1
|
Samsri S, Kortheerakul C, Kageyama H, Waditee-Sirisattha R. Molecular and biochemical characterization of a plant-like iota-class glutathione S-transferase from the halotolerant cyanobacterium Halothece sp. PCC7418. J Appl Microbiol 2024; 135:lxae230. [PMID: 39227165 DOI: 10.1093/jambio/lxae230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/31/2024] [Accepted: 09/03/2024] [Indexed: 09/05/2024]
Abstract
AIMS This study identifies a unique glutathione S-transferase (GST) in extremophiles using genome, phylogeny, bioinformatics, functional characterization, and RNA sequencing analysis. METHODS AND RESULTS Five putative GSTs (H0647, H0729, H1478, H3557, and H3594) were identified in Halothece sp. PCC7418. Phylogenetic analysis suggested that H0647, H1478, H0729, H3557, and H3594 are distinct GST classes. Of these, H0729 was classified as an iota-class GST, encoding a high molecular mass GST protein with remarkable features. The protein secondary structure of H0729 revealed the presence of a glutaredoxin (Grx) Cys-Pro-Tyr-Cys (C-P-Y-C) motif that overlaps with the N-terminal domain and harbors a topology similar to the thioredoxin (Trx) fold. Interestingly, recombinant H0729 exhibited a high catalytic efficiency for both glutathione (GSH) and 1-chloro-2, 4-dinitrobenzene (CDNB), with catalytic efficiencies that were 155- and 32-fold higher, respectively, compared to recombinant H3557. Lastly, the Halothece gene expression profiles suggested that antioxidant and phase II detoxification encoding genes are crucial in response to salt stress. CONCLUSION Iota-class GST was identified in cyanobacteria. This GST exhibited a high catalytic efficiency toward xenobiotic substrates. Our findings shed light on a diversified evolution of GST in cyanobacteria and provide functional dynamics of the genes encoding the enzymatic antioxidant and detoxification systems under abiotic stresses.
Collapse
Affiliation(s)
- Sasiprapa Samsri
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok 10330, Thailand
| | - Chananwat Kortheerakul
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok 10330, Thailand
| | - Hakuto Kageyama
- Department of Chemistry, Faculty of Science and Technology, Meijo University, 1-501 Shiogamaguchi, Tenpaku-ku, Nagoya, Aichi 468-8502, Japan
- Graduate School of Environmental and Human Sciences, Meijo University, 1-501 Shiogamaguchi, Tenpaku-ku, Nagoya, Aichi 468-8502, Japan
| | - Rungaroon Waditee-Sirisattha
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok 10330, Thailand
| |
Collapse
|
2
|
Ebeed H, Baz M, Habib E, Prabhu S, Ceasar SA. Integrated metabolomic analysis and molecular docking: Unveiling the potential of Nephrolepis exaltata (L.) Schott phytocompounds for mosquito control via glutathione-S-transferase targeting. Int J Biol Macromol 2024; 273:133072. [PMID: 38885861 DOI: 10.1016/j.ijbiomac.2024.133072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/03/2024] [Accepted: 06/08/2024] [Indexed: 06/20/2024]
Abstract
Plants contain a wide range of potential phytochemicals that are target-specific, and less toxic to human health. The present study aims to investigate the metabolomic profile of Nephrolepis exaltata (L.) Schott and its potential for mosquito control by targeting Glutathione-S-Transferase, focusing on the larvicidal activity against Culex pipiens. Crude extracts (CEs) were prepared using ethanol, ethyl acetate and n-hexane. CEs have been used for assessment of mosquitocidal bioassay. The metabolomic analyses for CEs were characterized for each CE by gas chromatography-mass spectrometry (GC-MS). The most efficient CE with the highest larval mortality and the least LC50 was the hexane CE. Then, alkaline phosphatase (ALP) activity, and glutathione-S-transferase (GST) activity were assessed in larvae treated with the hexane CE. The results demonstrated a decline in protein content, induction of ALP activity, and reduction in GST activity. Finally, molecular docking and dynamic simulation techniques were employed to evaluate the interaction between the hexane phytochemicals and the GST protein. D-(+)-Glucuronic acid, 3TMS derivative and Sebacic acid, 2TMS derivative showed best binding affinities to GST protein pointing to their interference with the enzyme detoxification functions, potentially leading to reduced ability to metabolize insecticides.
Collapse
Affiliation(s)
- Heba Ebeed
- Botany and Microbiology Department, Faculty of Science, Damietta University, Damietta 34517, Egypt; National Biotechnology Network of Expertise (NBNE), Academy of Scientific Research and Technology (ASRT), Cairo, Egypt.
| | - Mohamed Baz
- Department of Entomology, Faculty of Science, Benha University, Benha 13518, Egypt
| | - Eman Habib
- Botany and Microbiology Department, Faculty of Science, Damietta University, Damietta 34517, Egypt
| | - Srinivasan Prabhu
- Division of Phytochemistry and Drug Design, Department of Biosciences, Rajagiri College of Social Sciences, Cochin 683 104, Kerala, India
| | - Stanislaus Antony Ceasar
- Division of Plant Molecular Biology and Biotechnology, Department of Biosciences, Rajagiri College of Social Sciences, Cochin, 683 104, Kerala, India
| |
Collapse
|
3
|
Tossounian MA, Zhao Y, Yu BYK, Markey SA, Malanchuk O, Zhu Y, Cain A, Gout I. Low-molecular-weight thiol transferases in redox regulation and antioxidant defence. Redox Biol 2024; 71:103094. [PMID: 38479221 PMCID: PMC10950700 DOI: 10.1016/j.redox.2024.103094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/08/2024] [Accepted: 02/18/2024] [Indexed: 03/24/2024] Open
Abstract
Low-molecular-weight (LMW) thiols are produced in all living cells in different forms and concentrations. Glutathione (GSH), coenzyme A (CoA), bacillithiol (BSH), mycothiol (MSH), ergothioneine (ET) and trypanothione T(SH)2 are the main LMW thiols in eukaryotes and prokaryotes. LMW thiols serve as electron donors for thiol-dependent enzymes in redox-mediated metabolic and signaling processes, protect cellular macromolecules from oxidative and xenobiotic stress, and participate in the reduction of oxidative modifications. The level and function of LMW thiols, their oxidized disulfides and mixed disulfide conjugates in cells and tissues is tightly controlled by dedicated oxidoreductases, such as peroxiredoxins, glutaredoxins, disulfide reductases and LMW thiol transferases. This review provides the first summary of the current knowledge of structural and functional diversity of transferases for LMW thiols, including GSH, BSH, MSH and T(SH)2. Their role in maintaining redox homeostasis in single-cell and multicellular organisms is discussed, focusing in particular on the conjugation of specific thiols to exogenous and endogenous electrophiles, or oxidized protein substrates. Advances in the development of new research tools, analytical methodologies, and genetic models for the analysis of known LMW thiol transferases will expand our knowledge and understanding of their function in cell growth and survival under oxidative stress, nutrient deprivation, and during the detoxification of xenobiotics and harmful metabolites. The antioxidant function of CoA has been recently discovered and the breakthrough in defining the identity and functional characteristics of CoA S-transferase(s) is soon expected.
Collapse
Affiliation(s)
- Maria-Armineh Tossounian
- Department of Structural and Molecular Biology, University College London, London, WC1E 6BT, United Kingdom
| | - Yuhan Zhao
- Department of Structural and Molecular Biology, University College London, London, WC1E 6BT, United Kingdom
| | - Bess Yi Kun Yu
- Department of Structural and Molecular Biology, University College London, London, WC1E 6BT, United Kingdom
| | - Samuel A Markey
- Department of Structural and Molecular Biology, University College London, London, WC1E 6BT, United Kingdom
| | - Oksana Malanchuk
- Department of Structural and Molecular Biology, University College London, London, WC1E 6BT, United Kingdom; Department of Cell Signaling, Institute of Molecular Biology and Genetics, Kyiv, 143, Ukraine
| | - Yuejia Zhu
- Department of Structural and Molecular Biology, University College London, London, WC1E 6BT, United Kingdom
| | - Amanda Cain
- Department of Structural and Molecular Biology, University College London, London, WC1E 6BT, United Kingdom
| | - Ivan Gout
- Department of Structural and Molecular Biology, University College London, London, WC1E 6BT, United Kingdom; Department of Cell Signaling, Institute of Molecular Biology and Genetics, Kyiv, 143, Ukraine.
| |
Collapse
|
4
|
Park H, Kim HS, Abassi S, Bui QTN, Ki JS. Two novel glutathione S-transferase (GST) genes in the toxic marine dinoflagellate Alexandrium pacificum and their transcriptional responses to environmental contaminants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:169983. [PMID: 38215848 DOI: 10.1016/j.scitotenv.2024.169983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 01/02/2024] [Accepted: 01/05/2024] [Indexed: 01/14/2024]
Abstract
The present study identified two novel glutathione S-transferase (GST) genes from the toxic dinoflagellate Alexandrium pacificum and examined their molecular characteristics and transcriptional responses to algicides and environmental contaminants. Bioinformatic analysis revealed that both ApGSTs are cytosolic, belonging to the chi-like class (ApGST1) and an undefined class (ApGST2). The overall expression of ApGSTs showed similar patterns depending on the exposed contaminants, while they were differently regulated by polychlorinated biphenyl (PCB). Copper treatments (CuCl2 and CuSO4) did not significantly induce the expression of ApGSTs. The highest up-regulations of ApGST1 and ApGST2 were under 6-h treatments of 0.10 and 0.50 mg L-1 NaOCl. Interestingly, only ApGST1 increased significantly after 0.10, 0.50, and 1.00 mg L-1 of PCB exposure (6 h). Intracellular reactive oxygen species (ROS) increased considerably under NaOCl; however, it was not significantly higher in the PCB-treated cells. GST activity was increased by NaOCl and PCB treatments, but only PCB caused apoptosis. These results suggest that GSTs are involved in the first line of phase II detoxification, protecting dinoflagellate cells against oxidative damage.
Collapse
Affiliation(s)
- Hyunjun Park
- Department of Life Science, Sangmyung University, Seoul, South Korea
| | - Han-Sol Kim
- Department of Life Science, Sangmyung University, Seoul, South Korea
| | - Sofia Abassi
- Department of Life Science, Sangmyung University, Seoul, South Korea
| | - Quynh Thi Nhu Bui
- Department of Life Science, Sangmyung University, Seoul, South Korea
| | - Jang-Seu Ki
- Department of Life Science, Sangmyung University, Seoul, South Korea; Department of Biotechnology, Sangmyung University, Seoul, South Korea.
| |
Collapse
|
5
|
Mannervik B. Versatility of Glutathione Transferase Proteins. Biomolecules 2023; 13:1749. [PMID: 38136620 PMCID: PMC10741957 DOI: 10.3390/biom13121749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/03/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
For more than 60 years, glutathione transferases (GSTs) have attracted attention, but the research field of the GSTome [...].
Collapse
Affiliation(s)
- Bengt Mannervik
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, SE-10691 Stockholm, Sweden;
- Department of Chemistry, Scripps Research, La Jolla, CA 92037, USA
| |
Collapse
|
6
|
Aioub AAA, Hashem AS, El-Sappah AH, El-Harairy A, Abdel-Hady AAA, Al-Shuraym LA, Sayed S, Huang Q, Abdel-Wahab SIZ. Identification and Characterization of Glutathione S-transferase Genes in Spodoptera frugiperda (Lepidoptera: Noctuidae) under Insecticides Stress. TOXICS 2023; 11:542. [PMID: 37368642 DOI: 10.3390/toxics11060542] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023]
Abstract
Insect glutathione S-transferases (GSTs) serve critical roles in insecticides and other forms of xenobiotic chemical detoxification. The fall armyworm, Spodoptera frugiperda (J. E. Smith), is a major agricultural pest in several countries, especially Egypt. This is the first study to identify and characterize GST genes in S. frugiperda under insecticidal stress. The present work evaluated the toxicity of emamectin benzoate (EBZ) and chlorantraniliprole (CHP) against the third-instar larvae of S. frugiperda using the leaf disk method. The LC50 values of EBZ and CHP were 0.029 and 1.250 mg/L after 24 h of exposure. Moreover, we identified 31 GST genes, including 28 cytosolic and 3 microsomal SfGSTs from a transcriptome analysis and the genome data of S. frugiperda. Depending on the phylogenetic analysis, sfGSTs were divided into six classes (delta, epsilon, omega, sigma, theta, and microsomal). Furthermore, we investigated the mRNA levels of 28 GST genes using qRT-PCR under EBZ and CHP stress in the third-instar larvae of S. frugiperda. Interestingly, SfGSTe10 and SfGSTe13 stood out with the highest expression after the EBZ and CHP treatments. Finally, a molecular docking model was constructed between EBZ and CHP using the most upregulated genes (SfGSTe10 and SfGSTe13) and the least upregulated genes (SfGSTs1 and SfGSTe2) of S. frugiperda larvae. The molecular docking study showed EBZ and CHP have a high binding affinity with SfGSTe10, with docking energy values of -24.41 and -26.72 kcal/mol, respectively, and sfGSTe13, with docking energy values of -26.85 and -26.78 kcal/mol, respectively. Our findings are important for understanding the role of GSTs in S. frugiperda regarding detoxification processes for EBZ and CHP.
Collapse
Affiliation(s)
- Ahmed A A Aioub
- Plant Protection Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Ahmed S Hashem
- Stored Product Pests Research Department, Plant Protection Research Institute, Agricultural Research Center, Sakha, Kafr El-Sheikh 33717, Egypt
| | - Ahmed H El-Sappah
- Department of Genetics, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
- School of Agriculture, Forestry and Food Engineering, Yibin University, Yibin 644000, China
| | - Amged El-Harairy
- Unit of Entomology, Plant Protection Department, Desert Research Center, Mathaf El-Matariya St. 1, El-Matariya, Cairo 11753, Egypt
- Department of Integrated Pest Management, Plant Protection Institute, Hungarian University of Agriculture and Life Sciences, Páter Károly utca 1, 2103 Gödöllő, Hungary
| | - Amira A A Abdel-Hady
- Economic Entomology Department, Faculty of Agriculture, Mansoura University, Mansoura 35516, Egypt
| | - Laila A Al-Shuraym
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Samy Sayed
- Department of Economic Entomology and Pesticides, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
- Department of Science and Technology, University College-Ranyah, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Qiulan Huang
- School of Agriculture, Forestry and Food Engineering, Yibin University, Yibin 644000, China
| | - Sarah I Z Abdel-Wahab
- Plant Protection Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| |
Collapse
|
7
|
Cassier-Chauvat C, Marceau F, Farci S, Ouchane S, Chauvat F. The Glutathione System: A Journey from Cyanobacteria to Higher Eukaryotes. Antioxidants (Basel) 2023; 12:1199. [PMID: 37371929 DOI: 10.3390/antiox12061199] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/25/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
From bacteria to plants and humans, the glutathione system plays a pleiotropic role in cell defense against metabolic, oxidative and metal stresses. Glutathione (GSH), the γ-L-glutamyl-L-cysteinyl-glycine nucleophile tri-peptide, is the central player of this system that acts in redox homeostasis, detoxification and iron metabolism in most living organisms. GSH directly scavenges diverse reactive oxygen species (ROS), such as singlet oxygen, superoxide anion, hydrogen peroxide, hydroxyl radical, nitric oxide and carbon radicals. It also serves as a cofactor for various enzymes, such as glutaredoxins (Grxs), glutathione peroxidases (Gpxs), glutathione reductase (GR) and glutathione-S-transferases (GSTs), which play crucial roles in cell detoxication. This review summarizes what is known concerning the GSH-system (GSH, GSH-derived metabolites and GSH-dependent enzymes) in selected model organisms (Escherichia coli, Saccharomyces cerevisiae, Arabidopsis thaliana and human), emphasizing cyanobacteria for the following reasons. Cyanobacteria are environmentally crucial and biotechnologically important organisms that are regarded as having evolved photosynthesis and the GSH system to protect themselves against the ROS produced by their active photoautotrophic metabolism. Furthermore, cyanobacteria synthesize the GSH-derived metabolites, ergothioneine and phytochelatin, that play crucial roles in cell detoxication in humans and plants, respectively. Cyanobacteria also synthesize the thiol-less GSH homologs ophthalmate and norophthalmate that serve as biomarkers of various diseases in humans. Hence, cyanobacteria are well-suited to thoroughly analyze the role/specificity/redundancy of the players of the GSH-system using a genetic approach (deletion/overproduction) that is hardly feasible with other model organisms (E. coli and S. cerevisiae do not synthesize ergothioneine, while plants and humans acquire it from their soil and their diet, respectively).
Collapse
Affiliation(s)
- Corinne Cassier-Chauvat
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), F-91190 Gif-sur-Yvette, France
| | - Fanny Marceau
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), F-91190 Gif-sur-Yvette, France
| | - Sandrine Farci
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), F-91190 Gif-sur-Yvette, France
| | - Soufian Ouchane
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), F-91190 Gif-sur-Yvette, France
| | - Franck Chauvat
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), F-91190 Gif-sur-Yvette, France
| |
Collapse
|
8
|
Rosalia Rani, Simarani K, Alias Z. Functional Role of Beta Class Glutathione Transferases and Its Biotechnological Potential (Review). BIOL BULL+ 2022. [DOI: 10.1134/s106235902214014x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
9
|
Mocchetti E, Morette L, Mulliert G, Mathiot S, Guillot B, Dehez F, Chauvat F, Cassier-Chauvat C, Brochier-Armanet C, Didierjean C, Hecker A. Biochemical and Structural Characterization of Chi-Class Glutathione Transferases: A Snapshot on the Glutathione Transferase Encoded by sll0067 Gene in the Cyanobacterium Synechocystis sp. Strain PCC 6803. Biomolecules 2022; 12:biom12101466. [PMID: 36291676 PMCID: PMC9599700 DOI: 10.3390/biom12101466] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/30/2022] [Accepted: 10/05/2022] [Indexed: 11/24/2022] Open
Abstract
Glutathione transferases (GSTs) constitute a widespread superfamily of enzymes notably involved in detoxification processes and/or in specialized metabolism. In the cyanobacterium Synechocsytis sp. PCC 6803, SynGSTC1, a chi-class GST (GSTC), is thought to participate in the detoxification process of methylglyoxal, a toxic by-product of cellular metabolism. A comparative genomic analysis showed that GSTCs were present in all orders of cyanobacteria with the exception of the basal order Gloeobacterales. These enzymes were also detected in some marine and freshwater noncyanobacterial bacteria, probably as a result of horizontal gene transfer events. GSTCs were shorter of about 30 residues compared to most cytosolic GSTs and had a well-conserved SRAS motif in the active site (10SRAS13 in SynGSTC1). The crystal structure of SynGSTC1 in complex with glutathione adopted the canonical GST fold with a very open active site because the α4 and α5 helices were exceptionally short. A transferred multipolar electron-density analysis allowed a fine description of the solved structure. Unexpectedly, Ser10 did not have an electrostatic influence on glutathione as usually observed in serinyl-GSTs. The S10A variant was only slightly less efficient than the wild-type and molecular dynamics simulations suggested that S10 was a stabilizer of the protein backbone rather than an anchor site for glutathione.
Collapse
Affiliation(s)
- Eva Mocchetti
- Université de Lorraine, CNRS, CRM2, F-54000 Nancy, France
| | - Laura Morette
- Université de Lorraine, INRAE, IAM, F-54000 Nancy, France
| | | | | | - Benoît Guillot
- Université de Lorraine, CNRS, CRM2, F-54000 Nancy, France
| | - François Dehez
- Université de Lorraine, CNRS, LPCT, F-54000 Nancy, France
| | - Franck Chauvat
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), F-91190 Gif-sur-Yvette, France
| | - Corinne Cassier-Chauvat
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), F-91190 Gif-sur-Yvette, France
| | | | - Claude Didierjean
- Université de Lorraine, CNRS, CRM2, F-54000 Nancy, France
- Correspondence: (C.D.); (A.H.)
| | - Arnaud Hecker
- Université de Lorraine, INRAE, IAM, F-54000 Nancy, France
- Correspondence: (C.D.); (A.H.)
| |
Collapse
|
10
|
Koirala B K S, Moural T, Zhu F. Functional and Structural Diversity of Insect Glutathione S-transferases in Xenobiotic Adaptation. Int J Biol Sci 2022; 18:5713-5723. [PMID: 36263171 PMCID: PMC9576527 DOI: 10.7150/ijbs.77141] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/29/2022] [Indexed: 01/12/2023] Open
Abstract
As a superfamily of multifunctional enzymes that is mainly associated with xenobiotic adaptation, glutathione S-transferases (GSTs) facilitate insects' survival under chemical stresses in their environment. GSTs confer xenobiotic adaptation through direct metabolism or sequestration of xenobiotics, and/or indirectly by providing protection against oxidative stress induced by xenobiotic exposure. In this article, a comprehensive overview of current understanding on the versatile functions of insect GSTs in detoxifying chemical compounds is presented. The diverse structures of different classes of insect GSTs, specifically the spatial localization and composition of their amino acid residues constituted in their active sites are also summarized. Recent availability of whole genome sequences of numerous insect species, accompanied by RNA interference, X-ray crystallography, enzyme kinetics and site-directed mutagenesis techniques have significantly enhanced our understanding of functional and structural diversity of insect GSTs.
Collapse
Affiliation(s)
- Sonu Koirala B K
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA
| | - Timothy Moural
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA
| | - Fang Zhu
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA.,Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA.,✉ Corresponding author: Dr. Fang Zhu, Department of Entomology and Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA. Phone: +1-814-863-4432; Fax: +1- 814-865-3048; E-mail:
| |
Collapse
|
11
|
Al-Mohaimeed AM, Abbasi AM, Ali MA, Dhas DSD. Reduction of multiple antibiotics from the waste water using coated glutathione S-transferase producing biocatalyst. ENVIRONMENTAL RESEARCH 2022; 206:112262. [PMID: 34695426 DOI: 10.1016/j.envres.2021.112262] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 10/10/2021] [Accepted: 10/18/2021] [Indexed: 06/13/2023]
Abstract
Oxytetracycline is widely used in veterinary and human medicine. It has been detected in wastewater from pharmaceuticals, hospitals and domestic wastewater. In recent years, much more attention has been directed towards glutathione transferases (GSTs) because of their bio-transforming ability of antibiotics. In this study, 19 Lactobacillus strains were initially screened for the production of GSTs and five strains were selected for biotransformation of oxytetracycline. Among the strains, L. fermentum LA6 improved oxytetracyline degradation than other strains. It was subjected to optimize GST production and optimum growth was achieved after 24 h incubation at 32 ± 2 °C and 200 mg/L initial oxytetracycline concentration. The biocatalyst was immobilized and antibiotic degradation efficiency was analyzed. The immobilized culture of L. fermentum LA6 improved biodegradation of oxytetracycline in the wastewater. At 50 mg/L initial antibiotic concentration, 53.2 ± 2.8% oxytetracycline degradation was achieved, however, it improved at 200 mg/L antibiotic concentration in the culture medium (89.1 ± 4.3%) after 24 h. The chemical oxygen demand (COD) of the wastewater decreased significantly after treatment. At 200 mg/L oxytetracycline concentration, COD removal was considerably high (93.6 ± 5.3 mg/L) than 150 mg/L oxytetracycline concentration in the medium. Antibiotic removal efficiency in immobilized form revealed that this method is highly suitable for the removal of antibiotics from the wastewater.
Collapse
Affiliation(s)
- Amal M Al-Mohaimeed
- Department of Chemistry, College of Science, King Saud University, P.O. Box 22452, Riyadh, 11495, Saudi Arabia
| | - Arshad Mehmood Abbasi
- University of Gastronomic Sciences, 12042, Pollenzo, Italy; Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, 22060, Abbottabad, Pakistan
| | - M Ajmal Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - D S Deepa Dhas
- Centre for Marine Science and Technology, Manonmaniam Sundaranar University, Tirunelveli, Tamilnadu, India.
| |
Collapse
|
12
|
Rai R, Singh S, Rai KK, Raj A, Sriwastaw S, Rai LC. Regulation of antioxidant defense and glyoxalase systems in cyanobacteria. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 168:353-372. [PMID: 34700048 DOI: 10.1016/j.plaphy.2021.09.037] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 09/09/2021] [Accepted: 09/28/2021] [Indexed: 05/19/2023]
Abstract
Oxidative stress is common consequence of abiotic stress in plants as well as cyanobacteria caused by generation of reactive oxygen species (ROS), an inevitable product of respiration and photosynthetic electron transport. ROS act as signalling molecule at low concentration however, when its production exceeds the endurance capacity of antioxidative defence system, the organisms suffer oxidative stress. A highly toxic metabolite, methylglyoxal (MG) is also produced in cyanobacteria in response to various abiotic stresses which consequently augment the ensuing oxidative damage. Taking recourse to the common lineage of eukaryotic plants and cyanobacteria, it would be worthwhile to explore the regulatory role of glyoxalase system and antioxidative defense mechanism in combating abiotic stress in cyanobacteria. This review provides comprehensive information on the complete glyoxalase system (GlyI, GlyII and GlyIII) in cyanobacteria. Furthermore, it elucidates the recent understanding regarding the production of ROS and MG, noteworthy link between intracellular MG and ROS and its detoxification via synchronization of antioxidants (enzymatic and non-enzymatic) and glyoxalase systems using glutathione (GSH) as common co-factor.
Collapse
Affiliation(s)
- Ruchi Rai
- Molecular Biology Section, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Shilpi Singh
- Molecular Biology Section, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Krishna Kumar Rai
- Molecular Biology Section, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Alka Raj
- Molecular Biology Section, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Sonam Sriwastaw
- Molecular Biology Section, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - L C Rai
- Molecular Biology Section, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
13
|
Shakour ZT, Shehab NG, Gomaa AS, Wessjohann LA, Farag MA. Metabolic and biotransformation effects on dietary glucosinolates, their bioavailability, catabolism and biological effects in different organisms. Biotechnol Adv 2021; 54:107784. [PMID: 34102260 DOI: 10.1016/j.biotechadv.2021.107784] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 05/17/2021] [Accepted: 06/04/2021] [Indexed: 12/28/2022]
Abstract
Glucosinolate-producing plants have long been recognized for both their distinctive benefits to human nutrition and their resistance traits against pathogens and herbivores. Despite the accumulation of glucosinolates (GLS) in plants is associated with their resistance to various biotic and abiotic stresses, the defensive and biological activities of GLS are commonly conveyed by their metabolic products. In view of this, metabolism is considered the driving factor upon the interactions of GLS-producing plants with other organisms, also influenced by plant and plant attacking or digesting organism characteristics. Several microbial pathogens and insects have evolved the capacity to detoxify GLS-hydrolysis products or inhibit their formation via different means, highlighting the relevance of their metabolic abilities for the plants' defense system activation and target organism detoxification. Strikingly, some bacteria, fungi and insects can likewise produce their own myrosinase (MYR)-like enzymes in one of the most important adaptation strategies against the GLS-MYR plant defense system. Knowledge of GLS metabolic pathways in herbivores and pathogens can impact plant protection efforts and may be harnessed upon for genetically modified plants that are more resistant to predators. In humans, the interest in the implementation of GLS in diets for the prevention of chronic diseases has grown substantially. However, the efficiency of such approaches is dependent on GLS bioavailability and metabolism, which largely involves the human gut microbiome. Among GLS-hydrolytic products, isothiocyanates (ITC) have shown exceptional properties as chemical plant defense agents against herbivores and pathogens, along with their health-promoting benefits in humans, at least if consumed in reasonable amounts. Deciphering GLS metabolic pathways provides critical information for catalyzing all types of GLS towards the generation of ITCs as the biologically most active metabolites. This review provides an overview on contrasting metabolic pathways in plants, bacteria, fungi, insects and humans towards GLS activation or detoxification. Further, suggestions for the preparation of GLS containing plants with improved health benefits are presented.
Collapse
Affiliation(s)
- Zeinab T Shakour
- Laboratory of Phytochemistry, National Organization for Drug Control and Research, Cairo, Egypt
| | - Naglaa G Shehab
- Department of Pharmaceutical Chemistry and Natural Products, Dubai Pharmacy College, Dubai, United Arab Emirates
| | - Ahmed S Gomaa
- Faculty of Graduate Studies for Statistical Research, Cairo University, Cairo, Egypt
| | - Ludger A Wessjohann
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany.
| | - Mohamed A Farag
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt; Chemistry Department, School of Sciences & Engineering, The American University in Cairo, New Cairo, Egypt.
| |
Collapse
|
14
|
Genetic, Genomics, and Responses to Stresses in Cyanobacteria: Biotechnological Implications. Genes (Basel) 2021; 12:genes12040500. [PMID: 33805386 PMCID: PMC8066212 DOI: 10.3390/genes12040500] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/25/2021] [Accepted: 03/25/2021] [Indexed: 02/07/2023] Open
Abstract
Cyanobacteria are widely-diverse, environmentally crucial photosynthetic prokaryotes of great interests for basic and applied science. Work to date has focused mostly on the three non-nitrogen fixing unicellular species Synechocystis PCC 6803, Synechococcus PCC 7942, and Synechococcus PCC 7002, which have been selected for their genetic and physiological interests summarized in this review. Extensive "omics" data sets have been generated, and genome-scale models (GSM) have been developed for the rational engineering of these cyanobacteria for biotechnological purposes. We presently discuss what should be done to improve our understanding of the genotype-phenotype relationships of these models and generate robust and predictive models of their metabolism. Furthermore, we also emphasize that because Synechocystis PCC 6803, Synechococcus PCC 7942, and Synechococcus PCC 7002 represent only a limited part of the wide biodiversity of cyanobacteria, other species distantly related to these three models, should be studied. Finally, we highlight the need to strengthen the communication between academic researchers, who know well cyanobacteria and can engineer them for biotechnological purposes, but have a limited access to large photobioreactors, and industrial partners who attempt to use natural or engineered cyanobacteria to produce interesting chemicals at reasonable costs, but may lack knowledge on cyanobacterial physiology and metabolism.
Collapse
|
15
|
Protective role of the freshwater rotifer Brachionus calyciflorus glutathione S-transferase zeta 3 recombinant protein in response to Hg and Cd. Comp Biochem Physiol B Biochem Mol Biol 2020; 243-244:110435. [DOI: 10.1016/j.cbpb.2020.110435] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/18/2020] [Accepted: 03/20/2020] [Indexed: 02/06/2023]
|
16
|
Diversity of Glutathione S-Transferases (GSTs) in Cyanobacteria with Reference to Their Structures, Substrate Recognition and Catalytic Functions. Microorganisms 2020; 8:microorganisms8050712. [PMID: 32403363 PMCID: PMC7286025 DOI: 10.3390/microorganisms8050712] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 04/29/2020] [Accepted: 04/30/2020] [Indexed: 01/17/2023] Open
Abstract
Glutathione S-Transferases (GSTs) comprise a diverse group of protein superfamily involved in cellular detoxification of various harmful xenobiotics and endobiotics. Cyanobacteria, being the primordial photosynthetic prokaryotes, served as an origin for the evolution of GSTs with diversity in their structures, substrate recognition, and catalytic functions. This study analysed the diversity of GSTs in cyanobacteria for the first time. Based on the sequence alignment and phylogenetic tree analysis, 12 GST classes were identified, which are distributed variedly within cyanobacterial orders such as four in Pleurocapsales, eight in Chroococcales, seven in Oscillatoriales, five in Stigonematales, and nine in Nostocales. Detailed evolutionary analysis of cyanobacterial GSTs suggested that the order Pleurocapsales served as the ancestry for GST evolution. The analysis also identified a conserved motif S[GLNTARS][ADE]I[LAI] with signature residues, cysteine, serine, and tyrosine at the N-terminal end that serves as the initiating residue for detoxification. Alternatively, the grouping of cyanobacterial GSTs and their unique signature residues were located, which serve as a possible discriminating factor. The study also described the mode of glutathione binding between the identified cyanobacterial GST groups highlighting the differences among the GST classes. New GST sequence data may improve further our understanding on GST evolution and other possible divergences in cyanobacteria.
Collapse
|
17
|
Ni J, Liu Y, Shen C, Chen D, Xin Y, Liu Q. Bioinformatics, bacterial expression and enzyme activity analyses of dichloromethane dehalogenase from Methylobacterium rhodesianum H13. BIOTECHNOL BIOTEC EQ 2020. [DOI: 10.1080/13102818.2020.1818622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Affiliation(s)
- Jianguo Ni
- Department of Environmental Engineering, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, Zhejiang, PR China
- Department of Linpu Environmental Protection, Hangzhou Ecological Environment Bureau of Xiaoshan Branch, Hangzhou, Zhejiang, PR China
| | - Ying Liu
- Department of Environmental Engineering, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, Zhejiang, PR China
| | - Chenjia Shen
- Department of Environmental Engineering, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, Zhejiang, PR China
| | - Dongzhi Chen
- Department of Environmental Engineering, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, PR China
| | - Yueyong Xin
- Department of Environmental Engineering, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, Zhejiang, PR China
| | - Qi Liu
- Department of Environmental Engineering, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, Zhejiang, PR China
| |
Collapse
|
18
|
Kammerscheit X, Chauvat F, Cassier-Chauvat C. First in vivo Evidence That Glutathione-S-Transferase Operates in Photo-Oxidative Stress in Cyanobacteria. Front Microbiol 2019; 10:1899. [PMID: 31456794 PMCID: PMC6700277 DOI: 10.3389/fmicb.2019.01899] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 07/31/2019] [Indexed: 11/13/2022] Open
Abstract
Although glutathione (GSH) and GSH-dependent enzymes, such as glutathione transferases (GSTs), are thought to have been developed by cyanobacteria to cope with the reactive oxygen species (ROS) that they massively produced by their active photosynthesis, there had been no in vivo analysis of the role of GSTs in cyanobacteria so far. Consequently, we have analyzed two of the six GSTs of the model cyanobacterium Synechocystis PCC 6803, namely Sll1545 (to extend its in vitro study) and Slr0236 (because it is the best homolog to Sll1545). We report that Sll1545 is essential to cell growth in standard photo-autotrophic conditions, whereas Slr0236 is dispensable. Furthermore, both Sll1545 and Slr0236 operate in the protection against stresses triggered by high light, H2O2, menadione and methylene blue. The absence of Slr0236 and the depletion of Sll1545 decrease the tolerance to methylene blue in a cumulative way. Similarly, the combined absence of Slr0236 and depletion of Sll1545 decrease the resistance to high light. Attesting their sensitivity to high-light or methylene blue, these Δslr0236-sll1545 cells transiently accumulate ROS, and then reduced and oxidized glutathione in that order. In contrast, the absence of Slr0236 and the depletion of Sll1545 increase the tolerance to menadione in a cumulative way. This increased menadione resistance is due, at least in part, to the higher level of catalase and/or peroxidase activity of these mutants. Similarly, the increased H2O2 resistance of the Δslr0236-sll1545 cells is due, at least in part, to its higher level of peroxidase activity.
Collapse
Affiliation(s)
- Xavier Kammerscheit
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Franck Chauvat
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Corinne Cassier-Chauvat
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| |
Collapse
|
19
|
Roles of Two Glutathione-Dependent 3,6-Dichlorogentisate Dehalogenases in Rhizorhabdus dicambivorans Ndbn-20 in the Catabolism of the Herbicide Dicamba. Appl Environ Microbiol 2018; 84:AEM.00623-18. [PMID: 29934333 DOI: 10.1128/aem.00623-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 06/18/2018] [Indexed: 11/20/2022] Open
Abstract
The herbicide dicamba is initially demethylated to 3,6-dichlorosalicylate (3,6-DCSA) in Rhizorhabdus dicambivorans Ndbn-20 and is subsequently 5-hydroxylated to 3,6-dichlorogentisate (3,6-DCGA). In the present study, two glutathione-dependent 3,6-DCGA dehalogenases, DsmH1 and DsmH2, were identified in strain Ndbn-20. DsmH2 shared a low identity (only 31%) with the tetrachlorohydroquinone (TCHQ) dehalogenase PcpC from Sphingobium chlorophenolicum ATCC 39723, while DsmH1 shared a high identity (79%) with PcpC. In the phylogenetic tree of related glutathione S-transferases (GSTs), DsmH1 and DsmH2, together with PcpC and the 2,5-dichlorohydroquinone dehalogenase LinD, formed a separate clade. DsmH1 and DsmH2 were synthesized in Escherichia coli BL21 and purified as His-tagged enzymes. Both enzymes required glutathione (GSH) as a cofactor and could 6-dechlorinate 3,6-DCGA to 3-chlorogentisate in vitro DsmH2 had a significantly higher catalytic efficiency toward 3,6-DCGA than DsmH1. Transcription and disruption analysis revealed that DsmH2 but not DsmH1 was responsible for the 6-dechlorination of 3,6-DCGA in strain Ndbn-20 in vivo Furthermore, we propose a novel eta class of GSTs to accommodate the four bacterial dehalogenases PcpC, LinD, DsmH1, and DsmH2.IMPORTANCE Dicamba is an important herbicide, and its use and leakage into the environment have dramatically increased since the large-scale planting of genetically modified (GM) dicamba-resistant crops in 2015. However, the complete catabolic pathway of dicamba has remained unknown, which limits ecotoxicological studies of this herbicide. Our previous study revealed that 3,6-DCGA was an intermediate of dicamba degradation in strain Ndbn-20. In this study, we identified two glutathione-dependent 3,6-DCGA dehalogenases, DsmH1 and DsmH2, and demonstrated that DsmH2 is physiologically responsible for the 6-dechlorination of 3,6-DCGA in strain Ndbn-20. GSTs play an important role in the detoxification and degradation of a variety of endogenous and exogenous toxic compounds. On the basis of their sequence identities, phylogenetic status, and functions, the four bacterial GSH-dependent dehalogenases (PcpC, LinD, DsmH1, and DsmH2) were reclassified as a new eta class of GSTs. This study helps us to elucidate the microbial catabolism of dicamba and enhances our understanding of the diversity and functions of GSTs.
Collapse
|
20
|
Arabidopsis mutants impaired in glutathione biosynthesis exhibit higher sensitivity towards the glucosinolate hydrolysis product allyl-isothiocyanate. Sci Rep 2018; 8:9809. [PMID: 29955088 PMCID: PMC6023892 DOI: 10.1038/s41598-018-28099-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 06/15/2018] [Indexed: 11/16/2022] Open
Abstract
Upon tissue damage the plant secondary metabolites glucosinolates can generate various hydrolysis products, including isothiocyanates (ITCs). Their role in plant defence against insects and pest and their potential health benefits have been well documented, but our knowledge regarding the endogenous molecular mechanisms of their effect in plants is limited. Here we investigated the effect of allyl-isothiocyanate (AITC) on Arabidopsis thaliana mutants impaired in homeostasis of the low-molecular weight thiol glutathione. We show that glutathione is important for the AITC-induced physiological responses, since mutants deficient in glutathione biosynthesis displayed a lower biomass and higher root growth inhibition than WT seedlings. These mutants were also more susceptible than WT to another ITC, sulforaphane. Sulforaphane was however more potent in inhibiting root growth than AITC. Combining AITC with the glutathione biosynthesis inhibitor L-buthionine-sulfoximine (BSO) led to an even stronger phenotype than observed for the single treatments. Furthermore, transgenic plants expressing the redox-sensitive fluorescent biomarker roGFP2 indicated more oxidative conditions during AITC treatment. Taken together, we provide genetic evidence that glutathione plays an important role in AITC-induced growth inhibition, although further studies need to be conducted to reveal the underlying mechanisms.
Collapse
|
21
|
A combined biochemical and computational studies of the rho-class glutathione s-transferase sll1545 of Synechocystis PCC 6803. Int J Biol Macromol 2017; 94:378-385. [DOI: 10.1016/j.ijbiomac.2016.10.040] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 10/13/2016] [Accepted: 10/14/2016] [Indexed: 11/23/2022]
|
22
|
SaxA-Mediated Isothiocyanate Metabolism in Phytopathogenic Pectobacteria. Appl Environ Microbiol 2016; 82:2372-2379. [PMID: 26873319 DOI: 10.1128/aem.04054-15] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 02/03/2016] [Indexed: 01/07/2023] Open
Abstract
Pectobacteria are devastating plant pathogens that infect a large variety of crops, including members of the family Brassicaceae. To infect cabbage crops, these plant pathogens need to overcome the plant's antibacterial defense mechanisms, where isothiocyanates are liberated by hydrolysis of glucosinolates. Here, we found that a Pectobacterium isolate from the gut of cabbage root fly larvae was particularly resistant to isothiocyanate and even seemed to benefit from the abundant Brassica root metabolite 2-phenylethyl isothiocyanate as a nitrogen source in an ecosystem where nitrogen is scarce. The Pectobacterium isolate harbored a naturally occurring mobile plasmid that contained a sax operon. We hypothesized that SaxA was the enzyme responsible for the breakdown of 2-phenylethyl isothiocyanate. Subsequently, we heterologously produced and purified the SaxA protein and characterized the recombinant enzyme. It hydrolyzed 2-phenylethyl isothiocyanate to yield the products carbonyl sulfide and phenylethylamine. It was also active toward another aromatic isothiocyanate but hardly toward aliphatic isothiocyanates. It belongs to the class B metal-dependent beta-lactamase fold protein family but was not, however, able to hydrolyze beta-lactam antibiotics. We discovered that several copies of the saxA gene are widespread in full and draft Pectobacterium genomes and therefore hypothesize that SaxA might be a new pathogenicity factor of the genus Pectobacterium, possibly compromising food preservation strategies using isothiocyanates.
Collapse
|
23
|
Munyampundu JP, Xu YP, Cai XZ. Phi Class of Glutathione S-transferase Gene Superfamily Widely Exists in Nonplant Taxonomic Groups. Evol Bioinform Online 2016; 12:59-71. [PMID: 26884677 PMCID: PMC4750895 DOI: 10.4137/ebo.s35909] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 12/13/2015] [Accepted: 12/13/2015] [Indexed: 01/13/2023] Open
Abstract
Glutathione S-transferases (GSTs) constitute a superfamily of enzymes involved in detoxification of noxious compounds and protection against oxidative damage. GST class Phi (GSTF), one of the important classes of plant GSTs, has long been considered as plant specific but was recently found in basidiomycete fungi. However, the range of nonplant taxonomic groups containing GSTFs remains unknown. In this study, the distribution and phylogenetic relationships of nonplant GSTFs were investigated. We identified GSTFs in ascomycete fungi, myxobacteria, and protists Naegleria gruberi and Aureococcus anophagefferens. GSTF occurrence in these bacteria and protists correlated with their genome sizes and habitats. While this link was missing across ascomycetes, the distribution and abundance of GSTFs among ascomycete genomes could be associated with their lifestyles to some extent. Sequence comparison, gene structure, and phylogenetic analyses indicated divergence among nonplant GSTFs, suggesting polyphyletic origins during evolution. Furthermore, in silico prediction of functional partners suggested functional diversification among nonplant GSTFs.
Collapse
Affiliation(s)
- Jean-Pierre Munyampundu
- Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - You-Ping Xu
- Center of Analysis and Measurement, Zhejiang University, Hangzhou, China
| | - Xin-Zhong Cai
- Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
24
|
Kumar MS, Kabra AN, Min B, El-Dalatony MM, Xiong J, Thajuddin N, Lee DS, Jeon BH. Insecticides induced biochemical changes in freshwater microalga Chlamydomonas mexicana. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:1091-1099. [PMID: 26036581 DOI: 10.1007/s11356-015-4681-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 05/08/2015] [Indexed: 06/04/2023]
Abstract
The effect of insecticides (acephate and imidacloprid) on a freshwater microalga Chlamydomonas mexicana was investigated with respect to photosynthetic pigments, carbohydrate and protein contents, fatty acids composition and induction of stress indicators including proline, superoxide dismutase (SOD) and catalase (CAT). C. mexicana was cultivated with 1, 5, 10, 15, 20 and 25 mg L(-1) of acephate and imidacloprid. The microalga growth increased with increasing concentrations of both insecticides up to 15 mg L(-1), beyond which the growth declined compared to control condition (without insecticides). C. mexicana cultivated with 15 mg L(-1) of both insecticides for 12 days was used for further analysis. The accumulation of photosynthetic pigments (chlorophyll and carotenoids), carbohydrates and protein was decreased in the presence of both insecticides. Acephate and imidacloprid induced the activities of superoxide dismutase (SOD) and catalase (CAT) and increased the concentration of proline in the microalga, which play a defensive role against various environmental stresses. Fatty acid analysis revealed that the fraction of polyunsaturated fatty acids decreased on exposure to both insecticides. C. mexicana also promoted 25 and 21% removal of acephate and imidacloprid, respectively. The biochemical changes in C. mexicana on exposure to acephate and imidacloprid indicate that the microalga undergoes an adaptive change in response to the insecticide-induced oxidative stress.
Collapse
Affiliation(s)
- Muthukannan Satheesh Kumar
- Department of Natural Resources and Environmental Engineering, Hanyang University, Seoul, 133-791, South Korea
| | - Akhil N Kabra
- Department of Natural Resources and Environmental Engineering, Hanyang University, Seoul, 133-791, South Korea
| | - Booki Min
- Department of Environmental Science and Engineering, Kyung Hee University, 1 Seocheon-dong, Yongin-si, Gyeonggi-do, 446-701, South Korea
| | - Marwa M El-Dalatony
- Department of Natural Resources and Environmental Engineering, Hanyang University, Seoul, 133-791, South Korea
| | - Jiuqiang Xiong
- Department of Natural Resources and Environmental Engineering, Hanyang University, Seoul, 133-791, South Korea
| | - Nooruddin Thajuddin
- Division of Microbial Biodiversity and Bioenergy, Department of Microbiology, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Dae Sung Lee
- Department of Energy and Mineral Resources Engineering, Dong-A University, 840 Handan2-dong, Saha-gu, Busan, 604-714, South Korea
| | - Byong-Hun Jeon
- Department of Natural Resources and Environmental Engineering, Hanyang University, Seoul, 133-791, South Korea.
| |
Collapse
|
25
|
Helmich KE, Pereira JH, Gall DL, Heins RA, McAndrew RP, Bingman C, Deng K, Holland KC, Noguera DR, Simmons BA, Sale KL, Ralph J, Donohue TJ, Adams PD, Phillips GN. Structural Basis of Stereospecificity in the Bacterial Enzymatic Cleavage of β-Aryl Ether Bonds in Lignin. J Biol Chem 2015; 291:5234-46. [PMID: 26637355 PMCID: PMC4777856 DOI: 10.1074/jbc.m115.694307] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Indexed: 11/23/2022] Open
Abstract
Lignin is a combinatorial polymer comprising monoaromatic units that are linked via covalent bonds. Although lignin is a potential source of valuable aromatic chemicals, its recalcitrance to chemical or biological digestion presents major obstacles to both the production of second-generation biofuels and the generation of valuable coproducts from lignin's monoaromatic units. Degradation of lignin has been relatively well characterized in fungi, but it is less well understood in bacteria. A catabolic pathway for the enzymatic breakdown of aromatic oligomers linked via β-aryl ether bonds typically found in lignin has been reported in the bacterium Sphingobium sp. SYK-6. Here, we present x-ray crystal structures and biochemical characterization of the glutathione-dependent β-etherases, LigE and LigF, from this pathway. The crystal structures show that both enzymes belong to the canonical two-domain fold and glutathione binding site architecture of the glutathione S-transferase family. Mutagenesis of the conserved active site serine in both LigE and LigF shows that, whereas the enzymatic activity is reduced, this amino acid side chain is not absolutely essential for catalysis. The results include descriptions of cofactor binding sites, substrate binding sites, and catalytic mechanisms. Because β-aryl ether bonds account for 50–70% of all interunit linkages in lignin, understanding the mechanism of enzymatic β-aryl ether cleavage has significant potential for informing ongoing studies on the valorization of lignin.
Collapse
Affiliation(s)
- Kate E Helmich
- From the Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706, the United States Department of Energy Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin 53726
| | - Jose Henrique Pereira
- the Joint BioEnergy Institute, Emeryville, California 94608, the Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Daniel L Gall
- the United States Department of Energy Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin 53726, the Departments of Civil and Environmental Engineering and
| | - Richard A Heins
- the Joint BioEnergy Institute, Emeryville, California 94608, the Biological and Engineering Sciences Center, Sandia National Laboratories, Livermore, California 94551
| | - Ryan P McAndrew
- the Joint BioEnergy Institute, Emeryville, California 94608, the Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Craig Bingman
- From the Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706
| | - Kai Deng
- the Joint BioEnergy Institute, Emeryville, California 94608, the Biological and Engineering Sciences Center, Sandia National Laboratories, Livermore, California 94551
| | - Keefe C Holland
- the Joint BioEnergy Institute, Emeryville, California 94608, the Biological and Engineering Sciences Center, Sandia National Laboratories, Livermore, California 94551
| | - Daniel R Noguera
- the United States Department of Energy Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin 53726, the Departments of Civil and Environmental Engineering and
| | - Blake A Simmons
- the Joint BioEnergy Institute, Emeryville, California 94608, the Biological and Engineering Sciences Center, Sandia National Laboratories, Livermore, California 94551
| | - Kenneth L Sale
- the Joint BioEnergy Institute, Emeryville, California 94608, the Biological and Engineering Sciences Center, Sandia National Laboratories, Livermore, California 94551
| | - John Ralph
- From the Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706, the United States Department of Energy Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin 53726
| | - Timothy J Donohue
- the United States Department of Energy Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin 53726, Bacteriology, University of Wisconsin, Madison, Wisconsin 53706,
| | - Paul D Adams
- the Joint BioEnergy Institute, Emeryville, California 94608, the Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, the Department of Bioengineering, University of California, Berkeley, California 94720, and
| | - George N Phillips
- the Department of Biochemistry and Cell Biology, Rice University, Houston, Texas 77251
| |
Collapse
|
26
|
Dias E, Oliveira M, Jones-Dias D, Vasconcelos V, Ferreira E, Manageiro V, Caniça M. Assessing the antibiotic susceptibility of freshwater Cyanobacteria spp. Front Microbiol 2015; 6:799. [PMID: 26322027 PMCID: PMC4531292 DOI: 10.3389/fmicb.2015.00799] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 07/22/2015] [Indexed: 01/10/2023] Open
Abstract
Freshwater is a vehicle for the emergence and dissemination of antibiotic resistance. Cyanobacteria are ubiquitous in freshwater, where they are exposed to antibiotics and resistant organisms, but their role on water resistome was never evaluated. Data concerning the effects of antibiotics on cyanobacteria, obtained by distinct methodologies, is often contradictory. This emphasizes the importance of developing procedures to understand the trends of antibiotic susceptibility in cyanobacteria. In this study we aimed to evaluate the susceptibility of four cyanobacterial isolates from different genera (Microcystis aeruginosa, Aphanizomenon gracile, Chrisosporum bergii, Planktothix agradhii), and among them nine isolates from the same specie (M. aeruginosa) to distinct antibiotics (amoxicillin, ceftazidime, ceftriaxone, kanamycine, gentamicine, tetracycline, trimethoprim, nalidixic acid, norfloxacin). We used a method adapted from the bacteria standard broth microdilution. Cyanobacteria were exposed to serial dilution of each antibiotic (0.0015-1.6 mg/L) in Z8 medium (20 ± 1°C; 14/10 h L/D cycle; light intensity 16 ± 4 μEm(-2)s(-1)). Cell growth was followed overtime (OD450nm /microscopic examination) and the minimum inhibitory concentrations (MICs) were calculated for each antibiotic/isolate. We found that β-lactams exhibited the lower MICs, aminoglycosides, tetracycline and norfloxacine presented intermediate MICs; none of the isolates were susceptible to trimethoprim and nalidixic acid. The reduced susceptibility of all tested cyanobacteria to some antibiotics suggests that they might be naturally non-susceptible to these compounds, or that they might became non-susceptible due to antibiotic contamination pressure, or to the transfer of genes from resistant bacteria present in the environment.
Collapse
Affiliation(s)
- Elsa Dias
- National Reference Laboratory of Antimicrobial Resistances and Healthcare Associated Infections, Department of Infectious Diseases, National Institute of Health Dr. Ricardo JorgeLisbon, Portugal
- Laboratory of Biology and Ecotoxicology, Department of Environmental Health, National Institute of Health Dr. Ricardo JorgeLisbon, Portugal
- Centre for the Study of Animal Sciences, University of PortoPorto, Portugal
| | - Micaela Oliveira
- Laboratory of Biology and Ecotoxicology, Department of Environmental Health, National Institute of Health Dr. Ricardo JorgeLisbon, Portugal
| | - Daniela Jones-Dias
- National Reference Laboratory of Antimicrobial Resistances and Healthcare Associated Infections, Department of Infectious Diseases, National Institute of Health Dr. Ricardo JorgeLisbon, Portugal
- Centre for the Study of Animal Sciences, University of PortoPorto, Portugal
| | - Vitor Vasconcelos
- Laboratory of Ecotoxicology, Genomics and Evolution, Interdisciplinary Centre of Marine and Environmental Research, University of PortoPorto, Portugal
- Faculty of Sciences, University of PortoPorto, Portugal
| | - Eugénia Ferreira
- National Reference Laboratory of Antimicrobial Resistances and Healthcare Associated Infections, Department of Infectious Diseases, National Institute of Health Dr. Ricardo JorgeLisbon, Portugal
| | - Vera Manageiro
- National Reference Laboratory of Antimicrobial Resistances and Healthcare Associated Infections, Department of Infectious Diseases, National Institute of Health Dr. Ricardo JorgeLisbon, Portugal
- Centre for the Study of Animal Sciences, University of PortoPorto, Portugal
| | - Manuela Caniça
- National Reference Laboratory of Antimicrobial Resistances and Healthcare Associated Infections, Department of Infectious Diseases, National Institute of Health Dr. Ricardo JorgeLisbon, Portugal
| |
Collapse
|
27
|
Pandey T, Singh SK, Chhetri G, Tripathi T, Singh AK. Characterization of a Highly pH Stable Chi-Class Glutathione S-Transferase from Synechocystis PCC 6803. PLoS One 2015; 10:e0126811. [PMID: 25965384 PMCID: PMC4429112 DOI: 10.1371/journal.pone.0126811] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 04/08/2015] [Indexed: 01/01/2023] Open
Abstract
Glutathione S-transferases (GSTs) are multifunctional enzymes present in virtually all organisms. Besides having an essential role in cellular detoxification, they also perform various other functions, including responses in stress conditions and signaling. GSTs are highly studied in plants and animals; however, the knowledge regarding GSTs in cyanobacteria seems rudimentary. In this study, we report the characterization of a highly pH stable GST from the model cyanobacterium- Synechocystis PCC 6803. The gene sll0067 was expressed in Escherichia coli (E. coli), and the protein was purified to homogeneity. The expressed protein exists as a homo-dimer, which is composed of about 20 kDa subunit. The results of the steady-state enzyme kinetics displayed protein’s glutathione conjugation activity towards its class specific substrate- isothiocyanate, having the maximal activity with phenethyl isothiocyanate. Contrary to the poor catalytic activity and low specificity towards standard GST substrates such as 1-chloro-2,4-dinitrobenzene by bacterial GSTs, PmGST B1-1 from Proteus mirabilis, and E. coli GST, sll0067 has broad substrate degradation capability like most of the mammalian GST. Moreover, we have shown that cyanobacterial GST sll0067 is catalytically efficient compared to the best mammalian enzymes. The structural stability of GST was studied as a function of pH. The fluorescence and CD spectroscopy in combination with size exclusion chromatography showed a highly stable nature of the protein over a broad pH range from 2.0 to 11.0. To the best of our knowledge, this is the first GST with such a wide range of pH related structural stability. Furthermore, the presence of conserved Proline-53, structural motifs such as N-capping box and hydrophobic staple further aid in the stability and proper folding of cyanobacterial GST- sll0067.
Collapse
Affiliation(s)
- Tripti Pandey
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong, India
| | - Sudhir Kumar Singh
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong, India
| | - Gaurav Chhetri
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong, India
| | - Timir Tripathi
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong, India
- * E-mail: (TT); (AKS)
| | - Arvind Kumar Singh
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong, India
- * E-mail: (TT); (AKS)
| |
Collapse
|
28
|
Zhang W, Dourado DF, Mannervik B. Evolution of the active site of human glutathione transferase A2-2 for enhanced activity with dietary isothiocyanates. Biochim Biophys Acta Gen Subj 2015; 1850:742-9. [DOI: 10.1016/j.bbagen.2014.12.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 12/10/2014] [Accepted: 12/19/2014] [Indexed: 11/29/2022]
|
29
|
Pandey T, Chhetri G, Chinta R, Kumar B, Singh DB, Tripathi T, Singh AK. Functional classification and biochemical characterization of a novel rho class glutathione S-transferase in Synechocystis PCC 6803. FEBS Open Bio 2014; 5:1-7. [PMID: 25685659 PMCID: PMC4309839 DOI: 10.1016/j.fob.2014.11.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 11/11/2014] [Accepted: 11/18/2014] [Indexed: 01/17/2023] Open
Abstract
A novel class of glutathione S-transferase (GST) is reported. This GST catalyzes dichloroacetate (DCA) degradation and hydroperoxide reactions. Functionally this GST is similar to zeta and theta/alpha classes but structurally very different. In contrast to other bacterial GSTs, this GST exists as a monomer in solution. First report of DCA degradation by any bacterial GST and has potential biotechnological applications.
We report a novel class of glutathione S-transferase (GST) from the model cyanobacterium Synechocystis PCC 6803 (sll1545) which catalyzes the detoxification of the water pollutant dichloroacetate and also shows strong glutathione-dependent peroxidase activity representing the classical activities of zeta and theta/alpha class respectively. Interestingly, sll1545 has very low sequence and structural similarity with these classes. This is the first report of dichloroacetate degradation activity by any bacterial GST. Based on these results we classify sll1545 to a novel GST class, rho. The present data also indicate potential biotechnological and industrial applications of cyanobacterial GST in dichloroacetate-polluted areas.
Collapse
Affiliation(s)
- Tripti Pandey
- Department of Biochemistry, North-Eastern Hill University, Shillong 793022, India
| | - Gaurav Chhetri
- Department of Biochemistry, North-Eastern Hill University, Shillong 793022, India
| | - Ramesh Chinta
- Department of Biochemistry, North-Eastern Hill University, Shillong 793022, India
| | - Bijay Kumar
- Department of Biochemistry, North-Eastern Hill University, Shillong 793022, India
| | - Dev Bukhsh Singh
- Department of Biotechnology, Institute of Biosciences and Biotechnology, Chhatrapati Shahu Ji Maharaj University, Kanpur 208024, India
| | - Timir Tripathi
- Department of Biochemistry, North-Eastern Hill University, Shillong 793022, India
| | - Arvind Kumar Singh
- Department of Biochemistry, North-Eastern Hill University, Shillong 793022, India
| |
Collapse
|
30
|
Dufour V, Stahl M, Baysse C. The antibacterial properties of isothiocyanates. MICROBIOLOGY-SGM 2014; 161:229-243. [PMID: 25378563 DOI: 10.1099/mic.0.082362-0] [Citation(s) in RCA: 149] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Isothiocyanates (ITCs) are natural plant products generated by the enzymic hydrolysis of glucosinolates found in Brassicaceae vegetables. These natural sulfur compounds and their dithiocarbamate conjugates have been previously evaluated for their anti-cancerous properties. Their antimicrobial properties have been previously studied as well, mainly for food preservation and plant pathogen control. Recently, several revelations concerning the mode of action of ITCs in prokaryotes have emerged. This review addresses these new studies and proposes a model to summarize the current knowledge and hypotheses for the antibacterial effect of ITCs and whether they may provide the basis for the design of novel antibiotics.
Collapse
Affiliation(s)
- Virginie Dufour
- Equipe EA1254, Microbiologie Risques Infectieux, University of Rennes 1, F-35042 Rennes cedex, France
| | - Martin Stahl
- Division of Gastroenterology, BC's Children's Hospital, Child and Family Research Institute and University of British Columbia, Vancouver, BC, Canada
| | - Christine Baysse
- Equipe EA1254, Microbiologie Risques Infectieux, University of Rennes 1, F-35042 Rennes cedex, France
| |
Collapse
|
31
|
Kumar M, Praveenkumar R, Jeon BH, Thajuddin N. Chlorpyrifos-induced changes in the antioxidants and fatty acid compositions of Chroococcus turgidus
NTMS12. Lett Appl Microbiol 2014; 59:535-41. [DOI: 10.1111/lam.12311] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 04/19/2014] [Accepted: 07/24/2014] [Indexed: 12/01/2022]
Affiliation(s)
- M.S. Kumar
- Division of Microbial Biodiversity and Bioenergy; Department of Microbiology; School of Life Sciences; Bharathidasan University; Tiruchirappalli Tamil Nadu India
- Department of Natural Resources and Environmental Engineering; Hanyang University; Seoul South Korea
| | - R. Praveenkumar
- Division of Microbial Biodiversity and Bioenergy; Department of Microbiology; School of Life Sciences; Bharathidasan University; Tiruchirappalli Tamil Nadu India
- Biomass and Waste Energy Laboratory; Korea Institute of Energy Research; Daejeon South Korea
| | - B.-H. Jeon
- Department of Natural Resources and Environmental Engineering; Hanyang University; Seoul South Korea
| | - N. Thajuddin
- Division of Microbial Biodiversity and Bioenergy; Department of Microbiology; School of Life Sciences; Bharathidasan University; Tiruchirappalli Tamil Nadu India
| |
Collapse
|
32
|
Gloss AD, Vassão DG, Hailey AL, Nelson Dittrich AC, Schramm K, Reichelt M, Rast TJ, Weichsel A, Cravens MG, Gershenzon J, Montfort WR, Whiteman NK. Evolution in an ancient detoxification pathway is coupled with a transition to herbivory in the drosophilidae. Mol Biol Evol 2014; 31:2441-56. [PMID: 24974374 DOI: 10.1093/molbev/msu201] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Chemically defended plant tissues present formidable barriers to herbivores. Although mechanisms to resist plant defenses have been identified in ancient herbivorous lineages, adaptations to overcome plant defenses during transitions to herbivory remain relatively unexplored. The fly genus Scaptomyza is nested within the genus Drosophila and includes species that feed on the living tissue of mustard plants (Brassicaceae), yet this lineage is derived from microbe-feeding ancestors. We found that mustard-feeding Scaptomyza species and microbe-feeding Drosophila melanogaster detoxify mustard oils, the primary chemical defenses in the Brassicaceae, using the widely conserved mercapturic acid pathway. This detoxification strategy differs from other specialist herbivores of mustard plants, which possess derived mechanisms to obviate mustard oil formation. To investigate whether mustard feeding is coupled with evolution in the mercapturic acid pathway, we profiled functional and molecular evolutionary changes in the enzyme glutathione S-transferase D1 (GSTD1), which catalyzes the first step of the mercapturic acid pathway and is induced by mustard defense products in Scaptomyza. GSTD1 acquired elevated activity against mustard oils in one mustard-feeding Scaptomyza species in which GstD1 was duplicated. Structural analysis and mutagenesis revealed that substitutions at conserved residues within and near the substrate-binding cleft account for most of this increase in activity against mustard oils. Functional evolution of GSTD1 was coupled with signatures of episodic positive selection in GstD1 after the evolution of herbivory. Overall, we found that preexisting functions of generalized detoxification systems, and their refinement by natural selection, could play a central role in the evolution of herbivory.
Collapse
Affiliation(s)
- Andrew D Gloss
- Department of Ecology and Evolutionary Biology, University of Arizona
| | - Daniel G Vassão
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | | | | | - Katharina Schramm
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Michael Reichelt
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Timothy J Rast
- Department of Ecology and Evolutionary Biology, University of Arizona
| | | | - Matthew G Cravens
- Department of Ecology and Evolutionary Biology, University of Arizona
| | - Jonathan Gershenzon
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | | | - Noah K Whiteman
- Department of Ecology and Evolutionary Biology, University of Arizona
| |
Collapse
|
33
|
Characterization of affinity-purified isoforms of Acinetobacter calcoaceticus Y1 glutathione transferases. ScientificWorldJournal 2014; 2014:750317. [PMID: 24892084 PMCID: PMC4032647 DOI: 10.1155/2014/750317] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Revised: 04/04/2014] [Accepted: 04/05/2014] [Indexed: 12/01/2022] Open
Abstract
Glutathione transferases (GST) were purified from locally isolated bacteria, Acinetobacter calcoaceticus Y1, by glutathione-affinity chromatography and anion exchange, and their substrate specificities were investigated. SDS-polyacrylamide gel electrophoresis revealed that the purified GST resolved into a single band with a molecular weight (MW) of 23 kDa. 2-dimensional (2-D) gel electrophoresis showed the presence of two isoforms, GST1 (pI 4.5) and GST2 (pI 6.2) with identical MW. GST1 was reactive towards ethacrynic acid, hydrogen peroxide, 1-chloro-2,4-dinitrobenzene, and trans,trans-hepta-2,4-dienal while GST2 was active towards all substrates except hydrogen peroxide. This demonstrated that GST1 possessed peroxidase activity which was absent in GST2. This study also showed that only GST2 was able to conjugate GSH to isoproturon, a herbicide. GST1 and GST2 were suggested to be similar to F0KLY9 (putative glutathione S-transferase) and F0KKB0 (glutathione S-transferase III) of Acinetobacter calcoaceticus strain PHEA-2, respectively.
Collapse
|
34
|
Sadler T, von Elert E. Dietary exposure of Daphnia to microcystins: no in vivo relevance of biotransformation. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 150:73-82. [PMID: 24642294 DOI: 10.1016/j.aquatox.2014.02.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 02/19/2014] [Accepted: 02/24/2014] [Indexed: 06/03/2023]
Abstract
Anthropogenic nutrient input into lakes has contributed to the increased frequency of toxic cyanobacterial blooms. Daphnia populations have been shown to be locally adapted to toxic cyanobacteria and are able to suppress bloom formation; little is known about the physiology behind this phenomenon. Microcystin-LR (MCLR) is the most widespread cyanobacterial toxin, and, based on in vitro experiments, it is assumed that the enzyme glutathione-S-transferase (GST) might act as the first step of detoxification in Daphnia by conjugating MCLR with glutathione. In the present study Daphnia magna was fed a diet of 100% Microcystis aeruginosa PCC7806, a cyanobacterial strain that contains MCLR in high amounts (4.8-5.6 fg cell(-1)), in order to test for a possible conjugation of MCLR with GST in Daphnia in vivo. We used high-resolution LCMS to analyze incubation water, cyanobacterial cells and Daphnia tissue for the presence of MCLR conjugation products as well as unconjugated MCLR. Newly formed conjugation products were detected neither in Daphnia tissue nor in the incubation water. Moreover, the presence of Daphnia led to a decrease in unconjugated MCLR in the cyanobacterial cell fraction due to grazing, in comparison to a control without daphnids, which was well reflected by a similar increase of MCLR in the respective incubation water. As a consequence, the MCLR content did not change due to Daphnia presence within the entire experimental setup. In summary, MCLR ingestion by Daphnia led neither to the formation of conjugation products, nor to a decrease of unconjugated MCLR. GST-mediated conjugation thus seems to be of minor relevance for microcystin (MC) tolerance in Daphnia in vivo. This finding is supported by the fact that GST activity in Daphnia feeding on the MC-containing wildtype or a MC-free mutant of M. aeruginosa PCC7806 revealed an identical increase of specific activity in comparison to a cyanobacteria-free diet. Therefore, the frequently observed induction of GST activity upon exposure to toxic cyanobacteria is not a specific MC effect but a general cyanobacterial effect. This suggests that GST in Daphnia is involved in an oxidative stress response rather than in the specific detoxification of MCs. Furthermore, our results indicate the presence of an efficient transport mechanism which efficiently removes unconjugated MCLR from the Daphnia tissue. Further studies are needed to elucidate the nature of this transport mechanism.
Collapse
Affiliation(s)
- Thomas Sadler
- University of Cologne, Cologne Biocenter, Zülpicher Straße 47b, 50674 Cologne, Germany.
| | - Eric von Elert
- University of Cologne, Cologne Biocenter, Zülpicher Straße 47b, 50674 Cologne, Germany
| |
Collapse
|
35
|
Dufour V, Stahl M, Rosenfeld E, Stintzi A, Baysse C. Insights into the mode of action of benzyl isothiocyanate on Campylobacter jejuni. Appl Environ Microbiol 2013; 79:6958-68. [PMID: 24014524 PMCID: PMC3811535 DOI: 10.1128/aem.01967-13] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 08/28/2013] [Indexed: 12/24/2022] Open
Abstract
Campylobacter jejuni is a widespread pathogen responsible for most of the food-borne gastrointestinal diseases in Europe. The use of natural antimicrobial molecules is a promising alternative to antibiotic treatments for pathogen control in the food industry. Isothiocyanates are natural antimicrobial compounds, which also display anticancer activity. Several studies described the chemoprotective effect of isothiocyanates on eukaryotic cells, but the antimicrobial mechanism is still poorly understood. We investigated the early cellular response of C. jejuni to benzyl isothiocyanate by both transcriptomic and physiological approaches. The transcriptomic response of C. jejuni to benzyl isothiocyanate showed upregulation of heat shock response genes and an impact on energy metabolism. Oxygen consumption was progressively impaired by benzyl isothiocyanate treatment, as revealed by high-resolution respirometry, while the ATP content increased soon after benzyl isothiocyanate exposition, which suggests a shift in the energy metabolism balance. Finally, benzyl isothiocyanate induced intracellular protein aggregation. These results indicate that benzyl isothiocyanate affects C. jejuni by targeting proteins, resulting in the disruption of major metabolic processes and eventually leading to cell death.
Collapse
Affiliation(s)
- Virginie Dufour
- EA1254 Microbiologie et Risques Infectieux, University of Rennes 1, Rennes, France
| | - Martin Stahl
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | | | - Alain Stintzi
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Christine Baysse
- EA1254 Microbiologie et Risques Infectieux, University of Rennes 1, Rennes, France
| |
Collapse
|
36
|
Longkumer T, Parthasarathy S, Vemuri SG, Siddavattam D. OxyR-dependent expression of a novel glutathione S-transferase (Abgst01) gene in Acinetobacter baumannii DS002 and its role in biotransformation of organophosphate insecticides. MICROBIOLOGY-SGM 2013; 160:102-112. [PMID: 24136898 DOI: 10.1099/mic.0.070664-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
While screening a genomic library of Acinetobacter baumannii DS002 isolated from organophosphate (OP)-polluted soils, nine ORFs were identified coding for glutathione S-transferase (GST)-like proteins. These GSTs (AbGST01-AbGST09) are phylogenetically related to a number of well-characterized GST classes found in taxonomically diverse groups of organisms. Interestingly, expression of Abgst01 (GenBank accession no. KF151191) was upregulated when the bacterium was grown in the presence of an OP insecticide, methyl parathion (MeP). The gene product, AbGST01, dealkylated MeP to desMeP. An OxyR-binding motif was identified directly upstream of Abgst01. An Abgst-lacZ gene fusion lacking the OxyR-binding site showed a drastic reduction in promoter activity. Very low β-galactosidase activity levels were observed when the Abgst-lacZ fusion was mobilized into an oxyR (GenBank accession no. KF151190) null mutant of A. baumannii DS002, confirming the important role of OxyR. The OxyR-binding sites are not found upstream of other Abgst (Abgst02-Abgst09) genes. However, they contained consensus sequence motifs that can serve as possible target sites for certain well-characterized transcription factors. In support of this observation, the Abgst genes responded differentially to different oxidative stress inducers. The Abgst genes identified in A. baumannii DS002 are found to be conserved highly among all known genome sequences of A. baumannii strains. The versatile ecological adaptability of A. baumannii strains is apparent if sequence conservation is seen together with their involvement in detoxification processes.
Collapse
Affiliation(s)
- Toshisangba Longkumer
- Department of Animal Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500 046, India
| | - Sunil Parthasarathy
- Department of Animal Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500 046, India
| | - Sujana Ghanta Vemuri
- Department of Animal Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500 046, India
| | - Dayananda Siddavattam
- Department of Animal Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500 046, India
| |
Collapse
|
37
|
Zhang W, Yin K, Li B, Chen L. A glutathione S-transferase from Proteus mirabilis involved in heavy metal resistance and its potential application in removal of Hg²⁺. JOURNAL OF HAZARDOUS MATERIALS 2013; 261:646-652. [PMID: 23995561 DOI: 10.1016/j.jhazmat.2013.08.023] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 07/27/2013] [Accepted: 08/09/2013] [Indexed: 06/02/2023]
Abstract
Glutathione S-transferases (GSTs) are a family of multifunctional proteins playing important roles in detoxification of harmful physiological and xenobiotic compounds in organisms. In our study, a gene encoding a GST from Proteus mirabilis strain V7, gstPm-4, was cloned and conditionally expressed in Escherichia coli strain BL21(DE3). The purified GstPm-4 protein, with an estimated molecular mass of approximately 23kDa, was able to conjugate 1-chloro-2,4-dinitrobenzene and bind to the GSH-affinity matrix. Real-time reverse transcriptase PCR suggested that mRNA level of gstPm-4 was increased in the presence of CdCl2, CuCl2, HgCl2 and PbCl2, respectively. Correspondingly, overexpression of gstPm-4 in the genetically engineered bacterium Top10/pLacpGst exhibited higher heavy metal resistance compared to the control Top10/pLacP3. Another genetically engineered bacterium Top10/pBATGst, in which the DNA encoding GstPm-4 protein was fused with the DNA encoding Pfa1-based auto surface display system, was built. Top10/pBATGst could constitutively express the chimeric GstPm-4 and anchor it onto the cell surface subsequently. Almost 100% of the Hg(2+) within the range of 0.1-100 nM was adsorbed by Top10/pBATGst, and 80% of the bounded Hg(2+) could be desorbed from bacterial cells when pH was adjusted to 6.0. Thus, Top10/pBATGst can be potentially used for efficient treatment of Hg(2+)-contaminated aquatic environment.
Collapse
Affiliation(s)
- Weiwei Zhang
- Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Provincial Key Laboratory of Coastal Zone Environmental Processes, YICCAS, Yantai, Shandong 264003, PR China
| | | | | | | |
Collapse
|
38
|
Chronopoulou E, Madesis P, Tsaftaris A, Labrou NE. Cloning and characterization of a biotic-stress-inducible glutathione transferase from Phaseolus vulgaris. Appl Biochem Biotechnol 2013; 172:595-609. [PMID: 24104686 DOI: 10.1007/s12010-013-0509-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 09/04/2013] [Indexed: 12/28/2022]
Abstract
Glutathione transferases (GSTs, EC 2.5.1.18) are ubiquitous proteins in plants that play important roles in stress tolerance and in the detoxification of toxic chemicals and metabolites. In this study, we systematically examined the catalytic diversification of a GST isoenzyme from Phaseolus vulgaris (PvGST) which is induced under biotic stress treatment (Uromyces appendiculatus infection). The full-length cDNA of this GST isoenzyme (termed PvGSTU3-3) with complete open reading frame, was isolated using RACE-RT and showed that the deduced amino acid sequence shares high homology with the tau class plant GSTs. PvGSTU3-3 catalyzes several different reactions and exhibits wide substrate specificity. Of particular importance is the finding that the enzyme shows high antioxidant catalytic function and acts as hydroperoxidase, thioltransferase, and dehydroascorbate reductase. In addition, its K m for GSH is about five to ten times lower compared to other plant GSTs, suggesting that PvGSTU3-3 is able to perform efficient catalysis under conditions where the concentration of reduced glutathione is low (e.g., oxidative stress). Its ability to conjugate GSH with isothiocyanates may provide an additional role for this enzyme to act as a regulator of the released isothiocyanates from glucosinolates as a response of biotic stress. Molecular modeling showed that PvGSTU3-3 shares the same overall fold and structural organization with other plant cytosolic GSTs, with major differences at their hydrophobic binding sites (H-sites) and some differences at the level of C-terminal domain and the linker between the C- and N-terminal domains. PvGSTU3-3, in general, exhibits restricted ability to bind xenobiotics in a nonsubstrate manner, suggesting that the biological role of PvGSTU3-3, is restricted mainly to the catalytic function. Our findings highlight the functional and catalytic diversity of plant GSTs and demonstrate their pivotal role for addressing biotic stresses in Phaseolus vulgaris.
Collapse
Affiliation(s)
- Evangelia Chronopoulou
- Laboratory of Enzyme Technology, Department of Biotechnology, School of Food, Biotechnology and Development, Agricultural University of Athens, 75 Iera Odos Street, 11855, Athens, Greece
| | | | | | | |
Collapse
|
39
|
Fahey RC. Glutathione analogs in prokaryotes. Biochim Biophys Acta Gen Subj 2012; 1830:3182-98. [PMID: 23075826 DOI: 10.1016/j.bbagen.2012.10.006] [Citation(s) in RCA: 150] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 09/25/2012] [Accepted: 10/08/2012] [Indexed: 01/17/2023]
Abstract
BACKGROUND Oxygen is both essential and toxic to all forms of aerobic life and the chemical versatility and reactivity of thiols play a key role in both aspects. Cysteine thiol groups have key catalytic functions in enzymes but are readily damaged by reactive oxygen species (ROS). Low-molecular-weight thiols provide protective buffers against the hazards of ROS toxicity. Glutathione is the small protective thiol in nearly all eukaryotes but in prokaryotes the situation is far more complex. SCOPE OF REVIEW This review provides an introduction to the diversity of low-molecular-weight thiol protective systems in bacteria. The topics covered include the limitations of cysteine as a protector, the multiple origins and distribution of glutathione biosynthesis, mycothiol biosynthesis and function in Actinobacteria, recent discoveries involving bacillithiol found in Firmicutes, new insights on the biosynthesis and distribution of ergothioneine, and the potential protective roles played by coenzyme A and other thiols. MAJOR CONCLUSIONS Bacteria have evolved a diverse collection of low-molecular-weight protective thiols to deal with oxygen toxicity and environmental challenges. Our understanding of how many of these thiols are produced and utilized is still at an early stage. GENERAL SIGNIFICANCE Extensive diversity existed among prokaryotes prior to evolution of the cyanobacteria and the development of an oxidizing atmosphere. Bacteria that managed to adapt to life under oxygen evolved, or acquired, the ability to produce a variety of small thiols for protection against the hazards of aerobic metabolism. Many pathogenic prokaryotes depend upon novel thiol protection systems that may provide targets for new antibacterial agents. This article is part of a Special Issue entitled Cellular functions of glutathione.
Collapse
Affiliation(s)
- Robert C Fahey
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
40
|
Dufour V, Alazzam B, Ermel G, Thepaut M, Rossero A, Tresse O, Baysse C. Antimicrobial activities of isothiocyanates against Campylobacter jejuni isolates. Front Cell Infect Microbiol 2012; 2:53. [PMID: 22919644 PMCID: PMC3417524 DOI: 10.3389/fcimb.2012.00053] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 04/04/2012] [Indexed: 11/23/2022] Open
Abstract
Food-borne human infection with Campylobacter jejuni is a medical concern in both industrialized and developing countries. Efficient eradication of C. jejuni reservoirs within live animals and processed foods is limited by the development of antimicrobial resistances and by practical problems related to the use of conventional antibiotics in food processes. We have investigated the bacteriostatic and bactericidal activities of two phytochemicals, allyl-isothiocyanate (AITC), and benzyl isothiocyanate (BITC), against 24 C. jejuni isolates from chicken feces, human infections, and contaminated foods, as well as two reference strains NCTC11168 and 81-176. AITC and BITC displayed a potent antibacterial activity against C. jejuni. BITC showed a higher overall antibacterial effect (MIC of 1.25-5 μg mL(-1)) compared to AITC (MIC of 50-200 μg mL(-1)). Both compounds are bactericidal rather than bacteriostatic. The sensitivity levels of C. jejuni isolates against isothiocyanates were neither correlated with the presence of a GGT (γ-Glutamyl Transpeptidase) encoding gene in the genome, with antibiotic resistance nor with the origin of the biological sample. However the ggt mutant of C. jejuni 81-176 displayed a decreased survival rate compared to wild-type when exposed to ITC. This work determined the MIC of two ITC against a panel of C. jejuni isolates, showed that both compounds are bactericidal rather than bacteriostatic, and highlighted the role of GGT enzyme in the survival rate of C. jejuni exposed to ITC.
Collapse
Affiliation(s)
- Virginie Dufour
- Duals Team, UMR6026-CNRS, University of Rennes 1Rennes, France
| | - Bachar Alazzam
- Duals Team, UMR6026-CNRS, University of Rennes 1Rennes, France
| | - Gwennola Ermel
- Duals Team, UMR6026-CNRS, University of Rennes 1Rennes, France
| | - Marion Thepaut
- Duals Team, UMR6026-CNRS, University of Rennes 1Rennes, France
| | - Albert Rossero
- INRA UMR1014 SECALIM 1014Nantes, France
- LUNAM Université, Oniris, University of NantesNantes, France
| | - Odile Tresse
- INRA UMR1014 SECALIM 1014Nantes, France
- LUNAM Université, Oniris, University of NantesNantes, France
| | | |
Collapse
|
41
|
A glutathione transferase from Agrobacterium tumefaciens reveals a novel class of bacterial GST superfamily. PLoS One 2012; 7:e34263. [PMID: 22496785 PMCID: PMC3319563 DOI: 10.1371/journal.pone.0034263] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Accepted: 02/24/2012] [Indexed: 01/07/2023] Open
Abstract
In the present work, we report a novel class of glutathione transferases (GSTs) originated from the pathogenic soil bacterium Agrobacterium tumefaciens C58, with structural and catalytic properties not observed previously in prokaryotic and eukaryotic GST isoenzymes. A GST-like sequence from A. tumefaciens C58 (Atu3701) with low similarity to other characterized GST family of enzymes was identified. Phylogenetic analysis showed that it belongs to a distinct GST class not previously described and restricted only in soil bacteria, called the Eta class (H). This enzyme (designated as AtuGSTH1-1) was cloned and expressed in E. coli and its structural and catalytic properties were investigated. Functional analysis showed that AtuGSTH1-1 exhibits significant transferase activity against the common substrates aryl halides, as well as very high peroxidase activity towards organic hydroperoxides. The crystal structure of AtuGSTH1-1 was determined at 1.4 Å resolution in complex with S-(p-nitrobenzyl)-glutathione (Nb-GSH). Although AtuGSTH1-1 adopts the canonical GST fold, sequence and structural characteristics distinct from previously characterized GSTs were identified. The absence of the classic catalytic essential residues (Tyr, Ser, Cys) distinguishes AtuGSTH1-1 from all other cytosolic GSTs of known structure and function. Site-directed mutagenesis showed that instead of the classic catalytic residues, an Arg residue (Arg34), an electron-sharing network, and a bridge of a network of water molecules may form the basis of the catalytic mechanism. Comparative sequence analysis, structural information, and site-directed mutagenesis in combination with kinetic analysis showed that Phe22, Ser25, and Arg187 are additional important residues for the enzyme's catalytic efficiency and specificity.
Collapse
|
42
|
Schramm K, Vassão DG, Reichelt M, Gershenzon J, Wittstock U. Metabolism of glucosinolate-derived isothiocyanates to glutathione conjugates in generalist lepidopteran herbivores. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2012; 42:174-82. [PMID: 22193392 DOI: 10.1016/j.ibmb.2011.12.002] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Revised: 12/06/2011] [Accepted: 12/07/2011] [Indexed: 05/13/2023]
Abstract
The defensive properties of the glucosinolate-myrosinase system in plants of the order Brassicales have been attributed to the formation of toxic isothiocyanates generated upon tissue damage. Lepidopteran herbivores specialised on brassicaceous plants have been shown to possess biochemical mechanisms preventing the formation of isothiocyanates. Yet, no such mechanisms are known for generalist lepidopterans which also occasionally but successfully feed on plants of the Brassicales. After feeding on Arabidopsis thaliana plants, faeces of Spodoptera littoralis larvae contained glutathione conjugate derivatives (cysteinylglycine- and cysteinyl-isothiocyanate-conjugates) of the plant's major glucosinolate hydrolysis product, 4-methylsulfinylbutyl isothiocyanate. When caterpillars fed on leaves of A. thaliana containing [¹⁴C]₄-methylsulfinylbutyl glucosinolate, more than half of the ingested radioactivity was excreted as the unmetabolised corresponding isothiocyanate, and only 11% as glutathione conjugate derivatives. However, these conjugates were demonstrated to be the major metabolites of isothiocyanates in S. littoralis, and their abundance was shown to correlate with the amount of isothiocyanates ingested. Analysis of larval faeces from several species of generalist lepidopterans (Spodoptera exigua, S. littoralis, Mamestra brassicae, Trichoplusia ni and Helicoverpa armigera) fed on different Brassicaceae revealed that glutathione conjugates arise from a variety of aliphatic and aromatic isothiocyanates derived from dietary glucosinolates.
Collapse
Affiliation(s)
- Katharina Schramm
- Max Planck Institute for Chemical Ecology, Hans-Knoell-Str. 8, 07745 Jena, Germany.
| | | | | | | | | |
Collapse
|
43
|
Jalal S, Chand K, Kathuria A, Singh P, Priya N, Gupta B, Raj HG, Sharma SK. Calreticulin transacetylase: a novel enzyme-mediated protein acetylation by acetoxy derivatives of 3-alkyl-4-methylcoumarins. Bioorg Chem 2011; 40:131-136. [PMID: 22130072 DOI: 10.1016/j.bioorg.2011.10.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Revised: 10/26/2011] [Accepted: 10/30/2011] [Indexed: 10/15/2022]
Abstract
Our earlier investigations culminated in the discovery of a unique membrane-bound enzyme Calreticulin transacetylase (CRTAase) in mammalian cells catalyzing the transfer of acetyl group from polyphenolic acetates (PAs) to certain functional proteins viz. Glutathione S-transferase (GST), NADPH Cytochrome c reductase and Nitric oxide synthase (NOS) resulting in the modulation of their biological activities. In order to develop SAR study, herein, we studied the influence of alkyl group at C-3 position of acetoxy coumarins on the CRTAase activity. The alkylated acetoxy coumarins lead to inhibition of catalytic activity of GST, and ADP induced platelet aggregation by the way of activation of platelet Nitric oxide synthase (NOS). Furthermore, the increase in size of the coumarin C-3 alkyl group was found to decrease the CRTAase activity.
Collapse
Affiliation(s)
- Sarah Jalal
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi 110 007, India
| | - Karam Chand
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi 110 007, India
| | - Abha Kathuria
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi 110 007, India
| | - Prabhjot Singh
- Department of Biochemistry, VP Chest Institute, University of Delhi, Delhi 110 007, India
| | - Nivedita Priya
- Department of Biochemistry, VP Chest Institute, University of Delhi, Delhi 110 007, India
| | - Bhavna Gupta
- Department of Chemistry, University of Massachusetts Lowell, MA 01854, USA
| | - Hanumantharao G Raj
- Department of Biochemistry, VP Chest Institute, University of Delhi, Delhi 110 007, India
| | - Sunil K Sharma
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi 110 007, India.
| |
Collapse
|
44
|
Overlapping protective roles for glutathione transferase gene family members in chemical and oxidative stress response in Agrobacterium tumefaciens. Funct Integr Genomics 2011; 12:157-72. [PMID: 21909786 DOI: 10.1007/s10142-011-0248-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 08/06/2011] [Accepted: 08/16/2011] [Indexed: 10/17/2022]
Abstract
In the present work, we describe the characterisation of the glutathione transferase (GST) gene family from Agrobacterium tumefaciens C58. A genome survey revealed the presence of eight GST-like proteins in A. tumefaciens (AtuGSTs). Comparison by multiple sequence alignment generated a dendrogram revealing the phylogenetic relationships of AtuGSTs-like proteins. The beta and theta classes identified in other bacterial species are represented by five members in A. tumefaciens C58. In addition, there are three "orphan" sequences that do not fit into any previously recognised GST classes. The eight GST-like genes were cloned, expressed in Escherichia coli and their substrate specificity was determined towards 17 different substrates. The results showed that AtuGSTs catalyse a broad range of reactions, with different members of the family exhibiting quite varied substrate specificity. The 3D structures of AtuGSTs were predicted using molecular modelling. The use of comparative sequence and structural analysis of the AtuGST isoenzymes allowed us to identify local sequence and structural characteristics between different GST isoenzymes and classes. Gene expression profiling was conducted under normal culture conditions as well as under abiotic stress conditions (addition of xenobiotics, osmotic stress and cold and heat shock) to induce and monitor early stress-response mechanisms. The results reveal the constitutive expression of GSTs in A. tumefaciens and a modulation of GST activity after treatments, indicating that AtuGSTs presumably participate in a wide range of functions, many of which are important in counteracting stress conditions. These functions may be relevant to maintaining cellular homeostasis as well as in the direct detoxification of toxic compounds.
Collapse
|
45
|
Galhano V, Gomes-Laranjo J, Peixoto F. Exposure of the cyanobacterium Nostoc muscorum from Portuguese rice fields to Molinate (Ordram(®)): Effects on the antioxidant system and fatty acid profile. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2011; 101:367-376. [PMID: 21216347 DOI: 10.1016/j.aquatox.2010.11.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 11/16/2010] [Accepted: 11/22/2010] [Indexed: 05/30/2023]
Abstract
Herbicide contamination of aquatic ecosystems is a serious global environmental concern. Several herbicides enhance the intracellular formation of reactive oxygen species, and can lead to the damage of macromolecules and to a decrease of oxidant defenses in a wide range of non-target microorganisms including cyanobacteria. The effects of molinate (a thiocarbamate herbicide used for controlling grassy weeds in rice fields) on the activities of antioxidant enzymes such as superoxide dismutase, catalase, ascorbate peroxidase, glutathione reductase, and glutathione S-transferase were evaluated in Nostoc muscorum, a freshwater cyanobacterium with a significant spread in Portuguese rice fields. These were determined in N. muscorum cultures acutely (72h) exposed to concentrations ranging from 0.75 to 2mM of molinate. This study also analyzed the effects of molinate on: (1) the nonenzymatic antioxidant contents (reduced and oxidized glutathione, carotenoids, and proline), (2) the oxidative cell damage measured in terms of lipid peroxidation (MDA level) and electrolyte leakage (intactness of plasma membrane), and (3) the total fatty acid profile. The results showed that the activities of all antioxidant enzymes decreased dramatically with the rising concentration of molinate after 72h. Time-dependent and concentration-dependent increase in MDA and enhanced cell membrane leakage were indicative of lipid peroxidation, formation of free radicals and oxidative damage. Compared to control, 72-h herbicide exposure increased lipid peroxidation by 5.4%, 19% and 28% with 0.75, 1.5 and 2mM of molinate, respectively. Similarly, herbicide stress induced an increase in electrolyte leakage (5.8%, 29.5% and 30.2% above control, with 0.75, 1.5 and 2mM of molinate, respectively). The increased production of proline at higher molinate concentrations (the values rose above control by 45%, 95% and 156% with 0.75, 1.5 and 2mM, respectively) indicated the involvement of this osmoprotectant in a free radical scavenging mechanism. Moreover, a radical decline in both glutathione pool, carotenoids and saturated fatty acids were also observed. The results of the present study lead us to conclude that: (1) both enzymatic and nonenzymatic antioxidative defense system of N. muscorum are dramatically affected by molinate, (2) the herbicide induces peroxidation, (3) it contributes to an increase of the unsaturation level of cell membrane fatty acids. These evidences should be taken in account when using N. muscorum as an environmental indicator species in studies of herbicide biotransformation and biomarker response as well as in environmental monitoring programmes.
Collapse
Affiliation(s)
- Victor Galhano
- CITAB-Centre for Research and Technology of Agro-Environment and Biological Sciences, Sustainable Agro-Food Chains Research Group/Department of Biology and Environment, University of Trás-os-Montes and Alto Douro, Apartado 1013, 5001-801 Vila Real, Portugal.
| | | | | |
Collapse
|
46
|
Runarsdottir A, Mannervik B. A Novel Quasi-Species of Glutathione Transferase with High Activity towards Naturally Occurring Isothiocyanates Evolves from Promiscuous Low-Activity Variants. J Mol Biol 2010; 401:451-64. [DOI: 10.1016/j.jmb.2010.06.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Revised: 06/10/2010] [Accepted: 06/16/2010] [Indexed: 12/21/2022]
|
47
|
Axarli I, Georgiadou C, Dhavala P, Papageorgiou AC, Labrou NE. Investigation of the role of conserved residues Ser13, Asn48 and Pro49 in the catalytic mechanism of the tau class glutathione transferase from Glycine max. BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1804:662-7. [PMID: 19879385 DOI: 10.1016/j.bbapap.2009.10.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Revised: 10/21/2009] [Accepted: 10/22/2009] [Indexed: 11/21/2022]
Abstract
Plant glutathione transferases (GSTs) play a key role in the metabolism of various xenobiotics. In this report, the catalytic mechanism of the tau class GSTU4-4 isoenzyme from Glycine max (GmGSTU4-4) was investigated by site-directed mutagenesis and steady-state kinetic analysis. The catalytic properties of the wild-type enzyme and three mutants of strictly conserved residues (Ser13Ala, Asn48Ala and Pro49Ala) were studied in 1-chloro-2,4-dinitrobenzene (CDNB) conjugation reaction. The results showed that the mutations significantly affect substrate binding and specificity. The effect of Ser13Ala mutation on the catalytic efficiency of the enzyme could be explained by assuming the direct involvement of Ser13 to the reaction chemistry and the correct positioning of GSH and CDNB in the ternary catalytic complex. Asn48 and Pro49 were found to have a direct role on the structural integrity of the GSH-binding site (G-site). Moreover, mutation of Asn48 and Pro49 residues may bring about secondary effects altering the thermal stability and the catalytic activity (k(cat)) of the enzyme without affecting the nature of the rate-limiting step of the catalytic reaction.
Collapse
Affiliation(s)
- Irene Axarli
- Laboratory of Enzyme Technology, Department of Agricultural Biotechnology, Agricultural University of Athens, GR-11855-Athens, Greece
| | | | | | | | | |
Collapse
|
48
|
Shokeer A, Mannervik B. Minor modifications of the C-terminal helix reschedule the favored chemical reactions catalyzed by theta class glutathione transferase T1-1. J Biol Chem 2009; 285:5639-45. [PMID: 20022951 DOI: 10.1074/jbc.m109.074757] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Adaptive responses to novel toxic challenges provide selective advantages to organisms in evolution. Glutathione transferases (GSTs) play a pivotal role in the cellular defense because they are main contributors to the inactivation of genotoxic compounds of exogenous as well as of endogenous origins. GSTs are promiscuous enzymes catalyzing a variety of chemical reactions with numerous alternative substrates. Despite broad substrate acceptance, individual GSTs display pronounced selectivities such that only a limited number of substrates are transformed with high catalytic efficiency. The present study shows that minor structural changes in the C-terminal helix of mouse GST T1-1 induce major changes in the substrate-activity profile of the enzyme to favor novel chemical reactions and to suppress other reactions catalyzed by the parental enzyme.
Collapse
Affiliation(s)
- Abeer Shokeer
- Department of Biochemistry and Organic Chemistry, Uppsala University, Biomedical Center, Box 576, SE-75123 Uppsala, Sweden
| | | |
Collapse
|
49
|
Feil SC, Tang J, Hansen G, Gorman MA, Wiktelius E, Stenberg G, Parker MW. Crystallization and preliminary X-ray analysis of glutathione transferases from cyanobacteria. Acta Crystallogr Sect F Struct Biol Cryst Commun 2009; 65:475-7. [PMID: 19407380 PMCID: PMC2675588 DOI: 10.1107/s1744309109011634] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2009] [Accepted: 03/30/2009] [Indexed: 05/17/2024]
Abstract
Glutathione S-transferases (GSTs) are a group of multifunctional enzymes that are found in animals, plants and microorganisms. Their primary function is to remove toxins derived from exogenous sources or the products of metabolism from the cell. Mammalian GSTs have been extensively studied, in contrast to bacterial GSTs which have received relatively scant attention. A new class of GSTs called Chi has recently been identified in cyanobacteria. Chi GSTs exhibit a high glutathionylation activity towards isothiocyanates, compounds that are normally found in plants. Here, the crystallization of two GSTs are presented: TeGST produced by Thermosynechococcus elongates BP-1 and SeGST from Synechococcus elongates PCC 6301. Both enzymes formed crystals that diffracted to high resolution and appeared to be suitable for further X-ray diffraction studies. The structures of these GSTs may shed further light on the evolution of GST catalytic activity and in particular why these enzymes possess catalytic activity towards plant antimicrobial compounds.
Collapse
Affiliation(s)
- Susanne C Feil
- St Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia.
| | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
Bacterial glutathione transferases (GSTs) are part of a superfamily of enzymes that play a key role in cellular detoxification. GSTs are widely distributed in prokaryotes and are grouped into several classes. Bacterial GSTs are implicated in a variety of distinct processes such as the biodegradation of xenobiotics, protection against chemical and oxidative stresses and antimicrobial drug resistance. In addition to their role in detoxification, bacterial GSTs are also involved in a variety of distinct metabolic processes such as the biotransformation of dichloromethane, the degradation of lignin and atrazine, and the reductive dechlorination of pentachlorophenol. This review article summarizes the current status of knowledge regarding the functional and structural properties of bacterial GSTs.
Collapse
Affiliation(s)
- Nerino Allocati
- Dipartimento di Scienze Biomediche, Università G. d'Annunzio, Chieti, Italy.
| | | | | | | |
Collapse
|