1
|
Correia CM, Præstholm SM, Havelund JF, Pedersen FB, Siersbæk MS, Ebbesen MF, Gerhart-Hines Z, Heeren J, Brewer J, Larsen S, Blagoev B, Færgeman NJ, Grøntved L. Acute Deletion of the Glucocorticoid Receptor in Hepatocytes Disrupts Postprandial Lipid Metabolism in Male Mice. Endocrinology 2023; 164:bqad128. [PMID: 37610219 DOI: 10.1210/endocr/bqad128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/09/2023] [Accepted: 08/21/2023] [Indexed: 08/24/2023]
Abstract
Hepatic lipid metabolism is highly dynamic, and disruption of several circadian transcriptional regulators results in hepatic steatosis. This includes genetic disruption of the glucocorticoid receptor (GR) as the liver develops. To address the functional role of GR in the adult liver, we used an acute hepatocyte-specific GR knockout model to study temporal hepatic lipid metabolism governed by GR at several preprandial and postprandial circadian timepoints. Lipidomics analysis revealed significant temporal lipid metabolism, where GR disruption results in impaired regulation of specific triglycerides, nonesterified fatty acids, and sphingolipids. This correlates with increased number and size of lipid droplets and mildly reduced mitochondrial respiration, most noticeably in the postprandial phase. Proteomics and transcriptomics analyses suggest that dysregulated lipid metabolism originates from pronounced induced expression of enzymes involved in fatty acid synthesis, β-oxidation, and sphingolipid metabolism. Integration of GR cistromic data suggests that induced gene expression is a result of regulatory actions secondary to direct GR effects on gene transcription.
Collapse
Affiliation(s)
- Catarina Mendes Correia
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark
| | - Stine Marie Præstholm
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark
| | - Jesper Foged Havelund
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark
| | - Felix Boel Pedersen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark
| | - Majken Storm Siersbæk
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark
| | - Morten Frendø Ebbesen
- DaMBIC, Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark
| | - Zach Gerhart-Hines
- Novo Nordisk Foundation Center for Basic Metabolic Research (CBMR), Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Joerg Heeren
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jonathan Brewer
- DaMBIC, Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark
| | - Steen Larsen
- Xlab, Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Blagoy Blagoev
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark
| | - Nils Joakim Færgeman
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark
| | - Lars Grøntved
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark
| |
Collapse
|
2
|
Demori I, Grasselli E. The Role of the Stress Response in Metabolic Dysfunction-Associated Fatty Liver Disease: A Psychoneuroendocrineimmunology-Based Perspective. Nutrients 2023; 15:nu15030795. [PMID: 36771500 PMCID: PMC9921904 DOI: 10.3390/nu15030795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/17/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
The novel term metabolic dysfunction-associated fatty liver disease (MAFLD), which has been proposed to describe the major cause of hepatic disease, pinpoints the coexistence of multiple metabolic disturbances and liver steatosis, giving rise to different phenotypic manifestations. Within the psychoneuroendocrineimmunological (PNEI) network that regulates body-mind interactions, the stress response plays a pervasive role by affecting metabolic, hormonal, immune, and behavioral balance. In this perspective, we focus on chronic psychosocial stress and high levels of cortisol to highlight their role in MAFLD pathogenesis and worsening. From a PNEI perspective, considering the stress response as a therapeutic target in MAFLD allows for simultaneously influencing multiple pathways in the development of MAFLD, including dysmetabolism, inflammation, feeding behaviors, gut-liver axis, and dysbiosis, with the hope of better outcomes.
Collapse
|
3
|
Alessi J, de Oliveira GB, Schaan BD, Telo GH. Dexamethasone in the era of COVID-19: friend or foe? An essay on the effects of dexamethasone and the potential risks of its inadvertent use in patients with diabetes. Diabetol Metab Syndr 2020; 12:80. [PMID: 32922517 PMCID: PMC7476640 DOI: 10.1186/s13098-020-00583-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 08/18/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The disclosure in the media of a benefit with the use of dexamethasone in patients with COVID-19 infection sets precedents for self-medication and inappropriate use of corticosteroids. METHODS This is a critical interpretive synthesis of the data available in the literature on the effects of the use of corticosteroids and the impact that their indiscriminate use may have on patients with diabetes. Reviews and observational and experimental studies published until June 18, 2020 were selected. RESULTS Corticosteroids are substances derived from cholesterol metabolism that interfere with multiple aspects of glucose homeostasis. Interactions between corticoid receptors and target genes seem to be among the mechanisms responsible for the critical functions of glucocorticoids for survival and anti-inflammatory effects observed with these medications. Corticosteroids increase hepatic gluconeogenesis, reduce peripheral use of glucose and increase insulin levels. Previous studies have shown that glucocorticoids have a pro-adipogenic function, increasing deposition of abdominal fat, and lead to glucose intolerance and hypertriglyceridemia. In addition, these drugs play a role in controlling liver metabolism and can lead to the development of hepatic steatosis. Glucocorticoids reduce the recruitment of osteoblasts and increase the number of osteoclasts, which results in increased bone resorption and greater bone fragility. Moreover, these medications cause water and sodium retention and increase the response to circulating vasoconstrictors, which results in increased blood pressure levels. Chronic or high-dose use of corticosteroids can, by itself, lead to the onset of diabetes. For those who were already diagnosed with diabetes, studies show that chronic use of corticosteroids leads to a 94% higher risk of hospitalization due to diabetes complications. In addition to the direct effects on glycemic control, the effects on arterial pressure control, lipids and bone metabolism also have a potential for severe consequences in patients with diabetes. CONCLUSION Fear and uncertainty toward a potentially serious infection may lead people to self-medication and the inappropriate and abusive use of corticosteroids. More than ever, it is necessary for health professionals to be alert and able to predict damages related to the use of these drugs, which is the first step to minimize the potential damages to come.
Collapse
Affiliation(s)
- Janine Alessi
- Medical Science Program: Endocrinology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Internal Medicine Department, Hospital São Lucas-Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
- Endocrinology Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Giovana B. de Oliveira
- School of Medicine, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Beatriz D. Schaan
- Medical Science Program: Endocrinology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- School of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Endocrinology Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- National Institute of Science and Technology for Health Technology Assessment (IATS), CNPq, Porto Alegre, Brazil
| | - Gabriela H. Telo
- Internal Medicine Department, Hospital São Lucas-Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
- School of Medicine, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
- National Institute of Science and Technology for Health Technology Assessment (IATS), CNPq, Porto Alegre, Brazil
- Medicine and Health Sciences Program, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
4
|
Harasim-Symbor E, Konstantynowicz-Nowicka K, Chabowski A. Additive effects of dexamethasone and palmitate on hepatic lipid accumulation and secretion. J Mol Endocrinol 2016; 57:261-273. [PMID: 27707773 DOI: 10.1530/jme-16-0108] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 09/20/2016] [Indexed: 01/03/2023]
Abstract
Synthetic and natural glucocorticoids are able to highly modify liver lipid metabolism, which is possibly associated with nonalcoholic fatty liver disease development. We have assessed the changes in lipid and sphingolipid contents in hepatocytes, lipid composition and saturation status as well as the expression of proteins involved in fatty acid transport after both dexamethasone and palmitate treatments. The experiments were conducted on primary rat hepatocytes, incubated with dexamethasone and/or palmitic acid during short (16 h) and prolonged (40 h) exposure. Intracellular and extracellular lipid and sphingolipid contents were assessed by gas liquid chromatography and high-performance liquid chromatography, respectively. The expression of selected proteins was estimated by Western blotting. Short and prolonged exposure to dexamethasone combined with palmitic acid resulted in increased expression of fatty acid transporters, which was subsequently reflected by excessive intracellular accumulation of triacylglycerols and ceramide. The expression of microsomal transfer protein and cassette transporter was also significantly increased after dexamethasone and palmitate treatment, which was in accordance with elevated extracellular lipid and sphingolipid contents. Our data showed additive effects of dexamethasone and palmitate on protein-dependent fatty acid uptake in primary hepatocytes, resulting in the increased accumulation of triacylglycerols and sphingolipids. Moreover, the combined treatment altered fatty acid composition and diminished triacylglycerols desaturation index. Importantly, we observed that additive effects on both increased microsomal transport protein expression as well as elevated export of triacylglycerols, which may be relevant as a liver protective mechanism.
Collapse
Affiliation(s)
- Ewa Harasim-Symbor
- Department of PhysiologyMedical University of Bialystok, Białsytok, Podlaskie, Poland
| | | | - Adrian Chabowski
- Department of PhysiologyMedical University of Bialystok, Białsytok, Podlaskie, Poland
| |
Collapse
|
5
|
Woods CP, Hazlehurst JM, Tomlinson JW. Glucocorticoids and non-alcoholic fatty liver disease. J Steroid Biochem Mol Biol 2015; 154:94-103. [PMID: 26241028 DOI: 10.1016/j.jsbmb.2015.07.020] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 07/28/2015] [Accepted: 07/29/2015] [Indexed: 12/12/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the hepatic manifestation of the global obesity and metabolic disease epidemic and is rapidly becoming the leading cause of liver cirrhosis and indication for liver transplantation worldwide. The hallmark pathological finding in NAFLD is excess lipid accumulation within hepatocytes, but it is a spectrum of disease ranging from benign hepatic steatosis to steatohepatitis through to fibrosis, cirrhosis and risk of hepatocellular carcinoma. The exact pathophysiology remains unclear with a multi-hit hypothesis generally accepted as being required for inflammation and fibrosis to develop after initial steatosis. Glucocorticoids have been implicated in the pathogenesis of NAFLD across all stages. They have a diverse array of metabolic functions that have the potential to drive NAFLD acting on both liver and adipose tissue. In the fasting state, they are able to mobilize lipid, increasing fatty acid delivery and in the fed state can promote lipid accumulation. Their action is controlled at multiple levels and in this review will outline the evidence base for the role of GCs in the pathogenesis of NAFLD from cell systems, rodent models and clinical studies and describe interventional strategies that have been employed to modulate glucocorticoid action as a potential therapeutic strategy.
Collapse
Affiliation(s)
- Conor P Woods
- Oxford Centre for Diabetes Endocrinology & Metabolism (OCDEM), Churchill Hospital, Headington, Oxford, OX3 7LJ, UK
| | - Jonathon M Hazlehurst
- Oxford Centre for Diabetes Endocrinology & Metabolism (OCDEM), Churchill Hospital, Headington, Oxford, OX3 7LJ, UK
| | - Jeremy W Tomlinson
- Oxford Centre for Diabetes Endocrinology & Metabolism (OCDEM), Churchill Hospital, Headington, Oxford, OX3 7LJ, UK.
| |
Collapse
|
6
|
Abstract
Glucocorticoids (GCs) and their cognate, intracellular receptor, the glucocorticoid receptor (GR) have been characterized as critical checkpoints in the hormonal control of energy homeostasis in mammals. Whereas physiological levels of GCs are required for proper metabolic control, aberrant GC action has been linked to a variety of severe metabolic diseases, including type 2 diabetes and obesity. As a member of the nuclear receptor superfamily of transcription factors, the GR translocates into the cell nucleus upon GC binding where it serves as a transcriptional regulator of distinct GC-responsive target genes that are in many cases associated with lipid regulatory pathways and thereby intricately control both physiological and pathophysiological systemic lipid homeostasis. Thus, this chapter focuses on the current knowledge of GC/GR function in lipid handling and its implications for systemic metabolic dysfunction.
Collapse
|
7
|
Wang JC, Gray NE, Kuo T, Harris CA. Regulation of triglyceride metabolism by glucocorticoid receptor. Cell Biosci 2012; 2:19. [PMID: 22640645 PMCID: PMC3419133 DOI: 10.1186/2045-3701-2-19] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 05/28/2012] [Indexed: 12/11/2022] Open
Abstract
Glucocorticoids are steroid hormones that play critical and complex roles in the regulation of triglyceride (TG) homeostasis. Depending on physiological states, glucocorticoids can modulate both TG synthesis and hydrolysis. More intriguingly, glucocorticoids can concurrently affect these two processes in adipocytes. The metabolic effects of glucocorticoids are conferred by intracellular glucocorticoid receptors (GR). GR is a transcription factor that, upon binding to glucocorticoids, regulates the transcriptional rate of specific genes. These GR primary target genes further initiate the physiological and pathological responses of glucocorticoids. In this article, we overview glucocorticoid-regulated genes, especially those potential GR primary target genes, involved in glucocorticoid-regulated TG metabolism. We also discuss transcriptional regulators that could act with GR to participate in these processes. This knowledge is not only important for the fundamental understanding of steroid hormone actions, but also are essential for future therapeutic interventions against metabolic diseases associated with aberrant glucocorticoid signaling, such as insulin resistance, dyslipidemia, central obesity and hepatic steatosis.
Collapse
Affiliation(s)
- Jen-Chywan Wang
- Department of Nutritional Science & Toxicology, University of California at Berkeley, Berkeley, CA, 94720, USA.
| | | | | | | |
Collapse
|
8
|
Grunnet N, Tygstrup N, Dich J. Autoprotection against acetaminophen toxicity in cultured rat hepatocytes: the effect of pretreatment and growth factors. PHARMACOLOGY & TOXICOLOGY 2003; 93:135-41. [PMID: 12969438 DOI: 10.1034/j.1600-0773.2003.930305.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
To evaluate the effect of acetaminophen pretreatment and growth factors on acetaminophen hepatotoxicity in cultured rat hepatocytes, rat hepatocytes in primary culture were exposed to acetaminophen 8 mM after pretreatment with either acetaminophen 1 mM, treatment with growth factors (EGF and HGF), or no treatment. Growth response was measured by changes in DNA, [3H]thymidine incorporation and mRNA of growth related proteins, cell damage by leakage of LDH to the medium and changes in ATP, and protection against toxicity by changes in glutathione, cytochrome p450 and the expression of glutathione-S-transferase and Cyp1A2. Pretreatment with acetaminophen induced growth response, weaker than that of growth factors, but pretreatment and growth factors reduced cell damage equally effectively. Glutathione and glutathione-S-transferase increased more by growth factors than by pretreatment, but both conditions reduced Cyp1A2 to near zero. Pretreatment and growth factors protect against acetaminophen toxicity by suppressing the expression of Cyp1A2, thereby reducing the production of the intermediate N-acetyl-p-benzoquinone imine (NAPQI). Suppression of Cyp1A2 expression by pretreatment is assumed to be due to a growth-stimulating effect of low concentrations of acetaminophen.
Collapse
Affiliation(s)
- Niels Grunnet
- Department of Medical Biochemistry and Genetics, University of Copenhagen, Panum Institute, Copenhagen, Denmark.
| | | | | |
Collapse
|
9
|
Carrasco MP, Segovia JL, Marco C. Incorporation of exogenous precursors into neutral lipids and phospholipids in rat hepatocytes: effect of ethanol in vitro. Biochem Pharmacol 1998; 56:1639-44. [PMID: 9973185 DOI: 10.1016/s0006-2952(98)00230-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We studied the incorporation of different radioactively labeled exogenous substrates into the lipids of rat hepatocytes previously incubated with ethanol. Glycerol, oleate, and serine were all incorporated into neutral lipids to a significantly greater degree in the presence of ethanol, the increase in radioactivity in the triacylglycerol fraction being quite substantial. A similar ethanol-induced increase was found in the incorporation of these substrates into the various phospholipids. This lipogenic activity did not occur when the metabolism of ethanol was blocked by 4-methylpyrazole, an inhibitor of hepatic ADH (alcohol:NAD+ oxidoreductase, EC 1.1.1.1) activity, thus demonstrating that one of the initial effects of ethanol on lipid biosynthesis was mediated by some products of its metabolism in the liver. The only alteration that persisted in the presence of 4-methylpyrazole was an inhibitory effect on the esterification of free cholesterol from oleate, suggesting that ethanol specifically inhibits hepatic ACAT (acyl CoA:cholesterol O-acyltransferase, EC 2.3.1.26) activity.
Collapse
Affiliation(s)
- M P Carrasco
- Department of Biochemistry and Molecular Biology, Faculty of Sciences, University of Granada, Spain
| | | | | |
Collapse
|
10
|
Hvattum E, Grav HJ, Bremer J. Hormonal and substrate regulation of 3-thia fatty acid metabolism in Morris 7800 C1 hepatoma cells. Biochem J 1993; 294 ( Pt 3):917-21. [PMID: 8379945 PMCID: PMC1134549 DOI: 10.1042/bj2940917] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The 3-thia fatty acid tetradecylthioacetic acid (TTA) has recently been shown to inhibit growth rate and increase peroxisomal acyl-CoA oxidase (ACO) (EC 1.3.99.3) activity in the Morris 7800 C1 hepatoma cells. Dexamethasone potentiates and insulin antagonizes these effects of TTA. We demonstrate here the metabolism of the 3-thia acids in these cells and the influence of insulin and dexamethasone on this. (1) The Morris 7800 C1 hepatoma cells exhibited a low omega-hydroxylation activity of the 3-thia acid (and lauric acid). The combination of TTA and dexamethasone induced the omega-hydroxylation and ACO activities in these cells. TTA alone induced ACO activity, but not omega-hydroxylation activity. Insulin counteracted the induction of both enzyme activities. These results indicate that these two enzyme activities are under similar but independent regulation. (2) Hepatoma cells grown with 80 microM TTA in the medium accumulated phospholipids containing the 3-thia fatty acid. After 7 days, TTA accounted for approx. 40% of the total fatty acids in the phospholipids. In addition, TTA affected the incorporation of endogenous fatty acids into phospholipids by decreasing the amounts of palmitic (C16:0) and vaccenic (C18:1(n-7)) acid and increasing the amounts of linoleic (C18:2(n-6)) and alpha-linolenic (C18:3(n-3)) acid in the phospholipids. (3) Dexamethasone increased the incorporation of labelled TTA into both phospholipids and triacylglycerol. Most of the labelled triacylglycerol formed was secreted into the medium. Insulin increased the incorporation of labelled TTA into triacylglycerol, but not into phospholipids. The labelled triacylglycerol formed was retained in the cells.
Collapse
|
11
|
Lieber CS. Aetiology and pathogenesis of alcoholic liver disease. BAILLIERE'S CLINICAL GASTROENTEROLOGY 1993; 7:581-608. [PMID: 8219401 DOI: 10.1016/0950-3528(93)90003-b] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Until the 1960s, liver disease of the alcoholic patient was attributed exclusively to dietary deficiencies. Since then, however, our understanding of the impact of alcoholism on nutritional status has undergone a progressive evolution. Alcohol, because of its high energy content, was at first perceived to act exclusively as 'empty calories' displacing other nutrients in the diet, and causing primary malnutrition through decreased intake of essential nutrients. With improvement in the overall nutrition of the population, the role of primary malnutrition waned and secondary malnutrition was emphasized as a result of a better understanding of maldigestion and malabsorption caused by chronic alcohol consumption and various diseases associated with chronic alcoholism. At the same time, the concept of the direct toxicity of alcohol came to the forefront as an explanation for the widespread cellular injury. Some of the hepatotoxicity was found to result from the metabolic disturbances associated with the oxidation of ethanol via the liver alcohol dehydrogenase (ADH) pathway and the redox changes produced by the generated NADH, which in turn affects the metabolism of lipids, carbohydrates, proteins and purines. Exaggeration of the redox change by the relative hypoxia which prevails physiologically in the perivenular zone contributes to the exacerbation of the ethanol-induced lesions in zone 3. In addition to ADH, ethanol can be oxidized by liver microsomes: studies over the last twenty years have culminated in the molecular elucidation of the ethanol-inducible cytochrome P450IIE1 (CYP2E1) which contributes not only to ethanol metabolism and tolerance, but also to the selective hepatic perivenular toxicity of various xenobiotics. Their activation by CYP2E1 now provides an understanding for the increased susceptibility of the heavy drinker to the toxicity of industrial solvents, anaesthetic agents, commonly prescribed drugs, 'over the counter' analgesics, chemical carcinogens and even nutritional factors such as vitamin A. Ethanol causes not only vitamin A depletion but it also enhances its hepatotoxicity. Furthermore, induction of the microsomal pathway contributes to increased acetaldehyde generation, with formation of protein adducts, resulting in antibody production, enzyme inactivation and decreased DNA repair; it is also associated with a striking impairment of the capacity of the liver to utilize oxygen. Moreover, acetaldehyde promotes glutathione depletion, free-radical mediated toxicity and lipid peroxidation. In addition, acetaldehyde affects hepatic collagen synthesis: both in vivo and in vitro (in cultured myofibroblasts and lipocytes), ethanol and its metabolite acetaldehyde were found to increase collagen accumulation and mRNA levels for collagen. This new understanding of the pathogenesis of alcoholic liver disease may eventually improve therapy with drugs and nutrients.
Collapse
|
12
|
Affiliation(s)
- C A Seymour
- Department of Clinical Biochemistry and Metabolism, St George's Hospital Medical School, London, UK
| | | |
Collapse
|
13
|
Guery C, Stepniewski J, Vannier B, Fournex R, Lorenzon G. Long-term culture of rat hepatocytes on porous membranes in hormonally defined serum-free medium. Toxicol In Vitro 1993; 7:453-9. [DOI: 10.1016/0887-2333(93)90046-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
14
|
Guzmán M, Geelen MJ. Regulation of fatty acid oxidation in mammalian liver. BIOCHIMICA ET BIOPHYSICA ACTA 1993; 1167:227-41. [PMID: 8097629 DOI: 10.1016/0005-2760(93)90224-w] [Citation(s) in RCA: 86] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- M Guzmán
- Department of Biochemistry and Molecular Biology I, Faculty of Chemistry, Complutense University, Madrid, Spain
| | | |
Collapse
|
15
|
Stapleton SR, Stevens GJ, Teel JF, Rank KB, Berg EA, Wu JY, Ginsberg LC, Kletzien RF. Effects of acetaldehyde on glucose-6-phosphate dehydrogenase activity and mRNA levels in primary rat hepatocytes in culture. Biochimie 1993; 75:971-6. [PMID: 8123704 DOI: 10.1016/0300-9084(93)90147-k] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Ethanol has been shown to induce the activity of glucose-6-phosphate dehydrogenase (G6PDH). To clarify the mechanism behind this induction, we examined the role of acetaldehyde (AA), the first product of ethanol metabolism. In primary adult rat hepatocytes maintained in chemically defined medium, we examined the effect of AA on G6PDH activity, mRNA levels and lipid synthesis. We observe a 40% increase in G6PDH activity and a similar increase in mRNA levels, following exposure to 100 microM AA. The increase in activity was found to be maximal at 24 h while mRNA levels increased over controls as early as 3 h. The induction in G6PDH by AA was found to occur at lower concentrations and earlier time points than those reported using ethanol. The role of insulin, a known inducer of G6PDH activity was studied alone and in combination with AA on both G6PDH activity and mRNA levels as well as lipid biosynthesis. Insulin (300 ng/ml) was found to increase G6PDH activity, mRNA levels and [14C]-acetate incorporation into lipid. It was also shown to have an additive effect with AA on G6PDH activity, suggesting their actions are mediated via different mechanistic pathways. No change in [14C]-acetate incorporation into lipid, however, was observed with acetaldehyde alone.
Collapse
Affiliation(s)
- S R Stapleton
- Department of Biological Sciences, Western Michigan University, Kalamazoo 49008
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Petersen KF, Grunnet N. Gluconeogenesis in hepatocytes determined with [2-13C]acetate and quantitative 13C NMR spectroscopy. THE INTERNATIONAL JOURNAL OF BIOCHEMISTRY 1993; 25:1-5. [PMID: 8432377 DOI: 10.1016/0020-711x(93)90482-t] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
1. In the present study the major metabolic pathways of glucose metabolism were determined in isolated liver cells using [2-13C]acetate and 13C magnetic resonance spectroscopy. 2. The relative reaction rates of glucose synthesis to the TCA cycle were determined from the 13C distribution in glucose where the overall 13C enrichment of glucose was 6.41 +/- 1.94% (mean +/- SD; n = 6) and the mean 13C enrichment of C1, C2, C5, C6 to C3, C4 was 2.63 +/- 0.30. 3. Since the distribution of tracer in glucose is a function of the relative entry rates of pyruvate to acetyl-CoA into the oxaloacetate pool this was calculated to be 0.32 +/- 0.15 and the factor for carbon exchange (1/P) between the gluconeogenic pathway and the TCA cycle was calculated to be 1.03 +/- 0.20. 4. With this carbon exchange factor and the approximated 13C enrichment of acetyl-CoA the intramitochondrial 13C enrichment of phosphoenolpyruvate was calculated and the "true" rate of hepatic gluconeogenesis from phosphoenolpyruvate estimated. 5. Since acetate was metabolized solely in liver cells the 13C enrichment of acetyl-CoA could be approximated from that of 3-hydroxybutyrate. 6. The carbon 13 enrichment of 3-hydroxybutyrate and phosphoenolpyruvate was 5.89 +/- 0.90% and 5.96 +/- 1.67%, respectively. 7. The per cent gluconeogenesis from phosphoenolpyruvate calculated as the ratio of the 13C enrichment of glucose to that of 3-hydroxybutyrate times 1/P was 107 +/- 8%.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- K F Petersen
- Department of Biochemistry A, University of Copenhagen, Denmark
| | | |
Collapse
|
17
|
Tam SP. Effect of ethanol on lipoprotein secretion in two human hepatoma cell lines, HepG2 and Hep3B. Alcohol Clin Exp Res 1992; 16:1021-8. [PMID: 1335218 DOI: 10.1111/j.1530-0277.1992.tb00693.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The two human hepatoma cell lines, HepG2 and Hep3B, have been demonstrated to metabolize ethanol efficiently even in the absence of alcohol dehydrogenase. By using specific metabolic inhibitors, it was found that the microsomal ethanol-oxidizing system (MEOS) plays a significant role in ethanol metabolism in these two cell lines. There is a strong positive correlation between the rates of ethanol metabolism and the total cytochrome P-450 levels in the hepatoma cells. The involvement of the cytochrome P-450 system was further supported by the induction of aniline p-hydroxylase activity after ethanol treatment. However, the 3- to 4-fold elevation in aniline p-hydroxylase activity was not accompanied by an increase in cytochrome P450IIE1 mRNA level. Exposure of HepG2 and Hep3B cells to ethanol resulted in an increase of accumulation of apoA-I (15%-45% over control) in a dose-dependent manner (from 5 to 50 mM) of ethanol over a 24-hr period. All other major apolipoproteins which included apo CII, apo CIII and apoE, with the exception of apoB, were not affected by these treatments. At a concentration of ethanol of 25 mM or greater, accumulation of apoB, VLDL and LDL triglyceride were increased by 20% to 25% over the control level. Elevation of HDL cholesterol (40%-70% over control) was observed when the cells were exposed to an ethanol concentration of > or = 10 mM. Metyrapone, which inhibited the MEOS, was capable of blocking the induction of apoAI caused by ethanol treatment.
Collapse
Affiliation(s)
- S P Tam
- Department of Biochemistry, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
18
|
Byrne CD, Wang TW, Hales CN. Control of Hep G2-cell triacylglycerol and apolipoprotein B synthesis and secretion by polyunsaturated non-esterified fatty acids and insulin. Biochem J 1992; 288 ( Pt 1):101-7. [PMID: 1332692 PMCID: PMC1132085 DOI: 10.1042/bj2880101] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Non-esterified fatty acids (NEFAs) and insulin are important factors in the control of lipoprotein secretion, but the mechanism of action is unclear. The present study was undertaken to determine whether insulin and NEFAs modulated hepatic secretion of triacylglycerol and apolipoprotein B (apo-B) by regulation of hepatic intracellular apo-B content. The experiments were performed with the human hepatoblastoma cell line Hep G2, for periods of up to 72 h in the presence and absence of NEFAs and insulin. Higher concentrations of eicosapentanoate (EPA) sustained for 72 h decreased cellular protein content (at 250 microM) or caused cell death (at 750 microM), and this effect was not observed with the other NEFAs studied, whereas 75 microM-EPA did not affect cell viability. Compared with the absence of NEFA, 75 microM-EPA did not alter the intracellular triacylglycerol content, but decreased the intracellular content of apo-B by 47% (P < 0.01) and decreased secreted triacylglycerol and secreted apo-B by 13% (P < 0.05) and 21% (P < 0.01) respectively, after 72 h. However 250 microM-oleate increased the intracellular triacylglycerol by 36% (P < 0.01), intracellular apo-B by 22% (P < 0.05) and secreted triacylglycerol and apo-B by 20-30% (P < 0.05-0.01). Insulin decreased secreted triacylglycerol and apo-B in the presence of each NEFA studied by 20-30%. There was no correlation between the changes in intracellular triacylglycerol and the rate of secretion. However, when the secreted triacylglycerol or apo-B was plotted against intracellular apo-B content a significant correlation was observed (r = 0.89, P < 0.001 for both analyses). Apo-B mRNA levels did not change after 72 h incubation with oleate or EPA. These results demonstrate that EPA can be toxic to hepatocytes and that NEFAs and insulin control secretion of triacylglycerol and apo-B by regulation of the intracellular apo-B concentration, thus controlling assembly of apo-B with triacylglycerol to form lipoproteins.
Collapse
Affiliation(s)
- C D Byrne
- University Department of Clinical Biochemistry, Addenbrookes Hospital, Cambridge, U.K
| | | | | |
Collapse
|
19
|
Vind C, Dich J, Grunnet N. Regulation by growth hormone and glucocorticoid of testosterone metabolism in long-term cultures of hepatocytes from male and female rats. Biochem Pharmacol 1992; 44:1523-8. [PMID: 1417977 DOI: 10.1016/0006-2952(92)90467-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The activities of 2-, 6 beta-, 7 alpha- and 16 alpha-testosterone hydroxylase and 5 alpha-testosterone reductase were measured in intact hepatocytes from male and female rats cultured for 8 days in a modified Waymouth medium supplemented with 0.1 or 1.0 microM dexamethasone with or without addition of 1 microgram/mL growth hormone. During culture of hepatocytes from female rats the activity of the male-specific 16 alpha-testosterone hydroxylase increased. This increase was significantly inhibited at day 8 by 1 microM dexamethasone as well as by growth hormone. Furthermore, in cultures of hepatocytes from male rats, the activity of the constitutive 16 alpha-testosterone hydroxylase was decreased by 1 microM dexamethasone as well as by growth hormone. The induction of 6 beta-testosterone hydroxylase by dexamethasone was suppressed by growth hormone in hepatocytes from both male and female rats, while the 7 alpha-testosterone hydroxylase activity was unaffected by culture time, hormone additions and gender. The decrease in female-specific 5 alpha-reductase activity with culture time in hepatocytes from female rats was significantly attenuated by growth hormone at 0.1 microM dexamethasone. The effects of growth hormone on testosterone hydroxylase activities in hepatocyte cultures from male and female rats are in accordance with the concept of growth hormone as a "feminization signal". The results suggest that the glucocorticoid-dependent expression of the male constitutive 16 alpha-hydroxylase requires periods of low levels of growth hormone.
Collapse
Affiliation(s)
- C Vind
- Department of Biological Sciences, Royal Danish School of Pharmacy, Copenhagen
| | | | | |
Collapse
|
20
|
Byrne CD, Brindle NP, Wang TW, Hales CN. Interaction of non-esterified fatty acid and insulin in control of triacylglycerol secretion by Hep G2 cells. Biochem J 1991; 280 ( Pt 1):99-104. [PMID: 1660268 PMCID: PMC1130605 DOI: 10.1042/bj2800099] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The role of insulin in the regulation of plasma triacylglycerol is poorly understood. Conflicting actions of insulin on rat liver cells have been reported, insulin inhibiting triacylglycerol secretion in short incubations (less than 24 h) and stimulating triacylglycerol secretion in longer incubations (48-72 h). The present study was undertaken to examine regulation of triacylglycerol secretion by insulin and investigate the interaction between insulin and non-esterified fatty acid over 72 h in human hepatoblastoma (Hep G2) cells. Insulin inhibited triacylglycerol secretion throughout the 72 h period. The inhibition increased from 66% in the first 24 h to 88% in the final 24 h. Increasing the initial concentration of oleic acid from 200 microM to 1000 microM resulted in a 358% increase in triacylglycerol secretion and a 712% increase in accumulation over 24 h. Oleic acid uptake by the cells was rapid, with only 2.4% of the initial concentration (500 microM) remaining after 24 h. Supplementation of the medium with oleic acid to maintain the concentration between 750 microM and 1000 microM throughout a 5 h period resulted in a 350% increase in triacylglycerol secretion. Supplementation also decreased the insulin-induced inhibition of triacylglycerol secretion (18.2 to 7.8%; P less than 0.001). These results demonstrate that there is not a biphasic action of insulin on triacylglycerol secretion by Hep G2 cells. Experiments of this nature have not previously taken into account the rapid uptake of non-esterified fatty acid by hepatocytes and have consequently underestimated the effect of a sustained concentration on triacylglycerol metabolism. Oleic acid is therefore an even more potent stimulus to triacylglycerol synthesis and secretion than has previously been recognized. In addition, in the presence of a sustained increase in oleic acid concentration, there is a decrease in the action of insulin to inhibit triacylglycerol secretion.
Collapse
Affiliation(s)
- C D Byrne
- University Department of Clinical Biochemistry, Addenbrooke's Hospital, Cambridge, U.K
| | | | | | | |
Collapse
|
21
|
Abstract
In contrast to water-soluble fuels such as glucose or ketone bodies, the use of lipids as an energy source for tissues has required the development of complex structures for their transport through the aqueous plasma. In the case of endogenously synthesized triacylglycerol this is achieved by the assembly and secretion of hepatic VLDL which provides the necessary stability in an aqueous medium. An essential component of this assembly process is apo B. Dietary changes which require an increase in hepatic VLDL secretion appear to be accompanied by increases in the availability of functional apo B. Interesting questions relate to: (a) the intracellular site(s) of triacylglycerol association with apo B, and (b) the mechanism(s) by which the availability of functional apo B at this site responds to metabolic and hormonal signals which reflect dietary status and, thus, the need to secrete triacylglycerol. As regards the latter, although in some cases changes in apo B synthesis occur in response to VLDL secretion hepatic apo B mRNA levels appear to be quite stable in vitro. Intracellular switching of apo B between the secretory and degradative pathways may be important in controlling VLDL assembly and post-translational modifications of the apoprotein may also play a role by influencing its ability to bind to triacylglycerol. Transport is not the only problem associated with the utilization of a concentrated energy source such as triacylglycerol and the complex problems of waste product disposal and recycling have to be dealt with. In the case of triacylglycerol, potentially toxic waste products include atherogenic remnants and LDL. The overall problem, then, in the long-term, involves the development of a 'safe' means of utilizing triacylglycerol and this requirement accounts for much of the complexity of plasma lipoprotein metabolism. In this area, the rat could teach the human a few tricks. One of these appears to be the utilization of hepatic apo B48 rather than apo B100 for VLDL assembly in response to increases in the extrahepatic utilization of hepatically synthesized triacylglycerol. Under these conditions, the remnants of hepatic triacylglycerol utilization by peripheral tissues are cleared from the plasma much more readily via a process which seems to involve the cycling of more triacylglycerol back to the liver than that which occurs in humans. The means by which this is achieved, though, are obscure and may involve a chylomicron remnant receptor, the nature of which, itself, remains controversial.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- G F Gibbons
- Nuffield Department of Clinical Medicine, Radcliffe Infirmary, Oxford, U.K
| |
Collapse
|
22
|
Thastrup O, Cullen PJ, Drøbak BK, Hanley MR, Dawson AP. Thapsigargin, a tumor promoter, discharges intracellular Ca2+ stores by specific inhibition of the endoplasmic reticulum Ca2(+)-ATPase. Proc Natl Acad Sci U S A 1990; 87:2466-70. [PMID: 2138778 PMCID: PMC53710 DOI: 10.1073/pnas.87.7.2466] [Citation(s) in RCA: 2538] [Impact Index Per Article: 74.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Thapsigargin, a tumor-promoting sesquiterpene lactone, discharges intracellular Ca2+ in rat hepatocytes, as it does in many vertebrate cell types. It appears to act intracellularly, as incubation of isolated rat liver microsomes with thapsigargin induces a rapid, dose-dependent release of stored Ca2+. The thapsigargin-releasable pool of microsomal Ca2+ includes the pools sensitive to inositol 1,4,5-trisphosphate and GTP. Thapsigargin pretreatment of microsomes blocks subsequent loading with 45Ca2+, suggesting that its target is the ATP-dependent Ca2+ pump of endoplasmic reticulum. This hypothesis is strongly supported by the demonstration that thapsigargin causes a rapid inhibition of the Ca2(+)-activated ATPase activity of rat liver microsomes, with an identical dose dependence to that seen in whole cell or isolated microsome Ca2+ discharge. The inhibition of the endoplasmic reticulum isoform of the Ca2(+)-ATPase is highly selective, as thapsigargin has little or no effect on the Ca2(+)-ATPases of hepatocyte or erythrocyte plasma membrane or of cardiac or skeletal muscle sarcoplasmic reticulum. These results suggest that thapsigargin increases the concentration of cytosolic free Ca2+ in sensitive cells by an acute and highly specific arrest of the endoplasmic reticulum Ca2+ pump, followed by a rapid Ca2+ leak from at least two pharmacologically distinct Ca2+ stores. The implications of this mechanism of action for the application of thapsigargin in the analysis of Ca2+ homeostasis and possible forms of Ca2+ control are discussed.
Collapse
Affiliation(s)
- O Thastrup
- Department of Clinical Chemistry, University Hospital, Rigshospitalet, Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
23
|
Westergaard N, Schousboe A, Grunnet N, Dich J. Characterization of a co-culture system of neurons and hepatocytes. Neurochem Res 1989; 14:1203-7. [PMID: 2560819 DOI: 10.1007/bf00965510] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A co-culture system of cerebellar granule cells (glutamatergic neurons) and hepatocytes has been developed. Petri dishes divided in halves by a temporary septum were coated with poly-L-lysine and cerebellar granule cells plated in one of the compartments. Five days later hepatocytes were plated in the other compartment and after 2 days the septum was removed and the two cell types shared the same culture medium for a period of 5 days. During this period of time cultures of neurons and hepatocytes kept separately or in co-culture exhibited identical characteristics with regard to activities of pyruvate kinase and glucokinase (hepatocytes), aspartate aminotransferase (neurons) as well as evoked transmitter release (neurons) and content of cytochrome P-450 (hepatocytes). The results show that it is possible to maintain neurons and hepatocytes in co-culture sharing the same culture medium for a prolonged period of time. Such a system may serve as a pharmacological model to study interactions between liver and brain cells with regard to neuroactive drugs.
Collapse
Affiliation(s)
- N Westergaard
- Department of Biochemistry A, Panum Institute, University of Copenhagen, Denmark
| | | | | | | |
Collapse
|
24
|
Vind C, Dich J, Grunnet N. Effects of cytochrome P450-inducing agents on the monooxygenation of testosterone in long-term cultures of hepatocytes from male and female rats. Arch Biochem Biophys 1989; 275:140-50. [PMID: 2684016 DOI: 10.1016/0003-9861(89)90358-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Hepatocytes from male or female rats were cultured for up to 2 weeks in a modified Waymouth medium supplemented with 0.1 or 1.0 microM dexamethasone, 10 nM insulin, and 0.1 nM glucagon with or without addition of phenobarbital, methylcholanthrene, or isoniazid. The activities of testosterone hydroxylases were measured in the intact cell monolayer and in the corresponding microsomal fraction. Aniline hydroxylase was measured in cell homogenates. In the presence of 0.1 microM dexamethasone the testosterone hydroxylase activities varied differently in hepatocytes from male and female rats during the culture period. The activities of 6 beta- and 15 alpha-hydroxylases increased in female and were unchanged in male hepatocytes, while 16 alpha-hydroxylase activity increased in female and decreased in male, and 2 alpha- and 7 alpha-hydroxylase activities were unchanged in both male and female hepatocytes during the culture period. Increasing the dexamethasone concentration to 1.0 microM caused an increase in 6 beta- and 15 alpha-hydroxylase activities in cultures of hepatocytes from both sexes, whereas an increase of 2 alpha- and a decrease of 7 alpha- and 17-hydroxylase activities were found only in cultures of hepatocytes from female rats. Addition of phenobarbital caused an increase in the activity of 7 alpha-hydroxylase in both male and female hepatocytes, while the effect on the other hydroxylases differed with the sex. In hepatocytes from male rats phenobarbital addition decreased the activities of 2 alpha- and 16 alpha-hydroxylases, while these were increased or stable after addition of phenobarbital to hepatocytes from female rats. The activity of aniline hydroxylase was increased at Day 1 and declined afterward. The results demonstrate that the activities of different steroid hydroxylases are inducible and can be directly measured in monolayers of hepatocytes from rats.
Collapse
Affiliation(s)
- C Vind
- Department of Biochemistry A, Panum Institute, University of Copenhagen, Denmark
| | | | | |
Collapse
|
25
|
Grunnet N, Vind C, Dich J. Maintenance of alcohol dehydrogenase activity in long-term culture of hepatocytes from female rat. Alcohol Clin Exp Res 1989; 13:25-8. [PMID: 2646972 DOI: 10.1111/j.1530-0277.1989.tb00278.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Conditions for maintaining the activity of alcohol dehydrogenase in cultures of hepatocytes isolated from female rats were studied. The activity of alcohol dehydrogenase in freshly isolated cells was 1.7 U/mg DNA. When cultured, the activity declined 20% after one day of culture, irrespective of the culture conditions. In a conventional medium with 5 mM glucose the activity after one week of culture was only 30% of that initially measured in culture. Addition of 25 mM glucose or a high concentration of amino acids delayed the decrease. When these compounds were added together it was possible to maintain the initial activity for one week, but the activity declined during the following week. Addition of growth hormone had no effect during the first week of culture but abolished the fall during the second week. The initial metabolism of ethanol was 0.65 mumol/min x mg DNA and declined to two-thirds during the 2 weeks of culture.
Collapse
Affiliation(s)
- N Grunnet
- Department of Biochemistry A, Panum Institute, University of Copenhagen, Denmark
| | | | | |
Collapse
|
26
|
Capito K, Hansen SE, Hedeskov CJ, Thams P. Effect of diacylglycerol lipase inhibitor RHC 80267 on pancreatic mouse islet metabolism and insulin secretion. Diabetologia 1989; 32:111-7. [PMID: 2656350 DOI: 10.1007/bf00505183] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The effect of interference with diacylglycerol metabolism was investigated in pancreatic mouse islets. In the presence of the diacylglycerol lipase inhibitor RHC 80,267, glucose-induced insulin secretion was reduced 50-60%; whereas carbacholin-induced insulin secretion was unaffected. Addition of the diacylglycerol kinase inhibitor R 59,022 did not change glucose-stimulated insulin secretion but abolished the inhibition seen in the presence of RHC 80,267. RHC 80,267 increased islet glucose utilisation, measured as formation of tritiated water from 5-[3H]-glucose, 3-fold but did not affect glucose oxidation to CO2, lactate production or islet ATP levels. Glucose utilisation in leucocytes and hepatocytes was not increased by addition of RHC 80,267. Islet lipid production from glucose was augmented 4-fold in the presence of RHC 80,267 but only accounted for about 5% of the increase in glucose utilisation. The activity of adenylate cyclase and phosphoinositide-specific phospholipase C was unaffected by RHC 80,267. Concentrations of RHC 80,267 below 35 mumol/l did not alter the activity of phospholipase A2; whereas higher concentrations of the drug inhibited phospholipase A2 activity approx 25%. The data support the hypothesis that production of arachidonic acid from diacylglycerol may be involved in regulation of insulin secretion.
Collapse
Affiliation(s)
- K Capito
- Department of Biochemistry A, Panum Institute, University of Copenhagen, Denmark
| | | | | | | |
Collapse
|
27
|
Pazo JA, Parafita MA. Synergism of ethanol and clofibrate in the lauric acid hydroxylation. Drug Alcohol Depend 1988; 21:137-9. [PMID: 3416732 DOI: 10.1016/0376-8716(88)90059-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The effects of ethanol and clofibrate on lauric acid hydroxylation in isolated rat hepatocytes cultured for 72 h were studied. During culture the lauric acid hydroxylation activity decreases. When the hepatocytes were cultured for 72 h with the addition of 10(-5) M, 10(-4) M and 10(-3) M clofibrate, the lauric acid hydroxylation increased by 42%, 428% and 900%, respectively. The stimulation by ethanol was also significant. The addition of both ethanol and clofibrate to the culture media resulted in a potentiation of this induction.
Collapse
Affiliation(s)
- J A Pazo
- Department of Physiology, Faculty of Biology, University of Santiago de Compostela, Spain
| | | |
Collapse
|
28
|
Vind C, Dich J, Grunnet N. The content and activity of cytochrome P-450 in long-term culture of hepatocytes from male and female rats. Biochem Pharmacol 1988; 37:1371-5. [PMID: 3355606 DOI: 10.1016/0006-2952(88)90796-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The content of cytochrome P-450 and the capacity for O-demethylation have been measured in cultures of hepatocytes from male and female rats for a period of 21 days. The effect of dexamethasone, insulin, glucagon, phenobarbital and hemin was investigated. In hepatocytes from female rats the content of cytochrome P-450 was unchanged after one day of culture. From day 1 to day 3 the content of cytochrome P-450 decreased by 65% and only the combined addition of dexamethasone, phenobarbital and hemin diminished the fall. After the initial fall, addition of 0.1 microM dexamethasone resulted in a stable value. Addition of 1 microM dexamethasone or 1 mM phenobarbital gave rise to an induction of cytochrome P-450 (285%). The high level of cytochrome P-450 was maintained for 3 weeks. In hepatocytes from male rats the content of cytochrome P-450 decreased by 40% after one day of culture. From day 1 to day 3 the content decreased by 45% and the decrease continued irrespective of the presence of hormones and/or phenobarbital. The O-demethylase activity in cultures of hepatocytes from female rats correlated to the cytochrome P-450 content independent of medium composition and age of the cultures, whereas no correlation was found in cultures from male rats. The present study demonstrates that hepatocytes from female rats in cultures retain O-demethylase activity for at least 3 weeks and that, with the experimental conditions used, the response to the hormones and inducers is different for hepatocytes from male and female rats.
Collapse
Affiliation(s)
- C Vind
- Department of Biochemistry A, Panum Institute, University of Copenhagen, Denmark
| | | | | |
Collapse
|
29
|
Dich J, Vind C, Grunnet N. Long-term culture of hepatocytes: effect of hormones on enzyme activities and metabolic capacity. Hepatology 1988; 8:39-45. [PMID: 3276589 DOI: 10.1002/hep.1840080109] [Citation(s) in RCA: 83] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
(i) Hepatocytes isolated from adult rats were cultured for 2 to 3 weeks on collagen in a modified, serum-free Waymouth medium containing fatty acids and varying concentrations of glucocorticoid, insulin and glucagon. (ii) In the presence of all three hormones, it was possible to maintain the content of DNA, the activity of glucokinase, pyruvate kinase, hexokinase and lactate dehydrogenase at initial levels for 2 to 3 weeks. The activity of glucokinase and pyruvate kinase was affected by the concentration of insulin. (iii) The activity of alcohol dehydrogenase was stable for 3 days and declined to about 25% of the initial level after 2 weeks of culture, irrespective of the presence of hormones. (iv) Maintenance of albumin secretion was dependent on the presence of glucocorticoid, and glucocorticoid and insulin showed an additive or, at some time points, a synergistic effect on its secretion. (v) The content of cytochrome P-450 could be kept at 65% of the initial level, provided that a relatively high concentration of dexamethasone was present (10(-6) M). (vi) In the absence of hormones, urea synthesis was 70% of initial levels throughout the experimental period. With insulin and glucocorticoid present, a high concentration of glucagon (10(-8) M) was required to maintain the synthesis of urea at this level. (vii) It is concluded that hepatocyte cultures as described in the present study may be a useful, well-defined system for long-term metabolic, pharmacologic and toxicologic studies.
Collapse
Affiliation(s)
- J Dich
- Department of Biochemistry A, Panum Institute, University of Copenhagen, Denmark
| | | | | |
Collapse
|
30
|
Bjørneboe A, Bjørneboe GE, Hagen BF, Nossen JO, Drevon CA. Secretion of alpha-tocopherol from cultured rat hepatocytes. BIOCHIMICA ET BIOPHYSICA ACTA 1987; 922:199-205. [PMID: 2823906 DOI: 10.1016/0005-2760(87)90155-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Primary cultures of rat hepatocytes and rat liver perfusions were used to study hepatic secretion of alpha-tocopherol. The secretion of alpha-tocopherol from hepatocytes in culture was linear with time for 4 h. Ultracentrifugation of the medium revealed that 89.4 +/- 2.1% of alpha-tocopherol secreted during 4 h incubation was associated with the very-low density lipoprotein fraction (VLDL, d less than 1.006 g/ml). Oleic acid had no significant effect on the secretory rate of alpha-tocopherol, whereas eicosapentaenoic acid reduced the amount of alpha-tocopherol secreted to 48.4 +/- 12.7% of the control value after 20 h incubation (P less than 0.01). Monensin, a known inhibitor of VLDL secretion, reduced the secretion of alpha-tocopherol to 14.1 +/- 4.3% of the control value (P less than 0.02). Colchicine and chloroquine inhibited the secretion of alpha-tocopherol in the same order of magnitude as monensin. Hepatic perfusion after intravenous injection of in vivo labeled alpha-[3H]tocopherol lymph, showed that about 75% of the secreted radioactivity was in the VLDL fraction. From these results we conclude that most alpha-tocopherol is secreted from the liver associated with nascent VLDL in rats.
Collapse
Affiliation(s)
- A Bjørneboe
- National Institute of Forensic Toxicology, University of Oslo, Norway
| | | | | | | | | |
Collapse
|
31
|
Chambaz J, Guillouzo A, Cardot P, Pepin D, Bereziat G. Essential fatty acid uptake and esterification in primary culture of rat hepatocytes. BIOCHIMICA ET BIOPHYSICA ACTA 1986; 878:310-9. [PMID: 3092869 DOI: 10.1016/0005-2760(86)90238-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Primary cultures of adult rat hepatocytes were used to compare the uptake and esterification of essential polyunsaturated fatty acids (18:2, 20:3 and 20:4 of the n-6 series) with those of palmitic and oleic acids. The uptake of unesterified fatty acids was linearly related to the free fatty acid/albumin molar ratio for 14 h and did not depend on the unbound free fatty acid level. Whatever the initial free fatty acid/albumin molar ratio, it dropped to 0.5 +/- 0.1 mM after 14 h, thus showing that hepatocytes have a high capacity for clearing free fatty acids from the medium at high free fatty acid/albumin molar ratios. The free fatty acid uptake become saturable when the free fatty acid and albumin concentrations were raised and the free fatty acid/albumin ratio remained constant. This strongly suggests that albumin-hepatocyte interaction mediates free fatty acid uptake. This uptake was identical whatever the fatty acid tested and did not depend on the relative amounts of fatty acids when they were added simultaneously. Triacylglycerol accumulation and synthesis, monitored by labelled fatty acids, were related to the free fatty acid/albumin molar ratio and exhibited no specificity for the series of fatty acids tested. Triacylglycerols were enriched in all the fatty acids tested by up to 60%, and fatty acid incorporation into diacylglycerols and triacylglycerols reflected the free fatty acid composition of the medium. By contrast, neither the level nor the synthesis of phospholipids varied with free fatty acid/albumin, but the rate of phospholipid turnover depended on the fatty acids tested. Accumulation of these acids was smaller in phospholipids than in triacylglycerols. When linoleic and arachidonic acids were added together, phospholipids (especially phosphatidylethanolamine and phosphatidylinositol) were more enriched in arachidonic acid than triacylglycerols. This might be due to the specificity for fatty acid of the enzymes involved in phospholipid metabolism.
Collapse
|
32
|
Quistorff B, Dich J, Grunnet N. Periportal and perivenous hepatocytes retain their zonal characteristics in primary culture. Biochem Biophys Res Commun 1986; 139:1055-61. [PMID: 3021146 DOI: 10.1016/s0006-291x(86)80284-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Periportal and perivenous hepatocytes from rat liver were isolated by combined digitonin-collagenase perfusion, and gluconeogenesis, urea synthesis and fatty acid synthesis was measured both in freshly isolated cells and in primary culture. A periportal zonation of gluconeogenesis and urea synthesis of about 3 and 1.5 fold, respectively, was observed. This zonation persisted unchanged for 23 hours in culture under identical conditions of incubation for periportal and perivenous cells. Fatty acid synthesis was not zonated.
Collapse
|
33
|
Mangiapane EH, Brindley DN. Effects of dexamethasone and insulin on the synthesis of triacylglycerols and phosphatidylcholine and the secretion of very-low-density lipoproteins and lysophosphatidylcholine by monolayer cultures of rat hepatocytes. Biochem J 1986; 233:151-60. [PMID: 3513755 PMCID: PMC1152997 DOI: 10.1042/bj2330151] [Citation(s) in RCA: 99] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Rat hepatocytes in monolayer culture were preincubated for 19 h with 1 microM-dexamethasone, and the incubation was continued for a further 23 h with [14C]oleate, [3H]glycerol and 1 microM-dexamethasone. Dexamethasone increased the secretion of triacylglycerol into the medium in particles that had the properties of very-low-density lipoproteins. The increased secretion was matched by a decrease in the triacylglycerol and phosphatidylcholine that remained in the hepatocytes. Preincubating the hepatocytes for the total 42 h period with 36 nM-insulin decreased the amount of triacylglycerol in the medium and in the cells after the final incubation for 23 h with radioactive substrates. However, insulin had no significant effect on the triacylglycerol content of the cell and medium when it was present only in the final 23 h incubation. Insulin antagonized the effects of dexamethasone in stimulating the secretion of triacylglycerol from the hepatocytes, especially when it was present throughout the total 42 h period. The labelling of lysophosphatidylcholine in the medium when hepatocytes were incubated with [14C]oleate and [3H]glycerol was greater than that of phosphatidylcholine. The appearance of this lipid in the medium, unlike that of triacylglycerol and phosphatidylcholine, was not stimulated by dexamethasone, or inhibited by colchicine. However, the presence of lysophosphatidylcholine in the medium was decreased when the hepatocytes were incubated with both dexamethasone and insulin. These findings are discussed in relation to the control of the synthesis of glycerolipids and the secretion of very-low-density lipoproteins and lysophosphatidylcholine by the liver, particularly in relation to the interactions of glucocorticoids and insulin.
Collapse
|
34
|
Abstract
Isolated rat hepatocytes were cultured in a modified HI-WO/BA medium for 16 h. In the following 24 h oleate or oleate plus ethanol was added to the medium. After this period the medium was changed again and the cultures were further incubated with [1-14C]oleate alone or with [1-14C]oleate plus ethanol for 6 h. This allowed a comparison of effects of short-term (6 h) and long-term (24 + 6 h) exposure to ethanol on fatty acid metabolism. The increased intracellular accumulation of triacylglycerol in the presence of ethanol was quantitatively accounted for by increased fatty acid uptake, by decreased fatty acid oxidation in the tricarboxylic acid cycle and by decreased VLDL (very-low-density lipoprotein)-triacylglycerol secretion. Ketone-body production was not affected. After short-term exposure the rate of accumulation of triacylglycerol was increased by 50%. This increase was accounted for by increased fatty acid uptake (44%), decreased tricarboxylic acid-cycle activity (49%) and decreased VLDL-triacylglycerol secretion (7%). After long-term exposure, the rate of accumulation of triacylglycerol was increased by 74%. This increase was accounted for by increased fatty acid uptake (34%), decreased tricarboxylic acid-cycle activity (34%) and decreased VLDL-triacylglycerol secretion (32%). The larger increase in accumulation of triacylglycerol after long-term exposure to ethanol was entirely accounted for by increased inhibition of secretion of VLDL-triacylglycerol. The biochemical mechanisms underlying the observations are discussed.
Collapse
|
35
|
Kondrup J, Lazarow PB. Flux of palmitate through the peroxisomal and mitochondrial beta-oxidation systems in isolated rat hepatocytes. BIOCHIMICA ET BIOPHYSICA ACTA 1985; 835:147-53. [PMID: 4005272 DOI: 10.1016/0005-2760(85)90041-4] [Citation(s) in RCA: 69] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Peroxisomes catalyze the beta-oxidation of fatty acids but their quantitative role in fatty acid catabolism in the intact hepatocyte is not yet clarified. In the present study peroxisomal beta-oxidation of [1-14C]palmitate was quantitated in hepatocytes without the use of metabolic inhibitors. It was assumed that acetyl-CoA formed by peroxisomal beta-oxidation enters the cytosolic pool of acetyl-CoA, whereas that from mitochondrial beta-oxidation enters the mitochondrial pool. The labeling of the two acetyl-CoA pools was assessed by measuring the incorporation of radioactivity into cholesterol (from cytosolic acetyl-CoA) and CO2 (from mitochondrial acetyl-CoA). The system was calibrated with [1-14C]acetate and [1-14C]butyrate because butyrate undergoes beta-oxidation only in mitochondria, whereas acetate forms acetyl-CoA primarily in the cytosol. The labeling ratio, [( 14C]cholesterol X 100)/[( 14C]cholesterol + [14C]CO2), reflects the site of formation of acetyl-CoA. This ratio was 0.51 for butyrate, 1.39 for acetate and 0.79 for palmitate. The difference between palmitate and butyrate was statistically significant (P less than 0.02). This indicates that not all of the palmitate was oxidized in mitochondria. By linear interpolation it was estimated that approximately 32% of the [1-14C]palmitate oxidation began in peroxisomes.
Collapse
|
36
|
Wolfe RR, Shaw JH, Durkot MJ. Effect of sepsis on VLDL kinetics: responses in basal state and during glucose infusion. THE AMERICAN JOURNAL OF PHYSIOLOGY 1985; 248:E732-40. [PMID: 3890559 DOI: 10.1152/ajpendo.1985.248.6.e732] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The effect of gram-negative sepsis on the kinetics and oxidation of very low-density lipoprotein (VLDL) fatty acids was assessed in conscious dogs in the normal state and 24 h after infusion of live Escherichia coli. VLDL, labeled with [2-3H]glycerol and [1-14C]palmitic acid, was used to trace VLDL kinetics and oxidation, and [1-13C]palmitic acid bound to albumin was infused simultaneously to quantify kinetics and oxidation of free fatty acid (FFA) in plasma. Sepsis caused a fivefold increase in the rate of VLDL production (RaVLDL). In the control dogs, the direct oxidation of VLDL-fatty acids was not an important contributor to their overall energy metabolism, but in dogs with sepsis, 17% of the total rate of CO2 production could be accounted for by VLDL-fatty acid oxidation. When glucose was infused into dogs with insulin and glucagon levels clamped at basal levels (by means of infusion of somatostatin and replacement of the hormones), RaVLDL increased significantly in the control dogs, but it did not increase further in dogs with sepsis. We conclude that the increase in triglyceride concentration in fasting dogs with gram-negative sepsis is the result of an increase in VLDL production and that the fatty acids in VLDL can serve as an important source of energy in sepsis.
Collapse
|
37
|
Grunnet N, Jensen F, Kondrup J, Dich J. Effect of ethanol on fatty acid metabolism in cultured hepatocytes: dependency on incubation time and fatty acid concentration. Alcohol 1985; 2:157-61. [PMID: 4015831 DOI: 10.1016/0741-8329(85)90035-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In a previous report it was shown that ethanol increases the rate of accumulation of triacylglycerol by 90% in hepatocytes in primary culture. This represents the first known suitable model for in vitro studies of the ethanol-induced fatty liver. The biochemical alterations causing this accumulation of triacylglycerol remain to be elucidated, however. In the present report it is shown that (1) the effect of ethanol exhibits a time lag of 6-9 hours (2) the increment in the content of triacylglycerol caused by ethanol is increased by increased concentrations of fatty acids (3) the fatty acid uptake is not affected by ethanol (4) fatty acid synthesis is inhibited 20% by ethanol (5) the contents of diacylglycerol and phospholipids are not affected by ethanol (6) addition of ethanol increases the cytosolic and mitochondrial redox levels. It is concluded that ethanol is likely to exert its effect on the accumulation of triacylglycerol by redistributing fatty acids between oxidation and triacylglycerol synthesis and/or between storage and secretion of triacylglycerol.
Collapse
|