1
|
Rehni AK, Dave KR. Impact of Hypoglycemia on Brain Metabolism During Diabetes. Mol Neurobiol 2018; 55:9075-9088. [PMID: 29637442 PMCID: PMC6179939 DOI: 10.1007/s12035-018-1044-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 03/27/2018] [Indexed: 12/24/2022]
Abstract
Diabetes is a metabolic disease afflicting millions of people worldwide. A substantial fraction of world's total healthcare expenditure is spent on treating diabetes. Hypoglycemia is a serious consequence of anti-diabetic drug therapy, because it induces metabolic alterations in the brain. Metabolic alterations are one of the central mechanisms mediating hypoglycemia-related functional changes in the brain. Acute, chronic, and/or recurrent hypoglycemia modulate multiple metabolic pathways, and exposure to hypoglycemia increases consumption of alternate respiratory substrates such as ketone bodies, glycogen, and monocarboxylates in the brain. The aim of this review is to discuss hypoglycemia-induced metabolic alterations in the brain in glucose counterregulation, uptake, utilization and metabolism, cellular respiration, amino acid and lipid metabolism, and the significance of other sources of energy. The present review summarizes information on hypoglycemia-induced metabolic changes in the brain of diabetic and non-diabetic subjects and the manner in which they may affect brain function.
Collapse
Affiliation(s)
- Ashish K Rehni
- Cerebral Vascular Disease Research Laboratories, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
- Department of Neurology, University of Miami Miller School of Medicine, 1420 NW 9th Ave, NRB/203E, Miami, FL, 33136, USA
| | - Kunjan R Dave
- Cerebral Vascular Disease Research Laboratories, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
- Department of Neurology, University of Miami Miller School of Medicine, 1420 NW 9th Ave, NRB/203E, Miami, FL, 33136, USA.
- Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
| |
Collapse
|
2
|
Mathur D, López-Rodas G, Casanova B, Marti MB. Perturbed glucose metabolism: insights into multiple sclerosis pathogenesis. Front Neurol 2014; 5:250. [PMID: 25520698 PMCID: PMC4249254 DOI: 10.3389/fneur.2014.00250] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 11/13/2014] [Indexed: 11/17/2022] Open
Abstract
Multiple sclerosis (MS) is a complex debilitating disease of the central nervous system (CNS) perceived to result from the autoimmune effect of T cells in damaging myelin sheath. However, the exact pathogenesis of the disease remains elusive. Initial studies describing the possibility of defective pyruvate metabolism in MS were performed in 1950s. The group observed elevated blood pyruvate level in both fasting and postprandial times in MS patients with relapse. Similarly, other investigators also reported increased fasting pyruvate level in this disease. These reports hint to a possible abnormality of pyruvate metabolism in MS patients. In addition, increase in levels of Krebs cycle acids like alpha-ketoglutarate in fasting and citrate after glucose intake in MS patients further strengthened the connection of disturbed pyruvate metabolism with MS progression. These studies led the investigators to explore the role of disturbed glucose metabolism in pathophysiological brain function. Under normal circumstances, complex molecules are metabolized into simpler molecules through their respective pathways. Differential expression of genes encoding enzymes of the glucose metabolic pathway in CNS may result in neurological deficits. In this review article, we discuss the studies related to disturbed carbohydrate metabolism in MS and other neurodegenerative diseases. These observations open new perspectives for the understanding of metabolic dynamics in MS yet many puzzling aspects and critical questions need to be addressed. Much more research is required to fully unravel the disease mechanism, and a proper understanding of the disease could eventually lead to new treatments.
Collapse
Affiliation(s)
- Deepali Mathur
- Department of Functional Biology, University of Valencia, Valencia, Spain
| | - Gerardo López-Rodas
- Department of Biochemistry and Molecular Biology, INCLIVA Biomedical Research Institute, University of Valencia, Valencia, Spain
| | | | - Maria Burgal Marti
- Multiple Sclerosis Laboratory, Department of Biomedicine, Prince Felipe Research Center, Valencia, Spain
| |
Collapse
|
3
|
Koranyi L, Bourey RE, James D, Mueckler M, Fiedorek FT, Permutt MA. Glucose transporter gene expression in rat brain: Pretranslational changes associated with chronic insulin-induced hypoglycemia, fasting, and diabetes. Mol Cell Neurosci 2012; 2:244-52. [PMID: 19912805 DOI: 10.1016/1044-7431(91)90051-o] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/1991] [Indexed: 11/24/2022] Open
Abstract
Steady-state levels of the major glucose transporter gene (GLUT-1) of the brain were evaluated under three conditions that induced chronic changes in plasma glucose and insulin in adult rats: (i) repeated injection of insulin for 5 days, resulting in plasma glucose levels of 60-70 mg/dl for at least 3 days; (ii) fasting for 3 days; and (iii) moderate streptozotocin-induced diabetes of 1 week duration. Brain GLUT-1 mRNA was measured by dot blot hybridization with a HepG2/erythrocyte (GLUT1) [(32)P]cRNA probe, and GLUT-1 protein by immunoblot analysis with a polyclonal antibody (11493). Insulin injection resulted in hypoglycemia, increased GLUT-1 mRNA (143 +/- 15%, P < 0.05), and increased GLUT-1 protein (141 +/- 6%, P < 0.05). The increase in GLUT-1 mRNA was specific for brain, as no change was observed in liver or kidney. Fasting resulted in mild hypoglycemia, lower plasma insulin, increased GLUT-1 mRNA (131 +/- 17%, P < 0.05 vs control), and no change in GLUT-1 protein (125 +/- 9%, N.S.). Mild streptozotocin diabetes resulted in hyperglycemia, undetectable plasma insulin, decreased GLUT-1 mRNA (65 +/- 6%, P < 0.05 vs control), and no change in GLUT-1 protein (84 +/- 9%, N.S.). A negative correlation (r = -0.61, P < .0001) between GLUT-1 mRNA levels in brain and plasma glucose concentrations was observed among the three experimental groups and control animals, suggesting that the plasma glucose concentration may be at least one determinant of GLUT-1 levels in rat brain. The importance of these results is the finding that GLUT-1 gene expression in rat brain is regulated in vivo by the nutritional and endocrine status of the animal.
Collapse
Affiliation(s)
- L Koranyi
- Department of Internal Medicine, Division of Metabolism, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | |
Collapse
|
4
|
Devraj K, Klinger ME, Myers RL, Mokashi A, Hawkins RA, Simpson IA. GLUT-1 glucose transporters in the blood-brain barrier: differential phosphorylation. J Neurosci Res 2011; 89:1913-25. [PMID: 21910135 DOI: 10.1002/jnr.22738] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 06/13/2011] [Accepted: 06/16/2011] [Indexed: 11/11/2022]
Abstract
Glucose is the primary metabolic fuel for the mammalian brain, and a continuous supply is required to maintain normal CNS function. The transport of glucose across the blood-brain barrier (BBB) into the brain is mediated by the facilitative glucose transporter GLUT-1. Prior studies (Simpson et al. [2001] J Biol Chem 276:12725-12729) had revealed that the conformations of the GLUT-1 transporter were different in luminal (blood facing) and abluminal (brain facing) membranes of bovine cerebral endothelial cells, based on differential antibody recognition. This study has extended these observations and, by using a combination of 2D-PAGE/Western blotting and immunogold electron microscopy, determined that these different conformations are exhibited in vivo and arise from differential phosphorylation of GLUT-1 and not from alternative splicing or altered O- or N-linked glycosylation.
Collapse
Affiliation(s)
- Kavi Devraj
- Department of Neural and Behavioral Sciences, College of Medicine, Pennsylvania State University, Hershey, Pennsylvania 17033, USA
| | | | | | | | | | | |
Collapse
|
5
|
Lazzari M, Bettini S, Ciani F, Franceschini V. Glucose transporter distribution in the vessels of the central nervous system of the axolotl Ambystoma mexicanum (Urodela: Ambystomatidae). Anat Rec (Hoboken) 2008; 291:1293-300. [PMID: 18727107 DOI: 10.1002/ar.20741] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The GLUT-1 isoform of the glucose transporter is commonly considered a reliable molecular marker of blood-brain barrier endothelia in the neural vasculature organized in a three-dimensional network of single vessels. The central nervous system of the axolotl Ambystoma mexicanum is characterized by a vascular architecture that contains both single and paired vessels. The presence and distribution of the GLUT-1 transporter are studied in this urodele using both immunoperoxidase histochemistry and immunogold technique. Light microscopy reveals immunopositivity in both parenchymal and meningeal vessels. The transverse-sectioned pairs of vessels do not show the same size. Furthermore, in the same pair, the two elements often differ in diameter. The main regions of the central nervous system show a different percentage of the paired structures. Only immunogold cytochemistry reveals different staining intensity in the two adjoined elements of a vascular pair. Colloidal gold particles show an asymmetric distribution in the endothelia of both single and paired vessels. These particles are more numerous on the abluminal surface than on the luminal one. The particle density is calculated in both vascular types. The different values could indicate functional differences between single and paired vessels and between the two adjoined elements of a pair, regarding glucose transport.
Collapse
|
6
|
Expression of glucose transporters GLUT-1, GLUT-3, GLUT-9 and HIF-1alpha in normal and degenerate human intervertebral disc. Histochem Cell Biol 2008; 129:503-11. [PMID: 18172662 DOI: 10.1007/s00418-007-0372-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2007] [Indexed: 10/22/2022]
Abstract
The glucose transporters GLUT-1 and GLUT-3 are targets of the hypoxia-inducible transcription factor HIF-1alpha and it has been shown that nucleus pulposus (NP) cells in rat intervertebral discs (IVD) express both HIF-1alpha and GLUT-1. However, there is limited data on the expression of HIF-1alpha and GLUTs in human IVD. The aim here was to (1) determine whether, like articular chondrocytes, human IVD cells express GLUT-1, 3 and 9 and whether there was any co-expression with HIF-1alpha; and (2) to localise expression of the GLUT isoforms in the disc and identify any changes during degeneration. Real-time PCR was used to identify expression of GLUT1, 3, 9 and HIF-1alpha mRNAs and immunohistochemistry was used to analyse protein expression and localisation of GLUTs in normal and degenerate IVD biopsies. Results confirmed HIF-1alpha, GLUT1, 3 and 9 mRNA expression in NP and AF and co-expression of each GLUT isoform with HIF-1alpha in the NP, but not the AF. Immunohistochemistry demonstrated regional differences in GLUT expression, with the highest expression being in the NP. GLUT expression also changed as degeneration progressed. This study demonstrates that NP and AF cells have different GLUT expression profiles that suggest regional differences in the metabolic nature of the human IVD and that this environment changes during degeneration.
Collapse
|
7
|
Lazzari M, Franceschini V. Glucose transporter (GLUT-1) distribution in the brain vessels of the adult Italian wall lizard, Podarcis sicula. Acta Histochem 2006; 108:385-93. [PMID: 16828846 DOI: 10.1016/j.acthis.2006.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2006] [Revised: 04/13/2006] [Accepted: 05/17/2006] [Indexed: 10/24/2022]
Abstract
The GLUT-1 isoform of the glucose transporter is commonly accepted as a reliable molecular marker of blood-brain barrier endothelia in neural vasculature organized in a three-dimensional network of single vessels. The brain of the lizard Podarcis sicula is characterized by a vascular architecture based on a pattern of paired vessels. The presence and distribution of GLUT-1 were studied in adult lizards using both light and transmission electron microscopic techniques. Immunoperoxidase histochemistry was applied to sections from paraffin-embedded brain using gold-conjugated secondary antibodies to localize this antigen on ultrathin sections. The transverse sectioned pairs of vessels did not show the same size and, in particular, the two elements of the same pair often differed in their diameters. Light microscopy revealed immunopositivity in both parenchymal and meningeal vessels. In each transverse-sectioned vascular pair, one element was intensely labelled, and the adjacent one showed only slight or negligible reaction. Colloidal gold particles were restricted to endothelial cells, showing an asymmetric labelling pattern, which was always characterized by markedly higher density of immunolabelling of the abluminal rather than the luminal plasmalemma. Moreover, in every vascular pair, one profile had lower amounts of scantier labelling by gold particles than the adjacent element. This pattern indicates functional differences between the adjacent vascular limbs regarding glucose transport.
Collapse
Affiliation(s)
- Maurizio Lazzari
- Department of Biology, University of Bologna, via F. Selmi 3, 40126 Bologna, Italy.
| | | |
Collapse
|
8
|
McEwen BS, Reagan LP. Glucose transporter expression in the central nervous system: relationship to synaptic function. Eur J Pharmacol 2004; 490:13-24. [PMID: 15094070 DOI: 10.1016/j.ejphar.2004.02.041] [Citation(s) in RCA: 252] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2004] [Indexed: 12/21/2022]
Abstract
The family of facilitative glucose transporter (GLUT) proteins is responsible for the entry of glucose into cells throughout the periphery and the brain. The expression, regulation and activity of GLUTs play an essential role in neuronal homeostasis, since glucose represents the primary energy source for the brain. Brain GLUTs exhibit both cell type and region specific localizations suggesting that the transport of glucose across the blood-brain barrier is tightly regulated and compartmentalized. As seen in the periphery, insulin-sensitive GLUTs are expressed in the brain and therefore may participate in the central actions of insulin. The aim of this review will be to discuss the localization of GLUTs expressed in the central nervous system (CNS), with a special emphasis upon the recently identified GLUT isoforms. In addition, we will discuss the regulation, activity and insulin-stimulated trafficking of GLUTs in the CNS, especially in relation to the centrally mediated actions of insulin and glucose.
Collapse
Affiliation(s)
- Bruce S McEwen
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY 10021, USA
| | | |
Collapse
|
9
|
Wei YP, Kita M, Shinmura K, Yan XQ, Fukuyama R, Fushiki S, Imanishi J. Expression of IFN-gamma in cerebrovascular endothelial cells from aged mice. J Interferon Cytokine Res 2000; 20:403-9. [PMID: 10805375 DOI: 10.1089/107999000312342] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Recently, it has become clear that interferon-gamma (IFN-gamma) plays a role in the central nervous system (CNS) as well as in the immune system. However, the reason for the alteration in IFN-gamma production in the brain with aging remains unknown. In this study, we investigated the expression of IFN-gamma in the brain in terms of both mRNA and protein and compared the expression in young adult brain with that in aged mice. The cerebrum and cerebellum were collected from young adult (8-10 weeks old) and aged (24-26 months old) BALB/c mice, and the expressions of IFN-gamma and IFN-gamma receptor-1 (IFNGR-1) mRNA were examined by RT-PCR. Expression of IFN-gamma mRNA was detected in the brains from aged mice but not in those from young adult mice. However, IFNGR-1 mRNA was expressed in the brains from both young adult and aged mice. Moreover, IFN-gamma levels in the cerebrum and cerebellum from aged mice were detectable by ELISA, but IFN-gamma was undetectable in these tissues from young adult mice. To identify the cellular source of IFN-gamma in the brain of aged mice, immunostaining using antimouse IFN-gamma monoclonal antibody (mAb) was done. Immunoreactivity of IFN-gamma appeared to be located in cerebrovascular endothelial cells, including the choroid plexus of the cerebellum from aged mice. Expression of IFN-gamma and IFNGR-1 was also identified in isolated microvessels from brains. These results suggest that IFN-gamma plays a role in age-associated changes.
Collapse
Affiliation(s)
- Y P Wei
- Department of Microbiology, Research Institute for Neurological Diseases and Geriatrics, Kyoto Prefectural University of Medicine, Japan
| | | | | | | | | | | | | |
Collapse
|
10
|
Yu S, Ding WG. The 45 kDa form of glucose transporter 1 (GLUT1) is localized in oligodendrocyte and astrocyte but not in microglia in the rat brain. Brain Res 1998; 797:65-72. [PMID: 9630522 DOI: 10.1016/s0006-8993(98)00372-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We and others have previously reported that glucose transporter 1 (GLUT1)-like 45 kDa protein is localized to parenchymal cells in the brain. However, the precise cellular localization has remained unclear. In the present study, we examined the cellular localization of GLUT1 in the rat brain by double immunostaining methods and immunoelectron microscopic analysis using a rabbit antiserum specific to GLUT1. Western blot analysis of the rat brain revealed that the antiserum detected a strong band with a molecular weight of 45 kDa and a weak band of about 55 kDa, which corresponded respectively to the known molecular weights of the GLUT1 proteins in the brain parenchymal cells and the brain microvessels. Immunohistochemical staining revealed a large number of GLUT1-immunoreactive glial cells and microvessels in almost every region of the brain. Double immunofluorescence analysis demonstrated that the GLUT1-like 45 kDa protein occurred in many galactocerebroside-positive oligodendrocytes and in some glial fibrillary acidic protein (GFAP)-positive astrocytes. No GLUT1-immunoreactivity was observed in OX42-positive microglia. Immunoelectron microscopic examination confirmed that the GLUT1-immunoreactivity was mainly localized in the cytoplasm of the oligodendrocytes and astrocytes. The results indicate that the 45 kDa form of GLUT1 protein exists in the glial cells including astrocytes and oligodendrocytes.
Collapse
Affiliation(s)
- S Yu
- Institute of Molecular Neurobiology, Shiga University of Medical Science, Otsu 520-2192, Japan
| | | |
Collapse
|
11
|
Abstract
Penetration of immunoglobulins and/or migration of activated lymphocytes into peripheral nervous system (PNS) parenchyma are the initial key steps to develop immunological disorders of PNS including Guillain-Barré syndrome, IgM neuropathy and chronic inflammatory demyelinating polyradiculoneuropathy. Hence, it is important to know the cellular property of endothelial cells of endoneurial tissue origin (PnMEC) because these cells constitute the bulk of the blood-nerve barrier (BNB). For this purpose, we developed a method to isolate and culture pure populations of PnMECs from bovine cauda equina. PnMECs were identified by their cobblestone appearance, immunoreactivity against Factor VIII/von Willebrand factor (vWF) antigen, and positive uptake of DiI-Ac-LDL. The glucose transporter type 1 (GLUT1) expression of these cells was rapidly down-regulated in vitro. Other than GM3(NeuAc) and GM3(NeuGc) as major glycosphingolipids, PnMECs comprise GM1, GD1a, GD1b and GT1b, which are shared by PNS parenchyma, and sialyl lactosaminyl paragloboside (SLPG) as minor species. Because bovine PnMECs proliferate rapidly and a large mass of cells could be obtained, this method should contribute to the biochemical analysis of surface molecules in PnMECs that might play a key role in the formation of BNB as well as in pathological conditions involving the PNS.
Collapse
Affiliation(s)
- T Kanda
- Department of Neurology, Tokyo Medical and Dental University School of Medicine, Japan
| | | | | | | |
Collapse
|
12
|
Affiliation(s)
- D V Rayner
- Division of Biochemical Sciences, Rowett Research Institute, Bucksburn, Aberdeen
| |
Collapse
|
13
|
Baldwin SA, Barros LF, Griffiths M. Trafficking of glucose transporters--signals and mechanisms. Biosci Rep 1995; 15:419-26. [PMID: 9156573 DOI: 10.1007/bf01204346] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The uptake of glucose into mammalian cells, catalysed by members of the GLUT family of glucose transporters, is regulated by a variety of hormones, growth factors and other agents. In adipocytes, skeletal muscle and heart the principal regulator is the hormone insulin, which rapidly stimulates glucose uptake by bringing about the translocation of the GLUT4 glucose transporter isoform from an intracellular vesicular compartment to the cell surface. Recent studies have implicated the C-terminal hydrophilic region of this protein as being primarily responsible for its insulin-regulated trafficking. In an attempt to identify the protein machinery involved in this trafficking, we have used glutathione S-transferase fusion proteins bearing hydrophilic domains of various GLUT transporters in affinity purification experiments on detergent-solubilized extracts of 3T3-L1 adipocyte intracellular membranes. The C-terminal region of GLUT4 was found specifically to bind a number of polypeptides in these extracts, which are therefore candidates for components of the trafficking machinery. Although these proteins did not bind to the corresponding region of the more widely-distributed GLUT1 glucose transporter isoform, regulation of this transporter also appears to be of physiological importance in some cell types. To study such regulation we have used as a model system the interleukin-3 (IL-3)-dependent haemopoietic cell line IC.DP. These cells express a temperature sensitive mutane of the v-abl tyrosine kinase, whose activation at the permissive temperature permits cell survival in the absence of IL-3 by suppression of apoptosis, although the growth factor is still required for proliferation. Both IL-3 and activation of the kinase were found to stimulate glucose transport by promoting the translocation of GLUT1 to the cell surface. Moreover, inhibition of glucose uptake by addition of transport inhibitors markedly increased the rate of apoptosis, an effect which could be reversed by the provision of alternative energy sources. These observations suggest that the trafficking of GLUT1, regulated by growth factors or oncogenes, may play an important role in the suppression of apoptosis in haemopoietic cells.
Collapse
Affiliation(s)
- S A Baldwin
- Department of Biochemistry and Molecular Biology, University of Leeds, UK
| | | | | |
Collapse
|
14
|
Bauer H, Sonnleitner U, Lametschwandtner A, Steiner M, Adam H, Bauer HC. Ontogenic expression of the erythroid-type glucose transporter (Glut 1) in the telencephalon of the mouse: correlation to the tightening of the blood-brain barrier. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1995; 86:317-25. [PMID: 7656423 DOI: 10.1016/0165-3806(95)00044-e] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Since Glut 1 was shown to be highly abundant in brain microvessels, its distribution during early developmental stages seems of importance in respect to the timing of blood-brain barrier (bbb) formation in the developing CNS. Here we have followed the temporal expression of the erythroid-type glucose transporter Glut 1 in the telencephalon of the embryonic and newborn mouse, beginning at the 9th intrauterine day. Glut 1 immunofluorescence staining was done on cryosections using a rabbit polyclonal antiserum to purified human erythrocyte glucose transporter. Endothelial cells resp. capillaries were detected by staining with a rhodamin-coupled Bandeiraea simplicifolia lectin (BSL). In parallel, the developmental tightening of the embryonic bbb was assessed by perfusion of mouse embryos with Trypan blue and horse radish-peroxidase. At E9, prior to the onset of intraneural neovascularization, strong Glut 1 immunoreactivity was found in the whole neuroectoderm but only minor staining was seen in the perineural domain. Glut 1 expression remained uniformly distributed in the intraneural tissue at E10, the beginning of intraneural neovascularization in the mouse. From E11 onwards, Glut 1 immunoreactivity was invisible in neuroepithelial cells, but appeared tightly associated with intraneural capillaries. Perfusion of E12 embryos using trypan blue solution and HRP revealed that most parts of the CNS and spinal cord were impermeable to the tracer substances at that stage. Thus, we suggest that the bbb is established very early in CNS development, probably in the course of intraneural neovascularization. In addition, our data indicate that the restriction of Glut 1 expression to the intraneural capillaries reflects the onset of bbb function in the mouse embryo.
Collapse
Affiliation(s)
- H Bauer
- Institute of Zoology, University of Salzburg, Austria
| | | | | | | | | | | |
Collapse
|
15
|
Xia Y, Warshaw JB, Haddad GG. Chronic hypoxia causes opposite effects on glucose transporter 1 mRNA in mature versus immature rat brain. Brain Res 1995; 675:224-30. [PMID: 7796133 DOI: 10.1016/0006-8993(95)00079-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We have shown previously that chronic hypoxia can regulate the expression of membrane proteins. Since there are virtually no glucose stores in the brain and glucose transport can be rate-limiting during stress, the role of glucose transporters becomes crucial for cell survival under stress. In the present study, we asked whether mRNA levels for glucose transporter 1 (GT1), which is expressed in a variety of cells in the brain, especially in the microvessels for glucose transport from blood vessels to brain, change in response to chronic hypoxia. Because major developmental changes occur in the rat CNS in-utero and in the first few weeks postnatally, we studied brain GT1 mRNA using Northern blot analysis at different ages after exposure of fetuses (from embryonic day 10 to birth), developing rats (from birth to 30 day old) or adult rats (from 90 to 120 day old) to hypoxia (Fractional inspired O2 9%). Our data show that (i) GT1 mRNA level was much lower in the newborn than in the adult and increased with age; (ii) chronic hypoxia caused a decrease of approximately 65% in GT1 mRNA in adult brain but induced an increase in fetal (more than 50%) and developing (approximately 80%) rats and (iii) the response of housekeeping gene (glyceraldehyde 3-phosphate dehydrogenase) was not similar to that of GT1, suggesting that the changes of GT1 mRNA are specific to glucose transporter.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- Y Xia
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | |
Collapse
|
16
|
Abstract
Ever since the discovery of Paul Ehrlich (1885 Das Sauerstoff-bedürfnis des Organismus: Hirschwald, Berlin) about the restricted material exchange, existing between the blood and the brain, the ultimate goal of subsequent studies has been mainly directed towards the elucidation of relative importance of different cellular compartments in the peculiar penetration barrier consisting the structural basis of the blood-brain barrier (BBB). It is now generally agreed that, in most vertebrates, the endothelial cells of the central nervous system (CNS) are responsible for the unique penetration barrier, which restricts the free passage of nutrients, hormones, immunologically relevant molecules and drugs to the brain. After an era of studying with endogenous or exogenous tracers the unique permeability properties of cerebral endothelial cells in vivo, the next generation, i.e. the in vitro blood-brain barrier model system was introduced in 1973. Recent advances in our knowledge of the BBB have in part been made by studying the properties and function of cerebral endothelial cells (CEC) with this in vitro approach. This review summarizes the results obtained on isolated brain microvessels in the second decade of its advent.
Collapse
Affiliation(s)
- F Joó
- Laboratory of Molecular Neurobiology, Biological Research Center, Szeged, Hungary
| |
Collapse
|
17
|
Baldwin SA. Mammalian passive glucose transporters: members of an ubiquitous family of active and passive transport proteins. BIOCHIMICA ET BIOPHYSICA ACTA 1993; 1154:17-49. [PMID: 8507645 DOI: 10.1016/0304-4157(93)90015-g] [Citation(s) in RCA: 225] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- S A Baldwin
- Department of Biochemistry and Molecular Biology, University of Leeds, UK
| |
Collapse
|
18
|
Stoll J, Wadhwani KC, Smith QR. Identification of the cationic amino acid transporter (System y+) of the rat blood-brain barrier. J Neurochem 1993; 60:1956-9. [PMID: 8473910 DOI: 10.1111/j.1471-4159.1993.tb13428.x] [Citation(s) in RCA: 105] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Cationic amino acids are transported from blood into brain by a saturable carrier at the blood-brain barrier (BBB). The transport properties of this carrier were examined in the rat using an in situ brain perfusion technique. Influx into brain via this system was found to be sodium independent and followed Michaelis-Menten kinetics with half-saturation constants (Km) of 50-100 microM and maximal transport rates of 22-26 nmol/min/g for L-lysine, L-arginine, and L-ornithine. The kinetic properties matched that of System y+, the sodium-independent cationic amino acid transporter, the cDNA for which has been cloned from the mouse. To determine if the cloned receptor is expressed at the BBB, we assayed RNA from rat cerebral microvessels and choroid plexus for the presence of the cloned transporter mRNA by RNase protection. The mRNA was present in both cerebral microvessels and choroid plexus and was enriched in microvessels 38-fold as compared with whole brain. The results indicate that System y+ is present at the BBB and that its mRNA is more densely expressed at cerebral microvessels than in whole brain.
Collapse
Affiliation(s)
- J Stoll
- Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Bethesda, Maryland 20892
| | | | | |
Collapse
|
19
|
Harik SI, Hall AK, Richey P, Andersson L, Lundahl P, Perry G. Ontogeny of the erythroid/HepG2-type glucose transporter (GLUT-1) in the rat nervous system. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1993; 72:41-9. [PMID: 8453764 DOI: 10.1016/0165-3806(93)90157-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Central nervous system (CNS) microvessels of adult mammals have an unusually high density of the facilitative glucose transporter GLUT-1. Most systemic microvessels and those of the brain's circumventricular organs, which lack 'barrier' properties, do not express a high density of GLUT-1. Thus, a high GLUT-1 density is a marker of adult brain endothelium. To determine the stage at which CNS microvessels acquire GLUT-1, we studied by immunocytochemistry GLUT-1 ontogeny in the rat CNS from embryonic day (E) 11 to senescence. At E11, before blood vessels invaded the neuroectodermal tube, GLUT-1 immunoreactivity was already evident in the perineural plexus of vessels and in most of the vascular endothelium of the embryo. GLUT-1 immunoreactivity was also evident in the neuroectoderm. The neuroectoderm gradually lost GLUT-1 expression, and at about E16, GLUT-1 immunoreactivity was no longer detectable in most of the neuroectodermal epithelium, while CNS microvessels had increased their GLUT-1 immunoreactivity. By birth, GLUT-1 immunoreactivity in the CNS was restricted to the endothelium, the epithelium (but not the endothelium) of the choroid plexus, and tanycytes. This cellular distribution of GLUT-1 did not change much between birth and senescence despite considerable postnatal brain development and the increased brain capillary density. Our results suggest that while a CNS factor(s) may not have a role in the induction of the high expression of GLUT-1 in CNS endothelium, such a factor(s) is probably important in maintaining the high level of GLUT-1 in these endothelia.
Collapse
Affiliation(s)
- S I Harik
- Department of Neurology, Case Western Reserve University School of Medicine, Cleveland, OH
| | | | | | | | | | | |
Collapse
|
20
|
Pelligrino DA, LaManna JC, Duckrow RB, Bryan RM, Harik SI. Hyperglycemia and blood-brain barrier glucose transport. J Cereb Blood Flow Metab 1992; 12:887-99. [PMID: 1400643 DOI: 10.1038/jcbfm.1992.126] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- D A Pelligrino
- Department of Anesthesiology, University of Illinois, Chicago
| | | | | | | | | |
Collapse
|
21
|
Chapter 6 Mechanisms of active and passive transport in a family of homologous sugar transporters found in both prokaryotes and eukaryotes. ACTA ACUST UNITED AC 1992. [DOI: 10.1016/s0167-7306(08)60068-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
22
|
Zinke H, Möckel B, Frey A, Weiler-Güttler H, Meckelein B, Gassen HG. Chapter 17: Blood-brain barrier: a molecular approach to its structural and functional characterization. PROGRESS IN BRAIN RESEARCH 1992; 91:103-16. [PMID: 1357718 DOI: 10.1016/s0079-6123(08)62324-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
Abstract
Our approach to analyze molecular components of the blood-brain barrier led to the identification of additional transcripts which can be regarded as "BBB markers". Other candidates are presently analyzed in order to find hitherto unknown cell type-specific transcripts. We investigated the expression of these marker-genes in cell culture and found all genes still being transcribed after 10 days in primary cultures, although at a lower level. This is surprising, since other authors report the disappearance of BBB characteristics under such conditions. Moreover, the BBB marker gamma-GT is found to be not only expressed in BMEC, but also in the closely associated pericytes. The hitherto unknown physiological function of the enzyme, especially the abundance in pericytes is still under investigation. Since the method of subtractive cloning has been proven as a fruitful approach, we consider to establish further subtractive cDNA libraries, using different subtraction parameters. The PCR method is applicable for amplification of subtracted cDNA (Timblin et al., 1990) and we expect to find additional clones, mainly of lower abundance which are of functional importance for the BBB phenomenon. The described characterization of cultured BMEC now allows to proceed to study BBB-specific gene expression with special regard to regulatory elements. We will perform these experiments by use of enhancer trap vectors transfected into BMEC. The isolation of the corresponding genomic DNA fragments of the BBB markers is in progress.
Collapse
Affiliation(s)
- H Zinke
- Institut für Biochemie, Technische Hochschule Darmstadt, Germany
| | | | | | | | | | | |
Collapse
|
23
|
Takakura Y, Kuentzel SL, Raub TJ, Davies A, Baldwin SA, Borchardt RT. Hexose uptake in primary cultures of bovine brain microvessel endothelial cells. I. Basic characteristics and effects of D-glucose and insulin. BIOCHIMICA ET BIOPHYSICA ACTA 1991; 1070:1-10. [PMID: 1751515 DOI: 10.1016/0005-2736(91)90139-y] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The basic characteristics of hexose uptake and regulation of the glucose transporter (GLUT1) by D-glucose and insulin were studied in primary cultures of bovine brain microvessel endothelial cells (BMECs). A non-metabolizable glucose analog, 3-O-[3H]methyl-D-glucose [( 3H]3MG), was used as a model substrate, and the uptake was studied using BMECs grown in tissue culture plates. Uptake of [3H]3MG was equilibrative, temperature-dependent, and independent of sodium. The uptake also decreased gradually with culture age from 7 to 13 days. Saturation kinetics were observed for [3H]3MG uptake and the apparent Km and Vmax values were determined to be 13.2 mM and 169 nmol/mg per min, respectively. Pre-incubation with high concentrations of D-glucose and 3MG accelerated [3H]3MG uptake by BMECs by a counter-transport mechanism. D-Glucose, 2-deoxy-D-glucose, D-mannose, D-xylose, D-galactose and D-ribose showed significant competitive inhibition with [3H]3MG, whereas L-glucose, D-fructose, and sucrose did not affect [3H]3MG uptake by BMECs. [3H]3MG uptake was inhibited significantly by cytochalasin B and phloretin but not by phlorizin, 2,4-dinitrophenol, or ouabain. D-Glucose starvation of BMECs by incubation with D-glucose-free media for 24 h resulted in a significant increase (40-70%) in uptake of [3H]3MG compared with control conditions (7.3 mM D-glucose). Low D-glucose treatments (2.43 and 1.83 mM) for 7 days induced a slight but significant increase (20%) in [3H]3MG uptake, while long-term high glucose treatments (25 mM) showed no significant effect on [3H]3MG uptake irrespective of exposure time. The increase in [3H]3MG accumulation following D-glucose starvation was dependent upon starvation time (12 to 48 hr) and protein synthesis. Refeeding of D-glucose (7.3 mM) to D-glucose-starved BMECs resulted in a return of [3H]3MG uptake to control levels in 48 h. The D-glucose-starvation-induced increase in [3H]3MG uptake was shown to result from an increase in Vmax; the Km remained constant. In addition, D-glucose-starved BMECs were shown to have an increased level of GLUT1 using an antibody against human GLUT1 and an enzyme-linked immunosorbent assay (ELISA). The increased uptake following D-glucose starvation was not significantly affected by the presence of L-glucose, was partially impaired by the presence of D-galactose, D-fructose, and D-xylose, and was completely inhibited by the presence of D-mannose and 3MG. Furthermore, preincubation of BMECs with insulin (10 micrograms/ml) for 20 min did not affect the uptake of [3H]3MG or 2-deoxy-D-[3H]glucose ([3H]2DG).(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- Y Takakura
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Kansas, Lawrence 66045
| | | | | | | | | | | |
Collapse
|
24
|
De Vivo DC, Trifiletti RR, Jacobson RI, Ronen GM, Behmand RA, Harik SI. Defective glucose transport across the blood-brain barrier as a cause of persistent hypoglycorrhachia, seizures, and developmental delay. N Engl J Med 1991; 325:703-9. [PMID: 1714544 DOI: 10.1056/nejm199109053251006] [Citation(s) in RCA: 456] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- D C De Vivo
- Department of Pediatrics, Columbia-Presbyterian Medical Center, New York, NY
| | | | | | | | | | | |
Collapse
|
25
|
Maher F, Davies-Hill TM, Lysko PG, Henneberry RC, Simpson IA. Expression of two glucose transporters, GLUT1 and GLUT3, in cultured cerebellar neurons: Evidence for neuron-specific expression of GLUT3. Mol Cell Neurosci 1991; 2:351-60. [DOI: 10.1016/1044-7431(91)90066-w] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/1991] [Indexed: 11/26/2022] Open
|
26
|
Dallaire L, Tremblay L, Béliveau R. Purification and characterization of metabolically active capillaries of the blood-brain barrier. Biochem J 1991; 276 ( Pt 3):745-52. [PMID: 1712199 PMCID: PMC1151067 DOI: 10.1042/bj2760745] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Microvessels were isolated from bovine and rat cerebral cortex by simple procedures involving mechanical homogenization, differential and density-gradient centrifugation, and chromatography on a column of glass beads. The preparations were composed of short capillaries with a diameter of 1-10 microns. Both purifications were monitored by assaying the activity of the marker enzyme gamma-glutamyl transpeptidase (gamma-GTase). The final bovine and rat preparations were enriched 20- and 14-fold over the homogenate respectively. gamma-GTase activity was measured in different fractions after bovine and rat membranes were solubilized with 0.5% and 0.3% Triton X-100 respectively. Measurement of 5'-nucleotidase and acetylcholinesterase activities indicated very low levels of contamination of the microvessel preparations by glial cells and neurons. The integrity of the capillary membranes was confirmed by the assay of a cytosolic marker enzyme, lactate dehydrogenase. Viability of the microvessels was demonstrated by the presence of detectable levels of adenylates and by tissue respiration induced by glucose and succinate. Comparison of the proteins of homogenized bovine and rat brain cortex with those of purified capillaries separated by SDS/PAGE revealed enrichment of at least three predominant proteins of 14, 16 and 18 kDa in the capillary preparations. It is concluded that these methods allow rapid isolation of small blood vessels of the blood-brain barrier which are suitable for metabolic and structural studies in vitro.
Collapse
Affiliation(s)
- L Dallaire
- Département de Chimie-Biochimie, Université du Québec à Montréal, Canada
| | | | | |
Collapse
|
27
|
Waddell ID, Scott H, Grant A, Burchell A. Identification and characterization of a hepatic microsomal glucose transport protein. T3 of the glucose-6-phosphatase system? Biochem J 1991; 275 ( Pt 2):363-7. [PMID: 1850983 PMCID: PMC1150061 DOI: 10.1042/bj2750363] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A 52 kDa polypeptide in rat liver microsomes was identified as a glucose-binding protein by its ability to weakly bind cytochalasin B and by its cross-reactivity to an antibody raised against the human erythrocyte glucose transport protein. The microsomal glucose binding polypeptide was purified by affinity chromatography and an antibody was raised against it. The inhibitory effect of this antibody on rat microsomal glucose-6-phosphatase activity and on glucose transport out of microsomal vesicles indicates that this protein is a microsomal glucose transport protein.
Collapse
Affiliation(s)
- I D Waddell
- Department of Obstetrics and Gynaecology, Ninewells Hospital and Medical School, Dundee, Scotland, U.K
| | | | | | | |
Collapse
|
28
|
Abstract
It is not known if the diabetes-related reduction in blood-brain barrier (BBB) transport of glucose is due to a change in the functional capacity of transporters or to an as yet unidentified mechanism occurring at the plasma membrane or cytoplasm. To increase our understanding of this problem, the cerebral blood flow, the brain uptake index (BUI) of 3-O-methyl glucose and the concentration of 3H-cytochalasin B binding sites were determined in diabetic rats and diabetic rats treated with insulin. The BUI of 3-O-methyl glucose was significantly reduced (less than 0.001) in diabetic rats (32.7 +/- 1.2%) compared to control rats (41.9 +/- 1.0%). This change could not be attributed to an alteration in cerebral blood flow or to a non-specific change in BBB permeability. Normalization of blood glucose with insulin therapy corrected the BUI measurements in diabetic rats (42.2 +/- 1.4%). The level of measurable glucose transporters measured with 3H-cytochalasin B binding assay did not appear to be reduced in the diabetic brain microvessels. The data indicate that the reduced brain uptake of glucose in chronic hyperglycemia can occur in the absence of a change in glucose transporter concentration.
Collapse
|
29
|
Yano H, Seino Y, Inagaki N, Hinokio Y, Yamamoto T, Yasuda K, Masuda K, Someya Y, Imura H. Tissue distribution and species difference of the brain type glucose transporter (GLUT3). Biochem Biophys Res Commun 1991; 174:470-7. [PMID: 1704223 DOI: 10.1016/0006-291x(91)91440-n] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The complementary DNA for the human brain type glucose transporter (GLUT3) was used to determine its tissue specific expression in human, monkey, rabbit, rat, and mouse. Under high stringent conditions, 4.1 and 3.2 kilobase (kb) GLUT3 transcripts in monkey and a single 4.1 kb GLUT3 mRNA in rabbit, rat, and mouse were detected by RNA blot analysis. Although the GLUT3 transcripts were widely distributed, as are the erythrocyte type glucose transporter (GLUT1) transcripts, this mRNA is most abundant in the brain. However, the relative abundance of GLUT3 mRNA in the various regions of the monkey brain shows a different pattern from that of GLUT1 mRNA: GLUT3 is most highly expressed in the frontal lobe of the cerebrum, whereas GLUT1 is most abundant in the basal ganglia and the thalamus. Moderately higher GLUT3 mRNA levels were detected in the parietal lobe of the cerebrum, hippocampus, and cerebellum than the levels of GLUT1 transcripts. We also detected GLUT3 mRNA in adult human psoas major muscle, although it has been reported that the GLUT3 gene is scarcely expressed in adult human skeletal muscle of the thigh. In addition, in the rat and the mouse, no transcripts of the GLUT3 gene were detected in liver, kidney, small intestine, skeletal muscle, or fat besides in brain. Thus, the expression of the GLUT3 gene seems to be restricted to the brain in rodents. These results suggest that the expression of GLUT1 and GLUT3 genes might be regulated by different mechanisms.
Collapse
Affiliation(s)
- H Yano
- Department of Medicine, Kyoto University School of Medicine, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Rydzewski BZ, Wozniak MM, Raizada MK. Glucose transporters in central nervous system glucose homeostasis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1991; 293:397-404. [PMID: 1767739 DOI: 10.1007/978-1-4684-5949-4_35] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- B Z Rydzewski
- Department of Physiology, College of Medicine, University of Florida, Gainesville
| | | | | |
Collapse
|
31
|
Madon RJ, Martin S, Davies A, Fawcett HA, Flint DJ, Baldwin SA. Identification and characterization of glucose transport proteins in plasma membrane- and Golgi vesicle-enriched fractions prepared from lactating rat mammary gland. Biochem J 1990; 272:99-105. [PMID: 2264840 PMCID: PMC1149662 DOI: 10.1042/bj2720099] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Plasma membrane- and Golgi vesicle-enriched membrane fractions were prepared from day-10 lactating rat mammary glands. Each fraction was found to contain a single set of D-glucose-inhibitable cytochalasin B-binding sites: plasma membranes and Golgi vesicles bound 20 +/- 2 and 53 +/- 4 pmol of cytochalasin/mg of membrane protein (means +/- S.E.M.), with dissociation constants of 259 +/- 47 and 520 +/- 47 nM respectively. Anti-peptide antibodies against the C-terminal region (residues 477-492) of the rat brain/human erythrocyte glucose transporter labelled a sharp band of apparent Mr 50,000 on Western blots of both fractions. Treatment with endoglycosidase F before blotting decreased the apparent Mr of this band to 38,000, indicating that it corresponded to a glycoprotein. Confirmation that this immunologically cross-reactive band was a glucose transporter was provided by the demonstration that it could be photoaffinity-labelled, in a D-glucose-sensitive fashion, with cytochalasin B. Quantitative Western blotting studies yielded values of 28 +/- 5 and 23 +/- 3 pmol of immunologically cross-reactive glucose transporters/mg of membrane protein in the plasma membrane and Golgi vesicle fractions respectively. From comparison with the concentration of cytochalasin B-binding sites, it is concluded that a protein homologous to the rat brain glucose transporter constitutes the major glucose transport species in the plasma membranes of mammary gland epithelial cells. Glucose transporters are also found in the Golgi membranes of these cells, at least half of them being similar, if not identical, to the transporters of the plasma membrane. However, their function in this location remains unclear.
Collapse
Affiliation(s)
- R J Madon
- Department of Biological Science and Technology, Hannah Research Institute, Scotland, U.K
| | | | | | | | | | | |
Collapse
|
32
|
Abstract
The uptake of glucose by Acanthocheilonema viteae was studied in vitro. The process was selective for the D-isomer and saturatable with a Km of 2 mM. The rate of glucose transport/utilization was inhibited by 2-deoxyglucose, mannose, 5-thioglucose and dipyridamole but, unlike mammalian systems, was not impaired by cytochalasin B, phloretin, phloridzin, 3-O-methylglucose and 4,6-ethylideneglucose. A potential chemotherapeutic advantage of selectively inhibiting filarial glucose transport exists for the following reasons. (1) The glucose transporter present in A. viteae was shown to be different from the one present in some mammalian systems. (2) Incubation under glucose-free conditions led to glycogen depletion, loss of motility and worm death. (3) Worms maintained in vitro for more than 18 h without glucose did not survive when implanted into gerbils.
Collapse
Affiliation(s)
- D J Hayes
- Wellcome Research Laboratories, Beckenham, Kent
| | | |
Collapse
|
33
|
Harik SI, Kalaria RN, Whitney PM, Andersson L, Lundahl P, Ledbetter SR, Perry G. Glucose transporters are abundant in cells with "occluding" junctions at the blood-eye barriers. Proc Natl Acad Sci U S A 1990; 87:4261-4. [PMID: 2190218 PMCID: PMC54088 DOI: 10.1073/pnas.87.11.4261] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
We studied the distribution of the "erythroid/brain" glucose transporter protein in the human and rat eye by immunocytochemistry with monoclonal and polyclonal antibodies to the C terminus of the human erythrocyte glucose transporter. We found intense immunocytochemical staining in the endothelium of microvessels of the retina, optic nerve, and iris but not in microvessels of the choroid, ciliary body, sclera, and other retro-orbital tissues. In addition, we found marked immunocytochemical staining of retinal pigment epithelium, ciliary body epithelium, and posterior epithelium of the iris. The common feature of all those endothelial and epithelial cells that stained intensely for the glucose transporter is the presence of "occluding" intercellular junctions, which constitute the anatomical bases of the blood-eye barriers. We propose that a high density of the glucose transporter is a biochemical concomitant of epithelial and endothelial cells with barrier characteristics, at least in tissues that have a high metabolic requirement for glucose.
Collapse
Affiliation(s)
- S I Harik
- Department of Neurology, University Hospitals of Cleveland, OH 44106
| | | | | | | | | | | | | |
Collapse
|
34
|
Azorin JM, Bovier P, Widmer J, Jeanningros R, Tissot R. L-tyrosine and L-tryptophan membrane transport in erythrocytes and antidepressant drug choice. Biol Psychiatry 1990; 27:723-34. [PMID: 2158354 DOI: 10.1016/0006-3223(90)90587-r] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In the treatment of depression, when antidepressant drug choice is made according to alterations of erythrocyte membrane transport of L-tyrosine and L-tryptophan in the individual patient, the clinical results are superior to those obtained when drugs are prescribed according to the physician's judgment. This is demonstrated by comparing three experimental groups: I, 100 patients treated in relation to their L-tyrosine and L-tryptophan transport; II, 30 patients treated according to the clinician's experience; III, 38 subjects treated against the L-tyrosine and L-tryptophan transport indications. In these groups, the frequency of patients improved by more than 70% is 77%, 47%, and 16%, respectively.
Collapse
Affiliation(s)
- J M Azorin
- Clinique de Psychiatrie et de Psychologie Médicale C.H.U. Timone Marseille, France
| | | | | | | | | |
Collapse
|
35
|
Bagley PR, Tucker SP, Nolan C, Lindsay JG, Davies A, Baldwin SA, Cremer JE, Cunningham VJ. Anatomical mapping of glucose transporter protein and pyruvate dehydrogenase in rat brain: an immunogold study. Brain Res 1989; 499:214-24. [PMID: 2804676 DOI: 10.1016/0006-8993(89)90769-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The regional and cellular distributions of glucose transporter protein (GT) and pyruvate dehydrogenase (PDH) have been studied with an enhanced immunogold method. The results showed significant amounts of GT in neuropil within regions known to exhibit high demands for glucose whilst neuronal perikarya showed little immunostaining. In contrast PDH immunostaining was most intense in neuronal perikarya. The distributions of these proteins were compared and discussed in relation to existing data on local cerebral glucose utilization and the distribution of other important metabolic enzymes. The results suggest that glucose is transported and metabolised in neuropil and that metabolic products such as pyruvate are transported into the neuronal cell body to undergo further metabolism.
Collapse
Affiliation(s)
- P R Bagley
- MRC Toxicology Unit, Medical Research Council Laboratories, Carshalton, Surrey, U.K
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Kalaria RN, Harik SI. Reduced glucose transporter at the blood-brain barrier and in cerebral cortex in Alzheimer disease. J Neurochem 1989; 53:1083-8. [PMID: 2769254 DOI: 10.1111/j.1471-4159.1989.tb07399.x] [Citation(s) in RCA: 251] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We studied the hexose transporter protein of the frontal and temporal neocortex, hippocampus, putamen, cerebellum, and cerebral microvessels (which constitute the blood-brain barrier) in Alzheimer disease and control subjects by reversible and covalent binding with [3H]cytochalasin B and by immunological reactivity. In Alzheimer disease subjects, we found a marked decrease in the hexose transporter in brain microvessels and in the cerebral neocortex and hippocampus, regions that are most affected in Alzheimer disease, but there were no abnormalities in the putamen or cerebellum. Hexose transporter reduction in cerebral microvessels of Alzheimer subjects is relatively specific because other enzyme markers of brain endothelium were not significantly altered. The low density of the hexose transporter at the blood-brain barrier and in the cerebral cortex in Alzheimer disease may be related to decreased in vivo measurements of cerebral oxidative metabolism.
Collapse
Affiliation(s)
- R N Kalaria
- Department of Neurology, University Hospitals of Cleveland, Ohio 44106
| | | |
Collapse
|
37
|
Gerhart DZ, LeVasseur RJ, Broderius MA, Drewes LR. Glucose transporter localization in brain using light and electron immunocytochemistry. J Neurosci Res 1989; 22:464-72. [PMID: 2668543 DOI: 10.1002/jnr.490220413] [Citation(s) in RCA: 157] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A polyclonal antibody to a synthetic 13 amino acidpeptide found at the carboxyl-terminal end of the glucose transporter protein was raised in rabbit and used in light and electron immunocytochemical studies of human and canine brain. This antibody identified a broad band of polypeptide of average Mr 55,000 on immunoblots (immunogold-silver stains) of electrophoresed membrane proteins from human red blood cells. A similar polypeptide band (Mr 45,000-60,000) was identified on immunoblots of microvessel membrane proteins isolated from canine cerebrum, suggesting that this antibody is a useful tool for studying the distribution and abundance of the glucose transporter protein in mammalian nervous tissue. Peroxidase antiperoxidase stains of cerebrum using this antibody demonstrated that transporters are abundant in the intima pia, in the endothelium of blood vessels in the subarachnoid space, and in the endothelium of arterioles, venules, and capillaries of gray and white matter. In cerebellum, reaction product was localized in the vessels of the subarachnoid space and in microvessels of the molecular layer, the granular layer, and the white matter. However, transporters were not found in the intima pia of cerebellum. In medulla oblongata, transporters were found in the intima pia, the endothelium of some subarachnoid vessels, and the microvessels of gray and white matter. In pituitary, microvessels in adenohypophysis contained no reaction product, but the antigen was detected in some microvessels in neurohypophysis. Electron microscopy of cerebral cortex using a protein A-gold technique demonstrated that glucose transporters are equally abundant on the luminal and abluminal membranes of microvessel endothelial cells.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- D Z Gerhart
- Department of Biochemistry, School of Medicine, University of Minnesota, Duluth
| | | | | | | |
Collapse
|
38
|
Kasanicki MA, Jessen KR, Baldwin SA, Boyle JM, Davies A, Gardiner RM. Immunocytochemical localization of the glucose-transport protein in mammalian brain capillaries. THE HISTOCHEMICAL JOURNAL 1989; 21:47-51. [PMID: 2663794 DOI: 10.1007/bf01002471] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The endothelial cells of mammalian brain capillaries, which form the anatomical basis of the blood-brain barrier, have been investigated by immunocytochemical methods to determine the distribution of the glucose-transport protein. A monoclonal antibody raised against the intact human erythrocyte glucose-transport protein and polyclonal antibodies raised against a synthetic peptide corresponding to the C-terminal sequence of the human erythrocyte glucose-transport protein were used for immunofluorescent staining of isolated human and bovine cerebral cortex microvessels. The pattern of fluorescence with both antibodies demonstrated the antigen to be distributed throughout the plasma membrane of the capillary endothelial cells. These results provide further evidence for the homology between the human erythrocyte and brain capillary glucose-transport protein, and confirm its abundance in brain capillaries.
Collapse
Affiliation(s)
- M A Kasanicki
- Department of Biochemistry, Royal Free Hospital, School of Medicine, London, UK
| | | | | | | | | | | |
Collapse
|
39
|
Kalaria RN, Gravina SA, Schmidley JW, Perry G, Harik SI. The glucose transporter of the human brain and blood-brain barrier. Ann Neurol 1988; 24:757-64. [PMID: 3207358 DOI: 10.1002/ana.410240610] [Citation(s) in RCA: 108] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We identified and characterized the glucose transporter in the human cerebral cortex, cerebral microvessels, and choroid plexus by specific D-glucose-displaceable [3H]cytochalasin B binding. The binding was saturable, with a dissociation constant less than 1 microM. Maximal binding capacity was approximately 7 pmol/mg protein in the cerebral cortex, approximately 42 pmol/mg protein in brain microvessels, and approximately 27 pmol/mg protein in the choroid plexus. Several hexoses displaced specific [3H]cytochalasin B binding to microvessels in a rank-order that correlated well with their known ability to cross the blood-brain barrier; the only exception was 2-deoxy-D-glucose, which had much higher affinity for the glucose transporter than the natural substrate, D-glucose. Irreversible photoaffinity labeling of the glucose transporter of microvessels with [3H]cytochalasin B, followed by solubilization and polyacrylamide gel electrophoresis, labeled a protein band with an average molecular weight of approximately 55,000. Monoclonal and polyclonal antibodies specific to the human erythrocyte glucose transporter immunocytochemically stained brain blood vessels and the few trapped erythrocytes in situ, with minimal staining of the neuropil. In the choroid plexus, blood vessels did not stain, but the epithelium reacted positively. We conclude that human brain microvessels are richly endowed with a glucose transport moiety similar in molecular weight and antigenic characteristics to that of human erythrocytes and brain microvessels of other mammalian species.
Collapse
Affiliation(s)
- R N Kalaria
- Department of Neurology, University Hospitals of Cleveland, OH 44106
| | | | | | | | | |
Collapse
|
40
|
Affiliation(s)
- S I Harik
- Department of Neurology, University Hospitals of Cleveland, OH 44106
| |
Collapse
|