1
|
Hwang YJ, Kim MJ. Emerging Role of the DREAM Complex in Cancer and Therapeutic Opportunities. Int J Mol Sci 2025; 26:322. [PMID: 39796178 PMCID: PMC11719884 DOI: 10.3390/ijms26010322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/21/2024] [Accepted: 12/30/2024] [Indexed: 01/30/2025] Open
Abstract
The DREAM (dimerization partner, RB-like, E2F, and multi-vulval class B) complex is an evolutionarily conserved transcriptional repression complex that coordinates nearly one thousand target genes, primarily associated with the cell cycle processes. The formation of the DREAM complex consequently inhibits cell cycle progression and induces cellular quiescence. Given its unique role in cell cycle control, the DREAM complex has gained significant interest across various physiological and pathological contexts, particularly in conditions marked by dysregulated cell cycles, such as cancer. However, the specific cancer types most significantly affected by alterations in the DREAM complex are yet to be determined. Moreover, the possibility of restoring or pharmacologically targeting the DREAM complex as a therapeutic intervention against cancer remains a relatively unexplored area of research and is currently under active investigation. In this review, we provide an overview of the latest advances in understanding the DREAM complex, focusing on its role in cancer. We also explore strategies for targeting the DREAM complex as a potential approach for cancer therapeutics. Advances in understanding the precise role of the DREAM complex in cancer, combined with ongoing efforts to develop targeted therapies, may pave the way for new options in cancer therapy.
Collapse
Affiliation(s)
- Ye-Jin Hwang
- Department of Life Science, Gachon University, Seongnam 13120, Republic of Korea;
- Department of Health Science and Technology, GAIHST, Lee Gil Ya Cancer and Diabetes Institute, Incheon 21999, Republic of Korea
| | - Moon Jong Kim
- Department of Life Science, Gachon University, Seongnam 13120, Republic of Korea;
- Department of Health Science and Technology, GAIHST, Lee Gil Ya Cancer and Diabetes Institute, Incheon 21999, Republic of Korea
| |
Collapse
|
2
|
Khaitin AM, Guzenko VV, Bachurin SS, Demyanenko SV. c-Myc and FOXO3a-The Everlasting Decision Between Neural Regeneration and Degeneration. Int J Mol Sci 2024; 25:12621. [PMID: 39684331 DOI: 10.3390/ijms252312621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
The transcription factors c-Myc and FoxO3a play significant roles in neurodegenerative processes, yet their interaction in neurological disorders remains largely unexplored. In contrast, much of the available information about their relationship comes from cancer research. While it is well-established that FoxO3a inhibits c-Myc activity, this interaction represents only a basic understanding of a far more complex dynamic, which includes exceptions under specific conditions and the involvement of additional regulatory factors. Given the critical need to address this gap for the treatment and prevention of neurodegenerative disorders, this review consolidates current knowledge on the joint roles of these two factors in neuropathology. It also highlights their conformational flexibility, post-translational modifications, and outlines potential directions for future research.
Collapse
Affiliation(s)
- Andrey M Khaitin
- Laboratory of Molecular Neuroscience, Academy of Biology and Biotechnology, Southern Federal University, 194/1 Stachky Ave., Rostov-on-Don 344090, Russia
| | - Valeria V Guzenko
- Laboratory of Molecular Neuroscience, Academy of Biology and Biotechnology, Southern Federal University, 194/1 Stachky Ave., Rostov-on-Don 344090, Russia
| | - Stanislav S Bachurin
- Laboratory of Molecular Neuroscience, Academy of Biology and Biotechnology, Southern Federal University, 194/1 Stachky Ave., Rostov-on-Don 344090, Russia
| | - Svetlana V Demyanenko
- Laboratory of Molecular Neuroscience, Academy of Biology and Biotechnology, Southern Federal University, 194/1 Stachky Ave., Rostov-on-Don 344090, Russia
| |
Collapse
|
3
|
Cheng M, Nie Y, Song M, Chen F, Yu Y. Forkhead box O proteins: steering the course of stem cell fate. CELL REGENERATION (LONDON, ENGLAND) 2024; 13:7. [PMID: 38466341 DOI: 10.1186/s13619-024-00190-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 02/26/2024] [Indexed: 03/13/2024]
Abstract
Stem cells are pivotal players in the intricate dance of embryonic development, tissue maintenance, and regeneration. Their behavior is delicately balanced between maintaining their pluripotency and differentiating as needed. Disruptions in this balance can lead to a spectrum of diseases, underscoring the importance of unraveling the complex molecular mechanisms that govern stem cell fate. Forkhead box O (FOXO) proteins, a family of transcription factors, are at the heart of this intricate regulation, influencing a myriad of cellular processes such as survival, metabolism, and DNA repair. Their multifaceted role in steering the destiny of stem cells is evident, as they wield influence over self-renewal, quiescence, and lineage-specific differentiation in both embryonic and adult stem cells. This review delves into the structural and regulatory intricacies of FOXO transcription factors, shedding light on their pivotal roles in shaping the fate of stem cells. By providing insights into the specific functions of FOXO in determining stem cell fate, this review aims to pave the way for targeted interventions that could modulate stem cell behavior and potentially revolutionize the treatment and prevention of diseases.
Collapse
Affiliation(s)
- Mengdi Cheng
- Laboratory of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an, China
| | - Yujie Nie
- Laboratory of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an, China
| | - Min Song
- Laboratory of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an, China
| | - Fulin Chen
- Laboratory of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an, China
- Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, Xi'an, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, China
| | - Yuan Yu
- Laboratory of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an, China.
- Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, Xi'an, China.
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, China.
| |
Collapse
|
4
|
Fu Z, Xiang Y, Fu Y, Su Z, Tan Y, Yang M, Yan Y, Baghaei Daemi H, Shi Y, Xie S, Sun L, Peng G. DYRK1A is a multifunctional host factor that regulates coronavirus replication in a kinase-independent manner. J Virol 2024; 98:e0123923. [PMID: 38099687 PMCID: PMC10805018 DOI: 10.1128/jvi.01239-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/27/2023] [Indexed: 01/24/2024] Open
Abstract
Coronaviruses (CoVs) pose a major threat to human and animal health worldwide, which complete viral replication by hijacking host factors. Identifying host factors essential for the viral life cycle can deepen our understanding of the mechanisms of virus-host interactions. Based on our previous genome-wide CRISPR screen of α-CoV transmissible gastroenteritis virus (TGEV), we identified the host factor dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A), but not DYRK1B, as a critical factor in TGEV replication. Rescue assays and kinase inhibitor experiments revealed that the effect of DYRK1A on viral replication is independent of its kinase activity. Nuclear localization signal modification experiments showed that nuclear DYRK1A facilitated virus replication. Furthermore, DYRK1A knockout significantly downregulated the expression of the TGEV receptor aminopeptidase N (ANPEP) and inhibited viral entry. Notably, we also demonstrated that DYRK1A is essential for the early stage of TGEV replication. Transmission electron microscopy results indicated that DYRK1A contributes to the formation of double-membrane vesicles in a kinase-independent manner. Finally, we validated that DYRK1A is also a proviral factor for mouse hepatitis virus, porcine deltacoronavirus, and porcine sapelovirus. In conclusion, our work demonstrated that DYRK1A is an essential host factor for the replication of multiple viruses, providing new insights into the mechanism of virus-host interactions and facilitating the development of new broad-spectrum antiviral drugs.IMPORTANCECoronaviruses, like other positive-sense RNA viruses, can remodel the host membrane to form double-membrane vesicles (DMVs) as their replication organelles. Currently, host factors involved in DMV formation are not well defined. In this study, we used transmissible gastroenteritis virus (TGEV) as a virus model to investigate the regulatory mechanism of dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A) on coronavirus. Results showed that DYRK1A significantly inhibited TGEV replication in a kinase-independent manner. DYRK1A knockout (KO) can regulate the expression of receptor aminopeptidase N (ANPEP) and endocytic-related genes to inhibit virus entry. More importantly, our results revealed that DYRK1A KO notably inhibited the formation of DMV to regulate the virus replication. Further data proved that DYRK1A is also essential in the replication of mouse hepatitis virus, porcine deltacoronavirus, and porcine sapelovirus. Taken together, our findings demonstrated that DYRK1A is a conserved factor for positive-sense RNA viruses and provided new insights into its transcriptional regulation activity, revealing its potential as a candidate target for therapeutic design.
Collapse
Affiliation(s)
- Zhen Fu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Yixin Xiang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Yanan Fu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Zhelin Su
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Yubei Tan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Mengfang Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Yuanyuan Yan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Hakimeh Baghaei Daemi
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Yuejun Shi
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Shengsong Xie
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - Limeng Sun
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Guiqing Peng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Wuhan, China
- Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, China
| |
Collapse
|
5
|
Hawley LE, Stringer M, Deal AJ, Folz A, Goodlett CR, Roper RJ. Sex-specific developmental alterations in DYRK1A expression in the brain of a Down syndrome mouse model. Neurobiol Dis 2024; 190:106359. [PMID: 37992782 PMCID: PMC10843801 DOI: 10.1016/j.nbd.2023.106359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/02/2023] [Accepted: 11/18/2023] [Indexed: 11/24/2023] Open
Abstract
Aberrant neurodevelopment in Down syndrome (DS)-caused by triplication of human chromosome 21-is commonly attributed to gene dosage imbalance, linking overexpression of trisomic genes with disrupted developmental processes, with DYRK1A particularly implicated. We hypothesized that regional brain DYRK1A protein overexpression in trisomic mice varies over development in sex-specific patterns that may be distinct from Dyrk1a transcription, and reduction of Dyrk1a copy number from 3 to 2 in otherwise trisomic mice reduces DYRK1A, independent of other trisomic genes. DYRK1A overexpression varied with age, sex, and brain region, with peak overexpression on postnatal day (P) 6 in both sexes. Sex-dependent differences were also evident from P15-P24. Reducing Dyrk1a copy number confirmed that these differences depended on Dyrk1a gene dosage and not other trisomic genes. Trisomic Dyrk1a mRNA and protein expression were not highly correlated. Sex-specific patterns of DYRK1A overexpression during trisomic neurodevelopment may provide mechanistic targets for therapeutic intervention in DS.
Collapse
Affiliation(s)
- Laura E Hawley
- Department of Biology, Indiana University - Purdue University Indianapolis, 723 W. Michigan Street, SL306, Indianapolis, IN, 46202, USA
| | - Megan Stringer
- Department of Psychology, Indiana University - Purdue University Indianapolis, 402 N. Blackford Street, LD124, Indianapolis, IN, 46202, USA
| | - Abigail J Deal
- Department of Biology, Indiana University - Purdue University Indianapolis, 723 W. Michigan Street, SL306, Indianapolis, IN, 46202, USA
| | - Andrew Folz
- Department of Biology, Indiana University - Purdue University Indianapolis, 723 W. Michigan Street, SL306, Indianapolis, IN, 46202, USA
| | - Charles R Goodlett
- Department of Psychology, Indiana University - Purdue University Indianapolis, 402 N. Blackford Street, LD124, Indianapolis, IN, 46202, USA
| | - Randall J Roper
- Department of Biology, Indiana University - Purdue University Indianapolis, 723 W. Michigan Street, SL306, Indianapolis, IN, 46202, USA.
| |
Collapse
|
6
|
Meijer L, Chrétien E, Ravel D. Leucettinib-21, a DYRK1A Kinase Inhibitor as Clinical Drug Candidate for Alzheimer's Disease and Down Syndrome. J Alzheimers Dis 2024; 101:S95-S113. [PMID: 39422950 DOI: 10.3233/jad-240078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Alzheimer's disease (AD) and Down syndrome (DS) share a common therapeutic target, the dual-specificity, tyrosine phosphorylation activated kinase 1A (DYRK1A). Abnormally active DYRK1A is responsible for cognitive disorders (memory, learning, spatial localization) observed in both conditions. In DS, DYRK1A is overexpressed due to the presence of the DYRK1A gene on chromosome 21. In AD, calcium-activated calpains cleave full-length DYRK1A (FL-DYRK1A) into a more stable and more active, low molecular weight, kinase (LMW-DYRK1A). Genetic and pharmacological experiments carried out with animal models of AD and DS strongly support the idea that pharmacological inhibitors of DYRK1A might be able to correct memory/learning disorders in people with AD and DS. Starting from a marine sponge natural product, Leucettamine B, Perha Pharmaceuticals has optimized, through classical medicinal chemistry, and extensively characterized a small molecule drug candidate, Leucettinib-21. Regulatory preclinical safety studies in rats and minipigs have been completed and formulation of Leucettinib-21 has been optimized as immediate-release tablets. Leucettinib-21 is now undergoing a phase 1 clinical trial (120 participants, including 12 adults with DS and 12 patients with AD). The therapeutic potential of DYRK1A inhibitors in AD and DS is presented.
Collapse
Affiliation(s)
- Laurent Meijer
- Perha Pharmaceuticals, Hôtel de Recherche, Roscoff, Bretagne, France
| | - Emilie Chrétien
- Perha Pharmaceuticals, Hôtel de Recherche, Roscoff, Bretagne, France
| | | |
Collapse
|
7
|
Ananthapadmanabhan V, Shows KH, Dickinson AJ, Litovchick L. Insights from the protein interaction Universe of the multifunctional "Goldilocks" kinase DYRK1A. Front Cell Dev Biol 2023; 11:1277537. [PMID: 37900285 PMCID: PMC10600473 DOI: 10.3389/fcell.2023.1277537] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/02/2023] [Indexed: 10/31/2023] Open
Abstract
Human Dual specificity tyrosine (Y)-Regulated Kinase 1A (DYRK1A) is encoded by a dosage-dependent gene located in the Down syndrome critical region of human chromosome 21. The known substrates of DYRK1A include proteins involved in transcription, cell cycle control, DNA repair and other processes. However, the function and regulation of this kinase is not fully understood, and the current knowledge does not fully explain the dosage-dependent function of this kinase. Several recent proteomic studies identified DYRK1A interacting proteins in several human cell lines. Interestingly, several of known protein substrates of DYRK1A were undetectable in these studies, likely due to a transient nature of the kinase-substrate interaction. It is possible that the stronger-binding DYRK1A interacting proteins, many of which are poorly characterized, are involved in regulatory functions by recruiting DYRK1A to the specific subcellular compartments or distinct signaling pathways. Better understanding of these DYRK1A-interacting proteins could help to decode the cellular processes regulated by this important protein kinase during embryonic development and in the adult organism. Here, we review the current knowledge of the biochemical and functional characterization of the DYRK1A protein-protein interaction network and discuss its involvement in human disease.
Collapse
Affiliation(s)
- Varsha Ananthapadmanabhan
- Department of Internal Medicine, Division of Hematology, Oncology and Palliative Care, Virginia Commonwealth University, Richmond, VA, United States
| | - Kathryn H. Shows
- Department of Biology, Virginia State University, Petersburg, VA, United States
| | - Amanda J. Dickinson
- Department of Biology, Virginia Commonwealth University, Richmond, VA, United States
| | - Larisa Litovchick
- Department of Internal Medicine, Division of Hematology, Oncology and Palliative Care, Virginia Commonwealth University, Richmond, VA, United States
- Massey Cancer Center, Richmond, VA, United States
| |
Collapse
|
8
|
Shih YT, Alipio JB, Sahay A. An inhibitory circuit-based enhancer of DYRK1A function reverses Dyrk1a-associated impairment in social recognition. Neuron 2023; 111:3084-3101.e5. [PMID: 37797581 PMCID: PMC10575685 DOI: 10.1016/j.neuron.2023.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/29/2023] [Accepted: 09/07/2023] [Indexed: 10/07/2023]
Abstract
Heterozygous mutations in the dual-specificity tyrosine phosphorylation-regulated kinase 1a (Dyrk1a) gene define a syndromic form of autism spectrum disorder. The synaptic and circuit mechanisms mediating DYRK1A functions in social cognition are unclear. Here, we identify a social experience-sensitive mechanism in hippocampal mossy fiber-parvalbumin interneuron (PV IN) synapses by which DYRK1A recruits feedforward inhibition of CA3 and CA2 to promote social recognition. We employ genetic epistasis logic to identify a cytoskeletal protein, ABLIM3, as a synaptic substrate of DYRK1A. We demonstrate that Ablim3 downregulation in dentate granule cells of adult heterozygous Dyrk1a mice is sufficient to restore PV IN-mediated inhibition of CA3 and CA2 and social recognition. Acute chemogenetic activation of PV INs in CA3/CA2 of adult heterozygous Dyrk1a mice also rescued social recognition. Together, these findings illustrate how targeting DYRK1A synaptic and circuit substrates as "enhancers of DYRK1A function" harbors the potential to reverse Dyrk1a haploinsufficiency-associated circuit and cognition impairments.
Collapse
Affiliation(s)
- Yu-Tzu Shih
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA; Harvard Stem Cell Institute, Cambridge, MA, USA; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; BROAD Institute of Harvard and MIT, Cambridge, MA, USA
| | - Jason Bondoc Alipio
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA; Harvard Stem Cell Institute, Cambridge, MA, USA; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; BROAD Institute of Harvard and MIT, Cambridge, MA, USA
| | - Amar Sahay
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA; Harvard Stem Cell Institute, Cambridge, MA, USA; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; BROAD Institute of Harvard and MIT, Cambridge, MA, USA.
| |
Collapse
|
9
|
Gui T, Burgering BMT. FOXOs: masters of the equilibrium. FEBS J 2022; 289:7918-7939. [PMID: 34610198 PMCID: PMC10078705 DOI: 10.1111/febs.16221] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/22/2021] [Accepted: 10/04/2021] [Indexed: 01/14/2023]
Abstract
Forkhead box O (FOXO) transcription factors (TFs) are a subclass of the larger family of forkhead TFs. Mammalians express four members FOXO1, FOXO3, FOXO4, and FOXO6. The interest in FOXO function stems mostly from their observed role in determining lifespan, where in model organisms, increased FOXO activity results in extended lifespan. FOXOs act as downstream of several signaling pathway and are extensively regulated through post-translational modifications. The transcriptional program activated by FOXOs in various cell types, organisms, and under various conditions has been described and has shed some light on what the critical transcriptional targets are in mediating FOXO function. At the cellular level, these studies have revealed a role for FOXOs in cell metabolism, cellular redox, cell proliferation, DNA repair, autophagy, and many more. The general picture that emerges hereof is that FOXOs act to preserve equilibrium, and they are important for cellular homeostasis. Here, we will first briefly summarize the general knowledge of FOXO regulation and possible functions. We will use genomic stability to illustrate how FOXOs ensure homeostasis. Genomic stability is critical for maintaining genetic integrity, and therefore preventing disease. However, genomic mutations need to occur during lifetime to enable evolution, yet their accumulation is believed to be causative to aging. Therefore, the role of FOXO in genomic stability may underlie its role in lifespan and aging. Finally, we will come up with questions on some of the unknowns in FOXO function, the answer(s) to which we believe will further our understanding of FOXO function and ultimately may help to understand lifespan and its consequences.
Collapse
Affiliation(s)
- Tianshu Gui
- Molecular Cancer Research, Center Molecular Medicine, University Medical Center Utrecht and the Oncode Institute, The Netherlands
| | - Boudewijn M T Burgering
- Molecular Cancer Research, Center Molecular Medicine, University Medical Center Utrecht and the Oncode Institute, The Netherlands
| |
Collapse
|
10
|
Stern AD, Smith GR, Santos LC, Sarmah D, Zhang X, Lu X, Iuricich F, Pandey G, Iyengar R, Birtwistle MR. Relating individual cell division events to single-cell ERK and Akt activity time courses. Sci Rep 2022; 12:18077. [PMID: 36302844 PMCID: PMC9613772 DOI: 10.1038/s41598-022-23071-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 10/25/2022] [Indexed: 02/01/2023] Open
Abstract
Biochemical correlates of stochastic single-cell fates have been elusive, even for the well-studied mammalian cell cycle. We monitored single-cell dynamics of the ERK and Akt pathways, critical cell cycle progression hubs and anti-cancer drug targets, and paired them to division events in the same single cells using the non-transformed MCF10A epithelial line. Following growth factor treatment, in cells that divide both ERK and Akt activities are significantly higher within the S-G2 time window (~ 8.5-40 h). Such differences were much smaller in the pre-S-phase, restriction point window which is traditionally associated with ERK and Akt activity dependence, suggesting unappreciated roles for ERK and Akt in S through G2. Simple metrics of central tendency in this time window are associated with subsequent cell division fates. ERK activity was more strongly associated with division fates than Akt activity, suggesting Akt activity dynamics may contribute less to the decision driving cell division in this context. We also find that ERK and Akt activities are less correlated with each other in cells that divide. Network reconstruction experiments demonstrated that this correlation behavior was likely not due to crosstalk, as ERK and Akt do not interact in this context, in contrast to other transformed cell types. Overall, our findings support roles for ERK and Akt activity throughout the cell cycle as opposed to just before the restriction point, and suggest ERK activity dynamics may be more important than Akt activity dynamics for driving cell division in this non-transformed context.
Collapse
Affiliation(s)
- Alan D Stern
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gregory R Smith
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Luis C Santos
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Deepraj Sarmah
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC, USA
| | - Xiang Zhang
- School of Computing, Clemson University, Clemson, SC, USA
| | - Xiaoming Lu
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC, USA
| | | | - Gaurav Pandey
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ravi Iyengar
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Marc R Birtwistle
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC, USA.
| |
Collapse
|
11
|
Frendo-Cumbo S, Li T, Ammendolia DA, Coyaud E, Laurent EM, Liu Y, Bilan PJ, Polevoy G, Raught B, Brill JA, Klip A, Brumell JH. DCAF7 regulates cell proliferation through IRS1-FOXO1 signaling. iScience 2022; 25:105188. [PMID: 36248734 PMCID: PMC9556925 DOI: 10.1016/j.isci.2022.105188] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 07/13/2022] [Accepted: 09/20/2022] [Indexed: 12/13/2022] Open
Abstract
Cell proliferation is dependent on growth factors insulin and IGF1. We sought to identify interactors of IRS1, the most proximal mediator of insulin/IGF1 signaling, that regulate cell proliferation. Using proximity-dependent biotin identification (BioID), we detected 40 proteins displaying proximal interactions with IRS1, including DCAF7 and its interacting partners DYRK1A and DYRK1B. In HepG2 cells, DCAF7 knockdown attenuated cell proliferation by inducing cell cycle arrest at G2. DCAF7 expression was required for insulin-stimulated AKT phosphorylation, and its absence promoted nuclear localization of the transcription factor FOXO1. DCAF7 knockdown induced expression of FOXO1-target genes implicated in G2 cell cycle inhibition, correlating with G2 cell cycle arrest. In Drosophila melanogaster, wing-specific knockdown of DCAF7/wap caused smaller wing size and lower wing cell number; the latter recovered upon double knockdown of wap and dfoxo. We propose that DCAF7 regulates cell proliferation and cell cycle via IRS1-FOXO1 signaling, of relevance to whole organism growth.
Collapse
Affiliation(s)
- Scott Frendo-Cumbo
- Cell Biology Program, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada,Department of Physiology, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Taoyingnan Li
- Cell Biology Program, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada,Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Dustin A. Ammendolia
- Cell Biology Program, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada,Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Etienne Coyaud
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada
| | - Estelle M.N. Laurent
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada
| | - Yuan Liu
- Cell Biology Program, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Philip J. Bilan
- Cell Biology Program, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Gordon Polevoy
- Cell Biology Program, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Brian Raught
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada,Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Julie A. Brill
- Cell Biology Program, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada,Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1L7, Canada,Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Amira Klip
- Cell Biology Program, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada,Department of Physiology, University of Toronto, Toronto, ON M5G 1L7, Canada,Department of Biochemistry, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - John H. Brumell
- Cell Biology Program, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada,Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1L7, Canada,Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada,SickKids IBD Centre, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada,Corresponding author
| |
Collapse
|
12
|
Jimenez L, Silva A, Calissi G, Grenho I, Monteiro R, Mayoral-Varo V, Blanco-Aparicio C, Pastor J, Bustos V, Bracher F, Megías D, Ferreira BI, Link W. Screening Health-Promoting Compounds for Their Capacity to Induce the Activity of FOXO3. J Gerontol A Biol Sci Med Sci 2022; 77:1485-1493. [PMID: 34508571 PMCID: PMC9373959 DOI: 10.1093/gerona/glab265] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Indexed: 12/01/2022] Open
Abstract
Several chemical compounds including natural products have been suggested as being effective against age-related diseases or as beneficial for a healthy life. On the other hand, forkhead box O (FOXO) proteins are emerging as key cellular components associated with extreme human longevity. FOXO proteins are mainly regulated by posttranslational modifications and as these modifications are reversible, activation and inactivation of FOXO are attainable through pharmacological treatment. Here, we questioned whether a panel of compounds with known health-beneficial properties has the capacity to induce the activity of FOXO factors. We show that resveratrol, a phytoalexin present in grapes and other food products, the amide alkaloid piperlongumine found in the fruit of the long pepper, and the plant-derived β-carboline compound harmine induced nuclear translocation of FOXO3. We also show that piperlongumine and harmine but not resveratrol activate FOXO-dependent transcription. We determined the half maximal effective concentration (EC50) values for resveratrol, piperlongumine, and harmine for FOXO translocation, and analyzed their inhibitory impact on chromosomal maintenance 1 (CRM1)-mediated nuclear export and the production of reactive oxygen species (ROS). We also used chemical biology approach and Western blot analysis to explore the underlying molecular mechanisms. We show that harmine, piperlongumine, and resveratrol activate FOXO3 independently of phosphoinositide 3-kinase (PI3K)/AKT signaling and the CRM1-mediated nuclear export. The effect of harmine on FOXO3 activity is at least partially mediated through the inhibition of dual-specificity tyrosine (Y) phosphorylationregulated kinase 1A (DYRK1A) and can be reverted by the inhibition of sirtuins (SIRTs).
Collapse
Affiliation(s)
- Lucia Jimenez
- Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), Madrid, Spain
| | - Andreia Silva
- Centre for Biomedical Research (CBMR), University of Algarve, Campus of Gambelas, Faro, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, Campus de Gambelas, Faro, Portugal
- Algarve Biomedical Center (ABC), University of Algarve, Campus de Gambelas, Faro, Portugal
| | - Giampaolo Calissi
- Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), Madrid, Spain
| | - Inês Grenho
- Centre for Biomedical Research (CBMR), University of Algarve, Campus of Gambelas, Faro, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, Campus de Gambelas, Faro, Portugal
- Algarve Biomedical Center (ABC), University of Algarve, Campus de Gambelas, Faro, Portugal
| | - Rita Monteiro
- Centre for Biomedical Research (CBMR), University of Algarve, Campus of Gambelas, Faro, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, Campus de Gambelas, Faro, Portugal
- Algarve Biomedical Center (ABC), University of Algarve, Campus de Gambelas, Faro, Portugal
| | - Victor Mayoral-Varo
- Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), Madrid, Spain
| | | | - Joaquin Pastor
- Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | | | - Franz Bracher
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians University, Munich, Germany
| | - Diego Megías
- Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Bibiana I Ferreira
- Centre for Biomedical Research (CBMR), University of Algarve, Campus of Gambelas, Faro, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, Campus de Gambelas, Faro, Portugal
- Algarve Biomedical Center (ABC), University of Algarve, Campus de Gambelas, Faro, Portugal
| | - Wolfgang Link
- Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), Madrid, Spain
| |
Collapse
|
13
|
Rammohan M, Harris E, Bhansali RS, Zhao E, Li LS, Crispino JD. The chromosome 21 kinase DYRK1A: emerging roles in cancer biology and potential as a therapeutic target. Oncogene 2022; 41:2003-2011. [PMID: 35220406 PMCID: PMC8977259 DOI: 10.1038/s41388-022-02245-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/02/2022] [Accepted: 02/11/2022] [Indexed: 11/09/2022]
Abstract
Dual-specificity tyrosine phosphorylation-regulated kinase 1 A (DYRK1A) is a serine/threonine kinase that belongs to the DYRK family of proteins, a subgroup of the evolutionarily conserved CMGC protein kinase superfamily. Due to its localization on chromosome 21, the biological significance of DYRK1A was initially characterized in the pathogenesis of Down syndrome (DS) and related neurodegenerative diseases. However, increasing evidence has demonstrated a prominent role in cancer through its ability to regulate biologic processes including cell cycle progression, DNA damage repair, transcription, ubiquitination, tyrosine kinase activity, and cancer stem cell maintenance. DYRK1A has been identified as both an oncogene and tumor suppressor in different models, underscoring the importance of cellular context in its function. Here, we review mechanistic contributions of DYRK1A to cancer biology and its role as a potential therapeutic target.
Collapse
Affiliation(s)
- Malini Rammohan
- Driskill Graduate Program in Life Sciences, Northwestern University, Chicago, IL, USA
| | - Ethan Harris
- University of Illinois at Chicago College of Medicine, Chicago, IL, USA
- Division of Experimental Hematology, Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Rahul S Bhansali
- Department of Medicine, Division of Hematology/Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Emily Zhao
- Weinberg College of Arts and Sciences, Northwestern University, Chicago, IL, USA
| | - Loretta S Li
- Molecular and Translational Cancer Biology Program, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
- Department of Pediatrics, Division of Hematology, Oncology, and Stem Cell Transplantation, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - John D Crispino
- Division of Experimental Hematology, Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
14
|
Bhat N, Narayanan A, Fathzadeh M, Kahn M, Zhang D, Goedeke L, Neogi A, Cardone RL, Kibbey RG, Fernandez-Hernando C, Ginsberg HN, Jain D, Shulman GI, Mani A. Dyrk1b promotes hepatic lipogenesis by bypassing canonical insulin signaling and directly activating mTORC2 in mice. J Clin Invest 2022; 132:e153724. [PMID: 34855620 PMCID: PMC8803348 DOI: 10.1172/jci153724] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/24/2021] [Indexed: 11/24/2022] Open
Abstract
Mutations in Dyrk1b are associated with metabolic syndrome and nonalcoholic fatty liver disease in humans. Our investigations showed that DYRK1B levels are increased in the liver of patients with nonalcoholic steatohepatitis (NASH) and in mice fed with a high-fat, high-sucrose diet. Increasing Dyrk1b levels in the mouse liver enhanced de novo lipogenesis (DNL), fatty acid uptake, and triacylglycerol secretion and caused NASH and hyperlipidemia. Conversely, knockdown of Dyrk1b was protective against high-calorie-induced hepatic steatosis and fibrosis and hyperlipidemia. Mechanistically, Dyrk1b increased DNL by activating mTORC2 in a kinase-independent fashion. Accordingly, the Dyrk1b-induced NASH was fully rescued when mTORC2 was genetically disrupted. The elevated DNL was associated with increased plasma membrane sn-1,2-diacylglyerol levels and increased PKCε-mediated IRKT1150 phosphorylation, which resulted in impaired activation of hepatic insulin signaling and reduced hepatic glycogen storage. These findings provide insights into the mechanisms that underlie Dyrk1b-induced hepatic lipogenesis and hepatic insulin resistance and identify Dyrk1b as a therapeutic target for NASH and insulin resistance in the liver.
Collapse
Affiliation(s)
- Neha Bhat
- Cardiovascular Research Center, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Anand Narayanan
- Cardiovascular Research Center, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Mohsen Fathzadeh
- Department of Pediatrics, Stanford University, Palo Alto, California, USA
| | - Mario Kahn
- Yale Diabetes Research Center, Departments of Internal Medicine and Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Dongyan Zhang
- Yale Diabetes Research Center, Departments of Internal Medicine and Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Leigh Goedeke
- Yale Diabetes Research Center, Departments of Internal Medicine and Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Arpita Neogi
- Cardiovascular Research Center, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Rebecca L. Cardone
- Yale Diabetes Research Center, Departments of Internal Medicine and Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Richard G. Kibbey
- Yale Diabetes Research Center, Departments of Internal Medicine and Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut, USA
| | | | - Henry N. Ginsberg
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | | | - Gerald I. Shulman
- Yale Diabetes Research Center, Departments of Internal Medicine and Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Arya Mani
- Cardiovascular Research Center, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
15
|
Mack HID, Kremer J, Albertini E, Mack EKM, Jansen-Dürr P. Regulation of fatty acid desaturase- and immunity gene-expression by mbk-1/DYRK1A in Caenorhabditis elegans. BMC Genomics 2022; 23:25. [PMID: 34983389 PMCID: PMC8729107 DOI: 10.1186/s12864-021-08176-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 11/08/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In the nematode Caenorhabditis elegans, longevity in response to germline ablation, but not in response to reduced insulin/IGF1-like signaling, is strongly dependent on the conserved protein kinase minibrain-related kinase 1 (MBK-1). In humans, the MBK-1 ortholog DYRK1A is associated with a variety of disorders, most prominently with neurological defects observed in Down syndrome. To better understand mbk-1's physiological roles and their dependence on genetic background, we analyzed the influence of mbk-1 loss on the transcriptomes of wildtype and long-lived, germline-deficient or insulin-receptor defective, C. elegans strains by RNA-sequencing. RESULTS mbk-1 loss elicited global changes in transcription that were less pronounced in insulin-receptor mutant than in germline-deficient or wildtype C. elegans. Irrespective of genetic background, mbk-1 regulated genes were enriched for functions in biological processes related to organic acid metabolism and pathogen defense. qPCR-studies confirmed mbk-1 dependent induction of all three C. elegans Δ9-fatty acid desaturases, fat-5, fat-6 and fat-7, in wildtype, germline-deficient and insulin-receptor mutant strains. Conversely, mbk-1 dependent expression patterns of selected pathogen resistance genes, including asp-12, dod-24 and drd-50, differed across the genetic backgrounds examined. Finally, cth-1 and cysl-2, two genes which connect pathogen resistance to the metabolism of the gaseous messenger and lifespan regulator hydrogen sulfide (H2S), were commonly suppressed by mbk-1 loss only in wildtype and germline-deficient, but not in insulin-receptor mutant C. elegans. CONCLUSION Our work reveals previously unknown roles of C. elegans mbk-1 in the regulation of fatty acid desaturase- and H2S metabolic-genes. These roles are only partially dependent on genetic background. Considering the particular importance of fatty acid desaturation and H2S for longevity of germline-deficient C. elegans, we propose that these processes at least in part account for the previous observation that mbk-1 preferentially regulates lifespan in these worms.
Collapse
Affiliation(s)
- Hildegard I D Mack
- Institute for Biomedical Aging Research, University of Innsbruck, Rennweg 10, 6020, Innsbruck, Austria.
| | - Jennifer Kremer
- Department of Hematology, Oncology and Immunology, Philipps-University Marburg, and University Hospital Giessen and Marburg, Baldingerstrasse, 35032, Marburg, Germany
| | - Eva Albertini
- Institute for Biomedical Aging Research, University of Innsbruck, Rennweg 10, 6020, Innsbruck, Austria
| | - Elisabeth K M Mack
- Department of Hematology, Oncology and Immunology, Philipps-University Marburg, and University Hospital Giessen and Marburg, Baldingerstrasse, 35032, Marburg, Germany
| | - Pidder Jansen-Dürr
- Institute for Biomedical Aging Research, University of Innsbruck, Rennweg 10, 6020, Innsbruck, Austria.
| |
Collapse
|
16
|
Atas-Ozcan H, Brault V, Duchon A, Herault Y. Dyrk1a from Gene Function in Development and Physiology to Dosage Correction across Life Span in Down Syndrome. Genes (Basel) 2021; 12:1833. [PMID: 34828439 PMCID: PMC8624927 DOI: 10.3390/genes12111833] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/15/2021] [Accepted: 11/18/2021] [Indexed: 01/12/2023] Open
Abstract
Down syndrome is the main cause of intellectual disabilities with a large set of comorbidities from developmental origins but also that appeared across life span. Investigation of the genetic overdosage found in Down syndrome, due to the trisomy of human chromosome 21, has pointed to one main driver gene, the Dual-specificity tyrosine-regulated kinase 1A (Dyrk1a). Dyrk1a is a murine homolog of the drosophila minibrain gene. It has been found to be involved in many biological processes during development and in adulthood. Further analysis showed its haploinsufficiency in mental retardation disease 7 and its involvement in Alzheimer's disease. DYRK1A plays a role in major developmental steps of brain development, controlling the proliferation of neural progenitors, the migration of neurons, their dendritogenesis and the function of the synapse. Several strategies targeting the overdosage of DYRK1A in DS with specific kinase inhibitors have showed promising evidence that DS cognitive conditions can be alleviated. Nevertheless, providing conditions for proper temporal treatment and to tackle the neurodevelopmental and the neurodegenerative aspects of DS across life span is still an open question.
Collapse
Affiliation(s)
- Helin Atas-Ozcan
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 1 rue Laurent Fries, 67404 Illkirch Graffenstaden, France; (H.A.-O.); (V.B.); (A.D.)
| | - Véronique Brault
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 1 rue Laurent Fries, 67404 Illkirch Graffenstaden, France; (H.A.-O.); (V.B.); (A.D.)
| | - Arnaud Duchon
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 1 rue Laurent Fries, 67404 Illkirch Graffenstaden, France; (H.A.-O.); (V.B.); (A.D.)
| | - Yann Herault
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 1 rue Laurent Fries, 67404 Illkirch Graffenstaden, France; (H.A.-O.); (V.B.); (A.D.)
- Université de Strasbourg, CNRS, INSERM, Celphedia, Phenomin-Institut Clinique de la Souris (ICS), 1 rue Laurent Fries, 67404 Illkirch Graffenstaden, France
| |
Collapse
|
17
|
Chen P, Wu X, Gu X, Han J, Xue M, Liang X. FoxO1 in Micropterus salmoides: Molecular characterization and its roles in glucose metabolism by glucose or insulin-glucose loading. Gen Comp Endocrinol 2021; 310:113811. [PMID: 33979571 DOI: 10.1016/j.ygcen.2021.113811] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 04/15/2021] [Accepted: 05/07/2021] [Indexed: 12/18/2022]
Abstract
Forkhead box O1 (FoxO1), a nuclear transcription factor, plays an important role in insulin-mediated glucose metabolism. In this study, FoxO1 gene from largemouth bass (Micropterus salmoides) was cloned and characterized, and its effects on hepatic glucose metabolism regulated by insulin-AKT pathway were investigated in response to glucose or insulin-glucose injection. The full-length cDNA of FoxO1 consisted of 2541 bp and encoded 680 amino acids. Sequence alignments and phylogenetic analysis revealed that FoxO1 exhibited a high degree of conservation among teleost, retaining one forkhead domain, one transactivation domain, and three phosphorylation sites. FoxO1 mRNA was expressed in a wide range of tissues, and high in the brain and liver. Glucose loading resulted in persistent hyperglycemia, and plasma insulin levels remained unchanged except at 1 h. After the insulin-glucose injection, insulin levels were significantly elevated and glucose levels recovered to the basal value after 6 h, which indicated insufficient insulin secretion caused persistent hyperglycemia in this species. Compared with the glucose injection group, transcript levels and enzyme activities of hepatic glycolysis-related genes (GK and PK) were significantly activated, and gluconeogenesis-related genes (PEPCK and G6Pase) were significantly depressed at 3 h after the insulin-glucose injection. Besides, phosphorylation of AKT-FoxO1 pathway was significantly activated. Therefore, insulin improved glucose metabolism by activating the AKT-FoxO1 phosphorylation to decrease hyperglycemia stress after the meal, which indicated insufficient insulin secretion was the reason for glucose intolerance in largemouth bass. Meanwhile, conserved S267 and S329 phosphorylation sites of FoxO1 were confirmed to be regulated by AKT and mediated the glucose metabolism. In conclusion, activation of insulin-AKT-FoxO1 pathway improved glucose tolerance through mediating glucose metabolism in largemouth bass.
Collapse
Affiliation(s)
- Pei Chen
- National Aquafeed Safety Assessment Center, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiufeng Wu
- National Aquafeed Safety Assessment Center, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xu Gu
- National Aquafeed Safety Assessment Center, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Juan Han
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Min Xue
- National Aquafeed Safety Assessment Center, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Xiaofang Liang
- National Aquafeed Safety Assessment Center, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
18
|
Levy JA, LaFlamme CW, Tsaprailis G, Crynen G, Page DT. Dyrk1a Mutations Cause Undergrowth of Cortical Pyramidal Neurons via Dysregulated Growth Factor Signaling. Biol Psychiatry 2021; 90:295-306. [PMID: 33840455 PMCID: PMC8787822 DOI: 10.1016/j.biopsych.2021.01.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 01/05/2023]
Abstract
BACKGROUND Mutations in DYRK1A are a cause of microcephaly, autism spectrum disorder, and intellectual disability; however, the underlying cellular and molecular mechanisms are not well understood. METHODS We generated a conditional mouse model using Emx1-cre, including conditional heterozygous and homozygous knockouts, to investigate the necessity of Dyrk1a in the cortex during development. We used unbiased, high-throughput phosphoproteomics to identify dysregulated signaling mechanisms in the developing Dyrk1a mutant cortex as well as classic genetic modifier approaches and pharmacological therapeutic intervention to rescue microcephaly and neuronal undergrowth caused by Dyrk1a mutations. RESULTS We found that cortical deletion of Dyrk1a in mice causes decreased brain mass and neuronal size, structural hypoconnectivity, and autism-relevant behaviors. Using phosphoproteomic screening, we identified growth-associated signaling cascades dysregulated upon Dyrk1a deletion, including TrkB-BDNF (tyrosine receptor kinase B-brain-derived neurotrophic factor), an important regulator of ERK/MAPK (extracellular signal-regulated kinase/mitogen-activated protein kinase) and mTOR (mammalian target of rapamycin) signaling. Genetic suppression of Pten or pharmacological treatment with IGF-1 (insulin-like growth factor-1), both of which impinge on these signaling cascades, rescued microcephaly and neuronal undergrowth in neonatal mutants. CONCLUSIONS Altogether, these findings identify a previously unknown mechanism through which Dyrk1a mutations disrupt growth factor signaling in the developing brain, thus influencing neuronal growth and connectivity. Our results place DYRK1A as a critical regulator of a biological pathway known to be dysregulated in humans with autism spectrum disorder and intellectual disability. In addition, these data position Dyrk1a within a larger group of autism spectrum disorder/intellectual disability risk genes that impinge on growth-associated signaling cascades to regulate brain size and connectivity, suggesting a point of convergence for multiple autism etiologies.
Collapse
Affiliation(s)
- Jenna A Levy
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida; Doctoral Program in Chemical and Biological Sciences, The Skaggs Graduate School of Chemical and Biological Sciences at Scripps Research, Jupiter, Florida
| | - Christy W LaFlamme
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida; The Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter, Florida
| | | | - Gogce Crynen
- Center for Computational Biology and Bioinformatics, The Scripps Research Institute, Jupiter, Florida
| | - Damon T Page
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida; Doctoral Program in Chemical and Biological Sciences, The Skaggs Graduate School of Chemical and Biological Sciences at Scripps Research, Jupiter, Florida.
| |
Collapse
|
19
|
Wang P, Zhao J, Sun X. DYRK1A phosphorylates MEF2D and decreases its transcriptional activity. J Cell Mol Med 2021; 25:6082-6093. [PMID: 34109727 PMCID: PMC8256340 DOI: 10.1111/jcmm.16505] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 03/03/2021] [Accepted: 03/11/2021] [Indexed: 12/16/2022] Open
Abstract
Myocyte enhancer factor 2D (MEF2D) is predominantly expressed in the nucleus and associated with cell growth, differentiation, survival and apoptosis. Previous studies verified that phosphorylation at different amino acids determined MEF2's transcriptional activity which was essential in regulating downstream target genes expression. What regulates phosphorylation of MEF2D and affects its function has not been fully elucidated. Here, we uncovered that dual-specificity tyrosine phosphorylation regulated kinase 1A (DYRK1A), a kinase critical in Down's syndrome pathogenesis, directly bound to and phosphorylated MEF2D at Ser251 in vitro. Phosphorylation of MEF2D by DYRK1A significantly increased MEF2D protein level but attenuated its transcriptional activity, which resulted in decreased transcriptions of MEF2D target genes. Phosphorylation mutated Ser251A MEF2D exhibited enhanced transcriptional activity compared with wild type MEF2D. MEF2D and DYRK1A were observed co-localized in HEK293 and U87MG cells. Moreover, DYRK1A-mediated MEF2D phosphorylation in vitro might influence its nuclear export upon subcellular fractionation, which partially explained the reduction of MEF2D transcriptional activity by DYRK1A. Our results indicated that DYRK1A might be a regulator of MEF2D transcriptional activity and indirectly get involved in regulation of MEF2D target genes.
Collapse
Affiliation(s)
- Pin Wang
- NHC Key Laboratory of Otorhinolaryngology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, Jinan, China
| | - Juan Zhao
- NHC Key Laboratory of Otorhinolaryngology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, Jinan, China
| | - Xiulian Sun
- NHC Key Laboratory of Otorhinolaryngology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Brain Research Institute, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
20
|
Zhang X, Jiang L, Liu H. Forkhead Box Protein O1: Functional Diversity and Post-Translational Modification, a New Therapeutic Target? DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:1851-1860. [PMID: 33976536 PMCID: PMC8106445 DOI: 10.2147/dddt.s305016] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/19/2021] [Indexed: 11/23/2022]
Abstract
Forkhead box protein O1 (FoXO1) is a transcription factor involved in the regulation of a wide variety of physiological process including glucose metabolism, lipogenesis, bone mass, apoptosis, and autophagy. FoXO1 dysfunction is involved in the pathophysiology of various diseases including metabolic diseases, atherosclerosis, and tumors. FoXO1 activity is regulated in response to different physiological or pathogenic conditions by changes in protein expression and post-translational modifications. Various modifications cooperate to regulate FoXO1 activity and FoXO1 target gene transcription. In this review, we summarize how different post-translational modifications regulate FoXO1 physiological function, which may provide new insights for drug design and development.
Collapse
Affiliation(s)
- Xiaojun Zhang
- Department of Cardiology, Shandong Rongjun General Hospital, Jinan, 250013, People's Republic of China
| | - Lusheng Jiang
- Department of Emergency, Shandong Rongjun General Hospital, Jinan, 250013, People's Republic of China
| | - Huimin Liu
- Blood Purification Center, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250011, People's Republic of China
| |
Collapse
|
21
|
Friedman B, Corciulo C, Castro CM, Cronstein BN. Adenosine A2A receptor signaling promotes FoxO associated autophagy in chondrocytes. Sci Rep 2021; 11:968. [PMID: 33441836 PMCID: PMC7806643 DOI: 10.1038/s41598-020-80244-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 12/11/2020] [Indexed: 01/05/2023] Open
Abstract
Autophagy, a homeostatic pathway upregulated during cellular stress, is decreased in osteoarthritic chondrocytes and this reduction in autophagy is thought to contribute to the development and progression of osteoarthritis (OA). The adenosine A2A receptor (A2AR) is a potent anti-inflammatory receptor and deficiency of this receptor leads to the development of OA in mice. Moreover, treatment using liposomally conjugated adenosine or a specific A2AR agonist improved joint scores significantly in both rats with post-traumatic OA (PTOA) and mice subjected to a high fat diet obesity induced OA. Importantly, A2AR ligation is beneficial for mitochondrial health and metabolism in vitro in primary and the TC28a2 human cell line. An additional set of metabolic, stress-responsive, and homeostatic mediators include the Forkhead box O transcription factors (FoxOs). Data has shown that mouse FoxO knockouts develop early OA with reduced cartilage autophagy, indicating that FoxO-induced homeostasis is important for articular cartilage. Given the apparent similarities between A2AR and FoxO signaling, we tested the hypothesis that A2AR stimulation improves cartilage function through activation of the FoxO proteins leading to increased autophagy in chondrocytes. We analyzed the signaling pathway in the human TC28a2 cell line and corroborated these findings in vivo in a metabolically relevant obesity-induced OA mouse model. We found that A2AR stimulation increases activation and nuclear localization of FoxO1 and FoxO3, promotes an increase in autophagic flux, improves metabolic function in chondrocytes, and reduces markers of apoptosis in vitro and reduced apoptosis by TUNEL assay in vivo. A2AR ligation additionally enhances in vivo activation of FoxO1 and FoxO3 with evidence of enhanced autophagic flux upon injection of the liposome-associated A2AR agonist in a mouse obesity-induced OA model. These findings offer further evidence that A2AR may be an excellent target for promoting chondrocyte and cartilage homeostasis.
Collapse
Affiliation(s)
- Benjamin Friedman
- Department of Medicine, Division of Rheumatology, NYU School of Medicine, 550 First Avenue, New York, NY, 10016, USA
- Department of Medicine, Division of Translational Medicine, NYU School of Medicine, 550 First Avenue, New York, NY, 10016, USA
| | - Carmen Corciulo
- Department of Medicine, Division of Translational Medicine, NYU School of Medicine, 550 First Avenue, New York, NY, 10016, USA
| | - Cristina M Castro
- Department of Medicine, Division of Translational Medicine, NYU School of Medicine, 550 First Avenue, New York, NY, 10016, USA
| | - Bruce N Cronstein
- Department of Medicine, Division of Rheumatology, NYU School of Medicine, 550 First Avenue, New York, NY, 10016, USA.
- Department of Medicine, Division of Translational Medicine, NYU School of Medicine, 550 First Avenue, New York, NY, 10016, USA.
| |
Collapse
|
22
|
Bhansali RS, Rammohan M, Lee P, Laurent AP, Wen Q, Suraneni P, Yip BH, Tsai YC, Jenni S, Bornhauser B, Siret A, Fruit C, Pacheco-Benichou A, Harris E, Besson T, Thompson BJ, Goo YA, Hijiya N, Vilenchik M, Izraeli S, Bourquin JP, Malinge S, Crispino JD. DYRK1A regulates B cell acute lymphoblastic leukemia through phosphorylation of FOXO1 and STAT3. J Clin Invest 2021; 131:135937. [PMID: 33393494 PMCID: PMC7773384 DOI: 10.1172/jci135937] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 08/11/2020] [Indexed: 01/17/2023] Open
Abstract
DYRK1A is a serine/threonine kinase encoded on human chromosome 21 (HSA21) that has been implicated in several pathologies of Down syndrome (DS), including cognitive deficits and Alzheimer's disease. Although children with DS are predisposed to developing leukemia, especially B cell acute lymphoblastic leukemia (B-ALL), the HSA21 genes that contribute to malignancies remain largely undefined. Here, we report that DYRK1A is overexpressed and required for B-ALL. Genetic and pharmacologic inhibition of DYRK1A decreased leukemic cell expansion and suppressed B-ALL development in vitro and in vivo. Furthermore, we found that FOXO1 and STAT3, transcription factors that are indispensable for B cell development, are critical substrates of DYRK1A. Loss of DYRK1A-mediated FOXO1 and STAT3 signaling disrupted DNA damage and ROS regulation, respectively, leading to preferential cell death in leukemic B cells. Thus, we reveal a DYRK1A/FOXO1/STAT3 axis that facilitates the development and maintenance of B-ALL.
Collapse
Affiliation(s)
- Rahul S. Bhansali
- Department of Medicine, Division of Hematology/Oncology, Northwestern University, Chicago, Illinois, USA
| | - Malini Rammohan
- Department of Medicine, Division of Hematology/Oncology, Northwestern University, Chicago, Illinois, USA
| | - Paul Lee
- Abbvie, North Chicago, Illinois, USA
| | | | - Qiang Wen
- Department of Medicine, Division of Hematology/Oncology, Northwestern University, Chicago, Illinois, USA
| | - Praveen Suraneni
- Department of Medicine, Division of Hematology/Oncology, Northwestern University, Chicago, Illinois, USA
| | - Bon Ham Yip
- Division of Experimental Hematology, Department of Hematology, St. Jude Children’s Hospital, Memphis, Tennessee, USA
| | - Yi-Chien Tsai
- Department of Pediatric Oncology, Children’s Research Centre, University Children’s Hospital Zurich, Zurich, Switzerland
| | - Silvia Jenni
- Department of Pediatric Oncology, Children’s Research Centre, University Children’s Hospital Zurich, Zurich, Switzerland
| | - Beat Bornhauser
- Department of Pediatric Oncology, Children’s Research Centre, University Children’s Hospital Zurich, Zurich, Switzerland
| | - Aurélie Siret
- INSERM U1170, Gustave Roussy Institute, Villejuif, France
| | - Corinne Fruit
- Normandie University, UNIROUEN, Institut National des Sciences Appliquées (INSA) Rouen, CNRS, Chimie Organique et Bioorganique — Réactivité et Analyse (COBRA) UMR 6014, Rouen, France
| | - Alexandra Pacheco-Benichou
- Normandie University, UNIROUEN, Institut National des Sciences Appliquées (INSA) Rouen, CNRS, Chimie Organique et Bioorganique — Réactivité et Analyse (COBRA) UMR 6014, Rouen, France
| | - Ethan Harris
- College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Thierry Besson
- Normandie University, UNIROUEN, Institut National des Sciences Appliquées (INSA) Rouen, CNRS, Chimie Organique et Bioorganique — Réactivité et Analyse (COBRA) UMR 6014, Rouen, France
| | | | - Young Ah Goo
- Proteomics Center of Excellence, Northwestern University, Evanston, Illinois, USA
| | - Nobuko Hijiya
- Division of Pediatric Hematology/Oncology, Columbia University, New York, New York, USA
| | | | - Shai Izraeli
- Pediatric Hematology Oncology, Schneider Children’s Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Petah Tikva, Israel
| | - Jean-Pierre Bourquin
- Department of Pediatric Oncology, Children’s Research Centre, University Children’s Hospital Zurich, Zurich, Switzerland
| | - Sébastien Malinge
- INSERM U1170, Gustave Roussy Institute, Villejuif, France
- Telethon Kids Institute, Telethon Kids Cancer Centre (TKCC), Nedlands, Western Australia, Australia
| | - John D. Crispino
- Department of Medicine, Division of Hematology/Oncology, Northwestern University, Chicago, Illinois, USA
- Division of Experimental Hematology, Department of Hematology, St. Jude Children’s Hospital, Memphis, Tennessee, USA
| |
Collapse
|
23
|
Calissi G, Lam EWF, Link W. Therapeutic strategies targeting FOXO transcription factors. Nat Rev Drug Discov 2021; 20:21-38. [PMID: 33173189 DOI: 10.1038/s41573-020-0088-2] [Citation(s) in RCA: 209] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2020] [Indexed: 12/13/2022]
Abstract
FOXO proteins are transcription factors that are involved in numerous physiological processes and in various pathological conditions, including cardiovascular disease, cancer, diabetes and chronic neurological diseases. For example, FOXO proteins are context-dependent tumour suppressors that are frequently inactivated in human cancers, and FOXO3 is the second most replicated gene associated with extreme human longevity. Therefore, pharmacological manipulation of FOXO proteins is a promising approach to developing therapeutics for cancer and for healthy ageing. In this Review, we overview the role of FOXO proteins in health and disease and discuss the pharmacological approaches to modulate FOXO function.
Collapse
Affiliation(s)
- Giampaolo Calissi
- Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), Madrid, Spain
| | - Eric W-F Lam
- Department of Surgery and Cancer, Imperial College London, Imperial Centre for Translational and Experimental Medicine (ICTEM), London, UK
| | - Wolfgang Link
- Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), Madrid, Spain.
| |
Collapse
|
24
|
Kokkorakis N, Gaitanou M. Minibrain-related kinase/dual-specificity tyrosine-regulated kinase 1B implication in stem/cancer stem cells biology. World J Stem Cells 2020; 12:1553-1575. [PMID: 33505600 PMCID: PMC7789127 DOI: 10.4252/wjsc.v12.i12.1553] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/29/2020] [Accepted: 10/15/2020] [Indexed: 02/06/2023] Open
Abstract
Dual-specificity tyrosine phosphorylation-regulated kinase 1B (DYRK1B), also known as minibrain-related kinase (MIRK) is one of the best functionally studied members of the DYRK kinase family. DYRKs comprise a family of protein kinases that are emerging modulators of signal transduction pathways, cell proliferation and differentiation, survival, and cell motility. DYRKs were found to participate in several signaling pathways critical for development and cell homeostasis. In this review, we focus on the DYRK1B protein kinase from a functional point of view concerning the signaling pathways through which DYRK1B exerts its cell type-dependent function in a positive or negative manner, in development and human diseases. In particular, we focus on the physiological role of DYRK1B in behavior of stem cells in myogenesis, adipogenesis, spermatogenesis and neurogenesis, as well as in its pathological implication in cancer and metabolic syndrome. Thus, understanding of the molecular mechanisms that regulate signaling pathways is of high importance. Recent studies have identified a close regulatory connection between DYRK1B and the hedgehog (HH) signaling pathway. Here, we aim to bring together what is known about the functional integration and cross-talk between DYRK1B and several signaling pathways, such as HH, RAS and PI3K/mTOR/AKT, as well as how this might affect cellular and molecular processes in development, physiology, and pathology. Thus, this review summarizes the major known functions of DYRK1B kinase, as well as the mechanisms by which DYRK1B exerts its functions in development and human diseases focusing on the homeostasis of stem and cancer stem cells.
Collapse
Affiliation(s)
- Nikolaos Kokkorakis
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Hellenic Pasteur Institute, Athens 11521, Greece
| | - Maria Gaitanou
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Hellenic Pasteur Institute, Athens 11521, Greece.
| |
Collapse
|
25
|
Machado S, Silva A, De Sousa-Coelho AL, Duarte I, Grenho I, Santos B, Mayoral-Varo V, Megias D, Sánchez-Cabo F, Dopazo A, Ferreira BI, Link W. Harmine and Piperlongumine Revert TRIB2-Mediated Drug Resistance. Cancers (Basel) 2020; 12:cancers12123689. [PMID: 33316942 PMCID: PMC7763856 DOI: 10.3390/cancers12123689] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 12/02/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Poor survival and treatment failure of patients with cancer are mainly due to resistance to therapy. Tribbles homologue 2 (TRIB2) has recently been identified as a protein that promotes resistance to several anti-cancer drugs. In this study, RNA sequencing and bioinformatics analysis were used with the aim of characterizing the impact of TRIB2 on the expression of genes and developing pharmacological strategies to revert these TRIB2-mediated changes, thereby overcoming therapy resistance. We show that two naturally occurring alkaloids, harmine and piperlongumine, inverse the gene expression profile produced by TRIB2 and sensitize cancer cells to anti-cancer drugs. Our data suggest that harmine and piperlongumine or similar compounds might have the potential to overcome TRIB2-mediated therapy resistance in cancer patients. Abstract Therapy resistance is responsible for most relapses in patients with cancer and is the major challenge to improving the clinical outcome. The pseudokinase Tribbles homologue 2 (TRIB2) has been characterized as an important driver of resistance to several anti-cancer drugs, including the dual ATP-competitive PI3K and mTOR inhibitor dactolisib (BEZ235). TRIB2 promotes AKT activity, leading to the inactivation of FOXO transcription factors, which are known to mediate the cell response to antitumor drugs. To characterize the downstream events of TRIB2 activity, we analyzed the gene expression profiles of isogenic cell lines with different TRIB2 statuses by RNA sequencing. Using a connectivity map-based computational approach, we identified drug-induced gene-expression profiles that invert the TRIB2-associated expression profile. In particular, the natural alkaloids harmine and piperlongumine not only produced inverse gene expression profiles but also synergistically increased BEZ235-induced cell toxicity. Importantly, both agents promote FOXO nuclear translocation without interfering with the nuclear export machinery and induce the transcription of FOXO target genes. Our results highlight the great potential of this approach for drug repurposing and suggest that harmine and piperlongumine or similar compounds might be useful in the clinic to overcome TRIB2-mediated therapy resistance in cancer patients.
Collapse
Affiliation(s)
- Susana Machado
- Centre for Biomedical Research (CBMR), Universidade do Algarve, Campus of Gambelas, Building 8, Room 1.12, 8005-139 Faro, Portugal; (S.M.); (A.S.); (A.L.D.S.-C.); (I.D.); (I.G.); (B.S.)
- Algarve Biomedical Center (ABC), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Andreia Silva
- Centre for Biomedical Research (CBMR), Universidade do Algarve, Campus of Gambelas, Building 8, Room 1.12, 8005-139 Faro, Portugal; (S.M.); (A.S.); (A.L.D.S.-C.); (I.D.); (I.G.); (B.S.)
- Algarve Biomedical Center (ABC), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Ana Luísa De Sousa-Coelho
- Centre for Biomedical Research (CBMR), Universidade do Algarve, Campus of Gambelas, Building 8, Room 1.12, 8005-139 Faro, Portugal; (S.M.); (A.S.); (A.L.D.S.-C.); (I.D.); (I.G.); (B.S.)
- Algarve Biomedical Center (ABC), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Isabel Duarte
- Centre for Biomedical Research (CBMR), Universidade do Algarve, Campus of Gambelas, Building 8, Room 1.12, 8005-139 Faro, Portugal; (S.M.); (A.S.); (A.L.D.S.-C.); (I.D.); (I.G.); (B.S.)
- Algarve Biomedical Center (ABC), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Inês Grenho
- Centre for Biomedical Research (CBMR), Universidade do Algarve, Campus of Gambelas, Building 8, Room 1.12, 8005-139 Faro, Portugal; (S.M.); (A.S.); (A.L.D.S.-C.); (I.D.); (I.G.); (B.S.)
- Algarve Biomedical Center (ABC), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Bruno Santos
- Centre for Biomedical Research (CBMR), Universidade do Algarve, Campus of Gambelas, Building 8, Room 1.12, 8005-139 Faro, Portugal; (S.M.); (A.S.); (A.L.D.S.-C.); (I.D.); (I.G.); (B.S.)
- Algarve Biomedical Center (ABC), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Victor Mayoral-Varo
- Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain;
| | - Diego Megias
- Confocal Microscopy Unit, Biotechnology Program, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain;
| | - Fátima Sánchez-Cabo
- Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain; (F.S.-C.); (A.D.)
| | - Ana Dopazo
- Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain; (F.S.-C.); (A.D.)
| | - Bibiana I. Ferreira
- Centre for Biomedical Research (CBMR), Universidade do Algarve, Campus of Gambelas, Building 8, Room 1.12, 8005-139 Faro, Portugal; (S.M.); (A.S.); (A.L.D.S.-C.); (I.D.); (I.G.); (B.S.)
- Algarve Biomedical Center (ABC), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
- Regenerative Medicine Program, Department of Biomedical Sciences and Medicine, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
- Correspondence: (B.I.F.); (W.L.)
| | - Wolfgang Link
- Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain;
- Correspondence: (B.I.F.); (W.L.)
| |
Collapse
|
26
|
Abstract
Forkhead box O (FOXO) transcription factors regulate diverse biological processes, affecting development, metabolism, stem cell maintenance and longevity. They have also been increasingly recognised as tumour suppressors through their ability to regulate genes essential for cell proliferation, cell death, senescence, angiogenesis, cell migration and metastasis. Mechanistically, FOXO proteins serve as key connection points to allow diverse proliferative, nutrient and stress signals to converge and integrate with distinct gene networks to control cell fate, metabolism and cancer development. In consequence, deregulation of FOXO expression and function can promote genetic disorders, metabolic diseases, deregulated ageing and cancer. Metastasis is the process by which cancer cells spread from the primary tumour often via the bloodstream or the lymphatic system and is the major cause of cancer death. The regulation and deregulation of FOXO transcription factors occur predominantly at the post-transcriptional and post-translational levels mediated by regulatory non-coding RNAs, their interactions with other protein partners and co-factors and a combination of post-translational modifications (PTMs), including phosphorylation, acetylation, methylation and ubiquitination. This review discusses the role and regulation of FOXO proteins in tumour initiation and progression, with a particular emphasis on cancer metastasis. An understanding of how signalling networks integrate with the FOXO transcription factors to modulate their developmental, metabolic and tumour-suppressive functions in normal tissues and in cancer will offer a new perspective on tumorigenesis and metastasis, and open up therapeutic opportunities for malignant diseases.
Collapse
Affiliation(s)
- Yannasittha Jiramongkol
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, W12 0NN, UK
| | - Eric W-F Lam
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, W12 0NN, UK.
| |
Collapse
|
27
|
Uko NE, Güner OF, Matesic DF, Bowen JP. Akt Pathway Inhibitors. Curr Top Med Chem 2020; 20:883-900. [DOI: 10.2174/1568026620666200224101808] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 12/24/2019] [Accepted: 12/24/2019] [Indexed: 12/14/2022]
Abstract
Cancer is a devastating disease that has plagued humans from ancient times to this day. After
decades of slow research progress, promising drug development, and the identification of new targets,
the war on cancer was launched, in 1972. The P13K/Akt pathway is a growth-regulating cellular signaling
pathway, which in many human cancers is over-activated. Studies have demonstrated that a decrease
in Akt activity by Akt inhibitors is associated with a reduction in tumor cell proliferation. There have
been several promising drug candidates that have been studied, including but not limited to ipatasertib
(RG7440), 1; afuresertib (GSK2110183), 2; uprosertib (GSK2141795), 3; capivasertib (AZD5363), 4;
which reportedly bind to the ATP active site and inhibit Akt activity, thus exerting cytotoxic and antiproliferative
activities against human cancer cells. For most of the compounds discussed in this review,
data from preclinical studies in various cancers suggest a mechanistic basis involving hyperactivated
Akt signaling. Allosteric inhibitors are also known to alter the activity of kinases. Perifosine (KRX-
0401), 5, an alkylphospholipid, is known as the first allosteric Akt inhibitor to enter clinical development
and is mechanistically characterized as a PH-domain dependent inhibitor, non-competitive with
ATP. This results in a reduction in Akt enzymatic and cellular activities. Other small molecule (MK-
2206, 6, PHT-427, Akti-1/2) inhibitors with a similar mechanism of action, alter Akt activity through the
suppression of cell growth mediated by the inhibition of Akt membrane localization and subsequent activation.
The natural product solenopsin has been identified as an inhibitor of Akt. A few promising solenopsin
derivatives have emerged through pharmacophore modeling, energy-based calculations, and
property predictions.
Collapse
Affiliation(s)
- Nne E. Uko
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA 30341, United States
| | - Osman F. Güner
- Department of Chemistry and Physics, Santa Rosa Junior College, Santa Rosa, CA, United States
| | - Diane F. Matesic
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA 30341, United States
| | - J. Phillip Bowen
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA 30341, United States
| |
Collapse
|
28
|
Crapster JA, Rack PG, Hellmann ZJ, Le AD, Adams CM, Leib RD, Elias JE, Perrino J, Behr B, Li Y, Lin J, Zeng H, Chen JK. HIPK4 is essential for murine spermiogenesis. eLife 2020; 9:e50209. [PMID: 32163033 PMCID: PMC7067585 DOI: 10.7554/elife.50209] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 02/23/2020] [Indexed: 12/19/2022] Open
Abstract
Mammalian spermiogenesis is a remarkable cellular transformation, during which round spermatids elongate into chromatin-condensed spermatozoa. The signaling pathways that coordinate this process are not well understood, and we demonstrate here that homeodomain-interacting protein kinase 4 (HIPK4) is essential for spermiogenesis and male fertility in mice. HIPK4 is predominantly expressed in round and early elongating spermatids, and Hipk4 knockout males are sterile, exhibiting phenotypes consistent with oligoasthenoteratozoospermia. Hipk4 mutant sperm have reduced oocyte binding and are incompetent for in vitro fertilization, but they can still produce viable offspring via intracytoplasmic sperm injection. Optical and electron microscopy of HIPK4-null male germ cells reveals defects in the filamentous actin (F-actin)-scaffolded acroplaxome during spermatid elongation and abnormal head morphologies in mature spermatozoa. We further observe that HIPK4 overexpression induces branched F-actin structures in cultured fibroblasts and that HIPK4 deficiency alters the subcellular distribution of an F-actin capping protein in the testis, supporting a role for this kinase in cytoskeleton remodeling. Our findings establish HIPK4 as an essential regulator of sperm head shaping and potential target for male contraception.
Collapse
Affiliation(s)
- J Aaron Crapster
- Department of Chemical and Systems Biology, Stanford University School of MedicineStanfordUnited States
| | - Paul G Rack
- Department of Chemical and Systems Biology, Stanford University School of MedicineStanfordUnited States
| | - Zane J Hellmann
- Department of Chemical and Systems Biology, Stanford University School of MedicineStanfordUnited States
| | - Austen D Le
- Department of Chemical and Systems Biology, Stanford University School of MedicineStanfordUnited States
| | - Christopher M Adams
- Stanford University Mass Spectrometry, Stanford UniversityStanfordUnited States
| | - Ryan D Leib
- Stanford University Mass Spectrometry, Stanford UniversityStanfordUnited States
| | - Joshua E Elias
- Chan Zuckerberg Biohub, Stanford UniversityStanfordUnited States
| | - John Perrino
- Cell Science Imaging Facility, Stanford University School of MedicineStanfordUnited States
| | - Barry Behr
- Department of Obstetrics and Gynecology, Reproductive Endocrinology and Infertility, Stanford University School of MedicineStanfordUnited States
| | - Yanfeng Li
- Transgenic, Knockout, and Tumor Model Center, Stanford University School of MedicineStanfordUnited States
| | - Jennifer Lin
- Transgenic, Knockout, and Tumor Model Center, Stanford University School of MedicineStanfordUnited States
| | - Hong Zeng
- Transgenic, Knockout, and Tumor Model Center, Stanford University School of MedicineStanfordUnited States
| | - James K Chen
- Department of Chemical and Systems Biology, Stanford University School of MedicineStanfordUnited States
- Department of Developmental Biology, Stanford University School of MedicineStanfordUnited States
- Department of Chemistry, Stanford UniversityStanfordUnited States
| |
Collapse
|
29
|
Liu W, Li Y, Luo B. Current perspective on the regulation of FOXO4 and its role in disease progression. Cell Mol Life Sci 2020; 77:651-663. [PMID: 31529218 PMCID: PMC11104957 DOI: 10.1007/s00018-019-03297-w] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/21/2019] [Accepted: 09/09/2019] [Indexed: 12/12/2022]
Abstract
Forkhead box O4 (FOXO4) is a member of the FOXO family that regulates a number of genes involved in metabolism, cell cycle, apoptosis, and cellular homeostasis via transcriptional activity. It also mediates cell responses to oxidative stress and treatment with antitumor agents. The expression of FOXO4 is repressed by microRNAs in multiple cancer cells, while FOXO4 function is regulated by post-translational modifications and interaction with other proteins. The deregulation of FOXO4 is closely linked to the progression of several types of cancer, senescence, and other diseases. In this review, we present recent findings on the regulation of FOXO4 in physiological and pathological conditions and provide an overview of the complex role of FOXO4 in disease development and response to therapy.
Collapse
Affiliation(s)
- Wen Liu
- Department of Pathogenic Biology, Faculty of Medicine, Qingdao University, Qingdao, China
| | - Yong Li
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Faculty of Medicine, Qingdao University, Qingdao, China
| | - Bing Luo
- Department of Pathogenic Biology, Faculty of Medicine, Qingdao University, Qingdao, China.
| |
Collapse
|
30
|
Gross SM, Dane MA, Bucher E, Heiser LM. Individual Cells Can Resolve Variations in Stimulus Intensity along the IGF-PI3K-AKT Signaling Axis. Cell Syst 2019; 9:580-588.e4. [PMID: 31838146 DOI: 10.1016/j.cels.2019.11.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 04/07/2019] [Accepted: 11/06/2019] [Indexed: 11/28/2022]
Abstract
Cells sense and respond to signals in their local environment by activating signaling cascades that lead to phenotypic changes. Differences in these signals can be discriminated at the population level; however, single cells have been thought to be limited in their capacity to distinguish ligand doses due to signaling noise. We describe here the rational development of a genetically encoded FoxO1 sensor, which serves as a down-stream readout of insulin growth factor-phosphatidylinositol 3-kinase IGF-PI3K-AKT signaling pathway activity. With this reporter, we tracked individual cell responses to multiple IGF-I doses, pathway inhibitors, and repeated treatments. We observed that individual cells can discriminate multiple IGF-I doses, and these responses are sustained over time, are reproducible at the single-cell level, and display cell-to-cell heterogeneity. These studies imply that cell-to-cell variation in signaling responses is biologically meaningful and support the endeavor to elucidate mechanisms of cell signaling at the level of the individual cell.
Collapse
Affiliation(s)
- Sean M Gross
- Department of Biomedical Engineering, OHSU Center for Spatial Systems Biomedicine, Knight Cancer Institute, Oregon Health & Sciences University, Portland OR, USA
| | - Mark A Dane
- Department of Biomedical Engineering, OHSU Center for Spatial Systems Biomedicine, Knight Cancer Institute, Oregon Health & Sciences University, Portland OR, USA
| | - Elmar Bucher
- Department of Biomedical Engineering, OHSU Center for Spatial Systems Biomedicine, Knight Cancer Institute, Oregon Health & Sciences University, Portland OR, USA
| | - Laura M Heiser
- Department of Biomedical Engineering, OHSU Center for Spatial Systems Biomedicine, Knight Cancer Institute, Oregon Health & Sciences University, Portland OR, USA.
| |
Collapse
|
31
|
De Toma I, Ortega M, Aloy P, Sabidó E, Dierssen M. DYRK1A Overexpression Alters Cognition and Neural-Related Proteomic Pathways in the Hippocampus That Are Rescued by Green Tea Extract and/or Environmental Enrichment. Front Mol Neurosci 2019; 12:272. [PMID: 31803016 PMCID: PMC6873902 DOI: 10.3389/fnmol.2019.00272] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 10/24/2019] [Indexed: 12/18/2022] Open
Abstract
Down syndrome (DS), caused by trisomy of chromosome 21, is the most common genetic cause of intellectual disability. We recently discovered that green tea extracts containing epigallocatechin-3-gallate (EGCG) improve cognition in mice transgenic for Dyrk1a (TgDyrk1A) and in a trisomic DS mouse model (Ts65Dn). Interestingly, paired with cognitive stimulation, green tea has beneficial pro-cognitive effects in DS individuals. Dual Specificity Tyrosine-Phosphorylation-Regulated Kinase 1A (DYRK1A) is a major candidate to explain the cognitive phenotypes of DS, and inhibiting its activity is a promising pro-cognitive therapy. DYRK1A kinase activity can be normalized in the hippocampus of transgenic DYRK1A mice administering green tea extracts, but also submitting the animals to environmental enrichment (EE). However, many other mechanisms could also explain the pro-cognitive effects of green tea extracts and EE. To underpin the overall alterations arising upon DYRK1A overexpression and the molecular processes underneath the pro-cognitive effects, we used quantitative proteomics. We investigated the hippocampal (phospho)proteome in basal conditions and after treatment with a green tea extract containing EGCG and/or EE in TgDyrk1A and control mice. We found that Dyrk1A overexpression alters protein and phosphoprotein levels of key postsynaptic and plasticity-related pathways and that these alterations were rescued upon the cognitive enhancer treatments.
Collapse
Affiliation(s)
- Ilario De Toma
- Systems Biology Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Mireia Ortega
- Systems Biology Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Patrick Aloy
- Institute for Research in Biomedicine (IRB), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Eduard Sabidó
- Universitat Pompeu Fabra (UPF), Barcelona, Spain.,Proteomic Unit, Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Mara Dierssen
- Systems Biology Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Valencia, Spain
| |
Collapse
|
32
|
Deshmukh V, O'Green AL, Bossard C, Seo T, Lamangan L, Ibanez M, Ghias A, Lai C, Do L, Cho S, Cahiwat J, Chiu K, Pedraza M, Anderson S, Harris R, Dellamary L, Kc S, Barroga C, Melchior B, Tam B, Kennedy S, Tambiah J, Hood J, Yazici Y. Modulation of the Wnt pathway through inhibition of CLK2 and DYRK1A by lorecivivint as a novel, potentially disease-modifying approach for knee osteoarthritis treatment. Osteoarthritis Cartilage 2019; 27:1347-1360. [PMID: 31132406 DOI: 10.1016/j.joca.2019.05.006] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 04/23/2019] [Accepted: 05/14/2019] [Indexed: 02/02/2023]
Abstract
OBJECTIVES Wnt pathway upregulation contributes to knee osteoarthritis (OA) through osteoblast differentiation, increased catabolic enzymes, and inflammation. The small-molecule Wnt pathway inhibitor, lorecivivint (SM04690), which previously demonstrated chondrogenesis and cartilage protection in an animal OA model, was evaluated to elucidate its mechanism of action. DESIGN Biochemical assays measured kinase activity. Western blots measured protein phosphorylation in human mesenchymal stem cells (hMSCs), chondrocytes, and synovial fibroblasts. siRNA knockdown effects in hMSCs and BEAS-2B cells on Wnt pathway, chondrogenic genes, and LPS-induced inflammatory cytokines was measured by qPCR. In vivo anti-inflammation, pain, and function were evaluated following single intra-articular (IA) lorecivivint or vehicle injection in the monosodium iodoacetate (MIA)-induced rat OA model. RESULTS Lorecivivint inhibited intranuclear kinases CDC-like kinase 2 (CLK2) and dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A). Lorecivivint inhibited CLK2-mediated phosphorylation of serine/arginine-rich (SR) splicing factors and DYRK1A-mediated phosphorylation of SIRT1 and FOXO1. siRNA knockdowns identified a role for CLK2 and DYRK1A in Wnt pathway modulation without affecting β-catenin with CLK2 inhibition inducing early chondrogenesis and DYRK1A inhibition enhancing mature chondrocyte function. NF-κB and STAT3 inhibition by lorecivivint reduced inflammation. DYRK1A knockdown was sufficient for anti-inflammatory effects, while combined DYRK1A/CLK2 knockdown enhanced this effect. In the MIA model, lorecivivint inhibited production of inflammatory cytokines and cartilage degradative enzymes, resulting in increased joint cartilage, decreased pain, and improved weight-bearing function. CONCLUSIONS Lorecivivint inhibition of CLK2 and DYRK1A suggested a novel mechanism for Wnt pathway inhibition, enhancing chondrogenesis, chondrocyte function, and anti-inflammation. Lorecivivint shows potential to modify structure and improve symptoms of knee OA.
Collapse
Affiliation(s)
| | | | | | - T Seo
- Samumed, LLC, San Diego, CA, USA.
| | | | - M Ibanez
- Samumed, LLC, San Diego, CA, USA.
| | - A Ghias
- Samumed, LLC, San Diego, CA, USA.
| | - C Lai
- Samumed, LLC, San Diego, CA, USA.
| | - L Do
- Samumed, LLC, San Diego, CA, USA.
| | - S Cho
- Samumed, LLC, San Diego, CA, USA.
| | | | - K Chiu
- Samumed, LLC, San Diego, CA, USA.
| | | | | | - R Harris
- Samumed, LLC, San Diego, CA, USA.
| | | | - S Kc
- Samumed, LLC, San Diego, CA, USA.
| | | | | | - B Tam
- Formerly Samumed, LLC, USA.
| | | | | | - J Hood
- Formerly Samumed, LLC, USA.
| | - Y Yazici
- Samumed, LLC, San Diego, CA, USA.
| |
Collapse
|
33
|
Roles of forkhead box O (FoxO) transcription factors in neurodegenerative diseases: A panoramic view. Prog Neurobiol 2019; 181:101645. [PMID: 31229499 DOI: 10.1016/j.pneurobio.2019.101645] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 06/03/2019] [Accepted: 06/18/2019] [Indexed: 12/11/2022]
Abstract
Neurodegenerative diseases (NDDs), which are among the most important aging-related diseases, are typically characterized by neuronal damage and a progressive impairment in neurological function during aging. Few effective therapeutic targets for NDDs have been revealed; thus, an understanding of the pathogenesis of NDDs is important. Forkhead box O (FoxO) transcription factors have been implicated in the mechanisms regulating aging and longevity. The functions of FoxOs are regulated by diverse post-translational modifications (e.g., phosphorylation, acetylation, ubiquitination, methylation and glycosylation). FoxOs exert both detrimental and protective effects on NDDs. Therefore, an understanding of the precise function of FoxOs in NDDs will be helpful for developing appropriate treatment strategies. In this review, we first introduce the post-translational modifications of FoxOs. Next, the regulation of FoxO expression and post-translational modifications in the central nervous system (CNS) is described. Afterwards, we analyze and address the important roles of FoxOs in NDDs. Finally, novel potential directions of future FoxO research in NDDs are discussed. This review recapitulates essential facts and questions about the promise of FoxOs in treating NDDs, and it will likely be important for the design of further basic studies and to realize the potential for FoxOs as therapeutic targets in NDDs.
Collapse
|
34
|
Rajendran NK, Dhilip Kumar SS, Houreld NN, Abrahamse H. Understanding the perspectives of forkhead transcription factors in delayed wound healing. J Cell Commun Signal 2019; 13:151-162. [PMID: 30088222 PMCID: PMC6498300 DOI: 10.1007/s12079-018-0484-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 08/01/2018] [Indexed: 01/20/2023] Open
Abstract
Wound healing is a complex overlapping biological process that involves a sequence of events coordinated by various cells, proteins, growth factors, cytokines and signaling molecules. Recent evidence indicates that forkhead box O1 (FOXO1) transcription factors play an important role in organizing these events to stimulate wound healing. The ubiquitously expressed forkhead box, class O (FOXO) transcription factors act as cell signaling molecules in various transcriptional processes that are involved in diverse cellular activities, including cell death, cell differentiation, DNA repair, apoptosis, and oxidative stress in response to stimuli, and interact with numerous proteins. Due to the activation of FOXO targeted genes, FOXOs are involved in maintaining the balance between oxidative stress and antioxidants. In humans, different isoforms of FOXO namely FOXO1, FOXO3, FOXO4 and FOXO6 are present, however only FOXO1 and FOXO3 possess biological functions such as morphogenesis, maintenance and tissue regeneration. This might make FOXOs an important therapeutic target to enhance wound healing in diabetes, and to avoid over scarring. In spite of extensive literature, little is known regarding the role of FOXO and its relationship in wound healing. This review provides a summary of FOXO proteins and their biological role in wound healing and oxidative stress.
Collapse
Affiliation(s)
- Naresh Kumar Rajendran
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, 2028, South Africa
| | - Sathish Sundar Dhilip Kumar
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, 2028, South Africa
| | - Nicolette Nadene Houreld
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, 2028, South Africa.
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, 2028, South Africa
| |
Collapse
|
35
|
Arbones ML, Thomazeau A, Nakano-Kobayashi A, Hagiwara M, Delabar JM. DYRK1A and cognition: A lifelong relationship. Pharmacol Ther 2019; 194:199-221. [PMID: 30268771 DOI: 10.1016/j.pharmthera.2018.09.010] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The dosage of the serine threonine kinase DYRK1A is critical in the central nervous system (CNS) during development and aging. This review analyzes the functions of this kinase by considering its interacting partners and pathways. The role of DYRK1A in controlling the differentiation of prenatal newly formed neurons is presented separately from its role at the pre- and post-synaptic levels in the adult CNS; its effects on synaptic plasticity are also discussed. Because this kinase is positioned at the crossroads of many important processes, genetic dosage errors in this protein produce devastating effects arising from DYRK1A deficiency, such as in MRD7, an autism spectrum disorder, or from DYRK1A excess, such as in Down syndrome. Effects of these errors have been shown in various animal models including Drosophila, zebrafish, and mice. Dysregulation of DYRK1A levels also occurs in neurodegenerative diseases such as Alzheimer's and Parkinson's diseases. Finally, this review describes inhibitors that have been assessed in vivo. Accurate targeting of DYRK1A levels in the brain, with either inhibitors or activators, is a future research challenge.
Collapse
Affiliation(s)
- Maria L Arbones
- Department of Developmental Biology, Instituto de Biología Molecular de Barcelona, CSIC, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 08028 Barcelona, Spain.
| | - Aurore Thomazeau
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, United States
| | - Akiko Nakano-Kobayashi
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Masatoshi Hagiwara
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Jean M Delabar
- INSERM U1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMRS 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
| |
Collapse
|
36
|
Becker W. A wake-up call to quiescent cancer cells - potential use of DYRK1B inhibitors in cancer therapy. FEBS J 2018; 285:1203-1211. [PMID: 29193696 DOI: 10.1111/febs.14347] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 10/25/2017] [Accepted: 11/24/2017] [Indexed: 12/27/2022]
Abstract
Nondividing cancer cells are relatively resistant to chemotherapeutic drugs and environmental stress factors. Promoting cell cycle re-entry of quiescent cancer cells is a potential strategy to enhance the cytotoxicity of agents that target cycling cells. It is therefore important to elucidate the mechanisms by which these cells are maintained in the quiescent state. The protein kinase dual specificity tyrosine phosphorylation-regulated kinase 1B (DYRK1B) is overexpressed in a subset of cancers and maintains cellular quiescence by counteracting G0 /G1 -S phase transition. Specifically, DYRK1B controls the S phase checkpoint by stabilizing the cyclin-dependent kinase (CDK) inhibitor p27Kip1 and inducing the degradation of cyclin D. DYRK1B also stabilizes the DREAM complex that represses cell cycle gene expression in G0 arrested cells. In addition, DYRK1B enhances cell survival by upregulating antioxidant gene expression and reducing intracellular levels of reactive oxygen species (ROS). Substantial evidence indicates that depletion or inhibition of DYRK1B drives cell cycle re-entry and enhances apoptosis of those quiescent cancer cells with high expression of DYRK1B. Furthermore, small molecule DYRK1B inhibitors sensitize cells to the cytotoxic effects of anticancer drugs that target proliferating cells. These encouraging findings justify continued efforts to investigate the use of DYRK1B inhibitors to disrupt the quiescent state and overturn chemoresistance of noncycling cancer cells.
Collapse
Affiliation(s)
- Walter Becker
- Institute of Pharmacology and Toxicology, Medical Faculty of the RWTH Aachen University, Germany
| |
Collapse
|
37
|
Ma J, Matkar S, He X, Hua X. FOXO family in regulating cancer and metabolism. Semin Cancer Biol 2018; 50:32-41. [PMID: 29410116 DOI: 10.1016/j.semcancer.2018.01.018] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 01/28/2018] [Accepted: 01/31/2018] [Indexed: 01/07/2023]
Abstract
FOXO proteins are a sub-group of a superfamily of forkhead box (FOX)-containing transcription factors (TFs). FOXOs play an important role in regulating a plethora of biological activities ranging from development, cell signaling, and tumorigenesis to cell metabolism. Here we mainly focus on reviewing the role of FOXOs in regulating tumor and metabolism. Moreover, how crosstalk among various pathways influences the function of FOXOs will be reviewed. Further, the paradoxical role for FOXOs in controlling the fate of cancer and especially resistance/sensitivity of cancer to the class of drugs that target PI3K/AKT will also be reviewed. Finally, how FOXOs regulate crosstalk between common cancer pathways and cell metabolism pathways, and how these crosstalks affect the fate of the cancer will be discussed.
Collapse
Affiliation(s)
- Jian Ma
- Department of Cancer Biology, Abramson Family Cancer Research Institute, Abramson Cancer Center, Institute of Diabetes, Obesity, and Metabolism (IDOM), University of Pennsylvania Perelman School of Medicine, 421 Curie Blvd., Philadelphia, PA 19104, USA; State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Road, Harbin, Heilongjiang 150069, China; College of Life Science, Northeast Forestry University, 26 Hexing Road, Harbin, Heilongjiang 150040, China.
| | - Smita Matkar
- Department of Cancer Biology, Abramson Family Cancer Research Institute, Abramson Cancer Center, Institute of Diabetes, Obesity, and Metabolism (IDOM), University of Pennsylvania Perelman School of Medicine, 421 Curie Blvd., Philadelphia, PA 19104, USA.
| | - Xin He
- Department of Cancer Biology, Abramson Family Cancer Research Institute, Abramson Cancer Center, Institute of Diabetes, Obesity, and Metabolism (IDOM), University of Pennsylvania Perelman School of Medicine, 421 Curie Blvd., Philadelphia, PA 19104, USA.
| | - Xianxin Hua
- Department of Cancer Biology, Abramson Family Cancer Research Institute, Abramson Cancer Center, Institute of Diabetes, Obesity, and Metabolism (IDOM), University of Pennsylvania Perelman School of Medicine, 421 Curie Blvd., Philadelphia, PA 19104, USA.
| |
Collapse
|
38
|
González-Quiroz M, Urra H, Limia CM, Hetz C. Homeostatic interplay between FoxO proteins and ER proteostasis in cancer and other diseases. Semin Cancer Biol 2018; 50:42-52. [PMID: 29369790 DOI: 10.1016/j.semcancer.2018.01.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 01/14/2018] [Accepted: 01/18/2018] [Indexed: 02/08/2023]
Abstract
Cancer cells are exposed to adverse conditions within the tumor microenvironment that challenge cells to adapt and survive. Several of these homeostatic perturbations insults alter the normal function of the endoplasmic reticulum (ER), resulting in the accumulation of misfolded proteins. ER stress triggers a conserved signaling pathway known as the unfolded protein response (UPR) to cope with the stress or trigger apoptosis of damaged cells. The UPR has been described as a major driver in the acquisition of malignant characteristics that ultimately lead to cancer progression. Although, several reports describe the relevance of the UPR in tumor growth, the possible crosstalk with other cancer-related pathways is starting to be elucidated. The Forkhead Box O (FoxO) subfamily of proteins has a major role in cancer progression, where chromosomal translocations and deregulated signaling lead to loss-of-function of FoxO proteins, contributing to tumor progression. Here we discuss the homeostatic connection between the UPR and FoxO proteins and its possible implications to tumor progression and the acquisition of several hallmarks of cancer. In addition, studies linking a crosstalk between the UPR and FoxO proteins in other diseases, including neurodegeneration and metabolic disorders is provided.
Collapse
Affiliation(s)
- Matías González-Quiroz
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile; Center for Geroscience, Brain Health and Metabolism, Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Hery Urra
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile; Center for Geroscience, Brain Health and Metabolism, Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Celia María Limia
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile; Center for Geroscience, Brain Health and Metabolism, Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Claudio Hetz
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile; Center for Geroscience, Brain Health and Metabolism, Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile; The Buck Institute for Research in Aging, Novato CA 94945, USA; Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston MA 02115, USA.
| |
Collapse
|
39
|
Yadav RK, Chauhan AS, Zhuang L, Gan B. FoxO transcription factors in cancer metabolism. Semin Cancer Biol 2018; 50:65-76. [PMID: 29309929 DOI: 10.1016/j.semcancer.2018.01.004] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 12/28/2017] [Accepted: 01/04/2018] [Indexed: 12/21/2022]
Abstract
FoxO transcription factors serve as the central regulator of cellular homeostasis and are tumor suppressors in human cancers. Recent studies have revealed that, besides their classic functions in promoting cell death and inducing cell cycle arrest, FoxOs also regulate cancer metabolism, an emerging hallmark of cancer. In this review, we summarize the regulatory mechanisms employed to control FoxO activities in the context of cancer biology, and discuss FoxO function in metabolism reprogramming in cancer and interaction with other key cancer metabolism pathways. A deeper understanding of FoxOs in cancer metabolism may reveal novel therapeutic opportunities in cancer treatment.
Collapse
Affiliation(s)
- Raj Kumar Yadav
- Department of Experimental Radiation Oncology, the University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Anoop Singh Chauhan
- Department of Experimental Radiation Oncology, the University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA.
| | - Li Zhuang
- Department of Experimental Radiation Oncology, the University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Boyi Gan
- Department of Experimental Radiation Oncology, the University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA; Department of Molecular and Cellular Oncology, the University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA; The University of Texas Graduate School of Biomedical Sciences, 1515 Holcombe Blvd, Houston, TX 77030, USA.
| |
Collapse
|
40
|
Unterman TG. Regulation of Hepatic Glucose Metabolism by FoxO Proteins, an Integrated Approach. Curr Top Dev Biol 2018; 127:119-147. [DOI: 10.1016/bs.ctdb.2017.10.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
41
|
Abstract
Forkhead box O (FOXO) transcription factors are central regulators of cellular homeostasis. FOXOs respond to a wide range of external stimuli, including growth factor signaling, oxidative stress, genotoxic stress, and nutrient deprivation. These signaling inputs regulate FOXOs through a number of posttranslational modifications, including phosphorylation, acetylation, ubiquitination, and methylation. Covalent modifications can affect localization, DNA binding, and interactions with other cofactors in the cell. FOXOs integrate the various modifications to regulate cell type-specific gene expression programs that are essential for metabolic homeostasis, redox balance, and the stress response. Together, these functions are critical for coordinating a response to environmental fluctuations in order to maintain cellular homeostasis during development and to support healthy aging.
Collapse
|
42
|
Gan Z, Powell FL, Zambon AC, Buchholz KS, Fu Z, Ocorr K, Bodmer R, Moya EA, Stowe JC, Haddad GG, McCulloch AD. Transcriptomic analysis identifies a role of PI3K-Akt signalling in the responses of skeletal muscle to acute hypoxia in vivo. J Physiol 2017; 595:5797-5813. [PMID: 28688178 PMCID: PMC5577531 DOI: 10.1113/jp274556] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 06/19/2017] [Indexed: 01/13/2023] Open
Abstract
KEY POINTS Changes in gene expression that occur within hours of exposure to hypoxia in in vivo skeletal muscles remain unexplored. Two hours of hypoxia caused significant down-regulation of extracellular matrix genes followed by a shift at 6 h to altered expression of genes associated with the nuclear lumen while respiratory and blood gases were stabilized. Enrichment analysis of mRNAs classified by stability rates suggests an attenuation of post-transcriptional regulation within hours of hypoxic exposure, where PI3K-Akt signalling was suggested to have a nodal role by pathway analysis. Experimental measurements and bioinformatic analyses suggested that the dephosphorylation of Akt after 2 h of hypoxic exposure might deactivate RNA-binding protein BRF1, hence resulting in the selective degradation of mRNAs. ABSTRACT The effects of acute hypoxia have been widely studied, but there are few studies of transcriptional responses to hours of hypoxia in vivo, especially in hypoxia-tolerant tissues like skeletal muscles. We used RNA-seq to analyse gene expression in plantaris muscles while monitoring respiration, arterial blood gases, and blood glucose in mice exposed to 8% O2 for 2 or 6 h. Rapid decreases in blood gases and a slower reduction in blood glucose suggest stress, which was accompanied by widespread changes in gene expression. Early down-regulation of genes associated with the extracellular matrix was followed by a shift to genes associated with the nuclear lumen. Most of the early down-regulated genes had mRNA half-lives longer than 2 h, suggesting a role for post-transcriptional regulation. These transcriptional changes were enriched in signalling pathways in which the PI3K-Akt signalling pathway was identified as a hub. Our analyses indicated that gene targets of PI3K-Akt but not HIF were enriched in early transcriptional responses to hypoxia. Among the PI3K-Akt targets, 75% could be explained by a deactivation of adenylate-uridylate-rich element (ARE)-binding protein BRF1, a target of PI3K-Akt. Consistent decreases in the phosphorylation of Akt and BRF1 were experimentally confirmed following 2 h of hypoxia. These results suggest that the PI3K-Akt signalling pathway might play a role in responses induced by acute hypoxia in skeletal muscles, partially through the dephosphorylation of ARE-binding protein BRF1.
Collapse
Affiliation(s)
- Zhuohui Gan
- School of Basic Medical SciencesWenzhou Medical UniversityWenzhou325035ZhejiangChina
- Department of BioengineeringUniversity of California San DiegoLa JollaCA92093USA
| | - Frank L. Powell
- Department of MedicineUniversity of California San DiegoLa JollaCA92093USA
| | - Alexander C. Zambon
- Department of Biopharmaceutical SciencesKeck Graduate InstituteClaremontCA91711USA
| | - Kyle S. Buchholz
- Department of BioengineeringUniversity of California San DiegoLa JollaCA92093USA
| | - Zhenxing Fu
- Department of MedicineUniversity of California San DiegoLa JollaCA92093USA
| | - Karen Ocorr
- Development, Aging and Regeneration ProgramSanford Burnham Prebys Medical Discovery InstituteLa JollaCA92037USA
| | - Rolf Bodmer
- Development, Aging and Regeneration ProgramSanford Burnham Prebys Medical Discovery InstituteLa JollaCA92037USA
| | - Esteban A. Moya
- Department of MedicineUniversity of California San DiegoLa JollaCA92093USA
| | - Jennifer C. Stowe
- Department of BioengineeringUniversity of California San DiegoLa JollaCA92093USA
| | - Gabriel G. Haddad
- Department of PediatricsUniversity of California San DiegoLa JollaCA92093USA
- Department of NeurosciencesUniversity of California San DiegoLa JollaCA92093USA
- Rady Children's Hospital San Diego3020 Children's WaySan DiegoCA92123USA
| | - Andrew D. McCulloch
- Department of BioengineeringUniversity of California San DiegoLa JollaCA92093USA
- Department of MedicineUniversity of California San DiegoLa JollaCA92093USA
| |
Collapse
|
43
|
Farhan M, Wang H, Gaur U, Little PJ, Xu J, Zheng W. FOXO Signaling Pathways as Therapeutic Targets in Cancer. Int J Biol Sci 2017; 13:815-827. [PMID: 28808415 PMCID: PMC5555100 DOI: 10.7150/ijbs.20052] [Citation(s) in RCA: 364] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 04/11/2017] [Indexed: 12/11/2022] Open
Abstract
Many transcription factors play a key role in cellular differentiation and the delineation of cell phenotype. Transcription factors are regulated by phosphorylation, ubiquitination, acetylation/deacetylation and interactions between two or more proteins controlling multiple signaling pathways. These pathways regulate different physiological processes and pathological events, such as cancer and other diseases. The Forkhead box O (FOXO) is one subfamily of the fork head transcription factor family with important roles in cell fate decisions and this subfamily is also suggested to play a pivotal functional role as a tumor suppressor in a wide range of cancers. During apoptosis, FOXOs are involved in mitochondria-dependent and -independent processes triggering the expression of death receptor ligands like Fas ligand, TNF apoptosis ligand and Bcl‑XL, bNIP3, Bim from Bcl-2 family members. Different types of growth factors like insulin play a vital role in the regulation of FOXOs. The most important pathway interacting with FOXO in different types of cancers is the PI3K/AKT pathway. Some other important pathways such as the Ras-MEK-ERK, IKK and AMPK pathways are also associated with FOXOs in tumorigenesis. Therapeutically targeting the FOXO signaling pathway(s) could lead to the discovery and development of efficacious agents against some cancers, but this requires an enhanced understanding and knowledge of FOXO transcription factors and their regulation and functioning. This review focused on the current understanding of cell biology of FOXO transcription factors which relates to their potential role as targets for the treatment and prevention of human cancers. We also discuss drugs which are currently being used for cancer treatment along with their target pathways and also point out some potential drawbacks of those drugs, which further signifies the need for development of new drug strategies in the field of cancer treatment.
Collapse
Affiliation(s)
- Mohd Farhan
- Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Haitao Wang
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Uma Gaur
- Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Peter J Little
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland, 4102 Australia and Xin Hua College, Sun Yat- Sen University, China
| | - Jiangping Xu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Wenhua Zheng
- Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| |
Collapse
|
44
|
Lessey BA, Kim JJ. Endometrial receptivity in the eutopic endometrium of women with endometriosis: it is affected, and let me show you why. Fertil Steril 2017; 108:19-27. [PMID: 28602477 PMCID: PMC5629018 DOI: 10.1016/j.fertnstert.2017.05.031] [Citation(s) in RCA: 169] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 05/23/2017] [Indexed: 12/14/2022]
Abstract
The endometrium maintains complex controls on proliferation and apoptosis as part of repetitive menstrual cycles that prepare the endometrium for the window of implantation and pregnancy. The reliance on inflammatory mechanisms for both implantation and menstruation creates the opportunity in the setting of endometriosis for establishment of chronic inflammation that is disruptive to endometrial receptivity, causing both infertility and abnormal bleeding. Clinically, there can be little doubt that the endometrium of women with endometriosis is less receptive to embryo implantation, and strong evidence exists to suggest that endometrial changes are associated with decreased cycle fecundity as a result of this disease. Here we provide unifying concepts regarding those changes and how they are coordinated to promote progesterone resistance and estrogen dominance through aberrant cell signaling pathways and reduced expression of key homeostatic proteins in eutopic endometrium of women with endometriosis.
Collapse
Affiliation(s)
- Bruce A Lessey
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Greenville Health System, Greenville, South Carolina.
| | - J Julie Kim
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, and Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois
| |
Collapse
|
45
|
Mack HID, Zhang P, Fonslow BR, Yates JR. The protein kinase MBK-1 contributes to lifespan extension in daf-2 mutant and germline-deficient Caenorhabditis elegans. Aging (Albany NY) 2017; 9:1414-1432. [PMID: 28562327 PMCID: PMC5472741 DOI: 10.18632/aging.101244] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 05/23/2017] [Indexed: 06/07/2023]
Abstract
In Caenorhabditis elegans, reduction of insulin/IGF-1 like signaling and loss of germline stem cells both increase lifespan by activating the conserved transcription factor DAF-16 (FOXO). While the mechanisms that regulate DAF-16 nuclear localization in response to insulin/IGF-1 like signaling are well characterized, the molecular pathways that act in parallel to regulate DAF-16 transcriptional activity, and the pathways that couple DAF-16 activity to germline status, are not fully understood at present. Here, we report that inactivation of MBK-1, the C. elegans ortholog of the human FOXO1-kinase DYRK1A substantially shortens the prolonged lifespan of daf-2 and glp-1 mutant animals while decreasing wild-type lifespan to a lesser extent. On the other hand, lifespan-reduction by mutation of the MBK-1-related kinase HPK-1 was not preferential for long-lived mutants. Interestingly, mbk-1 loss still allowed for DAF-16 nuclear accumulation but reduced expression of certain DAF-16 target genes in germline-less, but not in daf-2 mutant animals. These findings indicate that mbk-1 and daf-16 functionally interact in the germline- but not in the daf-2 pathway. Together, our data suggest mbk-1 as a novel regulator of C. elegans longevity upon both, germline ablation and DAF-2 inhibition, and provide evidence for mbk-1 regulating DAF-16 activity in germline-deficient animals.
Collapse
Affiliation(s)
- Hildegard I. D. Mack
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
- Present address: Institute for Biomedical Aging Research, Leopold-Franzens-Universität Innsbruck, Innsbruck 6020, Austria
| | - Peichuan Zhang
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
- Present address: Calico Life Sciences, South San Francisco, CA 94080, USA
| | - Bryan R. Fonslow
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - John R. Yates
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
46
|
Phosphorylation and acetylation modifications of FOXO3a: Independently or synergistically? Oncol Lett 2017; 13:2867-2872. [PMID: 28521392 PMCID: PMC5431355 DOI: 10.3892/ol.2017.5851] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 01/26/2016] [Indexed: 12/25/2022] Open
Abstract
Forkhead box class O 3a (FOXO3a) is a transcription factor that has emerged as being a tumor suppressor and longevity factor. The precise regulation of FOXO3a transactivation of target genes is achieved via post-translational modifications (PTMs) and specific protein-protein interactions. The multiple types of PTMs that FOXO3a undergoes, including phosphorylation, acetylation, methylation and ubiquitination, serve important roles in directing its subcellular localization and transcription activity, which are central to the integration of insulin/growth factor signaling and oxidative/nutrient stress signaling. The present review summarizes the modifications of FOXO3a that occur via phosphorylation and acetylation. In addition, the synergistic effect of multiple phosphorylations on FOXO3a and the crosstalk between phosphorylation and acetylation in the regulation of FOXO3a are discussed. These discussions may highlight potential strategies for the prevention of cancer and aging.
Collapse
|
47
|
Liu Y, Adayev T, Hwang YW. An ELISA DYRK1A non-radioactive kinase assay suitable for the characterization of inhibitors. F1000Res 2017; 6:42. [PMID: 28163906 PMCID: PMC5270589 DOI: 10.12688/f1000research.10582.2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/22/2017] [Indexed: 01/15/2023] Open
Abstract
The DYRK1A (dual specificity tyrosine phosphorylation-regulated kinase 1A) gene encodes a proline-directed Ser/Thr kinase. Elevated expression and/or altered distribution of the kinase have been implicated in the neurological impairments associated with Down syndrome (DS) and Alzheimer’s disease (AD). Consequently, DYRK1A inhibition has been of significant interest as a potential strategy for therapeutic intervention of DS and AD. Many classes of novel inhibitors have been described in the past decade. Although non-radioactive methods for analyzing DYRK1A inhibition have been developed, methods employing radioactive tracers are still commonly used for quantitative characterization of DYRK1A inhibitors. Here, we present a non-radioactive ELISA assay based on the detection of DYRK1A-phosphorylated dynamin 1a fragment using a phosphorylation site-specific antibody. The assay was verified by the use of two well-characterized DYRK1A inhibitors, epigallocatechin gallate (EGCG) and harmine. The IC
50s for EGCG and harmine determined by the ELISA method were found to be comparable to those previously measured by radioactive tracing methods. Furthermore, we determined the mode of inhibition for EGCG and harmine by a modification of the ELISA assay. This assay confirms the mode of inhibition of EGCG (non-ATP-competitive) and harmine (ATP-competitive), as previously determined. We conclude that the ELISA platform demonstrated here is a viable alternative to the traditional radioactive tracer assays for analyzing DYRK1A inhibitors.
Collapse
Affiliation(s)
- Yong Liu
- Molecular Biology Department, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Tatyana Adayev
- Molecular Biology Department, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Yu-Wen Hwang
- Molecular Biology Department, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| |
Collapse
|
48
|
Collier JB, Whitaker RM, Eblen ST, Schnellmann RG. Rapid Renal Regulation of Peroxisome Proliferator-activated Receptor γ Coactivator-1α by Extracellular Signal-Regulated Kinase 1/2 in Physiological and Pathological Conditions. J Biol Chem 2016; 291:26850-26859. [PMID: 27875304 PMCID: PMC5207191 DOI: 10.1074/jbc.m116.754762] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Revised: 11/08/2016] [Indexed: 12/20/2022] Open
Abstract
Previous studies have shown that extracellular signal-regulated kinase 1/2 (ERK1/2) directly inhibits mitochondrial function during cellular injury. We evaluated the role of ERK1/2 on the expression of peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) gene, a master regulator of mitochondrial function. The potent and specific MEK1/2 inhibitor trametinib rapidly blocked ERK1/2 phosphorylation, decreased cytosolic and nuclear FOXO3a/1 phosphorylation, and increased PGC-1α gene expression and its downstream mitochondrial biogenesis (MB) targets under physiological conditions in the kidney cortex and in primary renal cell cultures. The epidermal growth factor receptor (EGFR) inhibitor erlotinib blocked ERK1/2 phosphorylation and increased PGC-1α gene expression similar to treatment with trametinib, linking EGFR activation and FOXO3a/1 inactivation to the down-regulation of PGC-1α and MB through ERK1/2. Pretreatment with trametinib blocked early ERK1/2 phosphorylation following ischemia/reperfusion kidney injury and attenuated the down-regulation of PGC-1α and downstream target genes. These results demonstrate that ERK1/2 rapidly regulates mitochondrial function through a novel pathway, EGFR/ERK1/2/FOXO3a/1/PGC-1α, under physiological and pathological conditions. As such, ERK1/2 down-regulates mitochondrial function directly by phosphorylation of upstream regulators of PGC-1α and subsequently decreasing MB.
Collapse
Affiliation(s)
- Justin B Collier
- From the Departments of Drug Discovery and Biomedical Sciences and
| | - Ryan M Whitaker
- From the Departments of Drug Discovery and Biomedical Sciences and
| | - Scott T Eblen
- Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston, South Carolina 29425 and
| | - Rick G Schnellmann
- From the Departments of Drug Discovery and Biomedical Sciences and
- the Ralph H. Johnson Veterans Administration Medical Center, Charleston, South Carolina 29425
| |
Collapse
|
49
|
Radhakrishnan A, Nanjappa V, Raja R, Sathe G, Puttamallesh VN, Jain AP, Pinto SM, Balaji SA, Chavan S, Sahasrabuddhe NA, Mathur PP, Kumar MM, Prasad TSK, Santosh V, Sukumar G, Califano JA, Rangarajan A, Sidransky D, Pandey A, Gowda H, Chatterjee A. A dual specificity kinase, DYRK1A, as a potential therapeutic target for head and neck squamous cell carcinoma. Sci Rep 2016; 6:36132. [PMID: 27796319 PMCID: PMC5086852 DOI: 10.1038/srep36132] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 10/10/2016] [Indexed: 12/18/2022] Open
Abstract
Despite advances in clinical management, 5-year survival rate in patients with late-stage head and neck squamous cell carcinoma (HNSCC) has not improved significantly over the past decade. Targeted therapies have emerged as one of the most promising approaches to treat several malignancies. Though tyrosine phosphorylation accounts for a minority of total phosphorylation, it is critical for activation of signaling pathways and plays a significant role in driving cancers. To identify activated tyrosine kinase signaling pathways in HNSCC, we compared the phosphotyrosine profiles of a panel of HNSCC cell lines to a normal oral keratinocyte cell line. Dual-specificity tyrosine-(Y)-phosphorylation regulated kinase 1A (DYRK1A) was one of the kinases hyperphosphorylated at Tyr-321 in all HNSCC cell lines. Inhibition of DYRK1A resulted in an increased apoptosis and decrease in invasion and colony formation ability of HNSCC cell lines. Further, administration of the small molecular inhibitor against DYRK1A in mice bearing HNSCC xenograft tumors induced regression of tumor growth. Immunohistochemical labeling of DYRK1A in primary tumor tissues using tissue microarrays revealed strong to moderate staining of DYRK1A in 97.5% (39/40) of HNSCC tissues analyzed. Taken together our results suggest that DYRK1A could be a novel therapeutic target in HNSCC.
Collapse
Affiliation(s)
- Aneesha Radhakrishnan
- Institute of Bioinformatics, International Technology Park, Bangalore, 560 066, India
- Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry 605014, India
| | - Vishalakshi Nanjappa
- Institute of Bioinformatics, International Technology Park, Bangalore, 560 066, India
- Amrita School of Biotechnology, Amrita University, Kollam 690 525, India
| | - Remya Raja
- Institute of Bioinformatics, International Technology Park, Bangalore, 560 066, India
| | - Gajanan Sathe
- Institute of Bioinformatics, International Technology Park, Bangalore, 560 066, India
- Manipal University, Madhav Nagar, Manipal 576104, India
| | - Vinuth N. Puttamallesh
- Institute of Bioinformatics, International Technology Park, Bangalore, 560 066, India
- Amrita School of Biotechnology, Amrita University, Kollam 690 525, India
| | - Ankit P. Jain
- Institute of Bioinformatics, International Technology Park, Bangalore, 560 066, India
- School of Biotechnology, KIIT University, Bhubaneswar 751024, India
| | - Sneha M. Pinto
- Institute of Bioinformatics, International Technology Park, Bangalore, 560 066, India
| | - Sai A. Balaji
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, 560012, India
| | - Sandip Chavan
- Institute of Bioinformatics, International Technology Park, Bangalore, 560 066, India
- Manipal University, Madhav Nagar, Manipal 576104, India
| | | | - Premendu P. Mathur
- Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry 605014, India
- School of Biotechnology, KIIT University, Bhubaneswar 751024, India
| | - Mahesh M. Kumar
- Department of Neuro-Virology, National Institute of Mental Health and Neurosciences, Bangalore 560029, India
| | - T. S. Keshava Prasad
- Institute of Bioinformatics, International Technology Park, Bangalore, 560 066, India
- Amrita School of Biotechnology, Amrita University, Kollam 690 525, India
- YU-IOB Center for Systems Biology and Molecular Medicine, Yenepoya University, Mangalore 575018, India
| | - Vani Santosh
- Department of Pathology, National Institute of Mental Health and Neurosciences, Bangalore 560029, India
| | - Geethanjali Sukumar
- Institute of Bioinformatics, International Technology Park, Bangalore, 560 066, India
| | - Joseph A. Califano
- Milton J. Dance Head and Neck Center, Greater Baltimore Medical Center, Baltimore, MD 21204, USA
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Annapoorni Rangarajan
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, 560012, India
| | - David Sidransky
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Akhilesh Pandey
- McKusick-Nathans Institute of Genetic Medicine,Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Harsha Gowda
- Institute of Bioinformatics, International Technology Park, Bangalore, 560 066, India
- YU-IOB Center for Systems Biology and Molecular Medicine, Yenepoya University, Mangalore 575018, India
| | - Aditi Chatterjee
- Institute of Bioinformatics, International Technology Park, Bangalore, 560 066, India
- YU-IOB Center for Systems Biology and Molecular Medicine, Yenepoya University, Mangalore 575018, India
| |
Collapse
|
50
|
Kay LJ, Smulders-Srinivasan TK, Soundararajan M. Understanding the Multifaceted Role of Human Down Syndrome Kinase DYRK1A. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2016; 105:127-71. [PMID: 27567487 DOI: 10.1016/bs.apcsb.2016.07.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The dual-specificity tyrosine (Y) phosphorylation-regulated kinase DYRK1A, also known as Down syndrome (DS) kinase, is a dosage-dependent signaling kinase that was originally shown to be highly expressed in DS patients as a consequence of trisomy 21. Although this was evident some time ago, it is only in recent investigations that the molecular roles of DYRK1A in a wide range of cellular processes are becoming increasingly apparent. Since initial knowledge on DYRK1A became evident through minibrain mnb, the Drosophila homolog of DYRK1A, this review will first summarize the scientific reports on minibrain and further expand on the well-established neuronal functions of mammalian and human DYRK1A. Recent investigations across the current decade have provided rather interesting and compelling evidence in establishing nonneuronal functions for DYRK1A, including its role in infection, immunity, cardiomyocyte biology, cancer, and cell cycle control. The latter part of this review will therefore focus in detail on the emerging nonneuronal functions of DYRK1A and summarize the regulatory role of DYRK1A in controlling Tau and α-synuclein. Finally, the emerging role of DYRK1A in Parkinson's disease will be outlined.
Collapse
Affiliation(s)
- L J Kay
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - T K Smulders-Srinivasan
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - M Soundararajan
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom.
| |
Collapse
|