1
|
Assay of Phospholipase D Activity by an Amperometric Choline Oxidase Biosensor. SENSORS 2020; 20:s20051304. [PMID: 32121031 PMCID: PMC7085753 DOI: 10.3390/s20051304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/21/2020] [Accepted: 02/25/2020] [Indexed: 11/24/2022]
Abstract
A novel electrochemical method to assay phospholipase D (PLD) activity is proposed based on the employment of a choline biosensor realized by immobilizing choline oxidase through co-crosslinking on an overoxidized polypyrrole film previously deposited on a platinum electrode. To perform the assay, an aliquot of a PLD standard solution is typically added to borate buffer containing phosphatidylcholine at a certain concentration and the oxidation current of hydrogen peroxide is then measured at the rotating modified electrode by applying a detection potential of +0.7 V vs. SCE. Various experimental parameters influencing the assay were studied and optimized. The employment of 0.75% (v/v) Triton X-100, 0.2 mM calcium chloride, 5 mM phosphatidylcholine, and borate buffer at pH 8.0, ionic strength (I) 0.05 M allowed to achieve considerable current responses. In order to assure a controlled mass transport and, at the same time, high sensitivity, an electrode rotation rate of 200 rpm was selected. The proposed method showed a sensitivity of 24 (nA/s)⋅(IU/mL)−1, a wide linear range up to 0.33 IU/mL, fast response time and appreciable long-term stability. The limit of detection, evaluated from the linear calibration curve, was 0.005 IU/mL (S/N = 3). Finally, due to the presence of overoxidized polypyrrole film characterized by notable rejection properties towards electroactive compounds, a practical application to real sample analysis can be envisaged.
Collapse
|
2
|
Holič R, Pokorná L, Griač P. Metabolism of phospholipids in the yeast
Schizosaccharomyces pombe. Yeast 2019; 37:73-92. [DOI: 10.1002/yea.3451] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 11/26/2019] [Accepted: 11/27/2019] [Indexed: 12/28/2022] Open
Affiliation(s)
- Roman Holič
- Centre of Biosciences, Slovak Academy of Sciences Institute of Animal Biochemistry and Genetics Dúbravská cesta 9 Bratislava Slovakia
| | - Lucia Pokorná
- Centre of Biosciences, Slovak Academy of Sciences Institute of Animal Biochemistry and Genetics Dúbravská cesta 9 Bratislava Slovakia
| | - Peter Griač
- Centre of Biosciences, Slovak Academy of Sciences Institute of Animal Biochemistry and Genetics Dúbravská cesta 9 Bratislava Slovakia
| |
Collapse
|
3
|
Horvath SE, Daum G. Lipids of mitochondria. Prog Lipid Res 2013; 52:590-614. [PMID: 24007978 DOI: 10.1016/j.plipres.2013.07.002] [Citation(s) in RCA: 613] [Impact Index Per Article: 55.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 07/31/2013] [Indexed: 01/06/2023]
Abstract
A unique organelle for studying membrane biochemistry is the mitochondrion whose functionality depends on a coordinated supply of proteins and lipids. Mitochondria are capable of synthesizing several lipids autonomously such as phosphatidylglycerol, cardiolipin and in part phosphatidylethanolamine, phosphatidic acid and CDP-diacylglycerol. Other mitochondrial membrane lipids such as phosphatidylcholine, phosphatidylserine, phosphatidylinositol, sterols and sphingolipids have to be imported. The mitochondrial lipid composition, the biosynthesis and the import of mitochondrial lipids as well as the regulation of these processes will be main issues of this review article. Furthermore, interactions of lipids and mitochondrial proteins which are highly important for various mitochondrial processes will be discussed. Malfunction or loss of enzymes involved in mitochondrial phospholipid biosynthesis lead to dysfunction of cell respiration, affect the assembly and stability of the mitochondrial protein import machinery and cause abnormal mitochondrial morphology or even lethality. Molecular aspects of these processes as well as diseases related to defects in the formation of mitochondrial membranes will be described.
Collapse
Affiliation(s)
- Susanne E Horvath
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/2, A-8010 Graz, Austria
| | | |
Collapse
|
4
|
Park M, Do E, Jung WH. Lipolytic enzymes involved in the virulence of human pathogenic fungi. MYCOBIOLOGY 2013; 41:67-72. [PMID: 23874127 PMCID: PMC3714442 DOI: 10.5941/myco.2013.41.2.67] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 06/08/2013] [Indexed: 06/02/2023]
Abstract
Pathogenic microbes secrete various enzymes with lipolytic activities to facilitate their survival within the host. Lipolytic enzymes include extracellular lipases and phospholipases, and several lines of evidence have suggested that these enzymes contribute to the virulence of pathogenic fungi. Candida albicans and Cryptococcus neoformans are the most commonly isolated human fungal pathogens, and several biochemical and molecular approaches have identified their extracellular lipolytic enzymes. The role of lipases and phospholipases in the virulence of C. albicans has been extensively studied, and these enzymes have been shown to contribute to C. albicans morphological transition, colonization, cytotoxicity, and penetration to the host. While not much is known about the lipases in C. neoformans, the roles of phospholipases in the dissemination of fungal cells in the host and in signaling pathways have been described. Lipolytic enzymes may also influence the survival of the lipophilic cutaneous pathogenic yeast Malassezia species within the host, and an unusually high number of lipase-coding genes may complement the lipid dependency of this fungus. This review briefly describes the current understanding of the lipolytic enzymes in major human fungal pathogens, namely C. albicans, C. neoformans, and Malassezia spp.
Collapse
Affiliation(s)
- Minji Park
- Department of Systems Biotechnology, Chung-Ang University, Anseong 456-756, Korea
| | | | | |
Collapse
|
5
|
Selvy PE, Lavieri RR, Lindsley CW, Brown HA. Phospholipase D: enzymology, functionality, and chemical modulation. Chem Rev 2011; 111:6064-119. [PMID: 21936578 PMCID: PMC3233269 DOI: 10.1021/cr200296t] [Citation(s) in RCA: 271] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Paige E Selvy
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37064, USA
| | | | | | | |
Collapse
|
6
|
Mysyakina IS, Feofilova EP. The role of lipids in the morphogenetic processes of mycelial fungi. Microbiology (Reading) 2011. [DOI: 10.1134/s0026261711030155] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
7
|
Ray S, Chen Y, Ayoung J, Hanna R, Brazill D. Phospholipase D controls Dictyostelium development by regulating G protein signaling. Cell Signal 2010; 23:335-43. [PMID: 20950684 DOI: 10.1016/j.cellsig.2010.09.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Revised: 09/21/2010] [Accepted: 09/28/2010] [Indexed: 10/19/2022]
Abstract
Dictyostelium discoideum cells normally exist as individual amoebae, but will enter a period of multicellular development upon starvation. The initial stages of development involve the aggregation of individual cells, using cAMP as a chemoattractant. Chemotaxis is initiated when cAMP binds to its receptor, cAR1, and activates the associated G protein, Gα2βγ. However, chemotaxis will not occur unless there is a high density of starving cells present, as measured by high levels of the secreted quorum sensing molecule, CMF. We previously demonstrated that cells lacking PldB bypass the need for CMF and can aggregate at low cell density, whereas cells overexpressing pldB do not aggregate even at high cell density. Here, we found that PldB controlled both cAMP chemotaxis and cell sorting. PldB was also required by CMF to regulate G protein signaling. Specifically, CMF used PldB, to regulate the dissociation of Gα2 from Gβγ. Using fluorescence resonance energy transfer (FRET), we found that along with cAMP, CMF increased the dissociation of the G protein. In fact, CMF augmented the dissociation induced by cAMP. This augmentation was lost in cells lacking PldB. PldB appears to mediate the CMF signal through the production of phosphatidic acid, as exogenously added phosphatidic acid phenocopies overexpression of pldB. These results suggest that phospholipase D activity is required for CMF to alter the kinetics of cAMP-induced G protein signaling.
Collapse
Affiliation(s)
- Sibnath Ray
- Department of Biological Sciences, Hunter College, New York, New York 10065, USA
| | | | | | | | | |
Collapse
|
8
|
Harkins AL, Yuan G, London SD, Dolan JW. An oleate-stimulated, phosphatidylinositol 4,5-bisphosphate-independent phospholipase D in Schizosaccharomyces pombe. FEMS Yeast Res 2010; 10:717-26. [DOI: 10.1111/j.1567-1364.2010.00646.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
9
|
Rappley I, Gitler AD, Selvy PE, LaVoie MJ, Levy BD, Brown HA, Lindquist S, Selkoe DJ. Evidence that alpha-synuclein does not inhibit phospholipase D. Biochemistry 2009; 48:1077-83. [PMID: 19146388 DOI: 10.1021/bi801871h] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Alpha-synuclein (alphaSyn) is a small cytosolic protein of unknown function, which is highly enriched in the brain. It is genetically linked to Parkinson's disease (PD) in that missense mutations or multiplication of the gene encoding alphaSyn causes early onset familial PD. Furthermore, the neuropathological hallmarks of both sporadic and familial PD, Lewy bodies and Lewy neurites, contain insoluble aggregates of alphaSyn. Several studies have reported evidence that alphaSyn can inhibit phospholipase D (PLD), which hydrolyzes phosphatidylcholine to form phosphatidic acid and choline. Although various hypotheses exist regarding the roles of alphaSyn in health and disease, no other specific biochemical function for this protein has been reported to date. Because PLD inhibition could represent an important function of alphaSyn, we sought to extend existing reports on this interaction. Using purified proteins, we tested the ability of alphaSyn to inhibit PLD activity in cell-free assays. We also examined several cell lines and transfection conditions to assess whether alphaSyn inhibits endogenous or overexpressed PLD in cultured mammalian cells. In yeast, we extended our previous report of an interaction between alphaSyn and PLD-dependent phenotypes, for which PLD activity is absolutely necessary. Despite testing a range of experimental conditions, including those previously published, we observed no significant inhibition of PLD by alphaSyn in any of these systems. We propose that the previously reported effects of alphaSyn on PLD activity could be due to increased endoplasmic reticulum-related stress associated with alphaSyn overexpression in cells, but are not likely due to a specific and direct interaction between alphaSyn and PLD.
Collapse
Affiliation(s)
- Irit Rappley
- Department of Neurology, Harvard Medical School and Brigham & Women's Hospital, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Rajakumari S, Grillitsch K, Daum G. Synthesis and turnover of non-polar lipids in yeast. Prog Lipid Res 2008; 47:157-71. [DOI: 10.1016/j.plipres.2008.01.001] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2007] [Revised: 01/08/2008] [Accepted: 01/09/2008] [Indexed: 11/25/2022]
|
11
|
Benghezal M, Roubaty C, Veepuri V, Knudsen J, Conzelmann A. SLC1 and SLC4 encode partially redundant acyl-coenzyme A 1-acylglycerol-3-phosphate O-acyltransferases of budding yeast. J Biol Chem 2007; 282:30845-55. [PMID: 17675291 DOI: 10.1074/jbc.m702719200] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phosphatidic acid is the intermediate, from which all glycerophospholipids are synthesized. In yeast, it is generated from lysophosphatidic acid, which is acylated by Slc1p, an sn-2-specific, acyl-coenzyme A-dependent 1-acylglycerol-3-phosphate O-acyltransferase. Deletion of SLC1 is not lethal and does not eliminate all microsomal 1-acylglycerol-3-phosphate O-acyltransferase activity, suggesting that an additional enzyme may exist. Here we show that SLC4 (Yor175c), a gene of hitherto unknown function, encodes a second 1-acyl-sn-glycerol-3-phosphate acyltransferase. SLC4 harbors a membrane-bound O-acyltransferase motif and down-regulation of SLC4 strongly reduces 1-acyl-sn-glycerol-3-phosphate acyltransferase activity in microsomes from slc1Delta cells. The simultaneous deletion of SLC1 and SLC4 is lethal. Mass spectrometric analysis of lipids from slc1Delta and slc4Delta cells demonstrates that in vivo Slc1p and Slc4p generate almost the same glycerophospholipid profile. Microsomes from slc1Delta and slc4Delta cells incubated with [14C]oleoyl-coenzyme A in the absence of lysophosphatidic acid and without CTP still incorporate the label into glycerophospholipids, indicating that Slc1p and Slc4p can also use endogenous lysoglycerophospholipids as substrates. However, the lipid profiles generated by microsomes from slc1Delta and slc4Delta cells are different, and this suggests that Slc1p and Slc4p have a different substrate specificity or have access to different lyso-glycerophospholipid substrates because of a different subcellular location. Indeed, affinity-purified Slc1p displays Mg2+-dependent acyltransferase activity not only toward lysophosphatidic acid but also lyso forms of phosphatidylserine and phosphatidylinositol. Thus, Slc1p and Slc4p may not only be active as 1-acylglycerol-3-phosphate O-acyltransferases but also be involved in fatty acid exchange at the sn-2-position of mature glycerophospholipids.
Collapse
Affiliation(s)
- Mohammed Benghezal
- Department of Medicine, University of Fribourg, CH-1700 Fribourg, Switzerland
| | | | | | | | | |
Collapse
|
12
|
Strahl T, Thorner J. Synthesis and function of membrane phosphoinositides in budding yeast, Saccharomyces cerevisiae. BIOCHIMICA ET BIOPHYSICA ACTA 2007; 1771:353-404. [PMID: 17382260 PMCID: PMC1868553 DOI: 10.1016/j.bbalip.2007.01.015] [Citation(s) in RCA: 236] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2006] [Revised: 01/29/2007] [Accepted: 01/30/2007] [Indexed: 02/02/2023]
Abstract
It is now well appreciated that derivatives of phosphatidylinositol (PtdIns) are key regulators of many cellular processes in eukaryotes. Of particular interest are phosphoinositides (mono- and polyphosphorylated adducts to the inositol ring in PtdIns), which are located at the cytoplasmic face of cellular membranes. Phosphoinositides serve both a structural and a signaling role via their recruitment of proteins that contain phosphoinositide-binding domains. Phosphoinositides also have a role as precursors of several types of second messengers for certain intracellular signaling pathways. Realization of the importance of phosphoinositides has brought increased attention to characterization of the enzymes that regulate their synthesis, interconversion, and turnover. Here we review the current state of our knowledge about the properties and regulation of the ATP-dependent lipid kinases responsible for synthesis of phosphoinositides and also the additional temporal and spatial controls exerted by the phosphatases and a phospholipase that act on phosphoinositides in yeast.
Collapse
Affiliation(s)
- Thomas Strahl
- Divisions of Biochemistry & Molecular Biology and of Cell & Developmental Biology.Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720 USA
| | - Jeremy Thorner
- Divisions of Biochemistry & Molecular Biology and of Cell & Developmental Biology.Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720 USA
| |
Collapse
|
13
|
Lamour KH, Finley L, Hurtado-Gonzales O, Gobena D, Tierney M, Meijer HJG. Targeted gene mutation in Phytophthora spp. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2006; 19:1359-67. [PMID: 17153920 DOI: 10.1094/mpmi-19-1359] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The genus Phytophthora belongs to the oomycetes and is composed of plant pathogens. Currently, there are no strategies to mutate specific genes for members of this genus. Whole genome sequences are available or being prepared for Phytophthora sojae, P. ramorum, P. infestans, and P. capsici and the development of molecular biological techniques for functional genomics is encouraged. This article describes the adaptation of the reverse-genetic strategy of targeting induced local lesions in genomes (TILLING) to isolate gene-specific mutants in Phytophthora spp. A genomic library of 2,400 ethylnitrosourea (ENU) mutants of P. sojae was created and screened for induced point mutations in the genes encoding a necrosisinducing protein (PsojNIP) and a Phytophthora-specific phospholipase D (PsPXTM-PLD). Mutations were detected in single individuals and included silent, missense, and nonsense changes. Homozygous mutant isolates carrying a potentially deleterious missense mutation in PsojNIP and a premature stop codon in PsPXTM-PLD were identified. No phenotypic effect has yet been found for the homozygous mutant of PsojNIP. For those of PsPXTM-PLD, a reduction in growth rate and an appressed mycelial growth was observed. This demonstrates the feasibility of target-selected gene disruption for Phytophthora spp. and adds an important tool for functional genomic investigation.
Collapse
Affiliation(s)
- Kurt H Lamour
- Department of Entomology and Plant Pathology, The University of Tennessee, Rm 205 Ellington Plant Science, 2431 Joe Johnson Dr., Knoxville 37996, USA.
| | | | | | | | | | | |
Collapse
|
14
|
Connolly JE, Engebrecht J. The Arf-GTPase-activating protein Gcs1p is essential for sporulation and regulates the phospholipase D Spo14p. EUKARYOTIC CELL 2006; 5:112-24. [PMID: 16400173 PMCID: PMC1360266 DOI: 10.1128/ec.5.1.112-124.2006] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
SPO14, encoding the major Saccharomyces cerevisiae phospholipase D (PLD), is essential for sporulation and mediates synthesis of the new membrane that encompasses the haploid nuclei that arise through meiotic divisions. PLD catalyzes the hydrolysis of phosphatidylcholine to phosphatidic acid (PA) and choline. PA stimulates Arf-GTPase-activating proteins (Arf-GAPs), which are involved in membrane trafficking events and actin cytoskeletal function. To determine if Spo14p-generated PA mediates its biological response through Arf-GAPs, we analyzed the sporulation efficiencies of cells deleted for each of the five known and potential yeast Arf-GAPs. Only gcs1delta mutants display a sporulation defect similar to that of spo14 mutants: cells deleted for GCS1 initiate the sporulation program but are defective in synthesis of the prospore membrane. Endosome-to-vacuole transport is also impaired in gcs1delta cells during sporulation. Furthermore, Arf-GAP catalytic activity, but not the pleckstrin homology domain, is required for both prospore membrane formation and endosome-to-vacuole trafficking. An examination of Gcs1p-green fluorescent protein revealed that it is a soluble protein. Interestingly, cells deleted for GCS1 have reduced levels of Spo14p-generated PA. Taken together, these results indicate that GCS1 is essential for sporulation and suggest that GCS1 positively regulates SPO14.
Collapse
Affiliation(s)
- Jaime E Connolly
- Molecular and Cellular Pharmacology, Graduate Program, State University of New York at Stony Brook, 11794-8651, USA
| | | |
Collapse
|
15
|
Merkel O, Oskolkova O, Raab F, El-Toukhy R, Paltauf F. Regulation of activity in vitro and in vivo of three phospholipases B from Saccharomyces cerevisiae. Biochem J 2005; 387:489-96. [PMID: 15588231 PMCID: PMC1134978 DOI: 10.1042/bj20041272] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The genome of the yeast, Saccharomyces cerevisiae, contains three highly similar genes coding for phospholipases B/lysophospholipases. These enzymes behave differently with respect to substrate preferences in vitro and relative contributions to phospholipid catabolism in vivo [Merkel, Fido, Mayr, Pruger, Raab, Zandonella, Kohlwein and Paltauf (1999) J. Biol. Chem. 274, 28121-28127]. It is shown in the present study that, in vitro, pH markedly affects the substrate preference of Plb1p and Plb2p, but not of Plb3p. At the pH optimum of 2.5-3.5, the order of substrate preference of Plb1p and Plb2p is PtdSer (phosphatidylserine)>PtdIns>PtdCho (phosphatidylcholine>PtdEtn (phosphatidylethanolamine). At pH values of 5 and above, the substrate preferences change to PtdCho=PtdEtn for Plb1p and PtdSer=PtdEtn for Plb2p. Accordingly, with cultured cells the ratio of PtdIns/PtdCho breakdown, as reflected in the ratio of GroPIns (glycerophosphoinositol)/GroPCho (glycerophosphocholine) released into the culture medium, is inversely related to the pH of the growth medium. This effect is ascribed to the pH response of Plb1p, because Plb2p does not contribute to the degradation of PtdIns and PtdCho in vivo. Bivalent and tervalent cations activate phospholipases B at pH 5.5, but are inhibitory at pH 2.5. Al3+ at a concentration of 20 mM increases Plb1p activity in vitro by 8-fold and leads to a 9-fold increase in GroPCho release by whole cells. In vivo, cycloheximide strongly inhibits the breakdown of PtdIns, and to a lesser extent PtdCho. However, Al3+-stimulated GroPCho release is almost completely inhibited by cycloheximide. Deletion of PLB3 leads to increased sensitivity to toxic Al3+. Addition of SDS or melittin to cultured cells leads to a significant increase in phospholipid degradation, which is insensitive to inhibition by cycloheximide. Deletion mutants defective in the PLB1 gene are significantly more resistant to SDS than are wild-type cells.
Collapse
Affiliation(s)
- Olaf Merkel
- Institut für Biochemie, Technische Universität Graz, Petersgasse 12, 8010 Graz, Austria
- To whom correspondence should be sent, at present address: Institute of Molecular Biosciences, Universität Graz, Schubertstrasse 1, 8010 Graz, Austria (email or )
| | - Olga V. Oskolkova
- Institut für Biochemie, Technische Universität Graz, Petersgasse 12, 8010 Graz, Austria
| | - Florian Raab
- Institut für Biochemie, Technische Universität Graz, Petersgasse 12, 8010 Graz, Austria
| | - Rosemarie El-Toukhy
- Institut für Biochemie, Technische Universität Graz, Petersgasse 12, 8010 Graz, Austria
| | - Fritz Paltauf
- Institut für Biochemie, Technische Universität Graz, Petersgasse 12, 8010 Graz, Austria
| |
Collapse
|
16
|
Merkel O, Schmid PC, Paltauf F, Schmid HHO. Presence and potential signaling function of N-acylethanolamines and their phospholipid precursors in the yeast Saccharomyces cerevisiae. Biochim Biophys Acta Mol Cell Biol Lipids 2005; 1734:215-9. [PMID: 15878693 DOI: 10.1016/j.bbalip.2005.03.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2005] [Revised: 03/17/2005] [Accepted: 03/21/2005] [Indexed: 11/19/2022]
Abstract
N-acylethanolamines (NAEs) and N-acylphosphatidylethanolamines (NAPEs) are trace constituents of vertebrate cells and tissues and much is known about their metabolism and possible function in animals. Here we report for the first time the identification and quantification of NAEs and NAPEs in several strains of the yeast Saccharomyces cerevisiae. Gas chromatography-mass spectrometry of appropriate derivatives revealed 16:0, 16:1, 18:0 and 18:1 N-acyl groups in both NAE and NAPE whose levels, in wild-type cells, were 50 to 90 and 85 to 750 pmol/micromol lipid P, respectively (depending on the phase of growth). NAPE levels were reduced by 45 to 60% in a strain lacking three type B phospholipases, suggesting their involvement in NAPE synthesis by their known transacylation activity. A yeast strain lacking the YPL103c gene, which codes for a protein with 50.3% homology to human NAPE-specific phospholipase D, exhibited a 60% reduction in NAE, compared to wild-type controls. The exposure of various yeast strains to peroxidative stress, by incubation in media containing 0.6 mM H(2)O(2), resulted in substantial increases in NAE. Because yeast cells lack polyunsaturated fatty acids, they offer a useful system for the study of NAE generation and its potential signaling and cytoprotective effects in the absence of polyunsaturated ("endocannabinoid") congeners.
Collapse
Affiliation(s)
- Olaf Merkel
- Institute for Molecular Biosciences, University of Graz, A-8010 Graz, Austria
| | | | | | | |
Collapse
|
17
|
Abstract
Phospholipase D catalyses the hydrolysis of the phosphodiester bond of glycerophospholipids to generate phosphatidic acid and a free headgroup. Phospholipase D activities have been detected in simple to complex organisms from viruses and bacteria to yeast, plants, and mammals. Although enzymes with broader selectivity are found in some of the lower organisms, the plant, yeast, and mammalian enzymes are selective for phosphatidylcholine. The two mammalian phospholipase D isoforms are regulated by protein kinases and GTP binding proteins of the ADP-ribosylation and Rho families. Mammalian and yeast phospholipases D are also potently stimulated by phosphatidylinositol 4,5-bisphosphate. This review discusses the identification, characterization, structure, and regulation of phospholipase D. Genetic and pharmacological approaches implicate phospholipase D in a diverse range of cellular processes that include receptor signaling, control of intracellular membrane transport, and reorganization of the actin cytoskeleton. Most ideas about phospholipase D function consider that the phosphatidic acid product is an intracellular lipid messenger. Candidate targets for phospholipase-D-generated phosphatidic acid include phosphatidylinositol 4-phosphate 5-kinases and the raf protein kinase. Phosphatidic acid can also be converted to two other lipid mediators, diacylglycerol and lyso phosphatidic acid. Coordinated activation of these phospholipase-D-dependent pathways likely accounts for the pleitropic roles for these enzymes in many aspects of cell regulation.
Collapse
Affiliation(s)
- Mark McDermott
- Department of Cell and Developmental Biology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, 27599-7090, USA
| | | | | |
Collapse
|
18
|
Hong S, Horiuchi H, Ohta A. Molecular cloning of a phospholipase D gene from Aspergillus nidulans and characterization of its deletion mutants. FEMS Microbiol Lett 2003; 224:231-7. [PMID: 12892887 DOI: 10.1016/s0378-1097(03)00440-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We cloned a gene pldA encoding a protein containing phospholipase D (PLD) motifs from a filamentous fungus Aspergillus nidulans. The deduced protein product of pldA consists of 833 amino acids and contains four conserved regions of a PLD gene family. Deletion mutants of pldA grew and formed conidia in a normal manner. Although PLD and transphosphatidylation activities against phosphatidylcholine of the mutant cell extract did not change, the Ca(2+)-dependent PLD activity against phosphatidylethanolamine was significantly reduced, but not in the wild-type cell extract. This activity was markedly enhanced by high osmotic growth conditions in the wild-type cells, and pldA of A. nidulans likely encodes a Ca(2+)-dependent phosphatidylethanolamine-hydrolyzing PLD.
Collapse
Affiliation(s)
- Sahyun Hong
- Department of Biotechnology, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | |
Collapse
|
19
|
Tang X, Waksman M, Ely Y, Liscovitch M. Characterization and regulation of yeast Ca2+-dependent phosphatidylethanolamine-phospholipase D activity. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:3821-30. [PMID: 12153579 DOI: 10.1046/j.1432-1033.2002.03073.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
An unconventional phospholipase D (PLD) activity was identified recently in Saccharomyces cerevisiae which is Ca2+-dependent, preferentially hydrolyses phosphatidylethanolamine (PtdEtn) and phosphatidylserine and does not catalyse a transphosphatidylation with primary short-chain alcohols. We have characterized the cytosolic and membrane-bound forms of the yeast PtdEtn-PLD and examined the regulation of its activity under certain growth, nutritional and stress conditions. Both forms of PtdEtn-PLD activity were similarly activated by Ca2+ ions in a biphasic manner. Likewise, other divalent cations affected both cytosolic and membrane-bound forms to the same extent. The yeast PtdEtn-PLD activity was found to interact with immobilized PtdEtn in a Ca2+-dependent manner. The partially purified cytosolic form and the salt-extracted membrane-bound form of yeast PtdEtn-PLD exhibited a similar elution pattern on size-exclusion chromatography, coeluting as low apparent molecular weight peaks. PtdEtn-PLD activity was stimulated, along with Spo14p/Pld1p activity, upon dilution of stationary phase cultures in glucose, acetate and galactose media, but PtdEtn-PLD activation was less pronounced. Interestingly, PtdEtn-PLD activity was found to be elevated by approximately 40% in sec14ts mutants at the restrictive temperature, whereas in other sec mutants it remained unaffected. The activity of PtdEtn-PLD was reduced by 30-40% upon addition to the medium of inositol (75 micro m) in either wild-type yeast or spo14Delta mutants and this effect was seen regardless of the presence of choline, suggesting that transcription of the PtdEtn-PLD gene is down-regulated by inositol. Finally, exposure of yeast cells to H2O2 resulted in a transient increase in PtdEtn-PLD activity followed by a profound, nearly 90% decrease in activity. In conclusion, our results indicate that yeast PtdEtn-PLD activity is highly regulated: the enzyme is acutely activated upon entry into the cell cycle and following inactivation of sec14ts, and is inhibited under oxidative stress conditions. The implications of these findings are discussed.
Collapse
Affiliation(s)
- Xiaoqing Tang
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | |
Collapse
|
20
|
Rudge SA, Zhou C, Engebrecht J. Differential regulation of Saccharomyces cerevisiae phospholipase D in sporulation and Sec14-independent secretion. Genetics 2002; 160:1353-61. [PMID: 11973292 PMCID: PMC1462051 DOI: 10.1093/genetics/160.4.1353] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Saccharomyces cerevisiae Spo14, a phosphatidylcholine-specific, phosphatidylinositol (4,5) bisphosphate-activated phospholipase D (PLD), is essential for meiosis and spore formation. Spo14 is also required for secretion in the absence of the phosphatidylinositol/phosphatidylcholine transfer protein Sec14 (i.e., Sec14-independent secretion). In sporulating cells Spo14 is phosphorylated and relocalized within the cell. In contrast, Spo14 does not relocalize and is not phosphorylated in Sec14-independent secretion. Analysis of a partially phosphatidylinositol (4,5) bisphosphate-activated Spo14 mutant, spo14(R894G), revealed that Spo14 function in Sec14-independent secretion, unlike the situation in meiosis, requires fully stimulated PLD activity. Consistent with the differential regulation of Spo14 function during sporulation and secretion, we isolated a mutant allele, spo14-S251P, the product of which is improperly phosphorylated and fails to relocalize and rescue the sporulation phenotype of homozygous spo14 diploids, but supports Sec14-independent secretion. Furthermore, we show that the N-terminal domain of Spo14 is both phosphorylated and sufficient for prospore membrane localization during sporulation. These data indicate that Spo14 phosphorylation and relocalization are essential for the process of sporulation, but dispensable for Sec14-independent secretion. Finally, we demonstrate that Spo14 phosphorylation and relocalization are initiated by nitrogen and glucose limitation and occur independently of the process of meiosis.
Collapse
Affiliation(s)
- Simon A Rudge
- Department of Pharmacological Sciences, State University of New York, Stony Brook, New York 11794-8651, USA
| | | | | |
Collapse
|
21
|
Rudge SA, Pettitt TR, Zhou C, Wakelam MJ, Engebrecht JA. SPO14 separation-of-function mutations define unique roles for phospholipase D in secretion and cellular differentiation in Saccharomyces cerevisiae. Genetics 2001; 158:1431-44. [PMID: 11514437 PMCID: PMC1461740 DOI: 10.1093/genetics/158.4.1431] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In Saccharomyces cerevisiae, phospholipase D (PLD), encoded by the SPO14 gene, catalyzes the hydrolysis of phosphatidylcholine, producing choline and phosphatidic acid. SPO14 is essential for cellular differentiation during meiosis and is required for Golgi function when the normal secretory apparatus is perturbed (Sec14-independent secretion). We isolated specific alleles of SPO14 that support Sec14-independent secretion but not sporulation. Identification of these separation-of-function alleles indicates that the role of PLD in these two physiological processes is distinct. Analyses of the mutants reveal that the corresponding proteins are stable, phosphorylated, catalytically active in vitro, and can localize properly within the cell during meiosis. Surprisingly, the separation-of-function mutations map to the conserved catalytic region of the PLD protein. Choline and phosphatidic acid molecular species profiles during Sec14-independent secretion and meiosis reveal that while strains harboring one of these alleles, spo14S-11, hydrolyze phosphatidylcholine in Sec14-independent secretion, they fail to do so during sporulation or normal vegetative growth. These results demonstrate that Spo14 PLD catalytic activity and cellular function can be differentially regulated at the level of phosphatidylcholine hydrolysis.
Collapse
Affiliation(s)
- S A Rudge
- Department of Pharmacological Sciences, State University of New York, Stony Brook, New York 11794-8651, USA
| | | | | | | | | |
Collapse
|
22
|
Nakase Y, Nakamura T, Hirata A, Routt SM, Skinner HB, Bankaitis VA, Shimoda C. The Schizosaccharomyces pombe spo20(+) gene encoding a homologue of Saccharomyces cerevisiae Sec14 plays an important role in forespore membrane formation. Mol Biol Cell 2001; 12:901-17. [PMID: 11294895 PMCID: PMC32275 DOI: 10.1091/mbc.12.4.901] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The Schizosaccharomyces pombe spo20-KC104 mutation was originally isolated in a screen for sporulation-deficient mutants, and the spo20-KC104 mutant exhibits temperature-sensitive growth. Herein, we report that S. pombe, spo20(+) is essential for fission yeast cell viability and is constitutively expressed throughout the life cycle. We also demonstrate that the spo20(+) gene product is structurally homologous to Saccharomyces cerevisiae Sec14, the major phosphatidylinositol transfer protein of budding yeast. This structural homology translates to a significant degree of functional relatedness because reciprocal complementation experiments demonstrate that each protein is able to fulfill the essential function of the other. Moreover, biochemical experiments show that, like Sec14, Spo20 is a phosphatidylinositol/phosphatidylcholine-transfer protein. That Spo20 is required for Golgi secretory function in vegetative cells is indicated by our demonstration that the spo20-KC104 mutant accumulates aberrant Golgi cisternae at restrictive temperatures. However, a second phenotype observed in Spo20-deficient fission yeast is arrest of cell division before completion of cell separation. Consistent with a direct role for Spo20 in controlling cell septation in vegetatively growing cells, localization experiments reveal that Spo20 preferentially localizes to the cell poles and to sites of septation of fission yeast cells. We also report that, when fission yeasts are challenged with nitrogen starvation, Spo20 translocates to the nucleus. This nuclear localization persists during conjugation and meiosis. On completion of meiosis, Spo20 translocates to forespore membranes, and it is the assembly of forespore membranes that is abnormal in spo20-KC104 cells. In such mutants, a considerable fraction of forming prespores fail to encapsulate the haploid nucleus. Our results indicate that Spo20 regulates the formation of specialized membrane structures in addition to its recognized role in regulating Golgi secretory function.
Collapse
Affiliation(s)
- Y Nakase
- Department of Biology, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka 558-8585, Japan
| | | | | | | | | | | | | |
Collapse
|
23
|
Hube B, Hess D, Baker CA, Schaller M, Schäfer W, Dolan JW. The role and relevance of phospholipase D1 during growth and dimorphism of Candida albicans. MICROBIOLOGY (READING, ENGLAND) 2001; 147:879-889. [PMID: 11283284 DOI: 10.1099/00221287-147-4-879] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The phosphatidylcholine-specific phospholipase D1 (PLD1) in Saccharomyces cerevisiae is involved in vesicle transport and is essential for sporulation. The gene encoding the homologous phospholipase D1 from Candida albicans (PLD1) was used to study the role of PLD1 in this pathogenic fungus. In vitro and in vivo expression studies using Northern blots and reverse transcriptase-PCR showed low PLD1 mRNA levels in defined media supporting yeast growth and during experimental infection, while enhanced levels of PLD1 transcripts were detected during the yeast to hyphal transition. To study the relevance of PLD1 during yeast and hyphal growth, an essential part of the gene was deleted in both alleles of two isogenic strains. In vitro PLD1 activity assays showed that pld1 mutants produced no detectable levels of phosphatidic acid, the hydrolytic product of PLD1 activity, and strongly reduced levels of diacylglycerol, the product of lipid phosphate phosphohydrolase, suggesting no or a negligible background PLD1 activity in the pld1 mutants. The pld1 mutants showed no growth differences compared to the parental wild-type in liquid complex and minimal media, independent of the growth temperature. In addition, growth rates of pld1 mutants in media with protein as the sole source of nitrogen were similar to growth rates of the wild-type, indicating that secretion of proteinases was not reduced. Chlamydospore formation was normal in pld1 mutants. When germ tube formation was induced in liquid media, pld1 mutants showed similar rates of yeast to hyphal transition compared to the wild-type. However, no hyphae formation was observed on solid Spider medium, and cell growth on cornmeal/Tween 80 medium indicated aberrant morphogenesis. In addition, pld1 mutants growing on solid media had an attenuated ability to invade the agar. In a model of oral candidosis, pld1 mutants showed no attenuation of virulence. In contrast, the mutant was less virulent in two different mouse models. These data suggest that PLD1 is not essential for growth and oral infections. However, they also suggest that a prominent part of the phosphatidic acid and diacylglycerol pools is produced by PLD1 and that the level of these components is important for morphological transitions under certain conditions in C. albicans.
Collapse
Affiliation(s)
- Bernhard Hube
- Robert Koch-Institut, NG4, Nordufer 20, D-13353 Berlin, Germany3
- Institut für Allgemeine Botanik, AMP III, Universität Hamburg, Ohnhorststr. 18, D-22609 Hamburg, Germany1
| | - Daniela Hess
- Institut für Allgemeine Botanik, AMP III, Universität Hamburg, Ohnhorststr. 18, D-22609 Hamburg, Germany1
| | - Carol A Baker
- Medical University of South Carolina, Department of Microbiology and Immunology, PO Box 250504, Charleston, SC 29425, USA2
| | - Martin Schaller
- Dermatologische Klinik und Poliklinik der Ludwig-Maximilians-Universität München, Frauenlobstr.9-11, D-80337 München, Germany4
| | - Wilhelm Schäfer
- Institut für Allgemeine Botanik, AMP III, Universität Hamburg, Ohnhorststr. 18, D-22609 Hamburg, Germany1
| | - Joseph W Dolan
- Medical University of South Carolina, Department of Microbiology and Immunology, PO Box 250504, Charleston, SC 29425, USA2
| |
Collapse
|
24
|
Wang S, Banno Y, Nakashima S, Nozawa Y. Enzymatic characterization of phospholipase D of protozoan Tetrahymena cells. J Eukaryot Microbiol 2001; 48:194-201. [PMID: 12095108 DOI: 10.1111/j.1550-7408.2001.tb00303.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Phospholipase D (PLD), which is present in plant, bacterial, and mammalian cells, has been proposed to be involved in a number of cellular processes including transmembrane signaling and membrane deterioration. We demonstrated the existence of evolutionally related PLD activity in the unicellular eukaryotic protozoan Tetrahymena. The partial characterization of this enzyme showed that PLD in Tetrahymena cells was a neutral phospholipase, which catalyzed both transphosphatidylation and hydrolysis reac tions. The activity was markedly stimulated by phosphatidylinositol 4, 5-bisphosphate (PIP2) but was insensitive to phorbol 12-myristate 13-acetate (PMA) and guanosine 5'-3-O-(thio)triphosphate (GTPgammaS), suggesting that it is a PIP2-dependent PLD and that protein kinase C (PKC) and GTP-binding proteins are not implicated in the regulation of this enzyme. For its maximal activity Ca2+ was not required. This enzyme was also capable of hydrolyzing phosphatidylcholine (PC) but not phosphatidylethanolamine (PE), implying that PC was a preferred substrate. Subcellular fractionation showed that PLD-like activity localized mainly to the membrane fraction, especially microsomes. As an initial step to explore the functions of PLD in Tetrahymena, the PLD-like activity was determined during the different culture phases, and it was found to be significantly and transiently elevated in the early logarithmic phase, indicating its possible role in the development of Tetrahymena.
Collapse
Affiliation(s)
- S Wang
- Department of Biochemistry, Gifu University School of Medicine, Japan.
| | | | | | | |
Collapse
|
25
|
Dowd SR, Bier ME, Patton-Vogt JL. Turnover of phosphatidylcholine in Saccharomyces cerevisiae. The role of the CDP-choline pathway. J Biol Chem 2001; 276:3756-63. [PMID: 11078727 DOI: 10.1074/jbc.m003694200] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The regulation of phosphatidylcholine degradation as a function of the route of phosphatidylcholine (PC) synthesis and changing environmental conditions has been investigated in the yeast Saccharomyces cerevisiae. In the wild-type strains studied, deacylation of phosphatidylcholine to glycerophosphocholine is induced when choline is supplied to the culture medium and, also, when the culture temperature is raised from 30 to 37 degrees C. In strains bearing mutations in any of the genes encoding enzymes of the CDP-choline pathway for phosphatidylcholine biosynthesis (CKI1, choline kinase; CPT1, 1, 2-diacylglycerol choline phosphotransferase; PCT1, CTP:phosphocholine cytidylyltransferase), no induction of phosphatidylcholine turnover and glycerophosphocholine production is seen in response to choline availability or elevated temperature. In contrast, the induction of phosphatidylcholine deacylation does occur in a strain bearing mutations in genes encoding enzymes of the methylation pathway for phosphatidylcholine biosynthesis (i.e. CHO2/PEM1 and OPI3/PEM2). Whereas the synthesis of PC via CDP-choline is accelerated when shifted from 30 to 37 degrees C, synthesis of PC via the methylation pathway is largely unaffected by the temperature shift. These results suggest that the deacylation of PC to GroPC requires an active CDP-choline pathway for PC biosynthesis but not an active methylation pathway. Furthermore, the data indicate that the synthesis and turnover of CDP-choline-derived PC, but not methylation pathway-derived PC, are accelerated by the stress of elevated temperature.
Collapse
Affiliation(s)
- S R Dowd
- Departments of Biological Sciences and Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
| | | | | |
Collapse
|
26
|
Wang X. Multiple forms of phospholipase D in plants: the gene family, catalytic and regulatory properties, and cellular functions. Prog Lipid Res 2000; 39:109-49. [PMID: 10775762 DOI: 10.1016/s0163-7827(00)00002-3] [Citation(s) in RCA: 140] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Multiple Phospholipase D (PLD) genes have been identified in plants and encode isoforms with distinct regulatory and catalytic properties. Elucidation of the genetic and biochemical heterogeneity has provided important clues as to the regulation and function of this family of enzymes. Polyphosphoinositides, Ca(2+), and G-proteins are possible cellular regulators for PLD activation. PLD-mediated hydrolysis of membrane lipids increases in response to various stresses. Recent studies suggest that PLD plays a role in the signaling and production of hormones involved in plant stress responses.
Collapse
Affiliation(s)
- X Wang
- Department of Biochemistry, Kansas State University, Manhattan 66506, USA.
| |
Collapse
|
27
|
Abstract
Microbial pathogens use a number of genetic strategies to invade the host and cause infection. These common themes are found throughout microbial systems. Secretion of enzymes, such as phospholipase, has been proposed as one of these themes that are used by bacteria, parasites, and pathogenic fungi. The role of extracellular phospholipase as a potential virulence factor in pathogenic fungi, including Candida albicans, Cryptococcus neoformans, and Aspergillus, has gained credence recently. In this review, data implicating phospholipase as a virulence factor in C. albicans, Candida glabrata, C. neoformans, and A. fumigatus are presented. A detailed description of the molecular and biochemical approaches used to more definitively delineate the role of phospholipase in the virulence of C. albicans is also covered. These approaches resulted in cloning of three genes encoding candidal phospholipases (caPLP1, caPLB2, and PLD). By using targeted gene disruption, C. albicans null mutants that failed to secrete phospholipase B, encoded by caPLB1, were constructed. When these isogenic strain pairs were tested in two clinically relevant murine models of candidiasis, deletion of caPLB1 was shown to lead to attenuation of candidal virulence. Importantly, immunogold electron microscopy studies showed that C. albicans secretes this enzyme during the infectious process. These data indicate that phospholipase B is essential for candidal virulence. Although the mechanism(s) through which phospholipase modulates fungal virulence is still under investigations, early data suggest that direct host cell damage and lysis are the main mechanisms contributing to fungal virulence. Since the importance of phospholipases in fungal virulence is already known, the next challenge will be to utilize these lytic enzymes as therapeutic and diagnostic targets.
Collapse
|
28
|
Liscovitch M, Czarny M, Fiucci G, Tang X. Phospholipase D: molecular and cell biology of a novel gene family. Biochem J 2000. [PMID: 10642495 DOI: 10.1042/0264-6021:3450401] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Interaction of extracellular-signal molecules with cell-surface receptors often activates a phospholipase D (PLD)-mediated hydrolysis of phosphatidylcholine and other phospholipids, generating phosphatidic acid. The activation of PLD is believed to play an important role in the regulation of cell function and cell fate. Multiple PLD activities were characterized in eukaryotic cells, and, more recently, several PLD genes have been cloned. A PLD gene superfamily, defined by a number of structural domains and sequence motifs, also includes phosphatidyltransferases and certain phosphodiesterases. Among the eukaryotic PLD genes are those from mammals, nematodes, fungi and plants. The present review focuses on the structure, localization, regulation and possible functions of cloned mammalian and yeast PLDs. In addition, an overview of plant PLD genes, and of several distinct PLD activities that have not yet been cloned, is provided. Emerging evidence from recent work employing new molecular tools indicates that different PLD isoforms are localized in distinct cellular organelles, where they are likely to serve diverse functions in signal transduction, membrane vesicle trafficking and cytoskeletal dynamics.
Collapse
Affiliation(s)
- M Liscovitch
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel.
| | | | | | | |
Collapse
|
29
|
Ghannoum MA. Potential role of phospholipases in virulence and fungal pathogenesis. Clin Microbiol Rev 2000; 13:122-43, table of contents. [PMID: 10627494 PMCID: PMC88936 DOI: 10.1128/cmr.13.1.122] [Citation(s) in RCA: 333] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Microbial pathogens use a number of genetic strategies to invade the host and cause infection. These common themes are found throughout microbial systems. Secretion of enzymes, such as phospholipase, has been proposed as one of these themes that are used by bacteria, parasites, and pathogenic fungi. The role of extracellular phospholipase as a potential virulence factor in pathogenic fungi, including Candida albicans, Cryptococcus neoformans, and Aspergillus, has gained credence recently. In this review, data implicating phospholipase as a virulence factor in C. albicans, Candida glabrata, C. neoformans, and A. fumigatus are presented. A detailed description of the molecular and biochemical approaches used to more definitively delineate the role of phospholipase in the virulence of C. albicans is also covered. These approaches resulted in cloning of three genes encoding candidal phospholipases (caPLP1, caPLB2, and PLD). By using targeted gene disruption, C. albicans null mutants that failed to secrete phospholipase B, encoded by caPLB1, were constructed. When these isogenic strain pairs were tested in two clinically relevant murine models of candidiasis, deletion of caPLB1 was shown to lead to attenuation of candidal virulence. Importantly, immunogold electron microscopy studies showed that C. albicans secretes this enzyme during the infectious process. These data indicate that phospholipase B is essential for candidal virulence. Although the mechanism(s) through which phospholipase modulates fungal virulence is still under investigations, early data suggest that direct host cell damage and lysis are the main mechanisms contributing to fungal virulence. Since the importance of phospholipases in fungal virulence is already known, the next challenge will be to utilize these lytic enzymes as therapeutic and diagnostic targets.
Collapse
Affiliation(s)
- M A Ghannoum
- Center for Medical Mycology, Mycology Reference Laboratory, University Hospitals of Cleveland, and Department of Dermatology, Case Western Reserve University, Cleveland, Ohio 44106-5028, USA.
| |
Collapse
|
30
|
Abstract
Phospholipase D (PLD) is activated in mammalian cells in response to diverse stimuli that include growth factors, activators of protein kinase C, and agonists binding to G-protein-coupled receptors. Two forms of mammalian PLD, PLD1 and PLD2, have been identified. Expression of mRNA and protein for PLD1 and PLD2 was analyzed in the following cell lines: A7r5 (rat vascular smooth muscle); EL4 (mouse thymoma); HL-60 (human myeloid leukemia); Jurkat (human leukemia); PC-3 (human prostate adenocarcinoma); PC-12K (rat phaeochromocytoma); and Rat-1 HIR (rat fibroblast). All, with the exception of EL4, express agonist-activated PLD activity. PLD1 is expressed in A7r5, HL-60, PC-3, and Rat-1, while PLD2 is expressed in A7r5, Jurkat, PC12K, PC-3, and Rat-1. Neither isoform is expressed in EL4. Guanine nucleotide-independent PLD activity is present in membranes from all cells expressing PLD2. In PC12K cells, which express only PLD2, treatment with nerve growth factor causes neurite outgrowth and increases expression of PLD2 mRNA and protein within 6-12 h. A corresponding increase is observed in membrane PLD activity and in phorbol-12-myristate-13-acetate (PMA)-stimulated PLD activity in intact cells. These results show that PLD2 can be regulated both pretranslationally and posttranslationally by agonists.
Collapse
Affiliation(s)
- T C Gibbs
- Department of Pharmacology, Medical University of South Carolina, Charleston, South Carolina, USA
| | | |
Collapse
|
31
|
Carman GM, Henry SA. Phospholipid biosynthesis in the yeast Saccharomyces cerevisiae and interrelationship with other metabolic processes. Prog Lipid Res 1999; 38:361-99. [PMID: 10793889 DOI: 10.1016/s0163-7827(99)00010-7] [Citation(s) in RCA: 250] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
In this review, we have discussed recent progress in the study of the regulation that controls phospholipid metabolism in S. cerevisiae. This regulation occurs on multiple levels and is tightly integrated with a large number of other cellular processes and related metabolic and signal transduction pathways. Progress in deciphering this complex regulation has been very rapid in the last few years, aided by the availability of the sequence of the entire Saccharomyces genome. The assignment of functions to the remaining unassigned open reading frames, as well as ascertainment of remaining gene-enzyme relationships in phospholipid biosynthesis in yeast, promises to provide detailed understanding of the genetic regulation of a crucial area of metabolism in a key eukaryotic model system. Since the processes of lipid metabolism, secretion, and signal transduction show fundamental similarities in all eukaryotes, the dissection of this regulation in yeast promises to have wide application to our understanding of metabolic control in all eukaryotes.
Collapse
Affiliation(s)
- G M Carman
- Department of Food Science, Cook College, New Jersey Agricultural Experiment Station, Rutgers University, New Brunswick 08901, USA.
| | | |
Collapse
|
32
|
Jones D, Morgan C, Cockcroft S. Phospholipase D and membrane traffic. Potential roles in regulated exocytosis, membrane delivery and vesicle budding. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1439:229-44. [PMID: 10425398 DOI: 10.1016/s1388-1981(99)00097-9] [Citation(s) in RCA: 137] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
It is now well-established that phospholipase D is transiently stimulated upon activation by G-protein-coupled and receptor tyrosine kinase cell surface receptors in mammalian cells. Over the last 5 years, a tremendous effort has gone to identify the major intracellular regulators of mammalian phospholipase D and to the cloning of two mammalian phospholipase D enzymes (phospholipase D1 and D2). In this chapter, we review the physiological function of mammalian phospholipase D1 that is synergistically stimulated by ADP ribosylation factor, Rho and protein kinase Calpha. We discuss the function of this enzyme in membrane traffic, emphasising the possible integrated relationships between consumption of vesicles in regulated exocytosis, membrane delivery and constitutive membrane traffic.
Collapse
Affiliation(s)
- D Jones
- Department of Physiology, Rockefeller Building, University College London, University St., London WC1E 6JJ, UK
| | | | | |
Collapse
|
33
|
Abstract
While yeast contain multiple phospholipase D activities, only one, encoded by SPO14, appears to be a member of the phosphatidylcholine-specific phospholipase D gene family. Genetic analyses have revealed a role for this enzyme in regulated membrane trafficking events.
Collapse
Affiliation(s)
- S A Rudge
- Department of Pharmacological Sciences, State University of New York-Stony Brook, Stony Brook, NY 11794-8651, USA
| | | |
Collapse
|
34
|
Liscovitch M, Czarny M, Fiucci G, Lavie Y, Tang X. Localization and possible functions of phospholipase D isozymes. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1439:245-63. [PMID: 10425399 DOI: 10.1016/s1388-1981(99)00098-0] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The activation of PLD is believed to play an important role in the regulation of cell function and cell fate by extracellular signal molecules. Multiple PLD activities have been characterized in mammalian cells and, more recently, several PLD genes have been cloned. Current evidence indicates that diverse PLD activities are localized in most, if not all, cellular organelles, where they are likely to subserve different functions in signal transduction, membrane vesicle trafficking and cytoskeletal dynamics.
Collapse
Affiliation(s)
- M Liscovitch
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | |
Collapse
|
35
|
Abstract
Knowledge of the PLD superfamily is rapidly expanding and new insights into the mechanism and regulation of the superfamily are rapidly emerging. The recent structural analysis and use of mutant proteins suggest a mechanism that involves two active sites acting in concert. While a number of residues are required for activity, it appears most likely that a histidine is the residue that becomes covalently linked to phosphatidate in catalysis. Evidence for these proposals is covered in this article.
Collapse
Affiliation(s)
- M Waite
- Department of Biochemistry, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA.
| |
Collapse
|
36
|
Pappan K, Wang X. Molecular and biochemical properties and physiological roles of plant phospholipase D. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1439:151-66. [PMID: 10425392 DOI: 10.1016/s1388-1981(99)00091-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Recent advances have thrust the study of plant phospholipase D (PLD) into the molecular era. This review will highlight some of the recent progress made in elucidating the molecular and biochemical nature of plant PLDs as well as their roles in plant physiology.
Collapse
Affiliation(s)
- K Pappan
- Department of Biochemistry, Kansas State University, Manhattan, KS 66506, USA
| | | |
Collapse
|
37
|
Meier KE, Gibbs TC, Knoepp SM, Ella KM. Expression of phospholipase D isoforms in mammalian cells. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1439:199-213. [PMID: 10425396 DOI: 10.1016/s1388-1981(99)00095-5] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Two mammalian isoforms of phospholipase D, PLD1 and PLD2, have recently been characterized at the molecular level. Effects of physiologic agonists on PLD activity in intact cells, as characterized in earlier studies, have generally not been attributed to specific PLD isoforms. Recent work has established that expression of PLD1 and PLD2 varies within tissues and between cell lines. A single cell type can express one, both, or neither isoform, although most cells co-express PLD1 and PLD2. Lymphocytes often lack expression of one or both isoforms of PLD. Relative levels of PLD mRNA expression vary considerably between established cell lines. Expression of transcripts for both PLD1 and PLD2 can be regulated at the transcriptional level by growth and differentiation factors in cultured cells. Thus, it is apparent that the known mammalian PLD isoforms are subject to regulation at the transcriptional level. The available data do not conclusively establish whether PLD1 and PLD2 are the only isoforms responsible for agonist-mediated PLD activation. Further studies of the regulation of expression of PLD isoforms should provide insight into the roles of PLD1 and PLD2 in physiologic responses, and may suggest whether additional forms of PLD remain to be characterized.
Collapse
Affiliation(s)
- K E Meier
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston, SC 29425, USA.
| | | | | | | |
Collapse
|
38
|
Fyrst H, Oskouian B, Kuypers FA, Saba JD. The PLB2 gene of Saccharomyces cerevisiae confers resistance to lysophosphatidylcholine and encodes a phospholipase B/lysophospholipase. Biochemistry 1999; 38:5864-71. [PMID: 10231538 DOI: 10.1021/bi9824590] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The PLB1 gene of Saccharomyces cerevisiae encodes a protein that demonstrates phospholipase B, lysophospholipase, and transacylase activities. Several genes with significant homology to PLB1 exist in the S. cerevisiae genome, raising the possibility that other proteins may contribute to the total phospholipase B/lysophospholipase/transacylase activities of the cell. We report the isolation of a previously uncharacterized gene that is highly homologous to PLB1 and that, when overexpressed, confers resistance to 1-palmitoyllysophosphatidylcholine. This gene, which is located adjacent to the PLB1 gene on the left arm of chromosome XIII and which we refer to as PLB2, encodes a phospholipase B/lysophospholipase. Unlike PLB1, this gene product does not contain significant transacylase activity. The PLB2 gene product shows lysophospholipase activity toward lysophosphatidylcholine, lysophosphatidylserine, and lysophosphatidylethanolamine. Whereas deletion of either PLB1 or PLB2 resulted in the loss of 80% of cellular lysophospholipase activity, a plb1/plb2 double deletion mutant is completely devoid of lysophospholipase activity toward the preferred substrate lysophosphatidylcholine. Overexpression of PLB2 was associated with an increase in total cellular phospholipase B/lysophospholipase activity, as well as the appearance of significant lysophospholipase activity in the medium. Moreover, overexpression of PLB2 was associated with saturation at a higher cell density, and an increase in total cellular phospholipid content, but no change in phospholipid composition or fatty acid incorporation into cellular lipids. Deletion of PLB2 was not lethal and did not result in alteration of membrane phospholipid composition or content. PLB2 gene expression was found to be maximal during exponential growth conditions and was decreased in late phase, in a manner similar to other genes involved in phospholipid metabolism.
Collapse
Affiliation(s)
- H Fyrst
- Children's Hospital Oakland Research Institute, California 94609-1809, USA
| | | | | | | |
Collapse
|
39
|
Czarny M, Lavie Y, Fiucci G, Liscovitch M. Localization of phospholipase D in detergent-insoluble, caveolin-rich membrane domains. Modulation by caveolin-1 expression and caveolin-182-101. J Biol Chem 1999; 274:2717-24. [PMID: 9915802 DOI: 10.1074/jbc.274.5.2717] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The activation of cellular phospholipase D (PLD) is implicated in vesicular trafficking and signal transduction. Two mammalian PLD forms, designated PLD1 and PLD2, have been cloned, but their cellular localization and function are not fully understood. Here, we report that in HaCaT human keratinocytes, as well as other cell lines, PLD activity is highly enriched in low density, Triton X-100-insoluble membrane domains that contain the caveolar marker protein caveolin-1. Similar to other PLDs, the PLD activity in these membrane domains is stimulated by phosphatidylinositol 4, 5-bisphosphate and is inhibited by neomycin. Immunoblot analysis indicated that caveolin-rich membrane domains do not contain the PLD1 isoform. Stable transfection of mouse PLD2 in Chinese hamster ovary cells greatly increased PLD activity in these domains compared with PLD activity in control Chinese hamster ovary cells transfected with vector alone. PLD activity is enriched in low density Triton-insoluble membrane domains also in U937 promonocytes, even though these cells do not express caveolin-1. In U937 cells, also, PLD1 is largely excluded from low density Triton-insoluble membrane domains. Expression of recombinant caveolin-1 in v-Src-transformed NIH-3T3 cells resulted in up-regulation of PLD activity in the caveolin-containing membrane domains. The caveolin scaffolding peptide (caveolin-182-101) modulated the caveolar PLD activity, causing stimulation at concentration of 1-10 microM and inhibition at concentrations >10 microM. We conclude that a PLD activity, which is likely to represent PLD2, is enriched in low density Triton-insoluble membrane domains. The effects of caveolin-1 expression and of the caveolin scaffolding peptide suggest that in cells that express caveolin-1, PLD may be targeted to caveolae. The possible functions of PLD in the dynamics of caveolae and related domains and in signal transduction processes are discussed.
Collapse
Affiliation(s)
- M Czarny
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | |
Collapse
|
40
|
Henry SA, Patton-Vogt JL. Genetic regulation of phospholipid metabolism: yeast as a model eukaryote. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1998; 61:133-79. [PMID: 9752720 DOI: 10.1016/s0079-6603(08)60826-0] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Baker's yeast, Saccharomyces cerevisiae, is an excellent and an increasingly important model for the study of fundamental questions in eukaryotic cell biology and genetic regulation. The fission yeast, Schizosaccharomyces pombe, although not as intensively studied as S. cerevisiae, also has many advantages as a model system. In this review, we discuss progress over the past several decades in biochemical and molecular genetic studies of the regulation of phospholipid metabolism in these two organisms and higher eukaryotes. In S. cerevisiae, following the recent completion of the yeast genome project, a very high percentage of the gene-enzyme relationships in phospholipid metabolism have been assigned and the remaining assignments are expected to be completed rapidly. Complex transcriptional regulation, sensitive to the availability of phospholipid precusors, as well as growth phase, coordinates the expression of the structural genes encoding these enzymes in S. cerevisiae. In this article, this regulation is described, the mechanism by which the cell senses the ongoing metabolic activity in the pathways for phospholipid biosynthesis is discussed, and a model is presented. Recent information relating to the role of phosphatidylcholine turnover in S. cerevisiae and its relationship to the secretory pathway, as well as to the regulation of phospholipid metabolism, is also presented. Similarities in the role of phospholipase D-mediated phosphatidylcholine turnover in the secretory process in yeast and mammals lend further credence to yeast as a model system.
Collapse
Affiliation(s)
- S A Henry
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | | |
Collapse
|
41
|
Rudge SA, Cavenagh MM, Kamath R, Sciorra VA, Morris AJ, Kahn RA, Engebrecht J. ADP-Ribosylation factors do not activate yeast phospholipase Ds but are required for sporulation. Mol Biol Cell 1998; 9:2025-36. [PMID: 9693364 PMCID: PMC25455 DOI: 10.1091/mbc.9.8.2025] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/1998] [Accepted: 06/09/1998] [Indexed: 11/11/2022] Open
Abstract
ADP-ribosylation factor (ARF) proteins in Saccharomyces cerevisiae are encoded by two genes, ARF1 and ARF2. The addition of the c-myc epitope at the C terminus of Arf1 resulted in a mutant (arf1-myc arf2) that supported vegetative growth and rescued cells from supersensitivity to fluoride, but homozygous diploids failed to sporulate. arf1-myc arf2 mutants completed both meiotic divisions but were unable to form spores. The SPO14 gene encodes a phospholipase D (PLD), whose activity is essential for mediating the formation of the prospore membrane, a prerequisite event for spore formation. Spo14 localized normally to the developing prospore membrane in arf1-myc arf2 mutants; however, the synthesis of the membrane was attenuated. This was not a consequence of reduced PLD catalytic activity, because the enzymatic activity of Spo14 was unaffected in meiotic arf1-myc arf2 mutants. Although potent activators of mammalian PLD1, Arf1 proteins did not influence the catalytic activities of either Spo14 or ScPld2, a second yeast PLD. These results demonstrate that ARF1 is required for sporulation, and the mitotic and meiotic functions of Arf proteins are not mediated by the activation of any known yeast PLD activities. The implications of these results are discussed with respect to current models of Arf signaling.
Collapse
Affiliation(s)
- S A Rudge
- Department of Pharmacological Sciences, State University of New York, Stony Brook, New York 11794-8651, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Kanoh H, Nakashima S, Zhao Y, Sugiyama Y, Kitajima Y, Nozawa Y. Molecular cloning of a gene encoding phospholipase D from the pathogenic and dimorphic fungus, Candida albicans. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1398:359-64. [PMID: 9655935 DOI: 10.1016/s0167-4781(98)00067-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A phospholipase D gene (CaPLD) has been cloned from the Candida albicans genomic DNA library. The CaPLD is a member of a highly conserved gene family of PLD and has the highest homology to Saccharomyces cerevisiae PLD (SPO14) with an overall homology of 42%. Phylogenetic analysis indicated that fungus PLDs including CaPLD composed one of the three clusters of PLD genes.
Collapse
Affiliation(s)
- H Kanoh
- Department of Dermatology, Gifu University School of Medicine, Tsukasamachi-40, Gifu 500-8076, Japan
| | | | | | | | | | | |
Collapse
|
43
|
Sreenivas A, Patton-Vogt JL, Bruno V, Griac P, Henry SA. A role for phospholipase D (Pld1p) in growth, secretion, and regulation of membrane lipid synthesis in yeast. J Biol Chem 1998; 273:16635-8. [PMID: 9642212 DOI: 10.1074/jbc.273.27.16635] [Citation(s) in RCA: 126] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The SEC14 gene encodes a phosphatidylinositol/phosphatidylcholine transfer protein essential for secretion and growth in yeast (1). Mutations (cki1, cct1, and cpt1) in the CDP-choline pathway for phosphatidylcholine synthesis suppress the sec14 growth defect (2), permitting sec14(ts) cki1, sec14(ts) cct1, and sec14(ts) cpt1 strains to grow at the sec14(ts) restrictive temperature. Previously, we reported that these double mutant strains also excrete the phospholipid metabolites, choline and inositol (3). We now report that these choline and inositol excretion phenotypes are eliminated when the SPO14 (PLD1) gene encoding phospholipase D1 is deleted. In contrast to sec14(ts) cki1 strains, sec14(ts) cki1 pld1 strains are not viable at the sec14(ts) restrictive temperature and exhibit a pattern of invertase secretion comparable with sec14(ts) strains. Thus, the PLD1 gene product appears to play an essential role in the suppression of the sec14(ts) defect by CDP-choline pathway mutations, indicating a role for phospholipase D1 in growth and secretion. Furthermore, sec14(ts) strains exhibit elevated Ca2+-independent, phophatidylinositol 4,5-bisphosphate-stimulated phospholipase D activity. We also propose that phospholipase D1-mediated phosphatidylcholine turnover generates a signal that activates transcription of INO1, the structural gene for inositol 1-phosphate synthase.
Collapse
Affiliation(s)
- A Sreenivas
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213-2683, USA
| | | | | | | | | |
Collapse
|
44
|
Pappan K, Austin-Brown S, Chapman KD, Wang X. Substrate selectivities and lipid modulation of plant phospholipase D alpha, -beta, and -gamma. Arch Biochem Biophys 1998; 353:131-40. [PMID: 9578608 DOI: 10.1006/abbi.1998.0640] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Three classes of phospholipase D (PLD), designated PLD alpha, -beta, and -gamma, have been cloned from plants, but their substrate selectivities have not been established. Using active PLDs expressed from their cDNAs in Escherichia coli, we compared the hydrolytic activities of these three PLDs toward various phospholipids and the influence of substrate composition on their substrate selectivities. When single-class phospholipid vesicles of phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylglycerol (PG), phosphatidylserine (PS), phosphatidylinositol (PI), phosphatidylinositol 4,5-bisphosphate (PIP2), N-acylphosphatidylethanolamine (NAPE), and cardiolipin (CL) were examined, PLD alpha hydrolyzed PC, PE, and PG but PLD beta and -gamma showed no activity toward any of these lipids. When PIP2 was included in mixed vesicles with the phospholipids above, PLD alpha showed the same PC-, PE-, and PG-hydrolyzing ability, whereas PLD beta and -gamma were able to hydrolyze both PE and PS. When both PE and PIP2 were included in substrate vesicles, PLD beta and PLD gamma hydrolyzed PC, PG, and NAPE, showing that both PE and PIP2 are required for PC, PG, and NAPE hydrolysis by PLD beta and -gamma. The PE activation of PLD beta and -gamma required lipid vesicles made of mostly PE, suggesting that PE may affect the substrate presentation rather than serve as a cofactor of these PLDs. Under equivalent reaction conditions, PLD beta displayed a similar preference for PC and NAPE, whereas PLD gamma preferred NAPE to PC by nearly three times. None of the three PLDs used PI, CL, or PIP2 as substrates. These results have identified PS- and NAPE-hydrolyzing PLDs and have indicated an important role for lipid composition in regulating the substrate selectivity of PLD beta and -gamma.
Collapse
Affiliation(s)
- K Pappan
- Department of Biochemistry, Kansas State University, Manhattan, Kansas 66506, USA
| | | | | | | |
Collapse
|
45
|
Chalifa-Caspi V, Eli Y, Liscovitch M. Kinetic analysis in mixed micelles of partially purified rat brain phospholipase D activity and its activation by phosphatidylinositol 4,5-bisphosphate. Neurochem Res 1998; 23:589-99. [PMID: 9566596 DOI: 10.1023/a:1022422418388] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A partially purified rat brain membrane phospholipase D (PLD) activity was characterized in a mixed micellar system consisting of 1-palmitoyl-2-[6-N-(7-nitrobenzo-2-oxa-1,3-diazol-4-yl)-amino]capr oyl-phosphatidylcholine (NBD-PC) and Triton X-100, under conditions where Triton X-100 has a surface dilution effect on PLD activity and the catalytic rate is dependent on the surface concentration (expressed in terms of molar ratio) of NBD-PC. PLD activity was specifically activated by phosphatidylinositol 4,5-bisphosphate (PIP2), and the curve of activation versus PIP2 molar ratio fitted a Michaelis-Menten equation with a K(act) value between molar ratios of 0.001-0.002. Maximal activation was observed at a PIP2 molar ratio of 0.01. Similar values were obtained when activities of partially purified PLD as well as membrane-bound PLD were determined towards pure NBD-PC micelles. In the mixed micellar system PIP2 was shown to elevate by 6-22 fold the specificity constant of PLD towards NBD-PC (K(A), which is proportional to Vmax/Km). Kinetic analysis of PLD trans-phosphatidylation activity towards ethanol, 1-propanol and 1-butanol revealed a Michaelis-Menten type dependence on alcohol concentration up to 1000, 200 and 80 mM, respectively. While Vmax values were similar towards all three alcohols, enzyme affinity increased as the alcohol was longer, and Km values for ethanol, 1-propanol and 1-butanol were 291, 75 and 16 mM (respectively). PLD specificity constants (K(A)) towards ethanol, 1-propanol and 1-butanol were shown to be respectively 260, 940 and 5,920 times higher than to water, the competing substrate. 1-Propanol and 1-butanol inhibited PLD activity above 400 and 100 mM, respectively. The present results indicate that partially purified PLD obeys surface dilution kinetics with regard to its phospholipid substrate PC and its cofactor PIP2, and that in the presence of alcohols, its transphosphatidylation activity may be analyzed as a competitive reaction to the hydrolysis reaction.
Collapse
Affiliation(s)
- V Chalifa-Caspi
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot, Israel
| | | | | |
Collapse
|
46
|
Qi C, Park JH, Gibbs TC, Shirley DW, Bradshaw CD, Ella KM, Meier KE. Lysophosphatidic acid stimulates phospholipase D activity and cell proliferation in PC-3 human prostate cancer cells. J Cell Physiol 1998; 174:261-72. [PMID: 9428812 DOI: 10.1002/(sici)1097-4652(199802)174:2<261::aid-jcp13>3.0.co;2-f] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Phospholipase D (PLD) is activated in mammalian cells in response to a variety of growth factors and may play a role in cell proliferation. Lysophosphatidic acid (LPA) is a bioactive metabolite potentially generated as a result of PLD activation. Two human prostate cancer cell lines, PC-3 and LNCaP, express membrane PLD activity. The effects of LPA on PLD activity and proliferation were examined in PC-3 cells, which express hPLD1a/1b. Phorbol 12-myristate 13-acetate (PMA) induced a prolonged activation of PLD, as detected in both intact cells and membranes. LPA induced a transient activation of PLD that was maximal by 10 minutes. The EC50 for LPA-induced PLD activation was approximately 1 microM. Pertussis toxin did not inhibit activation of PLD by LPA or PMA. Ro-31-8220 and bisindolylmaleimide I, inhibitors of protein kinase C, blocked activation by PLD by both PMA and LPA. PMA-induced activation of PLD did not appear to require translocation of PLDs from cytosol to membrane. LPA stimulated proliferation of PC-3 cells with an EC50 of approximately 0.2 microM; this response was not inhibited by pertussis toxin. Perillyl alcohol, an anti-cancer drug, reversibly inhibited proliferation in response to either serum or LPA but did not inhibit activation of PLD by PMA or LPA. These data establish that LPA activates PLD and stimulates proliferation via Gi-independent pathways in a human prostate cancer cell line.
Collapse
Affiliation(s)
- C Qi
- Department of Pharmacology, Medical University of South Carolina, Charleston 29425-2251, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Munnik T, Irvine RF, Musgrave A. Phospholipid signalling in plants. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1389:222-72. [PMID: 9512651 DOI: 10.1016/s0005-2760(97)00158-6] [Citation(s) in RCA: 257] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- T Munnik
- Institute for Molecular Cell Biology, BioCentrum Amsterdam, University of Amsterdam, The Netherlands.
| | | | | |
Collapse
|
48
|
Rudge SA, Morris AJ, Engebrecht J. Relocalization of phospholipase D activity mediates membrane formation during meiosis. J Cell Biol 1998; 140:81-90. [PMID: 9425156 PMCID: PMC2132601 DOI: 10.1083/jcb.140.1.81] [Citation(s) in RCA: 121] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/1997] [Revised: 11/04/1997] [Indexed: 02/05/2023] Open
Abstract
Phospholipase D (PLD) enzymes catalyze the hydrolysis of phosphatidylcholine and are involved in membrane trafficking and cytoskeletal reorganization. The Saccharomyces cerevisiae SPO14 gene encodes a PLD that is essential for meiosis. We have analyzed the role of PLD in meiosis by examining two mutant proteins, one with a point mutation in a conserved residue (Spo14pK--> H) and one with an amino-terminal deletion (Spo14pDeltaN), neither of which can restore meiosis in a spo14 deletion strain. Spo14pK--> H is enzymatically inactive, indicating that PLD activity is required, whereas Spo14pDeltaN retains PLD catalytic activity in vitro, indicating that PLD activity is not sufficient for meiosis. To explore other aspects of Spo14 function, we followed the localization of the enzyme during meiosis. Spo14p is initially distributed throughout the cell, becomes concentrated at the spindle pole bodies after the meiosis I division, and at meiosis II localizes to the new spore membrane as it surrounds the nuclei and then expands to encapsulate the associated cytoplasm during the formation of spores. The catalytically inactive protein also undergoes relocalization during meiosis; however, in the absence of PLD activity, no membrane is formed. In contrast, Spo14pDeltaN does not relocalize properly, indicating that the failure of this protein to complement a spo14 mutant is due to its inability to localize its PLD activity. Furthermore, we find that Spo14p movement is correlated with phosphorylation of the protein. These experiments indicate that PLD participates in regulated membrane formation during meiosis, and that both its catalytic activity and subcellular redistribution are essential for this function.
Collapse
Affiliation(s)
- S A Rudge
- Department of Pharmacological Sciences, State University of New York, Stony Brook, Stony Brook, New York 11794-8651, USA
| | | | | |
Collapse
|
49
|
McLain N, Dolan JW. Phospholipase D activity is required for dimorphic transition in Candida albicans. MICROBIOLOGY (READING, ENGLAND) 1997; 143 ( Pt 11):3521-3526. [PMID: 9387230 DOI: 10.1099/00221287-143-11-3521] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Candida albicans is an opportunistic pathogen that causes significant morbidity and mortality in immunocompromised patients. In this report, the presence of a phospholipase D (PLD) activity in C. albicans, designated CaPLD1, is demonstrated. This is the first description of PLD activity in this organism. CaPLD1 activity was stimulated by inducers of dimorphic transition. Furthermore, transition was stimulated by the addition of exogenous PLD to cells. The addition of 1-propanol to the medium, which resulted in the production of phosphatidylpropanol by CaPLD1 at the expense of the usual product phosphatidic acid, delayed the yeast to hypha transition. These results suggest that CaPLD1 may be an important regulator of dimorphic transition in C. albicans.
Collapse
Affiliation(s)
- Nealoo McLain
- Molecular and Cellular Biology and Pathobiology Program, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Joseph W Dolan
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
50
|
Abstract
Phosphodiesteric cleavage of phosphatidylcholine by members of a growing family of phospholipases D produces choline and phosphatidic acid. These enzymes can also catalyse a transphosphatidylation reaction in which the aliphatic chain of a primary alcohol is transferred to the phosphatidyl moiety of the phosphatidic acid product. PLD enzymes are found in a variety of organisms including bacteria, yeast, plants, and vertebrates. In mammalian systems, biochemical and cell biological approaches have identified phosphatidic acid as a mediator (or progenitor of mediators) that play important roles in the transduction of extracellular signals. Phosphatidic acid or its metabolites may be regulators of key cellular processes such as the control of intracellular protein trafficking, secretion, and alterations in cell morphology and motility. This review discusses methods for the determination of PLD activity both in vitro and in intact cells.
Collapse
Affiliation(s)
- A J Morris
- Department of Pharmacological Sciences, Stony Brook Health Sciences Center, New York 11794-8651, USA.
| | | | | |
Collapse
|