1
|
Xue JC, Hou XT, Zhao YW, Yuan S. Biological agents as attractive targets for inflammatory bowel disease therapeutics. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167648. [PMID: 39743022 DOI: 10.1016/j.bbadis.2024.167648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 12/08/2024] [Accepted: 12/26/2024] [Indexed: 01/04/2025]
Abstract
Inflammatory bowel disease (IBD) refers to a group of chronic, recurrent intestinal inflammatory conditions with a complex cause and unclear underlying mechanisms. It includes two main types: Ulcerative colitis (UC) and Crohn's disease (CD). The conventional treatment of IBD mainly includes 5-aminosalicylates, glucocorticoids, and immunosuppressive drugs, which have their limitations. Recent advancements in IBD research have expanded treatment options, with biological agents playing a key role. Anti-tumor necrosis factor alpha has emerged as the first-line therapy for moderate to severe IBD. Anti-integrin antibodies have also become important for the treatment, and vedolizumab is often used in cases of anti-tumor necrosis factor-alpha failure and intolerance to other treatments. Other biological agents are being tested in clinical trials at different stages. This article reviews the efficacy and safety of the primary biological therapies for IBD and provides a comprehensive analysis of the current clinical challenges associated with the disease.
Collapse
Affiliation(s)
- Jia-Chen Xue
- Department of Nuclear Medicine, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, China; Key Laboratory of Microenvironment Regulation and Immunotherapy of Urinary Tumors in Liaoning Province, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, China.
| | - Xiao-Ting Hou
- Blood Laboratory, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, 116001, China
| | - Yu-Wei Zhao
- Department of Oncology, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, China
| | - Shuo Yuan
- Department of Neuroscience, Center for Brain Immunology and Glia (BIG), School of Medicine, University of Virginia, Charlottesville, Virginia, 22908, United States.
| |
Collapse
|
2
|
Gao Y, Lan L, Wang C, Wang Y, Shi L, Sun L. Selective JAK1 inhibitors and the therapeutic applications thereof: a patent review (2016-2023). Expert Opin Ther Pat 2025; 35:181-195. [PMID: 39716925 DOI: 10.1080/13543776.2024.2446223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 10/17/2024] [Accepted: 12/17/2024] [Indexed: 12/25/2024]
Abstract
INTRODUCTION The family of Janus kinases (JAKs) consists of four intracellular non-receptor tyrosine kinases: JAK1, JAK2, JAK3, and tyrosine kinase 2 (TYK2). Among these four subtypes, JAK1 is the only isoform that can form heterodimers with all three JAKs, and JAK1 dysfunction can lead to inflammation and severe autoimmune diseases. Interest in JAK1 inhibitors has grown tremendously, and the number of inhibitors targeting JAK1 continues to rise annually. AREAS COVERED This paper reviews JAK1 small molecule inhibitors that were reported in patent literature from January 2016 to December 2023. Web of Science, SciFinder, PubMed, WIPO, EPO, USPTO, and CNIPA databases were used for searching the literature and patents for JAK1 inhibitors. EXPERT OPINION JAK1 inhibitors show great promise in treating cytokine dysregulated disorders; nevertheless, nonselective JAK1 inhibitors have more severe side effects, which restricts the therapy's safety and use. Therefore, developing highly selective JAK1 inhibitors can mitigate potential risks and lead to next-generation therapies with improved efficacy and safety profiles.
Collapse
Affiliation(s)
- Yuhui Gao
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, P. R. China
| | - Li Lan
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, P. R. China
| | - Cheng Wang
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, P. R. China
| | - Yuwei Wang
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, P. R. China
| | - Lei Shi
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, P. R. China
| | - Liping Sun
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, P. R. China
| |
Collapse
|
3
|
Ku WC, Liu CY, Huang CJ, Liao CC, Huang YC, Kong PH, Chen-Chan H, Tseng LM, Huang CC. Integrating functional proteomics and next generation sequencing reveals potential therapeutic targets for Taiwanese breast cancer. Clin Proteomics 2025; 22:4. [PMID: 39844043 PMCID: PMC11753163 DOI: 10.1186/s12014-025-09526-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 01/14/2025] [Indexed: 01/24/2025] Open
Abstract
Integrating functional proteomics and next-generation sequencing (NGS) offers a comprehensive approach to unraveling the molecular intricacies of breast cancer. This study investigates the functional interplay between genomic alterations and protein expression in Taiwanese breast cancer patients. By analyzing 61 breast cancer samples using tandem mass tag (TMT) labeling and mass spectrometry, coupled with whole-exome sequencing (WES) or targeted sequencing, we identified key genetic mutations and their impact on protein expression. Notably, pathogenic variants in BRCA1, BRCA2, PTEN, and PIK3CA were found to be clinically relevant, potentially guiding targeted therapy decisions. Additionally, we discovered trans correlations between specific gene alterations (FANCA, HRAS, PIK3CA, MAP2K1, JAK2) and the expression of 22 proteins, suggesting potential molecular mechanisms underlying breast cancer development and progression. These findings highlight the power of integrating proteomics and NGS to identify potential therapeutic targets and enhance personalized medicine strategies for Taiwanese breast cancer patients.
Collapse
Affiliation(s)
- Wei-Chi Ku
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei, 242, Taiwan
| | - Chih-Yi Liu
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei, 242, Taiwan
- Division of Pathology, Cathay General Hospital, Taipei, 106, Taiwan
| | - Chi-Jung Huang
- Department of Medical Research, Cathay General Hospital, Taipei, 106, Taiwan
- Department of Biochemistry, National Defense Medical Center, Taipei, 114, Taiwan
| | - Chen-Chung Liao
- Cancer and Immunology Research Center, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | | | - Po-Hsin Kong
- Marker Exploration Corporation, Taipei, 112, Taiwan
| | | | - Ling-Ming Tseng
- Division of Breast Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, 112, Taiwan.
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan.
| | - Chi-Cheng Huang
- Division of Breast Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, 112, Taiwan.
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan.
- Institute of Epidemiology and Preventive Medicine, National Taiwan University, Taipei, 100, Taiwan.
| |
Collapse
|
4
|
Virtanen A, Kettunen V, Musta K, Räkköläinen V, Knapp S, Haikarainen T, Silvennoinen O. Molecular basis of JAK kinase regulation guiding therapeutic approaches: Evaluating the JAK3 pseudokinase domain as a drug target. Adv Biol Regul 2025; 95:101072. [PMID: 39755448 DOI: 10.1016/j.jbior.2024.101072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 12/22/2024] [Indexed: 01/06/2025]
Abstract
Janus kinases (JAK1-3, TYK2) are critical mediators of cytokine signaling and their role in hematological and inflammatory and autoimmune diseases has sparked widespread interest in their therapeutic targeting. JAKs have unique tandem kinase structure consisting of an active tyrosine kinase domain adjacent to a pseudokinase domain that is a hotspot for pathogenic mutations. The development of JAK inhibitors has focused on the active kinase domain and the developed drugs have demonstrated good clinical efficacy but due to off-target inhibition cause also side-effects and carry a black box warning limiting their use. Our understanding of the regulatory function of the pseudokinase domain in physiological and pathological signaling has improved substantially. The pseudokinase domain maintains the inactive state of JAKs in the absence of cytokine stimulation but it has also a key role in physiological and mutation-driven activation process. Furthermore, the pseudokinase domain has favourable structural characteristics for selective targeting of cytokine signaling, such as unique mode of ATP-binding, and the first pseudokinase targeting inhibitor for TYK2 has been approved for clinical use. Here we describe the recent functional and structural knowledge of JAK signaling and their therapeutic targeting, and present data evaluating the druggability of the JAK3 pseudokinase domain.
Collapse
Affiliation(s)
- Anniina Virtanen
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpönkatu 34, 33014, Finland; Institute of Biotechnology, HiLIFE, University of Helsinki, P.O. Box 56, 00014, Finland
| | - Vivian Kettunen
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpönkatu 34, 33014, Finland
| | - Kirsikka Musta
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpönkatu 34, 33014, Finland
| | - Veera Räkköläinen
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpönkatu 34, 33014, Finland
| | - Stefan Knapp
- Institute of Pharmaceutical Chemistry, Goethe University, Max-von-Laue-Str. 9, 60438, Frankfurt am Main, Germany; Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Max-von-Laue-Str. 15, 60438, Frankfurt am Main, Germany
| | - Teemu Haikarainen
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpönkatu 34, 33014, Finland; Department of Microbiology, Fimlab Laboratories, P.O.Box 66, 33013, Tampere, Finland
| | - Olli Silvennoinen
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpönkatu 34, 33014, Finland; Institute of Biotechnology, HiLIFE, University of Helsinki, P.O. Box 56, 00014, Finland; Department of Microbiology, Fimlab Laboratories, P.O.Box 66, 33013, Tampere, Finland.
| |
Collapse
|
5
|
Zhang C, Fu Z, Zhang R. Reduced expressions of TCA cycle genes during aging in humans and mice. Biochem Biophys Res Commun 2024; 738:150917. [PMID: 39504716 PMCID: PMC11583999 DOI: 10.1016/j.bbrc.2024.150917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 10/24/2024] [Accepted: 10/27/2024] [Indexed: 11/08/2024]
Abstract
Aging is associated with a decline in physiological functions and an increased risk of metabolic disorders. The liver, a key organ in metabolism, undergoes significant changes during aging that can contribute to systemic metabolic dysfunction. This study investigates the expression of genes involved in the tricarboxylic acid (TCA) cycle, a critical pathway for energy production, in the aging liver. We analyzed RNA sequencing data from the Genotype-Tissue Expression (GTEx) project to assess age-related changes in gene expression in the human liver. To validate our findings, we conducted complementary studies in young and old mice, examining the expression of key TCA cycle genes using quantitative real-time PCR. Our analysis of the GTEx dataset revealed a significant reduction in the expression of many genes that are critical for metabolism, including fat mass and obesity associated (FTO) and adiponectin receptor 1 (ADIPOR1). The most overrepresented pathway among the statistically enriched ones was the TCA cycle, with multiple genes exhibiting downregulation in older humans. This reduction was consistent with findings in aging mice, which also showed decreased expression of several TCA cycle genes. These results suggest a conserved pattern of age-related downregulation of TCA cycle, potentially leading to diminished mitochondrial function and energy production in the liver. The reduced expression of TCA cycle genes in the aging liver may contribute to metabolic dysfunction and increased susceptibility to age-related diseases. Understanding the molecular basis of these changes provides new insights into the aging process and highlights potential targets for interventions aimed at promoting healthy aging and preventing metabolic disorders.
Collapse
Affiliation(s)
- Chao Zhang
- Biostatistics Shared Resource, Winship Cancer Institute of Emory University, 718 Gatewood Rd. NE, Atlanta, GA, 30322, USA
| | - Zhiyao Fu
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Ren Zhang
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
| |
Collapse
|
6
|
Carr S, Pratt R, White F, Watson W. Atopic dermatitis. ALLERGY, ASTHMA, AND CLINICAL IMMUNOLOGY : OFFICIAL JOURNAL OF THE CANADIAN SOCIETY OF ALLERGY AND CLINICAL IMMUNOLOGY 2024; 20:63. [PMID: 39654051 PMCID: PMC11629513 DOI: 10.1186/s13223-024-00927-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 11/13/2024] [Indexed: 12/12/2024]
Abstract
Atopic dermatitis (AD) is a common, chronic skin disorder that can significantly impact the quality of life (QoL) of affected individuals as well as their families. Although the pathogenesis of the disorder is not yet completely understood, it appears to result from the complex interplay between defects in skin barrier function, environmental and infectious agents, and immune dysregulation. There are no diagnostic tests for AD; therefore, the diagnosis is based on specific clinical criteria that take into account the patient's history and clinical manifestations. Successful management of the disorder requires a multifaceted approach that involves education, optimal skin care practices, anti-inflammatory treatment with topical corticosteroids, topical calcineurin inhibitors (TCIs) and/or phosphodiesterase-4 (PDE-4) inhibitors, the management of pruritus, and the treatment of skin infections. Systemic immunosuppressive agents may also be used, but are generally reserved for severe flare-ups or more difficult-to-control disease. Newer systemic agents, such as Janus Kinase (JAK) inhibitors and biologics, have a more favourable safety and efficacy profile than the older, traditional systemic immunosuppressives. Topical corticosteroids are the first-line pharmacologic treatments for AD, and evidence suggests that these agents may also be beneficial for the prophylaxis of disease flare-ups. Although the prognosis for patients with AD is generally favourable, those patients with severe, widespread disease and concomitant atopic conditions, such as asthma and allergic rhinitis, are likely to experience poorer outcomes. Newer systemic agents have been approved which are greatly improving the QoL of these patients.
Collapse
Affiliation(s)
- Stuart Carr
- Snö Asthma & Allergy, Abu Dhabi, United Arab Emirates.
| | - Rebecca Pratt
- Division of Allergy and Immunology, McMaster University, Hamilton, Ontario, Aviva Medical Specialist Clinic, St. Catharines, Ontario, Canada
| | - Fred White
- Division of Allergy and Immunology, Western University, London, Ontario, Canada
| | - Wade Watson
- Division of Allergy, IWK Health Centre, Department of Pediatrics, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
7
|
Bao Y, Xu R, Guo J. The multiple-action allosteric inhibition of TYK2 by deucravacitinib: Insights from computational simulations. Comput Biol Chem 2024; 113:108224. [PMID: 39353258 DOI: 10.1016/j.compbiolchem.2024.108224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/20/2024] [Accepted: 09/21/2024] [Indexed: 10/04/2024]
Abstract
Participating in the Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway, TYK2 emerges as a promising therapy target in controlling various autoimmune diseases, including psoriasis and multiple sclerosis. Deucravacitinib (DEU) is a novel oral TYK2-specific inhibitor approved in 2022 that is clinically effective in moderate to severe psoriasis trials. Upon the AlphaFold2 predicted TYK2 pseudokinase domain (JH2) and kinase domain (JH1), we explored the details of the underlined allosteric inhibition mechanism on TYK2 JH2-JH1 with the aid of molecular dynamics simulation. Our results suggest that the allosteric inhibition of DEU on TYK2 is accomplished by affecting the JH2-JH1 interface and hampering the state transition and ATP binding in JH1. Particularly, DEU binding stabilized the autoinhibitory interface between JH2 and JH1 while disrupting the formation of the activation interface. As a result, the negative regulation of JH2 on JH1 was greatly enhanced. These findings offer additional details on the pseudokinase-dependent autoinhibition of the JAK kinase domain and provide theoretical support for the JH2-targeted drug discovery in JAK members.
Collapse
Affiliation(s)
- Yiqiong Bao
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China.
| | - Ran Xu
- Centre for Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macao 999078, China.
| | - Jingjing Guo
- Centre for Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macao 999078, China; Engineering Research Centre of Applied Technology on Machine Translation and Artificial Intelligence, Macao Polytechnic University, Macao 999078, China.
| |
Collapse
|
8
|
Lucet IS, Daly RJ. View from the PEAKs: Insights from structural studies on the PEAK family of pseudokinases. Curr Opin Struct Biol 2024; 89:102932. [PMID: 39321525 DOI: 10.1016/j.sbi.2024.102932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 08/29/2024] [Accepted: 09/03/2024] [Indexed: 09/27/2024]
Abstract
The PEAK family of pseudokinase scaffolds, comprising PEAK1 (originally termed SgK269), PEAK2 (SgK223, the human orthologue of rat Pragmin) and PEAK3 (C19orf35), have emerged as important regulators and integrators of cellular signaling and also play oncogenic roles in a variety of human cancers. These proteins undergo both homo- and heterotypic association that act to diversify signal output. Recently, structural and functional characterization of PEAK3 and its protein-protein interactions have shed light on PEAK signaling dynamics and the interdependency of PEAK family members, how PEAK dimerization regulates the binding of downstream effectors, and how 14-3-3 binding acts to regulate PEAK3 signal output. These important advances form the basis of this review.
Collapse
Affiliation(s)
- Isabelle S Lucet
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Roger J Daly
- Cancer Program, Biomedical Discovery Institute, Monash University, Melbourne, VIC 3800, Australia; Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia.
| |
Collapse
|
9
|
Centanni L, Bencardino S, D'Amico F, Zilli A, Parigi TL, Allocca M, Danese S, Furfaro F. Targeting mucosal healing in Crohn's disease: efficacy of novel pathways and therapeutic targets. Expert Opin Ther Targets 2024; 28:963-978. [PMID: 39611536 DOI: 10.1080/14728222.2024.2433124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 11/19/2024] [Indexed: 11/30/2024]
Abstract
INTRODUCTION Crohn's disease (CD) is a chronic inflammatory bowel disease affecting the entire gastrointestinal tract with a progressive and relapsing course. Achieving mucosal healing has emerged as a critical therapeutic goal, as it is associated with sustained clinical remission, reduced hospitalizations, and fewer surgery rates. Therefore, targeting mucosal healing is essential for long-term control in CD. AREAS COVERED This review evaluates the efficacy of novel biologic therapies and small molecules in inducing mucosal healing, specifically targeting pathways like IL-12/23, IL-23, α4β7 integrins, Janus kinase 1 (JAK1), and sphingosine-1-phosphate receptor (S1PR) in adults (≥18 years) with moderate-to-severe CD. The rationale for selecting these specific pathways is their central role in modulating key inflammatory processes implicated in CD pathogenesis. We compare these therapies with placebo for both induction and maintenance of remission, based on a PubMed literature review for published articles and ClinicalTrials.gov for ongoing trials. EXPERT OPINION Upadacitinib and anti-IL23p19 agents (risankizumab, guselkumab and mirikizumab) are promising advanced non-TNF-targeting therapies for inducing endoscopic remission and mucosal healing but further studies are needed to integrate mucosal healing into a broader definition of endoscopic response, with a unified and precise definition.
Collapse
Affiliation(s)
- Lucia Centanni
- Gastroenterology and Endoscopy, IRCCS San Raffaele Hospital, Milan, Italy
| | - Sarah Bencardino
- Gastroenterology and Endoscopy, IRCCS San Raffaele Hospital, Milan, Italy
| | - Ferdinando D'Amico
- Gastroenterology and Endoscopy, IRCCS San Raffaele Hospital, Milan, Italy
| | - Alessandra Zilli
- Gastroenterology and Endoscopy, IRCCS San Raffaele Hospital, Milan, Italy
| | | | - Mariangela Allocca
- Gastroenterology and Endoscopy, IRCCS San Raffaele Hospital, Milan, Italy
| | - Silvio Danese
- Gastroenterology and Endoscopy, IRCCS San Raffaele Hospital, Milan, Italy
- Gastroenterology and Endoscopy, Vita-Salute San Raffaele University, Milan, Italy
| | - Federica Furfaro
- Gastroenterology and Endoscopy, IRCCS San Raffaele Hospital, Milan, Italy
| |
Collapse
|
10
|
Lazou M, Bekar-Cesaretli AA, Vajda S, Joseph-McCarthy D. Identification and Ranking of Binding Sites from Structural Ensembles: Application to SARS-CoV-2. Viruses 2024; 16:1647. [PMID: 39599762 PMCID: PMC11599001 DOI: 10.3390/v16111647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 11/29/2024] Open
Abstract
Target identification and evaluation is a critical step in the drug discovery process. Although time-intensive and complex, the challenge becomes even more acute in the realm of infectious disease, where the rapid emergence of new viruses, the swift mutation of existing targets, and partial effectiveness of approved antivirals can lead to outbreaks of significant public health concern. The COVID-19 pandemic, caused by the SARS-CoV-2 virus, serves as a prime example of this, where despite the allocation of substantial resources, Paxlovid is currently the only effective treatment. In that case, significant effort pre-pandemic had been expended to evaluate the biological target for the closely related SARS-CoV. In this work, we utilize the computational hot spot mapping method, FTMove, to rapidly identify and rank binding sites for a set of nine SARS-CoV-2 drug/potential drug targets. FTMove takes into account protein flexibility by mapping binding site hot spots across an ensemble of structures for a given target. To assess the applicability of the FTMove approach to a wide range of drug targets for viral pathogens, we also carry out a comprehensive review of the known SARS-CoV-2 ligandable sites. The approach is able to identify the vast majority of all known sites and a few additional sites, which may in fact be yet to be discovered as ligandable. Furthermore, a UMAP analysis of the FTMove features for each identified binding site is largely able to separate predicted sites with experimentally known binders from those without known binders. These results demonstrate the utility of FTMove to rapidly identify actionable sites across a range of targets for a given indication. As such, the approach is expected to be particularly useful for assessing target binding sites for any emerging pathogen, as well as for indications in other disease areas, and providing actionable starting points for structure-based drug design efforts.
Collapse
Affiliation(s)
- Maria Lazou
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA; (M.L.); (S.V.)
| | | | - Sandor Vajda
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA; (M.L.); (S.V.)
- Department of Chemistry, Boston University, Boston, MA 02215, USA;
| | - Diane Joseph-McCarthy
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA; (M.L.); (S.V.)
- Department of Chemistry, Boston University, Boston, MA 02215, USA;
| |
Collapse
|
11
|
Lin AE, Mesev EV, Toettcher JE, Ploss A. Engineered chimeric receptors for dissecting interferon signaling. J Virol 2024; 98:e0168023. [PMID: 39291974 PMCID: PMC11495025 DOI: 10.1128/jvi.01680-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
Though interferons (IFNs) were once heralded as panaceas to numerous diseases, how cells decode varying IFN stimuli and subsequently produce (in)appropriate signaling remain unclear. Our labs recently engineered novel erythropoietin receptor-IFN chimeric receptors, and we highlight their utility in two cases uncovering differential genetic determinants of type I (IFN-α/β) and type III (IFN-λ) IFN signaling. These and other types of synthetic (cytokine) receptors could be expanded to real-time signaling dynamics and in vivo studies.
Collapse
Affiliation(s)
- Aaron E. Lin
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, USA
| | - Emily V. Mesev
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Jared E. Toettcher
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
- Omenn-Darling Bioengineering Institute, Princeton University, Princeton, New Jersey, USA
| | - Alexander Ploss
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| |
Collapse
|
12
|
Solimani F, Ghoreschi K. [Janus kinase inhibitors for skin disorders]. DERMATOLOGIE (HEIDELBERG, GERMANY) 2024; 75:781-790. [PMID: 39212722 DOI: 10.1007/s00105-024-05406-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/22/2024] [Indexed: 09/04/2024]
Abstract
Immune factors such as interferon‑ɣ and interleukin 4 belong to the group of cytokines that are dependent on type I/II receptors for their signal transmission. Upon activation, these receptors transmit their signal to the cell nucleus and, thus, modulate gene transcription via a signaling cascade consisting of Janus kinases (JAK). This family of four kinases (JAK 1, JAK 2, JAK 3, and tyrosine kinase 2 (TYK2)) subsequently activate members of the signal transducer and activator of transcription (STAT). This finding turned the JAK/STAT signaling pathway into a pharmacological target for the treatment of inflammatory diseases in which cytokines using type I/II receptors play a pathogenic role. In 2018, the European Medicines Agency (EMA) approved tofacitinib for the treatment of psoriatic arthritis. This was the first approval of a JAK/STAT pathway inhibitor for patients treated by dermatologists and rheumatologists. Since then, several new JAK inhibitors have been approved for dermatologic diseases such as atopic dermatitis, alopecia areata, vitiligo, and plaque-type psoriasis. In addition, JAK inhibitors are being investigated for the treatment of many other skin diseases. Thus, systemic JAK inhibitors complete the spectrum of immunotherapeutics with a broader immunological approach compared to monoclonal antibodies. The low molecular weight of JAK inhibitors enables the preparation of these drugs for both systemic and topical administration. Their utilization could represent a valuable alternative to topical steroids. The safety profile of JAK inhibitors must be taken into account. Possible long-term effects may become apparent in the next few years. This article describes both approved JAK inhibitors and relevant new JAK inhibitors that are promising candidates for approval as therapeutics in dermatology.
Collapse
Affiliation(s)
- Farzan Solimani
- Department of Dermatology, Venereology and Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Luisenstr. 2, 10117, Berlin, Deutschland.
- BIH Biomedical Innovation Academy, BIH Charité Clinician Scientist Program, Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Deutschland.
| | - Kamran Ghoreschi
- Department of Dermatology, Venereology and Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Luisenstr. 2, 10117, Berlin, Deutschland
| |
Collapse
|
13
|
Jhamat N, Guo Y, Han J, Humblot P, Bongcam-Rudloff E, Andersson G, Niazi A. Enrichment of Cis-Acting Regulatory Elements in Differentially Methylated Regions Following Lipopolysaccharide Treatment of Bovine Endometrial Epithelial Cells. Int J Mol Sci 2024; 25:9832. [PMID: 39337320 PMCID: PMC11432661 DOI: 10.3390/ijms25189832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/07/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Endometritis is an inflammatory disease that negatively influences fertility and is common in milk-producing cows. An in vitro model for bovine endometrial inflammation was used to identify enrichment of cis-acting regulatory elements in differentially methylated regions (DMRs) in the genome of in vitro-cultured primary bovine endometrial epithelial cells (bEECs) before and after treatment with lipopolysaccharide (LPS) from E. coli, a key player in the development of endometritis. The enriched regulatory elements contain binding sites for transcription factors with established roles in inflammation and hypoxia including NFKB and Hif-1α. We further showed co-localization of certain enriched cis-acting regulatory motifs including ARNT, Hif-1α, and NRF1. Our results show an intriguing interplay between increased mRNA levels in LPS-treated bEECs of the mRNAs encoding the key transcription factors such as AHR, EGR2, and STAT1, whose binding sites were enriched in the DMRs. Our results demonstrate an extraordinary cis-regulatory complexity in these DMRs having binding sites for both inflammatory and hypoxia-dependent transcription factors. Obtained data using this in vitro model for bacterial-induced endometrial inflammation have provided valuable information regarding key transcription factors relevant for clinical endometritis in both cattle and humans.
Collapse
Affiliation(s)
- Naveed Jhamat
- Department of Animal Biosciences, Swedish University of Agricultural Sciences, P.O. Box 7023, SE-75007 Uppsala, Sweden
| | - Yongzhi Guo
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, P.O. Box 7023, SE-75007 Uppsala, Sweden
| | - Jilong Han
- Department of Animal Biosciences, Swedish University of Agricultural Sciences, P.O. Box 7023, SE-75007 Uppsala, Sweden
| | - Patrice Humblot
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, P.O. Box 7023, SE-75007 Uppsala, Sweden
| | - Erik Bongcam-Rudloff
- Department of Animal Biosciences, Swedish University of Agricultural Sciences, P.O. Box 7023, SE-75007 Uppsala, Sweden
- SLU-Global Bioinformatics Centre, Swedish University of Agricultural Sciences, P.O. Box 7023, SE-75007 Uppsala, Sweden
| | - Göran Andersson
- Department of Animal Biosciences, Swedish University of Agricultural Sciences, P.O. Box 7023, SE-75007 Uppsala, Sweden
| | - Adnan Niazi
- Department of Animal Biosciences, Swedish University of Agricultural Sciences, P.O. Box 7023, SE-75007 Uppsala, Sweden
- SLU-Global Bioinformatics Centre, Swedish University of Agricultural Sciences, P.O. Box 7023, SE-75007 Uppsala, Sweden
| |
Collapse
|
14
|
Lee J, Kim Y, Shin K, Kim HS, Ko HC, Kim MB, Kim BS. Treatment With Upadacitinib in Refractory Prurigo Nodularis: A Prospective Cohort Study. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2024; 16:546-554. [PMID: 39363772 PMCID: PMC11450437 DOI: 10.4168/aair.2024.16.5.546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/12/2024] [Accepted: 06/11/2024] [Indexed: 10/05/2024]
Abstract
Prurigo nodularis (PN) is a chronic neuroinflammatory dermatosis with severe pruritus that has limited efficacy in various conventional treatments. This study investigated the outcomes of upadacitinib treatment in patients with refractory PN. A prospective study was conducted to screen for potential chronic infections prior to treatment. Upadacitinib was administered at a daily dose of 15 mg for 24 weeks, and the treatment response was assessed using the itch Numeric Rating Scale (NRS), investigator's Global Assessment (IGA), and Dermatology Life Quality Index (DLQI). Adverse events were monitored at each visit. Ten patients, with an average age of 48.8 years, were included in the study. All participants were treated with systemic cyclosporine before receiving upadacitinib, which yielded limited responses. At baseline, the mean prurigo severity scores assessed using the IGA, DLQI, and itch NRS were 3.4, 17.8, and 8.1, respectively; after 24 weeks of treatment, these scores significantly reduced to 1.0, 0.6, and 0.8, respectively. No severe adverse effects were observed. In conclusion, upadacitinib could be considered an alternative therapeutic option with good tolerability for refractory PN.
Collapse
Affiliation(s)
- Jungsoo Lee
- Department of Dermatology, Pusan National University Yangsan Hospital, Yangsan, Korea
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Korea
| | - Youngbeom Kim
- Department of Dermatology, College of Medicine, Pusan National University, Busan, Korea
- Biomedical Research Institute, Pusan National University Hospital, Busan, Korea
| | - Kihyuk Shin
- Department of Dermatology, Pusan National University Yangsan Hospital, Yangsan, Korea
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Korea
| | - Hoon-Soo Kim
- Department of Dermatology, College of Medicine, Pusan National University, Busan, Korea
- Biomedical Research Institute, Pusan National University Hospital, Busan, Korea
| | - Hyun-Chang Ko
- Department of Dermatology, Pusan National University Yangsan Hospital, Yangsan, Korea
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Korea
- Department of Dermatology, College of Medicine, Pusan National University, Busan, Korea
| | - Moon-Bum Kim
- Department of Dermatology, College of Medicine, Pusan National University, Busan, Korea
- Biomedical Research Institute, Pusan National University Hospital, Busan, Korea
| | - Byung-Soo Kim
- Department of Dermatology, College of Medicine, Pusan National University, Busan, Korea
- Biomedical Research Institute, Pusan National University Hospital, Busan, Korea.
| |
Collapse
|
15
|
Eshaq AM, Flanagan TW, Hassan SY, Al Asheikh SA, Al-Amoudi WA, Santourlidis S, Hassan SL, Alamodi MO, Bendhack ML, Alamodi MO, Haikel Y, Megahed M, Hassan M. Non-Receptor Tyrosine Kinases: Their Structure and Mechanistic Role in Tumor Progression and Resistance. Cancers (Basel) 2024; 16:2754. [PMID: 39123481 PMCID: PMC11311543 DOI: 10.3390/cancers16152754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/30/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Protein tyrosine kinases (PTKs) function as key molecules in the signaling pathways in addition to their impact as a therapeutic target for the treatment of many human diseases, including cancer. PTKs are characterized by their ability to phosphorylate serine, threonine, or tyrosine residues and can thereby rapidly and reversibly alter the function of their protein substrates in the form of significant changes in protein confirmation and affinity for their interaction with protein partners to drive cellular functions under normal and pathological conditions. PTKs are classified into two groups: one of which represents tyrosine kinases, while the other one includes the members of the serine/threonine kinases. The group of tyrosine kinases is subdivided into subgroups: one of them includes the member of receptor tyrosine kinases (RTKs), while the other subgroup includes the member of non-receptor tyrosine kinases (NRTKs). Both these kinase groups function as an "on" or "off" switch in many cellular functions. NRTKs are enzymes which are overexpressed and activated in many cancer types and regulate variable cellular functions in response to extracellular signaling-dependent mechanisms. NRTK-mediated different cellular functions are regulated by kinase-dependent and kinase-independent mechanisms either in the cytoplasm or in the nucleus. Thus, targeting NRTKs is of great interest to improve the treatment strategy of different tumor types. This review deals with the structure and mechanistic role of NRTKs in tumor progression and resistance and their importance as therapeutic targets in tumor therapy.
Collapse
Affiliation(s)
- Abdulaziz M. Eshaq
- Department of Epidemiology and Biostatistics, Milken Institute School of Public Health, George Washington University, Washington, DC 20052, USA;
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (S.A.A.A.); (W.A.A.-A.); (M.O.A.); (M.O.A.)
| | - Thomas W. Flanagan
- Department of Pharmacology and Experimental Therapeutics, LSU Health Sciences Center, New Orleans, LA 70112, USA;
| | - Sofie-Yasmin Hassan
- Department of Pharmacy, Faculty of Science, Heinrich-Heine University Duesseldorf, 40225 Duesseldorf, Germany;
| | - Sara A. Al Asheikh
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (S.A.A.A.); (W.A.A.-A.); (M.O.A.); (M.O.A.)
| | - Waleed A. Al-Amoudi
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (S.A.A.A.); (W.A.A.-A.); (M.O.A.); (M.O.A.)
| | - Simeon Santourlidis
- Institute of Cell Therapeutics and Diagnostics, University Medical Center of Duesseldorf, 40225 Duesseldorf, Germany;
| | - Sarah-Lilly Hassan
- Department of Chemistry, Faculty of Science, Heinrich-Heine University Duesseldorf, 40225 Duesseldorf, Germany;
| | - Maryam O. Alamodi
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (S.A.A.A.); (W.A.A.-A.); (M.O.A.); (M.O.A.)
| | - Marcelo L. Bendhack
- Department of Urology, Red Cross University Hospital, Positivo University, Rua Mauá 1111, Curitiba 80030-200, Brazil;
| | - Mohammed O. Alamodi
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (S.A.A.A.); (W.A.A.-A.); (M.O.A.); (M.O.A.)
| | - Youssef Haikel
- Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 67000 Strasbourg, France;
- Department of Operative Dentistry and Endodontics, Dental Faculty, 67000 Strasbourg, France
- Pôle de Médecine et Chirurgie Bucco-Dentaire, Hôpital Civil, Hôpitaux Universitaire de Strasbourg, 67000 Strasbourg, France
| | - Mossad Megahed
- Clinic of Dermatology, University Hospital of Aachen, 52074 Aachen, Germany;
| | - Mohamed Hassan
- Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 67000 Strasbourg, France;
- Department of Operative Dentistry and Endodontics, Dental Faculty, 67000 Strasbourg, France
- Research Laboratory of Surgery-Oncology, Department of Surgery, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
16
|
Mima Y, Tsutsumi E, Ohtsuka T, Ebato I, Nakata Y, Kubota T, Norimatsu Y. A Case of Refractory Vernal Keratoconjunctivitis Showing Improvement after the Administration of Upadacitinib for the Treatment of Atopic Dermatitis. Diagnostics (Basel) 2024; 14:1272. [PMID: 38928687 PMCID: PMC11203004 DOI: 10.3390/diagnostics14121272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/27/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Vernal keratoconjunctivitis is a persistent allergic ocular disease predominantly mediated by the T-helper 2 lymphocyte-associated immune response. The standard therapeutic approaches for vernal keratoconjunctivitis include topical corticosteroids and immunosuppressive eye drops. However, managing vernal keratoconjunctivitis with only topical treatments becomes challenging during seasonally exacerbated periods. Systemic treatments such as oral corticosteroids or cyclosporine may be alternative options. Recently, dupilumab's efficacy in refractory vernal keratoconjunctivitis treatment has been documented. Here, we report a case of refractory vernal keratoconjunctivitis coexisting with atopic dermatitis that rapidly improved after upadacitinib administration. An 18-year-old Japanese woman presented with atopic dermatitis, vernal keratoconjunctivitis, and hay fever. In winter, the patient experienced widespread erythema and escalated itching, leading to significant discomfort and insomnia. Owing to the difficulty in maintaining her current regimen, upadacitinib (15 mg), a Janus kinase inhibitor was initiated. After upadacitinib administration, the treatment-resistant vernal keratoconjunctivitis and erythema improved. Upadacitinib is beneficial in severe cases of atopic dermatitis. Consequently, in our case, upadacitinib may offer therapeutic benefits for refractory vernal conjunctivitis by improving the T-helper 1/2 type immune response, autoimmunity, and oxidative stress. To our knowledge, this is the first report suggesting the potential utility of upadacitinib in managing severe vernal conjunctivitis.
Collapse
Affiliation(s)
- Yoshihito Mima
- Department of Dermatology, Tokyo Metropolitan Police Hospital, Tokyo 164-8541, Japan
| | - Eri Tsutsumi
- Department of Ophthalmology, International University of Health and Welfare Hospital, Tochigi 324-8501, Japan
| | - Tsutomu Ohtsuka
- Department of Dermatology, International University of Health and Welfare Hospital, Tochigi 329-2763, Japan
| | - Ippei Ebato
- Department of Dermatology, International University of Health and Welfare Hospital, Tochigi 329-2763, Japan
| | - Yukihiro Nakata
- Department of Dermatology, International University of Health and Welfare Hospital, Tochigi 329-2763, Japan
| | - Taro Kubota
- Department of Dermatology, International University of Health and Welfare Hospital, Tochigi 329-2763, Japan
| | - Yuta Norimatsu
- Department of Dermatology, International University of Health and Welfare Narita Hospital, Chiba 286-0124, Japan;
| |
Collapse
|
17
|
Dragotto M, D’Onghia M, Trovato E, Tognetti L, Rubegni P, Calabrese L. Therapeutic Potential of Targeting the JAK/STAT Pathway in Psoriasis: Focus on TYK2 Inhibition. J Clin Med 2024; 13:3091. [PMID: 38892802 PMCID: PMC11172692 DOI: 10.3390/jcm13113091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/17/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Psoriasis is an inflammatory skin disease with a chronic relapsing course and an often-detrimental impact on patients' quality of life. Thanks to incredible advances in research over the past few decades, the therapeutic armamentarium of psoriasis is now reasonably broad and structured, with several therapeutic agents that have demonstrated successful long-term control of this condition. However, there are still unfulfilled gaps resulting from the inherent limitations of existing therapies, which have paved the way for the identification of new therapeutic strategies or the improvement of existing ones. A great deal of attention has recently been paid to the JAK/STAT pathway, playing a crucial role in chronic inflammatory skin diseases, including psoriasis. Indeed, in a disease with such a complex pathogenesis, the possibility to antagonize multiple molecular pathways via JAK/STAT inhibition offers an undeniable therapeutic advantage. However, data from clinical trials evaluating the use of oral JAK inhibitors in immune-mediated disorders, such as RA, have arisen safety concerns, suggesting a potentially increased risk of class-specific AEs such as infections, venous thromboembolism, and malignancies. New molecules are currently under investigation for the treatment of psoriasis, such as deucravacitinib, an oral selective inhibitor that binds to the regulatory domain of TYK2, brepocitinib (PF-06700841) and PF-06826647 that bind to the active site in the catalytic domain. Due to the selective TYK2 blockade allowing the inhibition of key cytokine-mediated signals, such as those induced by IL-12 and IL-23, anti-TYK2 agents appear to be very promising as the safety profile seems to be superior compared with pan-JAK inhibitors. The aim of our review is to thoroughly explore the rationale behind the usage of JAK inhibitors in PsO, their efficacy and safety profiles, with a special focus on oral TYK2 inhibitors, as well as to provide a forward-looking update on novel therapeutic strategies targeting the TYK2 pathway in psoriasis.
Collapse
Affiliation(s)
- Martina Dragotto
- Dermatology Unit, Department of Medical, Surgical and Neurological Sciences, University of Siena, 53100 Siena, Italy (E.T.); (P.R.)
| | - Martina D’Onghia
- Dermatology Unit, Department of Medical, Surgical and Neurological Sciences, University of Siena, 53100 Siena, Italy (E.T.); (P.R.)
| | - Emanuele Trovato
- Dermatology Unit, Department of Medical, Surgical and Neurological Sciences, University of Siena, 53100 Siena, Italy (E.T.); (P.R.)
| | - Linda Tognetti
- Dermatology Unit, Department of Medical, Surgical and Neurological Sciences, University of Siena, 53100 Siena, Italy (E.T.); (P.R.)
| | - Pietro Rubegni
- Dermatology Unit, Department of Medical, Surgical and Neurological Sciences, University of Siena, 53100 Siena, Italy (E.T.); (P.R.)
| | - Laura Calabrese
- Dermatology Unit, Department of Medical, Surgical and Neurological Sciences, University of Siena, 53100 Siena, Italy (E.T.); (P.R.)
- Institute of Dermatology, Catholic University of the Sacred Heart, 00168 Rome, Italy
| |
Collapse
|
18
|
Amaral JL, Lucredi NC, França VLB, Santos SJM, Maia FF, Morais PA, Souza PFN, Comar JF, Freire VN. Tofacitinib and peficitinib inhibitors of Janus kinase for autoimmune disease treatment: a quantum biochemistry approach. Phys Chem Chem Phys 2024; 26:13420-13431. [PMID: 38647171 DOI: 10.1039/d3cp06332a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Autoimmune inflammatory diseases, such as rheumatoid arthritis (RA) and ulcerative colitis, are associated with an uncontrolled production of cytokines leading to the pronounced inflammatory response of these disorders. Their therapy is currently focused on the inhibition of cytokine receptors, such as the Janus kinase (JAK) protein family. Tofacitinib and peficitinib are JAK inhibitors that have been recently approved to treat rheumatoid arthritis. In this study, an in-depth analysis was carried out through quantum biochemistry to understand the interactions involved in the complexes formed by JAK1 and tofacitinib or peficitinib. Computational analyses provided new insights into the binding mechanisms between tofacitinib or peficitinib and JAK1. The essential amino acid residues that support the complex are also identified and reported. Additionally, we report new interactions, such as van der Waals; hydrogen bonds; and alkyl, pi-alkyl, and pi-sulfur forces, that stabilize the complexes. The computational results revealed that peficitinib presents a similar affinity to JAK1 compared to tofacitinib based on their interaction energies.
Collapse
Affiliation(s)
- Jackson L Amaral
- Federal University of Piauí, Bom Jesus, Piauí, Brazil, CEP 64.900-000.
- Department of Physics, Federal University of Ceará, Fortaleza, Ceará, Brazil, CEP 60.440-554
| | - Naiara C Lucredi
- Department of Biochemistry, State University of Maringá, Maringá, Paraná, Brazil, CEP 87.020-900
| | - Victor L B França
- Department of Physics, Federal University of Ceará, Fortaleza, Ceará, Brazil, CEP 60.440-554
| | - Samuel J M Santos
- Federal Institute of Education, Science, and Technology of Rio Grande do Sul, Feliz, Rio Grande do Sul, Brazil, CEP 95770-000
| | - Francisco F Maia
- Department of Natural Sciences, Mathematics, and Statistics, Federal Rural University of the Semi-Arid Region, Mossoró, RN, Brazil, 59625-900
| | - Pablo A Morais
- Federal Institute of Education, Science and Technology of Ceará, Horizonte, Ceará, Brazil, CEP 62884-105
| | - Pedro F N Souza
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Ceará, Brazil, CEP 60.440-554
| | - Jurandir F Comar
- Department of Biochemistry, State University of Maringá, Maringá, Paraná, Brazil, CEP 87.020-900
| | - Valder N Freire
- Department of Physics, Federal University of Ceará, Fortaleza, Ceará, Brazil, CEP 60.440-554
| |
Collapse
|
19
|
Abraham BG, Haikarainen T, Vuorio J, Girych M, Virtanen AT, Kurttila A, Karathanasis C, Heilemann M, Sharma V, Vattulainen I, Silvennoinen O. Molecular basis of JAK2 activation in erythropoietin receptor and pathogenic JAK2 signaling. SCIENCE ADVANCES 2024; 10:eadl2097. [PMID: 38457493 PMCID: PMC10923518 DOI: 10.1126/sciadv.adl2097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 02/06/2024] [Indexed: 03/10/2024]
Abstract
Janus kinase 2 (JAK2) mediates type I/II cytokine receptor signaling, but JAK2 is also activated by somatic mutations that cause hematological malignancies by mechanisms that are still incompletely understood. Quantitative superresolution microscopy (qSMLM) showed that erythropoietin receptor (EpoR) exists as monomers and dimerizes upon Epo stimulation or through the predominant JAK2 pseudokinase domain mutations (V617F, K539L, and R683S). Crystallographic analysis complemented by kinase activity analysis and atomic-level simulations revealed distinct pseudokinase dimer interfaces and activation mechanisms for the mutants: JAK V617F activity is driven by dimerization, K539L involves both increased receptor dimerization and kinase activity, and R683S prevents autoinhibition and increases catalytic activity and drives JAK2 equilibrium toward activation state through a wild-type dimer interface. Artificial intelligence-guided modeling and simulations revealed that the pseudokinase mutations cause differences in the pathogenic full-length JAK2 dimers, particularly in the FERM-SH2 domains. A detailed molecular understanding of mutation-driven JAK2 hyperactivation may enable novel therapeutic approaches to selectively target pathogenic JAK2 signaling.
Collapse
Affiliation(s)
| | - Teemu Haikarainen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Fimlab Laboratories, Tampere, Finland
| | - Joni Vuorio
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - Mykhailo Girych
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - Anniina T. Virtanen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Antti Kurttila
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Christos Karathanasis
- Institute of Physical and Theoretical Chemistry, Goethe-University Frankfurt, Frankfurt, Germany
| | - Mike Heilemann
- Institute of Physical and Theoretical Chemistry, Goethe-University Frankfurt, Frankfurt, Germany
| | - Vivek Sharma
- Department of Physics, University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Ilpo Vattulainen
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - Olli Silvennoinen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Fimlab Laboratories, Tampere, Finland
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| |
Collapse
|
20
|
Sarson-Lawrence KTG, Hardy JM, Iaria J, Stockwell D, Behrens K, Saiyed T, Tan C, Jebeli L, Scott NE, Dite TA, Nicola NA, Leis AP, Babon JJ, Kershaw NJ. Cryo-EM structure of the extracellular domain of murine Thrombopoietin Receptor in complex with Thrombopoietin. Nat Commun 2024; 15:1135. [PMID: 38326297 PMCID: PMC10850085 DOI: 10.1038/s41467-024-45356-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 01/19/2024] [Indexed: 02/09/2024] Open
Abstract
Thrombopoietin (Tpo) is the primary regulator of megakaryocyte and platelet numbers and is required for haematopoetic stem cell maintenance. Tpo functions by binding its receptor (TpoR, a homodimeric Class I cytokine receptor) and initiating cell proliferation or differentiation. Here we characterise the murine Tpo:TpoR signalling complex biochemically and structurally, using cryo-electron microscopy. Tpo uses opposing surfaces to recruit two copies of receptor, forming a 1:2 complex. Although it binds to the same, membrane-distal site on both receptor chains, it does so with significantly different affinities and its highly glycosylated C-terminal domain is not required. In one receptor chain, a large insertion, unique to TpoR, forms a partially structured loop that contacts cytokine. Tpo binding induces the juxtaposition of the two receptor chains adjacent to the cell membrane. The therapeutic agent romiplostim also targets the cytokine-binding site and the characterisation presented here supports the future development of improved TpoR agonists.
Collapse
Affiliation(s)
- Kaiseal T G Sarson-Lawrence
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, 3052, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Royal Parade, Parkville, 3052, Victoria, Australia
| | - Joshua M Hardy
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, 3052, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Royal Parade, Parkville, 3052, Victoria, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, 3052, Victoria, Australia
| | - Josephine Iaria
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, 3052, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Royal Parade, Parkville, 3052, Victoria, Australia
| | - Dina Stockwell
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, 3052, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Royal Parade, Parkville, 3052, Victoria, Australia
| | - Kira Behrens
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, 3052, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Royal Parade, Parkville, 3052, Victoria, Australia
| | - Tamanna Saiyed
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, 3052, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Royal Parade, Parkville, 3052, Victoria, Australia
| | - Cyrus Tan
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, 3052, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Royal Parade, Parkville, 3052, Victoria, Australia
| | - Leila Jebeli
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, 3000, Victoria, Australia
| | - Nichollas E Scott
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, 3000, Victoria, Australia
| | - Toby A Dite
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, 3052, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Royal Parade, Parkville, 3052, Victoria, Australia
| | - Nicos A Nicola
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, 3052, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Royal Parade, Parkville, 3052, Victoria, Australia
| | - Andrew P Leis
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, 3052, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Royal Parade, Parkville, 3052, Victoria, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, 3052, Victoria, Australia
| | - Jeffrey J Babon
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, 3052, Victoria, Australia.
- Department of Medical Biology, The University of Melbourne, Royal Parade, Parkville, 3052, Victoria, Australia.
| | - Nadia J Kershaw
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, 3052, Victoria, Australia.
- Department of Medical Biology, The University of Melbourne, Royal Parade, Parkville, 3052, Victoria, Australia.
| |
Collapse
|
21
|
Sk MF, Samanta S, Poddar S, Kar P. Deciphering the molecular choreography of Janus kinase 2 inhibition via Gaussian accelerated molecular dynamics simulations: a dynamic odyssey. J Comput Aided Mol Des 2024; 38:8. [PMID: 38324213 DOI: 10.1007/s10822-023-00548-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/24/2023] [Indexed: 02/08/2024]
Abstract
The Janus kinases (JAK) are crucial targets in drug development for several diseases. However, accounting for the impact of possible structural rearrangements on the binding of different kinase inhibitors is complicated by the extensive conformational variability of their catalytic kinase domain (KD). The dynamic KD contains mainly four prominent mobile structural motifs: the phosphate-binding loop (P-loop), the αC-helix within the N-lobe, the Asp-Phe-Gly (DFG) motif, and the activation loop (A-loop) within the C-lobe. These distinct structural orientations imply a complex signal transmission path for regulating the A-loop's flexibility and conformational preference for optimal JAK function. Nevertheless, the precise dynamical features of the JAK induced by different types of inhibitors still remain elusive. We performed comparative, microsecond-long, Gaussian accelerated molecular dynamics simulations in triplicate of three phosphorylated JAK2 systems: the KD alone, type-I ATP-competitive inhibitor (CI) bound KD in the catalytically active DFG-in conformation, and the type-II inhibitor (AI) bound KD in the catalytically inactive DFG-out conformation. Our results indicate significant conformational variations observed in the A-loop and αC helix motions upon inhibitor binding. Our studies also reveal that the DFG-out inactive conformation is characterized by the closed A-loop rearrangement, open catalytic cleft of N and C-lobe, the outward movement of the αC helix, and open P-loop states. Moreover, the outward positioning of the αC helix impacts the hallmark salt bridge formation between Lys882 and Glu898 in an inactive conformation. Finally, we compared their ligand binding poses and free energy by the MM/PBSA approach. The free energy calculations suggested that the AI's binding affinity is higher than CI against JAK2 due to an increased favorable contribution from the total non-polar interactions and the involvement of the αC helix. Overall, our study provides the structural and energetic insights crucial for developing more promising type I/II JAK2 inhibitors for treating JAK-related diseases.
Collapse
Affiliation(s)
- Md Fulbabu Sk
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol, MP, 453552, India
- Theoretical and Computational Biophysics Group, Beckman Institute for Advanced Science and Technology, NIH Resource for Macromolecular Modeling and Visualization, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Sunanda Samanta
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol, MP, 453552, India
| | - Sayan Poddar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol, MP, 453552, India
| | - Parimal Kar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol, MP, 453552, India.
| |
Collapse
|
22
|
Meyerowitz EA, Scott J, Richterman A, Male V, Cevik M. Clinical course and management of COVID-19 in the era of widespread population immunity. Nat Rev Microbiol 2024; 22:75-88. [PMID: 38114838 DOI: 10.1038/s41579-023-01001-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2023] [Indexed: 12/21/2023]
Abstract
The clinical implications of COVID-19 have changed since SARS-CoV-2 first emerged in humans. The current high levels of population immunity, due to prior infection and/or vaccination, have been associated with a vastly decreased overall risk of severe disease. Some people, particularly those with immunocompromising conditions, remain at risk for severe outcomes. Through the course of the pandemic, variants with somewhat different symptom profiles from the original SARS-CoV-2 virus have emerged. The management of COVID-19 has also changed since 2020, with the increasing availability of evidence-based treatments in two main classes: antivirals and immunomodulators. Selecting the appropriate treatment(s) for patients with COVID-19 requires a deep understanding of the evidence and an awareness of the limitations of applying data that have been largely based on immune-naive populations to patients today who most likely have vaccine-derived and/or infection-derived immunity. In this Review, we provide a summary of the clinical manifestations and approaches to caring for adult patients with COVID-19 in the era of vaccine availability and the dominance of the Omicron subvariants, with a focus on the management of COVID-19 in different patient groups, including immunocompromised, pregnant, vaccinated and unvaccinated patients.
Collapse
Affiliation(s)
- Eric A Meyerowitz
- Division of Infectious Diseases, Montefiore Medical Center, Bronx, NY, USA
| | - Jake Scott
- Division of Infectious Diseases and Geographic Medicine, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Aaron Richterman
- Division of Infectious Diseases, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Victoria Male
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Muge Cevik
- Division of Infection and Global Health Research, School of Medicine, University of St Andrews, St Andrews, UK.
| |
Collapse
|
23
|
Taylor PC, Choy E, Baraliakos X, Szekanecz Z, Xavier RM, Isaacs JD, Strengholt S, Parmentier JM, Lippe R, Tanaka Y. Differential properties of Janus kinase inhibitors in the treatment of immune-mediated inflammatory diseases. Rheumatology (Oxford) 2024; 63:298-308. [PMID: 37624925 PMCID: PMC10836981 DOI: 10.1093/rheumatology/kead448] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/03/2023] [Accepted: 08/13/2023] [Indexed: 08/27/2023] Open
Abstract
Janus kinases (JAKs) are a family of cytosolic tyrosine kinases that regulate cytokine signal transduction, including cytokines involved in a range of inflammatory diseases, such as RA, psoriasis, atopic dermatitis and IBD. Several small-molecule JAK inhibitors (JAKis) are now approved for the treatment of various immune-mediated inflammatory diseases. There are, however, key differences between these agents that could potentially translate into unique clinical profiles. Each JAKi has a unique chemical structure, resulting in a distinctive mode of binding within the catalytic cleft of the target JAK, and giving rise to distinct pharmacological characteristics. In addition, the available agents have differing selectivity for JAK isoforms, as well as off-target effects against non-JAKs. Other differences include effects on haematological parameters, DNA damage repair, reproductive toxicity and metabolism/elimination. Here we review the pharmacological profiles of the JAKis abrocitinib, baricitinib, filgotinib, peficitinib, tofacitinib and upadacitinib.
Collapse
Affiliation(s)
- Peter C Taylor
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Ernest Choy
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | | | - Zoltan Szekanecz
- Faculty of Medicine, Department of Rheumatology, University of Debrecen, Debrecen, Hungary
| | - Ricardo M Xavier
- Serviço de Reumatologia, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - John D Isaacs
- Translational and Clinical Research Institute, Newcastle University and Musculoskeletal Unit, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | | | - Julie M Parmentier
- Immunology Precision Medicine, AbbVie Bioresearch Center, Worcester, MA, USA
| | - Ralph Lippe
- AbbVie Deutschland GmbH & Co. KG, Wiesbaden, Germany
| | - Yoshiya Tanaka
- First Department of Internal Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| |
Collapse
|
24
|
Sun S, Rodriguez G, Zhao G, Sanchez JE, Guo W, Du D, Rodriguez Moncivais OJ, Hu D, Liu J, Kirken RA, Li L. A novel approach to study multi-domain motions in JAK1's activation mechanism based on energy landscape. Brief Bioinform 2024; 25:bbae079. [PMID: 38446738 PMCID: PMC10939344 DOI: 10.1093/bib/bbae079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/17/2024] [Accepted: 02/12/2024] [Indexed: 03/08/2024] Open
Abstract
The family of Janus Kinases (JAKs) associated with the JAK-signal transducers and activators of transcription signaling pathway plays a vital role in the regulation of various cellular processes. The conformational change of JAKs is the fundamental steps for activation, affecting multiple intracellular signaling pathways. However, the transitional process from inactive to active kinase is still a mystery. This study is aimed at investigating the electrostatic properties and transitional states of JAK1 to a fully activation to a catalytically active enzyme. To achieve this goal, structures of the inhibited/activated full-length JAK1 were modelled and the energies of JAK1 with Tyrosine Kinase (TK) domain at different positions were calculated, and Dijkstra's method was applied to find the energetically smoothest path. Through a comparison of the energetically smoothest paths of kinase inactivating P733L and S703I mutations, an evaluation of the reasons why these mutations lead to negative or positive regulation of JAK1 are provided. Our energy analysis suggests that activation of JAK1 is thermodynamically spontaneous, with the inhibition resulting from an energy barrier at the initial steps of activation, specifically the release of the TK domain from the inhibited Four-point-one, Ezrin, Radixin, Moesin-PK cavity. Overall, this work provides insights into the potential pathway for TK translocation and the activation mechanism of JAK1.
Collapse
Affiliation(s)
- Shengjie Sun
- Department of Biomedical Informatic, School of Life Sciences, Central South University, Changsha 410083, China
- Computational Science Program, The University of Texas at El Paso, 500 W University Ave, TX 79968, USA
| | - Georgialina Rodriguez
- Department of Biological Sciences, The University of Texas at El Paso, 500 W University Ave, TX 79968, USA
- Border Biomedical Research Center, The University of Texas at El Paso, 500 W University Ave, TX, 79968, USA
| | - Gaoshu Zhao
- Google LLC, 1600 Amphitheatre Parkway Mountain View, CA 94043, USA
| | - Jason E Sanchez
- Computational Science Program, The University of Texas at El Paso, 500 W University Ave, TX 79968, USA
| | - Wenhan Guo
- Computational Science Program, The University of Texas at El Paso, 500 W University Ave, TX 79968, USA
| | - Dan Du
- Computational Science Program, The University of Texas at El Paso, 500 W University Ave, TX 79968, USA
| | - Omar J Rodriguez Moncivais
- Department of Biological Sciences, The University of Texas at El Paso, 500 W University Ave, TX 79968, USA
- Border Biomedical Research Center, The University of Texas at El Paso, 500 W University Ave, TX, 79968, USA
| | - Dehua Hu
- Department of Biomedical Informatic, School of Life Sciences, Central South University, Changsha 410083, China
| | - Jing Liu
- Department of Hematology, The Second Xiangya Hospital of Central South University; Molecular Biology Research Center, Center for Medical Genetics, School of Life Sciences, Central South University, Changsha 410083, China
| | - Robert Arthur Kirken
- Department of Biological Sciences, The University of Texas at El Paso, 500 W University Ave, TX 79968, USA
- Border Biomedical Research Center, The University of Texas at El Paso, 500 W University Ave, TX, 79968, USA
| | - Lin Li
- Computational Science Program, The University of Texas at El Paso, 500 W University Ave, TX 79968, USA
- Google LLC, 1600 Amphitheatre Parkway Mountain View, CA 94043, USA
- Department of Physics, The University of Texas at El Paso, 500 W University Ave, TX 79968, USA
| |
Collapse
|
25
|
Mihaescu G, Chifiriuc MC, Filip R, Bleotu C, Ditu LM, Constantin M, Cristian RE, Grigore R, Bertesteanu SV, Bertesteanu G, Vrancianu CO. Role of interferons in the antiviral battle: from virus-host crosstalk to prophylactic and therapeutic potential in SARS-CoV-2 infection. Front Immunol 2024; 14:1273604. [PMID: 38288121 PMCID: PMC10822962 DOI: 10.3389/fimmu.2023.1273604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 12/29/2023] [Indexed: 01/31/2024] Open
Abstract
Mammalians sense antigenic messages from infectious agents that penetrate the respiratory and digestive epithelium, as well as signals from damaged host cells through membrane and cytosolic receptors. The transduction of these signals triggers a personalized response, depending on the nature of the stimulus and the host's genetics, physiological condition, and comorbidities. Interferons (IFNs) are the primary effectors of the innate immune response, and their synthesis is activated in most cells within a few hours after pathogen invasion. IFNs are primarily synthesized in infected cells, but their anti-infective effect is extended to the neighboring cells by autocrine and paracrine action. The emergence of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic in 2019 was a stark reminder of the potential threat posed by newly emerging viruses. This pandemic has also triggered an overwhelming influx of research studies aiming to unveil the mechanisms of protective versus pathogenic host immune responses induced by SARS-CoV-2. The purpose of this review is to describe the role of IFNs as vital players in the battle against SARS-CoV-2 infection. We will briefly characterize and classify IFNs, present the inductors of IFN synthesis, their sensors, and signaling pathways, and then discuss the role of IFNs in controlling the evolution of SARS-CoV-2 infection and its clinical outcome. Finally, we will present the perspectives and controversies regarding the prophylactic and therapeutic potential of IFNs in SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Grigore Mihaescu
- Microbiology Immunology Department, Faculty of Biology, University of Bucharest, Bucharest, Romania
- The Research Institute of the University of Bucharest, Bucharest, Romania
| | - Mariana Carmen Chifiriuc
- Microbiology Immunology Department, Faculty of Biology, University of Bucharest, Bucharest, Romania
- The Research Institute of the University of Bucharest, Bucharest, Romania
- Department of Life, Medical and Agricultural Sciences, Biological Sciences Section, Academy of Romanian Scientists, Bucharest, Romania
| | - Roxana Filip
- Faculty of Medicine and Biological Sciences, Stefan cel Mare University of Suceava, Suceava, Romania
- Microbiology Department, Suceava Emergency County Hospital, Suceava, Romania
| | - Coralia Bleotu
- The Research Institute of the University of Bucharest, Bucharest, Romania
- Cellular and Molecular Pathology Department, Stefan S. Nicolau Institute of Virology, Bucharest, Romania
| | - Lia Mara Ditu
- Microbiology Immunology Department, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Marian Constantin
- The Research Institute of the University of Bucharest, Bucharest, Romania
- Institute of Biology of Romanian Academy, Bucharest, Romania
| | - Roxana-Elena Cristian
- The Research Institute of the University of Bucharest, Bucharest, Romania
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Raluca Grigore
- ENT Department, University of Medicine and Pharmacy Carol Davila and Coltea Clinical Hospital, Bucharest, Romania
| | - Serban Vifor Bertesteanu
- ENT Department, University of Medicine and Pharmacy Carol Davila and Coltea Clinical Hospital, Bucharest, Romania
| | - Gloria Bertesteanu
- ENT Department, University of Medicine and Pharmacy Carol Davila and Coltea Clinical Hospital, Bucharest, Romania
| | - Corneliu Ovidiu Vrancianu
- Microbiology Immunology Department, Faculty of Biology, University of Bucharest, Bucharest, Romania
- The Research Institute of the University of Bucharest, Bucharest, Romania
- DANUBIUS Department, National Institute of Research and Development for Biological Sciences, Bucharest, Romania
| |
Collapse
|
26
|
Manoharan J, Rana R, Kuenze G, Gupta D, Elwakiel A, Ambreen S, Wang H, Banerjee K, Zimmermann S, Singh K, Gupta A, Fatima S, Kretschmer S, Schaefer L, Zeng-Brouwers J, Schwab C, Al-Dabet MM, Gadi I, Altmann H, Koch T, Poitz DM, Baber R, Kohli S, Shahzad K, Geffers R, Lee-Kirsch MA, Kalinke U, Meiler J, Mackman N, Isermann B. Tissue factor binds to and inhibits interferon-α receptor 1 signaling. Immunity 2024; 57:68-85.e11. [PMID: 38141610 DOI: 10.1016/j.immuni.2023.11.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 08/02/2023] [Accepted: 11/28/2023] [Indexed: 12/25/2023]
Abstract
Tissue factor (TF), which is a member of the cytokine receptor family, promotes coagulation and coagulation-dependent inflammation. TF also exerts protective effects through unknown mechanisms. Here, we showed that TF bound to interferon-α receptor 1 (IFNAR1) and antagonized its signaling, preventing spontaneous sterile inflammation and maintaining immune homeostasis. Structural modeling and direct binding studies revealed binding of the TF C-terminal fibronectin III domain to IFNAR1, which restricted the expression of interferon-stimulated genes (ISGs). Podocyte-specific loss of TF in mice (PodΔF3) resulted in sterile renal inflammation, characterized by JAK/STAT signaling, proinflammatory cytokine expression, disrupted immune homeostasis, and glomerulopathy. Inhibiting IFNAR1 signaling or loss of Ifnar1 expression in podocytes attenuated these effects in PodΔF3 mice. As a heteromer, TF and IFNAR1 were both inactive, while dissociation of the TF-IFNAR1 heteromer promoted TF activity and IFNAR1 signaling. These data suggest that the TF-IFNAR1 heteromer is a molecular switch that controls thrombo-inflammation.
Collapse
Affiliation(s)
- Jayakumar Manoharan
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital, Leipzig, Germany
| | - Rajiv Rana
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital, Leipzig, Germany
| | - Georg Kuenze
- Institute for Drug Discovery, Leipzig University Medical School, Leipzig, Germany
| | - Dheerendra Gupta
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital, Leipzig, Germany
| | - Ahmed Elwakiel
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital, Leipzig, Germany
| | - Saira Ambreen
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital, Leipzig, Germany
| | - Hongjie Wang
- Department of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kuheli Banerjee
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital, Leipzig, Germany
| | - Silke Zimmermann
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital, Leipzig, Germany
| | - Kunal Singh
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital, Leipzig, Germany
| | - Anubhuti Gupta
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital, Leipzig, Germany
| | - Sameen Fatima
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital, Leipzig, Germany
| | - Stefanie Kretschmer
- Department of Pediatrics, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Liliana Schaefer
- Institute of Pharmacology and Toxicology, Goethe University, Frankfurt am Main, Germany
| | - Jinyang Zeng-Brouwers
- Institute of Pharmacology and Toxicology, Goethe University, Frankfurt am Main, Germany
| | - Constantin Schwab
- Tissue Bank of the National Center for Tumor Diseases, Heidelberg, Germany
| | - Moh'd Mohanad Al-Dabet
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital, Leipzig, Germany
| | - Ihsan Gadi
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital, Leipzig, Germany
| | - Heidi Altmann
- Dresden Integrated Liquid Biobank, Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany; Medical Department I, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Thea Koch
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - David M Poitz
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Ronny Baber
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital, Leipzig, Germany; Leipzig Medical Biobank, Leipzig University, Leipzig, Germany
| | - Shrey Kohli
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital, Leipzig, Germany
| | - Khurrum Shahzad
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital, Leipzig, Germany
| | - Robert Geffers
- Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Min Ae Lee-Kirsch
- Department of Pediatrics, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Ulrich Kalinke
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, 30625 Hannover, Germany
| | - Jens Meiler
- Institute for Drug Discovery, Leipzig University Medical School, Leipzig, Germany
| | - Nigel Mackman
- Division of Hematology, Department of Medicine, UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Berend Isermann
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital, Leipzig, Germany.
| |
Collapse
|
27
|
He Q, Sun X, Niu J, Yang J, Wang Y, Huang C, Zhou K, Tong Y, Cai Y, Dong B, Wan L, Song X, Qiu H. A Novel JAK1 Inhibitor SHR0302 Combined With Prednisone for First-Line Treatment of Chronic Graft-Versus-Host Disease: A Phase I Clinical Trial. Cell Transplant 2024; 33:9636897241254678. [PMID: 38798038 PMCID: PMC11129572 DOI: 10.1177/09636897241254678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/27/2024] [Accepted: 04/22/2024] [Indexed: 05/29/2024] Open
Abstract
Chronic graft-versus-host disease (cGVHD) is a potentially life-threatening complication after allogeneic hematopoietic stem cell transplantation. Standard steroid first-line treatment could not satisfy therapeutic needs due to limited efficacy. As a highly selective Janus kinase (JAK) 1 inhibitor, SHR0302 exhibits a reduced inhibition effect on JAK2 and might have less effect on hematopoiesis. This phase I clinical trial investigated the tolerability and safety of SHR0302 in combination with prednisone, and its early efficacy evidence as a potential first-line treatment to moderate/severe cGVHD. The standard 3 + 3 dose escalation was implemented to find the optimal dose of SHR0302. And prednisone was concurrently administrated with a dose of 1 mg/kg/d and then gradually tapered after 2 weeks. Eighteen patients were enrolled into the study. Grade ≥ 3 treatment-related adverse events were observed in 38.9% of patients. Only one patient developed DLT (grade ≥ 3 hypercholesterolemia) in the highest dose-level group who had pre-existing hypercholesterolemia. The maximum tolerated dose was not reached. No patient discontinued treatment due to AEs. Sixteen out of 18 patients were evaluable for responses, the ORR at week 4 and week 24 were 94.4 and 87.5%, respectively. Overall, the treatment of SHR0302 combined with prednisone was safe and well-tolerated, preliminary clinical results presented a high response for previously untreated cGVHD and a significant reduction in prednisone use in this study. A phase II trial will be conducted to further investigate its therapeutic effects clinically.
Collapse
Affiliation(s)
- Qiaomei He
- Department of Hematology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xi Sun
- Department of Hematology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiahua Niu
- Department of Hematology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Yang
- Department of Hematology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Wang
- Clinical Research & Development, Jiangsu Hengrui Pharmaceuticals Co., Ltd., Shanghai, China
| | - Chongmei Huang
- Department of Hematology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kun Zhou
- Department of Hematology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yin Tong
- Department of Hematology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Cai
- Department of Hematology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Baoxia Dong
- Department of Hematology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liping Wan
- Department of Hematology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xianmin Song
- Department of Hematology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huiying Qiu
- Department of Hematology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
28
|
Song D, Yang Q, Li X, Chen K, Tong J, Shen Y. The role of the JAK/STAT3 signaling pathway in acquired corneal diseases. Exp Eye Res 2024; 238:109748. [PMID: 38081573 DOI: 10.1016/j.exer.2023.109748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/05/2023] [Accepted: 12/05/2023] [Indexed: 01/02/2024]
Abstract
Acquired corneal diseases such as dry eye disease (DED), keratitis and corneal alkali burns are significant contributors to vision impairment worldwide, and more effective and innovative therapies are urgently needed. The Janus kinase/signal transducer and activator of transcription 3 (JAK/STAT3) signaling pathway plays an indispensable role in cell metabolism, inflammation and the immune response. Studies have shown that regulators of this pathway are extensively expressed in the cornea, inducing significant activation of JAK/STAT3 signaling in specific acquired corneal diseases. The activation of JAK/STAT3 signaling contributes to various pathophysiological processes in the cornea, including inflammation, neovascularization, fibrosis, and wound healing. In the context of DED, the hypertonic environment activates JAK/STAT3 signaling to stimulate corneal inflammation. Inflammation and injury progression in infectious keratitis can also be modulated by JAK/STAT3 signaling. Furthermore, JAK/STAT3 signaling is involved in every stage of corneal repair after alkali burns, including acute inflammation, angiogenesis and fibrosis. Treatments modulating JAK/STAT3 signaling have shown promising results in attenuating corneal damage, indicating its potential as a novel therapeutic target. Thus, this review emphasizes the multiple roles of the JAK/STAT3 signaling pathway in common acquired corneal disorders and summarizes the current achievements of JAK/STAT3-targeting therapy to provide new insights into future applications.
Collapse
Affiliation(s)
- Dongjie Song
- Department of Ophthalmology, The Fourth Affiliated Hospital Zhejiang University School of Medicine, Yiwu, China
| | - Qianjie Yang
- Department of Ophthalmology, The First Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China
| | - Xiang Li
- Department of Ophthalmology, The First Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China
| | - Kuangqi Chen
- Department of Ophthalmology, The First Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China.
| | - Jianping Tong
- Department of Ophthalmology, The First Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China.
| | - Ye Shen
- Department of Ophthalmology, The First Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
29
|
Du SS, Fang YQ, Zhang W, Rao GW. Targeting TYK2 for Fighting Diseases: Recent Advance of TYK2 Inhibitors. Curr Med Chem 2024; 31:2900-2920. [PMID: 38904160 DOI: 10.2174/0929867330666230324163414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 01/03/2023] [Accepted: 02/03/2023] [Indexed: 06/22/2024]
Abstract
TYK2 (tyrosine-protein kinase 2) is a non-receptor protein kinase belonging to the JAK family and is closely associated with various diseases, such as psoriasis, inflammatory bowel disease, systemic lupus erythematosus. TYK2 activates the downstream proteins STAT1-5 by participating in the signal transduction of immune factors such as IL-12, IL-23, and IL-10, resulting in immune expression. The activity of the inhibitor TYK2 can effectively block the transduction of excessive immune signals and treat diseases. TYK2 inhibitors are divided into two types of inhibitors according to the different binding sites. One is a TYK2 inhibitor that binds to JH2 and inhibits its activity through an allosteric mechanism. The representative inhibitor is BMS-986165, developed by Bristol-Myers Squibb. The other class binds to the JH1 adenosine triphosphate (ATP) site and prevents the catalytic activity of the kinase by blocking ATP and downstream phosphorylation. This paper mainly introduces the protein structure, signaling pathway, synthesis, structure-activity relationship and clinical research of TYK2 inhibitors.
Collapse
Affiliation(s)
- Si-Shi Du
- College of Pharmaceutical Science, Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Yu-Qing Fang
- College of Pharmaceutical Science, Zhejiang University of Technology, and Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Wen Zhang
- College of Pharmaceutical Science, Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Guo-Wu Rao
- College of Pharmaceutical Science, Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| |
Collapse
|
30
|
Abstract
PURPOSE OF THE ARTICLE Psoriasis is a chronic, immune-mediated, skin disease with a significantly negative impact on patients' quality of life. Moderate-to-severe disease often requires systemic therapies and currently available ones still have numerous disadvantages or limitations. Tyrosine kinase 2 (TYK2) mediates immune signaling of IL-12, IL-23, and type I interferons, without interfering with other critical systemic functions. This article aims to review the current knowledge on deucravacitinib, a new oral drug which selectively inhibits TYK2, granting it a low risk of off-target effects. MATERIALS AND METHODS A review of the published literature was conducted using the PubMed database, published abstracts and virtual presentations from scientific meetings, data from industry press releases, and results published on ClinicalTrials.gov regarding the deucravacitinib for the treatment of psoriasis. Manuscripts with trial results, case series, clinical trial data from ClinicalTrials.gov, and articles highlighting expert perspectives on the topic of the article were selected. RESULTS Two phase 3, 52-week trials evaluated deucravacitinib 6 mg against placebo and apremilast - POETYK PSO-1 and PSO-2, enrolling 1688 patients with moderate-to-severe psoriasis. At week 16, over 50% of patients treated with deucravacitinib reached PASI75, significantly superior to placebo and apremilast. Symptomatic improvement was also reported, with greater impact on itch. Deucravacitinib was well tolerated and safe. There were no reports of serious infections, thromboembolic events, or laboratory abnormalities. Persistent efficacy and consistent safety profiles were reported for up to 2 years. CONCLUSIONS Deucravacitinib has the potential to become a safe, effective, and well-tolerated treatment for patients with moderate-to-severe disease. Future studies will be important to determine the exact role of this drug in the treatment of psoriasis.
Collapse
Affiliation(s)
- Tomás Estevinho
- Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Porto, Portugal
| | - Ana Maria Lé
- Department of Dermatology, Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - Tiago Torres
- Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Porto, Portugal.,Department of Dermatology, Centro Hospitalar Universitário do Porto, Porto, Portugal
| |
Collapse
|
31
|
Song T, Zhang Y, Zhu L, Zhang Y, Song J. The role of JAK/STAT signaling pathway in cerebral ischemia-reperfusion injury and the therapeutic effect of traditional Chinese medicine: A narrative review. Medicine (Baltimore) 2023; 102:e35890. [PMID: 37986307 PMCID: PMC10659620 DOI: 10.1097/md.0000000000035890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 10/11/2023] [Accepted: 10/11/2023] [Indexed: 11/22/2023] Open
Abstract
Cerebral ischemia is a cerebrovascular disease with symptoms caused by insufficient blood or oxygen supply to the brain. When blood supplied is restored after cerebral ischemia, secondary brain injury may occur, which is called cerebral ischemia-reperfusion injury (CIRI). In this process, the Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathway plays an important role. It mediates neuroinflammation and participates in the regulation of physiological activities, such as cell proliferation, differentiation, and apoptosis. After CIRI, M1 microglia is activated and recruited by the damaged tissue. The inflammatory factors are produced by M1 microglia through the JAK/STAT pathway, eventually leading to cell apoptosis. Meanwhile, the JAK2/STAT3 signaling pathway and the expression of lipocalin-2 and caspase-3 could increase. In the pathway, phosphorylated JAK2 and phosphorylated STAT3 function of 2 ways. They not only promote the proliferation of neurons, but also affect the differentiation direction of neural stem cells by further acting on the Notch signaling pathway. Recently, traditional Chinese medicine (TCM) is a key player in CIRI, through JAK2, STAT3, STAT1 and their phosphorylation. Therefore, the review focuses on the JAK/STAT signaling pathway and its relationship with CIRI as well as the influence of the TCM on this pathway. It is aimed at providing the basis for future clinical research on the molecular mechanism of TCM in the treatment of CIRI.
Collapse
Affiliation(s)
- Tianzhi Song
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yishu Zhang
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Liangrong Zhu
- Wenling Hospital of Traditional Chinese Medicine, Taizhou, China
| | - Yuyan Zhang
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jingmei Song
- School of Basic Medicine Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
32
|
Sarapultsev A, Gusev E, Komelkova M, Utepova I, Luo S, Hu D. JAK-STAT signaling in inflammation and stress-related diseases: implications for therapeutic interventions. MOLECULAR BIOMEDICINE 2023; 4:40. [PMID: 37938494 PMCID: PMC10632324 DOI: 10.1186/s43556-023-00151-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/26/2023] [Indexed: 11/09/2023] Open
Abstract
The Janus kinase-signal transducer and transcription activator pathway (JAK-STAT) serves as a cornerstone in cellular signaling, regulating physiological and pathological processes such as inflammation and stress. Dysregulation in this pathway can lead to severe immunodeficiencies and malignancies, and its role extends to neurotransduction and pro-inflammatory signaling mechanisms. Although JAK inhibitors (Jakinibs) have successfully treated immunological and inflammatory disorders, their application has generally been limited to diseases with similar pathogenic features. Despite the modest expression of JAK-STAT in the CNS, it is crucial for functions in the cortex, hippocampus, and cerebellum, making it relevant in conditions like Parkinson's disease and other neuroinflammatory disorders. Furthermore, the influence of the pathway on serotonin receptors and phospholipase C has implications for stress and mood disorders. This review expands the understanding of JAK-STAT, moving beyond traditional immunological contexts to explore its role in stress-related disorders and CNS function. Recent findings, such as the effectiveness of Jakinibs in chronic conditions such as rheumatoid arthritis, expand their therapeutic applicability. Advances in isoform-specific inhibitors, including filgotinib and upadacitinib, promise greater specificity with fewer off-target effects. Combination therapies, involving Jakinibs and monoclonal antibodies, aiming to enhance therapeutic specificity and efficacy also give great hope. Overall, this review bridges the gap between basic science and clinical application, elucidating the complex influence of the JAK-STAT pathway on human health and guiding future interventions.
Collapse
Affiliation(s)
- Alexey Sarapultsev
- Russian-Chinese Education and Research Center of System Pathology, South Ural State University, 454080, Chelyabinsk, Russia.
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, 620049, Ekaterinburg, Russia.
| | - Evgenii Gusev
- Russian-Chinese Education and Research Center of System Pathology, South Ural State University, 454080, Chelyabinsk, Russia
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, 620049, Ekaterinburg, Russia
| | - Maria Komelkova
- Russian-Chinese Education and Research Center of System Pathology, South Ural State University, 454080, Chelyabinsk, Russia
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, 620049, Ekaterinburg, Russia
| | - Irina Utepova
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, 620049, Ekaterinburg, Russia
- Department of Organic and Biomolecular Chemistry, Ural Federal University, 620002, Ekaterinburg, Russian Federation
| | - Shanshan Luo
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Desheng Hu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Biological Targeted Therapy, The Ministry of Education, Wuhan, 430022, China
- Clinical Research Center of Cancer Immunotherapy, Hubei Wuhan, 430022, China
| |
Collapse
|
33
|
Chandran V, Malkov VA, Ito KL, Liu Y, Vestergaard L, Yoon OK, Liu J, Trivedi M, Hertz A, Gladman D. Pharmacodynamic effects of filgotinib treatment driving clinical improvement in patients with active psoriatic arthritis enrolled in the EQUATOR trial. RMD Open 2023; 9:e003550. [PMID: 37945284 PMCID: PMC10649911 DOI: 10.1136/rmdopen-2023-003550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/09/2023] [Indexed: 11/12/2023] Open
Abstract
OBJECTIVES The goal of this study was to identify protein and transcriptional biomarkers and pathways associated with baseline disease state, the effect of filgotinib (FIL) treatment on these biomarkers, and to investigate the mechanism of action of FIL on clinical improvement in patients with active psoriatic arthritis (PsA). METHODS The phase II EQUATOR (NCT03101670) trial evaluated the efficacy of FIL, a Janus kinase 1-preferential inhibitor, in patients with PsA. Peripheral protein and gene expression levels in association with clinical state at baseline and post-treatment were assessed in 121 patients using linear mixed effects models for repeated measures analyses. Mediation analysis and structural equation modelling (SEM) were performed to investigate the mechanism of action of FIL at week 4 on downstream clinical improvement at week 16. RESULTS Baseline analyses showed that markers of inflammation were significantly associated with multiple PsA clinical metrics, except for Psoriasis Area and Severity Index (PASI), which corresponded to Th17 markers. FIL treatment resulted in sustained transcriptional inhibition of immune genes and pathways, a sustained increase in B-cell fraction and mature B-cells in circulation, and a transient effect on other cell fractions. Mediation analysis revealed that changes in B cells, systemic inflammatory cytokines and neutrophils at week 4 were associated with changes in clinical metrics at week 16. SEM suggested that FIL improved PASI through reduction of IL-23 p19 and IL-12 p40 proteins. CONCLUSIONS Our results revealed that FIL treatment rapidly downregulates inflammatory and immune pathways associated with PsA disease activity corresponding to clinical improvement in PsA. TRIAL REGISTRATION NUMBER NCT03101670.
Collapse
Affiliation(s)
- Vinod Chandran
- Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Vladislav A Malkov
- Clinical Bioinformatics & Exploratory Analytics, Gilead Sciences Inc, Foster City, California, USA
| | - Kaori L Ito
- Clinical Bioinformatics & Exploratory Analytics, Gilead Sciences Inc, Foster City, California, USA
| | - Yihua Liu
- Clinical Bioinformatics & Exploratory Analytics, Gilead Sciences Inc, Foster City, California, USA
| | - Lene Vestergaard
- Clinical Bioinformatics & Exploratory Analytics, Gilead Sciences Inc, Foster City, California, USA
| | - Oh Kyu Yoon
- Clinical Bioinformatics & Exploratory Analytics, Gilead Sciences Inc, Foster City, California, USA
| | - Jinfeng Liu
- Clinical Bioinformatics & Exploratory Analytics, Gilead Sciences Inc, Foster City, California, USA
| | - Mona Trivedi
- Clinical Development, Gilead Sciences Inc, Foster City, California, USA
| | - Angie Hertz
- Biomarker Sciences, Gilead Sciences Inc, Foster City, California, USA
| | - Dafna Gladman
- Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
34
|
Yunianto I, Currie M, Chitcholtan K, Sykes P. Potential drug repurposing of ruxolitinib to inhibit the JAK/STAT pathway for the treatment of patients with epithelial ovarian cancer. J Obstet Gynaecol Res 2023; 49:2563-2574. [PMID: 37565583 DOI: 10.1111/jog.15761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 07/25/2023] [Indexed: 08/12/2023]
Abstract
AIM This review aimed to describe the potential for therapeutic targeting of the JAK/STAT signaling pathway by repurposing the clinically-approved JAK inhibitor ruxolitinib in the patients with epithelial ovarian cancer (OC) setting. METHODS We reviewed publications that focus on the inhibition of the JAK/STAT pathway in hematological and solid malignancies including OC. RESULTS Preclinical studies showed that ruxolitinib effectively reduces OC cell viability and metastasis and enhances the anti-tumor activity of chemotherapy drugs. There are a number of recent clinical trials exploring the role of JAK/STAT inhibition in solid cancers including OC. Early results have not adequately supported efficacy in solid tumors. However, there are preclinical data and clinical studies supporting the use of ruxolitinib in combination with both chemotherapy and other targeted drugs in OC setting. CONCLUSION Inflammatory conditions and persistent activation of the JAK/STAT pathway are associated with tumourigenesis and chemoresistance, and therapeutic blockade of this pathway shows promising results. For women with OC, clinical investigation exploring the role of ruxolitinib in combination with chemotherapy agents or other targeted therapeutics is warranted.
Collapse
Affiliation(s)
- Irfan Yunianto
- Department of Obstetrics and Gynaecology, University of Otago, Christchurch, New Zealand
- Department of Biology Education, Universitas Ahmad Dahlan, Indonesia
| | - Margaret Currie
- Department of Pathology and Biomedical Sciences, University of Otago, Christchurch, New Zealand
| | - Kenny Chitcholtan
- Department of Obstetrics and Gynaecology, University of Otago, Christchurch, New Zealand
| | - Peter Sykes
- Department of Obstetrics and Gynaecology, University of Otago, Christchurch, New Zealand
| |
Collapse
|
35
|
Mesev EV, Lin AE, Guare EG, Heller BL, Douam F, Adamson B, Toettcher JE, Ploss A. Membrane-proximal motifs encode differences in signaling strength between type I and III interferon receptors. Sci Signal 2023; 16:eadf5494. [PMID: 37816090 PMCID: PMC10939449 DOI: 10.1126/scisignal.adf5494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 09/09/2023] [Indexed: 10/12/2023]
Abstract
Interferons (IFNs) play crucial roles in antiviral defenses. Despite using the same Janus-activated kinase (JAK)-signal transducer and activator of transcription (STAT) signaling cascade, type I and III IFN receptors differ in the magnitude and dynamics of their signaling in terms of STAT phosphorylation, gene transcription, and antiviral responses. These differences are not due to ligand-binding affinity and receptor abundance. Here, we investigated the ability of the intracellular domains (ICDs) of IFN receptors to differentiate between type I and III IFN signaling. We engineered synthetic, heterodimeric type I and III IFN receptors that were stably expressed at similar amounts in human cells and responded to a common ligand. We found that our synthetic type I IFN receptors stimulated STAT phosphorylation and gene expression to greater extents than did the corresponding type III IFN receptors. Furthermore, we identified short "box motifs" within ICDs that bind to JAK1 that were sufficient to encode differences between the type I and III IFN receptors. Together, our results indicate that specific regions within the ICDs of IFN receptor subunits encode different downstream signaling strengths that enable type I and III IFN receptors to produce distinct signaling outcomes.
Collapse
Affiliation(s)
- Emily V. Mesev
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Aaron E. Lin
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Emma G. Guare
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Brigitte L. Heller
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Florian Douam
- Department of Microbiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA 02118, USA
| | - Britt Adamson
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
- Lewis Sigler Center for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Jared E. Toettcher
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
- Omenn-Darling Bioengineering Institute, Princeton University, Princeton, NJ 08544, USA
| | - Alexander Ploss
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
36
|
Haertlé J, Kienlin P, Begemann G, Werfel T, Roesner LM. Inhibition of IL-17 ameliorates keratinocyte-borne cytokine responses in an in vitro model for house-dust-mite triggered atopic dermatitis. Sci Rep 2023; 13:16628. [PMID: 37789035 PMCID: PMC10547677 DOI: 10.1038/s41598-023-42595-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 09/12/2023] [Indexed: 10/05/2023] Open
Abstract
A subgroup of patients suffering from atopic dermatitis (AD) does not respond to biologics therapy targeting the key players of type-2 inflammation, and it is an ongoing discussion whether skin-infiltrating Th17 cells may underlie this phenomenon. This study aimed to investigate the potential of allergen-induced, immune-cell derived IL-17 on the induction of inflammatory processes in keratinocytes. Peripheral blood mononuclear cells derived from respectively sensitized AD patients were stimulated with house dust mite (HDM) extract and cell culture supernatants were applied subsequently in absence or presence of secukinumab to primary human keratinocytes. Hereby we confirm that the immune response of sensitized AD patients to HDM contains aside from type-2 cytokines significant amounts of IL-17. Blocking IL-17 efficiently reduced the stimulation-induced changes in keratinocyte gene expression. IL-17-dependent transcriptional changes included increased expression of the cytokines IL-20 and IL-24 as well as Suppressor of Cytokine Siganling 3 (SOCS3), a negative feedback-regulator of the STAT3/IL-17/IL-24 immune response. We conclude that the immune response to HDM can induce pro-inflammatory cytokines from keratinocytes in AD, which in part is mediated via IL-17. Targeting IL-17 may turn out to be a reasonable alternative therapy in a subgroup of patients with moderate to severe AD and HDM sensitization.
Collapse
Affiliation(s)
- Juliane Haertlé
- Department of Dermatology and Allergy, Hannover Medical School (MHH), Carl-Neuberg-Str.1, 30625, Hannover, Germany
| | - Petra Kienlin
- Department of Dermatology and Allergy, Hannover Medical School (MHH), Carl-Neuberg-Str.1, 30625, Hannover, Germany
| | - Gabriele Begemann
- Department of Dermatology and Allergy, Hannover Medical School (MHH), Carl-Neuberg-Str.1, 30625, Hannover, Germany
| | - Thomas Werfel
- Department of Dermatology and Allergy, Hannover Medical School (MHH), Carl-Neuberg-Str.1, 30625, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School (MHH), Hannover, Germany
| | - Lennart M Roesner
- Department of Dermatology and Allergy, Hannover Medical School (MHH), Carl-Neuberg-Str.1, 30625, Hannover, Germany.
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School (MHH), Hannover, Germany.
| |
Collapse
|
37
|
Mahjoor M, Mahmoudvand G, Farokhi S, Shadab A, Kashfi M, Afkhami H. Double-edged sword of JAK/STAT signaling pathway in viral infections: novel insights into virotherapy. Cell Commun Signal 2023; 21:272. [PMID: 37784164 PMCID: PMC10544547 DOI: 10.1186/s12964-023-01240-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/19/2023] [Indexed: 10/04/2023] Open
Abstract
The Janus kinase/signal transducer and activator of transcription (JAK/STAT) is an intricate signaling cascade composed of various cytokines, interferons (IFN, growth factors, and other molecules. This pathway provides a delicate mechanism through which extracellular factors adjust gene expression, thereby acting as a substantial basis for environmental signals to influence cell growth and differentiation. The interactions between the JAK/STAT cascade and antiviral IFNs are critical to the host's immune response against viral microorganisms. Recently, with the emergence of therapeutic classes that target JAKs, the significance of this cascade has been recognized in an unprecedented way. Despite the functions of the JAK/STAT pathway in adjusting immune responses against viral pathogens, a vast body of evidence proposes the role of this cascade in the replication and pathogenesis of viral pathogens. In this article, we review the structure of the JAK/STAT signaling cascade and its role in immuno-inflammatory responses. We also highlight the paradoxical effects of this pathway in the pathogenesis of viral infections. Video Abstract.
Collapse
Affiliation(s)
- Mohamad Mahjoor
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Department of Immunology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Golnaz Mahmoudvand
- Student Research Committee, USERN Office, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Simin Farokhi
- Student Research Committee, USERN Office, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Alireza Shadab
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
- Iran University of Medical Sciences, Deputy of Health, Tehran, Iran
| | - Mojtaba Kashfi
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran.
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran.
- Department of Medical Microbiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Hamed Afkhami
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran.
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran.
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran.
| |
Collapse
|
38
|
Naik R, Avula S, Palleti SK, Gummadi J, Ramachandran R, Chandramohan D, Dhillon G, Gill AS, Paiwal K, Shaik B, Balachandran M, Patel B, Gurugubelli S, Mariswamy Arun Kumar AK, Nanjundappa A, Bellamkonda M, Rathi K, Sakhamuri PL, Nassar M, Bali A. From Emergence to Endemicity: A Comprehensive Review of COVID-19. Cureus 2023; 15:e48046. [PMID: 37916248 PMCID: PMC10617653 DOI: 10.7759/cureus.48046] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2023] [Indexed: 11/03/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), later renamed coronavirus disease 2019 (COVID-19), was first identified in Wuhan, China, in early December 2019. Initially, the China office of the World Health Organization was informed of numerous cases of pneumonia of unidentified etiology in Wuhan, Hubei Province at the end of 2019. This would subsequently result in a global pandemic with millions of confirmed cases of COVID-19 and millions of deaths reported to the WHO. We have analyzed most of the data published since the beginning of the pandemic to compile this comprehensive review of SARS-CoV-2. We looked at the core ideas, such as the etiology, epidemiology, pathogenesis, clinical symptoms, diagnostics, histopathologic findings, consequences, therapies, and vaccines. We have also included the long-term effects and myths associated with some therapeutics of COVID-19. This study presents a comprehensive assessment of the SARS-CoV-2 virology, vaccines, medicines, and significant variants identified during the course of the pandemic. Our review article is intended to provide medical practitioners with a better understanding of the fundamental sciences, clinical treatment, and prevention of COVID-19. As of May 2023, this paper contains the most recent data made accessible.
Collapse
Affiliation(s)
- Roopa Naik
- Medicine, Geisinger Commonwealth School of Medicine, Scranton, USA
- Internal Medicine/Hospital Medicine, Geisinger Health System, Wilkes Barre, USA
| | - Sreekant Avula
- Diabetes, Endocrinology, and Metabolism, University of Minnesota, Minneapolis, USA
| | - Sujith K Palleti
- Nephrology, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Jyotsna Gummadi
- Internal Medicine, MedStar Franklin Square Medical Center, Baltimore, USA
| | | | | | - Gagandeep Dhillon
- Physician Executive MBA, University of Tennessee, Knoxville, USA
- Internal Medicine, University of Maryland Baltimore Washington Medical Center, Glen Burnie, USA
| | | | - Kapil Paiwal
- Oral & Maxillofacial Pathology, Daswani Dental College & Research Center, Kota, IND
| | - Bushra Shaik
- Internal Medicine, Onslow Memorial Hospital, Jacksonville, USA
| | | | - Bhumika Patel
- Oral Medicine and Radiology, Howard University, Washington, D.C., USA
| | | | | | | | - Mahita Bellamkonda
- Hospital Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, USA
| | - Kanika Rathi
- Internal Medicine, University of Florida, Gainesville, USA
| | | | - Mahmoud Nassar
- Endocrinology, Diabetes, and Metabolism, Jacobs School of Medicine and Biomedical Sciences, Buffalo, USA
| | - Atul Bali
- Internal Medicine/Nephrology, Geisinger Medical Center, Danville, USA
- Internal Medicine/Nephrology, Geisinger Health System, Wilkes-Barre, USA
- Medicine, Geisinger Commonwealth School of Medicine, Scranton, USA
| |
Collapse
|
39
|
Zhao A, Pan C, Li M. Biologics and oral small-molecule inhibitors for treatment of pediatric atopic dermatitis: Opportunities and challenges. Pediatr Investig 2023; 7:177-190. [PMID: 37736359 PMCID: PMC10509388 DOI: 10.1002/ped4.12400] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 08/09/2023] [Indexed: 09/23/2023] Open
Abstract
Atopic dermatitis (AD) is a complex disease characterized by recurrent eczematous lesions and refractory pruritus that drastically impairs quality of life. Due to the chronic and relapsing course, patients are easily trapped in the debilitating condition. Classical therapies show limitations, especially for patients with moderate-to-severe phenotypes. Advanced new insights in targeted therapies exhibit great application prospects which were reinforced by the more profound understanding of the disease pathogenesis. However, the sustained efficiency, biosafety, and long-term benefits still remain in further exploration. This review summarizes recent clinical studies on oral small-molecule inhibitors and biological agents for pediatric AD patients, which provides the latest frontiers to clinicians.
Collapse
Affiliation(s)
- Anqi Zhao
- Department of DermatologyXinhua HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Institute of DermatologyShanghai Jiao Tong University School of MedicineShanghaiChina
- Department of DermatologyChildren's Hospital of Fudan UniversityShanghaiChina
| | - Chaolan Pan
- Department of DermatologyXinhua HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Institute of DermatologyShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Ming Li
- Department of DermatologyChildren's Hospital of Fudan UniversityShanghaiChina
| |
Collapse
|
40
|
Hernandez LM, Montersino A, Niu J, Guo S, Faezov B, Sanders SS, Dunbrack RL, Thomas GM. Palmitoylation-dependent control of JAK1 kinase signaling governs responses to neuropoietic cytokines and survival in DRG neurons. J Biol Chem 2023; 299:104965. [PMID: 37356718 PMCID: PMC10413081 DOI: 10.1016/j.jbc.2023.104965] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 06/11/2023] [Accepted: 06/13/2023] [Indexed: 06/27/2023] Open
Abstract
Janus Kinase-1 (JAK1) plays key roles during neurodevelopment and following neuronal injury, while activatory JAK1 mutations are linked to leukemia. In mice, Jak1 genetic deletion results in perinatal lethality, suggesting non-redundant roles and/or regulation of JAK1 for which other JAKs cannot compensate. Proteomic studies reveal that JAK1 is more likely palmitoylated compared to other JAKs, implicating palmitoylation as a possible JAK1-specific regulatory mechanism. However, the importance of palmitoylation for JAK1 signaling has not been addressed. Here, we report that JAK1 is palmitoylated in transfected HEK293T cells and endogenously in cultured Dorsal Root Ganglion (DRG) neurons. We further use comprehensive screening in transfected non-neuronal cells and shRNA-mediated knockdown in DRG neurons to identify the related enzymes ZDHHC3 and ZDHHC7 as dominant protein acyltransferases (PATs) for JAK1. Surprisingly, we found palmitoylation minimally affects JAK1 localization in neurons, but is critical for JAK1's kinase activity in cells and even in vitro. We propose this requirement is likely because palmitoylation facilitates transphosphorylation of key sites in JAK1's activation loop, a possibility consistent with structural models of JAK1. Importantly, we demonstrate a leukemia-associated JAK1 mutation overrides the palmitoylation-dependence of JAK1 activity, potentially explaining why this mutation is oncogenic. Finally, we show that JAK1 palmitoylation is important for neuropoietic cytokine-dependent signaling and neuronal survival and that combined Zdhhc3/7 loss phenocopies loss of palmitoyl-JAK1. These findings provide new insights into the control of JAK signaling in both physiological and pathological contexts.
Collapse
Affiliation(s)
- Luiselys M Hernandez
- Shriners Hospitals Pediatric Research Center (Center for Neurorehabilitation and Neural Repair), Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Audrey Montersino
- Shriners Hospitals Pediatric Research Center (Center for Neurorehabilitation and Neural Repair), Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Jingwen Niu
- Shriners Hospitals Pediatric Research Center (Center for Neurorehabilitation and Neural Repair), Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Shuchi Guo
- Shriners Hospitals Pediatric Research Center (Center for Neurorehabilitation and Neural Repair), Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Bulat Faezov
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA; Kazan Federal University, Kazan, Russian Federation
| | - Shaun S Sanders
- Shriners Hospitals Pediatric Research Center (Center for Neurorehabilitation and Neural Repair), Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Roland L Dunbrack
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | - Gareth M Thomas
- Shriners Hospitals Pediatric Research Center (Center for Neurorehabilitation and Neural Repair), Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA; Department of Neural Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
41
|
Oster N, Szewczuk MA, Zych S, Stankiewicz T, Błaszczyk B, Wieczorek-Dąbrowska M. Association between Polymorphism in the Janus Kinase 2 ( JAK2) Gene and Selected Performance Traits in Cattle and Sheep. Animals (Basel) 2023; 13:2470. [PMID: 37570280 PMCID: PMC10416845 DOI: 10.3390/ani13152470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/17/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
The Janus Kinase 2 (JAK2) tyrosine kinase is an essential component of signal transduction of the class II cytokine receptors, including the growth hormone receptor. Therefore, it may play a crucial role in the signaling pathway of the somatotropic axis, which influences growth, development, and reproductive traits in ruminants. For this purpose, for three breeds of cattle (Hereford, Angus, and Limousin; a total of 781 individuals), two polymorphic sites located in exon 16 (rs210148032; p.Ile704Val, within pseudokinase (JH2)) and exon 23 (silent mutation rs211067160, within JH1 kinase domain) were analyzed. For two breeds of sheep (Pomeranian and Suffolk; 333 individuals in total), two polymorphic sites in exon 6 (rs160146162 and rs160146160; encoding the FERM domain) and one polymorphic site in exon 24 of the JAK2 gene (rs160146116; JH1 kinase domain) were genotyped. In our study, the associations examined for cattle were inconclusive. However, Hereford and Limousin cattle with genotypes AA (e16/RsaI) and AA (e23/HaeIII) tended to have the highest body weight and better daily gains (p ≤ 0.05). No clear tendency was observed in the selected reproductive traits. In the case of sheep, regardless of breed, individuals with the AA (e6/EarI), GG (e6/seq), and AA (e24/Hpy188III) genotypes had the highest body weights and daily gains in the study periods (p ≤ 0.01). The same individuals in the Pomeranian breed also had better fertility and lamb survival (p ≤ 0.01). To the best of our knowledge, these are the first association studies for all these polymorphic sites. Single-nucleotide polymorphisms in the JAK2 gene can serve as genetic markers for growth and selected reproductive traits in ruminants given that they are further investigated in subsequent populations and analyzed using haplotype and/or combined genotype systems.
Collapse
Affiliation(s)
- Nicola Oster
- Department of Monogastric Animal Science, Faculty of Biotechnology and Animal Husbandry, West Pommeranian University of Technology in Szczecin, 29 Klemensa Janickiego, 71-270 Szczecin, Poland;
| | - Małgorzata Anna Szewczuk
- Department of Monogastric Animal Science, Faculty of Biotechnology and Animal Husbandry, West Pommeranian University of Technology in Szczecin, 29 Klemensa Janickiego, 71-270 Szczecin, Poland;
| | - Sławomir Zych
- Laboratory of Chromatography and Mass Spectroscopy, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology in Szczecin, 29 Klemensa Janickiego, 71-270 Szczecin, Poland
| | - Tomasz Stankiewicz
- Department of Animal Reproduction Biotechnology and Environmental Hygiene, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology in Szczecin, 29 Klemensa Janickiego, 71-270 Szczecin, Poland; (T.S.); (B.B.)
| | - Barbara Błaszczyk
- Department of Animal Reproduction Biotechnology and Environmental Hygiene, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology in Szczecin, 29 Klemensa Janickiego, 71-270 Szczecin, Poland; (T.S.); (B.B.)
| | - Marta Wieczorek-Dąbrowska
- National Research Institute of Animal Production, Kraków, Experimental Department, Kołbacz, 1 Warcisława Street, 74-106 Stare Czarnowo, Poland
| |
Collapse
|
42
|
Gitau JK, Macharia RW, Mwangi KW, Ongeso N, Murungi E. Gene co-expression network identifies critical genes, pathways and regulatory motifs mediating the progression of rift valley fever in Bostaurus. Heliyon 2023; 9:e18175. [PMID: 37519716 PMCID: PMC10375796 DOI: 10.1016/j.heliyon.2023.e18175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 07/04/2023] [Accepted: 07/10/2023] [Indexed: 08/01/2023] Open
Abstract
Rift Valley Fever (RVF) is a mosquito-borne viral disease caused by the Rift Valley Fever Virus. The disease is a zoonosis that largely affects domestic animals, including sheep, goats, and cattle, resulting in severe morbidity and mortality marked by massive storm abortions. To halt human and livestock deaths due to RVF, the development of efficacious vaccines and therapeutics is a compelling and urgent priority. We sought to identify potential key modules (gene clusters), hub genes, and regulatory motifs involved in the pathogenesis of RVF in Bos taurus that are amenable to inhibition. We analyzed 39 Bos taurus RNA-Seq samples using the weighted gene co-expression network analysis (WGCNA) R package and uncovered significantly enriched modules containing genes with potential pivotal roles in RVF progression. Moreover, regulatory motif analysis conducted using the Multiple Expectation Maximization for Motif Elicitation (MEME) suite identified motifs that probably modulate vital biological processes. Gene ontology terms associated with identified motifs were inferred using the GoMo human database. The gene co-expression network constructed in WGCNA using 5000 genes contained seven (7) modules, out of which four were significantly enriched for terms associated with response to viruses, response to interferon-alpha, innate immune response, and viral defense. Additionally, several biological pathways implicated in developmental processes, anatomical structure development, and multicellular organism development were identified. Regulatory motifs analysis identified short, repeated motifs whose function(s) may be amenable to disruption by novel therapeutics. Predicted functions of identified motifs include tissue development, embryonic organ development, and organ morphogenesis. We have identified several hub genes in enriched co-expressed gene modules and regulatory motifs potentially involved in the pathogenesis of RVF in B. taurus that are likely viable targets for disruption by novel therapeutics.
Collapse
Affiliation(s)
- John K. Gitau
- University of Nairobi, Biochemistry Department, P.O Box 30197, 00100, Nairobi, Kenya
| | - Rosaline W. Macharia
- University of Nairobi, Biochemistry Department, P.O Box 30197, 00100, Nairobi, Kenya
| | - Kennedy W. Mwangi
- Jomo Kenyatta University of Agriculture and Technology, P.O Box 62000, 00200, Nairobi, Kenya
| | - Nehemiah Ongeso
- University of Nairobi, Biochemistry Department, P.O Box 30197, 00100, Nairobi, Kenya
| | - Edwin Murungi
- Kisii University, Department of Medical Biochemistry, P.O Box 408, 40200, Kisii, Kenya
| |
Collapse
|
43
|
Li X, Hu R, Wang H, Xu W. SOCS3 Silencing Promotes Activation of Vocal Fold Fibroblasts via JAK2/STAT3 Signaling Pathway. Inflammation 2023:10.1007/s10753-023-01810-9. [PMID: 37154979 DOI: 10.1007/s10753-023-01810-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 03/14/2023] [Accepted: 03/26/2023] [Indexed: 05/10/2023]
Abstract
Suppressor of cytokine signaling 3 (SOCS3) is a negative regulatory protein that has been identified as a key inhibitory regulator of JAK/STAT signaling pathway. However, the mutual regulatory relationship between SOCS3 and JAK2/STAT3 signaling pathway after vocal fold injury remains unclear. In this study, we used small interfering RNA (siRNA) to investigate the mechanism of SOCS3 regulating of fibroblasts through JAK2/STAT3 signaling pathway after vocal fold injury. Our data shows that SOCS3 silencing promotes the transformation of normal vocal fold fibroblasts (VFFs) into an fibrotic phenotype and activates the JAK2/STAT3 signaling pathway. JAK2 silencing significantly inhibits the increase in type I collagen and α-smooth muscle actin (α-SMA) secretion in VFFs induced by TGF-β but has no significant effect on normal VFFs. The silencing of SOCS3 and JAK2 reverses the fibrotic phenotype of VFFs induced by SOCS3 silencing. Therefore, we suggest that SOCS3 can affect the activation of vocal fold fibroblasts by regulating the JAK2/STAT3 signaling pathway after vocal fold injury. It provides a new insight for promoting the repair of vocal fold injury and preventing the formation of fibrosis.
Collapse
Affiliation(s)
- Xueyan Li
- Department of Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Key Laboratory of Otolaryngology-Head and Neck Surgery, Ministry of Education of China, 1 Dongjiaominxiang, 100730, Beijing, China
| | - Rong Hu
- Department of Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Key Laboratory of Otolaryngology-Head and Neck Surgery, Ministry of Education of China, 1 Dongjiaominxiang, 100730, Beijing, China
| | - Haizhou Wang
- Department of Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Key Laboratory of Otolaryngology-Head and Neck Surgery, Ministry of Education of China, 1 Dongjiaominxiang, 100730, Beijing, China
| | - Wen Xu
- Department of Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Key Laboratory of Otolaryngology-Head and Neck Surgery, Ministry of Education of China, 1 Dongjiaominxiang, 100730, Beijing, China.
| |
Collapse
|
44
|
Goetsch A, D'Amico F, Allocca M, Fiorino G, Furfaro F, Zilli A, Parigi TL, Radice S, Peyrin-Biroulet L, Danese S. Advances in pharmacotherapy for ulcerative colitis: a focus on JAK1 inhibitors. Expert Opin Pharmacother 2023; 24:849-861. [PMID: 37038911 DOI: 10.1080/14656566.2023.2200931] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/05/2023] [Indexed: 04/12/2023]
Abstract
INTRODUCTION Janus kinase (JAK) inhibitors are an emerging class of small-molecule drugs, providing targeted therapy for a variety of diseases, and have made their way into the treatment of armamentarium of ulcerative colitis (UC) in recent years. AREAS COVERED This review focuses on the pharmacokinetics, safety, and efficacy of selective JAK1 inhibitors in the treatment of moderate-to-severe UC. The PubMed database and clinicaltrials.gov were consulted using keywords - further expanded in the methods section. The search was focused on full-text publications in English. No publication date restrictions were imposed. EXPERT OPINION JAK1 inhibitors are small-molecule drugs used in the treatment of ulcerative colitis and other immune mediated inflammatory diseases. They are orally bioavailable and have a rapid mechanism of action and no immunogenicity. JAK inhibitors can be used for the management of both naïve patients and biological-experienced patients.Particular attention should be paid to elderly patients or those with cardiovascular or oncological risk factors, in whom JAK inhibitors should be recommended only if no alternatives are available. In addition, JAK inhibitors have the potential to be combined with other biological drugs or small molecules for the management of difficult-to-treat cases.
Collapse
Affiliation(s)
- Alexander Goetsch
- Gastroenterology and Endoscopy, IRCCS San Raffaele Hospital, Milan, Italy
- Gastroenterology and Endoscopy, Vita-Salute San Raffaele University, Milan, Italy
| | - Ferdinando D'Amico
- Gastroenterology and Endoscopy, IRCCS San Raffaele Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Mariangela Allocca
- Gastroenterology and Endoscopy, IRCCS San Raffaele Hospital, Milan, Italy
| | - Gionata Fiorino
- Gastroenterology and Endoscopy, Vita-Salute San Raffaele University, Milan, Italy
| | - Federica Furfaro
- Gastroenterology and Endoscopy, IRCCS San Raffaele Hospital, Milan, Italy
| | - Alessandra Zilli
- Gastroenterology and Endoscopy, IRCCS San Raffaele Hospital, Milan, Italy
| | - Tommaso Lorenzo Parigi
- Gastroenterology and Endoscopy, IRCCS San Raffaele Hospital, Milan, Italy
- Gastroenterology and Endoscopy, Vita-Salute San Raffaele University, Milan, Italy
| | - Simona Radice
- Gastroenterology and Endoscopy, IRCCS San Raffaele Hospital, Milan, Italy
| | - Laurent Peyrin-Biroulet
- Department of Gastroenterology, University of Lorraine, CHRU-Nancy, Nancy, France
- Inserm, NGERE, University of Lorraine, Nancy, France
| | - Silvio Danese
- Gastroenterology and Endoscopy, IRCCS San Raffaele Hospital, Milan, Italy
- Gastroenterology and Endoscopy, Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
45
|
Grant AH, Rodriguez AC, Rodriguez Moncivais OJ, Sun S, Li L, Mohl JE, Leung MY, Kirken RA, Rodriguez G. JAK1 Pseudokinase V666G Mutant Dominantly Impairs JAK3 Phosphorylation and IL-2 Signaling. Int J Mol Sci 2023; 24:ijms24076805. [PMID: 37047778 PMCID: PMC10095075 DOI: 10.3390/ijms24076805] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/17/2023] [Accepted: 03/24/2023] [Indexed: 04/08/2023] Open
Abstract
Overactive Janus kinases (JAKs) are known to drive leukemia, making them well-suited targets for treatment. We sought to identify new JAK-activating mutations and instead found a JAK1-inactivating pseudokinase mutation, V666G. In contrast to other pseudokinase mutations that canonically lead to an active kinase, the JAK1 V666G mutation led to under-activation seen by reduced phosphorylation. To understand the functional role of JAK1 V666G in modifying kinase activity we investigated its influence on other JAK kinases and within the Interleukin-2 pathway. JAK1 V666G not only inhibited its own activity, but its presence could inhibit other JAK kinases. These findings provide new insights into the potential of JAK1 pseudokinase to modulate its own activity, as well as of other JAK kinases. Thus, the features of the JAK1 V666 region in modifying JAK kinases can be exploited to allosterically inhibit overactive JAKs.
Collapse
Affiliation(s)
- Alice H. Grant
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA
- Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Alejandro C. Rodriguez
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA
- Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Omar J. Rodriguez Moncivais
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA
- Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Shengjie Sun
- Department of Physics, The University of Texas at El Paso, El Paso, TX 79968, USA
- Computational Science Program, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Lin Li
- Department of Physics, The University of Texas at El Paso, El Paso, TX 79968, USA
- Computational Science Program, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Jonathon E. Mohl
- Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA
- Department of Mathematical Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Ming-Ying Leung
- Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA
- Computational Science Program, The University of Texas at El Paso, El Paso, TX 79968, USA
- Department of Mathematical Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Robert A. Kirken
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA
- Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Georgialina Rodriguez
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA
- Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA
| |
Collapse
|
46
|
Zacharchenko T, Dorendorf T, Locker N, Van Dijk E, Katzemich A, Diederichs K, Bullard B, Mayans O. PK1 from Drosophila obscurin is an inactive pseudokinase with scaffolding properties. Open Biol 2023; 13:220350. [PMID: 37121260 PMCID: PMC10129394 DOI: 10.1098/rsob.220350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 03/23/2023] [Indexed: 05/02/2023] Open
Abstract
Obscurins are large filamentous proteins with crucial roles in the assembly, stability and regulation of muscle. Characteristic of these proteins is a tandem of two C-terminal kinase domains, PK1 and PK2, that are separated by a long intrinsically disordered sequence. The significance of this conserved domain arrangement is unknown. Our study of PK1 from Drosophila obscurin shows that this is a pseudokinase with features typical of the CAM-kinase family, but which carries a minimalistic regulatory tail that no longer binds calmodulin or has mechanosensory properties typical of other sarcomeric kinases. PK1 binds ATP with high affinity, but in the absence of magnesium and lacks detectable phosphotransfer activity. It also has a highly diverged active site, strictly conserved across arthropods, that might have evolved to accommodate an unconventional binder. We find that PK1 interacts with PK2, suggesting a functional relation to the latter. These findings lead us to speculate that PK1/PK2 form a pseudokinase/kinase dual system, where PK1 might act as an allosteric regulator of PK2 and where mechanosensing properties, akin to those described for regulatory tails in titin-like kinases, might now reside on the unstructured interkinase segment. We propose that the PK1-interkinase-PK2 region constitutes an integrated functional unit in obscurin proteins.
Collapse
Affiliation(s)
- Thomas Zacharchenko
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Till Dorendorf
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Nicolas Locker
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Evert Van Dijk
- Biosynth B.V., Zuidersluisweg 2, 8243 RC Lelystad, The Netherlands
| | | | - Kay Diederichs
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | | | - Olga Mayans
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| |
Collapse
|
47
|
Zhang M, Liu Y, Jang H, Nussinov R. Strategy toward Kinase-Selective Drug Discovery. J Chem Theory Comput 2023; 19:1615-1628. [PMID: 36815703 PMCID: PMC10018734 DOI: 10.1021/acs.jctc.2c01171] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Kinase drug selectivity is the ground challenge in cancer research. Due to the structurally similar kinase drug pockets, off-target inhibitor toxicity has been a major cause for clinical trial failures. The pockets are similar but not identical. Here, we describe a transformation invariant protocol to identify distinct geometric features in the drug pocket that can distinguish one kinase from all others. We integrate available experimental structures with the artificial intelligence-based structural kinome, performing a kinome-wide structural bioinformatic analysis to establish the structural principles of kinase drug selectivity. We generate the structural landscape from the experimental kinase-ligand complexes and propose a binary network that encapsulates the information. The results show that all kinases contain binary units that are shared by less than seven other kinases in the kinome. 331 kinases contain unique binary units that may distinguish them from all others. The structural features encoded by these binary units in the network represent the inhibitor-accessible geometric space that may capture the kinome-wide selectivity. Our proposed binary network with the unsupervised clustering can serve as a general structural bioinformatic protocol for extracting the distinguishing structural features for any protein from their families. We apply the binary network to epidermal growth factor receptor tyrosine kinase inhibitor selectivity by targeting the gate area and the AKT1 serine/threonine kinase selectivity by binding to the αC-helix region and the allosteric pocket. Finally, we develop the cross-platform software, KDS (Kinase Drug Selectivity), for customized visualization and analysis of the binary networks in the human kinome (https://github.com/CBIIT/KDS).
Collapse
Affiliation(s)
- Mingzhen Zhang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Yonglan Liu
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States.,Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
48
|
Roskoski R. Deucravacitinib is an allosteric TYK2 protein kinase inhibitor FDA-approved for the treatment of psoriasis. Pharmacol Res 2023; 189:106642. [PMID: 36754102 DOI: 10.1016/j.phrs.2022.106642] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 12/31/2022] [Indexed: 02/09/2023]
Abstract
Psoriasis is a heterogeneous, inflammatory, autoimmune skin disease that affects up to 2% of the world's population. There are many treatment modalities including topical medicines, ultraviolet light therapy, monoclonal antibodies, and several oral medications. Cytokines play a central role in the pathogenesis of this disorder including TNF-α, (tumor necrosis factor-α) IL-17A (interleukin-17A), IL-17F, IL-22, and IL-23. Cytokine signaling involves transduction mediated by the JAK-STAT pathway. There are four JAKS (JAK1/2/3 and TYK2) and six STATS (signal transducer and activators of transcription). Janus kinases contain an inactive JH2 domain that is aminoterminal to the active JH1 domain. Under basal conditions, the JH2 domain inhibits the activity of the JH1 domain. Deucravacitinib is an orally effective N-trideuteromethyl-pyridazine derivative that targets and stabilizes the TYK2 JH2 domain and thereby blocks TYK2 JH1 activity. Seven other JAK inhibitors, which target the JAK family JH1 domain, are prescribed for the treatment of neoplastic and other inflammatory diseases. The use of deuterium in the trimethylamide decreases the rate of demethylation and slows the production of a metabolite that is active against a variety of targets in addition to TYK2. A second unique aspect in the development of deucravacitinib is the targeting of a pseudokinase domain. Deucravacitinib is rather specific for TYK2 and its toxic effects are much less than those of the other FDA-approved JAK inhibitors. The successful development of deucravacitinib may stimulate the development of additional pseudokinase ligands for the JAK family and for other kinase families as well.
Collapse
Affiliation(s)
- Robert Roskoski
- Blue Ridge Institute for Medical Research, 3754 Brevard Road, Suite 106, Box 19, Horse Shoe, NC 28742-8814, United States.
| |
Collapse
|
49
|
Caveney NA, Saxton RA, Waghray D, Glassman CR, Tsutsumi N, Hubbard SR, Garcia KC. Structural basis of Janus kinase trans-activation. Cell Rep 2023; 42:112201. [PMID: 36867534 PMCID: PMC10180219 DOI: 10.1016/j.celrep.2023.112201] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/09/2023] [Accepted: 02/16/2023] [Indexed: 03/04/2023] Open
Abstract
Janus kinases (JAKs) mediate signal transduction downstream of cytokine receptors. Cytokine-dependent dimerization is conveyed across the cell membrane to drive JAK dimerization, trans-phosphorylation, and activation. Activated JAKs in turn phosphorylate receptor intracellular domains (ICDs), resulting in the recruitment, phosphorylation, and activation of signal transducer and activator of transcription (STAT)-family transcription factors. The structural arrangement of a JAK1 dimer complex with IFNλR1 ICD was recently elucidated while bound by stabilizing nanobodies. While this revealed insights into the dimerization-dependent activation of JAKs and the role of oncogenic mutations in this process, the tyrosine kinase (TK) domains were separated by a distance not compatible with the trans-phosphorylation events between the TK domains. Here, we report the cryoelectron microscopy structure of a mouse JAK1 complex in a putative trans-activation state and expand these insights to other physiologically relevant JAK complexes, providing mechanistic insight into the crucial trans-activation step of JAK signaling and allosteric mechanisms of JAK inhibition.
Collapse
Affiliation(s)
- Nathanael A Caveney
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Robert A Saxton
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Deepa Waghray
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Caleb R Glassman
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA; Program in Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Naotaka Tsutsumi
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Stevan R Hubbard
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - K Christopher Garcia
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
50
|
Targeting Human Proteins for Antiviral Drug Discovery and Repurposing Efforts: A Focus on Protein Kinases. Viruses 2023; 15:v15020568. [PMID: 36851782 PMCID: PMC9966946 DOI: 10.3390/v15020568] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/22/2023] Open
Abstract
Despite the great technological and medical advances in fighting viral diseases, new therapies for most of them are still lacking, and existing antivirals suffer from major limitations regarding drug resistance and a limited spectrum of activity. In fact, most approved antivirals are directly acting antiviral (DAA) drugs, which interfere with viral proteins and confer great selectivity towards their viral targets but suffer from resistance and limited spectrum. Nowadays, host-targeted antivirals (HTAs) are on the rise, in the drug discovery and development pipelines, in academia and in the pharmaceutical industry. These drugs target host proteins involved in the virus life cycle and are considered promising alternatives to DAAs due to their broader spectrum and lower potential for resistance. Herein, we discuss an important class of HTAs that modulate signal transduction pathways by targeting host kinases. Kinases are considered key enzymes that control virus-host interactions. We also provide a synopsis of the antiviral drug discovery and development pipeline detailing antiviral kinase targets, drug types, therapeutic classes for repurposed drugs, and top developing organizations. Furthermore, we detail the drug design and repurposing considerations, as well as the limitations and challenges, for kinase-targeted antivirals, including the choice of the binding sites, physicochemical properties, and drug combinations.
Collapse
|