1
|
Brosinsky P, Heger J, Sydykov A, Weiss A, Klatt S, Czech L, Kraut S, Schermuly RT, Schlüter KD, Schulz R. Does Cell-Type-Specific Silencing of Monoamine Oxidase B Interfere with the Development of Right Ventricle (RV) Hypertrophy or Right Ventricle Failure in Pulmonary Hypertension? Int J Mol Sci 2024; 25:6212. [PMID: 38892401 PMCID: PMC11172614 DOI: 10.3390/ijms25116212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
Increased mitochondrial reactive oxygen species (ROS) formation is important for the development of right ventricular (RV) hypertrophy (RVH) and failure (RVF) during pulmonary hypertension (PH). ROS molecules are produced in different compartments within the cell, with mitochondria known to produce the strongest ROS signal. Among ROS-forming mitochondrial proteins, outer-mitochondrial-membrane-located monoamine oxidases (MAOs, type A or B) are capable of degrading neurotransmitters, thereby producing large amounts of ROS. In mice, MAO-B is the dominant isoform, which is present in almost all cell types within the heart. We analyzed the effect of an inducible cardiomyocyte-specific knockout of MAO-B (cmMAO-B KO) for the development of RVH and RVF in mice. Right ventricular hypertrophy was induced by pulmonary artery banding (PAB). RV dimensions and function were measured through echocardiography. ROS production (dihydroethidium staining), protein kinase activity (PamStation device), and systemic hemodynamics (in vivo catheterization) were assessed. A significant decrease in ROS formation was measured in cmMAO-B KO mice during PAB compared to Cre-negative littermates, which was associated with reduced activity of protein kinases involved in hypertrophic growth. In contrast to littermates in which the RV was dilated and hypertrophied following PAB, RV dimensions were unaffected in response to PAB in cmMAO-B KO mice, and no decline in RV systolic function otherwise seen in littermates during PAB was measured in cmMAO-B KO mice. In conclusion, cmMAO-B KO mice are protected against RV dilatation, hypertrophy, and dysfunction following RV pressure overload compared to littermates. These results support the hypothesis that cmMAO-B is a key player in causing RV hypertrophy and failure during PH.
Collapse
MESH Headings
- Animals
- Male
- Mice
- Disease Models, Animal
- Heart Failure/metabolism
- Heart Failure/etiology
- Heart Failure/genetics
- Heart Failure/pathology
- Heart Ventricles/pathology
- Heart Ventricles/metabolism
- Hypertension, Pulmonary/genetics
- Hypertension, Pulmonary/etiology
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/pathology
- Hypertrophy, Right Ventricular/metabolism
- Hypertrophy, Right Ventricular/genetics
- Hypertrophy, Right Ventricular/etiology
- Hypertrophy, Right Ventricular/pathology
- Mice, Knockout
- Monoamine Oxidase/genetics
- Monoamine Oxidase/metabolism
- Monoamine Oxidase/deficiency
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Reactive Oxygen Species/metabolism
- Ventricular Dysfunction, Right/metabolism
- Ventricular Dysfunction, Right/genetics
- Ventricular Dysfunction, Right/etiology
- Ventricular Dysfunction, Right/pathology
Collapse
Affiliation(s)
- Paulin Brosinsky
- Physiologisches Institut, Justus-Liebig-Universität, 35392 Gießen, Germany; (J.H.); (L.C.); (K.-D.S.); (R.S.)
| | - Jacqueline Heger
- Physiologisches Institut, Justus-Liebig-Universität, 35392 Gießen, Germany; (J.H.); (L.C.); (K.-D.S.); (R.S.)
| | - Akylbek Sydykov
- Excellence Cluster Cardiopulmonary System (ECCPS), Justus-Liebig-Universität, 35392 Gießen, Germany; (A.S.); (A.W.); (S.K.); (R.T.S.)
| | - Astrid Weiss
- Excellence Cluster Cardiopulmonary System (ECCPS), Justus-Liebig-Universität, 35392 Gießen, Germany; (A.S.); (A.W.); (S.K.); (R.T.S.)
| | - Stephan Klatt
- Vascular Research Centre, Goethe Universität, 60590 Frankfurt, Germany;
| | - Laureen Czech
- Physiologisches Institut, Justus-Liebig-Universität, 35392 Gießen, Germany; (J.H.); (L.C.); (K.-D.S.); (R.S.)
| | - Simone Kraut
- Excellence Cluster Cardiopulmonary System (ECCPS), Justus-Liebig-Universität, 35392 Gießen, Germany; (A.S.); (A.W.); (S.K.); (R.T.S.)
| | - Ralph Theo Schermuly
- Excellence Cluster Cardiopulmonary System (ECCPS), Justus-Liebig-Universität, 35392 Gießen, Germany; (A.S.); (A.W.); (S.K.); (R.T.S.)
| | - Klaus-Dieter Schlüter
- Physiologisches Institut, Justus-Liebig-Universität, 35392 Gießen, Germany; (J.H.); (L.C.); (K.-D.S.); (R.S.)
| | - Rainer Schulz
- Physiologisches Institut, Justus-Liebig-Universität, 35392 Gießen, Germany; (J.H.); (L.C.); (K.-D.S.); (R.S.)
| |
Collapse
|
2
|
Knittel J, Itani N, Schreckenberg R, Heger J, Rohrbach S, Schulz R, Schlüter KD. Monoamine Oxidase A Contributes to Serotonin-But Not Norepinephrine-Dependent Damage of Rat Ventricular Myocytes. Biomolecules 2023; 13:1013. [PMID: 37371593 DOI: 10.3390/biom13061013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/07/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Serotonin effects on cardiac hypertrophy, senescence, and failure are dependent either on activation of specific receptors or serotonin uptake and serotonin degradation by monoamine oxidases (MAOs). Receptor-dependent effects are specific for serotonin, but MAO-dependent effects are nonspecific as MAOs also metabolize other substrates such as catecholamines. Our study evaluates the role of MAO-A in serotonin- and norepinephrine-dependent cell damage. Experiments were performed in vivo to study the regulation of MAOA and MAOB expression and in vitro on isolated cultured adult rat ventricular cardiomyocytes (cultured for 24 h) to study the function of MAO-A. MAOA but not MAOB expression increased in maladaptive hypertrophic stages. Serotonin and norepinephrine induced morphologic cell damage (loss of rod-shaped cell structure). However, MAO-A inhibition suppressed serotonin-dependent but not norepinephrine-dependent damages. Serotonin but not norepinephrine caused a reduction in cell shortening in nondamaged cells. Serotonin induced mitochondria-dependent oxidative stress. In vivo, MAOA was induced during aging and hypertension but the expression of the corresponding serotonin uptake receptor (SLC6A4) was reduced and enzymes that reduce either oxidative stress (CAT) or accumulation of 5-hydroxyindolacetaldehyde (ALDH2) were induced. In summary, the data show that MAO-A potentially affects cardiomyocytes' function but that serotonin is not necessarily the native substrate.
Collapse
Affiliation(s)
- Jonas Knittel
- Physiologisches Institut, Justus-Liebig-Universität, 35392 Gießen, Germany
| | - Nadja Itani
- Physiologisches Institut, Justus-Liebig-Universität, 35392 Gießen, Germany
| | - Rolf Schreckenberg
- Physiologisches Institut, Justus-Liebig-Universität, 35392 Gießen, Germany
| | - Jacqueline Heger
- Physiologisches Institut, Justus-Liebig-Universität, 35392 Gießen, Germany
| | - Susanne Rohrbach
- Physiologisches Institut, Justus-Liebig-Universität, 35392 Gießen, Germany
| | - Rainer Schulz
- Physiologisches Institut, Justus-Liebig-Universität, 35392 Gießen, Germany
| | | |
Collapse
|
3
|
Schulz R, Schlüter KD. Importance of Mitochondria in Cardiac Pathologies: Focus on Uncoupling Proteins and Monoamine Oxidases. Int J Mol Sci 2023; 24:ijms24076459. [PMID: 37047436 PMCID: PMC10095304 DOI: 10.3390/ijms24076459] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/22/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
On the one hand, reactive oxygen species (ROS) are involved in the onset and progression of a wide array of diseases. On the other hand, these are a part of signaling pathways related to cell metabolism, growth and survival. While ROS are produced at various cellular sites, in cardiomyocytes the largest amount of ROS is generated by mitochondria. Apart from the electron transport chain and various other proteins, uncoupling protein (UCP) and monoamine oxidases (MAO) have been proposed to modify mitochondrial ROS formation. Here, we review the recent information on UCP and MAO in cardiac injuries induced by ischemia-reperfusion (I/R) as well as protection from I/R and heart failure secondary to I/R injury or pressure overload. The current data in the literature suggest that I/R will preferentially upregulate UCP2 in cardiac tissue but not UCP3. Studies addressing the consequences of such induction are currently inconclusive because the precise function of UCP2 in cardiac tissue is not well understood, and tissue- and species-specific aspects complicate the situation. In general, UCP2 may reduce oxidative stress by mild uncoupling and both UCP2 and UCP3 affect substrate utilization in cardiac tissue, thereby modifying post-ischemic remodeling. MAOs are important for the physiological regulation of substrate concentrations. Upon increased expression and or activity of MAOs, however, the increased production of ROS and reactive aldehydes contribute to cardiac alterations such as hypertrophy, inflammation, irreversible cardiomyocyte injury, and failure.
Collapse
|
4
|
Neumann J, Hofmann B, Dhein S, Gergs U. Cardiac Roles of Serotonin (5-HT) and 5-HT-Receptors in Health and Disease. Int J Mol Sci 2023; 24:4765. [PMID: 36902195 PMCID: PMC10003731 DOI: 10.3390/ijms24054765] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 03/06/2023] Open
Abstract
Serotonin acts solely via 5-HT4-receptors to control human cardiac contractile function. The effects of serotonin via 5-HT4-receptors lead to positive inotropic and chronotropic effects, as well as arrhythmias, in the human heart. In addition, 5-HT4-receptors may play a role in sepsis, ischaemia, and reperfusion. These presumptive effects of 5-HT4-receptors are the focus of the present review. We also discuss the formation and inactivation of serotonin in the body, namely, in the heart. We identify cardiovascular diseases where serotonin might play a causative or additional role. We address the mechanisms which 5-HT4-receptors can use for cardiac signal transduction and their possible roles in cardiac diseases. We define areas where further research in this regard should be directed in the future, and identify animal models that might be generated to this end. Finally, we discuss in what regard 5-HT4-receptor agonists or antagonists might be useful drugs that could enter clinical practice. Serotonin has been the target of many studies for decades; thus, we found it timely to summarise our current knowledge here.
Collapse
Affiliation(s)
- Joachim Neumann
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, D-06097 Halle, Germany
| | - Britt Hofmann
- Cardiac Surgery, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, D-06097 Halle, Germany
| | - Stefan Dhein
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Universität Leipzig, D-04109 Leipzig, Germany
| | - Ulrich Gergs
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, D-06097 Halle, Germany
| |
Collapse
|
5
|
Resta J, Santin Y, Roumiguié M, Riant E, Lucas A, Couderc B, Binda C, Lluel P, Parini A, Mialet-Perez J. Monoamine Oxidase Inhibitors Prevent Glucose-Dependent Energy Production, Proliferation and Migration of Bladder Carcinoma Cells. Int J Mol Sci 2022; 23:ijms231911747. [PMID: 36233054 PMCID: PMC9570004 DOI: 10.3390/ijms231911747] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/26/2022] [Accepted: 09/30/2022] [Indexed: 11/16/2022] Open
Abstract
Bladder cancer is the 10th most common cancer in the world and has a high risk of recurrence and metastasis. In order to sustain high energetic needs, cancer cells undergo complex metabolic adaptations, such as a switch toward aerobic glycolysis, that can be exploited therapeutically. Reactive oxygen species (ROS) act as key regulators of cancer metabolic reprogramming and tumorigenesis, but the sources of ROS remain unidentified. Monoamine oxidases (MAOs) are mitochondrial enzymes that generate H2O2 during the breakdown of catecholamines and serotonin. These enzymes are particularly important in neurological disorders, but recently, a new link between MAOs and cancer has been uncovered, involving their production of ROS. At present, the putative role of MAOs in bladder cancer has never been evaluated. We observed that human urothelial tumor explants and the bladder cancer cell line AY27 expressed both MAO-A and MAO-B isoforms. Selective inhibition of MAO-A or MAO-B limited mitochondrial ROS accumulation, cell cycle progression and proliferation of bladder cancer cells, while only MAO-A inhibition prevented cell motility. To test whether ROS contributed to MAO-induced tumorigenesis, we used a mutated form of MAO-A which was unable to produce H2O2. Adenoviral transduction of the WT MAO-A stimulated the proliferation and migration of AY27 cells while the Lys305Met MAO-A mutant was inactive. This was consistent with the fact that the antioxidant Trolox strongly impaired proliferation and cell cycle progression. Most interestingly, AY27 cells were highly dependent on glucose metabolism to sustain their growth, and MAO inhibitors potently reduced glycolysis and oxidative phosphorylation, due to pyruvate depletion. Accordingly, MAO inhibitors decreased the expression of proteins involved in glucose transport (GLUT1) and transformation (HK2). In conclusion, urothelial cancer cells are characterized by a metabolic shift toward glucose-dependent metabolism, which is important for cell growth and is under the regulation of MAO-dependent oxidative stress.
Collapse
Affiliation(s)
- Jessica Resta
- Institute of Metabolic and Cardiovascular Diseases (I2MC), INSERM, Toulouse University, 31000 Toulouse, France
| | - Yohan Santin
- Institute of Metabolic and Cardiovascular Diseases (I2MC), INSERM, Toulouse University, 31000 Toulouse, France
| | - Mathieu Roumiguié
- Department of Urology, CHU-Institut Universitaire du Cancer de Toulouse, 31000 Toulouse, France
| | - Elodie Riant
- Institute of Metabolic and Cardiovascular Diseases (I2MC), INSERM, Toulouse University, 31000 Toulouse, France
| | - Alexandre Lucas
- Institute of Metabolic and Cardiovascular Diseases (I2MC), INSERM, Toulouse University, 31000 Toulouse, France
| | - Bettina Couderc
- Centre de Recherches en Cancérologie de Toulouse (CRCT), INSERM, Toulouse University, 31000 Toulouse, France
| | - Claudia Binda
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy
| | - Philippe Lluel
- Urosphere SAS, 3 rue des Satellites, 31400 Toulouse, France
| | - Angelo Parini
- Institute of Metabolic and Cardiovascular Diseases (I2MC), INSERM, Toulouse University, 31000 Toulouse, France
| | - Jeanne Mialet-Perez
- Institute of Metabolic and Cardiovascular Diseases (I2MC), INSERM, Toulouse University, 31000 Toulouse, France
- Correspondence: ; Tel.: +33-56-1325-643
| |
Collapse
|
6
|
A Meta-Analysis of the Efficacy of Prokinetic Agents against Glycemic Control. Gastroenterol Res Pract 2019; 2019:3014973. [PMID: 31582970 PMCID: PMC6754912 DOI: 10.1155/2019/3014973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 07/02/2019] [Accepted: 08/19/2019] [Indexed: 02/07/2023] Open
Abstract
Background Prokinetic agents are used in diabetic gastroparesis patients to improve gastric emptying and upper gastrointestinal (GI) symptoms. However, the efficacy of prokinetic agents against glycemic control is questionable. Therefore, we conducted a systemic review and meta-analysis to determine the efficacy of prokinetic agents against glycemic control. Methods Randomized controlled trials (RCTs) evaluating the effect of prokinetics were identified by searching PubMed, Embase, and the Cochrane Library databases until April 2018. The primary outcome was changes in the mean value of glycosylated hemoglobin (HbA1c), fasting blood sugar (FBS), and fasting serum insulin (FINS). The pooled standardized mean differences (SMD) with 95% confidence intervals (CIs) were calculated by evaluating the strength of the association. We used the random effect models to analyze these markers. The effects of each component of the prokinetic agents on glycemic control were separately analyzed. Results Five RCTs with 190 patients met the criteria and were included in the meta-analysis. There were statistically significant SMD between prokinetics and placebo-controlled groups with respect to the reduction of HbA1c (-1.141, 95% CI -1.843, -0.438; P < 0.01). No statistically significant differences were noted between the two groups for FBS (-1.270, 95% CI -2.613, -0.074; P = 0.06) and FINS (0.359, 95% CI -1.205~1.923; P = 0.65). Conclusions Prokinetics have a positive effect on glycemic control. Further large-scale prospective studies are needed.
Collapse
|
7
|
Nagy CT, Koncsos G, Varga ZV, Baranyai T, Tuza S, Kassai F, Ernyey AJ, Gyertyán I, Király K, Oláh A, Radovits T, Merkely B, Bukosza N, Szénási G, Hamar P, Mathé D, Szigeti K, Pelyhe C, Jelemenský M, Onódi Z, Helyes Z, Schulz R, Giricz Z, Ferdinandy P. Selegiline reduces adiposity induced by high-fat, high-sucrose diet in male rats. Br J Pharmacol 2018; 175:3713-3726. [PMID: 29971762 DOI: 10.1111/bph.14437] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 06/22/2018] [Accepted: 06/25/2018] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND AND PURPOSE Incidence and severity of obesity are increasing worldwide, however, efficient and safe pharmacological treatments are not yet available. Certain MAO inhibitors reduce body weight, although their effects on metabolic parameters have not been investigated. Here, we have assessed effects of a widely used, selective MAO-B inhibitor, selegiline, on metabolic parameters in a rat model of diet-induced obesity. EXPERIMENTAL APPROACH Male Long-Evans rats were given control (CON) or a high-fat (20%), high-sucrose (15%) diet (HFS) for 25 weeks. From week 16, animals were injected s.c. with 0.25 mg·kg-1 selegiline (CON + S and HFS + S) or vehicle (CON, HFS) once daily. Whole body, subcutaneous and visceral fat was measured by CT, and glucose and insulin tolerance were tested. Expression of glucose transporters and chemokines was assessed by quantitative RT-PCR. KEY RESULTS Selegiline decreased whole body fat, subcutaneous- and visceral adiposity, measured by CT and epididymal fat weight in the HFS group, compared with HFS placebo animals, without influencing body weight. Oral glucose tolerance and insulin tolerance tests showed impaired glucose homeostasis in HFS and HFS + S groups, although insulin levels in plasma and pancreas were unchanged. HFS induced expression of Srebp-1c, Glut1 and Ccl3 in adipose tissue, which were alleviated by selegiline. CONCLUSIONS AND IMPLICATIONS Selegiline reduced adiposity, changes in adipose tissue energy metabolism and adipose inflammation induced by HFS diet without affecting the increased body weight, impairment of glucose homeostasis, or behaviour. These results suggest that selegiline could mitigate harmful effects of visceral adiposity.
Collapse
Affiliation(s)
- Csilla Terézia Nagy
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Gábor Koncsos
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Zoltán V Varga
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Tamás Baranyai
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Sebestyén Tuza
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Ferenc Kassai
- MTA-SE NAP B Cognitive Translational Behavioural Pharmacology Group, Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Budapest, Hungary.,Institute of Cognitive Neuroscience and Psychology, Research Center for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Aliz Judit Ernyey
- MTA-SE NAP B Cognitive Translational Behavioural Pharmacology Group, Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Budapest, Hungary.,Institute of Cognitive Neuroscience and Psychology, Research Center for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - István Gyertyán
- MTA-SE NAP B Cognitive Translational Behavioural Pharmacology Group, Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Budapest, Hungary.,Institute of Cognitive Neuroscience and Psychology, Research Center for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Kornél Király
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Attila Oláh
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Tamás Radovits
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Béla Merkely
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Nóra Bukosza
- Institute of Pathophysiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Gábor Szénási
- Institute of Pathophysiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Péter Hamar
- Institute of Pathophysiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary.,Clinical Experimental Research Institute, Faculty of Medicine, Semmelweis University, Budapest, Hungary.,Translational Medicine Institute, Faculty of Medicine, Pécs University, Pécs, Hungary
| | - Domokos Mathé
- Department of Biophysics and Radiation Biology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Krisztián Szigeti
- Department of Biophysics and Radiation Biology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Csilla Pelyhe
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Marek Jelemenský
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Zsófia Onódi
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Medical School and Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Rainer Schulz
- Institute of Physiology, Justus-Liebig University Giessen, Germany
| | - Zoltán Giricz
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Budapest, Hungary.,Pharmahungary Group, Szeged, Hungary
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Budapest, Hungary.,Pharmahungary Group, Szeged, Hungary
| |
Collapse
|
8
|
Khan W, Gupta S, Ahmad S. Toxicology of the aqueous extract from the flowers of Butea monosperma Lam. and it's metabolomics in yeast cells. Food Chem Toxicol 2017; 108:486-497. [PMID: 28163055 DOI: 10.1016/j.fct.2017.02.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 01/29/2017] [Accepted: 02/01/2017] [Indexed: 11/18/2022]
Abstract
Due to lack of scientific evidence for the safety of Butea monosperma (Fabaceae), our study aimed to carry out its toxicological profile and to identify its metabolic pattern in yeast cell. The effect of aqueous extract of B. monosperma flower on glucose uptake in yeast cell was evaluated through optimizing pH, temperature, incubation time, substrate concentration and kinetic parameters. Further, the metabolic pattern of extract as such and in yeast cell were analyzed by gas chromatography-mass spectrometry. Mice were administered aqueous extract up to 6000 and 4000 mg/kg for acute oral and intraperitoneal toxicity, respectively, while up to 4500 mg/kg for sub-acute oral toxicity (30 days). Elongation in the lag and log phase was observed in yeast cells supplemented with extract as compared to control. A maximum of 184.9% glucose uptake was observed whereas kinetic parameters (Km and Vmax) were 1.38 and 41.91 mol/s, respectively. Out of 75 metabolites found in the extract, 14 and 18 metabolites were utilized by yeast cell after 15 and 30 min of incubation, respectively. The LD50 of extract administered through intraperitoneal route was estimated to be 3500 mg/kg. The extract did not elicit any significant difference (P ≥ 0.05) in weight gain, food consumption, water intake, hematological, biochemical parameters and histological changes as compared to the normal control. Results ascertained the safety of B. monosperma flower extract which can be explored as potential candidates for the development of anti-diabetic phytopharmaceuticals.
Collapse
Affiliation(s)
- Washim Khan
- Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, Faculty of Pharmacy, Jamia Hamdard, New Delhi 110062, India
| | - Shreesh Gupta
- Department of Biotechnology, Graphic Era University, Dehradun 248002, Uttarakhand, India
| | - Sayeed Ahmad
- Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, Faculty of Pharmacy, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
9
|
Monoamine Oxidase Is Overactivated in Left and Right Ventricles from Ischemic Hearts: An Intriguing Therapeutic Target. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:4375418. [PMID: 28044091 PMCID: PMC5156804 DOI: 10.1155/2016/4375418] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 09/19/2016] [Accepted: 10/09/2016] [Indexed: 12/21/2022]
Abstract
Growing evidence indicates that reactive oxygen species (ROS) may play a key role in human heart failure (HF). Monoamine oxidase (MAO) is emerging as a major ROS source in several cardiomyopathies. However, little is known about MAO activity in human failing heart and its relationship with redox imbalance. Therefore, we measured MAO activity in the left (LV) and in the right (RV) ventricle of human nonfailing (NF) and in end-stage ischemic (IHD) and nonischemic failing hearts. We found that both MAO isoforms (MAO-A/B) significantly increased in terms of activity and expression levels only in IHD ventricles. Catalase and aldehyde dehydrogenase-2 activities (ALDH-2), both implicated in MAO-catalyzed catecholamine catabolism, were significantly elevated in the failing LV, whereas, in the RV, statistical significance was observed only for ALDH-2. Oxidative stress markers levels were significantly increased only in the failing RV. Actin oxidation was significantly elevated in both failing ventricles and related to MAO-A activity and to functional parameters. These data suggest a close association between MAO-A-dependent ROS generation, actin oxidation, and ventricular dysfunction. This latter finding points to a possible pathogenic role of MAO-A in human myocardial failure supporting the idea that MAO-A could be a new therapeutic target in HF.
Collapse
|
10
|
Dennis RL, McMunn KA, Cheng HW, Marchant-Forde JN, Lay DC. Serotonin's role in piglet mortality and thriftiness. J Anim Sci 2015; 92:4888-96. [PMID: 25349339 DOI: 10.2527/jas.2014-7835] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Improving piglet survivability rates is of high priority for swine production as well as for piglet well-being. Dysfunction in the serotonin (5-HT) system has been associated with growth deficiencies, infant mortalities, or failure to thrive in human infants. The aim of this research was to determine if a relationship exists between infant mortality and failure to thrive (or unthriftiness), and umbilical 5-HT concentration in piglets. Umbilical blood was collected from a total of 60 piglets from 15 litters for analysis of 5-HT and tryptophan (Trp; the AA precursor to 5-HT) concentrations. Behavior was scan sampled for the first 2 days after birth. Brain samples were also taken at 8 h after birth from healthy and unthrifty piglets (n = 4/group). The raphe nucleus was dissected out and analyzed for 5-HT and dopamine concentrations as well as their major metabolites 5-hydroxyindoleacetic acid (5-HIAA) and homovanillic acid (HVA), respectively. Data were analyzed by ANOVA. Piglets that died within 48 h of birth (n = 14) had significantly lower umbilical blood 5-HT concentrations at the time of their birth compared to their healthy counterparts (n = 46, P = 0.003). However, no difference in Trp was detected (P 0.38). Time spent under the heat lamp and sleeping were positively correlated with umbilical 5-HT levels (P = 0.004 and P = 0.02, respectively), while inactivity had a negative correlation with 5-HT levels (P = 0.04). In the raphe nucleus, the center for brain 5-HT biosynthesis, unthrifty piglets had a greater concentration of 5-HIAA (P = 0.02) and a trend for higher concentrations of 5-HT (P = 0.07) compared with healthy piglets. Dopamine levels did not differ between thrifty and unthrifty piglets (P = 0.45); however, its metabolite HVA tended to be greater in unthrifty piglets (P = 0.05). Our results show evidence of serotonergic dysfunction, at both the central and peripheral levels, accompanying early piglet mortalities. These data suggest a possible route for intervention, via the 5-HT system, to improve piglet survivability. However, further research is required to validate this hypothesis.
Collapse
Affiliation(s)
- R L Dennis
- USDA-Agricultural Research Service, Livestock Behavior Research Unit, West Lafayette, IN 47907
| | - K A McMunn
- USDA-Agricultural Research Service, Livestock Behavior Research Unit, West Lafayette, IN 47907
| | - H W Cheng
- USDA-Agricultural Research Service, Livestock Behavior Research Unit, West Lafayette, IN 47907
| | - J N Marchant-Forde
- USDA-Agricultural Research Service, Livestock Behavior Research Unit, West Lafayette, IN 47907
| | - D C Lay
- USDA-Agricultural Research Service, Livestock Behavior Research Unit, West Lafayette, IN 47907
| |
Collapse
|
11
|
Grès S, Gomez-Zorita S, Gomez-Ruiz A, Carpéné C. 5-hydroxytryptamine actions in adipocytes: involvement of monoamine oxidase-dependent oxidation and subsequent PPARγ activation. J Neural Transm (Vienna) 2012; 120:919-26. [PMID: 23271029 DOI: 10.1007/s00702-012-0959-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 12/11/2012] [Indexed: 11/26/2022]
Abstract
Serotonin (5-HT) is a brain neurotransmitter instrumental for the antidepressant action of selective inhibitors of serotonin reuptake (SSRIs) while it also plays important roles in peripheral organs. Recently, the 5-HT oxidation products, 5-hydroxyindoleacetate and 5-methoxy-indoleacetate, have been shown to bind to peroxisome proliferator-activated receptor γ (PPARγ) and to enhance lipid accumulation in preadipocytes. Since we already reported that adipocytes exhibit elevated monoamine oxidase (MAO) and primary amine oxidase activities, we verified how adipocytes readily oxidize 5-HT, with the objective to determine whether such oxidation promotes PPARγ activation and lipid storage. To this aim, serotonin was tested on cultured 3T3 F442A preadipocytes and on human adipocytes. Results showed that 5-HT was oxidized by MAO in both models. Daily treatment of 3T3 F442A preadipocytes for 8 days with 100-500 μM 5-HT promoted triglyceride accumulation and emergence of adipogenesis markers. At 250 μM, 5-HT alone reproduced half of 50 nM insulin-induced adipogenesis, and exhibited an additive differentiating effect when combined with insulin. Moreover, the 5-HT-induced expression of PPARγ-responsive genes (PEPCK, aP2/FABP4) was blocked by GW 9662, a PPARγ-inhibitor, or by pargyline, a MAO-inhibitor. In human fat cells, 6-h exposure to 100 μM 5-HT increased PEPCK expression as did the PPARγ-agonist rosiglitazone. Since hydrogen peroxide, another amine oxidation product, did not reproduce such enhancement, we propose that serotonin can promote PPARγ activation in fat cells, via the indoleacetate produced during MAO-dependent oxidation. Such pathway could be involved in the adverse effects of several antidepressant SSRIs on body weight gain.
Collapse
Affiliation(s)
- Sandra Grès
- Université de Toulouse, UPS, Institut de Médecine Moléculaire de Rangueil (I2MC), Toulouse, France
| | | | | | | |
Collapse
|
12
|
Nediani C, Raimondi L, Borchi E, Cerbai E. Nitric oxide/reactive oxygen species generation and nitroso/redox imbalance in heart failure: from molecular mechanisms to therapeutic implications. Antioxid Redox Signal 2011; 14:289-331. [PMID: 20624031 DOI: 10.1089/ars.2010.3198] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Adaptation of the heart to intrinsic and external stress involves complex modifications at the molecular and cellular levels that lead to tissue remodeling, functional and metabolic alterations, and finally to failure depending upon the nature, intensity, and chronicity of the stress. Reactive oxygen species (ROS) have long been considered as merely harmful entities, but their role as second messengers has gradually emerged. At the same time, our comprehension of the multifaceted role of nitric oxide (NO) and the related reactive nitrogen species (RNS) has been upgraded. The tight interlay between ROS and RNS suggests that their imbalance may implicate the impairment in physiological NO/redox-based signaling that contributes to the failing of the cardiovascular system. This review initially provides basic concepts on the role of nitroso/oxidative stress in the pathophysiology of heart failure with a particular focus on sources of ROS/RNS, their downstream targets, and endogenous modulators. Then, the role of NO/redox regulation of cardiomyocyte function, including calcium homeostasis, electrogenesis, and insulin signaling pathways, is described. Finally, an overview of old and emerging therapeutic opportunities in heart failure is presented, focusing on modulation of NO/redox mechanisms and discussing benefits and limitations.
Collapse
Affiliation(s)
- Chiara Nediani
- Department of Biochemical Sciences, University of Florence, Florence, Italy.
| | | | | | | |
Collapse
|
13
|
Goyal RK, Elimban V, Xu YJ, Kumamoto H, Takeda N, Dhalla NS. Mechanism of sarpogrelate action in improving cardiac function in diabetes. J Cardiovasc Pharmacol Ther 2010; 16:380-7. [PMID: 21183729 DOI: 10.1177/1074248410384708] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Although sarpogrelate, a 5-HT(2A) receptor antagonist, has been reported to exert beneficial effects in diabetes, the mechanisms of its action are not understood. In this study, diabetes was induced in rats by an injection of streptozotocin (65 mg/kg) and the animals were assessed 7 weeks later. Decreased serum insulin as well as increased serum glucose, cholesterol, and triglyceride levels in diabetic animals were associated with increased blood pressure and heart/body weight ratio. Impaired cardiac performance in diabetic animals was evident by decreased heart rate, left ventricular developed pressure, rate of pressure development, and rate of pressure decay. Treatment of diabetic animals with sarpogrelate (5 mg/kg) or insulin (10 units/kg) daily for 6 weeks attenuated the observed changes in serum insulin, glucose, and lipid levels as well as blood pressure and cardiac function by varying degrees. Protein content for membrane glucose transporters (GLUT-1 and GLUT-4) was depressed in diabetic heart; the observed alteration in GLUT-4 was partially prevented by both sarpogrelate and insulin, whereas that in GLUT-1 was attenuated by sarpogrelate only. Incubation of myoblast cells with sarpogrelate and insulin stimulated glucose uptake; these effects were additive. 5-hydroxytryptamine was found to inhibit glucose-induced insulin release from the pancreas; this effect was prevented by sarpogrelate. These results suggest that sarpogrelate may improve cardiac function in chronic diabetes by promoting the expression of membrane glucose transporters as well as by releasing insulin from the pancreas.
Collapse
Affiliation(s)
- Ramesh K Goyal
- Institute of Cardiovascular Sciences, St Boniface General Hospital Research Center, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | | | | | | | | |
Collapse
|
14
|
Pachmerhiwala R, Bhide N, Straiko M, Gudelsky GA. Role of serotonin and/or norepinephrine in the MDMA-induced increase in extracellular glucose and glycogenolysis in the rat brain. Eur J Pharmacol 2010; 644:67-72. [PMID: 20633550 PMCID: PMC2944403 DOI: 10.1016/j.ejphar.2010.07.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Revised: 07/03/2010] [Accepted: 07/06/2010] [Indexed: 02/08/2023]
Abstract
The acute administration of MDMA has been shown to promote glycogenolysis and increase the extracellular concentration of glucose in the striatum. In the present study the role of serotonergic and/or noradrenergic mechanisms in the MDMA-induced increase in extracellular glucose and glycogenolysis was assessed. The relationship of these responses to the hyperthermia produced by MDMA also was examined. The administration of MDMA (10mg/kg, i.p.) resulted in a significant and sustained increase of 65-100% in the extracellular concentration of glucose in the striatum, as well as in the prefrontal cortex and hippocampus, and a 35% decrease in brain glycogen content. Peripheral blood glucose was modestly increased by 32% after MDMA treatment. Treatment of rats with fluoxetine (10mg/kg, i.p.) significantly attenuated the MDMA-induced increase in extracellular glucose in the striatum but had no effect on MDMA-induced glycogenolysis or hyperthermia. Treatment with prazosin (1mg/kg, i.p.) did not alter the glucose or glycogen responses to MDMA but completely suppressed MDMA-induced hyperthermia. Finally, propranolol (3mg/kg, i.p.) significantly attenuated the MDMA-induced increase in extracellular glucose and glycogenolysis but did not alter MDMA-induced hyperthermia. The present results suggest that MDMA increases extracellular glucose in multiple brain regions, and that this response involves both serotonergic and noradrenergic mechanisms. Furthermore, beta-adrenergic and alpha-adrenergic receptors appear to contribute to MDMA-induced glycogenolysis and hyperthermia, respectively. Finally, hyperthermia, glycogenolysis and elevated extracellular glucose appear to be independent, unrelated responses to acute MDMA administration.
Collapse
MESH Headings
- Animals
- Brain/drug effects
- Brain/metabolism
- Fever/chemically induced
- Fluoxetine/pharmacology
- Glucose/metabolism
- Glycogenolysis/drug effects
- Male
- N-Methyl-3,4-methylenedioxyamphetamine/pharmacology
- Norepinephrine/metabolism
- Prazosin/pharmacology
- Propranolol/pharmacology
- Rats
- Rats, Sprague-Dawley
- Receptors, Adrenergic, alpha/drug effects
- Receptors, Adrenergic, alpha/metabolism
- Receptors, Adrenergic, beta/drug effects
- Receptors, Adrenergic, beta/metabolism
- Serotonin/metabolism
Collapse
Affiliation(s)
| | - Nirmal Bhide
- James Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45267
| | - Megan Straiko
- Neuroscience Graduate Program, University of Cincinnati, Cincinnati, OH 45267
| | - Gary A. Gudelsky
- James Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45267
- Neuroscience Graduate Program, University of Cincinnati, Cincinnati, OH 45267
| |
Collapse
|
15
|
Paley EL, Denisova G, Sokolova O, Posternak N, Wang X, Brownell AL. Tryptamine induces tryptophanyl-tRNA synthetase-mediated neurodegeneration with neurofibrillary tangles in human cell and mouse models. Neuromolecular Med 2008; 9:55-82. [PMID: 17114825 DOI: 10.1385/nmm:9:1:55] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2004] [Revised: 05/08/2006] [Accepted: 05/09/2006] [Indexed: 01/24/2023]
Abstract
The neuropathological hallmarks of Alzheimer's disease (AD) and other taupathies include neurofibrillary tangles and plaques. Despite the fact that only 2-10% of AD cases are associated with genetic mutations, no nontransgenic or metabolic models have been generated to date. The findings of tryptophanyl-tRNA synthetase (TrpRS) in plaques of the AD brain were reported recently by the authors. Here it is shown that expression of cytoplasmic-TrpRS is inversely correlated with neurofibrillary degeneration, whereas a nonionic detergent-insoluble presumably aggregated TrpRS is simultaneously accumulated in human cells treated by tryptamine, a metabolic tryptophan analog that acts as a competitive inhibitor of TrpRS. TrpRSN- terminal peptide self-assembles in double-helical fibrils in vitro. Herein, tryptamine causes neuropathy characterized by motor and behavioral deficits, hippocampal neuronal loss, neurofibrillary tangles, amyloidosis, and glucose decrease in mice. Tryptamine induced the formation of helical fibrillary tangles in both hippocampal neurons and glia. Taken together with the authors' previous findings of tryptamine-induced nephrotoxicity and filamentous tangle formation in kidney cells, the authors' data indicates a general role of tryptamine in cell degeneration and loss. It is concluded that tryptamine as a component of a normal diet can induce neurodegeneration at the concentrations, which might be consumed along with food. Tryptophan-dependent tRNAtrp aminoacylation catalyzed by TrpRS can be inhibited by its substrate tryptophan at physiological concentrations was demonstrated. These findings indicate that the dietary supplementation with tryptophan as a tryptamine competitor may not counteract the deleterious influence of tryptamine. The pivotal role of TrpRS in protecting against neurodegeneration is suggested, providing an insight into the pathogenesis and a possible treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Elena L Paley
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| | | | | | | | | | | |
Collapse
|
16
|
Coelho WS, Costa KC, Sola-Penna M. Serotonin stimulates mouse skeletal muscle 6-phosphofructo-1-kinase through tyrosine-phosphorylation of the enzyme altering its intracellular localization. Mol Genet Metab 2007; 92:364-70. [PMID: 17720578 DOI: 10.1016/j.ymgme.2007.07.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2007] [Accepted: 07/11/2007] [Indexed: 11/24/2022]
Abstract
Serotonin (5-HT) is a hormone implicated in the regulation of many physiological and pathological events. One of its most intriguing properties is the ability to up-regulate mitosis. Moreover, it has been shown that 5-HT stimulate glucose uptake on skeletal muscle, suggesting that 5-HT may regulate glucose metabolism of peripheric tissues. Here we demonstrate that 5-HT stimulates skeletal muscle 6-phosphofructo-1-kinase (PFK) activity in a dose-response manner, through 5-HT(2A) receptor subtype. Maximal activation of the enzyme (2.5-fold compared to control) is achieved in the presence of 25pM 5-HT, increasing both PFK maximal velocity and affinity for the substrate fructose-6-phosphate. These effects occur due to tyrosine phosphorylation of the enzyme that is 2-fold enhanced upon 5-HT stimulation of skeletal muscles preparation. Once 5-HT-induced tyrosine phosphorylation of PFK is prevented by genistein, a tyrosine kinase inhibitor, the hormone stimulatory effect on PFK is abrogated. Wortmannin, a phosphatidylinositol-3-kinase (PI3K) inhibitor, does not interfere on 5-HT-induced stimulation of PFK, supporting that the observed effects are independent on insulin signaling pathway. Furthermore, 5-HT promotes the association of PFK to the muscle f-actin, suggesting that the hormone alters PFK intracellular distribution, favoring its association to the cytoskeleton. Altogether, our results support evidences that 5-HT augments skeletal muscle glucose consumption through stimulation of glycolysis key regulatory enzyme, PFK, throughout tyrosine phosphorylation and intracellular redistribution of the enzyme.
Collapse
Affiliation(s)
- Wagner Santos Coelho
- Departamento de Fármacos, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Ilha do Fundão, Rio de Janeiro, RJ 21941-590, Brazil
| | | | | |
Collapse
|
17
|
Gramsbergen JB, Cumming P. Serotonin mediates rapid changes of striatal glucose and lactate metabolism after systemic 3,4-methylenedioxymethamphetamine (MDMA, “Ecstasy”) administration in awake rats. Neurochem Int 2007; 51:8-15. [PMID: 17475367 DOI: 10.1016/j.neuint.2007.03.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2006] [Revised: 03/07/2007] [Accepted: 03/09/2007] [Indexed: 11/24/2022]
Abstract
The pathway for selective serotonergic toxicity of 3,4-methylenedioxymethamphetamine (MDMA, "Ecstasy") is poorly understood, but has been linked to hyperthermia and disturbed energy metabolism. We investigated the dose-dependency and time-course of MDMA-induced perturbations of cerebral glucose metabolism in freely moving rats using rapid sampling microdialysis (every minute) coupled to flow-injection analysis (FIA) with biosensors for glucose and lactate. Blood samples for analysis of glucose and lactate were taken at 30-45 min intervals before and after drug dosing and body temperature was monitored by telemetry. A single dose of MDMA (2-10-20 mg/kg i.v.) evoked a transient increase of interstitial glucose concentrations in striatum (139-223%) with rapid onset and of less than 2h duration, a concomitant but more prolonged lactate increase (>187%) at the highest MDMA dose and no significant depletions of striatal serotonin. Blood glucose and lactate levels were also transiently elevated (163 and 135%) at the highest MDMA doses. The blood glucose rises were significantly related to brain glucose and brain lactate changes. The metabolic perturbations in striatum and the hyperthermic response (+1.1 degrees C) following systemic MDMA treatment were entirely blocked in p-chlorophenylalanine pre-treated rats, indicating that these effects are mediated by endogenous serotonin.
Collapse
Affiliation(s)
- Jan Bert Gramsbergen
- Anatomy & Neurobiology, Institute of Medical Biology, University of Southern Denmark, Winsløwparken 21, DK-5000 Odense C, Denmark.
| | | |
Collapse
|
18
|
Chi TC, Ho YJ, Chen WP, Chi TL, Lee SS, Cheng JT, Su MJ. Serotonin enhances β-endorphin secretion to lower plasma glucose in streptozotocin-induced diabetic rats. Life Sci 2007; 80:1832-8. [PMID: 17397876 DOI: 10.1016/j.lfs.2007.02.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2006] [Revised: 02/12/2007] [Accepted: 02/13/2007] [Indexed: 10/23/2022]
Abstract
Although serotonin, serotonin uptake inhibitors and serotonin precursors (including tryptophan or 5-hydroxytryptophan) are known to have hypoglycemic action in rodents or human, it is not clear whether serotonin has hypoglycemic effect in streptozotocin-induced diabetic rats (STZ-diabetic rats). The aim of this study was to investigate the action of serotonin in regulating the plasma glucose STZ-diabetic rats. Plasma glucose, insulin, beta-endorphin and adrenaline were assessed after intraperitoneal administration of serotonin. Serotonin produced hypoglycemic effects without altering plasma insulin and adrenaline levels but increasing beta-endorphin level in STZ-diabetic rats. The glycogen content in soleus muscle was increased at 90 min after application of serotonin (0.3 mg/kg) in STZ-diabetic rats. Dihydroergotamine (non-selective 5-HT receptor blocker) and pimozide (5-HT(7) receptor blocker) abolished the hypoglycemic effect of serotonin in STZ-diabetic rats. Serotonin-induced hypoglycemic effect in association with the increase of beta-endorphin release was abolished in bilaterally adrenalectomized STZ-diabetic rats. In isolated adrenal gland of STZ-diabetic rats, the increase of beta-endorphin secretion in response to serotonin was reduced by either dihydroergotamine or pimozide. Pretreatment with naloxone (1.0 mg/kg, i.p.) prevented serotonin-induced plasma glucose lowering effect in STZ-diabetic rats. The results demonstrated that serotonin may activate 5-HT(7) receptor on rat adrenal gland to enhance of beta-endorphin secretion, which then stimulates the opioid receptor to increase peripheral glucose utilization, resulting in decreased plasma glucose levels in STZ-diabetic rats.
Collapse
Affiliation(s)
- Tzong-Cherng Chi
- Institute of Pharmacology, College of Medicine, National Taiwan University, No.1, Sec. 1, Jen-Ai Rd., Taipei, Taiwan
| | | | | | | | | | | | | |
Collapse
|
19
|
Carpéné C, Bour S, Visentin V, Pellati F, Benvenuti S, Iglesias-Osma MC, García-Barrado MJ, Valet P. Amine oxidase substrates for impaired glucose tolerance correction. J Physiol Biochem 2005; 61:405-19. [PMID: 16180339 DOI: 10.1007/bf03167058] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Amine oxidases are widely distributed from microorganisms to vertebrates and produce hydrogen peroxide plus aldehyde when catabolizing endogenous or xenobiotic amines. Novel roles have been attributed to several members of the amine oxidase families, which cannot be anymore considered as simple amine scavengers. Semicarbazide-sensitive amine oxidase (SSAO) is abundantly expressed in mammalian endothelial, smooth muscle, and fat cells, and plays a role in lymphocyte adhesion to vascular wall, arterial fiber elastic maturation, and glucose transport, respectively. This latter role was studied in detail and the perspectives of insulin-like actions of amine oxidase substrates are discussed in the present review. Independent studies have demonstrated that SSAO substrates and monoamine oxidase substrates mimic diverse insulin effects in adipocytes: glucose transport activation, lipogenesis stimulation and lipolysis inhibition. These substrates also stimulate in vitro adipogenesis. Acute in vivo administration of amine oxidase substrates improves glucose tolerance in rats, mice and rabbits, while chronic treatments with benzylamine plus vanadate exert an antihyperglycaemic effect in diabetic rats. Dietary supplementations with methylamine, benzylamine or tyramine have been proven to influence metabolic control in rodents by increasing glucose tolerance or decreasing lipid mobilisation, without noticeable changes in the plasma markers of lipid peroxidation or protein glycation, despite adverse effects on vasculature. Thus, the ingested amines are not totally metabolized at the intestinal level and can act on adipose and vascular tissues. In regard with this influence on metabolic control, more attention must be paid to the composition or supplementation in amines in foods and nutraceutics.
Collapse
Affiliation(s)
- C Carpéné
- INSERM U586, IFR 31, Bat L3, CHU Rangueil, Université P. Sabatier, BP 84225, 31342 Toulouse, France.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Visentin V, Bour S, Boucher J, Prévot D, Valet P, Ordener C, Parini A, Carpéné C. Glucose handling in streptozotocin-induced diabetic rats is improved by tyramine but not by the amine oxidase inhibitor semicarbazide. Eur J Pharmacol 2005; 522:139-46. [PMID: 16202994 DOI: 10.1016/j.ejphar.2005.08.051] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2005] [Revised: 08/08/2005] [Accepted: 08/15/2005] [Indexed: 01/27/2023]
Abstract
A soluble form of semicarbazide-sensitive amine oxidase (SSAO) circulating in plasma is known to increase in type 1 and 2 diabetes. This cuproenzyme generates hydrogen peroxide, ammonia, and aldehydes when oxidizing circulating biogenic or exogenous amines. Based on the angiotoxicity of these products, inhibition of SSAO has been proposed to prevent vascular complications of diabetes. However, substrates of SSAO and monoamine oxidase (MAO) have been recently evidenced to activate glucose utilisation in insulin-sensitive tissues and to exhibit antihyperglycemic actions. To determine whether amine oxidase blockade or activation could be beneficial for diabetes, we aimed at comparing the influence of prolonged treatments with semicarbazide (SSAO-inhibitor), pargyline (MAO-inhibitor), or tyramine (amine oxidase substrate) on amine oxidase activities and glycemic control in streptozotocin-induced diabetic rats. The increase in plasma SSAO was confirmed in diabetic rats, while MAO and SSAO were decreased in subcutaneous adipose tissue when compared with normoglycemic controls. Among the diabetic rats, only those receiving tyramine exhibited slightly decreased hyperglycemia and improved glucose tolerance. Adipocytes from untreated or treated diabetic rats shared similar sensitivity to insulin. However glucose uptake activation and lipolysis inhibition in response to amine oxidase substrates combined with vanadate were impaired in rats treated with amine oxidase inhibitors. Thus, amine oxidase inhibition does not improve metabolic control while prolonged administration of tyramine slightly improves glucose disposal. It is therefore concluded that amine oxidase activation by increased substrate supply elicits insulin-like actions that may be more beneficial in diabetes than SSAO inhibition formerly proposed to prevent vascular complications.
Collapse
Affiliation(s)
- Virgile Visentin
- Institut National de la Santé et de la Recherche Médicale, U586, IFR 31, Bat. L3, CHU Rangueil, Toulouse, France
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Visentin V, Prévot D, Marti L, Carpéné C. Inhibition of rat fat cell lipolysis by monoamine oxidase and semicarbazide-sensitive amine oxidase substrates. Eur J Pharmacol 2003; 466:235-43. [PMID: 12694806 DOI: 10.1016/s0014-2999(03)01562-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
It has been demonstrated that amine oxidase substrates stimulate glucose transport in cardiomyocytes and adipocytes, promote adipogenesis in pre-adipose cell lines and lower blood glucose in diabetic rats. These insulin-like effects are dependent on amine oxidation by semicarbazide-sensitive amine oxidase or by monoamine oxidase. The present study aimed to investigate whether amine oxidase substrates also exhibit another insulin-like property, the inhibition of lipolysis. We therefore tested the influence of tyramine and benzylamine on lipolytic activity in rat adipocytes. These amines did not modify basal lipolysis but dose-dependently counteracted the stimulation induced by lipolytic agents. The response to 10 nM isoprenaline was totally inhibited by tyramine 1 mM. The blockade produced by inhibition of amine oxidase activity or by 1 mM glutathione suggested that the generation of oxidative species, which occurs during amine oxidation, was involved in tyramine antilipolytic effect. Among the products resulting from amine oxidation, only hydrogen peroxide was antilipolytic in a manner that was potentiated by vanadate, as for tyramine or benzylamine. Antilipolytic responses to tyramine and to insulin were sensitive to wortmannin. These data suggest that inhibition of lipolysis is a novel insulin-like effect of amine oxidase substrates which is mediated by hydrogen peroxide generated during amine oxidation.
Collapse
Affiliation(s)
- Virgile Visentin
- Institut Louis Bugnard, Institut National de la Santé et de la Recherche Médicale, Unité 586, C.H.U. Rangueil, Toulouse Cedex F-31403, France
| | | | | | | |
Collapse
|
22
|
Usefulness of 5-Ht2a Receptor Antagonists for The Treatment of Cardiovascular Complications in Diabetes. ATHEROSCLEROSIS, HYPERTENSION AND DIABETES 2003. [DOI: 10.1007/978-1-4419-9232-1_25] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
23
|
Hrelia S, Fiorentini D, Maraldi T, Angeloni C, Bordoni A, Biagi PL, Hakim G. Doxorubicin induces early lipid peroxidation associated with changes in glucose transport in cultured cardiomyocytes. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1567:150-6. [PMID: 12488048 DOI: 10.1016/s0005-2736(02)00612-0] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Doxorubicin (DOX) has not only chronic, but also acute toxic effects in the heart, ascribed to the generation of reactive oxygen species (ROS). Focusing on the DOX-induced early biochemical changes in rat cardiomyocytes, we demonstrated that lipid peroxidation is an early event, in fact conjugated diene production increased after 1-h DOX exposure, while cell damage, evaluated as lactate dehydrogenase (LDH) release, was observed only later, when at least one third of the cell antioxidant defences were consumed. Cell pre-treatment with alpha-tocopherol (TC) inhibited both conjugated diene production and LDH release. In cardiomyocytes, DOX treatment caused a maximal increase in glucose uptake at 1 h, demonstrating that glucose transport may represent an early target for DOX. At longer times, as the cell damage become significant, the glucose uptake stimulation diminished. Immunoblotting of glucose transporter isoform GLUT1 in membranes after 1-h DOX exposure revealed an increase in GLUT1 amount similar to the increase in transport activity; both effects were inhibited by alpha TC. Early lipid peroxidation evokes an adaptive response resulting in an increased glucose uptake, presumably to restore cellular energy. The regulation of nutrient transport mechanisms in cardiomyocytes may be considered an early event in the development of the cardiotoxic effects of the anthracycline.
Collapse
Affiliation(s)
- Silvana Hrelia
- Department of Biochemistry G. Moruzzi, University of Bologna, Via Irnerio 48, I-40126 Bologna, Italy.
| | | | | | | | | | | | | |
Collapse
|
24
|
Morin N, Visentin V, Calise D, Marti L, Zorzano A, Testar X, Valet P, Fischer Y, Carpéné C. Tyramine stimulates glucose uptake in insulin-sensitive tissues in vitro and in vivo via its oxidation by amine oxidases. J Pharmacol Exp Ther 2002; 303:1238-47. [PMID: 12438548 DOI: 10.1124/jpet.102.040592] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Tyramine and benzylamine have been described as stimulators of glucose transport in adipocytes. This effect is dependent on amine oxidation by monoamine oxidase (MAO) or semicarbazide-sensitive amine oxidase (SSAO) and on the subsequent hydrogen peroxide formation as already demonstrated by blockade with oxidase inhibitors or antioxidants and potentiation with vanadate. In this work, we extended these observations to skeletal muscle and cardiac myocytes using in vitro and in vivo approaches. Tissue distribution studies showed that substantial extrahepatic peripheral MAO activities exist in kidney and gut, but also in insulin-sensitive tissues: heart, adipose tissue, and skeletal muscles. SSAO activity is also widely distributed and present at a lower level than MAO, except in fat depots where both oxidases were equally involved in tyramine oxidation. When tested in vitro at millimolar doses, tyramine caused a large stimulation of glucose transport in rat adipocytes and in skeletal and cardiac muscles. In vivo administration of tyramine (4 mg/kg i.p.) lowered the hyperglycemic responses to a glucose challenge in control and in streptozotocin-treated rats. This positive effect on glucose disposal was obtained without vanadate and was abolished by SSAO and MAO inhibitors. Tyramine increased hexose uptake in vivo in insulin-sensitive tissues, whereas it induced only transient effects on plasma insulin or cardiovascular parameters. In conclusion, activation of the amine oxidases present in insulin-sensitive tissues induces insulin-like effects, readily detectable in vitro, and increasing peripheral glucose utilization in vivo.
Collapse
Affiliation(s)
- Nathalie Morin
- Institut National de la Santé et de la Recherche Médicale, Toulouse, France
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Fontana E, Boucher J, Marti L, Lizcano JM, Testar X, Zorzano A, Carpéné C. Amine oxidase substrates mimic several of the insulin effects on adipocyte differentiation in 3T3 F442A cells. Biochem J 2001; 356:769-77. [PMID: 11389684 PMCID: PMC1221903 DOI: 10.1042/0264-6021:3560769] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We have previously reported that substrates of monoamine oxidase (MAO) and semicarbazide-sensitive amine oxidase (SSAO) exert short-term insulin-like effects in rat adipocytes, such as stimulation of glucose transport. In the present work, we studied whether these substrates could also mimic long-term actions of insulin. Adipose differentiation of 3T3 F442A cells, which is highly insulin-dependent, served as a model to test the effects of sustained administration of amine oxidase substrates. Daily treatment of confluent cells with 0.75 mM tyramine (a substrate of MAO and SSAO) or benzylamine (a substrate of SSAO) over 1 week caused the acquisition of typical adipocyte morphology. The stimulation of protein synthesis and triacylglycerol accumulation caused by tyramine or benzylamine reached one half of that promoted by insulin. This effect was insensitive to pargyline (an MAO inhibitor), but was inhibited by semicarbazide (an SSAO inhibitor) and by N-acetylcysteine (an antioxidant agent), suggesting the involvement of the H(2)O(2) generated during SSAO-dependent amine oxidation. Chronic administration of amine oxidase substrates also induced the emergence of adipose conversion markers, such as aP2, glycerol-3-phosphate dehydrogenase, the glucose transporter GLUT4, and SSAO itself. Moreover, cells treated with amines acquired the same insulin sensitivity regarding glucose transport as adipocytes classically differentiated with insulin. In all, most of the adipogenic effects of amines were additive to insulin. Our data reveal that amine oxidase substrates partially mimic the adipogenic effect of insulin in cultured preadipocytes. Furthermore, they suggest that SSAO not only represents a novel late marker of adipogenesis, but could also be directly involved in the triggering of terminal adipocyte differentiation.
Collapse
Affiliation(s)
- E Fontana
- Institut National de la Santé et de la Recherche Médicale, Unité 317, Institut Fédératif de Recherches 31, CHU Rangueil, 31403 Toulouse, France
| | | | | | | | | | | | | |
Collapse
|
26
|
Hajduch E, Rencurel F, Balendran A, Batty IH, Downes CP, Hundal HS. Serotonin (5-Hydroxytryptamine), a novel regulator of glucose transport in rat skeletal muscle. J Biol Chem 1999; 274:13563-8. [PMID: 10224126 DOI: 10.1074/jbc.274.19.13563] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In this study we show that serotonin (5-hydroxytryptamine (5-HT)) causes a rapid stimulation in glucose uptake by approximately 50% in both L6 myotubes and isolated rat skeletal muscle. This activation is mediated via the 5-HT2A receptor, which is expressed in L6, rat, and human skeletal muscle. In L6 cells, expression of the 5-HT2A receptor is developmentally regulated based on the finding that receptor abundance increases by over 3-fold during differentiation from myoblasts to myotubes. Stimulation of the 5-HT2A receptor using methylserotonin (m-HT), a selective 5-HT2A agonist, increased muscle glucose uptake in a manner similar to that seen in response to 5-HT. The agonist-mediated stimulation in glucose uptake was attributable to an increase in the plasma membrane content of GLUT1, GLUT3, and GLUT4. The stimulatory effects of 5-HT and m-HT were suppressed in the presence of submicromolar concentrations of ketanserin (a selective 5-HT2A antagonist) providing further evidence that the increase in glucose uptake was specifically mediated via the 5-HT2A receptor. Treatment of L6 cells with insulin resulted in tyrosine phosphorylation of IRS1, increased cellular production of phosphatidylinositol 3,4,5-phosphate and a 41-fold activation in protein kinase B (PKB/Akt) activity. In contrast, m-HT did not modulate IRS1, phosphoinositide 3-kinase, or PKB activity. The present results indicate that rat and human skeletal muscle both express the 5-HT2A receptor and that 5-HT and specific 5-HT2A agonists can rapidly stimulate glucose uptake in skeletal muscle by a mechanism which does not depend upon components that participate in the insulin signaling pathway.
Collapse
Affiliation(s)
- E Hajduch
- Departments of Anatomy and Physiology, The University of Dundee, Dundee DD1 4HN, Scotland
| | | | | | | | | | | |
Collapse
|
27
|
Zorzano A, Sevilla L, Camps M, Becker C, Meyer J, Kammermeier H, Muñoz P, Gumà A, Testar X, Palacín M, Blasi J, Fischer Y. Regulation of glucose transport, and glucose transporters expression and trafficking in the heart: studies in cardiac myocytes. Am J Cardiol 1997; 80:65A-76A. [PMID: 9293957 DOI: 10.1016/s0002-9149(97)00459-1] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Cardiac muscle is characterized by a high rate of glucose consumption. In the absence of insulin, glucose transport into cardiomyocytes limits the rate of glucose utilization and therefore it is important to understand the regulation of glucose transporters. Cardiac muscle cells express 2 distinct glucose transporters, GLUT4 and GLUT1; although GLUT4 is quantitatively the more important glucose transporter expressed in heart, GLUT1 is also expressed at a substantial level. In isolated rat cardiomyocytes, insulin acutely stimulates glucose transport and translocates both GLUT4 and GLUT1 from an intracellular site to the cell surface. Recent evidence indicates the existence of at least 2 distinct intracellular membrane populations enriched in GLUT4 with a different protein composition. Elucidation of the intracellular location of these 2 GLUT4 vesicle pools in cardiac myocytes, their role in GLUT4 trafficking, and their relation to insulin-induced GLUT4 translocation needs to be addressed.
Collapse
Affiliation(s)
- A Zorzano
- Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Fischer Y, Thomas J, Sevilla L, Muñoz P, Becker C, Holman G, Kozka IJ, Palacín M, Testar X, Kammermeier H, Zorzano A. Insulin-induced recruitment of glucose transporter 4 (GLUT4) and GLUT1 in isolated rat cardiac myocytes. Evidence of the existence of different intracellular GLUT4 vesicle populations. J Biol Chem 1997; 272:7085-92. [PMID: 9054401 DOI: 10.1074/jbc.272.11.7085] [Citation(s) in RCA: 121] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
UNLABELLED Using isolated rat cardiomyocytes we have examined: 1) the effect of insulin on the cellular distribution of glucose transporter 4 (GLUT4) and GLUT1, 2) the total amount of these transporters, and 3) the co-localization of GLUT4, GLUT1, and secretory carrier membrane proteins (SCAMPs) in intracellular membranes. Insulin induced 5.7- and 2.7-fold increases in GLUT4 and GLUT1 at the cell surface, respectively, as determined by the nonpermeant photoaffinity label [3H]2-N-[4(1-azi-2,2,2-trifluoroethyl)benzoyl]-1, 3-bis-(D-mannos-4-yloxy)propyl-2-amine. The total amount of GLUT1, as determined by quantitative Western blot analysis of cell homogenates, was found to represent a substantial fraction ( approximately 30%) of the total glucose transporter content. Intracellular GLUT4-containing vesicles were immunoisolated from low density microsomes by using monoclonal anti-GLUT4 (1F8) or anti-SCAMP antibodies (3F8) coupled to either agarose or acrylamide. With these different immunoisolation conditions two GLUT4 membrane pools were found in nonstimulated cells: one pool with a high proportion of GLUT4 and a low content in GLUT1 and SCAMP 39 (pool 1) and a second GLUT4 pool with a high content of GLUT1 and SCAMP 39 (pool 2). The existence of pool 1 was confirmed by immunotitration of intracellular GLUT4 membranes with 1F8-acrylamide. Acute insulin treatment caused the depletion of GLUT4 in both pools and of GLUT1 and SCAMP 39 in pool 2. IN CONCLUSION 1) GLUT4 is the major glucose transporter to be recruited to the surface of cardiomyocytes in response to insulin; 2) these cells express a high level of GLUT1; and 3) intracellular GLUT4-containing vesicles consist of at least two populations, which is compatible with recently proposed models of GLUT4 trafficking in adipocytes.
Collapse
Affiliation(s)
- Y Fischer
- Institute of Physiology, Medical Faculty, RWTH Aachen, Pauwelsstrasse 30, Aachen D-52057, Federal Republic of Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Fischer Y, Böttcher U, Eblenkamp M, Thomas J, Jüngling E, Rösen P, Kammermeier H. Glucose transport and glucose transporter GLUT4 are regulated by product(s) of intermediary metabolism in cardiomyocytes. Biochem J 1997; 321 ( Pt 3):629-38. [PMID: 9032447 PMCID: PMC1218116 DOI: 10.1042/bj3210629] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Alternative substrates of energy metabolism are thought to contribute to the impairment of heart and muscle glucose utilization in insulin-resistant states. We have investigated the acute effects of substrates in isolated rat cardiomyocytes. Exposure to lactate, pyruvate, propionate, acetate, palmitate, beta-hydroxybutyrate or alpha-oxoglutarate led to the depression of glucose transport by up to 50%, with lactate, pyruvate and propionate being the most potent agents. The percentage inhibition was greater in cardiomyocytes in which glucose transport was stimulated with the alpha-adrenergic agonist phenylephrine or with a submaximal insulin concentration than in basal or fully insulin-stimulated cells. Cardiomyocytes from fasted or diabetic rats displayed a similar sensitivity to substrates as did cells from control animals. On the other hand, the amination product of pyruvate (alanine), as well as valine and the aminotransferase inhibitors cycloserine and amino-oxyacetate, stimulated glucose transport about 2-fold. In addition, the effect of pyruvate was counteracted by cycloserine. Since reversible transamination reactions are known to affect the pool size of the citrate cycle, the influence of substrates, amino acids and aminotransferase inhibitors on citrate, malate and glutamate content was examined. A significant negative correlation was found between alterations in glucose transport and the levels of citrate (P < 0.01) or malate (P < 0.01), and there was a positive correlation between glucose transport and glutamate levels (P < 0.05). In contrast, there was no correlation with changes in [1-(14)C]pyruvate oxidation or in glucose-6-phosphate levels. Finally, pyruvate decreased the abundance of GLUT4 glucose transporters at the surface of phenylephrine- or insulin-stimulated cells by 34% and 27 % respectively, as determined by using the selective photoaffinity label [3H]ATB-BMPA [[3H]2-N-[4-(1-azi-2,2,2-trifluoroethyl)benzoyl]-1,3-bis-(D-man nos-4-yloxy)propyl-2-amine]. In conclusion, cardiomyocyte glucose transport is subject to counter-regulation by alternative substrates. The glucose transport system appears to be controlled by (a) compound(s) of intermediary metabolism (other than glucose 6-phosphate), but in a different way than pyruvate dehydrogenase. Transport inhibition eventually occurs via a decrease in the amount of glucose transporters in the plasma membrane.
Collapse
Affiliation(s)
- Y Fischer
- Institute of Physiology, Medical Faculty, RWTH Aachen, Federal Republic of Germany
| | | | | | | | | | | | | |
Collapse
|
30
|
Eblenkamp M, Böttcher U, Thomas J, Löken C, Ionescu I, Rose H, Kammermeier H, Fischer Y. The effect of anoxia on cardiomyocyte glucose transport does not involve an adenosine release or a change in energy state. Life Sci 1996; 59:141-51. [PMID: 8699921 DOI: 10.1016/0024-3205(96)00270-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The action of anoxia on glucose transport was investigated in isolated resting rat cardiomyocytes. Incubation of these cells in the absence of oxygen for 30 min resulted in a 4- to 5-fold increase in glucose transport (with a lag period of 5-10 min). Up to 40 min of anoxia failed to alter the cellular concentrations of ATP, phosphocreatine, and creatine. Adenosine deaminase (1.5 U/ml), the A1-adenosine receptor antagonist 1,3-diethyl-8-phenylxanthine (1 microM), or the A2-selective antagonist 3,7-dimethyl-1-propargylxanthine (20 microM) had no effect on anoxia-dependent glucose transport. Moreover, adenosine (10-300 microM, added under normoxia) did not stimulate glucose transport. Wortmannin (1 microM) did not influence the effect of anoxia, but completely suppressed that of insulin. On the other hand, the effects of anoxia and insulin were not additive. These results indicate (i) that the effect of anoxia on cardiomyocyte glucose transport is not mediated by a change in energy metabolism, nor by an adenosine release; (ii) that it probably does not involve a phosphatidylinositol 3-kinase, in contrast to the effect of insulin, and (iii) that the signal chains triggered by anoxia or insulin may converge downstream of this enzyme, or, alternatively, that anoxic conditions may impair the action of the hormone.
Collapse
|
31
|
Fischer Y, Kamp J, Thomas J, Pöpping S, Rose H, Carpéné C, Kammermeier H. Signals mediating stimulation of cardiomyocyte glucose transport by the alpha-adrenergic agonist phenylephrine. THE AMERICAN JOURNAL OF PHYSIOLOGY 1996; 270:C1211-20. [PMID: 8928748 DOI: 10.1152/ajpcell.1996.270.4.c1211] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Phenylephrine, a potent stimulator of cardiomyocyte glucose transport (GT), caused a rapid rise in cytosolic Ca2+ by 30%. Agents inducing a similar Ca2+ response did not stimulate (angiotension II, vasopressin) or inhibited GT by 20% (elevated extracellular Ca2+). Stimulation of GT by phorbol myristate acetate was additive to both phases of phenylephrine's effect (4 min, 60 min). Phenylephrine had no influence on the adenosine 3', 5'-cyclic monophosphate (cAMP) and guanosine 3',5'-cyclic monophosphate (cGMP) levels. Agents raising cAMP (isoproterenol) or cGMP (e.g., nitroprusside) did not stimulate GT. Wortmannin (inhibitor of 1-phosphatidylinositol 3-kinase) suppressed the action of insulin on GT but not that of phenylephrine. In contrast, the Na+/H+ exchange inhibitor amiloride (which blocks phenylephrine-induced cytosolic alkalinization or even lowers cellular pH) depressed the effect of phenylephrine by 50%, whereas insulin-stimulated GT was little affected. However, raising extracellular pH up to 8.4 failed to increase GT. Lowering pH to 6.8 decreased phenylephrine's effect by 40% whereas insulin-dependent GT was not significantly altered. Clorgyline, tranylcypromine (monoamine oxidase inhibitors), and added catalase suppressed the slow phase of phenylephrine's action, whereas amiloride also affected the fast phase. We conclude that 1) stimulation of cardiomyocyte GT by phenylephrine does not involve cAMP, cGMP, or 1-phosphatidylinositol 3-kinase; 2) protein kinase C activation cannot explain the full extent of stimulation; 3) Ca2+ release or cytosolic alkalinization may be required but is not sufficient to trigger phenylephrine's action, and 4) the slow phase of stimulation is mediated by the monoamine oxidase-dependent degradation of phenylephrine and by the resulting H2O2 formation.
Collapse
Affiliation(s)
- Y Fischer
- Institute of Physiology, Medical Faculty, Rheinisch-Westfälische Technische Hochschule Aachen, Germany
| | | | | | | | | | | | | |
Collapse
|