1
|
Hishida R, Ishiguro K, Yamanaka T, Toyokuni S, Matsui H. Homozygous slc25a20 zebrafish mutant reveals insights into carnitine-acylcarnitine translocase deficiency pathogenesis. Mol Genet Metab Rep 2024; 41:101165. [PMID: 39650084 PMCID: PMC11625244 DOI: 10.1016/j.ymgmr.2024.101165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 11/15/2024] [Accepted: 11/18/2024] [Indexed: 12/11/2024] Open
Abstract
The SLC25A20 gene encodes carnitine-acylcarnitine translocase (CACT), facilitating the transport of long-chain acylcarnitine required for energy production via β-oxidation into the mitochondria. Loss-of-function mutations in this gene lead to CACT deficiency, a rare autosomal recessive disorder of fatty acid metabolism characterized by severe symptoms including cardiomyopathy, hepatic dysfunction, rhabdomyolysis, hypoketotic hypoglycemia, and hyperammonemia, often resulting in neonatal mortality. Here, we utilized CRISPR/Cas9 gene editing to isolate slc25a20 mutant zebrafish. Homozygous mutants displayed significant lethality, with the majority succumbing before reaching maturity. However, we identified a notably rare homozygous individual that survived into adulthood, prompting a histological examination. Firstly, we observed adipose tissue accumulation at various sites in the homozygous mutant. The mutant heart exhibited hypertrophy, along with degenerated myocardial and muscle cells containing numerous eosinophilic nuclei. Additionally, we found no large oil droplet vacuoles in the mutant liver; however, the hepatocytes displayed numerous small vacuoles resembling lipid droplets. Iron deposition was evident in the spleen and parts of the liver. Overall, our slc25a20 zebrafish mutant displayed tissue pathologies analogous to human CACT deficiency, suggesting its potential as a pathological model contributing to the elucidation of pathogenesis and the improvement/development of therapies for CACT deficiency.
Collapse
Affiliation(s)
- Ryuichi Hishida
- Department of Neuroscience of Disease, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Kohei Ishiguro
- Department of Neuroscience of Disease, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Tomoyuki Yamanaka
- Department of Neuroscience of Disease, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Shinya Toyokuni
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
- Center for Low-temperature Plasma Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Hideaki Matsui
- Department of Neuroscience of Disease, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| |
Collapse
|
2
|
Giangregorio N, Tonazzi A, Pierri CL, Indiveri C. Insights into Transient Dimerisation of Carnitine/Acylcarnitine Carrier (SLC25A20) from Sarkosyl/PAGE, Cross-Linking Reagents, and Comparative Modelling Analysis. Biomolecules 2024; 14:1158. [PMID: 39334924 PMCID: PMC11430254 DOI: 10.3390/biom14091158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
The carnitine/acylcarnitine carrier (CAC) is a crucial protein for cellular energy metabolism, facilitating the exchange of acylcarnitines and free carnitine across the mitochondrial membrane, thereby enabling fatty acid β-oxidation and oxidative phosphorylation (OXPHOS). Although CAC has not been crystallised, structural insights are derived from the mitochondrial ADP/ATP carrier (AAC) structures in both cytosolic and matrix conformations. These structures underpin a single binding centre-gated pore mechanism, a common feature among mitochondrial carrier (MC) family members. The functional implications of this mechanism are well-supported, yet the structural organization of the CAC, particularly the formation of dimeric or oligomeric assemblies, remains contentious. Recent investigations employing biochemical techniques on purified and reconstituted CAC, alongside molecular modelling based on crystallographic AAC dimeric structures, suggest that CAC can indeed form dimers. Importantly, this dimerization does not alter the transport mechanism, a phenomenon observed in various other membrane transporters across different protein families. This observation aligns with the ping-pong kinetic model, where the dimeric form potentially facilitates efficient substrate translocation without necessitating mechanistic alterations. The presented findings thus contribute to a deeper understanding of CAC's functional dynamics and its structural parallels with other MC family members.
Collapse
Affiliation(s)
- Nicola Giangregorio
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), Via Amendola 122/O, 70126 Bari, Italy
| | - Annamaria Tonazzi
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), Via Amendola 122/O, 70126 Bari, Italy
| | - Ciro Leonardo Pierri
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari, Via E. Orabona, 4, 70125 Bari, Italy
| | - Cesare Indiveri
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), Via Amendola 122/O, 70126 Bari, Italy
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Via Bucci 4C, 87036 Arcavacata di Rende, Italy
| |
Collapse
|
3
|
Giangregorio N, Tonazzi A, Console L, Scalise M, Indiveri C. Inhibition of the Mitochondrial Carnitine/Acylcarnitine Carrier by Itaconate through Irreversible Binding to Cysteine 136: Possible Pathophysiological Implications. Biomolecules 2023; 13:993. [PMID: 37371573 DOI: 10.3390/biom13060993] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/11/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND The carnitine/acylcarnitine carrier (CAC) represents the route of delivering acyl moieties to the mitochondrial matrix for accomplishing the fatty acid β-oxidation. The CAC has a couple of Cys residues (C136 and C155) most reactive toward ROS and redox signaling compounds such as GSH, NO, and H2S. Among physiological compounds reacting with Cys, itaconate is produced during inflammation and represents the connection between oxidative metabolism and immune responses. The possible interaction between the CAC and itaconate has been investigated. METHODS the modulatory effects of itaconate on the transport activity of the native and recombinant CAC were tested using the proteoliposome experimental model together with site-directed mutagenesis and computational analysis. RESULTS Itaconate reacts with the CAC causing irreversible inhibition. Dose-response experiment performed with the native and recombinant protein showed IC50 for itaconate of 11 ± 4.6 mM and 8.4 ± 2.9 mM, respectively. The IC50 decreased to 3.8 ± 1.0 mM by lowering the pH from pH 7.0 to pH 6.5. Inhibition kinetics revealed a non-competitive type of inhibition. C136 is the main target of itaconate, as demonstrated by the increased IC50 of mutants in which this Cys was substituted by Val. The central role of C136 was confirmed by covalent docking. Administration of dimethyl itaconate to HeLa cells inhibited the CAC transport activity, suggesting that itaconate could react with the CAC also in intact cells.
Collapse
Affiliation(s)
- Nicola Giangregorio
- National Research Council (CNR), Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), Via Amendola 122/O, 70126 Bari, Italy
| | - Annamaria Tonazzi
- National Research Council (CNR), Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), Via Amendola 122/O, 70126 Bari, Italy
| | - Lara Console
- Unit of Biochemistry and Molecular Biotechnology, Department DiBEST (Biologia, Ecologia, Scienze della Terra), University of Calabria, Via Bucci 4C, 87036 Arcavacata di Rende, Italy
| | - Mariafrancesca Scalise
- Unit of Biochemistry and Molecular Biotechnology, Department DiBEST (Biologia, Ecologia, Scienze della Terra), University of Calabria, Via Bucci 4C, 87036 Arcavacata di Rende, Italy
| | - Cesare Indiveri
- National Research Council (CNR), Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), Via Amendola 122/O, 70126 Bari, Italy
- Unit of Biochemistry and Molecular Biotechnology, Department DiBEST (Biologia, Ecologia, Scienze della Terra), University of Calabria, Via Bucci 4C, 87036 Arcavacata di Rende, Italy
| |
Collapse
|
4
|
Giangregorio N, Tonazzi A, Calvano CD, Pierri CL, Incampo G, Cataldi TRI, Indiveri C. The Mycotoxin Patulin Inhibits the Mitochondrial Carnitine/Acylcarnitine Carrier (SLC25A20) by Interaction with Cys136 Implications for Human Health. Int J Mol Sci 2023; 24:ijms24032228. [PMID: 36768549 PMCID: PMC9917099 DOI: 10.3390/ijms24032228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/12/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
The effect of mycotoxin patulin (4-hydroxy-4H-furo [3,2c] pyran-2 [6H] -one) on the mitochondrial carnitine/acylcarnitine carrier (CAC, SLC25A20) was investigated. Transport function was measured as [3H]-carnitineex/carnitinein antiport in proteoliposomes reconstituted with the native protein extracted from rat liver mitochondria or with the recombinant CAC over-expressed in E. coli. Patulin (PAT) inhibited both the mitochondrial native and recombinant transporters. The inhibition was not reversed by physiological and sulfhydryl-reducing reagents, such as glutathione (GSH) or dithioerythritol (DTE). The IC50 derived from the dose-response analysis indicated that PAT inhibition was in the range of 50 µM both on the native and on rat and human recombinant protein. The kinetics process revealed a competitive type of inhibition. A substrate protection experiment confirmed that the interaction of PAT with the protein occurred within a protein region, including the substrate-binding area. The mechanism of inhibition was identified using the site-directed mutagenesis of CAC. No inhibition was observed on Cys mutants in which only the C136 residue was mutated. Mass spectrometry studies and in silico molecular modeling analysis corroborated the outcomes derived from the biochemical assays.
Collapse
Affiliation(s)
- Nicola Giangregorio
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), Via Amendola 122/O, 70126 Bari, Italy
- Correspondence:
| | - Annamaria Tonazzi
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), Via Amendola 122/O, 70126 Bari, Italy
| | | | - Ciro Leonardo Pierri
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via Orabona 4, 70126 Bari, Italy
| | - Giovanna Incampo
- Department of Bioscience, Biotechnology and Environment, University of Bari, 70126 Bari, Italy
| | - Tommaso R. I. Cataldi
- Department of Chemistry, University of Bari Aldo Moro, Via Orabona 4, 70126 Bari, Italy
| | - Cesare Indiveri
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), Via Amendola 122/O, 70126 Bari, Italy
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Via Bucci 4C, Arcavacata di Rende, 87036 Cosenza, Italy
| |
Collapse
|
5
|
Tonazzi A, Giangregorio N, Console L, Palmieri F, Indiveri C. The Mitochondrial Carnitine Acyl-carnitine Carrier (SLC25A20): Molecular Mechanisms of Transport, Role in Redox Sensing and Interaction with Drugs. Biomolecules 2021; 11:biom11040521. [PMID: 33807231 PMCID: PMC8066319 DOI: 10.3390/biom11040521] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/23/2021] [Accepted: 03/26/2021] [Indexed: 12/22/2022] Open
Abstract
The SLC25A20 transporter, also known as carnitine acyl-carnitine carrier (CAC), catalyzes the transport of short, medium and long carbon chain acyl-carnitines across the mitochondrial inner membrane in exchange for carnitine. The 30-year story of the protein responsible for this function started with its purification from rat liver mitochondria. Even though its 3D structure is not yet available, CAC is one of the most deeply characterized transport proteins of the inner mitochondrial membrane. Other than functional, kinetic and mechanistic data, post-translational modifications regulating the transport activity of CAC have been revealed. CAC interactions with drugs or xenobiotics relevant to human health and toxicology and the response of the carrier function to dietary compounds have been discovered. Exploiting combined approaches of site-directed mutagenesis with chemical targeting and bioinformatics, a large set of data on structure/function relationships have been obtained, giving novel information on the molecular mechanism of the transport catalyzed by this protein.
Collapse
Affiliation(s)
- Annamaria Tonazzi
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council, Via Orabona 4, 70126 Bari, Italy; (A.T.); (N.G.)
| | - Nicola Giangregorio
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council, Via Orabona 4, 70126 Bari, Italy; (A.T.); (N.G.)
| | - Lara Console
- Unit of Biochemistry and Molecular Biotechnology, Department DiBEST (Biologia, Ecologia, Scienze della Terra), University of Calabria, Via P. Bucci 4C, 87036 Arcavacata di Rende, Italy;
| | - Ferdinando Palmieri
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council, Via Orabona 4, 70126 Bari, Italy; (A.T.); (N.G.)
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70125 Bari, Italy
- Correspondence: (F.P.); (C.I.); Tel.: +39-080-544-3323 (F.P.); Tel.: +39-0984-492939 (C.I.)
| | - Cesare Indiveri
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council, Via Orabona 4, 70126 Bari, Italy; (A.T.); (N.G.)
- Unit of Biochemistry and Molecular Biotechnology, Department DiBEST (Biologia, Ecologia, Scienze della Terra), University of Calabria, Via P. Bucci 4C, 87036 Arcavacata di Rende, Italy;
- Correspondence: (F.P.); (C.I.); Tel.: +39-080-544-3323 (F.P.); Tel.: +39-0984-492939 (C.I.)
| |
Collapse
|
6
|
Gyimesi G, Hediger MA. Sequence Features of Mitochondrial Transporter Protein Families. Biomolecules 2020; 10:E1611. [PMID: 33260588 PMCID: PMC7761412 DOI: 10.3390/biom10121611] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/20/2020] [Accepted: 11/22/2020] [Indexed: 02/08/2023] Open
Abstract
Mitochondrial carriers facilitate the transfer of small molecules across the inner mitochondrial membrane (IMM) to support mitochondrial function and core cellular processes. In addition to the classical SLC25 (solute carrier family 25) mitochondrial carriers, the past decade has led to the discovery of additional protein families with numerous members that exhibit IMM localization and transporter-like properties. These include mitochondrial pyruvate carriers, sideroflexins, and mitochondrial cation/H+ exchangers. These transport proteins were linked to vital physiological functions and disease. Their structures and transport mechanisms are, however, still largely unknown and understudied. Protein sequence analysis per se can often pinpoint hotspots that are of functional or structural importance. In this review, we summarize current knowledge about the sequence features of mitochondrial transporters with a special focus on the newly included SLC54, SLC55 and SLC56 families of the SLC solute carrier superfamily. Taking a step further, we combine sequence conservation analysis with transmembrane segment and secondary structure prediction methods to extract residue positions and sequence motifs that likely play a role in substrate binding, binding site gating or structural stability. We hope that our review will help guide future experimental efforts by the scientific community to unravel the transport mechanisms and structures of these novel mitochondrial carriers.
Collapse
Affiliation(s)
- Gergely Gyimesi
- Membrane Transport Discovery Lab, Department of Nephrology and Hypertension, and Department of Biomedical Research, Inselspital, University of Bern, Kinderklinik, Freiburgstrasse 15, CH-3010 Bern, Switzerland;
| | | |
Collapse
|
7
|
Fernie AR, Cavalcanti JHF, Nunes-Nesi A. Metabolic Roles of Plant Mitochondrial Carriers. Biomolecules 2020; 10:E1013. [PMID: 32650612 PMCID: PMC7408384 DOI: 10.3390/biom10071013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 06/28/2020] [Accepted: 06/29/2020] [Indexed: 02/07/2023] Open
Abstract
Mitochondrial carriers (MC) are a large family (MCF) of inner membrane transporters displaying diverse, yet often redundant, substrate specificities, as well as differing spatio-temporal patterns of expression; there are even increasing examples of non-mitochondrial subcellular localization. The number of these six trans-membrane domain proteins in sequenced plant genomes ranges from 39 to 141, rendering the size of plant families larger than that found in Saccharomyces cerevisiae and comparable with Homo sapiens. Indeed, comparison of plant MCs with those from these better characterized species has been highly informative. Here, we review the most recent comprehensive studies of plant MCFs, incorporating the torrent of genomic data emanating from next-generation sequencing techniques. As such we present a more current prediction of the substrate specificities of these carriers as well as review the continuing quest to biochemically characterize this feature of the carriers. Taken together, these data provide an important resource to guide direct genetic studies aimed at addressing the relevance of these vital carrier proteins.
Collapse
Affiliation(s)
- Alisdair R. Fernie
- Max-Planck-Instiute of Molecular Plant Physiology, 14476 Postdam-Golm, Germany
| | - João Henrique F. Cavalcanti
- Instituto de Educação, Agricultura e Ambiente, Universidade Federal do Amazonas, Humaitá 69800-000, Amazonas, Brazil;
| | - Adriano Nunes-Nesi
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa 36570-900, Minas Gerais, Brazil
| |
Collapse
|
8
|
Cunningham CN, Rutter J. 20,000 picometers under the OMM: diving into the vastness of mitochondrial metabolite transport. EMBO Rep 2020; 21:e50071. [PMID: 32329174 DOI: 10.15252/embr.202050071] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/17/2020] [Accepted: 03/27/2020] [Indexed: 12/14/2022] Open
Abstract
The metabolic compartmentalization enabled by mitochondria is key feature of many cellular processes such as energy conversion to ATP production, redox balance, and the biosynthesis of heme, urea, nucleotides, lipids, and others. For a majority of these functions, metabolites need to be transported across the impermeable inner mitochondrial membrane by dedicated carrier proteins. Here, we examine the substrates, structural features, and human health implications of four mitochondrial metabolite carrier families: the SLC25A family, the mitochondrial ABCB transporters, the mitochondrial pyruvate carrier (MPC), and the sideroflexin proteins.
Collapse
Affiliation(s)
- Corey N Cunningham
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Jared Rutter
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA.,Howard Hughes Medical Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| |
Collapse
|
9
|
Palmieri F, Scarcia P, Monné M. Diseases Caused by Mutations in Mitochondrial Carrier Genes SLC25: A Review. Biomolecules 2020; 10:biom10040655. [PMID: 32340404 PMCID: PMC7226361 DOI: 10.3390/biom10040655] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/15/2020] [Accepted: 04/17/2020] [Indexed: 12/13/2022] Open
Abstract
In the 1980s, after the mitochondrial DNA (mtDNA) had been sequenced, several diseases resulting from mtDNA mutations emerged. Later, numerous disorders caused by mutations in the nuclear genes encoding mitochondrial proteins were found. A group of these diseases are due to defects of mitochondrial carriers, a family of proteins named solute carrier family 25 (SLC25), that transport a variety of solutes such as the reagents of ATP synthase (ATP, ADP, and phosphate), tricarboxylic acid cycle intermediates, cofactors, amino acids, and carnitine esters of fatty acids. The disease-causing mutations disclosed in mitochondrial carriers range from point mutations, which are often localized in the substrate translocation pore of the carrier, to large deletions and insertions. The biochemical consequences of deficient transport are the compartmentalized accumulation of the substrates and dysfunctional mitochondrial and cellular metabolism, which frequently develop into various forms of myopathy, encephalopathy, or neuropathy. Examples of diseases, due to mitochondrial carrier mutations are: combined D-2- and L-2-hydroxyglutaric aciduria, carnitine-acylcarnitine carrier deficiency, hyperornithinemia-hyperammonemia-homocitrillinuria (HHH) syndrome, early infantile epileptic encephalopathy type 3, Amish microcephaly, aspartate/glutamate isoform 1 deficiency, congenital sideroblastic anemia, Fontaine progeroid syndrome, and citrullinemia type II. Here, we review all the mitochondrial carrier-related diseases known until now, focusing on the connections between the molecular basis, altered metabolism, and phenotypes of these inherited disorders.
Collapse
Affiliation(s)
- Ferdinando Palmieri
- Department of Biosciences, Biotechnologies and Biopharmaceutics, Laboratory of Biochemistry and Molecular Biology, University of Bari Aldo Moro, via E. Orabona 4, 70125 Bari, Italy;
- Correspondence: (F.P.); (M.M.); Tel.: +39-0805443323 (F.P.)
| | - Pasquale Scarcia
- Department of Biosciences, Biotechnologies and Biopharmaceutics, Laboratory of Biochemistry and Molecular Biology, University of Bari Aldo Moro, via E. Orabona 4, 70125 Bari, Italy;
| | - Magnus Monné
- Department of Biosciences, Biotechnologies and Biopharmaceutics, Laboratory of Biochemistry and Molecular Biology, University of Bari Aldo Moro, via E. Orabona 4, 70125 Bari, Italy;
- Department of Sciences, University of Basilicata, via Ateneo Lucano 10, 85100 Potenza, Italy
- Correspondence: (F.P.); (M.M.); Tel.: +39-0805443323 (F.P.)
| |
Collapse
|
10
|
Effect of Copper on the Mitochondrial Carnitine/Acylcarnitine Carrier Via Interaction with Cys136 and Cys155. Possible Implications in Pathophysiology. Molecules 2020; 25:molecules25040820. [PMID: 32070004 PMCID: PMC7070283 DOI: 10.3390/molecules25040820] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/10/2020] [Accepted: 02/11/2020] [Indexed: 12/14/2022] Open
Abstract
The effect of copper on the mitochondrial carnitine/acylcarnitine carrier (CAC) was studied. Transport function was assayed as [3H]carnitine/carnitine antiport in proteoliposomes reconstituted with the native protein extracted from rat liver mitochondria or with the recombinant CAC over-expressed in E. coli. Cu2+ (as well as Cu+) strongly inhibited the native transporter. The inhibition was reversed by GSH (reduced glutathione) or by DTE (dithioerythritol). Dose-response analysis of the inhibition of the native protein was performed from which an IC50 of 1.6 µM for Cu2+ was derived. The mechanism of inhibition was studied by using the recombinant WT or Cys site-directed mutants of CAC. From the dose-response curve of the effect of Cu2+ on the recombinant protein, an IC50 of 0.28 µM was derived. Inhibition kinetics revealed a non-competitive type of inhibition by Cu2+. However, a substrate protection experiment indicated that the interaction of Cu2+ with the protein occurred in the vicinity of the substrate-binding site. Dose-response analysis on Cys mutants led to much higher IC50 values for the mutants C136S or C155S. The highest value was obtained for the C136/155S double mutant, indicating the involvement of both Cys residues in the interaction with Cu2+. Computational analysis performed on the WT CAC and on Cys mutants showed a pattern of the binding energy mostly overlapping the binding affinity derived from the dose-response analysis. All the data concur with bridging of Cu2+ with the two Cys residues, which blocks the conformational changes required for transport cycle.
Collapse
|
11
|
Juraszek B, Nałęcz KA. SLC22A5 (OCTN2) Carnitine Transporter-Indispensable for Cell Metabolism, a Jekyll and Hyde of Human Cancer. Molecules 2019; 25:molecules25010014. [PMID: 31861504 PMCID: PMC6982704 DOI: 10.3390/molecules25010014] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/12/2019] [Accepted: 12/14/2019] [Indexed: 12/26/2022] Open
Abstract
Oxidation of fatty acids uses l-carnitine to transport acyl moieties to mitochondria in a so-called carnitine shuttle. The process of β-oxidation also takes place in cancer cells. The majority of carnitine comes from the diet and is transported to the cell by ubiquitously expressed organic cation transporter novel family member 2 (OCTN2)/solute carrier family 22 member 5 (SLC22A5). The expression of SLC22A5 is regulated by transcription factors peroxisome proliferator-activated receptors (PPARs) and estrogen receptor. Transporter delivery to the cell surface, as well as transport activity are controlled by OCTN2 interaction with other proteins, such as PDZ-domain containing proteins, protein phosphatase PP2A, caveolin-1, protein kinase C. SLC22A5 expression is altered in many types of cancer, giving an advantage to some of them by supplying carnitine for β-oxidation, thus providing an alternative to glucose source of energy for growth and proliferation. On the other hand, SLC22A5 can also transport several chemotherapeutics used in clinics, leading to cancer cell death.
Collapse
|
12
|
Giangregorio N, Tonazzi A, Console L, Pistillo M, Scalera V, Indiveri C. Tryptophan 224 of the rat mitochondrial carnitine/acylcarnitine carrier is crucial for the antiport mechanism. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1860:708-716. [PMID: 31340138 DOI: 10.1016/j.bbabio.2019.07.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 07/06/2019] [Accepted: 07/18/2019] [Indexed: 01/14/2023]
Abstract
The mitochondrial carnitine/acylcarnitine carrier (CACT) catalyzes an antiport of carnitine and acylcarnitines and also a uniport reaction with a rate of about one tenth with respect to the antiport rate. The antiport process results from the coupling of the two uniport reactions in opposite directions. In this mechanism, the transition of the carrier from the outward open conformation to the inward open one (or vice versa) is much faster for the carrier-substrate complex than for the unbound carrier. To investigate the molecular determinants that couple the binding of the substrate with the conformational transitions, site directed mutagenesis has been employed. The antiport or the uniport reaction was followed as [3H]carnitine uptake in or efflux from proteoliposomes reconstituted with the WT or Trp mutants of the rat CACT. Substitution of each the three Trp residues led to different results. Nearly no variations were observed upon substitution of W192 and/or W296 with Ala. While, substantial alteration of the transport function was observed in the mutants W224A, W224Y and W224F. Mutation of W224 led to the loss of the antiport function while the uniport function was unaltered. In these mutants impairment of the substrate affinity on the external side was also observed. The data highlights that W224 is involved in the coupling of the substrate binding with the matrix gate opening. The experimental data are in line with predictions by homology modeling of the CACT in its cytosolic (c-state) or matrix (m-state) opened conformations.
Collapse
Affiliation(s)
- Nicola Giangregorio
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnology, via Amendola 165/A, 70126 Bari, Italy
| | - Annamaria Tonazzi
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnology, via Amendola 165/A, 70126 Bari, Italy
| | - Lara Console
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Via P. Bucci 4C, 87036 Arcavacata di Rende, Italy
| | - Mariella Pistillo
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, via Orabona 4, 70126 Bari, Italy
| | - Vito Scalera
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, via Orabona 4, 70126 Bari, Italy
| | - Cesare Indiveri
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Via P. Bucci 4C, 87036 Arcavacata di Rende, Italy.
| |
Collapse
|
13
|
Porcelli V, Vozza A, Calcagnile V, Gorgoglione R, Arrigoni R, Fontanesi F, Marobbio CMT, Castegna A, Palmieri F, Palmieri L. Molecular identification and functional characterization of a novel glutamate transporter in yeast and plant mitochondria. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1859:1249-1258. [PMID: 30297026 DOI: 10.1016/j.bbabio.2018.08.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 08/01/2018] [Accepted: 08/02/2018] [Indexed: 11/19/2022]
Abstract
The genome of Saccharomyces cerevisiae encodes 35 members of the mitochondrial carrier family (MCF) and 58 MCF members are coded by the genome of Arabidopsis thaliana, most of which have been functionally characterized. Here two members of this family, Ymc2p from S. cerevisiae and BOU from Arabidopsis, have been thoroughly characterized. These proteins were overproduced in bacteria and reconstituted into liposomes. Their transport properties and kinetic parameters demonstrate that Ymc2p and BOU transport glutamate, and to a much lesser extent L-homocysteinesulfinate, but not other amino acids and many other tested metabolites. Transport catalyzed by both carriers was saturable, inhibited by mercuric chloride and dependent on the proton gradient across the proteoliposomal membrane. The growth phenotype of S. cerevisiae cells lacking the genes ymc2 and agc1, which encodes the only other S. cerevisiae carrier capable to transport glutamate besides aspartate, was fully complemented by expressing Ymc2p, Agc1p or BOU. Mitochondrial extracts derived from ymc2Δagc1Δ cells, reconstituted into liposomes, exhibited no glutamate transport at variance with wild-type, ymc2Δ and agc1Δ cells, showing that S. cerevisiae cells grown in the presence of acetate do not contain additional mitochondrial transporters for glutamate besides Ymc2p and Agc1p. Furthermore, mitochondria isolated from wild-type, ymc2Δ and agc1Δ strains, but not from the double mutant ymc2Δagc1Δ strain, swell in isosmotic ammonium glutamate showing that glutamate is transported by Ymc2p and Agc1p together with a H+. It is proposed that the function of Ymc2p and BOU is to transport glutamate across the mitochondrial inner membrane and thereby play a role in intermediary metabolism, C1 metabolism and mitochondrial protein synthesis.
Collapse
Affiliation(s)
- Vito Porcelli
- Laboratory of Biochemistry and Molecular Biology, Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
| | - Angelo Vozza
- Laboratory of Biochemistry and Molecular Biology, Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
| | - Valeria Calcagnile
- Laboratory of Biochemistry and Molecular Biology, Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
| | - Ruggiero Gorgoglione
- Laboratory of Biochemistry and Molecular Biology, Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
| | - Roberto Arrigoni
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), Bari, Italy
| | - Flavia Fontanesi
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Carlo M T Marobbio
- Laboratory of Biochemistry and Molecular Biology, Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy; CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), Bari, Italy
| | - Alessandra Castegna
- Laboratory of Biochemistry and Molecular Biology, Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy; CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), Bari, Italy
| | - Ferdinando Palmieri
- Laboratory of Biochemistry and Molecular Biology, Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy; CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), Bari, Italy
| | - Luigi Palmieri
- Laboratory of Biochemistry and Molecular Biology, Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy; CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), Bari, Italy.
| |
Collapse
|
14
|
Adeva-Andany MM, Calvo-Castro I, Fernández-Fernández C, Donapetry-García C, Pedre-Piñeiro AM. Significance of l-carnitine for human health. IUBMB Life 2017; 69:578-594. [PMID: 28653367 DOI: 10.1002/iub.1646] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 05/24/2017] [Indexed: 12/29/2022]
Abstract
Carnitine acyltransferases catalyze the reversible transfer of acyl groups from acyl-coenzyme A esters to l-carnitine, forming acyl-carnitine esters that may be transported across cell membranes. l-Carnitine is a wáter-soluble compound that humans may obtain both by food ingestion and endogenous synthesis from trimethyl-lysine. Most l-carnitine is intracellular, being present predominantly in liver, skeletal muscle, heart and kidney. The organic cation transporter-2 facilitates l-carnitine uptake inside cells. Congenital dysfunction of this transporter causes primary l-carnitine deficiency. Carnitine acetyltransferase is involved in the export of excess acetyl groups from the mitochondria and in acetylation reactions that regulate gene transcription and enzyme activity. Carnitine octanoyltransferase is a peroxysomal enzyme required for the complete oxidation of very long-chain fatty acids and phytanic acid, a branched-chain fatty acid. Carnitine palmitoyltransferase-1 is a transmembrane protein located on the outer mitochondrial membrane where it catalyzes the conversion of acyl-coenzyme A esters to acyl-carnitine esters. Carnitine acyl-carnitine translocase transports acyl-carnitine esters across the inner mitochondrial membrane in exchange for free l-carnitine that exits the mitochondrial matrix. Carnitine palmitoyltransferase-2 is anchored on the matrix side of the inner mitochondrial membrane, where it converts acyl-carnitine esters back to acyl-coenzyme A esters, which may be used in metabolic pathways, such as mitochondrial β-oxidation. l-Carnitine enhances nonoxidative glucose disposal under euglycemic hyperinsulinemic conditions in both healthy individuals and patients with type 2 diabetes, suggesting that l-carnitine strengthens insulin effect on glycogen storage. The plasma level of acyl-carnitine esters, primarily acetyl-carnitine, increases during diabetic ketoacidosis, fasting, and physical activity, particularly high-intensity exercise. Plasma concentration of free l-carnitine decreases simultaneously under these conditions. © 2017 IUBMB Life, 69(8):578-594, 2017.
Collapse
|
15
|
Taylor EB. Functional Properties of the Mitochondrial Carrier System. Trends Cell Biol 2017; 27:633-644. [PMID: 28522206 DOI: 10.1016/j.tcb.2017.04.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 04/16/2017] [Accepted: 04/18/2017] [Indexed: 11/28/2022]
Abstract
The mitochondrial carrier system (MCS) transports small molecules between mitochondria and the cytoplasm. It is integral to the core mitochondrial function to regulate cellular chemistry by metabolism. The mammalian MCS comprises the transporters of the 53-member canonical SLC25A family and a lesser number of identified noncanonical transporters. The recent discovery and investigations of the mitochondrial pyruvate carrier (MPC) illustrate the diverse effects a single mitochondrial carrier may exert on cellular function. However, the transport selectivities of many carriers remain unknown, and most have not been functionally investigated in mammalian cells. The mechanisms coordinating their function as a unified system remain undefined. Increased accessibility to molecular genetic and metabolomic technologies now greatly enables investigation of the MCS. Continued investigation of the MCS may reveal how mitochondria encode complex regulatory information within chemical thermodynamic gradients. This understanding may enable precision modulation of cellular chemistry to counteract the dysmetabolism inherent in disease.
Collapse
Affiliation(s)
- Eric B Taylor
- Department of Biochemistry, Fraternal Order of the Eagles Diabetes Center, Holden Comprehensive Cancer Center, Abboud Cardiovascular Research Center, Pappajohn Biomedical Discovery Institute, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
16
|
Tonazzi A, Giangregorio N, Console L, De Palma A, Indiveri C. Nitric oxide inhibits the mitochondrial carnitine/acylcarnitine carrier through reversible S-nitrosylation of cysteine 136. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2017; 1858:475-482. [PMID: 28438511 DOI: 10.1016/j.bbabio.2017.04.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 03/29/2017] [Accepted: 04/20/2017] [Indexed: 12/30/2022]
Abstract
S-nitrosylation of the mitochondrial carnitine/acylcarnitine transporter (CACT) has been investigated on the native and the recombinant proteins reconstituted in proteoliposomes, and on intact mitochondria. The widely-used NO-releasing compound, GSNO, strongly inhibited the antiport measured in proteoliposomes reconstituted with the native CACT from rat liver mitochondria or the recombinant rat CACT over-expressed in E. coli. Inhibition was reversed by the reducing agent dithioerythritol, indicating a reaction mechanism based on nitrosylation of Cys residues of the CACT. The half inhibition constant (IC50) was very similar for the native and recombinant proteins, i.e., 74 and 71μM, respectively. The inhibition resulted to be competitive with respect the substrate, carnitine. NO competed also with NEM, correlating well with previous data showing interference of NEM with the substrate transport path. Using a site-directed mutagenesis approach on Cys residues of the recombinant CACT, the target of NO was identified. C136 plays a major role in the reaction mechanism. The occurrence of S-nitrosylation was demonstrated in intact mitochondria after treatment with GSNO, immunoprecipitation and immunostaining of CACT with a specific anti NO-Cys antibody. In parallel samples, transport activity of CACT measured in intact mitochondria, was strongly inhibited after GSNO treatment. The possible physiological and pathological implications of the post-translational modification of CACT are discussed.
Collapse
Affiliation(s)
- Annamaria Tonazzi
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnology, via Amendola 165/A, 70126 Bari, Italy
| | - Nicola Giangregorio
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnology, via Amendola 165/A, 70126 Bari, Italy
| | - Lara Console
- Department DiBEST (Biologia, Ecologia, Scienze della Terra), Unit of Biochemistry and Molecular Biotechnology, Via Bucci 4C, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Annalisa De Palma
- Department of Bioscience, Biotechnology and Biopharmaceutics, University of Bari, Italy
| | - Cesare Indiveri
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnology, via Amendola 165/A, 70126 Bari, Italy; Department DiBEST (Biologia, Ecologia, Scienze della Terra), Unit of Biochemistry and Molecular Biotechnology, Via Bucci 4C, University of Calabria, 87036 Arcavacata di Rende, Italy.
| |
Collapse
|
17
|
Palmieri F, Monné M. Discoveries, metabolic roles and diseases of mitochondrial carriers: A review. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:2362-78. [PMID: 26968366 DOI: 10.1016/j.bbamcr.2016.03.007] [Citation(s) in RCA: 159] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 02/29/2016] [Accepted: 03/01/2016] [Indexed: 12/25/2022]
Abstract
Mitochondrial carriers (MCs) are a superfamily of nuclear-encoded proteins that are mostly localized in the inner mitochondrial membrane and transport numerous metabolites, nucleotides, cofactors and inorganic anions. Their unique sequence features, i.e., a tripartite structure, six transmembrane α-helices and a three-fold repeated signature motif, allow MCs to be easily recognized. This review describes how the functions of MCs from Saccharomyces cerevisiae, Homo sapiens and Arabidopsis thaliana (listed in the first table) were discovered after the genome sequence of S. cerevisiae was determined in 1996. In the genomic era, more than 50 previously unknown MCs from these organisms have been identified and characterized biochemically using a method consisting of gene expression, purification of the recombinant proteins, their reconstitution into liposomes and transport assays (EPRA). Information derived from studies with intact mitochondria, genetic and metabolic evidence, sequence similarity, phylogenetic analysis and complementation of knockout phenotypes have guided the choice of substrates that were tested in the transport assays. In addition, the diseases associated to defects of human MCs have been briefly reviewed. This article is part of a Special Issue entitled: Mitochondrial Channels edited by Pierre Sonveaux, Pierre Maechler and Jean-Claude Martinou.
Collapse
Affiliation(s)
- Ferdinando Palmieri
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Via E. Orabona 4, 70125 Bari, Italy.
| | - Magnus Monné
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Via E. Orabona 4, 70125 Bari, Italy; Department of Sciences, University of Basilicata, Via Ateneo Lucano 10, 85100 Potenza, Italy
| |
Collapse
|
18
|
Giangregorio N, Console L, Tonazzi A, Palmieri F, Indiveri C. Identification of amino acid residues underlying the antiport mechanism of the mitochondrial carnitine/acylcarnitine carrier by site-directed mutagenesis and chemical labeling. Biochemistry 2014; 53:6924-33. [PMID: 25325845 DOI: 10.1021/bi5009112] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The mitochondrial carnitine/acylcarnitine carrier catalyzes the transport of carnitine and acylcarnitines by antiport as well as by uniport with a rate slower than the rate of antiport. The mechanism of antiport resulting from coupling of two opposed uniport reactions was investigated by site-directed mutagenesis. The transport reaction was followed as [(3)H]carnitine uptake in or efflux from proteoliposomes reconstituted with the wild type or mutants, in the presence or absence of a countersubstrate. The ratio between the antiport and uniport rates for the wild type was 3.0 or 2.5, using the uptake or efflux procedure, respectively. This ratio did not vary substantially in mutants H29A, K35R, G121A, E132A, K135A, R178A, D179E, E191A, K194A, K234A, and E288A. A ratio of 1.0 was measured for mutant K35A, indicating a loss of antiport function by this mutant. Ratios of >1.0 but significantly lower than that of the wild type were measured for mutants D32A, K97A, and D231A, indicating the involvement of these residues in the antiport mechanism. To investigate the role of the countersubstrate in the conformational changes underlying the transport reaction, the m-state of the transporter (opened toward the matrix side) was specifically labeled with N-ethylmaleimide while the c-state of the carrier (opened toward the cytosolic side) was labeled with fluorescein maleimide. The labeling results indicated that the addition of an external substrate, on one hand, reduced the amount of protein in the m-state and, on the other, increased the protein fraction in the c-state. This substrate-induced conformational change was abolished in the protein lacking K35, pointing to the role of this residue as a sensor in the mechanism of the antiport reaction.
Collapse
Affiliation(s)
- Nicola Giangregorio
- CNR Institute of Biomembranes and Bioenergetics , via Amendola 165/A, 70126 Bari, Italy
| | | | | | | | | |
Collapse
|
19
|
Porcelli V, Fiermonte G, Longo A, Palmieri F. The human gene SLC25A29, of solute carrier family 25, encodes a mitochondrial transporter of basic amino acids. J Biol Chem 2014; 289:13374-84. [PMID: 24652292 DOI: 10.1074/jbc.m114.547448] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human genome encodes 53 members of the solute carrier family 25 (SLC25), also called the mitochondrial carrier family, many of which have been shown to transport carboxylates, amino acids, nucleotides, and cofactors across the inner mitochondrial membrane, thereby connecting cytosolic and matrix functions. In this work, a member of this family, SLC25A29, previously reported to be a mitochondrial carnitine/acylcarnitine- or ornithine-like carrier, has been thoroughly characterized biochemically. The SLC25A29 gene was overexpressed in Escherichia coli, and the gene product was purified and reconstituted in phospholipid vesicles. Its transport properties and kinetic parameters demonstrate that SLC25A29 transports arginine, lysine, homoarginine, methylarginine and, to a much lesser extent, ornithine and histidine. Carnitine and acylcarnitines were not transported by SLC25A29. This carrier catalyzed substantial uniport besides a counter-exchange transport, exhibited a high transport affinity for arginine and lysine, and was saturable and inhibited by mercurial compounds and other inhibitors of mitochondrial carriers to various degrees. The main physiological role of SLC25A29 is to import basic amino acids into mitochondria for mitochondrial protein synthesis and amino acid degradation.
Collapse
Affiliation(s)
- Vito Porcelli
- From the Department of Biosciences, Biotechnologies and Biopharmaceutics, Laboratory of Biochemistry and Molecular Biology and
| | | | | | | |
Collapse
|
20
|
Abstract
The mitochondrion relies on compartmentalization of certain enzymes, ions and metabolites for the sake of efficient metabolism. In order to fulfil its activities, a myriad of carriers are properly expressed, targeted and folded in the inner mitochondrial membrane. Among these carriers, the six-transmembrane-helix mitochondrial SLC25 (solute carrier family 25) proteins facilitate transport of solutes with disparate chemical identities across the inner mitochondrial membrane. Although their proper function replenishes building blocks needed for metabolic reactions, dysfunctional SLC25 proteins are involved in pathological states. It is the purpose of the present review to cover the current knowledge on the role of SLC25 transporters in health and disease.
Collapse
|
21
|
Glutathione controls the redox state of the mitochondrial carnitine/acylcarnitine carrier Cys residues by glutathionylation. Biochim Biophys Acta Gen Subj 2013; 1830:5299-304. [PMID: 23948593 DOI: 10.1016/j.bbagen.2013.08.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 07/26/2013] [Accepted: 08/05/2013] [Indexed: 01/13/2023]
Abstract
BACKGROUND The mitochondrial carnitine/acylcarnitine carrier (CAC) is essential for cell metabolism since it catalyzes the transport of acylcarnitines into mitochondria allowing the β-oxidation of fatty acids. CAC functional and structural properties have been characterized. Cys residues which could form disulfides suggest the involvement of CAC in redox switches. METHODS The effect of GSH and GSSG on the [(3)H]-carnitine/carnitine antiport catalyzed by the CAC in proteoliposomes has been studied. The Cys residues involved in the redox switch have been identified by site-directed mutagenesis. Glutathionylated CAC has been assessed by glutathionyl-protein specific antibody. RESULTS GSH led to increase of transport activity of the CAC extracted from liver mitochondria. A similar effect was observed on the recombinant CAC. The presence of glutaredoxin-1 (Grx1) accelerated the GSH activation of the recombinant CAC. The effect was more evident at 37°C. GSSG led to transport inhibition which was reversed by dithioerythritol (DTE). The effects of GSH and GSSG were studied on CAC Cys-mutants. CAC lacking C136 and C155 was insensitive to both reagents. Mutants containing these two Cys responded as the wild-type. Anti-glutathionyl antibody revealed the formation of glutathionylated CAC. CONCLUSIONS CAC is redox-sensitive and it is regulated by the GSH/GSSG couple. C136 and C155 are responsible for the regulation which occurs through glutathionylation. GENERAL SIGNIFICANCE CAC is sensitive to the redox state of the cell switching between oxidized and reduced forms in response to variation of GSSG and GSH concentrations.
Collapse
|
22
|
Tonazzi A, Console L, Indiveri C. Inhibition of mitochondrial carnitine/acylcarnitine transporter by H2O2: Molecular mechanism and possible implication in pathophysiology. Chem Biol Interact 2013; 203:423-9. [DOI: 10.1016/j.cbi.2013.01.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Revised: 01/14/2013] [Accepted: 01/31/2013] [Indexed: 12/29/2022]
|
23
|
Transcriptional Regulation of the Mitochondrial Citrate and Carnitine/Acylcarnitine Transporters: Two Genes Involved in Fatty Acid Biosynthesis and β-oxidation. BIOLOGY 2013; 2:284-303. [PMID: 24832661 PMCID: PMC4009865 DOI: 10.3390/biology2010284] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 01/18/2013] [Accepted: 01/23/2013] [Indexed: 12/17/2022]
Abstract
Transcriptional regulation of genes involved in fatty acid metabolism is considered the major long-term regulatory mechanism controlling lipid homeostasis. By means of this mechanism, transcription factors, nutrients, hormones and epigenetics control not only fatty acid metabolism, but also many metabolic pathways and cellular functions at the molecular level. The regulation of the expression of many genes at the level of their transcription has already been analyzed. This review focuses on the transcriptional control of two genes involved in fatty acid biosynthesis and oxidation: the citrate carrier (CIC) and the carnitine/ acylcarnitine/carrier (CAC), which are members of the mitochondrial carrier gene family, SLC25. The contribution of tissue-specific and less tissue-specific transcription factors in activating or repressing CIC and CAC gene expression is discussed. The interaction with drugs of some transcription factors, such as PPAR and FOXA1, and how this interaction can be an attractive therapeutic approach, has also been evaluated. Moreover, the mechanism by which the expression of the CIC and CAC genes is modulated by coordinated responses to hormonal and nutritional changes and to epigenetics is highlighted.
Collapse
|
24
|
Palmieri F. The mitochondrial transporter family SLC25: identification, properties and physiopathology. Mol Aspects Med 2012; 34:465-84. [PMID: 23266187 DOI: 10.1016/j.mam.2012.05.005] [Citation(s) in RCA: 438] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 04/06/2012] [Indexed: 11/30/2022]
Abstract
SLC25 is a large family of nuclear-encoded transporters embedded in the inner mitochondrial membrane and in a few cases other organelle membranes. The members of this superfamily are widespread in eukaryotes and involved in numerous metabolic pathways and cell functions. They can be easily recognized by their striking sequence features, i.e., a tripartite structure, six transmembrane α-helices and a 3-fold repeated signature motifs. SLC25 members vary greatly in the nature and size of their transported substrates, modes of transport (i.e., uniport, symport or antiport) and driving forces, although the molecular mechanism of substrate translocation may be basically the same. Based on substrate specificity, 24 subfamilies, well conserved throughout evolution, have been functionally characterized mainly by transport assays upon heterologous gene expression, purification and reconstitution into liposomes. Several other SLC25 family members remain to be characterized. In recent years mutations in the SLC25 genes have been shown to be responsible for 11 diseases, highlighting the important role of SLC25 in metabolism.
Collapse
Affiliation(s)
- Ferdinando Palmieri
- Department of Biosciences, Biotechnology and Pharmacological Sciences, Laboratory of Biochemistry and Molecular Biology, University of Bari, Via Orabona 4, 70125 Bari, Italy.
| |
Collapse
|
25
|
Acylcarnitine profile in thyroid disease. Clin Biochem 2012; 46:180-3. [PMID: 23089106 DOI: 10.1016/j.clinbiochem.2012.10.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 10/04/2012] [Accepted: 10/11/2012] [Indexed: 11/21/2022]
Abstract
OBJECTIVES To examine acylcarnitine profiles in individuals with hypo- or hyperthyroidism, and determine whether any atypical acylcarnitine species identified would normalize with correction of thyroid status. DESIGN AND METHODS Serum acylcarnitine levels were measured in hypo- and hyperthyroid subjects before and after treatment with thyroxine or thionamide therapy respectively. RESULTS No discernible differences were observed in the serum acylcarnitine profiles between hypo-, hyper- and euthyroid states. CONCLUSIONS Acylcarnitine profiles are relatively unremarkable in thyroid disease.
Collapse
|
26
|
Priore P, Stanca E, Gnoni GV, Siculella L. Dietary fat types differently modulate the activity and expression of mitochondrial carnitine/acylcarnitine translocase in rat liver. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1821:1341-9. [PMID: 22819991 DOI: 10.1016/j.bbalip.2012.07.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 06/21/2012] [Accepted: 07/11/2012] [Indexed: 01/08/2023]
Abstract
The carnitine/acylcarnitine translocase (CACT), an integral protein of the mitochondrial inner membrane, belongs to the carnitine-dependent system of fatty acid transport into mitochondria, where beta-oxidation occurs. CACT exchanges cytosolic acylcarnitine or free carnitine for carnitine in the mitochondrial matrix. The object of this study was to investigate in rat liver the effect, if any, of diets enriched with saturated fatty acids (beef tallow, BT, the control), n-3 polyunsaturated fatty acids (PUFA) (fish oil, FO), n-6 PUFA (safflower oil, SO), and mono-unsaturated fatty acids (MUFA) (olive oil, OO) on the activity and expression of CACT. Translocase exchange rates increased, in parallel with CACT mRNA abundance, upon FO-feeding, whereas OO-dietary treatment induced a decrease in both CACT activity and expression. No changes were observed upon SO-feeding. Nuclear run-on assay revealed that FO-treatment increased the transcriptional rate of CACT mRNA. On the other hand, only in the nuclei of hepatocytes from OO-fed rats splicing of the last intron of CACT pre-mRNA and the rate of formation of the 3'-end were affected. Overall, these findings suggest that compared to the BT-enriched diet, the SO-enriched diet did not influence CACT activity and expression, whereas FO- and OO-feeding alters CACT activity in an opposite fashion, i.e. modulating its expression at transcriptional and post-transcriptional levels, respectively.
Collapse
Affiliation(s)
- Paola Priore
- Laboratory of Biochemistry and Molecular Biology, Department of Biological and Environmental Sciences and Technologies, University of Salento, via Prov.le Lecce-Monteroni, Italy
| | | | | | | |
Collapse
|
27
|
Tonazzi A, Console L, Giangregorio N, Indiveri C, Palmieri F. Identification by site-directed mutagenesis of a hydrophobic binding site of the mitochondrial carnitine/acylcarnitine carrier involved in the interaction with acyl groups. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:697-704. [PMID: 22365929 DOI: 10.1016/j.bbabio.2012.02.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 01/30/2012] [Accepted: 02/07/2012] [Indexed: 10/28/2022]
Abstract
The role of hydrophobic residues of the mitochondrial carnitine/acylcarnitine carrier (CAC) in the inhibition by acylcarnitines has been investigated by site-directed mutagenesis. According to the homology model of CAC in cytosolic opened conformation (c-state), L14, G17, G21, V25, P78, V82, M85, C89, F93, A276, A279, C283, F287 are located in the 1st (H1), 2nd (H2) and 6th (H6) transmembrane α-helices and exposed in the central cavity, forming a hydrophobic half shell. These residues have been substituted with A (or G) and in some cases with M. Mutants have been assayed for transport activity measured as [(3)H]carnitine/carnitine antiport in proteoliposomes. With the exception of G17A and G21M, mutants exhibited activity from 20% to 100% of WT. Among the active mutants only G21A, V25M, P78A and P78M showed Vmax lower than half and/or Km more than two fold respect to WT. Acylcarnitines competitively inhibited carnitine antiport. The extent of inhibition of the mutants by acylcarnitines with acyl chain length of 2, 4, 8, 12, 14 and 16 has been compared with the WT. V25A, P78A, P78M and A279G showed reduced extent of inhibition by all the acylcarnitines; V25M showed reduced inhibition by shorter acylcarnitines; V82A, V82M, M85A, C89A and A276G showed reduced inhibition by longer acylcarnitines, respect to WT. C283A showed increased extent of inhibition by acylcarnitines. Variations of Ki of mutants for acylcarnitines reflected variations of the inhibition profiles. The data demonstrated that V25, P78, V82, M85 and C89 are involved in the acyl chain binding to the CAC in c-state.
Collapse
Affiliation(s)
- Annamaria Tonazzi
- Department of Biosciences, Biotechnology and Pharmacological Sciences, Laboratory of Biochemistry and Molecular Biology, University of Bari, 70125 Bari, Italy
| | | | | | | | | |
Collapse
|
28
|
Oh TS, Yun JW. DNA microarray analysis reveals differential gene expression in the soleus muscle between male and female rats exposed to a high fat diet. Mol Biol Rep 2012; 39:6569-80. [PMID: 22307788 DOI: 10.1007/s11033-012-1486-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Accepted: 01/24/2012] [Indexed: 01/15/2023]
Abstract
It is well recognized that diet-induced dysfunctions in skeletal muscle are closely related with many metabolic diseases, such as obesity and diabetes. In the present study, we identified global changes in gender-dependent gene expressions in the soleus muscle of lean and obese rats fed a high fat diet (HFD), using DNA microarray analysis. Prior to microarray analysis, the body weight gains were found to be higher in male HFD rats than the female HFD rats. To better understand the detailed phenotypic differences in response to HFD feeding, we identified differential gene expression in soleus muscle between the genders. To this end, we extracted and summarized the genes that were up- or down-regulated more than 1.5-fold between the genders in the microarray data. As expected, a greater number of genes encoding myofibrillar proteins and glycolytic proteins were expressed higher in males than females when exposed to HFD, reflecting greater muscular activity and higher capacity for utilizing glucose as an energy fuel. However, a series of genes involved in oxidative metabolism and cellular defenses were more up-regulated in females than males. These results allowed us to conclude that compared to males, females have greater fat clearing capacity in skeletal muscle through the activation of genes encoding enzymes for fat oxidation. In conclusion, our microarray data provide a better understanding of the molecular events underlying gender dimorphism in soleus muscle, and will provide valuable information in improving gender awareness in the health care system.
Collapse
Affiliation(s)
- Tae Seok Oh
- Department of Biotechnology, Daegu University, Kyungsan, Kyungbuk, Republic of Korea
| | | |
Collapse
|
29
|
Monné M, Miniero DV, Daddabbo L, Robinson AJ, Kunji ERS, Palmieri F. Substrate specificity of the two mitochondrial ornithine carriers can be swapped by single mutation in substrate binding site. J Biol Chem 2012; 287:7925-34. [PMID: 22262851 DOI: 10.1074/jbc.m111.324855] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mitochondrial carriers are a large family of proteins that transport specific metabolites across the inner mitochondrial membrane. Sequence and structure analysis has indicated that these transporters have substrate binding sites in a similar location of the central cavity consisting of three major contact points. Here we have characterized mutations of the proposed substrate binding site in the human ornithine carriers ORC1 and ORC2 by carrying out transport assays with a set of different substrates. The different substrate specificities of the two isoforms, which share 87% identical amino acids, were essentially swapped by exchanging a single residue located at position 179 that is arginine in ORC1 and glutamine in ORC2. Altogether the substrate specificity changes demonstrate that Arg-179 and Glu-180 of contact point II bind the C(α) carboxylate and amino group of the substrates, respectively. Residue Glu-77 of contact point I most likely interacts with the terminal amino group of the substrate side chain. Furthermore, it is likely that all three contact points are involved in the substrate-induced conformational changes required for substrate translocation because Arg-179 is probably connected with Arg-275 of contact point III through Trp-224 by cation-π interactions. Mutations at position 179 also affected the turnover number of the ornithine carrier severely, implying that substrate binding to residue 179 is a rate-limiting step of the catalytic transport cycle. Given that Arg-179 is located in the vicinity of the matrix gate, it is concluded that it is a key residue in the opening of the carrier to the matrix side.
Collapse
Affiliation(s)
- Magnus Monné
- Department of Pharmaco-Biology, Laboratory of Biochemistry and Molecular Biology, University of Bari, Via E. Orabona 4, 70125 Bari, Italy
| | | | | | | | | | | |
Collapse
|
30
|
Piomboni P, Focarelli R, Stendardi A, Ferramosca A, Zara V. The role of mitochondria in energy production for human sperm motility. ACTA ACUST UNITED AC 2011; 35:109-24. [DOI: 10.1111/j.1365-2605.2011.01218.x] [Citation(s) in RCA: 245] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
31
|
Indiveri C, Iacobazzi V, Tonazzi A, Giangregorio N, Infantino V, Convertini P, Console L, Palmieri F. The mitochondrial carnitine/acylcarnitine carrier: Function, structure and physiopathology. Mol Aspects Med 2011; 32:223-33. [DOI: 10.1016/j.mam.2011.10.008] [Citation(s) in RCA: 161] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Accepted: 10/11/2011] [Indexed: 01/01/2023]
|
32
|
Palmieri F, Pierri CL, De Grassi A, Nunes-Nesi A, Fernie AR. Evolution, structure and function of mitochondrial carriers: a review with new insights. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 66:161-81. [PMID: 21443630 DOI: 10.1111/j.1365-313x.2011.04516.x] [Citation(s) in RCA: 176] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The mitochondrial carriers (MC) constitute a large family (MCF) of inner membrane transporters displaying different substrate specificities, patterns of gene expression and even non-mitochondrial organelle localization. In Arabidopsis thaliana 58 genes encode these six trans-membrane domain proteins. The number in other sequenced plant genomes varies from 37 to 125, thus being larger than that of Saccharomyces cerevisiae and comparable with that of Homo sapiens. In addition to displaying highly similar secondary structures, the proteins of the MCF can be subdivided into subfamilies on the basis of substrate specificity and the presence of specific symmetry-related amino acid triplets. We assessed the predictive power of these triplets by comparing predictions with experimentally determined data for Arabidopsis MCs, and applied these predictions to the not yet functionally characterized mitochondrial carriers of the grass, Brachypodium distachyon, and the alga, Ostreococcus lucimarinus. We additionally studied evolutionary aspects of the plant MCF by comparing sequence data of the Arabidopsis MCF with those of Saccharomyces cerevisiae and Homo sapiens, then with those of Brachypodium distachyon and Ostreococcus lucimarinus, employing intra- and inter-genome comparisons. Finally, we discussed the importance of the approaches of global gene expression analysis and in vivo characterizations in order to address the relevance of these vital carrier proteins.
Collapse
Affiliation(s)
- Ferdinando Palmieri
- Laboratory of Biochemistry and Molecular Biology, Department of Pharmaco-Biology, University of Bari, Via Orabona 4, 70125 Bari, Italy.
| | | | | | | | | |
Collapse
|
33
|
Role of FOXA and Sp1 in mitochondrial acylcarnitine carrier gene expression in different cell lines. Biochem Biophys Res Commun 2011; 404:376-81. [DOI: 10.1016/j.bbrc.2010.11.126] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Accepted: 11/29/2010] [Indexed: 12/11/2022]
|
34
|
Site-directed mutagenesis of charged amino acids of the human mitochondrial carnitine/acylcarnitine carrier: Insight into the molecular mechanism of transport. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:839-45. [DOI: 10.1016/j.bbabio.2010.03.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Revised: 03/03/2010] [Accepted: 03/19/2010] [Indexed: 11/19/2022]
|
35
|
Palmieri F, Pierri CL. Structure and function of mitochondrial carriers - role of the transmembrane helix P and G residues in the gating and transport mechanism. FEBS Lett 2009; 584:1931-9. [PMID: 19861126 DOI: 10.1016/j.febslet.2009.10.063] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Revised: 10/21/2009] [Accepted: 10/21/2009] [Indexed: 12/19/2022]
Abstract
To date, 22 mitochondrial carrier subfamilies have been functionally identified based on substrate specificity. Structural, functional and bioinformatics studies have pointed to the existence in the mitochondrial carrier superfamily of a substrate-binding site in the internal carrier cavity, of two salt-bridge networks or gates that close the cavity alternatively on the matrix or the cytosolic side of the membrane, and of conserved prolines and glycines in the transmembrane alpha-helices. The significance of these properties in the structural changes occurring during the catalytic substrate translocation cycle are discussed within the context of a transport mechanism model. Most experimentally produced and disease-causing missense mutations concern carrier regions corresponding to the substrate-binding site, the two gates and the conserved prolines and glycines.
Collapse
Affiliation(s)
- Ferdinando Palmieri
- Department of Pharmaco-Biology, Laboratory of Biochemistry and Molecular Biology, University of Bari, Bari, Italy.
| | | |
Collapse
|
36
|
Tachibana K, Takeuchi K, Inada H, Yamasaki D, Ishimoto K, Tanaka T, Hamakubo T, Sakai J, Kodama T, Doi T. Regulation of the human SLC25A20 expression by peroxisome proliferator-activated receptor alpha in human hepatoblastoma cells. Biochem Biophys Res Commun 2009; 389:501-5. [PMID: 19748481 DOI: 10.1016/j.bbrc.2009.09.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Accepted: 09/02/2009] [Indexed: 11/19/2022]
Abstract
Solute carrier family 25, member 20 (SLC25A20) is a key molecule that transfers acylcarnitine esters in exchange for free carnitine across the mitochondrial membrane in the mitochondrial beta-oxidation. The peroxisome proliferator-activated receptor alpha (PPARalpha) is a ligand-activated transcription factor that plays an important role in the regulation of beta-oxidation. We previously established tetracycline-regulated human cell line that can be induced to express PPARalpha and found that PPARalpha induces the SLC25A20 expression. In this study, we analyzed the promoter region of the human slc25a20 gene and showed that PPARalpha regulates the expression of human SLC25A20 via the peroxisome proliferator responsive element.
Collapse
Affiliation(s)
- Keisuke Tachibana
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Vanhoutvin SALW, Troost FJ, Hamer HM, Lindsey PJ, Koek GH, Jonkers DMAE, Kodde A, Venema K, Brummer RJM. Butyrate-induced transcriptional changes in human colonic mucosa. PLoS One 2009; 4:e6759. [PMID: 19707587 PMCID: PMC2727000 DOI: 10.1371/journal.pone.0006759] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Accepted: 07/09/2009] [Indexed: 12/13/2022] Open
Abstract
Background Fermentation of dietary fiber in the colon results in the production of short chain fatty acids (mainly propionate, butyrate and acetate). Butyrate modulates a wide range of processes, but its mechanism of action is mostly unknown. This study aimed to determine the effects of butyrate on the transcriptional regulation of human colonic mucosa in vivo. Methodology/Principal Findings Five hundred genes were found to be differentially expressed after a two week daily butyrate administration with enemas. Pathway analysis showed that the butyrate intervention mainly resulted in an increased transcriptional regulation of the pathways representing fatty acid oxidation, electron transport chain and oxidative stress. In addition, several genes associated with epithelial integrity and apoptosis, were found to be differentially expressed after the butyrate intervention. Conclusions/Significance Colonic administration of butyrate in concentrations that can be achieved by consumption of a high-fiber diet enhances the maintenance of colonic homeostasis in healthy subjects, by regulating fatty acid metabolism, electron transport and oxidative stress pathways on the transcriptional level and provide for the first time, detailed molecular insight in the transcriptional response of gut mucosa to butyrate.
Collapse
|
38
|
Site-directed mutagenesis of the His residues of the rat mitochondrial carnitine/acylcarnitine carrier: Implications for the role of His-29 in the transport pathway. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2009; 1787:1009-15. [DOI: 10.1016/j.bbabio.2009.02.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Revised: 02/20/2009] [Accepted: 02/23/2009] [Indexed: 11/21/2022]
|
39
|
Ide T, Lim JS, Odbayar TO, Nakashima Y. Comparative study of sesame lignans (sesamin, episesamin and sesamolin) affecting gene expression profile and fatty acid oxidation in rat liver. J Nutr Sci Vitaminol (Tokyo) 2009; 55:31-43. [PMID: 19352061 DOI: 10.3177/jnsv.55.31] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The impact of sesamin, episesamin and sesamolin (sesame lignans) on hepatic gene expression profiles was compared with a DNA microarray. Male Sprague-Dawley rats were fed experimental diets containing 0.2% sesamin, episesamin or sesamolin, and a control diet free of lignans for 15 d. Compared to a lignan-free diet, a diet containing sesamin, episesamin and sesamolin caused 1.5- and 2-fold changes in the expression of 128 and 40, 526 and 152, and 516 and 140 genes, respectively. The lignans modified not only the mRNA levels of many enzymes involved in hepatic fatty acid oxidation, but also those of proteins involved in the transportation of fatty acids into hepatocytes and their organelles, and regulating hepatic concentrations of carnitine, CoA and malonyl-CoA. It is apparent that sesame lignans stimulate hepatic fatty acid oxidation by affecting the gene expression of various proteins regulating hepatic fatty acid metabolism. We also observed that lignans modified the gene expression of various proteins involved in hepatic lipogenesis, cholesterogenesis and glucose metabolism. The changes were generally greater with episesamin and sesamolin than with sesamin. In terms of the amounts accumulated in serum and the liver, the lignans ranked in the order sesamolin, episesamin and sesamin. The differences in bio-availability among these lignans appear to be important to their divergent physiological activities.
Collapse
Affiliation(s)
- Takashi Ide
- Laboratory of Nutritional Function, National Food Research Institute, 2-1-12 Kannondai, Tsukuba 305-8642, Japan.
| | | | | | | |
Collapse
|
40
|
Palmieri F. Diseases caused by defects of mitochondrial carriers: A review. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2008; 1777:564-78. [DOI: 10.1016/j.bbabio.2008.03.008] [Citation(s) in RCA: 179] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Accepted: 03/18/2008] [Indexed: 11/28/2022]
|
41
|
Oppedisano F, Fanello D, Calvani M, Indiveri C. Interaction of mildronate with the mitochondrial carnitine/acylcarnitine transport protein. J Biochem Mol Toxicol 2008; 22:8-14. [PMID: 18273902 DOI: 10.1002/jbt.20208] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The interaction of mildronate [3-(2,2,2-trimethylhydrazine) propionate] with the purified mitochondrial carnitine/acylcarnitine transporter reconstituted in liposomes has been studied. Mildronate, externally added to the proteoliposomes, strongly inhibited the carnitine/carnitine antiport catalyzed by the reconstituted transporter with an IC(50) of 560 muM. A kinetic analysis revealed that the inhibition is completely competitive, that is, mildronate interacts with the substrate-binding site. The half-saturation constant of the transporter for external mildronate (K(i)) is 530 muM. Carnitine/mildronate antiport has been measured as [(3)H]carnitine uptake into proteoliposomes containing internal mildronate or as [(3)H]carnitine efflux from proteoliposomes in the presence of external mildronate, indicating that mildronate is transported by the carnitine/acylcarnitine transporter and that the inhibition observed was due to the transport of mildronate in the place of carnitine. The intraliposomal half-saturation constant for mildronate transport (K(m)) has been determined. Its value, 18 mM, is much higher than the external half-saturation constant (K(i)) in agreement with the asymmetric properties of the transporter. In vivo, the antiport reaction between cytosolic (administered) mildronate and matrix carnitine may cause intramitochondrial carnitine depletion. This effect, together with the inhibition of the physiological transport, will lead to impairment of fatty acid utilization.
Collapse
Affiliation(s)
- Francesca Oppedisano
- Department of Cell Biology, University of Calabria, Via P.Bucci 4c, 87036 Arcavacata di Rende, Italy
| | | | | | | |
Collapse
|
42
|
Berkich DA, Ola MS, Cole J, Sweatt AJ, Hutson SM, LaNoue KF. Mitochondrial transport proteins of the brain. J Neurosci Res 2008; 85:3367-77. [PMID: 17847082 DOI: 10.1002/jnr.21500] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In this study, cellular distribution and activity of glutamate and gamma-aminobutyric acid (GABA) transport as well as oxoglutarate transport across brain mitochondrial membranes were investigated. A goal was to establish cell-type-specific expression of key transporters and enzymes involved in neurotransmitter metabolism in order to estimate neurotransmitter and metabolite traffic between neurons and astrocytes. Two methods were used to isolate brain mitochondria. One method excludes synaptosomes and the organelles may therefore be enriched in astrocytic mitochondria. The other method isolates mitochondria derived from all regions of the brain. Immunological and enzymatic methods were used to measure enzymes and carriers in the different preparations, in addition to studying transport kinetics. Immunohistochemistry was also employed using brain slices to confirm cell type specificity of enzymes and carriers. The data suggest that the aspartate/glutamate carriers (AGC) are expressed predominantly in neurons, not astrocytes, and that one of two glutamate/hydroxyl carriers is expressed predominantly in astrocytes. The GABA carrier and the oxoglutarate carrier appear to be equally distributed in astrocytes and neurons. As expected, pyruvate carboxylase and branched-chain aminotransferase were predominantly astrocytic. Insofar as the aspartate/glutamate exchange carriers are required for the malate/aspartate shuttle and for reoxidation of cytosolic NADH, the data suggest a compartmentation of glucose metabolism in which astrocytes catalyze glycolytic conversion of glucose to lactate, whereas neurons are capable of oxidizing both lactate and glucose to CO(2) + H(2)O.
Collapse
Affiliation(s)
- D A Berkich
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | | | | | | | | | | |
Collapse
|
43
|
Conformation-dependent accessibility of Cys-136 and Cys-155 of the mitochondrial rat carnitine/acylcarnitine carrier to membrane-impermeable SH reagents. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2007; 1767:1331-9. [DOI: 10.1016/j.bbabio.2007.08.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2007] [Revised: 08/29/2007] [Accepted: 08/30/2007] [Indexed: 11/23/2022]
|
44
|
Korman SH, Pitt JJ, Boneh A, Dweikat I, Zater M, Meiner V, Gutman A, Brivet M. A novel SLC25A20 splicing mutation in patients of different ethnic origin with neonatally lethal carnitine-acylcarnitine translocase (CACT) deficiency. Mol Genet Metab 2006; 89:332-8. [PMID: 16919490 DOI: 10.1016/j.ymgme.2006.06.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2006] [Revised: 06/21/2006] [Accepted: 06/21/2006] [Indexed: 11/15/2022]
Abstract
Carnitine-acylcarnitine translocase (CACT) deficiency is a rare disorder of fatty acid oxidation associated with high mortality. Two female newborns of different ethnic origin (the first Anglo-Celtic and the second Palestinian Arab) both died after sudden collapse on day 2 of life. Both had elevated bloodspot long-chain acylcarnitines consistent with either CACT or carnitine palmitoyltransferase II (CPT2) deficiency; the latter was excluded by demonstrating normal CPT2 activity in fibroblasts. Direct sequencing of all SLC25A20 (CACT) gene exons and exon-intron boundaries revealed that Patient 1 was compound heterozygous for a novel c.609-3c>g (IVS6-3c>g) mutation on the paternal allele and a previously described c.326delG mutation on the maternal allele. Patient 2 was homozygous for the same, novel c.609-3c>g mutation. Previously reported SLC25A20 mutations have been almost exclusively confined to a single family or ethnic group. Analysis of fibroblast cDNA by RT-PCR, agarose gel electrophoresis and sequencing of extracted bands showed that both mutations produce aberrant splicing. c.609-3C>G results in exon 7 skipping leading to a frameshift with premature termination seven amino acids downstream. c.326delG was confirmed to produce skipping of exons 3 or 3 plus 4. CACT activity in both patients' fibroblasts was near-zero. For both families, prenatal diagnosis of an unaffected fetus was performed by mutation analysis on CVS tissue in a subsequent pregnancy. Due to the urgency of prenatal diagnosis in the second family, molecular diagnosis was performed prior to demonstration of CACT enzyme deficiency, illustrating that mutation analysis is a rapid and reliable approach to first-line diagnosis of CACT deficiency.
Collapse
Affiliation(s)
- Stanley H Korman
- Department of Clinical Biochemistry, Hadassah - Hebrew University Medical Center, Jerusalem, Israel.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Palmieri F, Agrimi G, Blanco E, Castegna A, Di Noia MA, Iacobazzi V, Lasorsa FM, Marobbio CMT, Palmieri L, Scarcia P, Todisco S, Vozza A, Walker J. Identification of mitochondrial carriers in Saccharomyces cerevisiae by transport assay of reconstituted recombinant proteins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2006; 1757:1249-62. [PMID: 16844075 DOI: 10.1016/j.bbabio.2006.05.023] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2006] [Revised: 05/12/2006] [Accepted: 05/16/2006] [Indexed: 10/24/2022]
Abstract
The inner membranes of mitochondria contain a family of carrier proteins that are responsible for the transport in and out of the mitochondrial matrix of substrates, products, co-factors and biosynthetic precursors that are essential for the function and activities of the organelle. This family of proteins is characterized by containing three tandem homologous sequence repeats of approximately 100 amino acids, each folded into two transmembrane alpha-helices linked by an extensive polar loop. Each repeat contains a characteristic conserved sequence. These features have been used to determine the extent of the family in genome sequences. The genome of Saccharomyces cerevisiae contains 34 members of the family. The identity of five of them was known before the determination of the genome sequence, but the functions of the remaining family members were not. This review describes how the functions of 15 of these previously unknown transport proteins have been determined by a strategy that consists of expressing the genes in Escherichia coli or Saccharomyces cerevisiae, reconstituting the gene products into liposomes and establishing their functions by transport assay. Genetic and biochemical evidence as well as phylogenetic considerations have guided the choice of substrates that were tested in the transport assays. The physiological roles of these carriers have been verified by genetic experiments. Various pieces of evidence point to the functions of six additional members of the family, but these proposals await confirmation by transport assay. The sequences of many of the newly identified yeast carriers have been used to characterize orthologs in other species, and in man five diseases are presently known to be caused by defects in specific mitochondrial carrier genes. The roles of eight yeast mitochondrial carriers remain to be established.
Collapse
Affiliation(s)
- Ferdinando Palmieri
- Department of Pharmaco-Biology, Laboratory of Biochemistry and Molecular Biology, University of Bari, Via E. Orabona 4, 70125 Bari, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Del Arco A. Novel variants of human SCaMC-3, an isoform of the ATP-Mg/P(i) mitochondrial carrier, generated by alternative splicing from 3'-flanking transposable elements. Biochem J 2005; 389:647-55. [PMID: 15801905 PMCID: PMC1180714 DOI: 10.1042/bj20050283] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2005] [Revised: 03/22/2005] [Accepted: 03/31/2005] [Indexed: 11/17/2022]
Abstract
CaMCs (calcium-dependent mitochondrial carriers) represent a novel subfamily of metabolite carriers of mitochondria. The ATP-Mg/P(i) co-transporter, functionally characterized more than 20 years ago, has been identified to be a CaMC member. There are three isoforms of the ATP-Mg/P(i) carrier in mammals, SCaMC-1 (short CaMC-1), -2 and -3 (or APC-1, -3 and -2 respectively), corresponding to the genes SLC25A24, SLC25A25 and SLC25A23 respectively, as well as six N-terminal variants generated by alternative splicing for SCaMC-1 and -2 isoforms. In the present study, we describe four new variants of human SCaMC-3 generated by alternative splicing. The new mRNAs use the exon 9 3'-donor site and distinct 5'-acceptor sites from repetitive elements, in regions downstream of exon 10, the last exon in all SCaMCs. Transcripts lacking exon 10 (SCaMC-3b, -3b', -3c and -3d) code for shortened proteins lacking the last transmembrane domain of 422, 456 and 435 amino acids, and were found in human tissues and HEK-293T cells. Mitochondrial targeting of overexpressed SCaMC-3 variants is incomplete. Surprisingly, the import impairment is overcome by removing the N-terminal extension of these proteins, suggesting that the hydrophilic N-terminal domain also participates in the mitochondrial import process, as shown for the CaMC members aralar and citrin [Roesch, Hynds, Varga, Tranebjaerg and Koehler (2004) Hum. Mol. Genet. 13, 2101-2111].
Collapse
Key Words
- alu repeat
- atp-mg/pi carrier
- calcium-dependent mitochondrial carrier (camc)
- mitochondrial import
- spliced variant
- transposable element
- agc, aspartate/glutamate carrier
- camc, calcium-dependent mitochondrial carrier
- scamc, short camc
- est, expressed sequence tag
- hek-293t cell, human embryonic kidney 293t cell
- ltr, long terminal repeat
- malr, mammalian apparent ltr-retrotransposon
- mc, mitochondrial carrier
- mcf, mc family
- nt, n-terminal
- rt, reverse transcriptase
Collapse
Affiliation(s)
- Araceli Del Arco
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa UAM-CSIC, Facultad de Ciencias, Universidad Autónoma, 28049 Madrid, Spain.
| |
Collapse
|
47
|
Tonazzi A, Giangregorio N, Indiveri C, Palmieri F. Identification by Site-directed Mutagenesis and Chemical Modification of Three Vicinal Cysteine Residues in Rat Mitochondrial Carnitine/Acylcarnitine Transporter. J Biol Chem 2005; 280:19607-12. [PMID: 15757911 DOI: 10.1074/jbc.m411181200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The proximity of the Cys residues present in the mitochondrial rat carnitine/acylcarnitine carrier (CAC) primary structure was studied by using site-directed mutagenesis in combination with chemical modification. CAC mutants, in which one or more Cys residues had been replaced with Ser, were overexpressed in Escherichia coli and reconstituted into liposomes. The effect of SH oxidizing, cross-linking, and coordinating reagents was evaluated on the carnitine/carnitine exchange catalyzed by the recombinant reconstituted CAC proteins. All the tested reagents efficiently inhibited the wild-type CAC. The inhibitory effect of diamide, Cu(2+)-phenanthroline, or phenylarsine oxide was largely reduced or abolished by the double substitutions C136S/C155S, C58S/C136S, and C58S/C155S. The decrease in sensitivity to these reagents was much lower in double mutants in which Cys(23) was substituted with Cys(136) or Cys(155). No decrease in inhibition was found when Cys(89) and/or Cys(283) were replaced with Ser. Sb(3+), which coordinates three cysteines, inhibited only the Cys replacement mutants containing cysteines 58, 136, and 155 of the six native cysteines. In addition, the mutant C23S/C89S/C155S/C283S, in which double tandem fXa recognition sites were inserted in positions 65-72, i.e. between Cys(58) and Cys(136), was not cleaved into two fragments by fXa protease after treatment with diamide. These results are interpreted in light of the homology model of CAC based on the available x-ray structure of the ADP/ATP carrier. They indicate that Cys(58), Cys(136), and Cys(155) become close in the tertiary structure of the CAC during its catalytic cycle.
Collapse
Affiliation(s)
- Annamaria Tonazzi
- Department of Pharmaco-Biology, Laboratory of Biochemistry and Molecular Biology, University of Bari, Italy
| | | | | | | |
Collapse
|
48
|
Iacobazzi V, Invernizzi F, Baratta S, Pons R, Chung W, Garavaglia B, Dionisi-Vici C, Ribes A, Parini R, Huertas MD, Roldan S, Lauria G, Palmieri F, Taroni F. Molecular and functional analysis of SLC25A20 mutations causing carnitine-acylcarnitine translocase deficiency. Hum Mutat 2005; 24:312-20. [PMID: 15365988 DOI: 10.1002/humu.20085] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The enzyme carnitine-acylcarnitine translocase (CACT) is involved in the transport of long-chain fatty acids into mitochondria. CACT deficiency is a life-threatening, recessively inherited disorder of lipid beta-oxidation which manifests in early infancy with hypoketotic hypoglycemia, cardiomyopathy, liver failure, and muscle weakness. We report here the clinical, biochemical, and molecular features of six CACT-deficient patients from Italy, Spain, and North America who exhibited significant clinical heterogeneity. In five patients (Patients 1, 2, 4, 5, and 6) the disease manifested in the neonatal period, while the remaining patient (Patient 3), the younger sibling of an infant who had died with clinical suspicion of fatty acid oxidation defect, has been treated since birth and was clinically asymptomatic at 4.5 years of age. Patients 1 and 4 were deceased within 6 months from the onset of this study, while the remaining four are still alive at 8, 4.5, 3.5, and 2 years, respectively. Sequence analysis of the CACT gene (SLC25A20) disclosed five novel mutations and three previously reported mutations. Three patients were homozygous for the identified mutations. Two of the novel mutations (c.718+1G>C and c.843+4_843+50del) altered the donor splice site of introns 7 and 8, respectively. The 47-nt deletion in intron 8 caused both skipping of exon 8 only and skipping of exons 6-8. Four mutations [[c.159dupT;c.163delA] ([p.Gly54Trp;p.Thr55Ala]) c.397C>T (p.Arg133Trp), c.691G>C (p.Asp231His), and c.842C>T (p.Ala281Val)] resulted in amino acid substitutions affecting evolutionarily conserved regions of the protein. Interestingly, one of these exonic mutations (p.Ala281Val) was associated with a splicing defect also characterized by skipping of exons 6-8. The deleterious effect of the p.Arg133Trp substitution was demonstrated by measuring CACT activity upon expression of the normal and the mutant protein in E. coli and functional reconstitution into liposomes. Combined analysis of clinical, biochemical, and molecular data failed to indicate a correlation between the phenotype and the genotype.
Collapse
Affiliation(s)
- Vito Iacobazzi
- Laboratory of Biochemistry and Molecular Biology, Department of Pharmaco-Biology, University of Bari, Bari, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Garavaglia S, Cambria MT, Miglio M, Ragusa S, Iacobazzi V, Palmieri F, D'Ambrosio C, Scaloni A, Rizzi M. The Structure of Rigidoporus lignosus Laccase Containing a Full Complement of Copper Ions, Reveals an Asymmetrical Arrangement for the T3 Copper Pair. J Mol Biol 2004; 342:1519-31. [PMID: 15364578 DOI: 10.1016/j.jmb.2004.07.100] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2004] [Revised: 06/30/2004] [Accepted: 07/29/2004] [Indexed: 10/26/2022]
Abstract
Laccase is a multicopper blue oxidase that couples the four-electron reduction of oxygen with the oxidation of a broad range of organic substrates, including phenols and arylamines. The enzyme is the object of intense biotechnological research, due to its employment in bioremediation of soils and water as well as in other biotechnological applications. We report here the cDNA and protein sequences, the post-translational modifications, the crystallization and X-ray structure determination of a laccase from the white-rot fungus Rigidoporus lignosus. The amino acid residues sequence deduced from cDNA clearly identified a pre-sequence of 21 residues representing the signal for extra-cellular localization. Mass spectrometry analysis performed on the salvage enzyme, confirmed the deduced sequence and precisely mapped two glycosylation sites at Asn337 and Asn435, determining the nature of the bound glycosidic moieties. The crystal structure was determined at 1.7A resolution from perfectly hemihedrally twinned crystals, by molecular replacement technique. While the overall structure closely resembled those reported for other fungal laccases, the analysis of the T2/T3 trinuclear cluster revealed an unprecedented coordination sphere for the T3 copper pair. No bridging oxygen ligand was present between the two T3 copper ions, which were no longer symmetrically coordinated. The observed structure could represent an intermediate along the process of four-electron reduction of oxygen to water taking place at the trinuclear copper cluster.
Collapse
Affiliation(s)
- Silvia Garavaglia
- DiSCAFF-INFM, University of Piemonte Orientale A. Avogadro, 28100 Novara, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Iacobazzi V, Pasquali M, Singh R, Matern D, Rinaldo P, Amat di San Filippo C, Palmieri F, Longo N. Response to therapy in carnitine/acylcarnitine translocase (CACT) deficiency due to a novel missense mutation. Am J Med Genet A 2004; 126A:150-5. [PMID: 15057979 DOI: 10.1002/ajmg.a.20573] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Deficiency of carnitine/acylcarnitine translocase (CACT) is an autosomal recessive disorder of the carnitine cycle resulting in the inability to transfer fatty acids across the inner mitochondrial membrane. Only a limited number of affected patients have been reported and the effect of therapy on this condition is still not well defined. Here, we report a new patient with this disorder and follow the response to therapy. Our patient was the product of a consanguineous marriage. He presented shortly after birth with cardiac myopathy and arrhythmia coupled with severe non-ketotic hypoglycemia. Initial metabolic studies indicated severe non-ketotic C6-C10 dicarboxylic aciduria, plasma carnitine deficiency, and a characteristic elevation of plasma C:16:0, C18:1, and C18:2 acylcarnitine species. Enzyme assay confirmed deficiency of CACT activity. Molecular studies indicated that this child was homozygous, and both parents heterozygous, for a single bp change converting glutamine 238 to arginine (Q238R). Therapy with a formula providing most of the fat via medium chain triglycerides (MCT) and carnitine supplementation reduced the concentration of long-chain acylcarnitines and reversed cardiac symptoms and the hypoglycemia. These results suggest that carnitine and MCT may be effective in treating this defect of long-chain fatty acid oxidation.
Collapse
Affiliation(s)
- Vito Iacobazzi
- Dipartimento Farmaco-Biologico, University of Bari, Italy
| | | | | | | | | | | | | | | |
Collapse
|