022]
Abstract
The development of multicellular organisms involves the unpacking of a complex genetic program. Extensive characterization of discrete developmental steps has revealed the genetic program is controlled by an epigenetic state. Shifting the epigenome is a group of epigenetic enzymes that modify DNA and proteins to regulate cell type specific gene expression. While the role of these modifications in development has been established, the input(s) responsible for electing changes in the epigenetic state remains unknown. Development is also associated with dynamic changes in cellular metabolism, redox, free radical production, and oxygen availability. It has previously been postulated that these changes are causal in development by affecting gene expression. This suggests that oxygen is a morphogenic compound that impacts the removal of epigenetic marks. Likewise, metabolism and reactive oxygen species influence redox signaling through iron and glutathione to limit the availability of key epigenetic cofactors such as α-ketoglutarate, ascorbate, NAD+ and S-adenosylmethionine. Given the close relationship between these cofactors and epigenetic marks it seems likely that the two are linked. Here we describe how changing these inputs might affect the epigenetic state during development to drive gene expression. Combined, these cofactors and reactive oxygen species constitute the epigenetic landscape guiding cells along differing developmental paths.
Collapse
Affiliation(s)
- Michael J Hitchler
- Department of Radiation Oncology, Kaiser Permanente Los Angeles Medical Center, 4950 Sunset Blvd, Los Angeles, CA, 90027, USA.
| | - Frederick E Domann
- Department of Radiation Oncology, Free Radical and Radiation Biology Program, University of Iowa, Iowa City, IA, 52242, USA.
| |
Collapse
|
9
|
Plays M, Müller S, Rodriguez R. Chemistry and biology of ferritin. Metallomics 2021; 13:6244244. [PMID: 33881539 PMCID: PMC8083198 DOI: 10.1093/mtomcs/mfab021] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 04/09/2021] [Indexed: 02/07/2023]
Abstract
Iron is an essential element required by cells and has been described as a key player in ferroptosis. Ferritin operates as a fundamental iron storage protein in cells forming multimeric assemblies with crystalline iron cores. We discuss the latest findings on ferritin structure and activity and its link to cell metabolism and ferroptosis. The chemistry of iron, including its oxidation states, is important for its biological functions, its reactivity, and the biology of ferritin. Ferritin can be localized in different cellular compartments and secreted by cells with a variety of functions depending on its spatial context. Here, we discuss how cellular ferritin localization is tightly linked to its function in a tissue-specific manner, and how impairment of iron homeostasis is implicated in diseases, including cancer and coronavirus disease 2019. Ferritin is a potential biomarker and we discuss latest research where it has been employed for imaging purposes and drug delivery.
Collapse
Affiliation(s)
- Marina Plays
- Chemical Biology of Cancer Laboratory, Institut Curie, 26 rue d'Ulm, 75005 Paris, France.,Centre national de la recherche scientifique UMR 3666, Paris, France.,Institut national de la santé et de la recherche médicale U1143, Paris, France.,PSL Université Paris, Paris, France
| | - Sebastian Müller
- Chemical Biology of Cancer Laboratory, Institut Curie, 26 rue d'Ulm, 75005 Paris, France.,Centre national de la recherche scientifique UMR 3666, Paris, France.,Institut national de la santé et de la recherche médicale U1143, Paris, France.,PSL Université Paris, Paris, France
| | - Raphaël Rodriguez
- Chemical Biology of Cancer Laboratory, Institut Curie, 26 rue d'Ulm, 75005 Paris, France.,Centre national de la recherche scientifique UMR 3666, Paris, France.,Institut national de la santé et de la recherche médicale U1143, Paris, France.,PSL Université Paris, Paris, France
| |
Collapse
|
10
|
Veroniaina H, Pan X, Wu Z, Qi X. Apoferritin: a potential nanocarrier for cancer imaging and drug delivery. Expert Rev Anticancer Ther 2021; 21:901-913. [PMID: 33844625 DOI: 10.1080/14737140.2021.1910027] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Introduction: As a protein-based biomaterial for potential cancer targeting delivery, apoferritin has recently attracted interest.Areas covered: In this review, we discuss the development of this cage-like protein as an endogenous nanocarrier that can hold molecules in its cavity. We present the specific characterizations and formulations of apoferritin nanocarriers, and outline the recent progress of the protein as an appropriate tumor-delivery vehicle in different therapeutic strategies to treat solid tumors. Finally, we propose how the application for cancer drug repurposing delivery within apoferritin could expand cancer treatment in the future.Expert opinion: Being a ubiquitous iron storage protein that exists in many living organisms, apoferritin is promising as a cancer tumor-targeting nanocarrier. By exploiting its versatility, apoferritin could be used for cancer repurposed drug delivery and could reduce the high cost of new drug discovery development and shorten the formulation process.
Collapse
Affiliation(s)
| | - Xiuhua Pan
- Key Laboratory of Modern Chinese Medicines, China Pharmaceutical University, Nanjing, China
| | - Zhenghong Wu
- Key Laboratory of Modern Chinese Medicines, China Pharmaceutical University, Nanjing, China
| | - Xiaole Qi
- Key Laboratory of Modern Chinese Medicines, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
11
|
Interferon-gamma promotes iron export in human macrophages to limit intracellular bacterial replication. PLoS One 2020; 15:e0240949. [PMID: 33290416 PMCID: PMC7723272 DOI: 10.1371/journal.pone.0240949] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 10/27/2020] [Indexed: 01/20/2023] Open
Abstract
Salmonellosis and listeriosis together accounted for more than one third of foodborne illnesses in the United States and almost half the hospitalizations for gastrointestinal diseases in 2018 while tuberculosis afflicted over 10 million people worldwide causing almost 2 million deaths. Regardless of the intrinsic virulence differences among Listeria monocytogenes, Salmonella enterica and Mycobacterium tuberculosis, these intracellular pathogens share the ability to survive and persist inside the macrophage and other cells and thrive in iron rich environments. Interferon-gamma (IFN-γ) is a central cytokine in host defense against intracellular pathogens and has been shown to promote iron export in macrophages. We hypothesize that IFN-γ decreases iron availability to intracellular pathogens consequently limiting replication in these cells. In this study, we show that IFN-γ regulates the expression of iron-related proteins hepcidin, ferroportin, and ferritin to induce iron export from macrophages. Listeria monocytogenes, S. enterica, and M. tuberculosis infections significantly induce iron sequestration in human macrophages. In contrast, IFN-γ significantly reduces hepcidin secretion in S. enterica and M. tuberculosis infected macrophages. Similarly, IFN-γ-activated macrophages express higher ferroportin levels than untreated controls even after infection with L. monocytogenes bacilli; bacterial infection greatly down-regulates ferroportin expression. Collectively, IFN-γ significantly inhibits pathogen-associated intracellular iron sequestration in macrophages and consequently retards the growth of intracellular bacterial pathogens by decreasing iron availability.
Collapse
|
12
|
Di Sanzo M, Quaresima B, Biamonte F, Palmieri C, Faniello MC. FTH1 Pseudogenes in Cancer and Cell Metabolism. Cells 2020; 9:E2554. [PMID: 33260500 PMCID: PMC7760355 DOI: 10.3390/cells9122554] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/24/2020] [Accepted: 11/24/2020] [Indexed: 12/15/2022] Open
Abstract
Ferritin, the principal intracellular iron-storage protein localized in the cytoplasm, nucleus, and mitochondria, plays a major role in iron metabolism. The encoding ferritin genes are members of a multigene family that includes some pseudogenes. Even though pseudogenes have been initially considered as relics of ancient genes or junk DNA devoid of function, their role in controlling gene expression in normal and transformed cells has recently been re-evaluated. Numerous studies have revealed that some pseudogenes compete with their parental gene for binding to the microRNAs (miRNAs), while others generate small interference RNAs (siRNAs) to decrease functional gene expression, and still others encode functional mutated proteins. Consequently, pseudogenes can be considered as actual master regulators of numerous biological processes. Here, we provide a detailed classification and description of the structural features of the ferritin pseudogenes known to date and review the recent evidence on their mutual interrelation within the complex regulatory network of the ferritin gene family.
Collapse
Affiliation(s)
- Maddalena Di Sanzo
- Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy; (M.D.S.); (B.Q.); (F.B.)
| | - Barbara Quaresima
- Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy; (M.D.S.); (B.Q.); (F.B.)
| | - Flavia Biamonte
- Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy; (M.D.S.); (B.Q.); (F.B.)
| | - Camillo Palmieri
- Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy; (M.D.S.); (B.Q.); (F.B.)
| | - Maria Concetta Faniello
- Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy; (M.D.S.); (B.Q.); (F.B.)
- Research Center of Biochemistry and Advanced Molecular Biology, Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
13
|
Sabbir MG, Taylor CG, Zahradka P. Hypomorphic CAMKK2 in EA.hy926 endothelial cells causes abnormal transferrin trafficking, iron homeostasis and glucose metabolism. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118763. [DOI: 10.1016/j.bbamcr.2020.118763] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 05/23/2020] [Accepted: 05/27/2020] [Indexed: 02/08/2023]
|
14
|
Kurzawa-Akanbi M, Keogh M, Tsefou E, Ramsay L, Johnson M, Keers S, Wsa Ochieng L, McNair A, Singh P, Khan A, Pyle A, Hudson G, Ince PG, Attems J, Burn J, Chinnery PF, Morris CM. Neuropathological and biochemical investigation of Hereditary Ferritinopathy cases with ferritin light chain mutation: Prominent protein aggregation in the absence of major mitochondrial or oxidative stress. Neuropathol Appl Neurobiol 2020; 47:26-42. [PMID: 32464705 DOI: 10.1111/nan.12634] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 04/17/2020] [Accepted: 05/19/2020] [Indexed: 01/19/2023]
Abstract
AIMS Neuroferritinopathy (NF) or hereditary ferritinopathy (HF) is an autosomal dominant movement disorder due to mutation in the light chain of the iron storage protein ferritin (FTL). HF is the only late-onset neurodegeneration with brain iron accumulation disorder and study of HF offers a unique opportunity to understand the role of iron in more common neurodegenerative syndromes. METHODS We carried out pathological and biochemical studies of six individuals with the same pathogenic FTL mutation. RESULTS CNS pathological changes were most prominent in the basal ganglia and cerebellar dentate, echoing the normal pattern of brain iron accumulation. Accumulation of ferritin and iron was conspicuous in cells with a phenotype suggesting oligodendrocytes, with accompanying neuronal pathology and neuronal loss. Neurons still survived, however, despite extensive adjacent glial iron deposition, suggesting neuronal loss is a downstream event. Typical age-related neurodegenerative pathology was not normally present. Uniquely, the extensive aggregates of ubiquitinated ferritin identified indicate that abnormal FTL can aggregate, reflecting the intrinsic ability of FTL to self-assemble. Ferritin aggregates were seen in neuronal and glial nuclei showing parallels with Huntington's disease. There was neither evidence of oxidative stress activation nor any significant mitochondrial pathology in the affected basal ganglia. CONCLUSIONS HF shows hallmarks of a protein aggregation disorder, in addition to iron accumulation. Degeneration in HF is not accompanied by age-related neurodegenerative pathology and the lack of evidence of oxidative stress and mitochondrial damage suggests that these are not key mediators of neurodegeneration in HF, casting light on other neurodegenerative diseases characterized by iron deposition.
Collapse
Affiliation(s)
- M Kurzawa-Akanbi
- Biosciences Institute, Newcastle University, International Centre for Life, Newcastle upon Tyne, UK.,Wolfson Building, Newcastle University, Newcastle upon Tyne, UK
| | - M Keogh
- Biosciences Institute, Newcastle University, International Centre for Life, Newcastle upon Tyne, UK.,Department of Neurology, Royal Victoria Infirmary, Newcastle upon Tyne, UK.,MRC Mitochondrial Biology Unit, Department of Clinical Neurosciences, Cambridge Biomedical Campus, Cambridge University, Cambridge, UK
| | - E Tsefou
- Wolfson Building, Newcastle University, Newcastle upon Tyne, UK
| | - L Ramsay
- Newcastle Brain Tissue Resource, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK.,Academic Unit of Pathology, Royal Hallamshire Hospital, Sheffield, UK
| | - M Johnson
- Newcastle Brain Tissue Resource, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - S Keers
- Newcastle Brain Tissue Resource, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - L Wsa Ochieng
- Wolfson Building, Newcastle University, Newcastle upon Tyne, UK
| | - A McNair
- Wolfson Building, Newcastle University, Newcastle upon Tyne, UK
| | - P Singh
- Wolfson Building, Newcastle University, Newcastle upon Tyne, UK
| | - A Khan
- Department of Neurology, Royal Victoria Infirmary, Newcastle upon Tyne, UK
| | - A Pyle
- Biosciences Institute, Newcastle University, International Centre for Life, Newcastle upon Tyne, UK
| | - G Hudson
- Biosciences Institute, Newcastle University, International Centre for Life, Newcastle upon Tyne, UK
| | - P G Ince
- Academic Unit of Pathology, Royal Hallamshire Hospital, Sheffield, UK
| | - J Attems
- Cellular Pathology, Royal Victoria Infirmary, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - J Burn
- Biosciences Institute, Newcastle University, International Centre for Life, Newcastle upon Tyne, UK.,Northern Genetics Service, Newcastle upon Tyne Hospitals NHS Foundation Trust, International Centre for Life, Newcastle upon Tyne, UK
| | - P F Chinnery
- Biosciences Institute, Newcastle University, International Centre for Life, Newcastle upon Tyne, UK.,MRC Mitochondrial Biology Unit, Department of Clinical Neurosciences, Cambridge Biomedical Campus, Cambridge University, Cambridge, UK
| | - C M Morris
- Wolfson Building, Newcastle University, Newcastle upon Tyne, UK.,Newcastle Brain Tissue Resource, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
15
|
Zhang N, Mei K, Guan P, Hu X, Zhao Y. Protein-Based Artificial Nanosystems in Cancer Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1907256. [PMID: 32378796 DOI: 10.1002/smll.201907256] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 03/13/2020] [Accepted: 03/17/2020] [Indexed: 05/21/2023]
Abstract
Proteins, like actors, play different roles in specific applications. In the past decade, significant achievements have been made in protein-engineered biomedicine for cancer therapy. Certain proteins such as human serum albumin, working as carriers for drug/photosensitizer delivery, have entered clinical use due to their long half-life, biocompatibility, biodegradability, and inherent nonimmunogenicity. Proteins with catalytic abilities are promising as adjuvant agents for other therapeutic modalities or as anticancer drugs themselves. These catalytic proteins are usually defined as enzymes with high biological activity and substrate specificity. However, clinical applications of these kinds of proteins remain rare due to protease-induced denaturation and weak cellular permeability. Based on the characteristics of different proteins, tailor-made protein-based nanosystems could make up for their individual deficiencies. Therefore, elaborately designed protein-based nanosystems, where proteins serve as drug carriers, adjuvant agents, or therapeutic drugs to make full use of their intrinsic advantages in cancer therapy, are reviewed. Up-to-date progress on research in the field of protein-based nanomedicine is provided.
Collapse
Affiliation(s)
- Nan Zhang
- School of Natural and Applied Sciences, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Kun Mei
- School of Natural and Applied Sciences, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Ping Guan
- School of Natural and Applied Sciences, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Xiaoling Hu
- School of Natural and Applied Sciences, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Yanli Zhao
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|
16
|
Abstract
Iron is critically important and highly regulated trace metal in the human body. However, in its free ion form, it is known to be cytotoxic; therefore, it is bound to iron storing protein, ferritin. Ferritin is a key regulator of body iron homeostasis able to form various types of minerals depending on the tissue environment. Each mineral, e.g. magnetite, maghemite, goethite, akaganeite or hematite, present in the ferritin core carry different characteristics possibly affecting cells in the tissue. In specific cases, it can lead to disease development. Widely studied connection with neurodegenerative conditions is widely studied, including Alzheimer disease. Although the exact ferritin structure and its distribution throughout a human body are still not fully known, many studies have attempted to elucidate the mechanisms involved in its regulation and pathogenesis. In this review, we try to summarize the iron uptake into the body. Next, we discuss the known occurrence of ferritin in human tissues. Lastly, we also examine the formation of iron oxides and their involvement in brain functions.
Collapse
|
17
|
Görg B, Karababa A, Schütz E, Paluschinski M, Schrimpf A, Shafigullina A, Castoldi M, Bidmon HJ, Häussinger D. O-GlcNAcylation-dependent upregulation of HO1 triggers ammonia-induced oxidative stress and senescence in hepatic encephalopathy. J Hepatol 2019; 71:930-941. [PMID: 31279900 DOI: 10.1016/j.jhep.2019.06.020] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 06/24/2019] [Accepted: 06/27/2019] [Indexed: 01/18/2023]
Abstract
BACKGROUND & AIMS Cerebral oxidative stress plays an important role in the pathogenesis of hepatic encephalopathy (HE), but the underlying mechanisms are incompletely understood. Herein, we analyzed a role of heme oxygenase (HO)1, iron and NADPH oxidase 4 (Nox4) for the induction of oxidative stress and senescence in HE. METHODS Gene and protein expression in human post-mortem brain samples was analyzed by gene array and western blot analysis. Mechanisms and functional consequences of HO1 upregulation were studied in NH4Cl-exposed astrocytes in vitro by western blot, qPCR and super-resolution microscopy. RESULTS HO1 and the endoplasmic reticulum (ER) stress marker grp78 were upregulated, together with changes in the expression of multiple iron metabolism-related genes, in post-mortem brain samples from patients with liver cirrhosis and HE. NH4Cl elevated HO1 protein and mRNA in cultured astrocytes through glutamine synthetase (GS)-dependent upregulation of glutamine/fructose amidotransferases 1/2 (GFAT1/2), which blocked the transcription of the HO1-targeting miR326-3p in a O-GlcNAcylation dependent manner. Upregulation of HO1 by NH4Cl triggered ER stress and was associated with elevated levels of free ferrous iron and expression changes in iron metabolism-related genes, which were largely abolished after knockdown or inhibition of GS, GFAT1/2, HO1 or iron chelation. NH4Cl, glucosamine (GlcN) and inhibition of miR326-3p upregulated Nox4, while knockdown of Nox4, GS, GFAT1/2, HO1 or iron chelation prevented NH4Cl-induced RNA oxidation and astrocyte senescence. Elevated levels of grp78 and O-GlcNAcylated proteins were also found in brain samples from patients with liver cirrhosis and HE. CONCLUSION The present study identified glucosamine synthesis-dependent protein O-GlcNAcylation as a novel mechanism in the pathogenesis of HE that triggers oxidative and ER stress, as well as senescence, through upregulation of HO1 and Nox4. LAY SUMMARY Patients with liver cirrhosis frequently exhibit hyperammonemia and suffer from cognitive and motoric dysfunctions, which at least in part involve premature ageing of the astrocytes in the brain. This study identifies glucosamine and an O-GlcNAcylation-dependent disruption of iron homeostasis as novel triggers of oxidative stress, thereby mediating ammonia toxicity in the brain.
Collapse
Affiliation(s)
- Boris Görg
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, 40225 Düsseldorf, Germany.
| | - Ayşe Karababa
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Elina Schütz
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Martha Paluschinski
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Alina Schrimpf
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Aygul Shafigullina
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Mirco Castoldi
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Hans J Bidmon
- C.&O. Vogt Institute for Brain Research, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Dieter Häussinger
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| |
Collapse
|
18
|
Ravi V, Madhankumar AB, Abraham T, Slagle-Webb B, Connor JR. Liposomal delivery of ferritin heavy chain 1 (FTH1) siRNA in patient xenograft derived glioblastoma initiating cells suggests different sensitivities to radiation and distinct survival mechanisms. PLoS One 2019; 14:e0221952. [PMID: 31491006 PMCID: PMC6730865 DOI: 10.1371/journal.pone.0221952] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 08/19/2019] [Indexed: 12/15/2022] Open
Abstract
Elevated expression of the iron regulatory protein, ferritin heavy chain 1 (FTH1), is increasingly being associated with high tumor grade and poor survival outcomes in glioblastoma. Glioma initiating cells (GICs), a small population of stem-like cells implicated in therapeutic resistance and glioblastoma recurrence, have recently been shown to exhibit increased FTH1 expression. We previously demonstrated that FTH1 knockdown enhanced therapeutic sensitivity in an astrocytoma cell line. Therefore, in this study we developed a liposomal formulation to enable the in vitro delivery of FTH1 siRNA in patient xenograft derived GICs from glioblastomas with pro-neural and mesenchymal transcriptional signatures to interrogate the effect of FTH1 downregulation on their radiation sensitivity. Transfection with siRNA decreased FTH1 expression significantly in both GICs. However, there were inherent differences in transfectability between pro-neural and mesenchymal tumor derived GICs, leading us to modify siRNA: liposome ratios for comparable transfection. Moreover, loss of FTH1 expression resulted in increased extracellular lactate dehydrogenase activity, executioner caspase 3/7 induction, substantial mitochondrial damage, diminished mitochondrial mass and reduced cell viability. However, only GICs from pro-neural glioblastoma showed marked increase in radiosensitivity upon FTH1 downregulation demonstrated by decreased cell viability, impaired DNA repair and reduced colony formation subsequent to radiation. In addition, the stemness marker Nestin was downregulated upon FTH1 silencing only in GICs of pro-neural but not mesenchymal origin. Using liposomes as a siRNA delivery system, we established FTH1 as a critical factor for survival in both GIC subtypes as well as a regulator of radioresistance and stemness in pro-neural tumor derived GICs. Our study provides further evidence to support the role of FTH1 as a promising target in glioblastoma.
Collapse
Affiliation(s)
- Vagisha Ravi
- Department of Neurosurgery, Penn State College of Medicine, Hershey, Pennsylvania, United States of America
- * E-mail:
| | | | - Thomas Abraham
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, Pennsylvania, United States of America
| | - Becky Slagle-Webb
- Department of Neurosurgery, Penn State College of Medicine, Hershey, Pennsylvania, United States of America
| | - James R. Connor
- Department of Neurosurgery, Penn State College of Medicine, Hershey, Pennsylvania, United States of America
| |
Collapse
|
19
|
Nash B, Tarn K, Irollo E, Luchetta J, Festa L, Halcrow P, Datta G, Geiger JD, Meucci O. Morphine-Induced Modulation of Endolysosomal Iron Mediates Upregulation of Ferritin Heavy Chain in Cortical Neurons. eNeuro 2019; 6:ENEURO.0237-19.2019. [PMID: 31300544 PMCID: PMC6675873 DOI: 10.1523/eneuro.0237-19.2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 07/01/2019] [Indexed: 01/01/2023] Open
Abstract
HIV-associated neurocognitive disorders (HAND) remain prevalent and are aggravated by µ-opioid use. We have previously shown that morphine and other µ-opioids may contribute to HAND by inhibiting the homeostatic and neuroprotective chemokine receptor CXCR4 in cortical neurons, and this novel mechanism depends on upregulation of the protein ferritin heavy chain (FHC). Here, we examined the cellular events and potential mechanisms involved in morphine-mediated FHC upregulation using rat cortical neurons of either sex in vitro and in vivo. Morphine dose dependently increased FHC protein levels in primary neurons through µ-opioid receptor (µOR) and Gαi-protein signaling. Cytoplasmic FHC levels were significantly elevated, but nuclear FHC levels and FHC gene expression were unchanged. Morphine-treated rats also displayed increased FHC levels in layer 2/3 neurons of the prefrontal cortex. Importantly, both in vitro and in vivo FHC upregulation was accompanied by loss of mature dendritic spines, which was also dependent on µOR and Gαi-protein signaling. Moreover, morphine upregulated ferritin light chain (FLC), a component of the ferritin iron storage complex, suggesting that morphine altered neuronal iron metabolism. Indeed, prior to FHC upregulation, morphine increased cytoplasmic labile iron levels as a function of decreased endolysosomal iron. In line with this, chelation of endolysosomal iron (but not extracellular iron) blocked morphine-induced FHC upregulation and dendritic spine reduction, whereas iron overloading mimicked the effect of morphine on FHC and dendritic spines. Overall, these data demonstrate that iron mediates morphine-induced FHC upregulation and consequent dendritic spine deficits and implicate endolysosomal iron efflux to the cytoplasm in these effects.
Collapse
Affiliation(s)
- Bradley Nash
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102
| | - Kevin Tarn
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102
| | - Elena Irollo
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102
| | - Jared Luchetta
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102
| | - Lindsay Festa
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102
| | - Peter Halcrow
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58203
| | - Gaurav Datta
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58203
| | - Jonathan D Geiger
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58203
| | - Olimpia Meucci
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19102
| |
Collapse
|
20
|
de Ruiter MV, Klem R, Luque D, Cornelissen JJLM, Castón JR. Structural nanotechnology: three-dimensional cryo-EM and its use in the development of nanoplatforms for in vitro catalysis. NANOSCALE 2019; 11:4130-4146. [PMID: 30793729 DOI: 10.1039/c8nr09204d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The organization of enzymes into different subcellular compartments is essential for correct cell function. Protein-based cages are a relatively recently discovered subclass of structurally dynamic cellular compartments that can be mimicked in the laboratory to encapsulate enzymes. These synthetic structures can then be used to improve our understanding of natural protein-based cages, or as nanoreactors in industrial catalysis, metabolic engineering, and medicine. Since the function of natural protein-based cages is related to their three-dimensional structure, it is important to determine this at the highest possible resolution if viable nanoreactors are to be engineered. Cryo-electron microscopy (cryo-EM) is ideal for undertaking such analyses within a feasible time frame and at near-native conditions. This review describes how three-dimensional cryo-EM is used in this field and discusses its advantages. An overview is also given of the nanoreactors produced so far, their structure, function, and applications.
Collapse
Affiliation(s)
- Mark V de Ruiter
- Department of Biomolecular Nanotechnology, MESA+ Institute for Nanotechnology, University of Twente, 7500 AE Enschede, The Netherlands.
| | | | | | | | | |
Collapse
|
21
|
Zarjou A, Black LM, McCullough KR, Hull TD, Esman SK, Boddu R, Varambally S, Chandrashekar DS, Feng W, Arosio P, Poli M, Balla J, Bolisetty S. Ferritin Light Chain Confers Protection Against Sepsis-Induced Inflammation and Organ Injury. Front Immunol 2019; 10:131. [PMID: 30804939 PMCID: PMC6371952 DOI: 10.3389/fimmu.2019.00131] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 01/16/2019] [Indexed: 12/31/2022] Open
Abstract
Despite the prevalence and recognition of its detrimental impact, clinical complications of sepsis remain a major challenge. Here, we investigated the effects of myeloid ferritin heavy chain (FtH) in regulating the pathogenic sequelae of sepsis. We demonstrate that deletion of myeloid FtH leads to protection against lipopolysaccharide-induced endotoxemia and cecal ligation and puncture (CLP)-induced model of sepsis as evidenced by reduced cytokine levels, multi-organ dysfunction and mortality. We identified that such protection is predominantly mediated by the compensatory increase in circulating ferritin (ferritin light chain; FtL) in the absence of myeloid FtH. Our in vitro and in vivo studies indicate that prior exposure to ferritin light chain restrains an otherwise dysregulated response to infection. These findings are mediated by an inhibitory action of FtL on NF-κB activation, a key signaling pathway that is implicated in the pathogenesis of sepsis. We further identified that LPS mediated activation of MAPK pathways, specifically, JNK, and ERK were also reduced with FtL pre-treatment. Taken together, our findings elucidate a crucial immunomodulatory function for circulating ferritin that challenges the traditional view of this protein as a mere marker of body iron stores. Accordingly, these findings will stimulate investigations to the adaptive nature of this protein in diverse clinical settings.
Collapse
Affiliation(s)
- Abolfazl Zarjou
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Laurence M. Black
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Kayla R. McCullough
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Travis D. Hull
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Stephanie K. Esman
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Ravindra Boddu
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, AL, United States
| | | | | | - Wenguang Feng
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Paolo Arosio
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Maura Poli
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Jozsef Balla
- Department of Nephrology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Subhashini Bolisetty
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Cell, Development and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
22
|
Xin L, Huang B, Li C, Bai C, Wang C. Characterization of a nucleus located mollusc mitoferrin and its response to OsHV-1 infection. Biochim Biophys Acta Gen Subj 2019; 1863:255-265. [DOI: 10.1016/j.bbagen.2018.10.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 09/26/2018] [Accepted: 10/17/2018] [Indexed: 01/07/2023]
|
23
|
Emerging and Dynamic Biomedical Uses of Ferritin. Pharmaceuticals (Basel) 2018; 11:ph11040124. [PMID: 30428583 PMCID: PMC6316788 DOI: 10.3390/ph11040124] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 11/11/2018] [Accepted: 11/12/2018] [Indexed: 12/14/2022] Open
Abstract
Ferritin, a ubiquitously expressed protein, has classically been considered the main iron cellular storage molecule in the body. Owing to the ferroxidase activity of the H-subunit and the nucleation ability of the L-subunit, ferritin can store a large amount of iron within its mineral core. However, recent evidence has demonstrated a range of abilities of ferritin that extends well beyond the scope of iron storage. This review aims to discuss novel functions and biomedical uses of ferritin in the processes of iron delivery, delivery of biologics such as chemotherapies and contrast agents, and the utility of ferritin as a biomarker in a number of neurological diseases.
Collapse
|
24
|
Abreu R, Essler L, Loy A, Quinn F, Giri P. Heparin inhibits intracellular Mycobacterium tuberculosis bacterial replication by reducing iron levels in human macrophages. Sci Rep 2018; 8:7296. [PMID: 29740038 PMCID: PMC5940867 DOI: 10.1038/s41598-018-25480-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 04/13/2018] [Indexed: 01/15/2023] Open
Abstract
Iron is a crucial micronutrient for both mammals and their associated pathogens, and extensive literature has shown that Mycobacterium tuberculosis (Mtb) bacilli inhibited from acquiring iron from the host are severely attenuated. In contrast, increased dietary iron concentrations or patients with hemochromatosis have long been associated with a more severe tuberculosis (TB) disease outcome. We have observed that upon macrophage infection, Mtb bacilli strongly promote intracellular iron sequestration, both through increased expression of hepcidin, a key mammalian iron regulatory protein, and downregulation of the iron exporter protein, ferroportin. Heparin is a highly sulfated glycosaminoglycan released by mast cells and basophils at sites of tissue injury. During Mtb infection, heparin alters intracellular trafficking in alveolar epithelial cells and decreases extrapulmonary dissemination but recently, heparin also has been reported to inhibit hepcidin expression in hepatocytes, decreasing intracellular iron availability. In this report, we demonstrate that heparin significantly reduces hepcidin expression in macrophages infected with Mtb bacilli. Heparin-treated macrophages have higher ferroportin expression compared to untreated macrophages, promoting iron export and decreasing iron availability to intracellular bacilli. Thus, here we describe a novel immunomodulatory effect and potential therapeutic role for heparin against mycobacterial infection in human macrophages.
Collapse
Affiliation(s)
- Rodrigo Abreu
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA
| | - Lauren Essler
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA
- Department of Microbiology, University of Georgia, Athens, GA, 30602, USA
| | - Allyson Loy
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA
- Department of Microbiology, University of Georgia, Athens, GA, 30602, USA
| | - Frederick Quinn
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA
| | - Pramod Giri
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
25
|
Malik IA, Wilting J, Ramadori G, Naz N. Reabsorption of iron into acutely damaged rat liver: A role for ferritins. World J Gastroenterol 2017; 23:7347-7358. [PMID: 29151689 PMCID: PMC5685841 DOI: 10.3748/wjg.v23.i41.7347] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 08/22/2017] [Accepted: 09/13/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To studied iron metabolism in liver, spleen, and serum after acute liver-damage, in relation to surrogate markers for liver-damage and repair.
METHODS Rats received intraperitoneal injection of the hepatotoxin thioacetamide (TAA), and were sacrificed regularly between 1 and 96 h thereafter. Serum levels of transaminases and iron were measured using conventional laboratory assays. Liver tissue was used for conventional histology, immunohistology, and iron staining. The expression of acute-phase cytokines, ferritin light chain (FTL), and ferritin heavy chain (FTH) was investigated in the liver by qRT-PCR. Western blotting was used to investigate FTL and FTH in liver tissue and serum. Liver and spleen tissue was also used to determine iron concentrations.
RESULTS After a short initial decrease, iron serum concentrations increased in parallel with serum transaminase (aspartate aminotransferase and alanine aminotransferase) levels, which reached a maximum at 48 h, and decreased thereafter. Similarly, after 48 h a significant increase in FTL, and after 72h in FTH was detected in serum. While earliest morphological signs of inflammation in liver were visible after 6 h, increased expression of the two acute-phase cytokines IFN-γ (1h) and IL-1β (3h) was detectable earlier, with maximum values after 12-24 h. Iron concentrations in liver tissue increased steadily between 1 h and 48 h, and remained high at 96 h. In contrast, spleen iron concentrations remained unchanged until 48 h, and increased mildly thereafter (96 h). Although tissue iron staining was negative, hepatic FTL and FTH protein levels were strongly elevated. Our results reveal effects on hepatic iron concentrations after direct liver injury by TAA. The increase of liver iron concentrations may be due to the uptake of a significant proportion of the metal by healthy hepatocytes, and only to a minor extent by macrophages, as spleen iron concentrations do not increase in parallel. The temporary increase of iron, FTH and transaminases in serum is obviously due to their release by damaged hepatocytes.
CONCLUSION Increased liver iron levels may be the consequence of hepatocyte damage. Iron released into serum by damaged hepatocytes is obviously transported back and stored via ferritins.
Collapse
Affiliation(s)
- Ihtzaz Ahmed Malik
- Institute of Anatomy and Cell Biology, University Medical Center, D-37075 Goettingen, Germany
| | - Jörg Wilting
- Institute of Anatomy and Cell Biology, University Medical Center, D-37075 Goettingen, Germany
| | - Giuliano Ramadori
- Department of Gastroenterology and Endocrinology, University Medical Center, D-37075 Goettingen, Germany
| | - Naila Naz
- Faculty of Life Sciences, The University of Manchester, Manchester M13 9PL, United Kingdom
| |
Collapse
|
26
|
H-Ferritin-nanocaged olaparib: a promising choice for both BRCA-mutated and sporadic triple negative breast cancer. Sci Rep 2017; 7:7505. [PMID: 28790402 PMCID: PMC5548799 DOI: 10.1038/s41598-017-07617-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 06/29/2017] [Indexed: 12/27/2022] Open
Abstract
Poly(ADP-ribose) polymerase (PARP) inhibitors represent a promising strategy toward the treatment of triple-negative breast cancer (TNBC), which is often associated to genomic instability and/or BRCA mutations. However, clinical outcome is controversial and no benefits have been demonstrated in wild type BRCA cancers, possibly due to poor drug bioavailability and low nuclear delivery. In the attempt to overcome these limitations, we have developed H-Ferritin nanoformulated olaparib (HOla) and assessed its anticancer efficacy on both BRCA-mutated and non-mutated TNBC cells. We exploited the natural tumor targeting of H-Ferritin, which is mediated by the transferrin receptor-1 (TfR1), and its physiological tropism toward cell nucleus. TNBC cell lines over-expressing TfR-1 were successfully recognized by H-Ferritin, displaying a fast internalization into the cells. HOla induced remarkable cytotoxic effect in cancer cells, exhibiting 1000-fold higher anticancer activity compared to free olaparib (Ola). Accordingly, HOla treatment enhanced PARP-1 cleavage, DNA double strand breaks and Ola delivery into the nuclear compartment. Our findings suggest that H-Ferritin nanoformulation strongly enhances cytotoxic efficacy of Ola as a stand-alone therapy in both BRCA-mutated and wild type TNBC cells, by promoting targeted nuclear delivery.
Collapse
|
27
|
de Llanos R, Martínez-Garay CA, Fita-Torró J, Romero AM, Martínez-Pastor MT, Puig S. Soybean Ferritin Expression in Saccharomyces cerevisiae Modulates Iron Accumulation and Resistance to Elevated Iron Concentrations. Appl Environ Microbiol 2016; 82:3052-3060. [PMID: 26969708 PMCID: PMC4959083 DOI: 10.1128/aem.00305-16] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 03/08/2016] [Indexed: 02/06/2023] Open
Abstract
UNLABELLED Fungi, including the yeast Saccharomyces cerevisiae, lack ferritin and use vacuoles as iron storage organelles. This work explored how plant ferritin expression influenced baker's yeast iron metabolism. Soybean seed ferritin H1 (SFerH1) and SFerH2 genes were cloned and expressed in yeast cells. Both soybean ferritins assembled as multimeric complexes, which bound yeast intracellular iron in vivo and, consequently, induced the activation of the genes expressed during iron scarcity. Soybean ferritin protected yeast cells that lacked the Ccc1 vacuolar iron detoxification transporter from toxic iron levels by reducing cellular oxidation, thus allowing growth at high iron concentrations. Interestingly, when simultaneously expressed in ccc1Δ cells, SFerH1 and SFerH2 assembled as heteropolymers, which further increased iron resistance and reduced the oxidative stress produced by excess iron compared to ferritin homopolymer complexes. Finally, soybean ferritin expression led to increased iron accumulation in both wild-type and ccc1Δ yeast cells at certain environmental iron concentrations. IMPORTANCE Iron deficiency is a worldwide nutritional disorder to which women and children are especially vulnerable. A common strategy to combat iron deficiency consists of dietary supplementation with inorganic iron salts, whose bioavailability is very low. Iron-enriched yeasts and cereals are alternative strategies to diminish iron deficiency. Animals and plants possess large ferritin complexes that accumulate, detoxify, or buffer excess cellular iron. However, the yeast Saccharomyces cerevisiae lacks ferritin and uses vacuoles as iron storage organelles. Here, we explored how soybean ferritin expression influenced yeast iron metabolism, confirming that yeasts that express soybean seed ferritin could be explored as a novel strategy to increase dietary iron absorption.
Collapse
Affiliation(s)
- Rosa de Llanos
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas, Paterna, Valencia, Spain
| | - Carlos Andrés Martínez-Garay
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas, Paterna, Valencia, Spain
| | - Josep Fita-Torró
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas, Paterna, Valencia, Spain
| | - Antonia María Romero
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas, Paterna, Valencia, Spain
| | | | - Sergi Puig
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas, Paterna, Valencia, Spain
| |
Collapse
|
28
|
Truffi M, Fiandra L, Sorrentino L, Monieri M, Corsi F, Mazzucchelli S. Ferritin nanocages: A biological platform for drug delivery, imaging and theranostics in cancer. Pharmacol Res 2016; 107:57-65. [DOI: 10.1016/j.phrs.2016.03.002] [Citation(s) in RCA: 141] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 02/24/2016] [Accepted: 03/02/2016] [Indexed: 12/16/2022]
|
29
|
Bolisetty S, Zarjou A, Hull TD, Traylor A, Perianayagam A, Joseph R, Kamal AI, Arosio P, Soares MP, Jeney V, Balla J, George JF, Agarwal A. Macrophage and epithelial cell H-ferritin expression regulates renal inflammation. Kidney Int 2015; 88:95-108. [PMID: 25874599 PMCID: PMC4490000 DOI: 10.1038/ki.2015.102] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 02/16/2015] [Accepted: 02/19/2015] [Indexed: 12/14/2022]
Abstract
Inflammation culminating in fibrosis contributes to progressive kidney disease. Cross-talk between the tubular epithelium and interstitial cells regulates inflammation by a coordinated release of cytokines and chemokines. Here we studied the role of heme oxygenase-1 (HO-1) and the heavy subunit of ferritin (FtH) in macrophage polarization and renal inflammation. Deficiency in HO-1 was associated with increased FtH expression, accumulation of macrophages with a dysregulated polarization profile, and increased fibrosis following unilateral ureteral obstruction in mice: a model of renal inflammation and fibrosis. Macrophage polarization in vitro was predominantly dependent on FtH expression in isolated bone marrow-derived mouse monocytes. Using transgenic mice with conditional deletion of FtH in the proximal tubules (FtH(PT-/-)) or myeloid cells (FtH(LysM-/-)), we found that myeloid FtH deficiency did not affect polarization or accumulation of macrophages in the injured kidney compared with wild-type (FtH(+/+)) controls. However, tubular FtH deletion led to a marked increase in proinflammatory macrophages. Furthermore, injured kidneys from FtH(PT-/-) mice expressed significantly higher levels of inflammatory chemokines and fibrosis compared with kidneys from FtH(+/+) and FtH(LysM-/-) mice. Thus, there are differential effects of FtH in macrophages and epithelial cells, which underscore the critical role of FtH in tubular-macrophage cross-talk during kidney injury.
Collapse
Affiliation(s)
- Subhashini Bolisetty
- Nephrology Research and Training Center, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Abolfazl Zarjou
- Nephrology Research and Training Center, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Travis D. Hull
- Nephrology Research and Training Center, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Amie Traylor
- Nephrology Research and Training Center, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Anjana Perianayagam
- Nephrology Research and Training Center, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Reny Joseph
- Nephrology Research and Training Center, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Ahmed I Kamal
- Nephrology Research and Training Center, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Paolo Arosio
- Dipartimento Materno Infantile e Tecnologie Biomediche, University of Brescia, Brescia, Italy
| | - Miguel P Soares
- Inflammation Laboratory, Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Viktoria Jeney
- Department of Medicine, University of Debrecen, Debrecen, Hungary
- MTA-DE Vascular Biology, Thrombosis and Hemostasis Research Group, Hungarian Academy of Sciences, Debrecen, Hungary
| | - Jozsef Balla
- Department of Medicine, University of Debrecen, Debrecen, Hungary
- MTA-DE Vascular Biology, Thrombosis and Hemostasis Research Group, Hungarian Academy of Sciences, Debrecen, Hungary
| | - James F. George
- Nephrology Research and Training Center, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Anupam Agarwal
- Nephrology Research and Training Center, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Veterans Affairs, Birmingham, Alabama, USA
| |
Collapse
|
30
|
Zhang L, Li L, Di Penta A, Carmona U, Yang F, Schöps R, Brandsch M, Zugaza JL, Knez M. H-Chain Ferritin: A Natural Nuclei Targeting and Bioactive Delivery Nanovector. Adv Healthc Mater 2015; 4:1305-10. [PMID: 25973730 DOI: 10.1002/adhm.201500226] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 04/22/2015] [Indexed: 11/09/2022]
Affiliation(s)
- Lianbing Zhang
- CIC nanoGUNE; Tolosa Hiribidea 76 20018 Donostia-San Sebastián Spain
| | - Le Li
- CIC nanoGUNE; Tolosa Hiribidea 76 20018 Donostia-San Sebastián Spain
| | - Alessandra Di Penta
- Achucarro Basque Center for Neuroscience, Building 205; Bizkaia Science and Technology Park; 48170 Zamudio Spain
- ThreeRLabs, Building 804; Bizkaia Science and Technology Park; 48170 Zamudio Spain
| | - Unai Carmona
- CIC nanoGUNE; Tolosa Hiribidea 76 20018 Donostia-San Sebastián Spain
| | - Fan Yang
- CIC nanoGUNE; Tolosa Hiribidea 76 20018 Donostia-San Sebastián Spain
| | - Regina Schöps
- Institute of Chemistry; Martin-Luther-University Halle-Wittenberg; 06099 Halle Germany
| | - Matthias Brandsch
- Biozentrum; Martin-Luther-University Halle-Wittenberg; 06120 Halle Germany
| | - José L. Zugaza
- Achucarro Basque Center for Neuroscience, Building 205; Bizkaia Science and Technology Park; 48170 Zamudio Spain
- Department of Genetics; Physical Anthropology and Animal Physiology; University of the Basque Country; 48940 Leioa Spain
- IKERBASQUE; Basque Foundation for Science; Maria Diaz de Haro 3 48013 Bilbao Spain
| | - Mato Knez
- CIC nanoGUNE; Tolosa Hiribidea 76 20018 Donostia-San Sebastián Spain
- IKERBASQUE; Basque Foundation for Science; Maria Diaz de Haro 3 48013 Bilbao Spain
| |
Collapse
|
31
|
Ruzzenenti P, Asperti M, Mitola S, Crescini E, Maccarinelli F, Gryzik M, Regoni M, Finazzi D, Arosio P, Poli M. The Ferritin-Heavy-Polypeptide-Like-17 (FTHL17) gene encodes a ferritin with low stability and no ferroxidase activity and with a partial nuclear localization. Biochim Biophys Acta Gen Subj 2015; 1850:1267-73. [DOI: 10.1016/j.bbagen.2015.02.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Revised: 02/13/2015] [Accepted: 02/26/2015] [Indexed: 12/12/2022]
|
32
|
Zielińska-Dawidziak M. Plant ferritin--a source of iron to prevent its deficiency. Nutrients 2015; 7:1184-201. [PMID: 25685985 PMCID: PMC4344583 DOI: 10.3390/nu7021184] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 02/03/2015] [Indexed: 12/20/2022] Open
Abstract
Iron deficiency anemia affects a significant part of the human population. Due to the unique properties of plant ferritin, food enrichment with ferritin iron seems to be a promising strategy to prevent this malnutrition problem. This protein captures huge amounts of iron ions inside the apoferritin shell and isolates them from the environment. Thus, this iron form does not induce oxidative change in food and reduces the risk of gastric problems in consumers. Bioavailability of ferritin in human and animal studies is high and the mechanism of absorption via endocytosis has been confirmed in cultured cells. Legume seeds are a traditional source of plant ferritin. However, even if the percentage of ferritin iron in these seeds is high, its concentration is not sufficient for food fortification. Thus, edible plants have been biofortified in iron for many years. Plants overexpressing ferritin may find applications in the development of bioactive food. A crucial achievement would be to develop technologies warranting stability of ferritin in food and the digestive tract.
Collapse
Affiliation(s)
- Magdalena Zielińska-Dawidziak
- Department of Food Biochemistry and Analysis, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, 60-623 Poznań, Poland.
| |
Collapse
|
33
|
Kell DB, Pretorius E. Serum ferritin is an important inflammatory disease marker, as it is mainly a leakage product from damaged cells. Metallomics 2014; 6:748-73. [PMID: 24549403 DOI: 10.1039/c3mt00347g] [Citation(s) in RCA: 400] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
"Serum ferritin" presents a paradox, as the iron storage protein ferritin is not synthesised in serum yet is to be found there. Serum ferritin is also a well known inflammatory marker, but it is unclear whether serum ferritin reflects or causes inflammation, or whether it is involved in an inflammatory cycle. We argue here that serum ferritin arises from damaged cells, and is thus a marker of cellular damage. The protein in serum ferritin is considered benign, but it has lost (i.e. dumped) most of its normal complement of iron which when unliganded is highly toxic. The facts that serum ferritin levels can correlate with both disease and with body iron stores are thus expected on simple chemical kinetic grounds. Serum ferritin levels also correlate with other phenotypic readouts such as erythrocyte morphology. Overall, this systems approach serves to explain a number of apparent paradoxes of serum ferritin, including (i) why it correlates with biomarkers of cell damage, (ii) why it correlates with biomarkers of hydroxyl radical formation (and oxidative stress) and (iii) therefore why it correlates with the presence and/or severity of numerous diseases. This leads to suggestions for how one might exploit the corollaries of the recognition that serum ferritin levels mainly represent a consequence of cell stress and damage.
Collapse
Affiliation(s)
- Douglas B Kell
- School of Chemistry and The Manchester Institute of Biotechnology, The University of Manchester, 131, Princess St, Manchester M1 7DN, Lancs, UK.
| | | |
Collapse
|
34
|
Bellini M, Mazzucchelli S, Galbiati E, Sommaruga S, Fiandra L, Truffi M, Rizzuto MA, Colombo M, Tortora P, Corsi F, Prosperi D. Protein nanocages for self-triggered nuclear delivery of DNA-targeted chemotherapeutics in Cancer Cells. J Control Release 2014; 196:184-96. [PMID: 25312541 DOI: 10.1016/j.jconrel.2014.10.002] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 09/30/2014] [Accepted: 10/03/2014] [Indexed: 01/10/2023]
Abstract
A genetically engineered apoferritin variant consisting of 24 heavy-chain subunits (HFn) was produced to achieve a cumulative delivery of an antitumor drug, which exerts its cytotoxic action by targeting the DNA at the nucleus of human cancer cells with subcellular precision. The rationale of our approach is based on exploiting the natural arsenal of defense of cancer cells to stimulate them to recruit large amounts of HFn nanoparticles loaded with doxorubicin inside their nucleus in response to a DNA damage, which leads to a programmed cell death. After demonstrating the selectivity of HFn for representative cancer cells compared to healthy fibroblasts, doxorubicin-loaded HFn was used to treat the cancer cells. The results from confocal microscopy and DNA damage assays proved that loading of doxorubicin in HFn nanoparticles increased the nuclear delivery of the drug, thus enhancing doxorubicin efficacy. Doxorubicin-loaded HFn acts as a "Trojan Horse": HFn was internalized in cancer cells faster and more efficiently compared to free doxorubicin, then promptly translocated into the nucleus following the DNA damage caused by the partial release in the cytoplasm of encapsulated doxorubicin. This self-triggered translocation mechanism allowed the drug to be directly released in the nuclear compartment, where it exerted its toxic action. This approach was reliable and straightforward providing an antiproliferative effect with high reproducibility. The particular self-assembling nature of HFn nanocage makes it a versatile and tunable nanovector for a broad range of molecules suitable both for detection and treatment of cancer cells.
Collapse
Affiliation(s)
- Michela Bellini
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Serena Mazzucchelli
- Dipartimento di Scienze Biomediche e Cliniche "Luigi Sacco", Università di Milano, Ospedale L. Sacco, Via G.B. Grassi 74, 20157 Milano, Italy.
| | - Elisabetta Galbiati
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Silvia Sommaruga
- Dipartimento di Scienze Biomediche e Cliniche "Luigi Sacco", Università di Milano, Ospedale L. Sacco, Via G.B. Grassi 74, 20157 Milano, Italy
| | - Luisa Fiandra
- Dipartimento di Scienze Biomediche e Cliniche "Luigi Sacco", Università di Milano, Ospedale L. Sacco, Via G.B. Grassi 74, 20157 Milano, Italy
| | - Marta Truffi
- Dipartimento di Scienze Biomediche e Cliniche "Luigi Sacco", Università di Milano, Ospedale L. Sacco, Via G.B. Grassi 74, 20157 Milano, Italy
| | - Maria A Rizzuto
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Miriam Colombo
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Paolo Tortora
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Fabio Corsi
- Dipartimento di Scienze Biomediche e Cliniche "Luigi Sacco", Università di Milano, Ospedale L. Sacco, Via G.B. Grassi 74, 20157 Milano, Italy
| | - Davide Prosperi
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy.
| |
Collapse
|
35
|
Mendes-Jorge L, Ramos D, Valença A, López-Luppo M, Pires VMR, Catita J, Nacher V, Navarro M, Carretero A, Rodriguez-Baeza A, Ruberte J. L-ferritin binding to scara5: a new iron traffic pathway potentially implicated in retinopathy. PLoS One 2014; 9:e106974. [PMID: 25259650 PMCID: PMC4178024 DOI: 10.1371/journal.pone.0106974] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 08/05/2014] [Indexed: 01/08/2023] Open
Abstract
Iron is essential in the retina because the heme-containing enzyme guanylate cyclase modulates phototransduction in rods and cones. Transferrin endocytosis is the classical pathway for obtaining iron from the blood circulation in the retina. However, the iron storage protein ferritin has been also recently proposed as an iron carrier. In this study, the presence of Scara5 and its binding to L-ferritin was investigated in the retina. Our results showed that Scara5, the specific receptor for L-ferritin, was expressed in mouse and human retinas in many cell types, including endothelial cells. Furthermore, we showed that intravenously injected ferritin crossed the blood retinal barrier through L-ferritin binding to Scara5 in endothelial cells. Thus, suggesting the existence of a new pathway for iron delivery and trafficking in the retina. In a murine model of photoreceptor degeneration, Scara5 was downregulated, pointing out this receptor as a potential player implicated in retinopathy and also as a possible therapeutic target.
Collapse
Affiliation(s)
- Luísa Mendes-Jorge
- Interdisciplinary Centre of Research in Animal Health, Faculty of Veterinary Medicine, Universidade de Lisboa, Lisbon, Portugal; Department of Morphology and Function, Faculty of Veterinary Medicine, Universidade de Lisboa, Lisbon, Portugal; Center of Animal Biotechnology and Gene Therapy, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - David Ramos
- Interdisciplinary Centre of Research in Animal Health, Faculty of Veterinary Medicine, Universidade de Lisboa, Lisbon, Portugal; Center of Animal Biotechnology and Gene Therapy, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Andreia Valença
- Interdisciplinary Centre of Research in Animal Health, Faculty of Veterinary Medicine, Universidade de Lisboa, Lisbon, Portugal
| | - Mariana López-Luppo
- Interdisciplinary Centre of Research in Animal Health, Faculty of Veterinary Medicine, Universidade de Lisboa, Lisbon, Portugal; Center of Animal Biotechnology and Gene Therapy, Universitat Autònoma de Barcelona, Bellaterra, Spain; Department of Animal Health and Anatomy, School of Veterinary Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Virgínia Maria Rico Pires
- Interdisciplinary Centre of Research in Animal Health, Faculty of Veterinary Medicine, Universidade de Lisboa, Lisbon, Portugal
| | - Joana Catita
- Center of Animal Biotechnology and Gene Therapy, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Victor Nacher
- Interdisciplinary Centre of Research in Animal Health, Faculty of Veterinary Medicine, Universidade de Lisboa, Lisbon, Portugal; Center of Animal Biotechnology and Gene Therapy, Universitat Autònoma de Barcelona, Bellaterra, Spain; Department of Animal Health and Anatomy, School of Veterinary Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Marc Navarro
- Interdisciplinary Centre of Research in Animal Health, Faculty of Veterinary Medicine, Universidade de Lisboa, Lisbon, Portugal; Center of Animal Biotechnology and Gene Therapy, Universitat Autònoma de Barcelona, Bellaterra, Spain; Department of Animal Health and Anatomy, School of Veterinary Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Ana Carretero
- Interdisciplinary Centre of Research in Animal Health, Faculty of Veterinary Medicine, Universidade de Lisboa, Lisbon, Portugal; Center of Animal Biotechnology and Gene Therapy, Universitat Autònoma de Barcelona, Bellaterra, Spain; Department of Animal Health and Anatomy, School of Veterinary Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Alfonso Rodriguez-Baeza
- Department of Morphological Sciences, School of Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Jesús Ruberte
- Interdisciplinary Centre of Research in Animal Health, Faculty of Veterinary Medicine, Universidade de Lisboa, Lisbon, Portugal; Center of Animal Biotechnology and Gene Therapy, Universitat Autònoma de Barcelona, Bellaterra, Spain; Department of Animal Health and Anatomy, School of Veterinary Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain
| |
Collapse
|
36
|
Iron-rich ferritin in the hypoxia-tolerant rodent Spalax ehrenbergi: a naturally-occurring biomarker confirms the internalization and pathways of intracellular macromolecules. J Struct Biol 2014; 187:254-265. [PMID: 25050761 DOI: 10.1016/j.jsb.2014.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 06/20/2014] [Accepted: 07/11/2014] [Indexed: 02/08/2023]
Abstract
The discovery of pits/caveolae in the plasmalemma advanced the study of macromolecule internalization. "Transcytosis" describes the transport of macromolecular cargo from one front of a polarized cell to the other within membrane-bounded carrier(s), via endocytosis, intracellular trafficking and exocytosis. Clathrin-mediated transcytosis is used extensively by epithelial cells, while caveolae-mediated transcytosis mostly occurs in endothelial cells. The internalization pathways were monitored by various markers, including radioisotopes, nanoparticles, enzymes, immunostains, and fluorophores. We describe an internalization pathway identified using a naturally-occurring biomarker, in vivo assembled ferritin, containing electron-dense iron cores. Iron, an essential trace metal for most living species and iron homeostasis, is crucial for cellular life. Ferritin is a ubiquitous and highly conserved archeoprotein whose main function is to store a reserve iron supply inside the cytoplasm in a non-toxic form. Ferritin is present in all organisms which have a metabolic requirement for iron and in even in organisms whose taxonomic rank is very low. The newborns of the blind mole, Spalax ehrenbergi, are born and live in a hypoxic environment and have significant iron overload in their liver and heart, but their iron metabolism has not been previously studied. These newborns, which are evolutionarily adapted to fluctuations in the environmental oxygen, have a unique ability to sequester transplacental iron and store it in ferritin without any signs of iron toxicity. Using the ferrihydrite cores of ferritin, we were able to monitor the ferritin internalization from portals of its entry into the cytosol of hepatocytes and cardiomyocytes and into the lysosomes.
Collapse
|
37
|
Ahmad S, Moriconi F, Naz N, Sultan S, Sheikh N, Ramadori G, Malik IA. Ferritin L and Ferritin H are differentially located within hepatic and extra hepatic organs under physiological and acute phase conditions. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2013; 6:622-629. [PMID: 23573308 PMCID: PMC3606851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 02/21/2013] [Indexed: 06/02/2023]
Abstract
Ferritin L (FTL) and Ferritin H (FTH) subunits are responsible for intercellular iron storage. We previously reported increasing amounts of liver cytoplasmic and nuclear iron content during acute phase response (APR). Aim of the present study is to demonstrate intracellular localization of ferritin subunits in liver compared with extra hepatic organs of rat under physiological and acute phase conditions. Rats were administered turpentine-oil (TO) intramuscularly to induce a sterile abscess (acute-phase-model) and sacrificed at different time points. Immunohistochemistry was performed utilizing horse-reddish-peroxidise conjugated secondary antibody on 4μm thick section. Liver cytoplasmic and nuclear protein were used for Western blot analysis. By means of immunohistology, FTL was detected in cytoplasm while a strong nuclear positivity for FTH was evident in the liver. Similarly, in heart, spleen and brain FTL was detected mainly in the cytoplasm while FTH demonstrated intense nuclear and a weak cytoplasmic expression. Western blot analysis of cytoplasmic and nuclear fractions from liver, heart, spleen and brain further confirmed mainly cytoplasmic expression of FTL in contrast to the nuclear and cytoplasmic expression of FTH. The data presented demonstrate the differential localization of FTL and FTH within hepatic and extra hepatic organs being FTL predominantly in the cytoplasm while FTH predominantly in nucleus.
Collapse
Affiliation(s)
- Shakil Ahmad
- Department of Internal Medicine, Division of Gastroenterology and Endocrinology, University Hospital, Georg-August-University Robert-Koch-Str. 40, 37075 Göttingen, Germany
| | | | | | | | | | | | | |
Collapse
|
38
|
Naz N, Malik IA, Sheikh N, Ahmad S, Khan S, Blaschke M, Schultze F, Ramadori G. Ferroportin-1 is a 'nuclear'-negative acute-phase protein in rat liver: a comparison with other iron-transport proteins. J Transl Med 2012; 92:842-56. [PMID: 22469696 DOI: 10.1038/labinvest.2012.52] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Liver is the central organ of iron metabolism. During acute-phase-response (APR), serum iron concentration rapidly decreases. The current study aimed to compare expression and localization of iron transport protein ferroportin-1 (Fpn-1) and of other iron import proteins after experimental tissue damage induced by injecting turpentine oil in the hind limbs of rats and mice. Serum and spleen iron concentration decreased with an increase in total liver, cytoplasmic and nuclear iron concentration. In liver, mRNA amount of Fpn-1, Fpn-1a, Fpn-1b, HFE, hemojuvelin (HJV) and hephaestin (heph) genes showed a rapid decrease. Hepcidin, divalent metal transporter-1 (DMT-1), transferrin (Tf) and Tf-receptor-1 (TfR1), TfR-2 (TfR2) gene expression was increased. Western blot analysis of liver tissue lysate confirmed the changes observed at mRNA level. In spleen, a rapid decrease in gene expression of Fpn-1, Fpn-1a, Fpn-1b, DMT-1, Tf, TfR1 and TfR2, and an increase in hepcidin was observed. Immunohistochemistry of DMT-1 and TfR2 were mainly detected in the nucleus of rat liver and spleen, whereas TfR1 was clearly localized in the plasma membrane. Fpn-1 was mostly found in the nuclei of liver cells, whereas in spleen, the protein was mainly detected in the cell membrane. Western blot analysis of liver fractions confirmed immunohistochemical results. In livers of wild-type mice, gene expression of Fpn-1, Fpn-1a and Fpn-1b was downregulated, whereas hepcidin gene expression was increased. In contrast, these changes were less pronounced in IL-6ko-mice. Cytokine (IL-6, IL-1b and TNF-a) treatment of rat hepatocytes showed a downregulation of Fpn-1, Fpn-1a and Fpn-1b, and upregulation of hepcidin gene expression. Moreover, western blot analysis of cell lysate of IL-6-treated hepatocytes detected, as expected, an increase of a2-macroglobulin (positive acute-phase protein), whereas albumin (negative acute-phase protein) and Fpn-1 were downregulated. Our results demonstrate that liver behaves as a 'sponge' for iron under acute-phase conditions, and Fpn-1 behaves as a negative acute-phase protein in rat hepatocytes mainly, but not exclusively, because of the effect of IL-6. These changes could explain iron retention in the cytoplasm and in the nucleus of hepatocytes during APR.
Collapse
Affiliation(s)
- Naila Naz
- Division of Gastroenterology and Endocrinology, Department of Internal Medicine, University Hospital, Georg-August-University, Göttingen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Liu X, Madhankumar AB, Slagle-Webb B, Sheehan JM, Surguladze N, Connor JR. Heavy chain ferritin siRNA delivered by cationic liposomes increases sensitivity of cancer cells to chemotherapeutic agents. Cancer Res 2011; 71:2240-9. [PMID: 21385903 DOI: 10.1158/0008-5472.can-10-1375] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Approximately half of all gliomas are resistant to chemotherapy, and new therapeutic strategies are urgently needed to treat this cancer. We hypothesized that disrupting iron homeostasis in glioma cells could block tumor growth, based on an acute requirement for high levels of iron to meet energy requirements associated with their rapid growth. Ferritin is best known as an intracellular iron storage protein, but it also localizes to tumor cell nuclei where it seems to protect DNA from oxidative damage and to promote transcription. In this study, we hypothesize that silencing the H-ferritin (heavy chain ferritin) gene could increase tumor sensitivity to chemotoxins. To test this hypothesis, H-ferritin siRNA was delivered to several human cancer cell lines by using cationic liposomes (C-liposome). H-ferritin siRNA decreased protein expression by 80% within 48 hours, and this decrease was associated with more than 50% decrease in the LD(50) for DNA-alkylating agent carmustine (BCNU), which is commonly used to treat glioma in clinic. In a subcutaneous mouse model of human glioma, intratumoral injections of liposomes containing H-ferritin siRNA reduced the effective dose of BCNU needed for tumor suppression by more than 50%. A plasmid supercoil relaxation assay showed that H-ferritin specifically and directly protected DNA from BCNU treatment. H-ferritin siRNA additionally seemed to increase apoptosis in glioma cells in vitro upon H-ferritin knockdown. Overall, our results illustrate how silencing H-ferritin can effectively sensitize tumors to chemotherapy and also show the ability of C-liposomes to serve as a novel in vivo delivery tool for siRNAs.
Collapse
Affiliation(s)
- Xiaoli Liu
- Department of Neurosurgery, Penn State Cancer Institute, Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, Pennsylvania 17033, USA
| | | | | | | | | | | |
Collapse
|
40
|
Liu X, Ye Z, Wei W, Du Y, Yuan J, Ma D. Artificial luminescent protein as a bioprobe for time-gated luminescence bioimaging. Chem Commun (Camb) 2011; 47:8139-41. [DOI: 10.1039/c1cc11759a] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
41
|
Alkhateeb AA, Connor JR. Nuclear ferritin: A new role for ferritin in cell biology. Biochim Biophys Acta Gen Subj 2010; 1800:793-7. [DOI: 10.1016/j.bbagen.2010.03.017] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Revised: 03/19/2010] [Accepted: 03/22/2010] [Indexed: 02/08/2023]
|
42
|
Wang W, Knovich MA, Coffman LG, Torti FM, Torti SV. Serum ferritin: Past, present and future. BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1800:760-9. [PMID: 20304033 PMCID: PMC2893236 DOI: 10.1016/j.bbagen.2010.03.011] [Citation(s) in RCA: 541] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Revised: 03/11/2010] [Accepted: 03/13/2010] [Indexed: 02/07/2023]
Abstract
BACKGROUND Serum ferritin was discovered in the 1930s, and was developed as a clinical test in the 1970s. Many diseases are associated with iron overload or iron deficiency. Serum ferritin is widely used in diagnosing and monitoring these diseases. SCOPE OF REVIEW In this chapter, we discuss the role of serum ferritin in physiological and pathological processes and its use as a clinical tool. MAJOR CONCLUSIONS Although many aspects of the fundamental biology of serum ferritin remain surprisingly unclear, a growing number of roles have been attributed to extracellular ferritin, including newly described roles in iron delivery, angiogenesis, inflammation, immunity, signaling and cancer. GENERAL SIGNIFICANCE Serum ferritin remains a clinically useful tool. Further studies on the biology of this protein may provide new biological insights.
Collapse
Affiliation(s)
- Wei Wang
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC 27157, USA
| | | | | | | | | |
Collapse
|
43
|
Iordanova B, Robison CS, Ahrens ET. Design and characterization of a chimeric ferritin with enhanced iron loading and transverse NMR relaxation rate. J Biol Inorg Chem 2010; 15:957-65. [PMID: 20401622 PMCID: PMC2936821 DOI: 10.1007/s00775-010-0657-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Accepted: 03/28/2010] [Indexed: 10/19/2022]
Abstract
This paper describes the design and characterization of a novel ferritin chimera. The iron storage protein ferritin forms a paramagnetic ferrihydrite core. This biomineral, when placed in a magnetic field, can decrease the transverse NMR relaxation times (T (2) and T (2)*) of nearby mobile water protons. Ferritin nucleic acid constructs have recently been studied as "probeless" magnetic resonance imaging (MRI) reporters. Following reporter expression, ferritin sequesters endogenous iron and imparts hypointensity to T (2)- and T (2)*-weighted images in an amount proportional to the ferritin iron load. Wild-type ferritin consists of various ratios of heavy H and light L subunits, and their ratio affects ferritin's stability and iron storage capacity. We report a novel chimeric ferritin with a fixed subunit stoichiometry obtained by fusion of the L and the H subunits (L*H and H*L) using a flexible linker. We characterize these supramolecular ferritins expressed in human cells, including their iron loading characteristics, hydrodynamic size, subcellular localization, and effect on solvent water T (2) relaxation rate. Interestingly, we found that the L*H chimera exhibits a significantly enhanced iron loading ability and T (2) relaxation compared to wild-type ferritin. We suggest that the L*H chimera may be useful as a sensitive MRI reporter molecule.
Collapse
Affiliation(s)
- Bistra Iordanova
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA; Pittsburgh NMR Center for Biomedical Research, Pittsburgh, PA, USA
| | - Clinton S. Robison
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA; Pittsburgh NMR Center for Biomedical Research, Pittsburgh, PA, USA
| | - Eric T. Ahrens
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA; Pittsburgh NMR Center for Biomedical Research, Pittsburgh, PA, USA
| |
Collapse
|
44
|
Abstract
Hemochromatosis is a known cause of osteoporosis, and iron overload has deleterious effects on bone. Although iron overload and its association with osteoporosis has long been recognized, the pathogenesis and exact role of iron have been undefined. Bone is an active tissue with constant remodeling capacity. Osteoblast (OB) development and maturation are under the influence of core binding factor alpha-1 (CBF-alpha1), which induces expression of OB-specific genes, including alkaline phosphatase, an important enzyme in early osteogenesis, and osteocalcin, a noncollagenous protein deposited within the osteoid. This study investigates the mechanism by which iron inhibits human OB activity, which in vivo may lead to decreased mineralization, osteopenia, and osteoporosis. We demonstrate that iron-provoked inhibition of OB activity is mediated by ferritin and its ferroxidase activity. We confirm this notion by using purified ferritin H-chain and ceruloplasmin, both known to possess ferroxidase activity that inhibited calcification, whereas a site-directed mutant of ferritin H-chain lacking ferroxidase activity failed to provide any inhibition. Furthermore, we are reporting that such suppression is not restricted to inhibition of calcification, but OB-specific genes such as alkaline phosphatase, osteocalcin, and CBF-alpha1 are all downregulated by ferritin in a dose-responsive manner. This study corroborates that iron decreases mineralization and demonstrates that this suppression is provided by iron-induced upregulation of ferritin. In addition, we conclude that inhibition of OB activity, mineralization, and specific gene expression is attributed to the ferroxidase activity of ferritin.
Collapse
|
45
|
Storr HL, Kind B, Parfitt DA, Chapple JP, Lorenz M, Koehler K, Huebner A, Clark AJL. Deficiency of ferritin heavy-chain nuclear import in triple a syndrome implies nuclear oxidative damage as the primary disease mechanism. Mol Endocrinol 2009; 23:2086-94. [PMID: 19855093 PMCID: PMC5419132 DOI: 10.1210/me.2009-0056] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Accepted: 09/04/2009] [Indexed: 12/17/2022] Open
Abstract
Triple A syndrome is a rare autosomal recessive disorder characterized by ACTH-resistant adrenal failure, alacrima, achalasia, and progressive neurological manifestations. The majority of cases are associated with mutations in the AAAS gene, which encodes a novel, 60-kDa WD-repeat nuclear pore protein, alacrima-achalasia-adrenal insufficiency neurological disorder (ALADIN) of unknown function. Our aim was to elucidate the functional role of ALADIN by determining its interacting protein partners using the bacterial two-hybrid (B2-H) technique. Nonidentical cDNA fragments were identified from both a HeLa S-3 cell and human cerebellar cDNA library that encoded the full-length ferritin heavy chain protein (FTH1). This interaction was confirmed by both co-immunoprecipitation and fluorescence lifetime imaging microscopy-fluorescence resonance energy transfer studies. Immunoblotting showed that fibroblasts from triple A patients (with known AAAS mutations) lack nuclear FTH1, suggesting that the nuclear translocation of FTH1 is defective. Cells transfected with FTH1 and visualized by confocal microscopy had very little nuclear FTH1, but when cotransfected with AAAS, FTH1 is readily visible in the nuclei. Therefore, FTH1 nuclear translocation is enhanced when ALADIN is coexpressed in these cells. In addition to its well known iron storage role, FTH1 has been shown to protect the nucleus from oxidative damage. Apoptosis of neuronal cells induced by hydrogen peroxide was significantly reduced by transfection of AAAS or by FTH1 or maximally by both genes together. Taken together, this work offers a plausible mechanism for the progressive clinical features of triple A syndrome.
Collapse
Affiliation(s)
- Helen L Storr
- Centre for Endocrinology, William Harvey Research Institute, Queen Mary University of London, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Beazley KE, Nurminskaya M, Linsenmayer TF. Phosphorylation regulates the ferritoid-ferritin interaction and nuclear transport. J Cell Biochem 2009; 107:528-36. [PMID: 19360808 DOI: 10.1002/jcb.22154] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Ferritin is an iron-sequestering protein that is generally cytoplasmic; however, our previous studies have shown that in avian corneal epithelial (CE) cells ferritin is nuclear. We have also observed that this nuclear localization involves a tissue-specific nuclear transporter that we have termed ferritoid, and that nuclear ferritin protects DNA from oxidative damage. Recently we have determined that ferritoid functions not only as a nuclear transporter, but also, within the nucleus, it remains associated with ferritin as a heteropolymeric complex. This ferritoid-ferritin complex has unique properties such as being half the size of a typical ferritin molecule and showing preferential binding to DNA. It is likely that the association between ferritoid and ferritin is involved both in the nuclear transport of ferritin and in determining certain of the properties of the complex; therefore, we have been examining the mechanisms involved in regulating the association of these two components. As the ferritoid sequence contains six putative phosphorylation sites, we have examined here whether phosphorylation is one such mechanism. We have determined that ferritoid in the nuclear ferritoid-ferritin complexes is phosphorylated, and that inhibition of this phosphorylation, using inhibitors of PKC, prevents its interaction with ferritin. Furthermore, in an experimental model system in which the nuclear transport of ferritin normally occurs (i.e., the co-transfection of COS-1 cells with full length constructs for ferritin and ferritoid), when phosphorylation sites in ferritoid are mutated, the interaction between ferritoid and ferritin is inhibited, as is the nuclear transport of ferritin.
Collapse
Affiliation(s)
- Kelly E Beazley
- Department of Anatomy and Cellular Biology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, Massachusetts 02111, USA
| | | | | |
Collapse
|
47
|
|
48
|
Bleackley MR, Wong AY, Hudson DM, Wu CHY, MacGillivray RT. Blood Iron Homeostasis: Newly Discovered Proteins and Iron Imbalance. Transfus Med Rev 2009; 23:103-23. [DOI: 10.1016/j.tmrv.2008.12.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
49
|
Geiser DL, Shen MC, Mayo JJ, Winzerling JJ. Iron loaded ferritin secretion and inhibition by CI-976 in Aedes aegypti larval cells. Comp Biochem Physiol B Biochem Mol Biol 2009; 152:352-63. [PMID: 19168145 PMCID: PMC2649984 DOI: 10.1016/j.cbpb.2009.01.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2008] [Revised: 01/01/2009] [Accepted: 01/03/2009] [Indexed: 12/26/2022]
Abstract
Ferritin is a multimer of 24 subunits of heavy and light chains. In mammals, iron taken into cells is stored in ferritin or incorporated into iron-containing proteins. Very little ferritin is found circulating in mammalian serum; most is retained in the cytoplasm. Female mosquitoes, such as Aedes aegypti (yellow fever mosquito, Diptera), require a blood meal for oogenesis. Mosquitoes receive a potentially toxic level of iron in the blood meal which must be processed and stored. We demonstrate by (59)Fe pulse-chase experiments that cultured A. aegypti larval CCL-125 cells take up iron from culture media and store it in ferritin found mainly in the membrane fraction and secrete iron-loaded ferritin. We observe that in these larval cells ferritin co-localizes with ceramide-containing membranes in the absence of iron. With iron treatment, ferritin is found associated with ceramide-containing membranes as well as in cytoplasmic non-ceramide vesicles. Treatment of CCL-125 cells with iron and CI-976, an inhibitor of lysophospholipid acyl transferases, disrupts ferritin secretion with a concomitant decrease in cell viability. Interfering with ferritin secretion may limit the ability of mosquitoes to adjust to the high iron load of the blood meal and decrease iron delivery to the ovaries reducing egg numbers.
Collapse
Affiliation(s)
- Dawn L Geiser
- Department of Nutritional Sciences, The University of Arizona, Tucson, 85721, USA.
| | | | | | | |
Collapse
|
50
|
Nurminskaya MV, Talbot CJ, Nurminsky DI, Beazley KE, Linsenmayer TF. Nuclear ferritin: a ferritoid-ferritin complex in corneal epithelial cells. Invest Ophthalmol Vis Sci 2009; 50:3655-61. [PMID: 19255152 DOI: 10.1167/iovs.08-3170] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Ferritin is an iron storage protein that is generally cytoplasmic. However, in embryonic avian corneal epithelial (CE) cells, the authors previously observed that the ferritin was predominantly nuclear. They also obtained evidence that this ferritin protects DNA from oxidative damage by UV light and hydrogen peroxide and that the nuclear localization involves a tissue-specific nuclear transporter, termed ferritoid. In the present investigation, the authors have determined additional properties of the nuclear ferritoid-ferritin complexes. METHODS For biochemical characterization, a combination of molecular sieve chromatography, immunoblotting, and nuclear-cytoplasmic fractionation was used; DNA binding was analyzed by electrophoretic mobility shift assay. RESULTS The CE nuclear ferritin complex has characteristics that differentiate it from a "typical" cytoplasmic ferritin, including the presence of ferritin and ferritoid subunits; a molecular weight of approximately 260 kDa, which is approximately half that of cytoplasmic ferritin; its iron content, which is below our limits of detection; and its ability to bind to DNA. CONCLUSIONS Within CE cell nuclei, ferritin and ferritoid are coassembled into stable complex(es) present in embryonic and adult corneas. Thus, ferritoid not only serves transiently as a nuclear transporter for ferritin, it remains as a component of a unique ferritoid-ferritin nuclear complex.
Collapse
Affiliation(s)
- Maria V Nurminskaya
- Department of Anatomy and Cell Biology, Tufts University, Boston, MA 02111, USA
| | | | | | | | | |
Collapse
|