1
|
Tulcan RXS, Ouyang W, Guo Z, Lin C, Gu X, Wang A, Wang B. Watershed seasonality regulating vanadium concentrations and ecological risks in the coastal aquatic habitats of the northwest Pacific. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 322:121145. [PMID: 36702431 DOI: 10.1016/j.envpol.2023.121145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/05/2023] [Accepted: 01/22/2023] [Indexed: 06/18/2023]
Abstract
Vanadium is a component of different natural and industrial products and a widely used metal, which, nonetheless, has only garnered attention in recent years owing to its potential risks. Six sampling trips were conducted over different seasons and years, collecting 108 samples from rivers and 232 from the bays and analyzed using high-precision inductively coupled plasma mass spectrometry. This study investigated the sources, spatiotemporal characteristics, and risks of vanadium in the aquatic ecosystems of two typical bays of the Northwest Pacific that have strong links with vanadium-related industries. Likewise, the health and ecological risks were assessed using probabilistic and deterministic approaches. Overall, vanadium concentrations were higher in Jiaozhou Bay (JZB: 0.41-52.7 μg L-1) than in Laizhou Bay (LZB: 0.39-17.27 μg L-1), with concentrations higher than the majority of the worldwide studies. Vanadium-realted industries significantly impacted (p < 0.05) the metal concentrations in the rivers with 54.22% (40.73-150%) and 54.45% (27.66%-68.87%) greater concentrations in JZB and LZB rivers. In addition, vanadium exhibited significant seasonal variation, and higher values were quantified during the monsoon period at LZB owing to the greater catchment area. Impacted by smaller freshwater inputs, the post-monsoon period had substantial impacts on JZB, and vanadium in the rivers and bays was significantly higher during the winter. Despite some concentrations being higher than that indicated in the drinking water guidelines established by China, vanadium presents low to null risks to the population as per both approaches. Last, species with limited resilience are likely to face medium to high risks, with an incidence of 65-93% using the probabilistic method and 52-97% using the deterministic assessment.
Collapse
Affiliation(s)
- Roberto Xavier Supe Tulcan
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Wei Ouyang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China; Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhuhai, 519087, China.
| | - Zewei Guo
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Chunye Lin
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Xiang Gu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Aihua Wang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Baodong Wang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
2
|
Zhang Y, Wang L, Zeng K, Wang K, Yang X. Vanadyl complexes discriminate between neuroblastoma cells and primary neurons by inducing cell-specific apoptotic pathways. J Inorg Biochem 2018; 188:76-87. [PMID: 30121400 DOI: 10.1016/j.jinorgbio.2018.08.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 07/27/2018] [Accepted: 08/02/2018] [Indexed: 12/11/2022]
Abstract
Vanadium compounds have arisen as potential therapeutic agent for the treatment of cancers over the past decades. A few studies suggested that vanadyl complexes may discriminate between the cancerous and the normal cells. Here, we reported the investigation on the pro-apoptotic effect and the underlying mechanism of bis(acetylacetonato) oxovanadium(IV) ([VO(acac)2]) on SH-SY5Y neuroblastoma cells in comparison with that of mouse primary cortex neurons. The experimental results revealed that [VO(acac)2] showed about 10-fold higher cytotoxicity (IC50 ~16 μM) on the neuroblastoma cells than on normal neurons (IC50 ~250 μM). Further analysis indicated that the vanadyl complex suppressed the growth of neuroblastoma cells via different pathways depending on its concentration. It induced a special cyclin D-mediated and p53-independent cell apoptosis at <50 μM but cell cycle arrests at >50 μM. In contrast, [VO(acac)2] promoted cell viability of primary neurons in the concentration range of 0-150 μM; while [VO(acac)2] at hundreds of μM would cause neuronal death possibly via the reactive oxygen species (ROS)-mediated signal pathways. The extraordinary discrimination between neuroblastoma cells and primary neurons suggests potential application of vanadyl complexes for therapeutic treatment of neuroblastoma. In addition, the p53-independent apoptotic pathways induced by vanadyl complexes may provide new insights for future discovery of new anticancer drugs overcoming the chemo-resistance due to p53 mutation.
Collapse
Affiliation(s)
- Yue Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Science, Peking University Health Science Center, Beijing 100191, PR China; Department of Chemical Biology, School of Pharmaceutical Science, Peking University Health Science Center, Beijing 100191, PR China
| | - Lichao Wang
- Department of Chemical Biology, School of Pharmaceutical Science, Peking University Health Science Center, Beijing 100191, PR China
| | - Kewu Zeng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Science, Peking University Health Science Center, Beijing 100191, PR China; Department of Natural Medicines, School of Pharmaceutical Science, Peking University Health Science Center, Beijing 100191, PR China.
| | - Kui Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Science, Peking University Health Science Center, Beijing 100191, PR China; Department of Chemical Biology, School of Pharmaceutical Science, Peking University Health Science Center, Beijing 100191, PR China
| | - Xiaoda Yang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Science, Peking University Health Science Center, Beijing 100191, PR China; Department of Chemical Biology, School of Pharmaceutical Science, Peking University Health Science Center, Beijing 100191, PR China.
| |
Collapse
|
3
|
Cusimano A, Balasus D, Azzolina A, Augello G, Emma MR, Di Sano C, Gramignoli R, Strom SC, McCubrey JA, Montalto G, Cervello M. Oleocanthal exerts antitumor effects on human liver and colon cancer cells through ROS generation. Int J Oncol 2017; 51:533-544. [PMID: 28656311 DOI: 10.3892/ijo.2017.4049] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Accepted: 05/04/2017] [Indexed: 11/05/2022] Open
Abstract
The beneficial health properties of the Mediter-ranean diet are well recognized. The principle source of fat in Mediterranean diet is extra-virgin olive oil (EVOO). Oleocanthal (OC) is a naturally occurring minor phenolic compound isolated from EVOO, which has shown a potent anti-inflammatory activity, by means of its ability to inhibit the cyclooxygenase (COX) enzymes COX-1 and COX-2. A large body of evidence indicates that phenols exhibit anticancer activities. The aim of the present study was to evaluate the potential anticancer effects of OC in hepatocellular carcinoma (HCC) and colorectal carcinoma (CRC) models. A panel of human HCC (HepG2, Huh7, Hep3B and PLC/PRF/5) and CRC (HT29, SW480) cell lines was used. Cells were treated with OC, and cell viability and apoptosis were evaluated. Compared with classical commercially available COX inhibitors (ibuprofen, indomethacin, nimesulide), OC was more effective in inducing cell growth inhibition in HCC and CRC cells. Moreover, OC inhibited colony formation and induced apoptosis, as confirmed by PARP cleavage, activation of caspases 3/7 and chromatin condensation. OC treatment in a dose dependent-manner induced expression of γH2AX, a marker of DNA damage, increased intracellular ROS production and caused mitochondrial depolarization. Moreover, the effects of OC were suppressed by the ROS scavenger N-acetyl-L-cysteine. Finally, OC was not toxic in primary normal human hepatocytes. In conclusion, OC treatment was found to exert a potent anticancer activity against HCC and CRC cells. Taken together, our findings provide preclinical support of the chemotherapeutic potential of EVOO against cancer.
Collapse
Affiliation(s)
- Antonella Cusimano
- Institute of Biomedicine and Molecular Immunology 'Alberto Monroy', National Research Council (CNR), Palermo, Italy
| | - Daniele Balasus
- Institute of Biomedicine and Molecular Immunology 'Alberto Monroy', National Research Council (CNR), Palermo, Italy
| | - Antonina Azzolina
- Institute of Biomedicine and Molecular Immunology 'Alberto Monroy', National Research Council (CNR), Palermo, Italy
| | - Giuseppa Augello
- Institute of Biomedicine and Molecular Immunology 'Alberto Monroy', National Research Council (CNR), Palermo, Italy
| | - Maria R Emma
- Institute of Biomedicine and Molecular Immunology 'Alberto Monroy', National Research Council (CNR), Palermo, Italy
| | - Caterina Di Sano
- Institute of Biomedicine and Molecular Immunology 'Alberto Monroy', National Research Council (CNR), Palermo, Italy
| | - Roberto Gramignoli
- Division of Pathology, Department of Laboratory Medicine, Cell Transplantation and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Stephen C Strom
- Division of Pathology, Department of Laboratory Medicine, Cell Transplantation and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, USA
| | - Giuseppe Montalto
- Institute of Biomedicine and Molecular Immunology 'Alberto Monroy', National Research Council (CNR), Palermo, Italy
| | - Melchiorre Cervello
- Institute of Biomedicine and Molecular Immunology 'Alberto Monroy', National Research Council (CNR), Palermo, Italy
| |
Collapse
|
4
|
Andrezálová L, Gbelcová H, Duračková Z. DNA damage induction and antiproliferative activity of vanadium(V) oxido monoperoxido complex containing two bidentate heteroligands. J Trace Elem Med Biol 2013; 27:21-6. [PMID: 22575540 DOI: 10.1016/j.jtemb.2012.04.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Revised: 02/14/2012] [Accepted: 04/12/2012] [Indexed: 11/18/2022]
Abstract
Several peroxidovanadium(V) complexes have been shown as a potent anticancer agents. The aim of this study was to investigate the interaction of monoperoxidovanadium(V) complex Pr(4)N[VO(O(2))(ox)(phen)], (Vphen), [phen=1,10-phenantroline, ox=oxalate(2-) and Pr(4)N=tetra(n-propyl)ammonium(1+)] with DNA. UV-Vis spectrophotometry and the alkaline single-cell gel electrophoresis (SCGE, the comet assay) were used to examine the possibility of the vanadium(V) complex to induce changes in DNA. The interaction of Vphen with calf thymus DNA resulted in absorption hyperchromicity in DNA spectrum and shift of the absorption band of DNA to longer wavelengths for the [complex]/[DNA] concentration ratio equals to 4 and after 60 min of incubation. The rise in DNA absorption (by 34%) and bathochromic shift (Δλ(max)=6 nm) are indicative of the interaction between DNA and the complex molecules. DNA strand breaks in cellular DNA were investigated using the comet assay. The human lymphocytes were exposed to various concentrations of Vphen for 30 min. The results revealed that Vphen contributed to the DNA damage expressed as DNA strand breaks in concentration dependent manner. The used concentrations of Vphen (ranging from 0.1 to 100 μmol/L) caused higher DNA damage in lymphocytes compared to untreated cells (from 1.2 times for 0.1 μmol/L to 1.8 times for 100 μmol/L). Vphen was screened for its potential antitumor activity towards murine leukemia cell line L1210. Vphen exhibited significant antiproliferative activity depending on its concentration and time of exposure. The IC(50) values were 0.247 μg/mL (0.45 μmol/L) for 24h, 0.671 μg/mL (1.21 μmol/L) for 48 h and 0.627 μg/mL (1.13 μmol/L) for 72 h.
Collapse
Affiliation(s)
- Lucia Andrezálová
- Institute of Medical Chemistry, Biochemistry and Clinical Biochemistry, Faculty of Medicine, Comenius University, Sasinkova 2, 811 08 Bratislava, Slovakia.
| | | | | |
Collapse
|
5
|
Cuperus R, Leen R, Tytgat GAM, Caron HN, van Kuilenburg ABP. Fenretinide induces mitochondrial ROS and inhibits the mitochondrial respiratory chain in neuroblastoma. Cell Mol Life Sci 2010; 67:807-16. [PMID: 19941060 PMCID: PMC2824117 DOI: 10.1007/s00018-009-0212-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Revised: 11/06/2009] [Accepted: 11/09/2009] [Indexed: 02/08/2023]
Abstract
Fenretinide induces apoptosis in neuroblastoma by induction of reactive oxygen species (ROS). In this study, we investigated the role of mitochondria in fenretinide-induced cytotoxicity and ROS production in six neuroblastoma cell lines. ROS induction by fenretinide was of mitochondrial origin, demonstrated by detection of superoxide with MitoSOX, the scavenging effect of the mitochondrial antioxidant MitoQ and reduced ROS production in cells without a functional mitochondrial respiratory chain (Rho zero cells). In digitonin-permeabilized cells, a fenretinide concentration-dependent decrease in ATP synthesis and substrate oxidation was observed, reflecting inhibition of the mitochondrial respiratory chain. However, inhibition of the mitochondrial respiratory chain was not required for ROS production. Co-incubation of fenretinide with inhibitors of different complexes of the respiratory chain suggested that fenretinide-induced ROS production occurred via complex II. The cytotoxicity of fenretinide was exerted through the generation of mitochondrial ROS and, at higher concentrations, also through inhibition of the mitochondrial respiratory chain.
Collapse
Affiliation(s)
- Roos Cuperus
- Laboratory Genetic Metabolic Diseases, Department of Pediatrics/Emma Children’s Hospital, Academic Medical Centre, University of Amsterdam, P.O. Box 22700, 1100 DE Amsterdam, The Netherlands
| | - René Leen
- Laboratory Genetic Metabolic Diseases, Department of Pediatrics/Emma Children’s Hospital, Academic Medical Centre, University of Amsterdam, P.O. Box 22700, 1100 DE Amsterdam, The Netherlands
| | - Godelieve A. M. Tytgat
- Laboratory Genetic Metabolic Diseases, Department of Pediatrics/Emma Children’s Hospital, Academic Medical Centre, University of Amsterdam, P.O. Box 22700, 1100 DE Amsterdam, The Netherlands
| | - Huib N. Caron
- Laboratory Genetic Metabolic Diseases, Department of Pediatrics/Emma Children’s Hospital, Academic Medical Centre, University of Amsterdam, P.O. Box 22700, 1100 DE Amsterdam, The Netherlands
| | - André B. P. van Kuilenburg
- Laboratory Genetic Metabolic Diseases, Department of Pediatrics/Emma Children’s Hospital, Academic Medical Centre, University of Amsterdam, P.O. Box 22700, 1100 DE Amsterdam, The Netherlands
| |
Collapse
|
6
|
Lampiasi N, Azzolina A, D'Alessandro N, Umezawa K, McCubrey JA, Montalto G, Cervello M. Antitumor effects of dehydroxymethylepoxyquinomicin, a novel nuclear factor-kappaB inhibitor, in human liver cancer cells are mediated through a reactive oxygen species-dependent mechanism. Mol Pharmacol 2009; 76:290-300. [PMID: 19461054 DOI: 10.1124/mol.109.055418] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Activation of the nuclear transcription factor-kappaB (NF-kappaB) has been implicated in liver tumorigenesis. We evaluated the effects of a novel NF-kappaB inhibitor, dehydroxymethylepoxyquinomicin (DHMEQ), in two human liver cancer cell lines HA22T/VGH and HuH-6. DHMEQ treatment dose dependently decreased the DNA-binding capacity of the NF-kappaB p65 subunit, inhibited cell growth and proliferation, and increased apoptosis as shown by caspase activation, release of cytochrome c, poly(ADP-ribose) polymerase cleavage, and down-regulation of survivin. DHMEQ also induced a dose-dependent activation of mitogen-activated protein kinase kinase/extracellular signal-regulated kinase signaling, and inhibition of this pathway significantly reduced cell growth. It is noteworthy that we observed that DHMEQ stimulated reactive oxygen species (ROS) production in a dose-dependent manner and that pretreatment of the cells with the antioxidant N-acetyl-L-cysteine (NAC) significantly reduced DHMEQ-induced ROS generation. Accordingly, NAC completely reversed the DHMEQ-induced growth inhibition, caspase activation, and cell death. DHMEQ-treated cells exhibited DNA damage, as evaluated by accumulation in nuclear foci of phospho-H2AX, which was completely reversed by NAC. Moreover, DHMEQ induced the expression of genes involved in the endoplasmic reticulum stress response (GRP78, CHOP, TRB3) and promoted the splicing of XBP1 mRNA in a dose-dependent fashion in both cell lines, which was reversed in the presence of NAC. Knockdown of TRB3 mRNA expression by small interference RNA significantly decreased DHMEQ-induced cell growth inhibition. These data suggest that DHMEQ antitumor effects are primarily mediated through ROS generation. Thereby, considering that cancer cells are under increased ER stress and oxidative stress conditions, DHMEQ may greatly improve various anticancer strategies.
Collapse
Affiliation(s)
- Nadia Lampiasi
- Institute of Biomedicine and Molecular Immunology Alberto Monroy, National Research Council, Palermo, Italy.
| | | | | | | | | | | | | |
Collapse
|
7
|
Role of mitochondrial oxidative stress in the apoptosis induced by diospyrin diethylether in human breast carcinoma (MCF-7) cells. Mol Cell Biochem 2008; 320:185-95. [DOI: 10.1007/s11010-008-9920-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2008] [Accepted: 09/15/2008] [Indexed: 10/21/2022]
|
8
|
Cohen MD. Pulmonary Immunotoxicology of Select Metals: Aluminum, Arsenic, Cadmium, Chromium, Copper, Manganese, Nickel, Vanadium, and Zinc. J Immunotoxicol 2008; 1:39-69. [DOI: 10.1080/15476910490438360] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
9
|
Soares SS, Henao F, Aureliano M, Gutiérrez-Merino C. Vanadate induces necrotic death in neonatal rat cardiomyocytes through mitochondrial membrane depolarization. Chem Res Toxicol 2008; 21:607-18. [PMID: 18251508 DOI: 10.1021/tx700204r] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Besides the well-known inotropic effects of vanadium in cardiac muscle, previous studies have shown that vanadate can stimulate cell growth or induce cell death. In this work, we studied the toxicity to neonatal rat ventricular myocytes (cardiomyocytes) of two vanadate solutions containing different oligovanadates distribution, decavanadate (containing decameric vanadate, V 10) and metavanadate (containing monomeric vanadate and also di-, tetra-, and pentavanadate). Incubation for 24 h with decavanadate or metavanadate induced necrotic cell death of cardiomyocytes, without significant caspase-3 activation. Only 10 microM total vanadium of either decavanadate (1 microM V 10) or metavanadate (10 microM total vanadium) was needed to produce 50% loss of cell viability after 24 h (assessed with MTT and propidium iodide assays). Atomic absorption spectroscopy showed that vanadium accumulation in cardiomyocytes after 24 h was the same when incubation was done with decavanadate or metavanadate. A decrease of 75% of the rate of mitochondrial superoxide anion generation, monitored with dihydroethidium, and a sustained rise of cytosolic calcium (monitored with Fura-2-loaded cardiomyocytes) was observed after 24 h of incubation of cardiomyocytes with decavanadate or metavanadate concentrations close to those inducing 50% loss of cell viability produced. In addition, mitochondrial membrane depolarization within cardiomyocytes, monitored with tetramethylrhodamine ethyl esther or with 3,3',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolcarbocyanine iodide, were observed after only 6 h of incubation with decavanadate or metavanadate. The concentration needed for 50% mitochondrial depolarization was 6.5 +/- 1 microM total vanadium for both decavanadate (0.65 microM V 10) and metavanadate. In conclusion, mitochondrial membrane depolarization was an early event in decavanadate- and monovanadate-induced necrotic cell death of cardiomyocytes.
Collapse
Affiliation(s)
- Sandra Sofia Soares
- Comparative Cardiovascular Physiopathology Group (GFCC), Faculty of Environmental and Marine Sciences, Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| | | | | | | |
Collapse
|
10
|
Dewar BJ, Gardner OS, Chen CS, Earp HS, Samet JM, Graves LM. Capacitative Calcium Entry Contributes to the Differential Transactivation of the Epidermal Growth Factor Receptor in Response to Thiazolidinediones. Mol Pharmacol 2007; 72:1146-56. [PMID: 17686966 DOI: 10.1124/mol.107.037549] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Thiazolidinediones (TZDs) are synthetic ligands for the peroxisome proliferator-activated receptor gamma (PPARgamma) but also elicit PPARgamma-independent effects, most notably activation of mitogen-activated protein kinases (MAPKs). Ciglitazone rapidly activates extracellular signal-regulated kinase (Erk) MAPK, an event requiring c-Src kinase-dependent epidermal growth factor receptor (EGFR) transactivation, whereas troglitazone only weakly activates Erk and does not induce EGFR transactivation; the mechanism underlying this difference remains unclear. In this study, both ciglitazone and troglitazone increased Src activation. Similar effects were observed with Delta2-derivatives of each TZD, compounds that bind PPARgamma but do not lead to its activation, further indicating a PPARgamma-independent mechanism. Neither EGFR kinase nor Pyk2 inhibition prevented Src activation; however, inhibition of Src kinase activity prevented Pyk2 activation. Intracellular calcium chelation blocks TZD-induced Pyk2 activation; here, Src activation by both TZDs and ciglitazone-induced EGFR transactivation were prevented by calcium chelation. Accordingly, both TZDs increased calcium concentrations from intracellular stores; however, only ciglitazone produced a secondary calcium influx in the presence of extracellular calcium. Removal of extracellular calcium or inhibition of capacitative calcium entry by 2-APB prevented ciglitazone-induced EGFR transactivation and Erk activation but did not affect upstream kinase signaling pathways. These results demonstrate that upstream kinases (i.e., Src and Pyk2) are required but not sufficient for EGFR transactivation by TZDs. Moreover, influx of extracellular calcium through capacitative calcium entry may be an unrecognized component that provides a mechanism for the differential induction of EGFR transactivation by these compounds.
Collapse
Affiliation(s)
- Brian J Dewar
- Curriculum in Toxicology , University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7365, USA
| | | | | | | | | | | |
Collapse
|
11
|
Capella MAM, Capella LS, Valente RC, Gefé M, Lopes AG. Vanadate-induced cell death is dissociated from H2O2 generation. Cell Biol Toxicol 2007; 23:413-20. [PMID: 17457679 DOI: 10.1007/s10565-007-9003-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2006] [Accepted: 02/07/2007] [Indexed: 10/25/2022]
Abstract
Vanadium is an environmentally toxic metal with peculiar and sometimes contradictory cellular effects. It is insulin-mimetic, it can either stimulate cell growth or induce cell death, and it has both mutagenic and antineoplastic properties. However, the mechanisms involved in those effects are poorly understood. Several studies suggest that H(2)O(2) is involved in vanadate-induced cell death, but it is not known whether cellular sensitivity to vanadate is indeed related to H(2)O(2) generation. In the present study, the sensitivity of four cell lines from different origins (K562, K562-Lucena 1, MDCK, and Ma104) to vanadate and H(2)O(2) was evaluated and the production of H(2)O(2) by vanadate was analyzed by flow cytometry. We show that cell lines very resistant to H(2)O(2) (K562, K562-Lucena 1, and Ma104 cells) are much more sensitive to vanadate than MDCK, a cell line relatively susceptible to H(2)O(2), suggesting that vanadate-induced cytotoxicity is not directly related to H(2)O(2) responsiveness. In accordance, vanadate concentrations that reduced cellular viability to approximately 60-70% of the control (10 mumol/L) did not induce H(2)O(2) formation. A second hypothesis, that peroxovanadium (PV) compounds, produced once vanadate enters into the cells, are responsible for the cytotoxicity, was only partially confirmed because MDCK cells were resistant to both vanadate and PV compounds (10 micromol/L each). Therefore, our results suggest that vanadate toxicity occurs by two distinct pathways, one dependent on and one independent of H(2)O(2) production.
Collapse
Affiliation(s)
- M A M Capella
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, RJ, Brazil.
| | | | | | | | | |
Collapse
|
12
|
Fialkow L, Wang Y, Downey GP. Reactive oxygen and nitrogen species as signaling molecules regulating neutrophil function. Free Radic Biol Med 2007; 42:153-64. [PMID: 17189821 DOI: 10.1016/j.freeradbiomed.2006.09.030] [Citation(s) in RCA: 463] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2006] [Revised: 09/27/2006] [Accepted: 09/28/2006] [Indexed: 02/06/2023]
Abstract
As a cornerstone of the innate immune response, neutrophils are the archetypical phagocytic cell; they actively seek out, ingest, and destroy pathogenic microorganisms. To achieve this essential role in host defense, neutrophils deploy a potent antimicrobial arsenal that includes oxidants, proteinases, and antimicrobial peptides. Importantly, oxidants produced by neutrophils, referred to in this article as reactive oxygen (ROS) and reactive nitrogen (RNS) species, have a dual function. On one hand they function as potent antimicrobial agents by virtue of their ability to kill microbial pathogens directly. On the other hand, they participate as signaling molecules that regulate diverse physiological signaling pathways in neutrophils. In the latter role, ROS and RNS serve as modulators of protein and lipid kinases and phosphatases, membrane receptors, ion channels, and transcription factors, including NF-kappaB. The latter regulates expression of key cytokines and chemokines that further modulate the inflammatory response. During the inflammatory response, ROS and RNS modulate phagocytosis, secretion, gene expression, and apoptosis. Under pathological circumstances such as acute lung injury and sepsis, excess production of ROS may influence vicinal cells such as endothelium or epithelium, contributing to inflammatory tissue injury. A better understanding of these pathways will help identify novel targets for amelioration of the untoward effects of inflammation.
Collapse
Affiliation(s)
- Lea Fialkow
- Faculty of Medicine, Universidade Federal do Rio Grande do Sul, Intensive Care Unit, Intensive Care Division, Hospital de Clínicas de Porto Alegre, Rio Grande do Sul, Brazil
| | | | | |
Collapse
|
13
|
Fickl H, Theron AJ, Grimmer H, Oommen J, Ramafi GJ, Steel HC, Visser SS, Anderson R. Vanadium promotes hydroxyl radical formation by activated human neutrophils. Free Radic Biol Med 2006; 40:146-55. [PMID: 16337888 DOI: 10.1016/j.freeradbiomed.2005.09.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2005] [Revised: 09/13/2005] [Accepted: 09/18/2005] [Indexed: 10/25/2022]
Abstract
This study was undertaken to investigate the effects of vanadium in the +2, +3, +4, and +5 valence states on superoxide generation, myeloperoxidase (MPO) activity, and hydroxyl radical formation by activated human neutrophils in vitro, using lucigenin-enhanced chemiluminescence (LECL), autoiodination, and electron spin resonance with 5,5-dimethyl-l-pyrroline N-oxide as the spin trap, respectively. At concentrations of up to 25 microM, vanadium, in the four different valence states used, did not affect the LECL responses of neutrophils activated with either the chemoattractant, N-formyl-l-methionyl-l-leucyl-l-phenylalanine (1 microM), or the phorbol ester, phorbol 12-myristate 12-acetate (25 ng/ml). However, exposure to vanadium in the +2, +3, and +4, but not the +5, valence states was accompanied by significant augmentation of hydroxyl radical formation by activated neutrophils and attenuation of MPO-mediated iodination. With respect to hydroxyl radical formation, similar effects were observed using cell-free systems containing either hydrogen peroxide (100 microM) or xanthine/xanthine oxidase together with vanadium (+2, +3, +4), while the activity of purified MPO was inhibited by the metal in these valence states. These results demonstrate that vanadium in the +2, +3, and +4 valence states interacts prooxidatively with human neutrophils, competing effectively with MPO for hydrogen peroxide to promote formation of the highly toxic hydroxyl radical.
Collapse
Affiliation(s)
- Heidi Fickl
- Medical Research Council Unit for Inflammation and Immunity, Department of Immunology, Tshwane Academic Division of the National Health Laboratory Service and Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Matute JD, Arias AA, Dinauer MC, Patiño PJ. p40phox: The last NADPH oxidase subunit. Blood Cells Mol Dis 2005; 35:291-302. [PMID: 16102984 DOI: 10.1016/j.bcmd.2005.06.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2005] [Accepted: 06/27/2005] [Indexed: 11/20/2022]
Abstract
The phagocytic NADPH-oxidase is a multiprotein system activated during the inflammatory response to produce superoxide anion (O2-), which is the substrate for formation of additional reactive oxygen species (ROS). The importance of this system for innate immunity is established by chronic granulomatous disease (CGD), a primary immunodeficiency caused by defects in the NADPH oxidase. In this review, we present and discuss recent knowledge about p40phox, the last NADPH oxidase component to be identified. Furthermore, its interaction with cellular pathways outside of the NADPH oxidase is discussed. Described in this review is evidence that p40phox participates in NADPH oxidase dynamics within cells, what is known about its role in the oxidase, the possibility that p40phox participates in non-NADPH oxidase processes in phagocytic and non-phagocytic cells and whether p40phox could mediate a similar function in other NADPH oxidases. An improved understanding of p40phox should provide new insights about NADPH oxidase, the physiology of phagocytic cells and the innate immune system.
Collapse
Affiliation(s)
- Juan D Matute
- Grupo de Inmunodeficiencias Primarias, Corporación Biogénesis and Facultad de Medicina, Universidad de Antioquia, Medellín, Antioquia, Colombia
| | | | | | | |
Collapse
|
15
|
Buenz EJ, Weaver JG, Bauer BA, Chalpin SD, Badley AD. Cordyceps sinensis extracts do not prevent Fas-receptor and hydrogen peroxide-induced T-cell apoptosis. JOURNAL OF ETHNOPHARMACOLOGY 2004; 90:57-62. [PMID: 14698509 DOI: 10.1016/j.jep.2003.09.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Aqueous and alcohol extracts of Cordyceps sinensis (Berk) Succ. are used as a traditional medicine in China for the treatment of a wide range of diseases and are reported to have antioxidant and antiapoptotic properties. We therefore examined the ability of aqueous, organic, and alcohol extracts of Cordyceps sinensis to inhibit apoptosis induced either by hydrogen peroxide or Fas-receptor ligation; both stimuli induce apoptosis dependent on reactive oxygen species. Cells pre-incubated with Cordyceps sinensis extracts were equally sensitive to hydrogen peroxide and Fas-mediated apoptosis. Thus, the putative antioxidant and antiapoptotic properties of Cordyceps sinensis are insufficient to rescue cells from apoptosis induced by these stimuli in vitro.
Collapse
Affiliation(s)
- E J Buenz
- Division of Infectious Diseases, Mayo Clinic and Foundation, Rochester, MN, USA
| | | | | | | | | |
Collapse
|
16
|
D'Cruz OJ, Dong Y, Uckun FM. Potent dual anti-HIV and spermicidal activities of novel oxovanadium(V) complexes with thiourea non-nucleoside inhibitors of HIV-1 reverse transcriptase. Biochem Biophys Res Commun 2003; 302:253-64. [PMID: 12604339 DOI: 10.1016/s0006-291x(03)00161-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We have previously demonstrated that tetrahedral bis(cyclopentadienyl)vanadium(IV) complexes and square pyramidal oxovanadium(IV) complexes of vanadium are rapid and selective spermicidal agents at low micromolar concentrations. This study investigated the potential utility of oxovanadium in combination with thiourea non-nucleoside inhibitors (NNIs) of HIV-1 reverse transcriptase (RT) for the development of an effective dual-function anti-HIV spermicide. Two rationally designed substituted phenyl-ring containing pyridyl thiourea NNIs, N-[2-(2-chlorophenethyl)]-N(')-[2-(5-bromopyridyl)-thiourea) [1] and N-[2-(2-methoxyphenethyl)]-N(')-[2-(pyridyl)-thiourea [2] that exhibited subnanomolar IC(50) values against the drug-sensitive, drug-resistant, and multidrug-resistant strains of HIV-1, were complexed with oxovanadium. The oxovanadium-thiourea [OVT] NNIs, C(29)H(27)Br(2)Cl(2)N(6)O(2)S(2)V [3], and C(31)H(35)N(6)O(4)S(2)V [4], were synthesized by reacting VOSO(4), a V(IV) compound, with the corresponding deprotonated thiourea NNI compounds as ligands. Elemental analysis showed that each OVT-NNI used two thiourea molecules as ligands. The existence of the Vz.dbnd6;O bond (968cm(-1)) was confirmed by IR spectroscopy. No d-d bands were observed in the visible spectra of OVT-NNIs and their EPR spectra were featureless, indicating that the vanadium centers were oxidized to V(V). The new OVT-NNIs as well as their thiourea NNI ligands were evaluated for (i) anti-HIV activity using the cell-free recombinant RT inhibition assays, (ii) cellular HIV replication assays, (iii) spermicidal activity against human sperm by computer-assisted sperm analysis (CASA), and (iv) cytotoxicity against normal human female genital tract epithelial cell using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) dye-reduction assays. Similar to thiourea NNIs 1 and 2, the OVT-NNIs 3 and 4, exhibited potent anti-HIV activity with submicromolar IC(50[p24]) values (0.08 and 0.128 microM, respectively) and submicromolar IC(50[RT]) values (2.1 and 0.87 microM, respectively). Notably, OVT-NNIs were spermicidal against human sperm at low micromolar concentrations (IC(50)=34 and 55 microM, respectively) and induced rapid sperm immobilization (T(1/2)=12 and 240s) when compared with their respective thiourea NNI ligands (EC(50)=>400 microM and T(1/2)=>180min). Moreover, OVT-NNIs displayed high selectivity indices against normal female genital tract epithelial cells (IC(50) values >250 microM) when compared to the detergent-type spermicide, nonoxynol-9, which was cytotoxic at spermicidal concentrations (IC(50) values 32-64 microM). This is the first report on the dual anti-HIV and spermicidal activities of a vanadium/oxovanadium complex. Our discovery of potent anti-HIV and rapid spermicidal activities of OVT-NNIs may be useful for the development of an effective and safe vaginal anti-HIV spermicide for women who are at high risk for acquiring HIV/AIDS by heterosexual transmission.
Collapse
Affiliation(s)
- Osmond J D'Cruz
- Drug Discovery Program, Parker Hughes Institute, St. Paul, MN 55113, USA.
| | | | | |
Collapse
|
17
|
Capella LS, Gefé MR, Silva EF, Affonso-Mitidieri O, Lopes AG, Rumjanek VM, Capella MAM. Mechanisms of vanadate-induced cellular toxicity: role of cellular glutathione and NADPH. Arch Biochem Biophys 2002; 406:65-72. [PMID: 12234491 DOI: 10.1016/s0003-9861(02)00408-3] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Besides its insulin-mimetic effects, vanadate is also known to have a variety of physiological and pharmacological properties, varying from induction of cell growth to cell death and is also a modulator of the multidrug resistance phenotype. However, the mechanisms underlying these effects are still not understood. The present report analyzes the mechanisms of vanadate toxicity in two cell lines previously found to have different susceptibilities to this compound. It was shown that catalase and GSH reversed the sensitivity of a vanadate-sensitive cell line and NADPH sensitized vanadate-resistant cells. NADPH also increased the residues of P-Tyr and the induction of Ras protein expression in vanadate-resistant cells, while GSH avoided these effects in vanadate-sensitive cells. Thus, it seems that the effects of vanadate in signal transduction are dependent on NADPH and are related to cell death. Based on the effects observed in the present study it was suggested that once inside the cell, vanadate is reduced to vanadyl in a process dependent on NADPH. Vanadyl then may react with H2O2 generating primarily peroxovanadium species (PV) rather than following the Fenton reaction. The PV compounds formed would be responsible for P-Tyr increase, Ras induction, and cell death. The results obtained also point to vanadate as a possible chemotherapic in the use of multidrug-resistant tumors.
Collapse
Affiliation(s)
- Luiz S Capella
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | | | | | | |
Collapse
|
18
|
Kajimoto S, Takanashi N, Kajimoto T, Xu M, Cao J, Masuda Y, Aiuchi T, Nakajo S, Ida Y, Nakaya K. Sophoranone, extracted from a traditional Chinese medicine Shan Dou Gen, induces apoptosis in human leukemia U937 cells via formation of reactive oxygen species and opening of mitochondrial permeability transition pores. Int J Cancer 2002; 99:879-90. [PMID: 12115492 DOI: 10.1002/ijc.10414] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Screening of various natural products in a search for novel inducers of apoptosis in human leukemia cells led us to identify the strong apoptosis-inducing activity in a fraction extracted with methanol from the roots of Sophora subprostrata Chun et T. Chen. We purified the compound that induced apoptosis in human leukemia cells and identified it as sophoranone. Sophoranone inhibited cell growth and induced apoptosis in various lines of cells from human solid tumors, with 50% inhibition of growth of human stomach cancer MKN7 cells at 1.2 +/- 0.3 microM. The growth-inhibitory and apoptosis-inducing activities of sophoranone for leukemia U937 cells were very much stronger than those of other flavonoids, such as daidzein, genistein and quercetin. At the early stages of treatment of U937 cells with sophoranone, reactive oxygen species were formed, mitochondrial permeability pores were opened and cytochrome c was released from mitochondria. Cytochrome c was also released upon treatment of isolated mitochondria with sophoranone. Inhibitors of complexes III and IV, but not complexes I and II, of the mitochondrial respiratory chain prevented the release of cytochrome c from isolated mitochondria by sophoranone, as well as the induction of apoptosis in U937 cells in response to sophoranone. Our results indicate that sophoranone might be a unique apoptosis-inducing anticancer agent that targets mitochondria.
Collapse
Affiliation(s)
- Sachiko Kajimoto
- The Laboratories of Biological Chemistry, School of Pharmaceutical Sciences, Showa University, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Asumendi A, Morales MC, Alvarez A, Aréchaga J, Pérez-Yarza G. Implication of mitochondria-derived ROS and cardiolipin peroxidation in N-(4-hydroxyphenyl)retinamide-induced apoptosis. Br J Cancer 2002; 86:1951-6. [PMID: 12085192 PMCID: PMC2375439 DOI: 10.1038/sj.bjc.6600356] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2001] [Revised: 04/05/2002] [Accepted: 04/09/2002] [Indexed: 12/20/2022] Open
Abstract
We have studied the effect of N-(4-hydroxyphenyl)retinamide on either malignant human leukaemia cells or normal cells and investigated its mechanism of action. We demonstrate that 4HPR induces reactive oxygen species increase on mitochondria at a target between mitochondrial respiratory chain complex I and II. Such oxidative stress causes cardiolipin peroxidation which in turn allows cytochrome c release to cytosol, caspase-3 activation and therefore apoptotic consumption. Moreover, this apoptotic pathway seems to be bcl-2/bax independent and count only on malignant cells but not normal nor activated lymphocytes.
Collapse
Affiliation(s)
- A Asumendi
- Department of Cell Biology and Histology, School of Medicine and Dentistry, University of The Basque Country, Leioa- 48940, Bizkaia, Spain.
| | | | | | | | | |
Collapse
|
20
|
Abstract
Vanadium compounds exert preventive effects against chemical carcinogenesis on animals, by modifying, mainly, various xenobiotic enzymes, inhibiting, thus, carcinogen-derived active metabolites. Studies on various cell lines reveal that vanadium exerts its antitumor effects through inhibition of cellular tyrosine phosphatases and/or activation of tyrosine phosphorylases. Both effects activate signal transduction pathways leading either to apoptosis and/or to activation of tumor suppressor genes. Furthermore, vanadium compounds may induce cell-cycle arrest and/or cytotoxic effects through DNA cleavage and fragmentation and plasma membrane lipoperoxidation. Reactive oxygen species generated by Fenton-like reactions and/or during the intracellular reduction of V(V) to V(IV) by, mainly, NADPH, participate to the majority of the vanadium-induced intracellular events. Vanadium may also exert inhibitory effects on cancer cell metastatic potential through modulation of cellular adhesive molecules, and reverse antineoplastic drug resistance. It also possesses low toxicity that, in combination with the synthesis of new, more potent and better tolerated complexes, may establish vanadium as an effective non-platinum, metal antitumor agent.
Collapse
Affiliation(s)
- Angelos M Evangelou
- Faculty of Medicine, Laboratory of Physiology, University of Ioannina, Ioannina, Greece.
| |
Collapse
|
21
|
Grobe K, Powell LD. Role of protein kinase C in the phosphorylation of CD33 (Siglec-3) and its effect on lectin activity. Blood 2002; 99:3188-96. [PMID: 11964282 DOI: 10.1182/blood.v99.9.3188] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
CD33 (Siglec-3) is a marker of myeloid progenitor cells, mature myeloid cells, and most myeloid leukemias. Although its biologic role remains unknown, it has been demonstrated to function as a sialic acid-specific lectin and a cell adhesion molecule. Many of the Siglecs (including CD33) have been reported to be tyrosine phosphorylated in the cytosolic tails under specific stimulation conditions. Here we report that CD33 is also a serine/threonine phosphoprotein, containing at least 2 sites of serine phosphorylation in its cytoplasmic domain, catalyzed by protein kinase C (PKC). Phosphorylation could be augmented by exposure to the protein kinase-activating cytokines interleukin 3, erythropoietin, or granulocyte-macrophage colony-stimulating factor, in a cytokine-dependent cell line, TF-1. The CD33 cytoplasmic tail was phosphorylated by PKC in vitro, in a Ca(++)/lipid-dependent manner. CHOK1 cells stably expressing CD33 with cytoplasmic tails of various length also showed phorbol myristate acetate (PMA)-dependent phosphorylation of CD33. Inhibition of CD33 phosphorylation with pharmacologic agents resulted in an increase of sialic acid-dependent rosette formation. Furthermore, the occupancy of the lectin site affected its basal level of phosphorylation. Rosette formation by COS cells expressing a form of CD33 lacking its cytoplasmic domain was not affected by these same agents. These data indicate that CD33 is a phosphoprotein, that its phosphorylation may be controlled by PKC downstream of cytokine stimulation, and that its phosphorylation is cross-regulated with its lectin activity. Notably, although this is the first example of serine/threonine phosphorylation in the subfamily of CD33-like Siglecs, some of the other members also have putative target sites in their cytoplasmic tails.
Collapse
Affiliation(s)
- Kay Grobe
- Department of Medicine, University of California San Diego, La Jolla, CA, USA.
| | | |
Collapse
|
22
|
Grandvaux N, Elsen S, Vignais PV. Oxidant-dependent phosphorylation of p40phox in B lymphocytes. Biochem Biophys Res Commun 2001; 287:1009-16. [PMID: 11573965 DOI: 10.1006/bbrc.2001.5665] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
As with the neutrophil NADPH oxidase, the B lymphocyte NADPH oxidase consists of a membrane-bound flavocytochrome b and regulatory factors including Rac and the cytosolic phox protein triad p67phox, p47phox, and p40phox. Here we demonstrate by phosphoamino acid analysis and the use of the potent PKC inhibitor GFX that, in response to stimulation of B lymphocytes with sodium orthovanadate and H(2)O(2), the p40phox component of the cytosolic phox triad is selectively phosphorylated on serine and threonine residues by a PKC-type protein kinase. The pattern of p40phox phosphorylation was closely related to the kinetics of tyrosine phosphorylation of PKC-delta, the main PKC isotype of B lymphocytes. Blocking H(2)O(2)-dependent tyrosine phosphorylation of PKC by genistein resulted in inhibition of p40phox phosphorylation. The correlation between the tyrosine phosphorylation of PKC-delta and the serine/threonine phosphorylation of p40phox, together with the inhibition of p40phox phosphorylation by rottlerin, a selective inhibitor of PKC-delta, makes the activated PKC-delta a likely candidate in the process of the oxidant-dependent phosphorylation of p40phox in B cells.
Collapse
Affiliation(s)
- N Grandvaux
- Laboratoire de Biochimie et Biophysique des Systèmes Intégrés (UMR 5092 CEA-CNRS-UJF), CEA-Grenoble, 17 avenue des martyrs, 38054 Grenoble Cedex 9, France
| | | | | |
Collapse
|
23
|
Ginzberg HH, Cherapanov V, Dong Q, Cantin A, McCulloch CA, Shannon PT, Downey GP. Neutrophil-mediated epithelial injury during transmigration: role of elastase. Am J Physiol Gastrointest Liver Physiol 2001; 281:G705-17. [PMID: 11518683 DOI: 10.1152/ajpgi.2001.281.3.g705] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Neutrophil-mediated injury to gut epithelium may lead to disruption of the epithelial barrier function with consequent organ dysfunction, but the mechanisms of this are incompletely characterized. Because the epithelial apical junctional complex, comprised of tight and adherens junctions, is responsible in part for this barrier function, we investigated the effects of neutrophil transmigration on these structures. Using a colonic epithelial cell line, we observed that neutrophils migrating across cell monolayers formed clusters that were associated with focal epithelial cell loss and the creation of circular defects within the monolayer. The loss of epithelial cells was partly attributable to neutrophil-derived proteases, likely elastase, because it was prevented by elastase inhibitors. Spatially delimited disruption of epithelial junctional complexes with focal loss of E-cadherin, beta-catenin, and zonula occludens 1 was observed adjacent to clusters of transmigrating neutrophils. During neutrophil transmigration, fragments of E-cadherin were released into the apical supernatant, and inhibitors of neutrophil elastase prevented this proteolytic degradation. Addition of purified leukocyte elastase also resulted in release of E-cadherin fragments, but only after opening of tight junctions. Taken together, these data demonstrate that neutrophil-derived proteases can mediate spatially delimited disruption of epithelial apical junctions during transmigration. These processes may contribute to epithelial loss and disruption of epithelial barrier function in inflammatory diseases.
Collapse
Affiliation(s)
- H H Ginzberg
- Department of Pediatrics, Division of Gastroenterology and Nutrition, The University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | | | | | | | | | | | | |
Collapse
|
24
|
Pani G, Colavitti R, Bedogni B, Anzevino R, Borrello S, Galeotti T. A redox signaling mechanism for density-dependent inhibition of cell growth. J Biol Chem 2000; 275:38891-9. [PMID: 10988296 DOI: 10.1074/jbc.m007319200] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Reactive oxygen species (ROS) have recently drawn significant attention as putative mitogenic mediators downstream of activated growth factor receptors and oncogenic Ras; however, the possibility that a redox-related mechanism also operates in the negative control of cell proliferation by inhibitory signals has not been investigated thus far. Here we show that the arrest of growth induced by cell confluence ("contact inhibition") is due, at least in part, to a decrease in the steady-state levels of intracellular ROS and the consequent impairment of mitogenic redox signaling. In confluent fibroblast cultures, the decrease in the concentration of oxygen species was associated with diminished activity of the small GTPase Rac-1, a signal transducer directly involved in the ligand-dependent generation of oxygen-derived molecules, and was effectively mimicked by exposure of sparse cultures to dithiothreitol (DTT) and inhibitors of enzymes (phospholipase A2 and lipoxygenase) acting in the arachidonic acid cascade downstream of growth factor receptors and Rac-1. Sparse fibroblasts treated with nontoxic amounts of DTT underwent growth arrest, whereas a low concentration of hydrogen peroxide significantly increased thymidine incorporation in confluent cultures, demonstrating a causal link between redox changes and growth control by cell density. Removal of oxygen species from sparse cultures was accompanied by a drastic decrease of protein tyrosine phosphorylation after epidermal growth factor stimulation, which, at a biochemical level, reproduced the signaling hallmarks of contact inhibition. Moreover, the cytosolic tyrosine phosphatase SHP-2 was identified as a putative target for redox signaling by cell density because the enzyme itself and the associated substrates appear markedly dephosphorylated in both confluent and reductant-treated cells after exposure to epidermal growth factor, and SHP-2 enzymatic activity is strongly activated by DTT in vitro. Taken together, these data support a model in which impaired generation of ROS and increased protein tyrosine phosphatase activity impede mitogenic signaling in contact-inhibited cells.
Collapse
Affiliation(s)
- G Pani
- Institute of General Pathology, Catholic University Medical School, 00168 Rome, Italy
| | | | | | | | | | | |
Collapse
|
25
|
Kwiatkowska K, Sobota A. Tyrosine phosphorylation/dephosphorylation controls capping of Fcgamma receptor II in U937 cells. CELL MOTILITY AND THE CYTOSKELETON 2000; 42:298-314. [PMID: 10223636 DOI: 10.1002/(sici)1097-0169(1999)42:4<298::aid-cm4>3.0.co;2-q] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
In the capping of cell-surface receptors two stages can be distinguished: 1) clustering of the receptors (patching) induced by cross-linking with specific antibodies and 2) subsequent assembly of patches into a cap which is driven by the actin-based cytoskeleton. We found that patching of Fcgamma receptor II in U937 cells was correlated with tyrosine phosphorylation of certain proteins, most prominently those of 130, 110, 75 and 28 kDa. The phosphotyrosine-bearing proteins were accumulated at the receptor patches. Formation of the receptor caps was coincident with dephosphorylation of these proteins. Inhibition of protein tyrosine kinases with herbimycin A and genistein attenuated the protein tyrosine hyperphosphorylation and blocked capping in a dose-dependent manner. Phenylarsine oxide and pervanadate, inhibitors of protein tyrosine phosphatases, also suppressed capping of Fcgamma receptor II in a concentration-dependent fashion. Simultaneously, tyrosine hyperphosphorylation of proteins occurred. In the presence of the tyrosine kinase and phosphatase inhibitors the receptors were arrested at the patching stage. In contrast, okadaic acid, a serine/threonine phosphatase blocker, did not affect assembly of the receptor caps. The inhibitory effect of phenylarsine oxide was rapidly reversed by dithiols, 2,3-dimercapto-1-propanoldithiol and dithiotreitol, and was coincident with dephosphorylation of protein tyrosine residues. Extensive washing of pervanadate-exposed cells also resulted in progressive restoration of the cap assembly. Using streptolysin O-permeabilized cells we confirmed regulatory function played by dephosphorylation of tyrosine residues in capping of Fcgamma receptor II. Exogenous phosphatases, applied to permeabilized cells in which activity of endogenous tyrosine phosphatases was blocked, evoked dephosphorylation of protein tyrosine residues that was accompanied by recovery of capping ability in the cells.
Collapse
Affiliation(s)
- K Kwiatkowska
- Nencki Institute of Experimental Biology, Department of Cell Biology, Warsaw, Poland
| | | |
Collapse
|
26
|
Cortizo AM, Bruzzone L, Molinuevo S, Etcheverry SB. A possible role of oxidative stress in the vanadium-induced cytotoxicity in the MC3T3E1 osteoblast and UMR106 osteosarcoma cell lines. Toxicology 2000; 147:89-99. [PMID: 10874156 DOI: 10.1016/s0300-483x(00)00181-5] [Citation(s) in RCA: 138] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The cytotoxicity and free radical production induced by vanadium compounds were investigated in an osteoblast (MC3T3E1) and an osteosarcoma (UMR106) cell lines in culture. Vanadate induced cell toxicity, reactive oxygen species (ROS) formation and thiobarbituric acid reactive substances (TBARS) increased in a concentration-dependent manner (0.1-10 mM) after 4 h. The concentration-response curve of vanadate-induced cytotoxicity and oxidative stress in MC3T3E1 cells was shifted to the left of the UMR106 curve, suggesting a greater sensitivity of the non-transformed cells in comparison to the osteosarcoma UMR106 cells. Supplementing with vitamin E acetate (80 microM) significantly inhibited ROS and TBARS formation but did not improve the vanadate-dependent decrease in cell number. Other vanadium compounds (vanadyl, pervanadate, and VO/Aspi, a complex of vanadyl(IV) with aspirin) showed different degrees of cell toxicity and induced oxidative stress. Altogether these results suggest that oxidative stress is involved in vanadium induced osteoblastic cytotoxicity, although the mechanism is unknown.
Collapse
Affiliation(s)
- A M Cortizo
- Cátedra de Bioquímica Patológica, Universidad Nacional de La Plata, Argentina.
| | | | | | | |
Collapse
|
27
|
Heuss C, Scanziani M, Gähwiler BH, Gerber U. G-protein-independent signaling mediated by metabotropic glutamate receptors. Nat Neurosci 1999; 2:1070-7. [PMID: 10570483 DOI: 10.1038/15996] [Citation(s) in RCA: 137] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Synaptically released glutamate activates ionotropic and metabotropic receptors at central synapses. Metabotropic glutamate receptors (mGluRs) are thought to modulate membrane conductances through transduction cascades involving G proteins. Here we show, in CA3 pyramidal cells from rat hippocampus, that synaptic activation of type 1 mGluRs by mossy fiber stimulation evokes an excitatory postsynaptic response independent of G-protein function, while inhibiting an afterhyperpolarization current through a G-protein-coupled mechanism. Experiments using peptide activators and specific inhibitors identified a Src-family protein tyrosine kinase as a component of the G-protein-independent transduction pathway. These results represent the first functional evidence for a dual signaling mechanism associated with a heptahelical receptor such as mGluR1, in which intracellular transduction involves activation of either G proteins or tyrosine kinases.
Collapse
Affiliation(s)
- C Heuss
- Brain Research Institute, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | | | | | | |
Collapse
|
28
|
Suzuki S, Higuchi M, Proske RJ, Oridate N, Hong WK, Lotan R. Implication of mitochondria-derived reactive oxygen species, cytochrome C and caspase-3 in N-(4-hydroxyphenyl)retinamide-induced apoptosis in cervical carcinoma cells. Oncogene 1999; 18:6380-7. [PMID: 10597238 DOI: 10.1038/sj.onc.1203024] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
N-(4-Hydroxyphenyl)retinamide (4HPR) is currently used in cancer prevention and therapy trials. It is thought that its effects result from induction of apoptosis. 4HPR-induced apoptosis in human cervical carcinoma C33A cells involves enhanced generation of reactive oxygen species (ROS). In this study we explored the mechanism by which 4HPR increases ROS and induces apoptosis in these cells. 4HPR induced cytochrome c release from mitochondria to cytoplasm, activated caspase-3, and caused a membrane permeability transition (MPT). All these 4HPR's effects, as well as the induction of apoptosis, were inhibited by antioxidants, which decrease ROS. Thenoyltrifluoroacetone, a mitochondrial respiratory chain (MRC) complex II inhibitor, and carbonylcyanide m-chlorophenyl hydrazone, which uncouples electron transfer and ATP synthesis and inhibits ROS generation by MRC, inhibited 4HPR-induced ROS generation very effectively. Rotenone, an MRC complex I inhibitor was less effective and azide, an MRC complex IV inhibitor, exhibited a marginal effect. In contrast, antimycin A, an MRC complex III inhibitor, enhanced 4HPR-induced ROS generation. These findings suggest that 4HPR enhances ROS generation by affecting a target between complex II and complex III, presumably coenzyme Q. This effect is followed by release of cytochrome c, increased caspase-3 activity, induction of MPT and eventual DNA fragmentation and cell death.
Collapse
Affiliation(s)
- S Suzuki
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston 77030, USA
| | | | | | | | | | | |
Collapse
|
29
|
Jankowski A, Grinstein S. A noninvasive fluorimetric procedure for measurement of membrane potential. Quantification of the NADPH oxidase-induced depolarization in activated neutrophils. J Biol Chem 1999; 274:26098-104. [PMID: 10473559 DOI: 10.1074/jbc.274.37.26098] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The electrogenic activity of the NADPH oxidase is associated with depolarization of the plasma membrane in activated neutrophils. The magnitude and consequences of this depolarization, however, remain unknown. Neutrophils are not amenable to electrophysiological determinations of membrane potential by current clamp. Instead, the occurrence of depolarization has been inferred from the use of potential-sensitive fluorescent dyes. However, such dyes partition into intracellular organelles and may yield erroneous results, particularly because the NADPH oxidase resides largely in secretory granules, where it has been claimed to become activated. We confirmed the intracellular generation of oxidase products using dihydrorhodamine, which is converted to the fluorescent rhodamine 123 when oxidized. Rhodamine 123 accumulated inside endomembrane organelles in both neutrophils and in differentiated HL60 cells, where it co-localized with the primary granule marker CD63. To estimate the surface membrane potential without interference from organelles, we devised a method based on the voltage-driven uptake of Mn(2+) across the plasmalemma. The uptake of Mn(2+) through calcium release-activated channels was measured as the rate of Indo-1 fluorescence quenching in thapsigargin-treated cells. The rate of Mn(2+) influx was found to vary when the membrane potential was manipulated using conductive ionophores and also when the NADPH oxidase was activated. A calibration curve in the positive potential range was constructed using the Na(+) ionophore SQI-Pr. Using this calibration, the membrane potential of phorbol ester-activated neutrophils was found to reach +58 +/- 6 mV, a sustained depolarization of over 100 mV compared with the resting potential. The depolarization was greatly diminished when the NADPH oxidase was inhibited with diphenylene iodonium. Together, these results indicate that the NADPH oxidase can generate a large depolarization of the plasmalemma, which should suffice to activate a variety of voltage-gated channels, including the outwardly rectifying H(+) conductance.
Collapse
Affiliation(s)
- A Jankowski
- Cell Biology Programme, Research Institute, The Hospital for Sick Children, Toronto, Department of Biochemistry, University of Toronto, Toronto, Ontario M5G 1X8, Canada
| | | |
Collapse
|
30
|
Samet JM, Silbajoris R, Wu W, Graves LM. Tyrosine phosphatases as targets in metal-induced signaling in human airway epithelial cells. Am J Respir Cell Mol Biol 1999; 21:357-64. [PMID: 10460753 DOI: 10.1165/ajrcmb.21.3.3656] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
We previously showed that exposure to metal-laden combustion particles disregulates protein tyrosine phosphate homeostasis in human airway epithelial cells (HAEC). More recently, we reported that exposure to certain metal ions activates mitogen-activated protein kinases in HAEC. To study the mechanism responsible, we examined the effects of arsenic (As), vanadium (V), and zinc (Zn) on tyrosine phosphate catabolism in BEAS S6 cells or cultured human bronchial epithelial cells. Western blots and immunocytochemical analyses showed that exposure to noncytotoxic levels of As, V, or Zn resulted in increased levels of protein phosphotyrosines in HAEC. Tyrosine phosphatase activity, measured against [(32)P]-labeled PolyGlu:Tyr, was markedly inhibited in cells treated with V or Zn but was unaffected by exposure to As. Fast performance liquid chromatography fractionation and subsequent in-gel phosphatase activity assay of HAEC protein extracts revealed the presence of numerous tyrosine phosphatases, of varying molecular weights, that were effectively inhibited by exposure to V or Zn ions. As had no discernible effect on these enzymes. The protein tyrosine phosphatase PTP1B, immunoprecipitated from HAEC, was similarly inhibited by V and Zn but not by As ions. These data show that V and Zn may induce tyrosine phosphate accumulation by inhibiting dephosphorylation and implicate kinase activation as the mechanism in HAEC exposed to As. These findings suggest that metal exposure can activate signaling pathways through multiple mechanisms.
Collapse
Affiliation(s)
- J M Samet
- Human Studies Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | | | | | | |
Collapse
|
31
|
Grabowski GM, Paulauskis JD, Godleski JJ. Mediating phosphorylation events in the vanadium-induced respiratory burst of alveolar macrophages. Toxicol Appl Pharmacol 1999; 156:170-8. [PMID: 10222309 DOI: 10.1006/taap.1999.8642] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Occupational exposure by inhalation to vanadium-containing particles such as residual oil fly ash results in respiratory tract inflammation. This inflammation, characterized by abundant neutrophilia, appears to be initiated by alveolar macrophages (AMs) encountering particles and the subsequent release of proinflammatory cytokines. Intracellular signaling events in these cells in response to particles or their components are largely unknown. We investigated two immediate responses of AMs to vanadium exposure in vitro, the production of reactive oxygen intermediates (ROI) or respiratory burst (RB), and the tyrosine phosphorylation of cellular proteins. Macrophages exposed in vitro to 100 microM vanadyl chloride/1 microCi 48V incorporated 8.3% of the metal after 30 min. Exposure of AMs to increasing concentrations of sodium metavanadate resulted in a dose-dependent increase in production of ROI as measured by dichlorofluorescin oxidation. The lowest dose yielding a significant response was 50 microM, whereas 1000 microM increased RB activity by 173%. NADPH oxidase inhibitors deoxy-D-glucose (100 mM) and diphenylene iodonium (25 microM) reduced the metavanadate-induced RB by 62 and 71%, respectively, implicating NADPH oxidase as the primary cellular source of ROI. Enhanced cerium chloride oxidation in response to metavanadate localized to the plasma membrane consistent with increased NADPH oxidase activity. Pretreatment of AMs with the epidermal growth factor receptor inhibitor, tryphostin B50 (10 microM), reduced the metavanadate-induced RB, but did not influence overall tyrosine phosphorylation. Metavanadate and H2O2 exposure greatly increased overall tyrosine phosphorylation, yielding a similar but distinguishable pattern of phosphorylation in these cells. These observations demonstrate that in vitro metavanadate exposure regulates two distinct, yet related intracellular signaling pathways important in initiating inflammatory responses in these cells: (1) activation of the NADPH oxidase complex with subsequent increased ROI synthesis, and (2) enhanced tyrosine phosphorylation of cellular proteins.
Collapse
Affiliation(s)
- G M Grabowski
- Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
32
|
Leet CS, Vincan E, Thomas RJ, Phillips WA. Lipopolysaccharide-induced priming of the human neutrophil is not associated with a change in phosphotyrosine phosphatase activity. Int J Biochem Cell Biol 1999; 31:585-93. [PMID: 10399319 DOI: 10.1016/s1357-2725(99)00008-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The activation of the neutrophil respiratory burst is a two-step process involving an initial 'priming' phase followed by a 'triggering' event. The biochemical mechanisms which underlie these events are yet to be fully elucidated, but the evidence suggests a crucial role for stimulus-induced tyrosine phosphorylation. The enhanced tyrosine phosphorylation observed upon triggering primed cells may reflect an increase in tyrosine kinase activity or a reduction in the levels of the opposing phosphotyrosine phosphatases (PTPases). We have investigated the latter by examining the possibility that lipopolysaccharide (LPS)-induced priming of the neutrophil respiratory burst involves the suppression of cellular PTPase activity. Purified human neutrophils were incubated for 60 min with and without LPS. Priming of the respiratory burst was confirmed by fMet-Leu-Phe-induced cytochrome c reduction. The level of PTPase activity was assessed by dephosphorylation of [32P]RR-src peptide as substrate. Pretreatment of human neutrophils with 200 ng/ml LPS induced a 2.9 +/- 0.3 (mean +/- SEM, n = 3, P = 0.022) fold increase in the fMet-Leu-Phe-triggered respiratory burst. In the same cells, LPS did not induce a significant change in the total cellular PTPase activity (1.02 +/- 0.02-fold, mean +/- SEM, n = 3, P = 0.63). Similarly, stimulation of neutrophils with fMet-Leu-Phe or phorbol myristate acetate did not significantly affect the cellular PTPase activity (P = 0.94 and 0.68, respectively). Our results suggest that suppression of PTPase activity is not the mechanism underlying the priming and/or triggering of the neutrophil respiratory burst.
Collapse
Affiliation(s)
- C S Leet
- University of Melbourne Department of Surgery, Western Hospital, Vic., Australia
| | | | | | | |
Collapse
|
33
|
Rümenapp U, Schmidt M, Olesch S, Ott S, Eichel-Streiber CV, Jakobs KH. Tyrosine-phosphorylation-dependent and rho-protein-mediated control of cellular phosphatidylinositol 4,5-bisphosphate levels. Biochem J 1998; 334 ( Pt 3):625-31. [PMID: 9729471 PMCID: PMC1219732 DOI: 10.1042/bj3340625] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The polyphosphoinositide PtdIns(4,5)P2, best known as a substrate for phospholipase C isozymes, has recently been recognized to be involved in a variety of other cellular processes. The aim of this study was to examine whether the cellular levels of this versatile phospholipid are controlled by tyrosine phosphorylation. The studies were performed in human embryonic kidney (HEK)-293 cells stably expressing the M3 muscarinic acetylcholine receptor. Inhibition of tyrosine phosphatases by pervanadate induced an up-to-approx.-2. 5-fold increase in the total cellular level of PtdIns(4,5)P2, which was both time- and concentration-dependent. In contrast, the tyrosine kinase inhibitors, genistein and tyrphostin 23, caused a rapid and specific fall in the cellular PtdIns(4,5)P2 level and prevented the stimulatory effect of pervanadate on PtdIns(4,5)P2 formation. Inactivation of Rho proteins by Clostridium difficile toxin B caused a similar fall in the HEK-293 cell PtdIns(4,5)P2 level, which was not altered by additional genistein treatment. Furthermore, toxin B treatment abolished the pervanadate-induced increase in PtdIns(4,5)P2 levels. As PtdIns(4,5)P2 is an essential stimulatory cofactor for phospholipase D (PLD) enzymes, we finally examined the effects of the agents regulating PtdIns(4,5)P2 levels on PLD activity in HEK-293 cells. Inhibition of tyrosine phosphatases by pervanadate caused an increase in PLD activity, which was susceptible to genistein and tyrphostin 23, and which was abolished by prior treatment with toxin B. In conclusion, the data presented indicate that the cellular level of the multifunctional phospholipid, PtdIns(4,5)P2, in HEK-293 cells is controlled by a tyrosine-kinase-dependent mechanism and that this process apparently involves Rho proteins, as found similarly for tyrosine-phosphorylation-induced PLD activation.
Collapse
Affiliation(s)
- U Rümenapp
- Institut für Pharmakologie, Universitätsklinikum Essen, Hufelandstrasse 55, D-45122 Essen, Germany.
| | | | | | | | | | | |
Collapse
|
34
|
Tian WN, Braunstein LD, Pang J, Stuhlmeier KM, Xi QC, Tian X, Stanton RC. Importance of glucose-6-phosphate dehydrogenase activity for cell growth. J Biol Chem 1998; 273:10609-17. [PMID: 9553122 DOI: 10.1074/jbc.273.17.10609] [Citation(s) in RCA: 342] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The intracellular redox potential, which is determined by the level of oxidants and reductants, has been shown to play an important role in the regulation of cell growth. The principal intracellular reductant is NADPH, which is mainly produced by the pentose phosphate pathway through the actions of glucose-6-phosphate dehydrogenase (G6PD), the rate-limiting enzyme of the pentose phosphate pathway, and by 6-phosphogluconate dehydrogenase. Previous research has suggested that an increase in G6PD activity is important for cell growth. In this article, we suggest that G6PD activity plays a critical role in cell growth by providing NADPH for redox regulation. The results show the following: 1) inhibition of G6PD activity abrogated growth factor stimulation of [3H]thymidine incorporation in all cell lines tested; 2) overexpression of G6PD stimulated cell growth, as measured by an increase in [3H]thymidine incorporations as compared with cells transfected with vector alone; 3) inhibition of G6PD caused cells to be more susceptible to the growth inhibitory effects of H2O2; 4) inhibition of G6PD led to a 30-40% decrease in the NADPH/NADP ratio; and 5) inhibition of G6PD inhibited cell anchorage and significantly decreased the growth-related stimulation of tyrosine phosphorylation.
Collapse
Affiliation(s)
- W N Tian
- Renal Division and Department of Medicine, Beth Israel Deaconess Medical Center, Joslin Diabetes Center and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Gopalbhai K, Meloche S. Repression of mitogen-activated protein kinases ERK1/ERK2 activity by a protein tyrosine phosphatase in rat fibroblasts transformed by upstream oncoproteins. J Cell Physiol 1998; 174:35-47. [PMID: 9397154 DOI: 10.1002/(sici)1097-4652(199801)174:1<35::aid-jcp5>3.0.co;2-h] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The observation that mitogen-activated protein (MAP) kinases ERK1 and ERK2 are constitutively activated in a number of oncogene-transformed cell lines has led to the hypothesis that prolonged activation of these enzymes is required for the transformation process. To investigate this question, we have examined the regulation of the ERK pathway in Rat1 fibroblasts transformed with activated c-Raf-1 (Raf22W), v-Ha-Ras, and v-Src. Expression of these oncoproteins had no effect on the enzymatic activity of ERK1 and ERK2 in either serum-starved or exponentially growing cells. Moreover, the stimulatory effect of serum on ERK1/ERK2 activity was substantially reduced or abrogated in these cells; this impairment was associated with a strong attenuation of c-fos gene induction. In contrast, expression of Raf22w, v-Ha-Ras, or v-Src resulted in the constitutive activation of the upstream kinases MEK1 and MEK2. Treatment of the cells with vanadate completely restored the activation of ERK1/ERK2 in oncogene-transformed cells, suggesting the involvement of a vanadate-sensitive tyrosine phosphatase. Northern blot analysis of VH1-like dual-specificity MAP kinase phosphatases did not reveal any significant difference in the mRNA expression pattern of these genes between parental and transformed Rat1 cells. Phosphoamino acid analysis indicated that ERK1 is phosphorylated on threonine, but not on tyrosine, in oncogene-transformed cells and that vanadate treatment restores tyrosine phosphorylation. We conclude from these results that ERK1/ERK2 activity is repressed by a single-specificity tyrosine phosphatase in oncogene-transformed rat fibroblasts.
Collapse
Affiliation(s)
- K Gopalbhai
- Centre de Recherche, Hôtel-Dieu de Montréal, Quebec, Canada
| | | |
Collapse
|
36
|
Dackiw AP, Grinstein S, Brisseau GF, McGilvray ID, Nathens AB, McGuire JA, Romanek R, Cheung PY, Rotstein OD. The role of tyrosine phosphorylation in lipopolysaccharide- and zymosan-induced procoagulant activity and tissue factor expression in macrophages. Infect Immun 1997; 65:2362-70. [PMID: 9169775 PMCID: PMC175327 DOI: 10.1128/iai.65.6.2362-2370.1997] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The expression of surface procoagulants by exudative macrophages represents an important mechanism underlying local fibrin deposition at sites of extravascular inflammation. The present studies investigated the contribution of tyrosine phosphorylation to the generation of macrophage procoagulant activity (PCA) and tissue factor expression in response to proinflammatory stimuli. Both lipopolysaccharide (LPS) and zymosan rapidly stimulated tyrosine phosphorylation in elicited murine peritoneal macrophages. This effect was prevented by the tyrosine kinase inhibitors genistein and herbimycin and augmented by the addition of the phosphotyrosine phosphatase inhibitor vanadate. The vanadate-mediated rise in phosphotyrosine accumulation was abrogated by the use of diphenylene iodonium, an inhibitor of the respiratory burst oxidase, suggesting a role for peroxides of vanadate as contributors to the tyrosine phosphorylation. This notion was supported by the finding that vanadyl hydroperoxide markedly increased the accumulation of phosphotyrosine residues. To define the role of tyrosine phosphorylation in the induction of macrophage PCA by LPS, the effects of tyrosine kinase inhibition by genistein and herbimycin were investigated. Both agents inhibited the expression of macrophage PCA. Further, Northern blot analysis with the cDNA probe for murine tissue factor indicated that the inhibition occurred at the mRNA level or earlier. Since vanadate augmented phosphotyrosine accumulation, it was hypothesized that it might enhance generation of macrophage products. However, vanadate reduced induction of PCA in response to LPS. By contrast, vanadate augmented basal prostaglandin E2 (PGE2) release and stimulated PGE2 release by macrophages. Indomethacin prevented the increase in PGE2 but only partially restored normal levels of PCA. The effect of vanadate on tissue factor expression appeared to be posttranscriptional. These studies thus demonstrate, by functional Western blotting and Northern blotting techniques, that tyrosine phosphorylation plays a role in the regulation of macrophage PCA and tissue factor expression in response to proinflammatory stimuli.
Collapse
Affiliation(s)
- A P Dackiw
- Department of Surgery, Toronto Hospital and the University of Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Mietus-Snyder M, Friera A, Glass CK, Pitas RE. Regulation of scavenger receptor expression in smooth muscle cells by protein kinase C: a role for oxidative stress. Arterioscler Thromb Vasc Biol 1997; 17:969-78. [PMID: 9157963 DOI: 10.1161/01.atv.17.5.969] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Phorbol esters increase scavenger-receptor mRNA expression and receptor activity in smooth muscle cells (SMCs). Our present results demonstrate that activation of protein kinase C (PKC) mediates this increase in receptor expression. This conclusion is based on the findings that (1) phorbol esters induced translocation of PKC-alpha from the cytosol to the membrane fraction; (2) PKC inhibitors blocked the effect of phorbol esters on receptor expression; (3) diacylglycerol, a physiological PKC agonist, enhanced scavenger-receptor activity; and (4) in cotransfected human SMCs, constitutively active PKC-alpha stimulated the expression of a reporter gene under control of the scavenger-receptor promoter. Phorbol ester treatment of SMCs increased intracellular reactive oxygen, and the increase in receptor activity was reduced 30% by the antioxidant N-acetyl cysteine (NAC), suggesting a role for reactive oxygen in phorbol ester-mediated receptor regulation. Furthermore, direct treatment of SMCs with reactive oxygen species increased scavenger-receptor activity. In rabbit SMCs, 100 micromol/L H2O2 alone slightly increased scavenger-receptor mRNA and protein expression. In combination, 100 micromol/L H2O2 and 10 micromol/L vanadate, which promotes formation of OH and enhances the inhibition of protein tyrosine phosphatase by H2O2, increased scavenger-receptor mRNA expression 25-fold in rabbit SMCs and 8-fold in human SMCs. NAC reduced the effect of H2O2 and vanadate by 93%. The increase in SMC scavenger-receptor expression occurs at the level of gene transcription. Receptor mRNA half-life was unchanged after treatment with either phorbol esters or reactive oxygen (approximately 14.5 hours), and induction by phorbol esters increased SMC scavenger-receptor mRNA transcription, as determined by nuclear run-on assay. Multiple cytokines and growth factors that contribute to the generation of reactive oxygen species are present in atherosclerotic lesions. These factors may all contribute to the upregulation of SMC scavenger-receptor activity and therefore to the formation of smooth muscle foam cells.
Collapse
Affiliation(s)
- M Mietus-Snyder
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94141-9100, USA
| | | | | | | |
Collapse
|
38
|
Mikalsen SO, Kaalhus O. A characterization of permolybdate and its effect on cellular tyrosine phosphorylation, gap junctional intercellular communication and phosphorylation status of the gap junction protein, connexin43. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1356:207-20. [PMID: 9150278 DOI: 10.1016/s0167-4889(96)00163-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Biological and analytical characterizations of permolybdate (a mixture of H2O2 and molybdate) were done. Molybdate (10 mM) and molybdenum(V) chloride (3 mM) did not affect gap junctional intercellular communication (GJIC), phosphorylation status of connexin43 (Cx43) or cellular tyrosine phosphorylation in early passage hamster embryonic cells (mainly fibroblast-like). High concentrations of H2O2 (3-10 mM) affected some of the parameters. Acidified permolybdate was clearly more stable than the unadjusted permolybdate. The maximum biological potency of acidified permolybdate was found at a molar ratio of 2:1 (H2O2:molybdate). The mixtures of molybdenum(V) chloride and H2O2 gave a maximum effect at 4:1 molar ratio (H2O2:molybdenum(V)). This can be explained by decomposition of H2O2 and by the generation of less biologically active compounds. Spectrophotometric analyses of the mixtures corroborated the biological results. The Mo(V) electron spin resonance spectrum disappeared upon addition of H2O2 to Mo(V) solutions, and no spectrum appeared when H2O2 was mixed with Mo(VI). Thus, permolybdate is probably diperoxomolybdate, a Mo(VI) compound. Regardless of the parent metal salt, the H2O2/metal salt mixtures showed concentration-dependent biphasic responses with an initial decrease in GJIC followed by an increase. A dissociation between alteration in Cx43 phosphorylation status and GJIC was obtained under certain conditions. The biological activities of permolybdate were only partially mimicked by phenylarsine oxide, an alternative protein tyrosine phosphatase inhibitor.
Collapse
Affiliation(s)
- S O Mikalsen
- Department for Environmental and Occupational Cancer, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo.
| | | |
Collapse
|
39
|
Brizzi MF, Battaglia E, Rosso A, Strippoli P, Montrucchio G, Camussi G, Pegoraro L. Regulation of polymorphonuclear cell activation by thrombopoietin. J Clin Invest 1997; 99:1576-84. [PMID: 9120001 PMCID: PMC507977 DOI: 10.1172/jci119320] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Thrombopoietin (TPO) regulates early and late stages of platelet formation as well as platelet activation. TPO exerts its effects by binding to the receptor, encoded by the protooncogene c-mpl, that is expressed in a large number of cells of hematopoietic origin. In this study, we evaluated the expression of c-Mpl and the effects of TPO on human polymorphonuclear cells (PMN). We demonstrate that PMN express the TPO receptor c-Mpl and that TPO induces STAT1 tyrosine phosphorylation and the formation of a serum inducible element complex containing STAT1. The analysis of biological effects of TPO on PMN demonstrated that TPO, at concentrations of 1-10 ng/ml, primes the response of PMN to n-formyl-met-leu-phe (FMLP) by inducing an early oxidative burst. TPO-induced priming on FMLP-stimulated PMN was also detected on the tyrosine phosphorylation of a protein with a molecular mass of approximately 28 kD. Moreover, we demonstrated that TPO by itself was able to stimulate, at doses ranging from 0.05 to 10 ng/ml, early release and delayed synthesis of interleukin 8 (IL-8). Thus, our data indicate that, in addition to sustaining megakaryocytopoiesis, TPO may have an important role in regulating PMN activation.
Collapse
Affiliation(s)
- M F Brizzi
- Dipartimento di Medicina Interna, Università di Bologna, Italy
| | | | | | | | | | | | | |
Collapse
|
40
|
Leclerc P, de Lamirande E, Gagnon C. Regulation of protein-tyrosine phosphorylation and human sperm capacitation by reactive oxygen derivatives. Free Radic Biol Med 1997; 22:643-56. [PMID: 9013127 DOI: 10.1016/s0891-5849(96)00379-6] [Citation(s) in RCA: 213] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Spermatozoa undergoing capacitation, a necessary prerequisite event to successful fertilization that can be induced in vitro by reactive oxygen species (ROS), generate superoxide anion (O2.-). Because, in neutrophils, the generation of O2.- is associated with tyrosine phosphorylation of several proteins, the aim of the present study was to investigate the association between protein-tyrosine phosphorylation and ROS-induced human sperm capacitation. Human spermatozoa express two major phosphotyrosine-containing proteins of 105 and 81 kDa, the phosphotyrosine content of which is increased when spermatozoa are incubated under capacitating conditions. Superoxide dismutase and catalase abolish both sperm capacitation and tyrosine phosphorylation of p105 and p81, suggesting the involvement of O2.- and hydrogen peroxide in these two processes. Inhibitors of NADPH oxidase, the enzyme responsible for the neutrophil's respiratory burst, decrease both p105 and p81 tyrosine phosphorylation and sperm capacitation while hydrogen peroxide stimulates these two processes. Tyrosine phosphorylation of p105 and p81 occurs through a herbimycin A-sensitive tyrosine kinase, and sperm incubation with phosphotyrosine-protein phosphatase inhibitors results in an increase in phosphotyrosine content of these two proteins. Indirect immunocytochemical studies reveal phosphotyrosine-containing proteins mostly in the principal piece of the flagellum, in agreement with the localization of p105 and p81 in the human sperm fibrous sheath. Although tyrosine phosphorylation of p105 and p81 and sperm capacitation are related in a time-dependent fashion, some discrepancies are observed in the regulation of these two processes according to the redox status of the spermatozoa.
Collapse
Affiliation(s)
- P Leclerc
- Urology Research Laboratory, Royal Victoria Hospital, Montréal, Canada
| | | | | |
Collapse
|
41
|
Vepa S, Scribner WM, Natarajan V. Activation of protein phosphorylation by oxidants in vascular endothelial cells: identification of tyrosine phosphorylation of caveolin. Free Radic Biol Med 1997; 22:25-35. [PMID: 8958127 DOI: 10.1016/s0891-5849(96)00241-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Oxidants play a significant role in endothelial cell dysfunction through modulation of diverse biochemical reactions and signal transduction pathways. Towards understanding the role of oxidants in vascular injury, we studied the effect of hydrogen peroxide (H2O2), vanadate, and pervanadate (V(4+)-OOH) on [32Pi] uptake and protein phosphorylation in bovine pulmonary artery endothelial cells (BPAEC). The incorporation of labelled [32Pi] into BPAEC was dependent on the concentration of the oxidant employed and time of incubation. Of the oxidants tested, pervanadate (10 microM) induced maximum incorporation of [32Pi] into cells (two- to threefold over control) followed by H2O2 (1 mM) and vanadate (100 microM) and clear differences in labeled protein profiles were noticed between control and oxidant treated cells. The proteins, analyzed by SDS-PAGE, showed distinct increases in labeling patterns ranging from 21-205 kDa, as evidenced by autoradiography. While the majority of the incorporated [32Pi] was in serine/threonine residues, immunoprecipitation and immunoblotting of cell lysates, using an antiphosphotyrosine antibody, revealed that oxidant treatment resulted in significant increases in total protein tyrosine phosphorylation. Most significantly, immunoprecipitation of cell lysates, from pervanadate treatment showed distinct tyrosine phosphorylation of 22 kDa protein, which was identified as caveolin, a marker of caveolae. Pervanadate-mediated phosphorylation was effectively inhibited by staurosporine (5 microM), while genistein showed only partial attenuation. Furthermore, H2O2 treatment resulted in enhanced phosphorylation of 24 kDa protein, which was attenuated by genistein. In addition, oxidant-treated cells exhibited increased tyrosine kinase activity and decreased phosphatase activity. These data show differences in labeling profiles of proteins in response to different oxidants, suggesting differential modulation of distinct protein kinases/phosphatases.
Collapse
Affiliation(s)
- S Vepa
- Department of Medicine, Indiana University School of Medicine, Indianapolis 46202-2879, USA
| | | | | |
Collapse
|
42
|
|
43
|
Austin CD, Shields D. Formation of nascent secretory vesicles from the trans-Golgi network of endocrine cells is inhibited by tyrosine kinase and phosphatase inhibitors. J Cell Biol 1996; 135:1471-83. [PMID: 8978816 PMCID: PMC2133953 DOI: 10.1083/jcb.135.6.1471] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Recent evidence suggests that secretory vesicle formation from the TGN is regulated by cytosolic signaling pathways involving small GTP-binding proteins, heterotrimeric G proteins, inositol phospholipid metabolism, and protein serine/threonine phosphorylation. At the cell surface, protein phosphorylation and dephosphorylation on tyrosine residues can rapidly modulate cytosolic signaling pathways in response to extracellular stimuli and have been implicated in the internalization and sorting of signaling receptors. to determine if phosphotyrosine metabolism might also regulate secretory vesicle budding from the TGN, we treated permeabilized rat pituitary GH3 cells with inhibitors of either tyrosine phosphatases or tyrosine kinases. We demonstrate that the tyrosine phosphatase inhibitors pervanadate and zinc potently inhibited budding of nascent secretory vesicles. Tyrphostin A25 (TA25) and other tyrosine kinase inhibitors also prevented secretory vesicle release, suggesting that vesicle formation requires both phosphatase and kinase activities. A stimulatory peptide derived from the NH2 terminus of the small GTP-binding protein ADP ribosylation factor 1 (ARF1) antagonized the inhibitory effect of TA25, indicating that both agents influence the same pathway leading to secretory vesicle formation. Antiphosphotyrosine immunoblotting revealed that protein tyrosine phosphorylation was enhanced after treatment with tyrosine phosphatase or kinase inhibitors. Subcellular fractionation identified several tyrosine phosphorylated polypeptides of approximately 175, approximately 130, and 90-110 kD that were enriched in TGN-containing Golgi fractions and tightly membrane associated. The phosphorylation of these polypeptides correlated with inhibition of vesicle budding. Our results suggest that in endocrine cells, protein tyrosine phosphrylation and dephosphorylation are required for secretory vesicle release from the TGN.
Collapse
Affiliation(s)
- C D Austin
- Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | |
Collapse
|
44
|
Fürnsinn C, Englisch R, Ebner K, Nowotny P, Vogl C, Waldhäusl W. Insulin-like vs. non-insulin-like stimulation of glucose metabolism by vanadium, tungsten, and selenium compounds in rat muscle. Life Sci 1996; 59:1989-2000. [PMID: 8950298 DOI: 10.1016/s0024-3205(96)00550-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The direct impact of vanadate, tungstate, selenate, and selenite on glucose metabolism of isolated rat soleus muscle was investigated. All compounds stimulated glucose transport, but only vanadate exerted an insulin-like effect on glycogen synthesis (mumol glucose into glycogen*g-1*h-1: control 1.43 +/- 0.11 vs. 1 mmol/l vanadate, 2.08 +/- 0.11, p < 0.0001), which was more distinct in the presence of 1 mmol/l H2O2 (control, 1.44 +/- 0.13 vs. 1 mmol/l vanadate, 3.49 +/- 0.12, p < 0.001). Glucose handling of muscles exposed to tungstate, selenate, or selenite resembled that of hypoxic muscle, i.e. the induced rise in glucose uptake was inhibited by dantrolene and associated with high rates of glycolysis and rapid glycogen depletion (glycogen content after incubation, mumol glucosyl units/g: control, 16.2 +/- 0.7 vs. hypoxia, 2.7 +/- 0.5, p < 0.0001; control, 17.0 +/- 0.5 vs. 100 mmol/l tungstate, 5.5 +/- 0.4, p < 0.001; control, 16.2 +/- 0.7 vs. 100 mmol/l selenate, 1.5 +/- 0.3, and vs. 300 mumol/l selenite, 1.7 +/- 0.3, p < 0.0001 each). The results suggest that vanadate (and more pronounced it's peroxides) exerts true insulin-like action on isolated muscle glucose metabolism, whereas tungsten and selenium salts trigger glucose transport in association with a catabolic response, which may represent an unspecific response to toxic/osmotic stress.
Collapse
Affiliation(s)
- C Fürnsinn
- Department of Medicine III, University of Vienna, Austria
| | | | | | | | | | | |
Collapse
|
45
|
Meili R, Ballmer-Hofer K. Activation-independent nuclear translocation of mitogen activated protein kinase ERK1 mediated by thiol-modifying chemicals. FEBS Lett 1996; 394:34-8. [PMID: 8925922 DOI: 10.1016/0014-5793(96)00927-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The extracellular signal-regulated kinases ERK1 and ERK2 are key mediators of mitogenic signals in most cell types. In fibroblasts, sustained activation and nuclear translocation are mandatory for S-phase induction. The events leading to activation of these kinases are well understood, whereas little is known about the mechanism of their translocation. Using indirect immunofluorescence and biochemical analysis we show that ERK1 can translocate to the nucleus in the absence of activation and phosphorylation by upstream kinases when cells are treated with thiol-modifying chemicals. We propose that these chemicals inactivate a protein contributing to the cytoplasmic localization of ERK1.
Collapse
Affiliation(s)
- R Meili
- Friedrich Miescher Institute, Basel, Switzerland
| | | |
Collapse
|
46
|
Yan SR, Berton G. Regulation of Src family tyrosine kinase activities in adherent human neutrophils. Evidence that reactive oxygen intermediates produced by adherent neutrophils increase the activity of the p58c-fgr and p53/56lyn tyrosine kinases. J Biol Chem 1996; 271:23464-71. [PMID: 8798554 DOI: 10.1074/jbc.271.38.23464] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Src family tyrosine kinases have been implicated in the adhesion-dependent activation of neutrophil functions (Yan, S. R., Fumagalli, L., and Berton, G. (1995) J. Inflamm. 45, 297-312; Lowell, C. A., Fumagalli, L., and Berton, G. (1996) J. Cell Biol. 133, 895-910). Because the activity of tyrosine kinases can be affected by oxidants, we investigated whether reactive oxygen intermediates (ROI) produced by adherent neutrophils regulate Src family kinase activities. Inhibition of ROI production by diphenylene iodonium, an inhibitor of NADPH oxidase, or degradation of H2O2 by exogenously added catalase inhibited the adhesion-stimulated activities of p58(c-fgr) and p53/56(lyn). In addition, adhesion-stimulated p58(c-fgr) and p53/56(lyn) activities were greatly reduced in neutrophils from patients with chronic granulomatous disease (CGD) that are deficient in the production of ROI. Exogenously added H2O2 increased p58(c-fgr) and p53/56(lyn) activities in nonadherent neutrophils. Although ROI regulated the activities of p58(c-fgr) and p53/56(lyn), they did not affect the redistribution of the two kinases to a Triton X-100-insoluble, cytoskeletal fraction that occurs in adherent neutrophils. Tyrosine phosphorylation of proteins in adherent, CGD neutrophils was only partially inhibited, suggesting that the full activation of p58(c-fgr) and p53/56(lyn), which depends on endogenously produced ROI, does not represent an absolute requirement for protein tyrosine phosphorylation. The adhesion-stimulated activity of the tyrosine kinase p72(syk) was not affected by catalase in normal neutrophils, and it was comparable in normal and CGD neutrophils. These findings suggest that ROI endogenously produced by adherent neutrophils regulate Src family kinases activity selectively and establish the existence of a cross-talk between reorganization of the cytoskeleton, production of ROI, and Src family tyrosine kinase activities in signaling by adhesion.
Collapse
Affiliation(s)
- S R Yan
- Institute of General Pathology, University of Verona, 37134 Verona, Italy
| | | |
Collapse
|
47
|
Wiedemann C, Schäfer T, Burger MM. Chromaffin granule-associated phosphatidylinositol 4-kinase activity is required for stimulated secretion. EMBO J 1996; 15:2094-101. [PMID: 8641275 PMCID: PMC450131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Permeabilized bovine adrenal chromaffin cells have been used to characterize the MgATP requirement of processes preceding exocytosis. Incubation of primary cultures with the membrane-permeable phenylarsine oxide (PAO) at 20 microM inhibited the phosphorylation of phosphatidylinositol (PtdIns) and completely blocked secretion. This block could be reversed by addition of 2,3-dimercaptopropanol to the permeabilized cells. Simultaneous addition of [gamma32P]ATP and 2,3-dimercaptopropanol permitted a comparison between recovery of secretion and phosphorylation of intracellular components. Recovery of secretion closely correlated with phosphorylation of PtdIns and PtdIns4P. Subcellular fractionation of permeabilized cells after recovery of secretion revealed that the majority of newly phosphorylated PtdIns4P was localized on the chromaffin granules. In accordance with these results, PtdIns 4-kinase activity was found in protein extracts of permeabilized cells as well as associated with purified chromaffin granules, sensitive in both cases to PAO. Additionally, PtdIns 4-kinase activity in these two assays was inhibited by quercetin. In permeabilized cells, quercetin decreased the levels of labeled PtdIns4P and Ptdlns(4,5)P2 and inhibited secretion. Our data suggest that a chromaffin granule-associated PtdIns 4-kinase acts in the priming of exocytosis.
Collapse
Affiliation(s)
- C Wiedemann
- Friedrich Miescher-Institute, Basel, Switzerland
| | | | | |
Collapse
|
48
|
Haque SJ, Flati V, Deb A, Williams BR. Roles of protein-tyrosine phosphatases in Stat1 alpha-mediated cell signaling. J Biol Chem 1995; 270:25709-14. [PMID: 7592750 DOI: 10.1074/jbc.270.43.25709] [Citation(s) in RCA: 83] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Different Stat proteins are activated through phosphorylation of unique tyrosine residues in response to different cytokines and growth factors. Interferon-gamma activates Stat1 molecules that form homodimers and bind cognate DNA elements. Here we show that treatment of permeabilized cells with 200-500 microM peroxo-derivatives of vanadium, molybdenum, and tungsten results in the accumulation of constitutively phosphorylated Stat1 alpha molecules. In contrast, treatment of permeabilized cells with orthovanadate, vanadyl sulfate, molybdate, and tungstate at the same range of concentrations does not result in the accumulation of activated Stat1 alpha molecules in the absence of ligand. However, these compounds inhibit the inactivation of interferon-gamma-induced DNA-binding activity of Stat1 alpha. A 4-6-h exposure of the permeabilized cells to orthovanadate, molybdate, and tungstate, but not vanadyl sulfate, results in a ligand-independent activation of Stat1 alpha, which is blocked by the inhibition or depletion of NADPH oxidase activity in the cells, indicating that NADPH oxidase-catalyzed superoxide formation is required for the bioconversion of these metal oxides to the corresponding peroxo-compounds. Interestingly, ligand-independent Stat1 alpha activation by peroxo-derivatives of these transition metals does not require Jak1, Jak2, or Tyk2 kinase activity, suggesting that other kinases can phosphorylate Stat1 alpha on tyrosine 701.
Collapse
Affiliation(s)
- S J Haque
- Department of Cancer Biology, Cleveland Clinic Foundation, Ohio 44195, USA
| | | | | | | |
Collapse
|
49
|
Baas AS, Berk BC. Differential activation of mitogen-activated protein kinases by H2O2 and O2- in vascular smooth muscle cells. Circ Res 1995; 77:29-36. [PMID: 7540516 DOI: 10.1161/01.res.77.1.29] [Citation(s) in RCA: 310] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Increased generation of active oxygen species such as H2O2 and O2- may be important in vascular smooth muscle cell growth associated with atherosclerosis and restenosis. In previous work, we showed that H2O2 stimulated vascular smooth muscle cell growth and proto-oncogene expression. In the present study, we compared the effects of H2O2 and O2- on cultured rat aortic vascular smooth muscle cell growth and signal transduction. O2- was generated in a concentration-dependent manner by the naphthoquinolinedione LY83583. Vascular smooth muscle cell growth, as measured by [3H]thymidine incorporation, was stimulated by 200 mumol/L H2O2 (110% increase versus 0.1% serum) and 1 mumol/L LY83583 (175% increase) to levels comparable to 10 ng/mL platelet-derived growth factor (210% increase). Since activation of mitogen-activated protein kinase (MAP kinase) is one of the earliest growth factor signal events, the activity of MAP kinase was measured by changes in mobility on Western blot and by phosphorylation of myelin basic protein. There was a concentration-dependent increase in MAP kinase activity by LY83583 (maximum, 10 mumol/L) but not by H2O2. The time course for activation of MAP kinase by LY83583 showed a maximum at 5 to 10 minutes with return to baseline by 20 minutes. Activation of MAP kinase by LY83583 was protein kinase C dependent. Expression of MAP kinase phosphatase-1 (MKP-1), a transcriptionally regulated redox-sensitive protein tyrosine/threonine phosphatase, was also measured. Although H2O2 induced MKP-1 mRNA to a greater extent than did LY83583, the increased MKP-1 expression could not explain the inability of H2O2 to stimulate MAP kinase, because mRNA levels were not detected until 60 minutes.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
MESH Headings
- 1,2-Dihydroxybenzene-3,5-Disulfonic Acid Disodium Salt/pharmacology
- Aminoquinolines/pharmacology
- Animals
- Blotting, Western
- Cell Count
- Cell Cycle Proteins
- Cells, Cultured
- DNA/biosynthesis
- DNA/drug effects
- Dual Specificity Phosphatase 1
- Enzyme Activation
- Enzyme Induction
- Guanylate Cyclase/antagonists & inhibitors
- Hydrogen Peroxide/metabolism
- Immediate-Early Proteins/genetics
- Immediate-Early Proteins/metabolism
- Male
- Mitogen-Activated Protein Kinase 1
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/enzymology
- Oxygen/metabolism
- Phosphoprotein Phosphatases
- Protein Kinase C/metabolism
- Protein Phosphatase 1
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- Protein Tyrosine Phosphatases/genetics
- Protein Tyrosine Phosphatases/metabolism
- Protein-Tyrosine Kinases/genetics
- Protein-Tyrosine Kinases/metabolism
- RNA/analysis
- RNA, Messenger/analysis
- Rats
- Rats, Sprague-Dawley
- Reactive Oxygen Species/metabolism
- Recombinant Proteins/metabolism
- SRS-A/antagonists & inhibitors
- Signal Transduction
- Time Factors
Collapse
Affiliation(s)
- A S Baas
- Department of Internal Medicine, University of Washington, Seattle 98195, USA
| | | |
Collapse
|
50
|
Cortizo AM, Etcheverry SB. Vanadium derivatives act as growth factor--mimetic compounds upon differentiation and proliferation of osteoblast-like UMR106 cells. Mol Cell Biochem 1995; 145:97-102. [PMID: 7675039 DOI: 10.1007/bf00935481] [Citation(s) in RCA: 87] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The effect of different vanadium compounds on proliferation and differentiation was examined in osteoblast-like UMR106 cells. Vanadate increased the cell growth in a biphasic manner, the higher doses inhibiting cell progression. Vanadyl stimulated cell proliferation in a dose-responsive manner. Similar to vanadate, pervanadate increased osteoblast-like cell proliferation in a biphasic manner but no inhibition of growth was observed. Vanadyl and pervanadate were stronger stimulators of cell growth than vanadate. Only vanadate was able to regulate the cell differentiation as measured by cell alkaline phosphatase activity. These results suggest that vanadium derivatives behave like growth factors on osteoblast-like cells and are potential pharmacological tools in the control of cell growth.
Collapse
Affiliation(s)
- A M Cortizo
- Cátedra de Bioquimica Patológica, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Argentina
| | | |
Collapse
|