1
|
Emerzian SR, Chow J, Behzad R, Unal M, Brooks DJ, Wu IH, Gauthier J, Jangolla SVT, Yu MG, Shah HS, King GL, Johannesdottir F, Karim L, Yu EW, Bouxsein ML. Long-duration type 1 diabetes is associated with deficient cortical bone mechanical behavior and altered matrix composition in human femoral bone. J Bone Miner Res 2024; 40:87-99. [PMID: 39561104 PMCID: PMC11700620 DOI: 10.1093/jbmr/zjae184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 10/21/2024] [Accepted: 11/18/2024] [Indexed: 11/21/2024]
Abstract
Type 1 diabetes (T1D) is associated with an increased risk of hip fracture beyond what can be explained by reduced bone mineral density, possibly due to changes in bone material from accumulation of advanced glycation end-products (AGEs) and altered matrix composition, though data from human cortical bone in T1D are limited. The objective of this study was to evaluate cortical bone material behavior in T1D by examining specimens from cadaveric femora from older adults with long-duration T1D (≥50 yr; n = 20) and age- and sex-matched nondiabetic controls (n = 14). Cortical bone was assessed by mechanical testing (4-point bending, cyclic reference point indentation, impact microindentation), AGE quantification [total fluorescent AGEs, pentosidine, carboxymethyl lysine (CML)], and matrix composition via Raman spectroscopy. Cortical bone from older adults with T1D had diminished postyield toughness to fracture (-30%, p = .036), elevated levels of AGEs (pentosidine, +17%, p = .039), lower mineral crystallinity (-1.4%, p = .010), greater proline hydroxylation (+1.9%, p = .009), and reduced glycosaminoglycan (GAG) content (-1.3%, p < .03) compared to nondiabetics. In multiple regression models to predict cortical bone toughness, cortical tissue mineral density, CML, and Raman spectroscopic measures of enzymatic collagen crosslinks and GAG content remained highly significant predictors of toughness, while diabetic status was no longer significant (adjusted R2 > 0.60, p < .001). Thus, the impairment of cortical bone to absorb energy following long-duration T1D is well explained by AGE accumulation and modifications to the bone matrix. These results provide novel insight into the pathogenesis of skeletal fragility in individuals with T1D.
Collapse
Affiliation(s)
- Shannon R Emerzian
- Center for Advanced Orthopedic Studies, Department of Orthopedic Surgery, Beth Israel Deaconess Medical Center, Boston, MA 02215, United States
- Harvard Medical School, Boston, MA 02115, United States
| | - Jarred Chow
- Center for Advanced Orthopedic Studies, Department of Orthopedic Surgery, Beth Israel Deaconess Medical Center, Boston, MA 02215, United States
| | - Ramina Behzad
- Department of Bioengineering, University of Massachusetts Dartmouth, Dartmouth, MA 02747, United States
| | - Mustafa Unal
- Center for Advanced Orthopedic Studies, Department of Orthopedic Surgery, Beth Israel Deaconess Medical Center, Boston, MA 02215, United States
- Harvard Medical School, Boston, MA 02115, United States
- Department of Bioengineering, Karamanoglu Mehmetbey University, Karaman 70100, Türkiye
| | - Daniel J Brooks
- Center for Advanced Orthopedic Studies, Department of Orthopedic Surgery, Beth Israel Deaconess Medical Center, Boston, MA 02215, United States
| | - I-Hsien Wu
- Research Division, Joslin Diabetes Center, Boston, MA 02215, United States
| | - John Gauthier
- Research Division, Joslin Diabetes Center, Boston, MA 02215, United States
| | | | - Marc Gregory Yu
- Research Division, Joslin Diabetes Center, Boston, MA 02215, United States
- Department of Internal Medicine, Harvard Medical School, Boston, MA 02115, United States
| | - Hetal S Shah
- Research Division, Joslin Diabetes Center, Boston, MA 02215, United States
- Department of Internal Medicine, Harvard Medical School, Boston, MA 02115, United States
| | - George L King
- Research Division, Joslin Diabetes Center, Boston, MA 02215, United States
- Department of Internal Medicine, Harvard Medical School, Boston, MA 02115, United States
| | - Fjola Johannesdottir
- Center for Advanced Orthopedic Studies, Department of Orthopedic Surgery, Beth Israel Deaconess Medical Center, Boston, MA 02215, United States
- Harvard Medical School, Boston, MA 02115, United States
| | - Lamya Karim
- Department of Bioengineering, University of Massachusetts Dartmouth, Dartmouth, MA 02747, United States
| | - Elaine W Yu
- Department of Medicine, Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, United States
| | - Mary L Bouxsein
- Center for Advanced Orthopedic Studies, Department of Orthopedic Surgery, Beth Israel Deaconess Medical Center, Boston, MA 02215, United States
- Harvard Medical School, Boston, MA 02115, United States
| |
Collapse
|
2
|
Dodig M, Li M, Dasarathy S, Kumarasamy S, Kasumov T, Najjar SM, McCullough AJ. Insulin increases type I collagen synthesis in hepatic stellate cells via α5β1 integrin. METABOLISM AND TARGET ORGAN DAMAGE 2024; 4. [DOI: 10.20517/mtod.2024.59] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Aim: A direct effect of insulin on the synthesis of extracellular matrix proteins has been described in extrahepatic organs. The current study investigates the role of insulin in type 1 collagen production in hepatic stellate cells (HSCs).
Methods: Primary HSC cultures from wild-type mice and from L-SACC1 transgenic mice that exhibit hyperinsulinemia and resultant insulin resistance due to a defect in hepatic insulin clearance were used.
Results: Insulin significantly increased type I collagen synthesis in HSC primary cultures in the presence of high but not low glucose concentrations. Although HSCs contain a functional, insulin-activated PI3 kinase signaling pathway, insulin increases type I collagen synthesis by mechanisms independent of PI3 kinase. Insulin stimulated α5β1 integrin levels and phosphorylation of focal adhesion kinase, a major signaling mediator in the integrin pathway. In addition, α5β1 integrin siRNA interference abolished insulin-mediated type I collagen synthesis by HSCs. L-SACC1 mice showed increased hepatic collagen deposition as compared to wild-type mice. HSCs isolated from L-SACC1 mice synthesize more type I collagen and α5β1 integrin than HSCs isolated from wild-type controls.
Conclusion: Insulin exerts a direct profibrotic impact on HSCs by an α5β1 integrin-mediated mechanism, independently of the PI3 kinase signaling pathway. Thus, chronic hyperinsulinemia may potentiate liver collagen deposition in insulin resistance states. This likely increases the risk of significant fibrosis burden in chronic liver disease associated with insulin resistance.
Collapse
|
3
|
Albrecht M, Sticht C, Wagner T, Hettler SA, De La Torre C, Qiu J, Gretz N, Albrecht T, Yard B, Sleeman JP, Garvalov BK. The crosstalk between glomerular endothelial cells and podocytes controls their responses to metabolic stimuli in diabetic nephropathy. Sci Rep 2023; 13:17985. [PMID: 37863933 PMCID: PMC10589299 DOI: 10.1038/s41598-023-45139-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 10/16/2023] [Indexed: 10/22/2023] Open
Abstract
In diabetic nephropathy (DN), glomerular endothelial cells (GECs) and podocytes undergo pathological alterations, which are influenced by metabolic changes characteristic of diabetes, including hyperglycaemia (HG) and elevated methylglyoxal (MGO) levels. However, it remains insufficiently understood what effects these metabolic factors have on GEC and podocytes and to what extent the interactions between the two cell types can modulate these effects. To address these questions, we established a co-culture system in which GECs and podocytes were grown together in close proximity, and assessed transcriptional changes in each cell type after exposure to HG and MGO. We found that HG and MGO had distinct effects on gene expression and that the effect of each treatment was markedly different between GECs and podocytes. HG treatment led to upregulation of "immediate early response" genes, particularly those of the EGR family, as well as genes involved in inflammatory responses (in GECs) or DNA replication/cell cycle (in podocytes). Interestingly, both HG and MGO led to downregulation of genes related to extracellular matrix organisation in podocytes. Crucially, the transcriptional responses of GECs and podocytes were dependent on their interaction with each other, as many of the prominently regulated genes in co-culture of the two cell types were not significantly changed when monocultures of the cells were exposed to the same stimuli. Finally, the changes in the expression of selected genes were validated in BTBR ob/ob mice, an established model of DN. This work highlights the molecular alterations in GECs and podocytes in response to the key diabetic metabolic triggers HG and MGO, as well as the central role of GEC-podocyte crosstalk in governing these responses.
Collapse
Affiliation(s)
- Michael Albrecht
- European Center for Angioscience (ECAS), Medical Faculty Mannheim of the University of Heidelberg, Ludolf-Krehl-Strasse 13-17, 68167, Mannheim, Germany
- Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim of the University of Heidelberg, Ludolf-Krehl-Strasse 13-17, 68167, Mannheim, Germany
| | - Carsten Sticht
- Center of Medical Research, Bioinformatics and Statistics, Medical Faculty Mannheim of the University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
- NGS Core Facility, Medical Faculty Mannheim of the University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Tabea Wagner
- European Center for Angioscience (ECAS), Medical Faculty Mannheim of the University of Heidelberg, Ludolf-Krehl-Strasse 13-17, 68167, Mannheim, Germany
- Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim of the University of Heidelberg, Ludolf-Krehl-Strasse 13-17, 68167, Mannheim, Germany
| | - Steffen A Hettler
- Department of Nephrology, Hypertensiology, Endocrinology, Diabetology, Rheumatology and Pneumology, Fifth Department of Medicine, Medical Faculty Mannheim of the University of Heidelberg, Mannheim, Germany
| | - Carolina De La Torre
- Center of Medical Research, Bioinformatics and Statistics, Medical Faculty Mannheim of the University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
- NGS Core Facility, Medical Faculty Mannheim of the University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Jiedong Qiu
- Department of Nephrology, Hypertensiology, Endocrinology, Diabetology, Rheumatology and Pneumology, Fifth Department of Medicine, Medical Faculty Mannheim of the University of Heidelberg, Mannheim, Germany
| | - Norbert Gretz
- Center of Medical Research, Bioinformatics and Statistics, Medical Faculty Mannheim of the University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Thomas Albrecht
- Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, Heidelberg, Germany
| | - Benito Yard
- Department of Nephrology, Hypertensiology, Endocrinology, Diabetology, Rheumatology and Pneumology, Fifth Department of Medicine, Medical Faculty Mannheim of the University of Heidelberg, Mannheim, Germany
| | - Jonathan P Sleeman
- European Center for Angioscience (ECAS), Medical Faculty Mannheim of the University of Heidelberg, Ludolf-Krehl-Strasse 13-17, 68167, Mannheim, Germany.
- Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim of the University of Heidelberg, Ludolf-Krehl-Strasse 13-17, 68167, Mannheim, Germany.
- Institute of Biological and Chemical Systems - Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology Campus North, Building 319, Hermann-Von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.
| | - Boyan K Garvalov
- European Center for Angioscience (ECAS), Medical Faculty Mannheim of the University of Heidelberg, Ludolf-Krehl-Strasse 13-17, 68167, Mannheim, Germany.
- Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim of the University of Heidelberg, Ludolf-Krehl-Strasse 13-17, 68167, Mannheim, Germany.
| |
Collapse
|
4
|
Kourtidou C, Tziomalos K. The Role of Histone Modifications in the Pathogenesis of Diabetic Kidney Disease. Int J Mol Sci 2023; 24:ijms24066007. [PMID: 36983082 PMCID: PMC10051814 DOI: 10.3390/ijms24066007] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/15/2023] [Accepted: 03/22/2023] [Indexed: 03/30/2023] Open
Abstract
Diabetic kidney disease (DKD) is the leading cause of chronic kidney disease. The pathogenesis of DKD is multifactorial, with several molecular pathways implicated. Recent data suggest that histone modification plays an important role in the development and progression of DKD. Histone modification appears to induce oxidative stress, inflammation and fibrosis in the diabetic kidney. In the present review, we summarize the current knowledge on the association between histone modification and DKD.
Collapse
Affiliation(s)
- Christodoula Kourtidou
- First Propedeutic Department of Internal Medicine, AHEPA Hospital, Medical School, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Konstantinos Tziomalos
- First Propedeutic Department of Internal Medicine, AHEPA Hospital, Medical School, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| |
Collapse
|
5
|
Kitsiranuwat S, Suratanee A, Plaimas K. Integration of various protein similarities using random forest technique to infer augmented drug-protein matrix for enhancing drug-disease association prediction. Sci Prog 2022; 105:368504221109215. [PMID: 35801312 PMCID: PMC10358641 DOI: 10.1177/00368504221109215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Identifying new therapeutic indications for existing drugs is a major challenge in drug repositioning. Most computational drug repositioning methods focus on known targets. Analyzing multiple aspects of various protein associations provides an opportunity to discover underlying drug-associated proteins that can be used to improve the performance of the drug repositioning approaches. In this study, machine learning models were developed based on the similarities of diversified biological features, including protein interaction, topological network, sequence alignment, and biological function to predict protein pairs associating with the same drugs. The crucial set of features was identified, and the high performances of protein pair predictions were achieved with an area under the curve (AUC) value of more than 93%. Based on drug chemical structures, the drug similarity levels of the promising protein pairs were used to quantify the inferred drug-associated proteins. Furthermore, these proteins were employed to establish an augmented drug-protein matrix to enhance the efficiency of three existing drug repositioning techniques: a similarity constrained matrix factorization for the drug-disease associations (SCMFDD), an ensemble meta-paths and singular value decomposition (EMP-SVD) model, and a topology similarity and singular value decomposition (TS-SVD) technique. The results showed that the augmented matrix helped to improve the performance up to 4% more in comparison to the original matrix for SCMFDD and EMP-SVD, and about 1% more for TS-SVD. In summary, inferring new protein pairs related to the same drugs increase the opportunity to reveal missing drug-associated proteins that are important for drug development via the drug repositioning technique.
Collapse
Affiliation(s)
- Satanat Kitsiranuwat
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok, Thailand
- Advanced Virtual and Intelligent Computing (AVIC) center, Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Apichat Suratanee
- Department of Mathematics, Faculty of Applied Science, King Mongkut's University of Technology North Bangkok, Bangkok, Thailand
- Intelligent and Nonlinear Dynamic Innovations Research Center, Science and Technology Research Institute, King Mongkut's University of Technology North Bangkok, Bangkok, Thailand
| | - Kitiporn Plaimas
- Advanced Virtual and Intelligent Computing (AVIC) center, Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Omics Sciences and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
6
|
Gene Networks of Hyperglycemia, Diabetic Complications, and Human Proteins Targeted by SARS-CoV-2: What Is the Molecular Basis for Comorbidity? Int J Mol Sci 2022; 23:ijms23137247. [PMID: 35806251 PMCID: PMC9266766 DOI: 10.3390/ijms23137247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 06/25/2022] [Accepted: 06/27/2022] [Indexed: 12/10/2022] Open
Abstract
People with diabetes are more likely to have severe COVID-19 compared to the general population. Moreover, diabetes and COVID-19 demonstrate a certain parallelism in the mechanisms and organ damage. In this work, we applied bioinformatics analysis of associative molecular networks to identify key molecules and pathophysiological processes that determine SARS-CoV-2-induced disorders in patients with diabetes. Using text-mining-based approaches and ANDSystem as a bioinformatics tool, we reconstructed and matched networks related to hyperglycemia, diabetic complications, insulin resistance, and beta cell dysfunction with networks of SARS-CoV-2-targeted proteins. The latter included SARS-CoV-2 entry receptors (ACE2 and DPP4), SARS-CoV-2 entry associated proteases (TMPRSS2, CTSB, and CTSL), and 332 human intracellular proteins interacting with SARS-CoV-2. A number of genes/proteins targeted by SARS-CoV-2 (ACE2, BRD2, COMT, CTSB, CTSL, DNMT1, DPP4, ERP44, F2RL1, GDF15, GPX1, HDAC2, HMOX1, HYOU1, IDE, LOX, NUTF2, PCNT, PLAT, RAB10, RHOA, SCARB1, and SELENOS) were found in the networks of vascular diabetic complications and insulin resistance. According to the Gene Ontology enrichment analysis, the defined molecules are involved in the response to hypoxia, reactive oxygen species metabolism, immune and inflammatory response, regulation of angiogenesis, platelet degranulation, and other processes. The results expand the understanding of the molecular basis of diabetes and COVID-19 comorbidity.
Collapse
|
7
|
Prasad M, Rajagopal P, Devarajan N, Veeraraghavan VP, Palanisamy CP, Cui B, Patil S, Jayaraman S. A comprehensive review on high fat diet-induced diabetes mellitus: An epigenetic view. J Nutr Biochem 2022; 107:109037. [PMID: 35533900 DOI: 10.1016/j.jnutbio.2022.109037] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 01/08/2022] [Accepted: 03/21/2022] [Indexed: 12/12/2022]
Abstract
Modern lifestyle, genetics, nutritional overload through high-fat diet attributed prevalence and diabetes outcomes with various complications primarily due to obesity in which energy-dense diets frequently affect metabolic health. One possible issue usually associated with elevated chronic fat intake is insulin resistance, and hyperglycaemia constitutes an important function in altering the carbohydrates and lipids metabolism. Similarly, in assessing human susceptibility to weight gain and obesity, genetic variations play a central role, contributing to keen interest in identifying the possible role of epigenetics as a mediator of gene-environmental interactions influencing the production of type 2 diabetes mellitus and its related concerns. Epigenetic modifications associated with the acceptance of a sedentary lifestyle and environmental stress factors in response to energy intake and expenditure imbalances complement genetic alterations and lead to the production and advancement of metabolic disorders such as diabetes and obesity. Methylation of DNA, histone modifications and increases in the expression of non-coding RNAs can result in reduced transcriptional activity of key β-cell genes thus creating insulin resistance. Epigenetics contribute to changes in the expression of the underlying insulin resistance and insufficiency gene networks, along with low-grade obesity-related inflammation, increased ROS generation and DNA damage in multi organs. This review focused on epigenetic mechanisms and metabolic regulations associated with high fat diet (HFD)-induced diabetes mellitus.
Collapse
Affiliation(s)
- Monisha Prasad
- Centre for Molecular Medicine and diagnostic (CoMManD), Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600 077, India
| | - Ponnulakshmi Rajagopal
- Central Research Laboratory, Meenakhsi Ammal Dental College and Hospitals, Academy of Higher Education and Research, Chennai, 600 095, India
| | - Nalini Devarajan
- Central Research Laboratory, Meenakhsi Academy of Higher Education and Research, West K.K. Nagar, Chennai, 600 078, India
| | - Vishnu Priya Veeraraghavan
- State Key Laboratory of Biobased Materials and Green Papermaking, College of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Science, Jinan, 250353, China
| | - Chella Perumal Palanisamy
- State Key Laboratory of Biobased Materials and Green Papermaking, College of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Science, Jinan, 250353, China
| | - Bo Cui
- State Key Laboratory of Biobased Materials and Green Papermaking, College of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Science, Jinan, 250353, China
| | - Shankargouda Patil
- Department of Maxillofacial Surgery and Diagnostic Sciences, Division of Oral Pathology, College of Dentistry, Jazan University, Saudi Arabia
| | - Selvaraj Jayaraman
- Centre for Molecular Medicine and diagnostic (CoMManD), Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600 077, India.
| |
Collapse
|
8
|
da Silva JS, Gonçalves RGJ, Vasques JF, Rocha BS, Nascimento-Carlos B, Montagnoli TL, Mendez-Otero R, de Sá MPL, Zapata-Sudo G. Mesenchymal Stem Cell Therapy in Diabetic Cardiomyopathy. Cells 2022; 11:cells11020240. [PMID: 35053356 PMCID: PMC8773977 DOI: 10.3390/cells11020240] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/17/2021] [Accepted: 12/22/2021] [Indexed: 02/07/2023] Open
Abstract
The incidence and prevalence of diabetes mellitus (DM) are increasing worldwide, and the resulting cardiac complications are the leading cause of death. Among these complications is diabetes-induced cardiomyopathy (DCM), which is the consequence of a pro-inflammatory condition, oxidative stress and fibrosis caused by hyperglycemia. Cardiac remodeling will lead to an imbalance in cell survival and death, which can promote cardiac dysfunction. Since the conventional treatment of DM generally does not address the prevention of cardiac remodeling, it is important to develop new alternatives for the treatment of cardiovascular complications induced by DM. Thus, therapy with mesenchymal stem cells has been shown to be a promising approach for the prevention of DCM because of their anti-apoptotic, anti-fibrotic and anti-inflammatory effects, which could improve cardiac function in patients with DM.
Collapse
Affiliation(s)
- Jaqueline S. da Silva
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Rio de Janeiro 21941-902, RJ, Brazil; (J.S.d.S.); (B.S.R.); (B.N.-C.); (T.L.M.)
- Instituto do Coração Edson Saad, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Street Prof. Rodolpho Paulo Rocco, 255, Rio de Janeiro 21941-617, RJ, Brazil;
| | - Renata G. J. Gonçalves
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Rio de Janeiro 21941-170, RJ, Brazil; (R.G.J.G.); (R.M.-O.)
| | - Juliana F. Vasques
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Rio de Janeiro 21941-170, RJ, Brazil;
| | - Bruna S. Rocha
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Rio de Janeiro 21941-902, RJ, Brazil; (J.S.d.S.); (B.S.R.); (B.N.-C.); (T.L.M.)
- Instituto do Coração Edson Saad, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Street Prof. Rodolpho Paulo Rocco, 255, Rio de Janeiro 21941-617, RJ, Brazil;
| | - Bianca Nascimento-Carlos
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Rio de Janeiro 21941-902, RJ, Brazil; (J.S.d.S.); (B.S.R.); (B.N.-C.); (T.L.M.)
| | - Tadeu L. Montagnoli
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Rio de Janeiro 21941-902, RJ, Brazil; (J.S.d.S.); (B.S.R.); (B.N.-C.); (T.L.M.)
| | - Rosália Mendez-Otero
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Rio de Janeiro 21941-170, RJ, Brazil; (R.G.J.G.); (R.M.-O.)
- Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, Av. Carlos Chagas Filho, 373, Rio de Janeiro 21941-902, RJ, Brazil
| | - Mauro P. L. de Sá
- Instituto do Coração Edson Saad, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Street Prof. Rodolpho Paulo Rocco, 255, Rio de Janeiro 21941-617, RJ, Brazil;
| | - Gisele Zapata-Sudo
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Rio de Janeiro 21941-902, RJ, Brazil; (J.S.d.S.); (B.S.R.); (B.N.-C.); (T.L.M.)
- Instituto do Coração Edson Saad, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Street Prof. Rodolpho Paulo Rocco, 255, Rio de Janeiro 21941-617, RJ, Brazil;
- Correspondence: or ; Tel.: +55-21-39386505
| |
Collapse
|
9
|
Davison GW, Irwin RE, Walsh CP. The metabolic-epigenetic nexus in type 2 diabetes mellitus. Free Radic Biol Med 2021; 170:194-206. [PMID: 33429021 DOI: 10.1016/j.freeradbiomed.2020.12.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 02/06/2023]
Abstract
The prevalence of type 2 diabetes mellitus (T2DM) continues to rise globally. Yet the aetiology and pathophysiology of this noncommunicable, polygenic disease, is poorly understood. Lifestyle factors, such as poor dietary intake, lack of exercise, and abnormal glycaemia, are purported to play a role in disease onset and progression, and these environmental factors may disrupt specific epigenetic mechanisms, leading to a reprogramming of gene transcription. The hyperglycaemic cell per se, alters epigenetics through chemical modifications to DNA and histones via metabolic intermediates such as succinate, α-ketoglutarate and O-GlcNAc. To illustrate, α-ketoglutarate is considered a salient co-factor in the activation of the ten-eleven translocation (TET) dioxygenases, which drives DNA demethylation. On the contrary, succinate and other mitochondrial tricarboxylic acid cycle intermediates, inhibit TET activity predisposing to a state of hypermethylation. Hyperglycaemia depletes intracellular ascorbic acid, and damages DNA by enhancing the production of reactive oxygen species (ROS); this compromised cell milieu exacerbates the oxidation of 5-methylcytosine alongside a destabilisation of TET. These metabolic connections may regulate DNA methylation, affecting gene transcription and pancreatic islet β-cell function in T2DM. This complex interrelationship between metabolism and epigenetic alterations may provide a conceptual foundation for understanding how pathologic stimuli modify and control the intricacies of T2DM. As such, this narrative review will comprehensively evaluate and detail the interplay between metabolism and epigenetic modifications in T2DM.
Collapse
Affiliation(s)
- Gareth W Davison
- Ulster University, Sport and Exercise Sciences Research Institute, Newtownabbey, Northern Ireland, UK.
| | - Rachelle E Irwin
- Ulster University, Genomic Medicine Research Group, Biomedical Sciences Research Institute, Coleraine, Northern Ireland, UK
| | - Colum P Walsh
- Ulster University, Genomic Medicine Research Group, Biomedical Sciences Research Institute, Coleraine, Northern Ireland, UK
| |
Collapse
|
10
|
Choudhary N, Khatik GL, Sharma R, Khurana N, Lobo R, Bhatt S, Tewari D, Suttee A. Ameliorative potential of Operculina turpethum against streptozotocin-induced diabetes in rats: biochemical and histopathological studies. 3 Biotech 2021; 11:309. [PMID: 34194901 PMCID: PMC8172823 DOI: 10.1007/s13205-021-02811-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 04/26/2021] [Indexed: 10/21/2022] Open
Abstract
The study aimed to investigate the acute toxicity, antidiabetic potential (in-vitro and in-vivo) of the Operculina turpethum (L.) Silva Manso at fraction level. The plant was fractionated into different fractions, i.e., flavonoid fraction (OTFF), tannin fraction (OTTF), saponin fraction (OTSF). In-vitro alpha-amylase inhibition assay revealed that OTFF was found to be more potent than standard Acarbose. The plant fractions were evaluated by MTT assay at different concentrations ranging from 100 to 1000 µg/ml. All the fractions were further evaluated for their safety profile, and the biochemical, hematology and histopathology result exhibits that the OTFF fraction produces mild toxicity at organ level at a concentration of 2000 mg/kg in albino mice. The in-vivo antidiabetic study was carried out on Sprague-Dawley rats using high-fat diet (HFD) feeding streptozotocin (STZ) diabetic model, and the biochemical, histopathology research findings represent that OTFF at a concentration of 500 mg/kg, p.o. was found to be highly significant among all the fractions and found to be more potent than the standard Acarbose. LC-MS characterization of the bioactive fraction OTFF showed the presence of rutin with m/z 610.52 in 50.50% and Apigenin 7-O-6'' acetyl-glucoside with m/z 475.42 in 24.10%; from molecular docking study, it is predicted that the fraction primarily acts as an alpha-amylase inhibitor and PPAR gamma agonist. In conclusion, the plant's OTFF fraction acts as a potential therapeutic agent for Type II diabetes mellitus.
Collapse
Affiliation(s)
- Neeraj Choudhary
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab India
- Faculty of Pharmaceutical Sciences, PCTE Group of Institutes, Ludhiana, Punjab India
| | - Gopal L. Khatik
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab India
| | - Rekha Sharma
- School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, Punjab India
| | - Navneet Khurana
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab India
| | - Richard Lobo
- Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka India
| | | | - Devesh Tewari
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab India
| | - Ashish Suttee
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab India
| |
Collapse
|
11
|
Integrated bioinformatics analysis reveals novel key biomarkers and potential candidate small molecule drugs in gestational diabetes mellitus. Biosci Rep 2021; 41:228450. [PMID: 33890634 PMCID: PMC8145272 DOI: 10.1042/bsr20210617] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 02/08/2023] Open
Abstract
Gestational diabetes mellitus (GDM) is the metabolic disorder that appears during pregnancy. The current investigation aimed to identify central differentially expressed genes (DEGs) in GDM. The transcription profiling by array data (E-MTAB-6418) was obtained from the ArrayExpress database. The DEGs between GDM samples and non-GDM samples were analyzed. Functional enrichment analysis were performed using ToppGene. Then we constructed the protein–protein interaction (PPI) network of DEGs by the Search Tool for the Retrieval of Interacting Genes database (STRING) and module analysis was performed. Subsequently, we constructed the miRNA–hub gene network and TF–hub gene regulatory network. The validation of hub genes was performed through receiver operating characteristic curve (ROC). Finally, the candidate small molecules as potential drugs to treat GDM were predicted by using molecular docking. Through transcription profiling by array data, a total of 869 DEGs were detected including 439 up-regulated and 430 down-regulated genes. Functional enrichment analysis showed these DEGs were mainly enriched in reproduction, cell adhesion, cell surface interactions at the vascular wall and extracellular matrix organization. Ten genes, HSP90AA1, EGFR, RPS13, RBX1, PAK1, FYN, ABL1, SMAD3, STAT3 and PRKCA were associated with GDM, according to ROC analysis. Finally, the most significant small molecules were predicted based on molecular docking. This investigation identified hub genes, signal pathways and therapeutic agents, which might help us, enhance our understanding of the mechanisms of GDM and find some novel therapeutic agents for GDM.
Collapse
|
12
|
Zheng W, Guo J, Liu ZS. Effects of metabolic memory on inflammation and fibrosis associated with diabetic kidney disease: an epigenetic perspective. Clin Epigenetics 2021; 13:87. [PMID: 33883002 PMCID: PMC8061201 DOI: 10.1186/s13148-021-01079-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/13/2021] [Indexed: 01/19/2023] Open
Abstract
Diabetic kidney disease (DKD) is one of the most common microvascular complication of both type 1 (T1DM) and type 2 diabetes mellitus (T2DM), and the leading cause of end-stage renal disease (ESRD) worldwide. Persistent inflammation and subsequent chronic fibrosis are major causes of loss of renal function, which is associated with the progression of DKD to ESRD. In fact, DKD progression is affected by a combination of genetic and environmental factors. Approximately, one-third of diabetic patients progress to develop DKD despite intensive glycemic control, which propose an essential concept "metabolic memory." Epigenetic modifications, an extensively studied mechanism of metabolic memory, have been shown to contribute to the susceptibility to develop DKD. Epigenetic modifications also play a regulatory role in the interactions between the genes and the environmental factors. The epigenetic contributions to the processes of inflammation and fibrogenesis involved in DKD occur at different regulatory levels, including DNA methylation, histone modification and non-coding RNA modulation. Compared with genetic factors, epigenetics represents a new therapeutic frontier in understanding the development DKD and may lead to therapeutic breakthroughs due to the possibility to reverse these modifications therapeutically. Early recognition of epigenetic events and biomarkers is crucial for timely diagnosis and intervention of DKD, and for the prevention of the progression of DKD to ESRD. Herein, we will review the latest epigenetic mechanisms involved in the renal pathology of both type 1 (T1DN) and type 2 diabetic nephropathy (T2DN) and highlight the emerging role and possible therapeutic strategies based on the understanding of the role of epigenetics in DKD-associated inflammation and fibrogenesis.
Collapse
Affiliation(s)
- Wen Zheng
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, People's Republic of China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, People's Republic of China
- Core Unit of National Clinical Medical Research Center of Kidney Disease, No. 1, Jianshe East Road, Zhengzhou, 450052, Henan Province, People's Republic of China
| | - Jia Guo
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, People's Republic of China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, People's Republic of China
- Core Unit of National Clinical Medical Research Center of Kidney Disease, No. 1, Jianshe East Road, Zhengzhou, 450052, Henan Province, People's Republic of China
| | - Zhang-Suo Liu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China.
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, People's Republic of China.
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, People's Republic of China.
- Core Unit of National Clinical Medical Research Center of Kidney Disease, No. 1, Jianshe East Road, Zhengzhou, 450052, Henan Province, People's Republic of China.
| |
Collapse
|
13
|
Synthesis and evaluation of new 1,2,4-oxadiazole based trans- acrylic acid derivatives as potential PPAR-alpha/gamma dual agonist. Bioorg Chem 2020; 100:103867. [PMID: 32353564 DOI: 10.1016/j.bioorg.2020.103867] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/10/2020] [Accepted: 04/17/2020] [Indexed: 12/12/2022]
Abstract
Diabetes is a ubiquitously a metabolic disorder and life-threatening disease. Peroxisome proliferator-activated receptors (PPARs) belong to the class of nuclear receptors which acts as transcription factors to regulate lipid and glucose metabolism. PPAR alpha/gamma dual agonists tend to corroborate the functions of both thiazolidinediones and fibrates and they hold substantial promise for ameliorating the type 2 diabetic treatments and providing potential therapeutic diabetic interventions. New 1,2,4-oxadiazole based trans- acrylic acid derivatives compounds possessing aryl/methylene linker in between pharmacophore head and lipophilic tail for dual PPAR-alpha/gamma agonists are studied. AutoDock Vina used for potential PPAR alpha/gamma dual agonists and 6 compounds 9a, 9g, 9 m, 9n, 9o, and 9r were identified comparable to PPAR gamma agonist Pioglitazone on the basis of their affinity scores and further their in-silico toxicity and in-silico ADME properties. The selected compounds showed better-calculated lipophilicity (iLogP) was found to be 0.92 to 3.19. Compound 9n and 9a were found to be most potent on both PPAR alpha and gamma receptors with EC50 of 0.07 ± 0.0006 µM, 0.06 ± 0.0005 µM and 0.781 ± 0.008 µM, 3.29 µM ± 0.03 respectively as better to pioglitazone having EC50 of 32.38 ± 0.2 and 38.03 ± 0.13 for both receptors. The in-vivo evaluation found to reduce the plasma glucose level and total cholesterol level significantly in diabetic rats compared to pioglitazone at 5 mg/kg/day dose for 7 days of treatment. Thus, trans- acrylic acid derivatives can be further developed as oral therapeutic agents for diabetic interventions as PPAR alpha/gamma dual agonists.
Collapse
|
14
|
Shotorbani PY, Chaudhari S, Tao Y, Tsiokas L, Ma R. Inhibitor of myogenic differentiation family isoform a, a new positive regulator of fibronectin production by glomerular mesangial cells. Am J Physiol Renal Physiol 2020; 318:F673-F682. [PMID: 31984795 PMCID: PMC7099507 DOI: 10.1152/ajprenal.00508.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 12/12/2022] Open
Abstract
Overproduction of extracellular matrix proteins, including fibronectin by mesangial cells (MCs), contributes to diabetic nephropathy. Inhibitor of myogenic differentiation family isoform a (I-mfa) is a multifunctional cytosolic protein functioning as a transcriptional modulator or plasma channel protein regulator. However, its renal effects are unknown. The present study was conducted to determine whether I-mfa regulated fibronectin production by glomerular MCs. In human MCs, overexpression of I-mfa significantly increased fibronectin abundance. Silencing I-mfa significantly reduced the level of fibronectin mRNA and blunted transforming growth factor-β1-stimulated production of fibronectin. We further found that high glucose increased I-mfa protein content in a time course (≥48 h) and concentration (≥25 mM)-dependent manner. Although high glucose exposure increased I-mfa at the protein level, it did not significantly alter transcripts of I-mfa in MCs. Furthermore, the abundance of I-mfa protein was significantly increased in the renal cortex of rats with diabetic nephropathy. The I-mfa protein level was also elevated in the glomerulus of mice with diabetic kidney disease. However, there was no significant difference in glomerular I-mfa mRNA levels between mice with and without diabetic nephropathy. Moreover, H2O2 significantly increased I-mfa protein abundance in a dose-dependent manner in cultured human MCs. The antioxidants polyethylene glycol-catalase, ammonium pyrrolidithiocarbamate, and N-acetylcysteine significantly blocked the high glucose-induced increase of I-mfa protein. Taken together, our results suggest that I-mfa, increased by high glucose/diabetes through the production of reactive oxygen species, stimulates fibronectin production by MCs.
Collapse
Affiliation(s)
| | - Sarika Chaudhari
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas
| | - Yu Tao
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas
| | - Leonidas Tsiokas
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Rong Ma
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas
| |
Collapse
|
15
|
Zeng M, Liu J, Yang W, Zhang S, Liu F, Dong Z, Peng Y, Sun L, Xiao L. Multiple-microarray analysis for identification of hub genes involved in tubulointerstial injury in diabetic nephropathy. J Cell Physiol 2019; 234:16447-16462. [PMID: 30761531 DOI: 10.1002/jcp.28313] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 01/19/2019] [Accepted: 01/24/2019] [Indexed: 01/24/2023]
Abstract
Diabetic nephropathy (DN) is a primary cause of renal failure. However, studies providing renal gene expression profiles of diabetic tubulointerstitial injury are scarce and its molecular mechanisms still await clarification. To identify vital genes involved in the diabetic tubulointerstitial injury, three microarray data sets from gene expression omnibus (GEO) were downloaded. A total of 127 differentially expressed genes (DEGs) were identified by limma package. Gene set enrichment analysis (GSEA) plots showed that sister chromatid cohesion was the most significant enriched gene set positively correlated with the DN group while retinoid X receptor binding was the most significant enriched gene set positively correlated with the control group. Enriched Gene Ontology (GO) annotations and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways of DEGs mostly included extracellular matrix organization, extracellular space, extracellular matrix structural constituent, and Staphylococcus aureus infection. Twenty hub genes from three significant modules were ascertained by Cytoscape. Correlation analysis and subgroup analysis between hub genes and clinical features of DN showed that ALB, ANXA1, APOH, C3, CCL19, COL1A2, COL3A1, COL4A1, COL6A3, CXCL6, DCN, EGF, HRG, KNG1, LUM, SERPINA3, SPARC, SRGN, and TIMP1 may involve in diabetic tubulointerstitial injury. ConnectivityMap analysis indicated the most significant three compounds are 5182598, thapsigargin and 5224221. In conclusion, this study may provide new insights into the molecular mechanisms underlying diabetic tubulointerstitial injury as well as potential targets for diagnosis and therapeutics of DN.
Collapse
Affiliation(s)
- Mengru Zeng
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jialu Liu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wenxia Yang
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shumin Zhang
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fuyou Liu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zheng Dong
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood VA Medical Center, Augusta, Georgia
| | - Youming Peng
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lin Sun
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Li Xiao
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
16
|
Kadakol A, Malek V, Goru SK, Pandey A, Gaikwad AB. Telmisartan and esculetin combination ameliorates type 2 diabetic cardiomyopathy by reversal of H3, H2A, and H2B histone modifications. Indian J Pharmacol 2018. [PMID: 29515275 PMCID: PMC5830845 DOI: 10.4103/ijp.ijp_710_16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVES: Although cardioprotective effects of telmisartan are well explored, its effects on epigenetic alterations associated with type 2 diabetic (T2D) cardiomyopathy remain unmapped. Thus, the present study was designed to evaluate the potential of esculetin and telmisartan combination to reverse histone posttranslational modifications (PTMs) in curbing T2D cardiomyopathy. MATERIALS AND METHODS: T2D was induced by high-fat diet feeding along with low dose of streptozotocin (35 mg/kg, I.P) in male Wistar rats. T2D rats were treated with either telmisartan (10 mg/kg/day, P.O) or esculetin (50 mg/kg/day doses, P.O) or their combination for 2 weeks. Biochemical estimations, vascular reactivity, immunohistochemistry, and western blotting experiments were performed to evaluate the effects of the treatment in T2D cardiomyopathy. RESULTS: Esculetin and telmisartan combination alleviated the pathological features of T2D cardiomyopathy including metabolic perturbations, morphometric alterations, altered vascular reactivity, increased Keap1 and fibronectin expression more effectively than their respective monotherapy. This is the first report showing that telmisartan attenuates increased level of histone PTMs such as H3K9me2, H3K9Ac, H2AK119Ub, and H2BK120Ub in heart of T2D rats. The combination regimen showed a more significant reduction in augmented histone PTMs associated with T2D cardiomyopathy than their independent treatments. CONCLUSIONS: The present study demonstrates that esculetin and telmisartan combination can be an advanced pharmacological approach to ameliorate T2D cardiomyopathy which could be partially attributed to its ability to reverse the epigenetic alterations.
Collapse
Affiliation(s)
- Almesh Kadakol
- Department of Pharmacy, Laboratory of Molecular Pharmacology, Birla Institute of Technology and Science, Pilani Campus, Pilani, Rajasthan, India
| | - Vajir Malek
- Department of Pharmacy, Laboratory of Molecular Pharmacology, Birla Institute of Technology and Science, Pilani Campus, Pilani, Rajasthan, India
| | - Santosh Kumar Goru
- Department of Pharmacy, Laboratory of Molecular Pharmacology, Birla Institute of Technology and Science, Pilani Campus, Pilani, Rajasthan, India
| | - Anuradha Pandey
- Department of Pharmacy, Laboratory of Molecular Pharmacology, Birla Institute of Technology and Science, Pilani Campus, Pilani, Rajasthan, India
| | - Anil Bhanudas Gaikwad
- Department of Pharmacy, Laboratory of Molecular Pharmacology, Birla Institute of Technology and Science, Pilani Campus, Pilani, Rajasthan, India
| |
Collapse
|
17
|
Pandey A, Gaikwad AB. AT 2 receptor agonist Compound 21: A silver lining for diabetic nephropathy. Eur J Pharmacol 2017; 815:251-257. [PMID: 28943106 DOI: 10.1016/j.ejphar.2017.09.036] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 09/19/2017] [Accepted: 09/20/2017] [Indexed: 12/15/2022]
Abstract
The currently available therapies for diabetic nephropathy, one of the leading causes of renal failure globally are based on inhibition of renin angiotensin system. However, recently, the focus has shifted towards activation of its protective arm rather than the inhibition of deteriorative axis, using specific agonists. Compound 21 (C21), a novel non-peptide Angiotensin II type 2 receptor (AT2) agonist, recently granted orphan drug status for the treatment of a rare disease, idiopathic pulmonary fibrosis has also shown a potent anti-inflammatory, anti-fibrotic, antioxidant and anti-apoptotic potential in various diseases including heart failure, myocardial infarction, chronic inflammatory diseases, and neurological diseases such as ischemic stroke. A pool of evidences suggest that C21, either alone or in combination with angiotensin receptor blockers could be extremely beneficial in the treatment of diabetic nephropathy, a chronic inflammatory condition sharing its pathogenesis with aforementioned diseases. The review analyses the new therapeutic tool, C21, its mechanisms of action for renoprotection in diabetic nephropathy, and its future perspectives and thereby provides an insight into the potential application of C21 as a novel therapeutic tool in the eradication of diabetic nephropathy.
Collapse
Affiliation(s)
- Anuradha Pandey
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India
| | - Anil Bhanudas Gaikwad
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India.
| |
Collapse
|
18
|
Esculetin ameliorates insulin resistance and type 2 diabetic nephropathy through reversal of histone H3 acetylation and H2A lysine 119 monoubiquitination. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.05.051] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
19
|
Hu X, Bai T, Xu Z, Liu Q, Zheng Y, Cai L. Pathophysiological Fundamentals of Diabetic Cardiomyopathy. Compr Physiol 2017; 7:693-711. [PMID: 28333387 DOI: 10.1002/cphy.c160021] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Diabetic cardiomyopathy (DCM) was first recognized more than four decades ago and occurred independent of cardiovascular diseases or hypertension in both type 1 and type 2 diabetic patients. The exact mechanisms underlying this disease remain incompletely understood. Several pathophysiological bases responsible for DCM have been proposed, including the presence of hyperglycemia, nonenzymatic glycosylation of large molecules (e.g., proteins), energy metabolic disturbance, mitochondrial damage and dysfunction, impaired calcium handling, reactive oxygen species formation, inflammation, cardiac cell death, and cardiac hypertrophy and fibrosis, leading to impairment of cardiac contractile functions. Increasing evidence also indicates the phenomenon called "metabolic memory" for diabetes-induced cardiovascular complications, for which epigenetic modulation seemed to play an important role, suggesting that the aforementioned pathogenic bases may be regulated by epigenetic modification. Therefore, this review aims at briefly summarizing the current understanding of the pathophysiological bases for DCM. Although how epigenetic mechanisms play a role remains incompletely understood now, extensive clinical and experimental studies have implicated its importance in regulating the cardiac responses to diabetes, which are believed to shed insight into understanding of the pathophysiological and epigenetic mechanisms for the development of DCM and its possible prevention and/or therapy. © 2017 American Physiological Society. Compr Physiol 7:693-711, 2017.
Collapse
Affiliation(s)
- Xinyue Hu
- Center of Cardiovascular Diseases, the First Hospital of Jilin University, Changchun, China.,Pediatric Research Institute at the Department of Pediatrics of the University of Louisville, Louisville, Kentucky, USA
| | - Tao Bai
- Center of Cardiovascular Diseases, the First Hospital of Jilin University, Changchun, China.,Pediatric Research Institute at the Department of Pediatrics of the University of Louisville, Louisville, Kentucky, USA
| | - Zheng Xu
- Center of Cardiovascular Diseases, the First Hospital of Jilin University, Changchun, China.,Pediatric Research Institute at the Department of Pediatrics of the University of Louisville, Louisville, Kentucky, USA
| | - Qiuju Liu
- Department of Hematological Disorders the First Hospital of Jilin University, Changchun, China
| | - Yang Zheng
- Center of Cardiovascular Diseases, the First Hospital of Jilin University, Changchun, China
| | - Lu Cai
- Pediatric Research Institute at the Department of Pediatrics of the University of Louisville, Louisville, Kentucky, USA.,Wendy Novak Diabetes Care Center, University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|
20
|
Lv QY, Xie BY, Yang BY, Ning CC, Shan WW, Gu C, Luo XZ, Chen XJ, Zhang ZB, Feng YJ. Increased TET1 Expression in Inflammatory Microenvironment of Hyperinsulinemia Enhances the Response of Endometrial Cancer to Estrogen by Epigenetic Modulation of GPER. J Cancer 2017; 8:894-902. [PMID: 28382153 PMCID: PMC5381179 DOI: 10.7150/jca.17064] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 12/09/2016] [Indexed: 12/27/2022] Open
Abstract
Background: Insulin resistance (IR) has been well studied in the initiation and development of endometrial endometrioid carcinoma (EEC). As yet, it has been largely neglected for estrogen sensitivity in local endometrium in hyperinsulinemia-induced systemic microenvironment. The aim of this study was to investigate the role of insulin in regulating estrogen sensitivity and explore the potential mechanisms in insulin-driven inflammatory microenvironment. Methods: We first investigated the effect of insulin on estradiol-driven endometrial cancer cells proliferation in vitro to address the roles of insulin in modulating estrogen sensitivity. Then GPER, ERα and TET1 in EEC samples with or without insulin resistance were screened by immunohistochemistry to confirm whether insulin resistance regulates estrogen receptors. Further mechanism analysis was carried out to address whether TET1 was mediated epigenetic modulation of GPER in insulin-induced microenvironment. Results: Insulin enhanced estradiol-driven endometrial cancer cells proliferation by up-regulating G-protein-coupled estrogen receptor (GPER) expression, but not ERα or ERβ. Immunohistochemistry of EEC tissues showed that GPER expression was greatly increased in endometrial tissues from EEC subjects with insulin resistance and was positively correlated with Ten-eleven-translocation 1 (TET1) expression. Mechanistically, insulin up-regulates TET1 expression, and the latter, an important DNA hydroxymethylase, could up-regulate GPER expression through epigenetic modulation. Conclusion: This study identified TET1 as the upstream regulator of GPER expression and provides a possible mechanism that insulin-induced positive regulation of estrogen sensitivity in endometrial cancer cells. Increasing expression of GPER through TET1-mediated epigenetic modulation may emerge as the main regulator to enhance the response of endometrial cancer to estrogen in insulin-driven inflammatory microenvironment.
Collapse
Affiliation(s)
- Qiao-Ying Lv
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011, China
| | - Bing-Ying Xie
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011, China
| | - Bing-Yi Yang
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011, China
| | - Cheng-Cheng Ning
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011, China
| | - Wei-Wei Shan
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011, China
| | - Chao Gu
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011, China
| | - Xue-Zhen Luo
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011, China
| | - Xiao-Jun Chen
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011, China
| | - Zhen-Bo Zhang
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University school of medicine, Shanghai, 201620, China
| | - You-Ji Feng
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University school of medicine, Shanghai, 201620, China
| |
Collapse
|
21
|
Xie BY, Lv QY, Ning CC, Yang BY, Shan WW, Cheng YL, Gu C, Luo XZ, Zhang ZB, Chen XJ, Xi XW, Feng YJ. TET1-GPER-PI3K/AKT pathway is involved in insulin-driven endometrial cancer cell proliferation. Biochem Biophys Res Commun 2016; 482:857-862. [PMID: 27889612 DOI: 10.1016/j.bbrc.2016.11.124] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Accepted: 11/22/2016] [Indexed: 10/20/2022]
Abstract
Large amount of clinical evidence has demonstrated that insulin resistance is closely related to oncogenesis of endometrial cancer (EC). Despite recent studies showed the up-regulatory role of insulin in G protein-coupled estrogen receptor (GPER/GPR30) expression, GPER expression was not decreased compared to control when insulin receptor was blocked even in insulin treatment. The purpose of this study was to explore the possible mechanism by which insulin up-regulates GPER that drives EC cell proliferation. For this purpose, we first investigated the GPER expression in tissues of endometrial lesions, further explored the effect of GPER on EC cell proliferation in insulin resistance context. Then we analyzed the role of Ten-Eleven Translocation 1 (TET1) in insulin-induced GEPR expression and EC cell proliferation. The results showed that GPER was highly expressed in endometrial atypical hyperplasia and EC tissues. Mechanistically, insulin up-regulated TET1 expression and the latter played an important role in up-regulating GPER expression and activating PI3K/AKT signaling pathway. TET1 mediated GPER up-regulation was another mechanism that insulin promotes EC cell proliferation.
Collapse
Affiliation(s)
- Bing-Ying Xie
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011, China
| | - Qiao-Ying Lv
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011, China
| | - Cheng-Cheng Ning
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011, China
| | - Bing-Yi Yang
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011, China
| | - Wei-Wei Shan
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011, China
| | - Ya-Li Cheng
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011, China
| | - Chao Gu
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011, China
| | - Xue-Zhen Luo
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011, China
| | - Zhen-Bo Zhang
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China
| | - Xiao-Jun Chen
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011, China.
| | - Xiao-Wei Xi
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China.
| | - You-Ji Feng
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China
| |
Collapse
|
22
|
Shan Q, Zheng G, Zhu A, Cao L, Lu J, Wu D, Zhang Z, Fan S, Sun C, Hu B, Zheng Y. Epigenetic modification of miR-10a regulates renal damage by targeting CREB1 in type 2 diabetes mellitus. Toxicol Appl Pharmacol 2016; 306:134-43. [DOI: 10.1016/j.taap.2016.06.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 05/07/2016] [Accepted: 06/08/2016] [Indexed: 12/21/2022]
|
23
|
Histone H2AK119 and H2BK120 mono-ubiquitination modulate SET7/9 and SUV39H1 in type 1 diabetes-induced renal fibrosis. Biochem J 2016; 473:3937-3949. [PMID: 27582499 DOI: 10.1042/bcj20160595] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 08/31/2016] [Indexed: 12/20/2022]
Abstract
Hyperglycaemia-induced expression of extracellular matrix (ECM) components plays a major role in the development of diabetic nephropathy (DN). The epigenetic mechanisms that modulate ECM gene expression in DN remain unclear. Therefore, we examined the role of histone H2A and H2B monoubiquitination on epigenetic chromatin marks, such as histone H3 lysine dimethylation (H3K4Me2, H3K9Me2 and H3K79Me2) in type 1 diabetic rat kidney. Hyperglycaemia increased collagen deposition and Col1a1 gene expression. In whole kidney of diabetic animals, both H2AK119 mono-ubiquitination (H2AK119Ub) and H2BK120 mono-ubiquitination (H2BK120Ub) were found to be increased, whereas, in glomeruli of diabetic animals, expression of both H2AK119Ub and H2BK120Ub was reduced. Changes in ubiquitin proteasome system components like increased Rnf2 (H2A-specific E3 ligase) and decreased H2A- and H2B-specific deubiquitinases (ubiquitin-specific proteases 7, 16, 21 and 22) were also observed. Globally increased levels of chromatin marks associated with active genes (H3K4Me2 and H3K79Me2) and decreased levels of repressive marks (H3K9Me2) were also observed. Hyperglycaemia also increased the protein expression of SET7/9 and decreased the expression of SUV39H1. We also showed the decreased occupancy of H2AK119Ub and H2BK120Ub on the promoters of Set7/9 and Suv39h1 in diabetic kidney. In addition, methylation marks regulated by H2AK119Ub (H3K27Me2 and H3K36Me2) and H2BK120Ub (H3K4Me2 and H3K79Me2) were also found to be altered on the promoters of Set7/9 and Suv39h1 Taken together, these results show the functional role of H2AK119Ub and H2BK120Ub in regulating histone H3K4Me2 and H3K9Me2 through modulating the expression of SET7/9 and SUV39H1 in the development of diabetic renal fibrosis.
Collapse
|
24
|
Zhang Y, Ren J. Epigenetics and obesity cardiomyopathy: From pathophysiology to prevention and management. Pharmacol Ther 2016; 161:52-66. [PMID: 27013344 DOI: 10.1016/j.pharmthera.2016.03.005] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Uncorrected obesity has been associated with cardiac hypertrophy and contractile dysfunction. Several mechanisms for this cardiomyopathy have been identified, including oxidative stress, autophagy, adrenergic and renin-angiotensin aldosterone overflow. Another process that may regulate effects of obesity is epigenetics, which refers to the heritable alterations in gene expression or cellular phenotype that are not encoded on the DNA sequence. Advances in epigenome profiling have greatly improved the understanding of the epigenome in obesity, where environmental exposures during early life result in an increased health risk later on in life. Several mechanisms, including histone modification, DNA methylation and non-coding RNAs, have been reported in obesity and can cause transcriptional suppression or activation, depending on the location within the gene, contributing to obesity-induced complications. Through epigenetic modifications, the fetus may be prone to detrimental insults, leading to cardiac sequelae later in life. Important links between epigenetics and obesity include nutrition, exercise, adiposity, inflammation, insulin sensitivity and hepatic steatosis. Genome-wide studies have identified altered DNA methylation patterns in pancreatic islets, skeletal muscle and adipose tissues from obese subjects compared with non-obese controls. In addition, aging and intrauterine environment are associated with differential DNA methylation. Given the intense research on the molecular mechanisms of the etiology of obesity and its complications, this review will provide insights into the current understanding of epigenetics and pharmacological and non-pharmacological (such as exercise) interventions targeting epigenetics as they relate to treatment of obesity and its complications. Particular focus will be on DNA methylation, histone modification and non-coding RNAs.
Collapse
Affiliation(s)
- Yingmei Zhang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA.
| | - Jun Ren
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA.
| |
Collapse
|
25
|
Abstract
Type 2 diabetes has become a major health issue worldwide. Chronic hyperglycemia induces a low-grade inflammation that, on top of other mechanisms, leads to endothelial dysfunction. Mounting evidence suggests that DNA methylation, post-translational modifications of histones, and long non-coding RNAs play an important role in the initiation, maintenance, and progression of both macro- and micro-vascular complications of diabetes. Long-term exposure to hyperglycemia induces epigenetic changes that could become irreversible, a phenomenon known as the 'metabolic memory.' Whether epigenetic-based therapies could be used to slow or limit the progression of cardiovascular disease remains unclear. While non-coding RNAs are currently investigated as potential biomarkers that predict diabetic cardiovascular disease incidence and progression, their therapeutic role is only hypothetical. In this review, we highlight the latest findings in experimental and clinical studies relevant to epigenetics and cardiovascular disease in diabetes.
Collapse
Affiliation(s)
- Jennifer Pasquier
- Stem Cell and Microenvironment Laboratory, Weill Cornell Medical College, Doha, Qatar
- Cardiovascular Epigenetics Laboratory, Department of Genetic Medicine, Weill Cornell Medical College, Doha, Qatar
| | - Jessica Hoarau-Véchot
- Cardiovascular Epigenetics Laboratory, Department of Genetic Medicine, Weill Cornell Medical College, Doha, Qatar
| | - Khalid Fakhro
- Cardiovascular Epigenetics Laboratory, Department of Genetic Medicine, Weill Cornell Medical College, Doha, Qatar
- Sidra Medical and Research Center, Doha, Qatar
| | - Arash Rafii
- Stem Cell and Microenvironment Laboratory, Weill Cornell Medical College, Doha, Qatar
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Charbel Abi Khalil
- Cardiovascular Epigenetics Laboratory, Department of Genetic Medicine, Weill Cornell Medical College, Doha, Qatar.
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY, USA.
- Department of Medicine, Weill Cornell Medical College, New York, USA.
- Department of Medicine, Weill Cornell Medical College, Doha, Qatar.
| |
Collapse
|
26
|
Pandey A, Goru SK, Kadakol A, Malek V, Gaikwad AB. Differential regulation of angiotensin converting enzyme 2 and nuclear factor-κB by angiotensin II receptor subtypes in type 2 diabetic kidney. Biochimie 2015; 118:71-81. [PMID: 26271886 DOI: 10.1016/j.biochi.2015.08.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 08/05/2015] [Indexed: 12/22/2022]
Abstract
Angiotensin II (Ang II) acts through Angiotensin Converting Enzyme (ACE)/Ang II type 1 receptor (AT1R) axis to promote renal failure whereas the Ang II type 2 receptor (AT2R)/Angiotensin Converting Enzyme 2 (ACE2)/Ang1-7/Mas axis constitutes the protective arm of Renin Angiotensin System (RAS). Though Ang II has been known to activate the Nuclear Factor-κB (NF-κB) signalling pathway through different receptor subtype(s) in different tissues under various diseases, the subtype orchestrating this stimulation in type 2 diabetic kidney remains elusive. ACE2, a protective monocarboxypeptidase, responsible for conversion of Ang II to Ang1-7, opposes the deleterious effects of RAS pathway but how its expression is altered with blockade of AT1R and AT2R is not yet known. Hence, the present study was conceived to understand the regulation of NF-κB and ACE2 by using specific AT1 and AT2 receptor antagonists in non-genetic model of type 2 diabetic nephropathy. Our results show that the AT1R and AT2R antagonists lead to the repression and activation of NF-κB signalling pathway, respectively which suggests the role of AT1R in NF-κB activation. The blockade of AT2R led to an increase in ACE2 expression, which may be a compensatory response to the drastically increased inflammatory mediators and oxidative stress in the diabetic kidney. To the best of our knowledge, this is the first study showing the differential regulation of NF-κB and ACE2 by Ang II receptor subtypes and thus this study improves our understanding regarding regulation of inflammatory cascade and ACE2 by AT1R and AT2R in type 2 diabetic kidney, which may help in designing novel strategies to combat the disease in future.
Collapse
Affiliation(s)
- Anuradha Pandey
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan, 333031, India
| | - Santosh Kumar Goru
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan, 333031, India
| | - Almesh Kadakol
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan, 333031, India
| | - Vajir Malek
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan, 333031, India
| | - Anil Bhanudas Gaikwad
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan, 333031, India.
| |
Collapse
|
27
|
Kadakol A, Malek V, Goru SK, Pandey A, Gaikwad AB. Esculetin reverses histone H2A/H2B ubiquitination, H3 dimethylation, acetylation and phosphorylation in preventing type 2 diabetic cardiomyopathy. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.05.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
28
|
Kadakol A, Malek V, Goru SK, Pandey A, Bagal S, Gaikwad AB. Esculetin attenuates alterations in Ang II and acetylcholine mediated vascular reactivity associated with hyperinsulinemia and hyperglycemia. Biochem Biophys Res Commun 2015; 461:342-7. [DOI: 10.1016/j.bbrc.2015.04.036] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 04/01/2015] [Indexed: 10/23/2022]
|
29
|
Kumar S, Tikoo K. Independent role of PP2A and mTORc1 in palmitate induced podocyte death. Biochimie 2015; 112:73-84. [DOI: 10.1016/j.biochi.2015.02.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 02/13/2015] [Indexed: 11/26/2022]
|
30
|
Kulkarni A, Kumar GS, Kaur J, Tikoo K. A comparative study of the toxicological aspects of vanadium pentoxide and vanadium oxide nanoparticles. Inhal Toxicol 2014; 26:772-88. [PMID: 25296879 DOI: 10.3109/08958378.2014.960106] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Indiscriminate use of vanadium oxide nanoparticles (NPs) in steel industries and their release during combustion of fossil fuels makes it essential to study their toxic potential. Herein, we assessed the toxicological effects of two types of in-house synthesized vanadium oxide NPs in Wistar rats exposed to NPs through inhalation route. V2O5 and VO2 NPs exhibited rod and spherical symmetry, respectively with a mean diameter of 50±20 and 30±10 nm. Assessment of bronchoalveolar lavage fluid parameters demonstrated that VO2 NP-exposed animals had higher levels of lactate dehydrogenase, gamma-glutamyl transpeptidase and alkaline phosphatase as compared to V2O5 NP-exposed animals. The levels of oxidative stress markers malondialdehyde and reduced glutathione also indicated higher toxic potential of VO2 NPs. Moreover, after 7-day recovery, the levels of the above parameters were closer to normal levels only in V2O5-exposed animals. Interestingly, histopathological and immune-histopathology analysis (TNF-α) of lung tissue showed higher damage and inflammatory response in VO2 NP-exposed animals, which persisted even after 7 days of recovery period. Surprisingly, the carcinogenic potential of vanadium oxide NPs came into light which was indicated by terminal deoxynucleotidyl transferase dUTP nick-end labeling assay as well as the decreased levels of p53 and Bax, in lung tissue of NP-exposed animals. Notably, the physiochemical characterization of NPs, especially the shape and the size, play a central role in shaping the toxicity of these NPs and thus should be extensively evaluated for outlining the regulatory guidelines.
Collapse
Affiliation(s)
- Apoorva Kulkarni
- Laboratory of Epigenetics and Diseases, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) , S.A.S. Nagar, Punjab , India
| | | | | | | |
Collapse
|
31
|
Bendale DS, Karpe PA, Chhabra R, Shete SP, Shah H, Tikoo K. 17-β Oestradiol prevents cardiovascular dysfunction in post-menopausal metabolic syndrome by affecting SIRT1/AMPK/H3 acetylation. Br J Pharmacol 2014; 170:779-95. [PMID: 23826814 DOI: 10.1111/bph.12290] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 06/19/2013] [Accepted: 06/30/2013] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Oestrogen therapy is known to induce cardioprotection in post-menopausal metabolic syndrome (PMS). Hence, we investigated the effect of 17-β oestradiol (E2) on functional responses to angiotensin II and cardiovascular dysfunction in a rat model of PMS. EXPERIMENTAL APPROACH PMS was induced in ovariectomized rats by feeding a high-fat diet for 10 weeks. Isometric tension responses of aortic rings to angiotensin II were recorded using an isometric force transducer. TUNEL assay and immunoblotting was performed to assess apoptosis and protein expression respectively in PMS. KEY RESULTS Endothelial dysfunction in PMS was characterized by enhanced angiotensin II-induced contractile responses and impaired endothelial dependent vasodilatation. This was associated with an increased protein expression of AT1 receptors in the aorta and heart in PMS. PMS induced cardiac apoptosis by activating Bax and PARP protein expression. These changes were associated with a down-regulation in the expression of silent information regulation 2 homologue (SIRT1)/P-AMP-activated PK (AMPK) and increased H3 acetylation in aorta and heart. E2 partially suppressed angiotensin II-induced contractions, restored the protein expression of SIRT1/P-AMPK and suppressed H3 acetylation. The role of SIRT1/AMPK was further highlighted by administration of sirtinol and compound C (ex vivo), which enhanced angiotensin II contractile responses and ablated the protective effect of E2 on PMS. CONCLUSION AND IMPLICATIONS Our results provide novel mechanisms for PMS-induced cardiovascular dysfunction involving SIRT1/AMPK/ histone H3 acetylation, which was prevented by E2. The study suggests that therapies targeting SIRT1/AMPK/epigenetic modifications may be beneficial in reducing the risk of cardiovascular disorders.
Collapse
Affiliation(s)
- Dhaval Sharad Bendale
- Laboratory of Chromatin Biology, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Mohali, Punjab, India
| | | | | | | | | | | |
Collapse
|
32
|
McKnight AJ, McKay GJ, Maxwell AP. Genetic and epigenetic risk factors for diabetic kidney disease. Adv Chronic Kidney Dis 2014; 21:287-96. [PMID: 24780457 DOI: 10.1053/j.ackd.2014.03.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 03/10/2014] [Indexed: 12/22/2022]
Abstract
Diabetes is increasing at daunting rates worldwide, and approximately 40% of affected individuals will develop kidney complications. Diabetic kidney disease (DKD) is the leading cause of end-stage kidney disease, and there are significant healthcare costs providing appropriate renal replacement therapies to affected individuals. For several decades, investigators have sought to discover inherited risk factors and biomarkers for DKD. In recent years, advances in high-throughput laboratory techniques and computational analyses, coupled with the establishment of multicenter consortia, have helped to identify genetic loci that are replicated across multiple populations. Several genome-wide association studies (GWAS) have been conducted for DKD with further meta-analysis of GWAS and comprehensive "single gene" meta-analyses now published. Despite these efforts, much of the inherited predisposition to DKD remains unexplained. Meta-analyses and integrated-omics pathway studies are being used to help elucidate underlying genetic risks. Epigenetic phenomena are increasingly recognized as important drivers of disease risk, and several epigenome-wide association studies have now been completed. This review describes key findings and ongoing genetic and epigenetic initiatives for DKD.
Collapse
Affiliation(s)
- Amy Jayne McKnight
- Nephrology Research, Centre for Public Health, Queen's University of Belfast, Belfast, Northern Ireland, United Kingdom.
| | - Gareth J McKay
- Nephrology Research, Centre for Public Health, Queen's University of Belfast, Belfast, Northern Ireland, United Kingdom
| | - Alexander P Maxwell
- Nephrology Research, Centre for Public Health, Queen's University of Belfast, Belfast, Northern Ireland, United Kingdom
| |
Collapse
|
33
|
Abstract
Cells use an exquisite network of mechanisms to maintain the integrity and functionality of their protein components. In the endoplasmic reticulum (ER), these networks of protein homeostasis--referred to as proteostasis--regulate protein synthesis, folding and degradation via the unfolded protein response (UPR) pathway. The UPR pathway has two components: the adaptive UPR pathway, which predominantly maintains the ER function or ER proteostasis, and the apoptotic UPR pathway, which eliminates dysfunctional cells that have been subject to long-term or severe ER stress. Dysregulation of the UPR pathway often occurs in glomerular or tubulointerstitial cells under a pathogenic microenvironment, such as oxidative stress, glycative stress or hypoxia. A defective UPR is highly deleterious to renal cell function and viability and is thereby implicated in the pathophysiology of various kidney diseases. Accumulating evidence provides a link between the UPR pathway and mitochondrial structure and function, indicating the important role of ER proteostasis in the maintenance of mitochondrial homeostasis. Restoration of normal proteostasis, therefore, holds promise in protecting the kidney from pathogenic stresses as well as ageing. This Review is focused on the role of the ER stress and UPR pathway in the maintenance of ER proteostasis, and highlights the involvement of the derangement of ER proteostasis and ER stress in various pathogenic stress signals in the kidney.
Collapse
|
34
|
Ambra R, Manca S, Palumbo MC, Leoni G, Natarelli L, De Marco A, Consoli A, Pandolfi A, Virgili F. Transcriptome analysis of human primary endothelial cells (HUVEC) from umbilical cords of gestational diabetic mothers reveals candidate sites for an epigenetic modulation of specific gene expression. Genomics 2014; 103:337-48. [PMID: 24667242 DOI: 10.1016/j.ygeno.2014.03.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 01/30/2014] [Accepted: 03/05/2014] [Indexed: 12/20/2022]
Abstract
Within the complex pathological picture associated to diabetes, high glucose (HG) has "per se" effects on cells and tissues that involve epigenetic reprogramming of gene expression. In fetal tissues, epigenetic changes occur genome-wide and are believed to induce specific long term effects. Human umbilical vein endothelial cells (HUVEC) obtained at delivery from gestational diabetic women were used to study the transcriptomic effects of chronic hyperglycemia in fetal vascular cells using Affymetrix microarrays. In spite of the small number of samples analyzed (n=6), genes related to insulin sensing and extracellular matrix reorganization were found significantly affected by HG. Quantitative PCR analysis of gene promoters identified a significant differential DNA methylation in TGFB2. Use of Ea.hy926 endothelial cells confirms data on HUVEC. Our study corroborates recent evidences suggesting that epigenetic reprogramming of gene expression occurs with persistent HG and provides a background for future investigations addressing genomic consequences of chronic HG.
Collapse
Affiliation(s)
- R Ambra
- Food and Nutrition Center of the Agricultural Research Council - CRA-NUT, via Ardeatina 546, 00178 Rome, Italy.
| | - S Manca
- Food and Nutrition Center of the Agricultural Research Council - CRA-NUT, via Ardeatina 546, 00178 Rome, Italy
| | - M C Palumbo
- Food and Nutrition Center of the Agricultural Research Council - CRA-NUT, via Ardeatina 546, 00178 Rome, Italy; Institute for Computing Applications M. Picone, National Research Council of Italy (CNR), via dei Taurini 19, 00185 Rome, Italy
| | - G Leoni
- Food and Nutrition Center of the Agricultural Research Council - CRA-NUT, via Ardeatina 546, 00178 Rome, Italy
| | - L Natarelli
- Food and Nutrition Center of the Agricultural Research Council - CRA-NUT, via Ardeatina 546, 00178 Rome, Italy
| | - A De Marco
- Department of Medicine and Aging Sciences, University G. d'Annunzio, Aging Research Center, Center of Excellence for Aging, G. d'Annunzio University Foundation, Chieti-Pescara, Italy
| | - A Consoli
- Department of Medicine and Aging Sciences, University G. d'Annunzio, Aging Research Center, Center of Excellence for Aging, G. d'Annunzio University Foundation, Chieti-Pescara, Italy
| | - A Pandolfi
- Department of Experimental and Clinical Sciences, University G. d'Annunzio, Aging Research Center, Center of Excellence for Aging, G. d'Annunzio University Foundation, Chieti-Pescara, Italy
| | - F Virgili
- Food and Nutrition Center of the Agricultural Research Council - CRA-NUT, via Ardeatina 546, 00178 Rome, Italy
| |
Collapse
|
35
|
Chaudhari S, Wu P, Wang Y, Ding Y, Yuan J, Begg M, Ma R. High glucose and diabetes enhanced store-operated Ca(2+) entry and increased expression of its signaling proteins in mesangial cells. Am J Physiol Renal Physiol 2014; 306:F1069-80. [PMID: 24623143 DOI: 10.1152/ajprenal.00463.2013] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The present study was conducted to determine whether and how store-operated Ca(2+) entry (SOCE) in glomerular mesangial cells (MCs) was altered by high glucose (HG) and diabetes. Human MCs were treated with either normal glucose or HG for different time periods. Cyclopiazonic acid-induced SOCE was significantly greater in the MCs with 7-day HG treatment and the response was completely abolished by GSK-7975A, a selective inhibitor of store-operated Ca(2+) channels. Similarly, the inositol 1,4,5-trisphosphate-induced store-operated Ca(2+) currents were significantly enhanced in the MCs treated with HG for 7 days, and the enhanced response was abolished by both GSK-7975A and La(3+). In contrast, receptor-operated Ca(2+) entry in MCs was significantly reduced by HG treatment. Western blotting showed that HG increased the expression levels of STIM1 and Orai1 in cultured MCs. A significant HG effect occurred at a concentration as low as 10 mM, but required a minimum of 7 days. The HG effect in cultured MCs was recapitulated in renal glomeruli/cortex of both type I and II diabetic rats. Furthermore, quantitative real-time RT-PCR revealed that a 6-day HG treatment significantly increased the mRNA expression level of STIM1. However, the expressions of STIM2 and Orai1 transcripts were not affected by HG. Taken together, these results suggest that HG/diabetes enhanced SOCE in MCs by increasing STIM1/Orai1 protein expressions. HG upregulates STIM1 by promoting its transcription but increases Orai1 protein through a posttranscriptional mechanism.
Collapse
Affiliation(s)
- Sarika Chaudhari
- 3500 Camp Bowie Blvd., Dept. of Integrative Physiology, Univ. of North Texas Health Science Center, Fort Worth, TX 76107.
| | | | | | | | | | | | | |
Collapse
|
36
|
Chen H, Li J, Jiao L, Petersen RB, Li J, Peng A, Zheng L, Huang K. Apelin inhibits the development of diabetic nephropathy by regulating histone acetylation in Akita mouse. J Physiol 2013; 592:505-21. [PMID: 24247978 DOI: 10.1113/jphysiol.2013.266411] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Diabetic nephropathy is the primary cause of end-stage renal disease. Increasing numbers of patients are suffering from this disease and therefore novel medications and therapeutic approaches are urgently needed. Here, we investigated whether apelin-13, the most active member of the adipokine apelin group, could effectively suppress the development of nephropathy in Akita mouse, a spontaneous type 1 diabetic model. Apelin-13 treatment decreased diabetes-induced glomerular filtration rate, proteinuria, glomerular hypertrophy, mesangial expansion and renal inflammation. The inflammatory factors, activation of NF-κB, histone acetylation and the enzymes involved in histone acetylation were further examined in diabetic kidneys and high glucose- or sodium butyrate-treated mesangial cells in the presence or absence of apelin-13. Apelin-13 treatment inhibited diabetes-, high glucose- and NaB-induced elevation of inflammatory factors, and histone hyperacetylation by upregulation of histone deacetylase 1. Furthermore, overexpression of apelin in mesangial cells induced histone deacetylation under high glucose condition. Thus, apelin-13 may be a novel therapeutic candidate for treatment of diabetic nephropathy via regulation of histone acetylation.
Collapse
Affiliation(s)
- Hong Chen
- College of Life Sciences, Wuhan University, Wuhan 430072, China. ; Kun Huang: Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Oelusarz A, Nichols LA, Grunz-Borgmann EA, Chen G, Akintola AD, Catania JM, Burghardt RC, Trzeciakowski JP, Parrish AR. Overexpression of MMP-7 Increases Collagen 1A2 in the Aging Kidney. Physiol Rep 2013; 1. [PMID: 24273653 PMCID: PMC3834982 DOI: 10.1002/phy2.90] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The percentage of the U.S. population over 65 is rapidly increasing, as is the incidence of chronic kidney disease (CKD). The kidney is susceptible to age-dependent alterations in structure, specifically tubulointerstitial fibrosis that leads to CKD. Matrix metalloproteinases (MMPs) were initially characterized as extracellular matrix (ECM) proteinases; however, it is clear that their biological role is much larger. We have observed increased gene expression of several MMPs in the aging kidney, including MMP-7. MMP-7 overexpression was observed starting at 16 months, with over a 500-fold upregulation in 2-year-old animals. Overexpression of MMP-7 is not observed in age-matched, calorically restricted controls that do not develop fibrosis and renal dysfunction, suggesting a role in the pathogenesis. In order to delineate the contributions of MMP-7 to renal dysfunction, we overexpressed MMP-7 in NRK-52E cells. High-throughput sequencing of the cells revealed that two collagen genes, Col1a2 and Col3a1, were elevated in the MMP-7 overexpressing cells. These two collagen genes were also elevated in aging rat kidneys and temporally correlated with increased MMP-7 expression. Addition of exogenous MMP-7, or conditioned media from MMP-7 overexpressing cells also increased Col1A2 expression. Inhibition of protein kinase A (PKA), src, and MAPK signaling at p38 and ERK was able to attenuate the MMP-7 upregulation of Col1a2. Consistent with this finding, increased phosphorylation of PKA, src, and ERK was seen in MMP-7 overexpressing cells and upon exogenous MMP-7 treatment of NRK-52E cells. These data suggest a novel mechanism by which MMP-7 contributes to the development of fibrosis leading to CKD.
Collapse
Affiliation(s)
- Anna Oelusarz
- Medical Pharmacology and Physiology, School of Medicine, University of Missouri
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
A strong case for the deregulation of epigenetic chromatin modifications in the development and progression of various chronic complications of diabetes has emerged from recent experimental observations. Clinical trials of type 1 and type 2 diabetes patients highlight the importance of early and intensive treatment and the prolonged damage of hyperglycemia on organs such as the kidney. The functional relationship between the regulation of chromatin architecture and persistent gene expression changes conferred by prior hyperglycemia represents an important avenue of investigation for explaining diabetic nephropathy. While several studies implicate epigenetic changes at the chromatin template in the deregulated gene expression associated with diabetic nephropathy, the molecular determinants of metabolic memory in renal cells remain poorly understood. There is now strong evidence from experimental animals and cell culture of persistent glucose-driven changes in vascular endothelial gene expression that may also have relevance for the microvasculature of the kidney. Exploration of epigenetic mechanisms underlying the hyperglycemic cue mediating persistent transcriptional changes in renal cells holds novel therapeutic potential for diabetic nephropathy.
Collapse
Affiliation(s)
- Samuel T Keating
- Epigenetics in Human Health and Disease Laboratory, Baker IDI Heart and Diabetes Institute, The Alfred Medical Research and Education Precinct, Melbourne, Victoria, 3004, Australia
| | | |
Collapse
|
39
|
Abbott DH, Nicol LE, Levine JE, Xu N, Goodarzi MO, Dumesic DA. Nonhuman primate models of polycystic ovary syndrome. Mol Cell Endocrinol 2013; 373:21-8. [PMID: 23370180 PMCID: PMC3683573 DOI: 10.1016/j.mce.2013.01.013] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 01/18/2013] [Indexed: 01/10/2023]
Abstract
With close genomic and phenotypic similarity to humans, nonhuman primate models provide comprehensive epigenetic mimics of polycystic ovary syndrome (PCOS), suggesting early life targeting for prevention. Fetal exposure to testosterone (T), of all nonhuman primate emulations, provides the closest PCOS-like phenotypes, with early-to-mid gestation T-exposed female rhesus monkeys exhibiting adult reproductive, endocrinological and metabolic dysfunctional traits that are co-pathologies of PCOS. Late gestational T exposure, while inducing adult ovarian hyperandrogenism and menstrual abnormalities, has less dysfunctional metabolic accompaniment. Fetal exposures to dihydrotestosterone (DHT) or diethylstilbestrol (DES) suggest androgenic and estrogenic aspects of fetal programming. Neonatal exposure to T produces no PCOS-like outcome, while continuous T treatment of juvenile females causes precocious weight gain and early menarche (high T), or high LH and weight gain (moderate T). Acute T exposure of adult females generates polyfollicular ovaries, while chronic T exposure induces subtle menstrual irregularities without metabolic dysfunction.
Collapse
Affiliation(s)
- David H Abbott
- Department of Obstetrics and Gynecology, University of Wisconsin, Madison, WI, USA.
| | | | | | | | | | | |
Collapse
|
40
|
Novel Therapeutic Strategy With Hypoxia-Inducible Factors via Reversible Epigenetic Regulation Mechanisms in Progressive Tubulointerstitial Fibrosis. Semin Nephrol 2013; 33:375-82. [DOI: 10.1016/j.semnephrol.2013.05.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
41
|
Abstract
In this article, we review the current knowledge of and recent insights into the role of epigenetic factors in the development of insulin resistance (IR), with emphasis on peroxisome proliferator-activated receptor gamma coactivator 1α (PPARGC1A or PGC1α) methylation on fetal programming and liver modulation of glucose-related phenotypes. We discuss the pathogenesis of IR beyond the integrity of β-cell function and illustrate the novel concept of mitochondrial epigenetics to explain the pathobiology of metabolic-syndrome-related phenotypes. Moreover, we discuss whether epigenetic marks in genes of the circadian rhythm system are able to modulate insulin/glucose-related metabolic functions and place hypoxia inducible factor 1 α (HIF1α) as a part of the master CLOCK gene/protein interaction network that might modulate IR. Finally, we highlight relevant information about epigenetic marks and IR so that clinicians practicing in the community may envision future areas of medical intervention and predict putative biomarkers for early disease detection.
Collapse
Affiliation(s)
- Silvia Sookoian
- Department of Clinical and Molecular Hepatology, Institute of Medical Research A Lanari-IDIM, University of Buenos Aires-National Council of Scientific and Technological Research (CONICET), Ciudad Autónoma de Buenos Aires, Argentina.
| | | |
Collapse
|
42
|
Yuan H, Reddy MA, Sun G, Lanting L, Wang M, Kato M, Natarajan R. Involvement of p300/CBP and epigenetic histone acetylation in TGF-β1-mediated gene transcription in mesangial cells. Am J Physiol Renal Physiol 2013; 304:F601-13. [PMID: 23235480 PMCID: PMC3602713 DOI: 10.1152/ajprenal.00523.2012] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 12/08/2012] [Indexed: 01/01/2023] Open
Abstract
Transforming growth factor-β1 (TGF-β1)-induced expression of plasminogen activator inhibitor-1 (PAI-1) and p21 in renal mesangial cells (MCs) plays a major role in glomerulosclerosis and hypertrophy, key events in the pathogenesis of diabetic nephropathy. However, the involvement of histone acetyl transferases (HATs) and histone deacetylases (HDACs) that regulate epigenetic histone lysine acetylation, and their interaction with TGF-β1-responsive transcription factors, are not clear. We evaluated the roles of histone acetylation, specific HATs, and HDACs in TGF-β1-induced gene expression in rat mesangial cells (RMCs) and in glomeruli from diabetic mice. Overexpression of HATs CREB binding protein (CBP) or p300, but not p300/CBP-activating factor, significantly enhanced TGF-β1-induced PAI-1 and p21 mRNA levels as well as transactivation of their promoters in RMCs. Conversely, they were significantly attenuated by HAT domain mutants of CBP and p300 or overexpression of HDAC-1 and HDAC-5. Chromatin immunoprecipitation assays showed that TGF-β1 treatment led to a time-dependent enrichment of histone H3-lysine9/14-acetylation (H3K9/14Ac) and p300/CBP occupancies around Smad and Sp1 binding sites at the PAI-1 and p21 promoters. TGF-β1 also enhanced the interaction of p300 with Smad2/3 and Sp1 and increased Smad2/3 acetylation. High glucose-treated RMCs exhibited increased PAI-1 and p21 levels, and promoter H3K9/14Ac, which were blocked by TGF-β1 antibodies. Furthermore, increased PAI-1 and p21 expression was associated with elevated promoter H3K9/14Ac levels in glomeruli from diabetic mice. Thus TGF-β1-induced PAI-1 and p21 expression involves interaction of p300/CBP with Smads and Sp1, and increased promoter access via p300/CBP-induced H3K9/14Ac. This in turn can augment glomerular dysfunction linked to diabetic nephropathy.
Collapse
Affiliation(s)
- Hang Yuan
- Dept. of Diabetes, Beckman Research Institute of the City of Hope, 1500 East Duarte Rd., Duarte, CA 91010, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Reddy MA, Park JT, Natarajan R. Epigenetic modifications and diabetic nephropathy. Kidney Res Clin Pract 2012; 31:139-50. [PMID: 26894019 PMCID: PMC4716094 DOI: 10.1016/j.krcp.2012.07.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 06/30/2012] [Accepted: 07/09/2012] [Indexed: 01/15/2023] Open
Abstract
Diabetic nephropathy (DN) is a major complication associated with both type 1 and type 2 diabetes, and a leading cause of end-stage renal disease. Conventional therapeutic strategies are not fully efficacious in the treatment of DN, suggesting an incomplete understanding of the gene regulation mechanisms involved in its pathogenesis. Furthermore, evidence from clinical trials has demonstrated a "metabolic memory" of prior exposure to hyperglycemia that continues to persist despite subsequent glycemic control. This remains a major challenge in the treatment of DN and other vascular complications. Epigenetic mechanisms such as DNA methylation, nucleosomal histone modifications, and noncoding RNAs control gene expression through regulation of chromatin structure and function and post-transcriptional mechanisms without altering the underlying DNA sequence. Emerging evidence indicates that multiple factors involved in the etiology of diabetes can alter epigenetic mechanisms and regulate the susceptibility to diabetes complications. Recent studies have demonstrated the involvement of histone lysine methylation in the regulation of key fibrotic and inflammatory genes related to diabetes complications including DN. Interestingly, histone lysine methylation persisted in vascular cells even after withdrawal from the diabetic milieu, demonstrating a potential role of epigenetic modifications in metabolic memory. Rapid advances in high-throughput technologies in the fields of genomics and epigenomics can lead to the identification of genome-wide alterations in key epigenetic modifications in vascular and renal cells in diabetes. Altogether, these findings can lead to the identification of potential predictive biomarkers and development of novel epigenetic therapies for diabetes and its associated complications.
Collapse
Affiliation(s)
| | | | - Rama Natarajan
- Department of Diabetes, Beckman Research Institute of City of Hope, Duarte, California, USA
| |
Collapse
|
44
|
Gupta J, Kumar S, Li J, Krishna Murthy Karuturi R, Tikoo K. Histone H3 lysine 4 monomethylation (H3K4me1) and H3 lysine 9 monomethylation (H3K9me1): distribution and their association in regulating gene expression under hyperglycaemic/hyperinsulinemic conditions in 3T3 cells. Biochimie 2012; 94:2656-64. [PMID: 22951486 DOI: 10.1016/j.biochi.2012.08.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 08/02/2012] [Indexed: 10/28/2022]
Abstract
Hyperglycemia/hyperinsulinemia are leading cause for the induction type 2 diabetes and the role of post-translational histone modifications in dysregulating the expression of genes has emerged as potential important contributor in the progression of disease. The paradoxical nature of histone H3-Lysine 4 and Lysine 9 mono-methylation (H3K4me1 and H3K9me1) in both gene activation and repression motivated us to elucidate the functional relationship of these histone modifications in regulating expression of genes under hyperglycaemic/hyperinsulinemic condition. Chromatin immunoprecipitation-microarray analysis (ChIP-chip) was performed with H3 acetylation, H3K4me1 and H3K9me1 antibody. CLUSTER analysis of ChIP-chip (Chromatin immunoprecipitation-microarray analysis) data showed that mRNA expression and H3 acetylation/H3K4me1 levels on genes were inversely correlated with H3K9me1 levels on the transcribed regions, after 30 min of insulin stimulation under hyperglycaemic condition. Interestingly, we provide first evidence regarding regulation of histone de/acetylases and de/methylases; Myst4, Jmjd2b, Aof1 and Set by H3Ac, H3K4me1 and H3K9me1 under hyperinsulinemic/hyperglycaemic condition. ChIP-qPCR analysis shows association of increased H3Ac/H3K4me1 and decreased levels of H3K9me1 in up regulation of Myst4, Jmjd2, Set and Aof1 genes. We further analyse promoter occupancy of histone modifications by ChIP walking and observed increased occupancy of H3Ac/H3K4me1 on promoter region (-1000 to -1) of active genes and H3K9me1 on inactive genes under hyperglycemic/hyperinsulinemic condition. To best of our knowledge this is the first report that shows regulation of chromatin remodelling genes by alteration in the occupancy of histone H3Ac/H3K4/K9me on both promoter and transcribed regions.
Collapse
Affiliation(s)
- Jeena Gupta
- Laboratory of Chromatin Biology, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Mohali, Punjab, India
| | | | | | | | | |
Collapse
|
45
|
Jurado J, Ybarra J, Romeo JH, Garcia M, Zabaleta-Del-Olmo E. Angiotensin-converting enzyme gene single polymorphism as a genetic biomarker of diabetic peripheral neuropathy: longitudinal prospective study. J Diabetes Complications 2012; 26:77-82. [PMID: 22494836 DOI: 10.1016/j.jdiacomp.2012.02.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Revised: 02/23/2012] [Accepted: 02/28/2012] [Indexed: 01/28/2023]
Abstract
BACKGROUND Identifying patients at risk of developing diabetic peripheral neuropathy (DPN) is of paramount importance in those with type 2 diabetes mellitus (T2DM) to provide and anticipate secondary prevention measures as well as intensify action on risk factors, particularly so in primary care. Noteworthy, the incidence of DPN remains unknown in our environment. AIMS (i) To analyze a single angiotensin-converting enzyme (ACE) gene polymorphism (D/I) as a genetic marker of risk of developing DPN, and (ii) to determine the incidence of DPN in our environment. RESEARCH DESIGN AND METHODS Longitudinal study with annual follow-up for 3years involving a group of T2DM (N=283) randomly selected. ACE gene polymorphism distribution (I=insertion; D=deletion) was determined. DPN was diagnosed using clinical and neurophysiology evaluation. RESULTS Baseline DPN prevalence was 28.97% (95% CI, 23.65-34.20). ACE polymorphism heterozygous genotype D/I presence was 60.77% (95% CI, 55.05-66.5) and was independently associated with a decreased risk of DPN (RR, 0.51; 95% CI, 0.30-0.86). DPN correlated with age (P<0.001) but not with gender (P=0.466) or time of evolution of T2DM (P=0.555). Regarding end point, DPN prevalence was 36.4% (95% CI, 30.76-42.04), and accumulated incidence was 10.4% 3years thereafter. In the final Poisson regression analysis, the presence of heterozygous genotype remained independently associated with a decreased risk of DPN (RR, 0.71; (95% CI, 0.53-0.96). DPN presence remained correlated with age (P=0.002), but not with gender (P=0.490) or time of evolution (P=0.630). CONCLUSIONS In our series, heterozygous ACE polymorphism (D/I) stands as a protective factor for DPN development. Accumulated incidence of DPN was relevant. Further prospective studies are warranted.
Collapse
Affiliation(s)
- J Jurado
- Institut Universitari d'Investigació en Atenció Primària Jordi Gol (IDIAP Jordi Gol), Olot, Girona, Spain
| | | | | | | | | |
Collapse
|
46
|
|
47
|
Abbott DH. Fibrillin-3 in the fetal ovary: can it contribute to polycystic ovary syndrome? Expert Rev Endocrinol Metab 2012; 7:31-34. [PMID: 30736108 DOI: 10.1586/eem.11.90] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Evaluation of: Hatzirodos N, Bayne RA, Irving-Rodgers HF et al. Linkage of regulators of TGF-β activity in the fetal ovary to polycystic ovary syndrome. FASEB J. 25(7), 2256-2265 (2011). Polycystic ovary syndrome (PCOS), a prevalent hyperandrogenic and anovulatory infertility and metabolic syndrome in reproductive-aged women, is heritable but its etiology is unknown. An allele within an intron of fibrillin-3, a TGF-β pathway regulator, is reliably associated with PCOS, and the epigenome of an early gestation monkey model for PCOS implicates altered TGF-β signaling. In the recent article by Hatzirodos et al., and in contrast to prior findings in mature human ovaries, prominent and transient fibrillin-3 expression is found in human and bovine fetal ovarian stroma during early gestation. Such developmentally constrained ovarian expression of a gene associated with PCOS phenotype has considerable implications for fetal origins of PCOS in women. Further study is needed, however, to determine whether differential expression of fetal ovarian fibrillin-3 results in polycystic ovary morphology, and whether differential fetal expression of fibrillin-3 in non-ovarian tissues enables PCOS-like dysfunction.
Collapse
Affiliation(s)
- David H Abbott
- a Department of Obstetrics and Gynecology and Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI 53715, USA.
| |
Collapse
|