1
|
Lei Y, Wang Y, Tang S, Yang J, Lai D, Qiu Q. The adaptive immune system in the retina of diabetics. Surv Ophthalmol 2025; 70:241-254. [PMID: 39566563 DOI: 10.1016/j.survophthal.2024.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 11/07/2024] [Accepted: 11/13/2024] [Indexed: 11/22/2024]
Abstract
As the prevalence of diabetes mellitus increases each year, its most common microvascular complication, diabetic retinopathy (DR), is also on the rise. DR is now regarded as an inflammatory disease in which innate immunity plays a crucial role, and a large number of innate immune cells with associated cytokines are involved in the pathologic process of DR. The role of adaptive immunity in DR is seldom mentioned, probably due to the general perception of the immune privileged environment of the retina; however, in recent years there has been a gradual increase in research on the role of adaptive immunity in DR, and with the discovery of the retinal lymphatic system, it seems that the role of adaptive immunity can no longer be ignored. Here, we discuss the immunosuppressive environment of the retina, the phenomenon and potential mechanisms of lymphocyte infiltration in DR, and the role of the adaptive immune system in the diabetic retina, which may point the way for future research.
Collapse
Affiliation(s)
- Yiou Lei
- Xiangya School of Medicine, Central South University, Changsha, Hunan, PR China; Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, PR China
| | - Yani Wang
- Xiangya School of Medicine, Central South University, Changsha, Hunan, PR China; Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, PR China
| | - Siao Tang
- Xiangya School of Medicine, Central South University, Changsha, Hunan, PR China; Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, PR China
| | - Jiaqi Yang
- Xiangya School of Medicine, Central South University, Changsha, Hunan, PR China; Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, PR China
| | - Dongwei Lai
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, PR China.
| | - Qinghua Qiu
- Department of Ophthalmology, Tong Ren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
| |
Collapse
|
2
|
Corydon TJ, Bek T. Multiple gene therapy as a tool for regulating the expression of molecules involved in neovascular age-related macular degeneration. Prog Retin Eye Res 2025; 104:101323. [PMID: 39672501 DOI: 10.1016/j.preteyeres.2024.101323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/08/2024] [Accepted: 12/06/2024] [Indexed: 12/15/2024]
Abstract
Anti-vascular endothelial growth factor (VEGF) therapies have revolutionized the treatment of neovascular age-related macular degeneration (nAMD) and other retinal diseases. However, the necessity for repeated intravitreal injections and the observation of variable treatment responses calls for new treatment modalities where fewer and more effective interventions can result in a clinical effect. Gene therapy might be such an alternative, and therefore the development and clinical application of gene therapy aimed at modifying gene expression has received considerable attention. The article reviews current knowledge of the background, pathophysiological mechanisms, technologies, limitations, and future directions for gene therapy aimed at modifying the synthesis of compounds involved in acquired and senescent retinal disease. The authors have contributed to the field by developing gene therapy to reduce the expression of vascular endothelial growth factor (VEGF), as well as multiple gene therapy for simultaneous downregulation of the synthesis of VEGF and upregulation of pigment epithelium-derived factor (PEDF) using adeno-associated virus (AAV) vectors. It is suggested that such multi-target gene therapy might be included in future treatments of retinal diseases where the underlying mechanisms are complex and cannot be attributed to one specific mediator. Such diseases might include dry AMD (dAMD) with geographic atrophy, but also diabetic macular edema (DME) and retinal vein occlusion (RVO). Gene therapy can be expected to be most beneficial for the patients in need of multiple intra-vitreal injections and in whom the therapeutic response is insufficient. It is concluded, that in parallel with basic research, there is a need for clinical studies aimed at identifying factors that can be used to identify patients who will benefit from gene therapy already at the time of diagnosis of the retinal disease.
Collapse
Affiliation(s)
- Thomas J Corydon
- Department of Biomedicine, Hoegh Guldbergs Gade 10, Aarhus University, 8000, Aarhus C, Denmark; Department of Ophthalmology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark.
| | - Toke Bek
- Department of Ophthalmology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark
| |
Collapse
|
3
|
Jakobsen TS, Adsersen RL, Askou AL, Corydon TJ. Functional Roles of Pigment Epithelium-Derived Factor in Retinal Degenerative and Vascular Disorders: A Scoping Review. Invest Ophthalmol Vis Sci 2024; 65:41. [PMID: 39728690 PMCID: PMC11684118 DOI: 10.1167/iovs.65.14.41] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 11/29/2024] [Indexed: 12/28/2024] Open
Abstract
Purpose This review explores the role of pigment epithelium-derived factor (PEDF) in retinal degenerative and vascular disorders and assesses its potential both as an adjunct to established vascular endothelial growth factor inhibiting treatments for retinal vascular diseases and as a neuroprotective therapeutic agent. Methods A comprehensive literature review was conducted, focusing on the neuroprotective and anti-angiogenic properties of PEDF. The review evaluated its effects on retinal health, its dysregulation in ocular disorders, and its therapeutic application in preclinical models. Advances in drug delivery, including gene therapy, were also examined. Results PEDF, initially identified for promoting neuronal differentiation, is also a potent endogenous angiogenesis inhibitor. Strong anti-angiogenic and neuroprotective effects are observed in preclinical studies. It has pro-apoptotic and antiproliferative effects on endothelial cells thereby reducing neovascularization. Although promising, clinical development is limited with only a single conducted phase I clinical trial for macular neovascularization. Development of PEDF-derived peptides enhances potency and specificity, and emerging gene therapy approaches offer sustained PEDF expression for long-term treatment. However, questions regarding dosage, durability, and efficacy remain, particularly in large animal models. Conclusions PEDF shows significant therapeutic potential in preclinical models of retinal degeneration and vascular disorders. Despite inconclusive evidence on PEDF downregulation as a primary disease driver, many studies highlight its therapeutic benefits and favorable safety profile. Advances in gene therapy could enable long-acting PEDF-based treatments, but further research is needed to optimize dosage and durability, potentially leading to clinical trials and expanding treatment options for retinal disorders.
Collapse
Affiliation(s)
- Thomas Stax Jakobsen
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
- Department of Ophthalmology, Aarhus University Hospital, Aarhus N, Denmark
| | | | - Anne Louise Askou
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
- Department of Ophthalmology, Aarhus University Hospital, Aarhus N, Denmark
| | - Thomas J. Corydon
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
- Department of Ophthalmology, Aarhus University Hospital, Aarhus N, Denmark
| |
Collapse
|
4
|
Sun WJ, An XD, Zhang YH, Tang SS, Sun YT, Kang XM, Jiang LL, Zhao XF, Gao Q, Ji HY, Lian FM. Autophagy-dependent ferroptosis may play a critical role in early stages of diabetic retinopathy. World J Diabetes 2024; 15:2189-2202. [PMID: 39582563 PMCID: PMC11580571 DOI: 10.4239/wjd.v15.i11.2189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 06/10/2024] [Accepted: 09/10/2024] [Indexed: 10/16/2024] Open
Abstract
Diabetic retinopathy (DR), as one of the most common and significant microvascular complications of diabetes mellitus (DM), continues to elude effective targeted treatment for vision loss despite ongoing enrichment of the understanding of its pathogenic mechanisms from perspectives such as inflammation and oxidative stress. Recent studies have indicated that characteristic neuroglial degeneration induced by DM occurs before the onset of apparent microvascular lesions. In order to comprehensively grasp the early-stage pathological changes of DR, the retinal neurovascular unit (NVU) will become a crucial focal point for future research into the occurrence and progression of DR. Based on existing evidence, ferroptosis, a form of cell death regulated by processes like ferritinophagy and chaperone-mediated autophagy, mediates apoptosis in retinal NVU components, including pericytes and ganglion cells. Autophagy-dependent ferroptosis-related factors, including BECN1 and FABP4, may serve as both biomarkers for DR occurrence and development and potentially crucial targets for future effective DR treatments. The aforementioned findings present novel perspectives for comprehending the mechanisms underlying the early-stage pathological alterations in DR and open up innovative avenues for investigating supplementary therapeutic strategies.
Collapse
Affiliation(s)
- Wen-Jie Sun
- Department of Endocrinology, Guang’anmen Hospital, Beijing 100053, China
| | - Xue-Dong An
- Department of Endocrinology, Guang’anmen Hospital, Beijing 100053, China
| | - Yue-Hong Zhang
- Department of Endocrinology, Fangshan Hospital of Beijing University of Chinese Medicine, Beijing 102400, China
| | - Shan-Shan Tang
- Department of Endocrinology, Changchun University of Chinese Medicine, Changchun 130117, Jilin Province, China
| | - Yu-Ting Sun
- Department of Endocrinology, Guang’anmen Hospital, Beijing 100053, China
| | - Xiao-Min Kang
- Department of Endocrinology, Guang’anmen Hospital, Beijing 100053, China
| | - Lin-Lin Jiang
- Department of Endocrinology, Guang’anmen Hospital, Beijing 100053, China
| | - Xue-Fei Zhao
- Department of Endocrinology, Guang’anmen Hospital, Beijing 100053, China
| | - Qing Gao
- Department of Endocrinology, Guang’anmen Hospital, Beijing 100053, China
| | - Hang-Yu Ji
- Department of Endocrinology, Guang’anmen Hospital, Beijing 100053, China
| | - Feng-Mei Lian
- Department of Endocrinology, Guang’anmen Hospital, Beijing 100053, China
| |
Collapse
|
5
|
Bian J, Dai W, Liu D. The effect of leizumab on serum vascular endothelial growth factor, IL-6, MCP-1 inflammatory factors in neovascular glaucoma. Eur J Ophthalmol 2024; 34:1819-1827. [PMID: 38343022 DOI: 10.1177/11206721241231338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
This study aimed to assess Leizumab's effect on serum endothelial growth factor, interleukin-6 (IL-6), monocyte chemotactic protein-1 (MCP-1), and inflammatory factors in neovascular glaucoma patients. 80 eligible patients treated between January 2021 and April 2023 were enrolled, randomly divided into control and study groups. The control group underwent vitrectomy while the study group received preoperative intravitreal rituximab injection. Measurements included serum and aqueous humor VEGF/PEDF, IL-6/MCP-1 levels, postoperative rebleeding/retinal detachment, and visual acuity changes over 6 weeks. After surgery, patients showed reduced serum VEGF/PEDF levels (P < 0.05), with decreased VEGF and increased PEDF in aqueous humor (P < 0.05). The study group had lower VEGF and higher PEDF levels than the control (P < 0.05). Serum IL-6/MCP-1 levels reduced post-surgery, with the study group lower than control (P < 0.05). Intraocular rebleeding was lower in the study group (P < 0.05), while retinal detachment rates were similar (P > 0.05). Visual acuity differed significantly from week 1 to 6 post-surgery (P < 0.05), with higher acuity in the study group during weeks 1-4 (P < 0.05). Weeks 5-6 follow-up showed no significant difference (P > 0.05). Pre-vitrectomy ranibizumab injection effectively reduced bleeding, VEGF/PEDF levels, inflammatory factors, and improved visual recovery.
Collapse
Affiliation(s)
- Junjie Bian
- Department of Ophthalmology, Xuanwu hospital Capital Medical University, Beijing, 100053, China
| | - Weijia Dai
- Department of Ophthalmology, Xuanwu hospital Capital Medical University, Beijing, 100053, China
| | - Dachuan Liu
- Department of Ophthalmology, Xuanwu hospital Capital Medical University, Beijing, 100053, China
| |
Collapse
|
6
|
Pączek S, Zajkowska M, Mroczko B. Pigment Epithelial-Derived Factor in Pancreatic and Liver Cancers-From Inflammation to Cancer. Biomedicines 2024; 12:2260. [PMID: 39457573 PMCID: PMC11504982 DOI: 10.3390/biomedicines12102260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/28/2024] [Accepted: 10/03/2024] [Indexed: 10/28/2024] Open
Abstract
Gastrointestinal (GI) cancers are among the leading causes of mortality worldwide. Despite the emergence of new possibilities that offer hope regarding the successful treatment of these cancers, they still represent a significant global health burden. These cancers can arise from various cell types within the gastrointestinal tract and may exhibit different characteristics, behaviors, and treatment approaches. Both the prognosis and the outcomes of GI treatment remain problematic because these tumors are primarily diagnosed in advanced clinical stages. Current biomarkers exhibit limited sensitivity and specificity. Therefore, when developing strategies for the diagnosis and treatment of GI cancers, it is of fundamental importance to discover new biomarkers capable of addressing the challenges of early-stage diagnosis and the presence of lymph node metastases. Pigment epithelial-derived factor (PEDF) has garnered interest due to its inhibitory effects on the migration and proliferation of cancer cells. This protein has been suggested to be involved in various inflammation-related diseases, including cancer, through various mechanisms. It was also observed that reducing the level of PEDF is sufficient to trigger an inflammatory response. This suggests that PEDF is an endogenous anti-inflammatory factor. Overall, PEDF is a versatile protein with diverse biological functions that span across different tissues and organ systems. Its multifaceted activities make it an intriguing target for therapeutic interventions in various diseases, including cancer, neurodegeneration, and metabolic disorders. This review, for the first time, summarizes the role of PEDF in the pathogenesis of selected GI cancers and its potential utility in early diagnosis, prognosis, and therapeutic strategies for this malignancy.
Collapse
Affiliation(s)
- Sara Pączek
- Department of Biochemical Diagnostics, University Hospital in Białystok, 15-269 Białystok, Poland; (S.P.); (B.M.)
| | - Monika Zajkowska
- Department of Biochemical Diagnostics, University Hospital in Białystok, 15-269 Białystok, Poland; (S.P.); (B.M.)
- Department of Neurodegeneration Diagnostics, Medical University of Białystok, 15 A, Waszyngtona St., 15-269 Białystok, Poland
| | - Barbara Mroczko
- Department of Biochemical Diagnostics, University Hospital in Białystok, 15-269 Białystok, Poland; (S.P.); (B.M.)
- Department of Neurodegeneration Diagnostics, Medical University of Białystok, 15 A, Waszyngtona St., 15-269 Białystok, Poland
- Department of Biochemical Diagnostics, Medical University of Białystok, 15-089 Białystok, Poland
| |
Collapse
|
7
|
Hosseinpoor Z, Soheili ZS, Davari M, Latifi-Navid H, Samiee S, Samiee D. Crosstalk between MIR-96 and IRS/PI3K/AKT/VEGF cascade in hRPE cells; A potential target for preventing diabetic retinopathy. PLoS One 2024; 19:e0310999. [PMID: 39348384 PMCID: PMC11441665 DOI: 10.1371/journal.pone.0310999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 09/10/2024] [Indexed: 10/02/2024] Open
Abstract
Regulation of visual system function demands precise gene regulation. Dysregulation of miRNAs, as key regulators of gene expression in retinal cells, contributes to different eye disorders such as diabetic retinopathy (DR), macular edema, and glaucoma. MIR-96, a member of the MIR-183 cluster family, is widely expressed in the retina, and its alteration is associated with neovascular eye diseases. MIR-96 regulates protein cascades in inflammatory and insulin signaling pathways, but further investigation is required to understand its potential effects on related genes. For this purpose, we identified a series of key target genes for MIR-96 based on gene and protein interaction networks and utilized text-mining resources. To examine the MIR-96 impact on candidate gene expression, we overexpressed MIR-96 via adeno-associated virus (AAV)-based plasmids in human retinal pigment epithelial (RPE) cells. Based on Real-Time PCR results, the relative expression of the selected genes responded differently to overexpressed MIR-96. While the expression levels of IRS2, FOXO1, and ERK2 (MAPK1) were significantly decreased, the SERPINF1 gene exhibited high expression simultaneously. pAAV-delivered MIR-96 had no adverse effect on the viability of human RPE cells. The data showed that changes in insulin receptor substrate-2 (IRS2) expression play a role in disrupted retinal insulin signaling and contribute to the development of diabetic complications. Considered collectively, our findings suggest that altered MIR-96 and its impact on IRS/PI3K/AKT/VEGF axis regulation contribute to DR progression. Therefore, further investigation of the IRS/PI3K/AKT/VEGF axis is recommended as a potential target for DR treatment.
Collapse
Affiliation(s)
- Zeynab Hosseinpoor
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Zahra-Soheila Soheili
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Maliheh Davari
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Hamid Latifi-Navid
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- School of Biological Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | - Shahram Samiee
- Blood Transfusion Research Center High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Dorsa Samiee
- Department of Computer Science, Royal Holloway University of London, Egham, Surrey, United Kingdom
| |
Collapse
|
8
|
Kim SW, Baik S, Hyun J, Lee J, Lim D, Lee TJ, Jeong GJ, Im GB, Seo I, Kim YH, Pang C, Bhang SH. Facile Size Tunable Skin-Adaptive Patch for Accelerating Wound Healing. Adv Healthc Mater 2024:e2304435. [PMID: 39235562 DOI: 10.1002/adhm.202304435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/12/2024] [Indexed: 09/06/2024]
Abstract
Owing to the moist and curved interfaces of skin wounds, enhancing the adhesiveness while maintaining delivery efficacy of biomolecules has drawn significant attention in advanced wound dressings. Despite tremendous trials to load biomolecules with sound adhesiveness, the complicated fabricating processes and abnormal allergic responses that are attributed to chemical moiety-based adhesives remain as major problems. To this end, in this study a one-step fabrication process is developed to manufacture microstructures with both a therapeutic (cylindrical structure for embossed structure human adipose-derived stem cell sheet, ESS) and an adhesive part (octopi-inspired structure of adhesive, OIA), which ESOIA is called. OIA showed the highest adhesion strength in both dry (1.48 N cm-2) and wet pig skin conditions (0.81 N cm-2), maintaining the adhesive properties after repeated attach-detach trials. ESS from the therapeutic part of ESOIA also showed an enhanced angiogenic effect compared with the ones that are normally cultured in vitro. ESS also showed improved in vivo wound healing outcomes following enhanced cell engraftment compared to the cell injection group by means of intact cell-extracellular matrix interactions.
Collapse
Affiliation(s)
- Sung-Won Kim
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Sangyul Baik
- School of Mechanical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jiyu Hyun
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jihyun Lee
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Dohyun Lim
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Tae-Jin Lee
- Department of Medical Biotechnology, Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon-si, 24341, Republic of Korea
| | - Gun-Jae Jeong
- Institute of Cell and Tissue Engineering, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Gwang-Bum Im
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Department of Cardiac Surgery, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Inwoo Seo
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Yeong Hwan Kim
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Changhyun Pang
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Suk Ho Bhang
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| |
Collapse
|
9
|
Zhao S, Tschulakow AV, Karthikeyan SS, Wang K, Kochanek S, Schraermeyer U, Julien‐Schraermeyer S. Reduction of pathological retinal neovascularization, vessel obliteration, and artery tortuosity by PEDF protein in an oxygen-induced ischemic retinopathy rat model. FASEB Bioadv 2024; 6:311-326. [PMID: 39399476 PMCID: PMC11467744 DOI: 10.1096/fba.2024-00059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/20/2024] [Accepted: 07/02/2024] [Indexed: 10/15/2024] Open
Abstract
Retinopathy of prematurity (ROP) is a severe retinal disease in premature infants characterized by pathological neovascularization, obliteration of retinal vessels and increased vessel tortuosity. Currently, there are no completely satisfactory treatments for ROP. Pigment epithelium-derived factor (PEDF), a potent inhibitor of angiogenesis, appears late in gestation and its deficiency may be linked to development of ROP. This study investigates the preclinical efficacy of PEDF protein alone or in combination with VEGF antagonists for treating ROP. The safety of PEDF protein in the rat eye was assessed using functional in vivo measurements and histology. The efficacy of intravitreal injections (IVI) of various treatments was evaluated in a rat oxygen-induced retinopathy (OIR) model using in vivo imaging and flatmount analyses. No functional or histological side-effects were found in rat eyes after intravitreal PEDF protein injection. PEDF protein alone or combined with anti-VEGF drugs significantly reduced pathological neovascularization and vessel obliteration, comparable to the effects of anti-VEGF drugs alone. Regarding arterial tortuosity, treatment with a combination of PEDF, and VEGF antagonist was more effective than treatment with anti-VEGF alone. IVI of PEDF protein is safe. PEDF protein alone or combined with VEGF antagonists shows similar efficacy in reducing pathological neovascularization and vessel obliteration as anti-VEGF agents. Furthermore, only treatments involving PEDF protein, alone or with VEGF antagonists, significantly improved the quality of retinal vasculature. Thus, PEDF protein alone or combined with anti-VEGF agents presents a promising alternative to current anti-VEGF treatments for ROP.
Collapse
Affiliation(s)
- Shiying Zhao
- Division of Experimental Vitreoretinal Surgery, Centre for Ophthalmology, Institute for Ophthalmic ResearchUniversity Medical Center, Eberhard Karls University of TuebingenTuebingenGermany
- Present address:
Molecular mechanisms driving age‐related macular degeneration, Experimental Vitreoretinal Surgery GroupCentre for Ophthalmology, Institute for Ophthalmic Research, University Medical Center, Eberhard Karls University of TuebingenTuebingenGermany
| | - Alexander V. Tschulakow
- Division of Experimental Vitreoretinal Surgery, Centre for Ophthalmology, Institute for Ophthalmic ResearchUniversity Medical Center, Eberhard Karls University of TuebingenTuebingenGermany
- OcuTox GmbHPreclinical Drug AssessmentHechingenGermany
- Present address:
Molecular mechanisms driving age‐related macular degeneration, Experimental Vitreoretinal Surgery GroupCentre for Ophthalmology, Institute for Ophthalmic Research, University Medical Center, Eberhard Karls University of TuebingenTuebingenGermany
| | | | - Kun Wang
- Division of Experimental Vitreoretinal Surgery, Centre for Ophthalmology, Institute for Ophthalmic ResearchUniversity Medical Center, Eberhard Karls University of TuebingenTuebingenGermany
- Present address:
Molecular mechanisms driving age‐related macular degeneration, Experimental Vitreoretinal Surgery GroupCentre for Ophthalmology, Institute for Ophthalmic Research, University Medical Center, Eberhard Karls University of TuebingenTuebingenGermany
| | | | - Ulrich Schraermeyer
- Division of Experimental Vitreoretinal Surgery, Centre for Ophthalmology, Institute for Ophthalmic ResearchUniversity Medical Center, Eberhard Karls University of TuebingenTuebingenGermany
- OcuTox GmbHPreclinical Drug AssessmentHechingenGermany
| | - Sylvie Julien‐Schraermeyer
- Division of Experimental Vitreoretinal Surgery, Centre for Ophthalmology, Institute for Ophthalmic ResearchUniversity Medical Center, Eberhard Karls University of TuebingenTuebingenGermany
- OcuTox GmbHPreclinical Drug AssessmentHechingenGermany
- Present address:
Molecular mechanisms driving age‐related macular degeneration, Experimental Vitreoretinal Surgery GroupCentre for Ophthalmology, Institute for Ophthalmic Research, University Medical Center, Eberhard Karls University of TuebingenTuebingenGermany
| |
Collapse
|
10
|
Bai T, Cui B, Xing M, Chen S, Zhu Y, Lin D, Guo Y, Du M, Wang X, Zhou D, Yan H. Stable inhibition of choroidal neovascularization by adeno-associated virus 2/8-vectored bispecific molecules. Gene Ther 2024; 31:511-523. [PMID: 38961279 DOI: 10.1038/s41434-024-00461-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 06/14/2024] [Accepted: 06/25/2024] [Indexed: 07/05/2024]
Abstract
Neovascular age-related macular degeneration (nAMD) causes severe visual impairment. Pigment epithelium-derived factor (PEDF), soluble CD59 (sCD59), and soluble fms-like tyrosine kinase-1 (sFLT-1) are potential therapeutic agents for nAMD, which target angiogenesis and the complement system. Using the AAV2/8 vector, two bi-target gene therapy agents, AAV2/8-PEDF-P2A-sCD59 and AAV2/8-sFLT-1-P2A-sCD59, were generated, and their therapeutic efficacy was investigated in laser-induced choroidal neovascularization (CNV) and Vldlr-/- mouse models. After a single injection, AAV2/8-mediated gene expression was maintained at high levels in the retina for two months. Both AAV2/8-PEDF-P2A-sCD59 and AAV2/8-sFLT-1-P2A-sCD59 significantly reduced CNV development for an extended period without side effects and provided efficacy similar to two injections of current anti-vascular endothelial growth factor monotherapy. Mechanistically, these agents suppressed the extracellular signal-regulated kinase and nuclear factor-κB pathways, resulting in anti-angiogenic activity. This study demonstrated the safety and long-lasting effects of AAV2/8-PEDF-P2A-sCD59 and AAV2/8-sFLT-1-P2A-sCD59 in CNV treatment, providing a promising therapeutic strategy for nAMD.
Collapse
Affiliation(s)
- Tinghui Bai
- Department of Ophthalmology, Tianjin Medical University General Hospital, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin Key Laboratory of Ocular Trauma, Tianjin Institute of Eye Health and Eye Diseases, China-UK "Belt and Road" Ophthalmology Joint Laboratory, Tianjin, China
| | - Bohao Cui
- Department of Ophthalmology, Tianjin Medical University General Hospital, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin Key Laboratory of Ocular Trauma, Tianjin Institute of Eye Health and Eye Diseases, China-UK "Belt and Road" Ophthalmology Joint Laboratory, Tianjin, China
| | - Man Xing
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Siyue Chen
- Department of Ophthalmology, Tianjin Medical University General Hospital, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin Key Laboratory of Ocular Trauma, Tianjin Institute of Eye Health and Eye Diseases, China-UK "Belt and Road" Ophthalmology Joint Laboratory, Tianjin, China
| | - Yanfang Zhu
- Department of Ophthalmology, Tianjin Medical University General Hospital, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin Key Laboratory of Ocular Trauma, Tianjin Institute of Eye Health and Eye Diseases, China-UK "Belt and Road" Ophthalmology Joint Laboratory, Tianjin, China
| | - Dongxue Lin
- Department of Ophthalmology, Tianjin Medical University General Hospital, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin Key Laboratory of Ocular Trauma, Tianjin Institute of Eye Health and Eye Diseases, China-UK "Belt and Road" Ophthalmology Joint Laboratory, Tianjin, China
| | - Yingying Guo
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Mei Du
- Department of Ophthalmology, Tianjin Medical University General Hospital, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin Key Laboratory of Ocular Trauma, Tianjin Institute of Eye Health and Eye Diseases, China-UK "Belt and Road" Ophthalmology Joint Laboratory, Tianjin, China
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, the Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xiaohong Wang
- Department of Ophthalmology, Tianjin Medical University General Hospital, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin Key Laboratory of Ocular Trauma, Tianjin Institute of Eye Health and Eye Diseases, China-UK "Belt and Road" Ophthalmology Joint Laboratory, Tianjin, China.
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, the Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
| | - Dongming Zhou
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
| | - Hua Yan
- Department of Ophthalmology, Tianjin Medical University General Hospital, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin Key Laboratory of Ocular Trauma, Tianjin Institute of Eye Health and Eye Diseases, China-UK "Belt and Road" Ophthalmology Joint Laboratory, Tianjin, China.
| |
Collapse
|
11
|
Amin N, Abbasi IN, Wu F, Shi Z, Sundus J, Badry A, Yuan X, Zhao BX, Pan J, Mi XD, Luo Y, Geng Y, Fang M. The Janus face of HIF-1α in ischemic stroke and the possible associated pathways. Neurochem Int 2024; 177:105747. [PMID: 38657682 DOI: 10.1016/j.neuint.2024.105747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/01/2024] [Accepted: 04/19/2024] [Indexed: 04/26/2024]
Abstract
Stroke is the most devastating disease, causing paralysis and eventually death. Many clinical and experimental trials have been done in search of a new safe and efficient medicine; nevertheless, scientists have yet to discover successful remedies that are also free of adverse effects. This is owing to the variability in intensity, localization, medication routes, and each patient's immune system reaction. HIF-1α represents the modern tool employed to treat stroke diseases due to its functions: downstream genes such as glucose metabolism, angiogenesis, erythropoiesis, and cell survival. Its role can be achieved via two downstream EPO and VEGF strongly related to apoptosis and antioxidant processes. Recently, scientists paid more attention to drugs dealing with the HIF-1 pathway. This review focuses on medicines used for ischemia treatment and their potential HIF-1α pathways. Furthermore, we discussed the interaction between HIF-1α and other biological pathways such as oxidative stress; however, a spotlight has been focused on certain potential signalling contributed to the HIF-1α pathway. HIF-1α is an essential regulator of oxygen balance within cells which affects and controls the expression of thousands of genes related to sustaining homeostasis as oxygen levels fluctuate. HIF-1α's role in ischemic stroke strongly depends on the duration and severity of brain damage after onset. HIF-1α remains difficult to investigate, particularly in ischemic stroke, due to alterations in the acute and chronic phases of the disease, as well as discrepancies between the penumbra and ischemic core. This review emphasizes these contrasts and analyzes the future of this intriguing and demanding field.
Collapse
Affiliation(s)
- Nashwa Amin
- Center for Rehabilitation Medicine, Department of Neurology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China; Department of Zoology, Faculty of Science, Aswan University, Egypt; Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Irum Naz Abbasi
- Institute of Systemic Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Fei Wu
- Institute of Systemic Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Zongjie Shi
- Center for Rehabilitation Medicine, Department of Neurology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Javaria Sundus
- Institute of Systemic Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Azhar Badry
- Institute of Systemic Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Xia Yuan
- Institute of Systemic Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Bing-Xin Zhao
- Center for Rehabilitation Medicine, Department of Neurology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Jie Pan
- Center for Rehabilitation Medicine, Department of Neurology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Xiao-Dan Mi
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yuhuan Luo
- Department of Pediatrics, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yu Geng
- Center for Rehabilitation Medicine, Department of Neurology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Marong Fang
- Institute of Systemic Medicine, Zhejiang University School of Medicine, Hangzhou, China; Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China.
| |
Collapse
|
12
|
Wang X, Tazearslan C, Kim S, Guo Q, Contreras D, Yang J, Hudgins AD, Suh Y. In vitro heterochronic parabiosis identifies pigment epithelium-derived factor as a systemic mediator of rejuvenation by young blood. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.02.592258. [PMID: 38746475 PMCID: PMC11092633 DOI: 10.1101/2024.05.02.592258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Several decades of heterochronic parabiosis (HCPB) studies have demonstrated the restorative impact of young blood, and deleterious influence of aged blood, on physiological function and homeostasis across tissues, although few of the factors responsible for these observations have been identified. Here we develop an in vitro HCPB system to identify these circulating factors, using replicative lifespan (RLS) of primary human fibroblasts as an endpoint of cellular health. We find that RLS is inversely correlated with serum donor age and sensitive to the presence or absence of specific serum components. Through in vitro HCPB, we identify the secreted protein pigment epithelium-derived factor (PEDF) as a circulating factor that extends RLS of primary human fibroblasts and declines with age in mammals. Systemic administration of PEDF to aged mice reverses age-related functional decline and pathology across several tissues, improving cognitive function and reducing hepatic fibrosis and renal lipid accumulation. Together, our data supports PEDF as a systemic mediator of the effect of young blood on organismal health and homeostasis and establishes our in vitro HCPB system as a valuable screening platform for the identification of candidate circulating factors involved in aging and rejuvenation.
Collapse
Affiliation(s)
- Xizhe Wang
- Department of Obstetrics and Gynecology, Columbia University Medical Center, New York, NY
- These authors contributed equally
| | - Cagdas Tazearslan
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY
- These authors contributed equally
| | - Seungsoo Kim
- Department of Obstetrics and Gynecology, Columbia University Medical Center, New York, NY
| | - Qinghua Guo
- Department of Obstetrics and Gynecology, Columbia University Medical Center, New York, NY
| | - Daniela Contreras
- Department of Obstetrics and Gynecology, Columbia University Medical Center, New York, NY
| | - Jiping Yang
- Department of Obstetrics and Gynecology, Columbia University Medical Center, New York, NY
| | - Adam D. Hudgins
- Department of Obstetrics and Gynecology, Columbia University Medical Center, New York, NY
| | - Yousin Suh
- Department of Obstetrics and Gynecology, Columbia University Medical Center, New York, NY
- Department of Genetics and Development, Columbia University Medical Center, New York, NY
| |
Collapse
|
13
|
Cheng YW, Huang YC, Chang KF, Huang XF, Sheu GT, Tsai NM. Protective Effect of Curcumin on the Tight Junction Integrity and Cellular Senescence in Human Retinal Pigment Epithelium of Early Diabetic Retinopathy. JOURNAL OF PHYSIOLOGICAL INVESTIGATION 2024; 67:107-117. [PMID: 38857204 DOI: 10.4103/ejpi.ejpi-d-23-00035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 05/05/2024] [Indexed: 06/12/2024]
Abstract
Diabetic retinopathy (DR) is a secondary complication of diabetes that can lead to visual impairment and blindness. The retinal pigment epithelium (RPE) is a monolayer of pigment cells that forms the blood-retinal barrier (BRB) via tight junction (TJ) proteins and plays a crucial role in the physiological function of the retina. Hyperglycemia induces RPE death and BRB breakdown, which accelerates the process of DR. Curcumin, an active extract of Curcuma longa , has anti-inflammatory, antioxidant, antiapoptotic, and neuroprotective properties. However, the effect of Curcumin on the BRB under high glucose conditions remains unknown. This study aimed to investigate the protective effects of Curcumin on RPE physiology in vitro and in vivo . Curcumin significantly alleviated cell viability inhibition under high glucose conditions. Moreover, high glucose reduced extracellular signal-regulated kinase and Akt pathways activation to diminish RPE cell growth but reversed by Curcumin treatment. Curcumin protected not only TJ integrity but also retinoid regeneration through TJ proteins and isomerase modulation in diabetic retina. Furthermore, Curcumin decreased the expression of angiogenic factor to inhibit retinal neovascularization. Finally, Curcumin treatment markedly reduced apoptosis during hyperglycemia. In conclusion, Curcumin can alleviate the progression of DR by promoting RPE survival, TJ integrity, retinoid isomerase activity, RPE senescence inhibition, and neovascularization. Therefore, Curcumin exhibits high potential for use as a therapeutic agent for early DR.
Collapse
Affiliation(s)
- Yu-Wen Cheng
- Department of Internal Medicine, Lee's General Hospital, Miaoli, Taiwan
| | - Ya-Chih Huang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan
| | - Kai-Fu Chang
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan
| | - Xiao-Fan Huang
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan
| | - Gwo-Tarng Sheu
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Nu-Man Tsai
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan
- Clinical Laboratory, Chung Shan Medical University Hospital, Taichung, Taiwan
- Department of Life-and-Death Studies, Nanhua University, Chiayi, Taiwan
| |
Collapse
|
14
|
Croft J, Grajeda B, Aguirre LA, Abou-Fadel JS, Ellis CC, Estevao I, Almeida IC, Zhang J. Circulating Blood Prognostic Biomarker Signatures for Hemorrhagic Cerebral Cavernous Malformations (CCMs). Int J Mol Sci 2024; 25:4740. [PMID: 38731959 PMCID: PMC11084792 DOI: 10.3390/ijms25094740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
Cerebral cavernous malformations (CCMs) are a neurological disorder characterized by enlarged intracranial capillaries in the brain, increasing the susceptibility to hemorrhagic strokes, a major cause of death and disability worldwide. The limited treatment options for CCMs underscore the importance of prognostic biomarkers to predict the likelihood of hemorrhagic events, aiding in treatment decisions and identifying potential pharmacological targets. This study aimed to identify blood biomarkers capable of diagnosing and predicting the risk of hemorrhage in CCM1 patients, establishing an initial set of circulating biomarker signatures. By analyzing proteomic profiles from both human and mouse CCM models and conducting pathway enrichment analyses, we compared groups to identify potential blood biomarkers with statistical significance. Specific candidate biomarkers primarily associated with metabolism and blood clotting pathways were identified. These biomarkers show promise as prognostic indicators for CCM1 deficiency and the risk of hemorrhagic stroke, strongly correlating with the likelihood of hemorrhagic cerebral cavernous malformations (CCMs). This lays the groundwork for further investigation into blood biomarkers to assess the risk of hemorrhagic CCMs.
Collapse
Affiliation(s)
- Jacob Croft
- Department of Molecular and Translational Medicine, Texas Tech University Health Science Center El Paso (TTUHSCEP), El Paso, TX 79905, USA (J.S.A.-F.)
| | - Brian Grajeda
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79902, USA; (B.G.); (I.E.)
| | - Luis A. Aguirre
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79902, USA; (B.G.); (I.E.)
| | - Johnathan S. Abou-Fadel
- Department of Molecular and Translational Medicine, Texas Tech University Health Science Center El Paso (TTUHSCEP), El Paso, TX 79905, USA (J.S.A.-F.)
| | - Cameron C. Ellis
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79902, USA; (B.G.); (I.E.)
| | - Igor Estevao
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79902, USA; (B.G.); (I.E.)
| | - Igor C. Almeida
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79902, USA; (B.G.); (I.E.)
| | - Jun Zhang
- Department of Molecular and Translational Medicine, Texas Tech University Health Science Center El Paso (TTUHSCEP), El Paso, TX 79905, USA (J.S.A.-F.)
| |
Collapse
|
15
|
Brito M, Sorbier C, Mignet N, Boudy V, Borchard G, Vacher G. Understanding the Impact of Polyunsaturated Fatty Acids on Age-Related Macular Degeneration: A Review. Int J Mol Sci 2024; 25:4099. [PMID: 38612907 PMCID: PMC11012607 DOI: 10.3390/ijms25074099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
Age-related Macular Degeneration (AMD) is a multifactorial ocular pathology that destroys the photoreceptors of the macula. Two forms are distinguished, dry and wet AMD, with different pathophysiological mechanisms. Although treatments were shown to be effective in wet AMD, they remain a heavy burden for patients and caregivers, resulting in a lack of patient compliance. For dry AMD, no real effective treatment is available in Europe. It is, therefore, essential to look for new approaches. Recently, the use of long-chain and very long-chain polyunsaturated fatty acids was identified as an interesting new therapeutic alternative. Indeed, the levels of these fatty acids, core components of photoreceptors, are significantly decreased in AMD patients. To better understand this pathology and to evaluate the efficacy of various molecules, in vitro and in vivo models reproducing the mechanisms of both types of AMD were developed. This article reviews the anatomy and the physiological aging of the retina and summarizes the clinical aspects, pathophysiological mechanisms of AMD and potential treatment strategies. In vitro and in vivo models of AMD are also presented. Finally, this manuscript focuses on the application of omega-3 fatty acids for the prevention and treatment of both types of AMD.
Collapse
Affiliation(s)
- Maëlis Brito
- Unither Développement Bordeaux, Avenue Toussaint Catros, 33185 Le Haillan, France
- Université Paris Cité, CNRS, INSERM, UTCBS, Unité de Technologies Chimiques et Biologiques pour la Santé, F-75006 Paris, France
- Département de Recherche et Développement (DRDP), Agence Générale des Equipements et Produits de Santé (AGEPS), Assistance Publique Hôpitaux de Paris (AP-HP), 7 Rue du Fer-à-Moulin, 75005 Paris, France
- Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), School of Pharmaceutical Sciences, University of Geneva, Rue Michel-Servet 1, 1206 Geneva, Switzerland
| | - Capucine Sorbier
- Unither Développement Bordeaux, Avenue Toussaint Catros, 33185 Le Haillan, France
| | - Nathalie Mignet
- Université Paris Cité, CNRS, INSERM, UTCBS, Unité de Technologies Chimiques et Biologiques pour la Santé, F-75006 Paris, France
| | - Vincent Boudy
- Université Paris Cité, CNRS, INSERM, UTCBS, Unité de Technologies Chimiques et Biologiques pour la Santé, F-75006 Paris, France
- Département de Recherche et Développement (DRDP), Agence Générale des Equipements et Produits de Santé (AGEPS), Assistance Publique Hôpitaux de Paris (AP-HP), 7 Rue du Fer-à-Moulin, 75005 Paris, France
| | - Gerrit Borchard
- Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), School of Pharmaceutical Sciences, University of Geneva, Rue Michel-Servet 1, 1206 Geneva, Switzerland
| | - Gaëlle Vacher
- Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), School of Pharmaceutical Sciences, University of Geneva, Rue Michel-Servet 1, 1206 Geneva, Switzerland
| |
Collapse
|
16
|
Chen S, Barnstable CJ, Zhang X, Li X, Zhao S, Tombran-Tink J. A PEDF peptide mimetic effectively relieves dry eye in a diabetic murine model by restoring corneal nerve, barrier, and lacrimal gland function. Ocul Surf 2024; 32:1-12. [PMID: 38103731 DOI: 10.1016/j.jtos.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 10/27/2023] [Accepted: 12/09/2023] [Indexed: 12/19/2023]
Abstract
PURPOSE The study investigated effectiveness of a novel PEDF peptide mimetic to alleviate dry eye-like pathologies in a Type I diabetic mouse model established using streptozotocin. METHODS Mice were treated topically for 3-6 weeks with Ppx (a 17-mer PEDF mimetic) 2x/day or vehicle. Corneal sensitivity, tear film, epithelial and endothelial injury were measured using Cochet-Bonnet esthesiometer, phenol red cotton thread wetting, fluorescein sodium staining, and ZO1 expression, respectively. Inflammatory and parasympathetic nerve markers and activation of the MAPK/JNK pathways in the lacrimal glands were measured. RESULTS Diabetic mice exhibited features of dry eye including reduced corneal sensation and tear secretion and increased corneal epithelium injury, nerve degeneration, and edema. Ppx reversed these pathologies and restored ZO1 expression and morphological integrity of the endothelium. Upregulation of IL-1β and TNFα, increased activation of P-38, JNK, and ERK, and higher levels of M3ACHR in diabetic lacrimal glands were also reversed by the peptide treatment. CONCLUSION The study demonstrates that topical application of a synthetic PEDF mimetic effectively alleviates diabetes-induced dry eye by restoring corneal sensitivity, tear secretion, and endothelial barrier and lacrimal gland function. These findings have significant implications for the potential treatment of dry eye using a cost-effective and reproducible approach with minimal invasiveness and no obvious side effects.
Collapse
Affiliation(s)
- Shuangping Chen
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China
| | - Colin James Barnstable
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China; Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA, 17033-0850, USA; Skyran Biologics Inc., Harrisburg, PA, USA, 17112
| | - Xiaomin Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China
| | - Xiaorong Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China
| | - Shaozhen Zhao
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China.
| | - Joyce Tombran-Tink
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China; Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA, 17033-0850, USA; Skyran Biologics Inc., Harrisburg, PA, USA, 17112.
| |
Collapse
|
17
|
Ha KS. Transglutaminase 2 in diabetes mellitus: Unraveling its multifaceted role and therapeutic implications for vascular complications. Theranostics 2024; 14:2329-2344. [PMID: 38646650 PMCID: PMC11024853 DOI: 10.7150/thno.95742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 03/17/2024] [Indexed: 04/23/2024] Open
Abstract
Diabetes, a severe metabolic disease characterized by chronic hypoglycemia, poses debilitating and life-threatening risks of microvascular and macrovascular complications, including blindness, kidney failure, heart attacks, and limb amputation. Addressing these complications is paramount, urging the development of interventions targeting diabetes-associated vascular dysfunctions. To effectively combat diabetes, a comprehensive understanding of the pathological mechanisms underlying complications and identification of precise therapeutic targets are imperative. Transglutaminase 2 (TGase2) is a multifunctional enzyme implicated in the pathogenesis of diverse diseases such as neurodegenerative disorders, fibrosis, and inflammatory conditions. TGase2 has recently emerged as a key player in both the pathogenesis and therapeutic intervention of diabetic complications. This review highlights TGase2 as a therapeutic target for diabetic complications and explores TGase2 inhibition as a promising therapeutic approach in their treatment.
Collapse
Affiliation(s)
- Kwon-Soo Ha
- Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Chuncheon, Kangwon-do 24341, Korea
| |
Collapse
|
18
|
Zhang Q, Qi S, You J, Wang C. The role of retinal glial cells and related factors in macular edema. Biochem Biophys Res Commun 2024; 695:149415. [PMID: 38159411 DOI: 10.1016/j.bbrc.2023.149415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/09/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
Macular edema (ME) has emerged as a leading cause of visual impairment, representing a critical clinical manifestation and complication associated with many eye diseases. In the occurrence and development of ME, retinal glial cells like Müller cells and microglial cells play vital roles. Moreover, growth factor and cytokines associated with them, such as vascular endothelial growth factor (VEGF), pigment epithelium-derived factor (PEDF), hypoxia-inducible factor-1α (HIF-1α), angiopoietin-like protein 4 (ANGPTL4), interleukin-6(IL-6), interleukin-8 (IL-8), monocyte chemoattractant protein-1 (MCP-1), prostaglandin, etc., also take part in the pathogenesis of ME. Changes in these cytokines can lead to retinal angiogenesis, increased vascular permeability, blood-retinal barrier (BRB) breakdown, and fluid leakage, further causing ME to occur or deteriorate. Research on the role of retinal glial cells and related cytokines in ME will provide new therapeutic directions and effective remedies. This article is a literature review on the role of Müller cells, microglial cells and related factors in ME pathogenesis.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, China.
| | - Shounan Qi
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, China.
| | - Jiaxin You
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, China.
| | - Chenguang Wang
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, China.
| |
Collapse
|
19
|
Elmi M, Dass JH, Dass CR. The Various Roles of PEDF in Cancer. Cancers (Basel) 2024; 16:510. [PMID: 38339261 PMCID: PMC10854708 DOI: 10.3390/cancers16030510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/16/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Pigment epithelium-derived factor (PEDF) is a natural immunomodulator, anti-inflammatory, anti-angiogenic, anti-tumour growth and anti-metastasis factor, which can enhance tumour response to PEDF but can also conversely have pro-cancerous effects. Inflammation is a major cause of cancer, and it has been proven that PEDF has anti-inflammatory properties. PEDF's functional activity can be investigated through measuring metastatic and metabolic biomarkers that will be discussed in this review.
Collapse
Affiliation(s)
- Mitra Elmi
- Curtin Medical School, Curtin University, Bentley, WA 6102, Australia; (M.E.); (J.H.D.)
- Curtin Health Innovation Research Institute, Curtin Medical School, Curtin University, Bentley, WA 6102, Australia
| | - Joshua H. Dass
- Curtin Medical School, Curtin University, Bentley, WA 6102, Australia; (M.E.); (J.H.D.)
- Sir Charles Gairdner Hospital, Nedlands, WA 6009, Australia
| | - Crispin R. Dass
- Curtin Medical School, Curtin University, Bentley, WA 6102, Australia; (M.E.); (J.H.D.)
- Curtin Health Innovation Research Institute, Curtin Medical School, Curtin University, Bentley, WA 6102, Australia
| |
Collapse
|
20
|
Valencia-Ortega J, Solis-Paredes JM, Saucedo R, Estrada-Gutierrez G, Camacho-Arroyo I. Excessive Pregestational Weight and Maternal Obstetric Complications: The Role of Adipokines. Int J Mol Sci 2023; 24:14678. [PMID: 37834125 PMCID: PMC10572963 DOI: 10.3390/ijms241914678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/22/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
There is a high frequency of overweight and obesity in women of reproductive age. Women who start pregnancy with overweight or obesity have an increased risk of developing maternal obstetric complications such as gestational hypertension, pre-eclampsia, gestational diabetes mellitus, postpartum hemorrhage, and requiring C-section to resolve the pregnancy with a higher risk of C-section surgical site infection. Excessive weight in pregnancy is characterized by dysregulation of adipokines, the functions of which partly explain the predisposition of pregnant women with overweight or obesity to these maternal obstetric complications. This review compiles, organizes, and analyzes the most recent studies on adipokines in pregnant women with excess weight and the potential pathophysiological mechanisms favoring the development of maternal pregnancy complications.
Collapse
Affiliation(s)
- Jorge Valencia-Ortega
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 11000, Mexico;
| | - Juan Mario Solis-Paredes
- Department of Reproductive and Perinatal Health Research, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City 11000, Mexico;
| | - Renata Saucedo
- Unidad de Investigación Médica en Enfermedades Endocrinas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico;
| | | | - Ignacio Camacho-Arroyo
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 11000, Mexico;
| |
Collapse
|
21
|
Fan R, Su L, Zhang H, Jiang Y, Yu Z, Zhang X, Li X. Enhanced therapeutic effect of PEDF-loaded mesenchymal stem cell-derived small extracellular vesicles against oxygen-induced retinopathy through increased stability and penetrability of PEDF. J Nanobiotechnology 2023; 21:327. [PMID: 37684667 PMCID: PMC10492320 DOI: 10.1186/s12951-023-02066-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/16/2023] [Indexed: 09/10/2023] Open
Abstract
BACKGROUND Several common retinal diseases that cause blindness are characterised by pathological neovascularisation accompanied by inflammation and neurodegeneration, including retinopathy of prematurity (ROP), diabetic retinopathy (DR), age-related macular degeneration (AMD), and retinal vein occlusion (RVO). The current treatment strategies for these diseases have limited benefits. Thus, safer and more effective alternative approaches are required. In this study, we loaded small extracellular vesicles (sEVs) derived from mesenchymal stem cell (MSC) with pigment epithelium-derived factor (PEDF), and tested the therapeutic effect of PEDF-loaded sEVs (PEDF-sEVs) using an oxygen induced retinopathy (OIR) mouse model, aiming to establish a new therapy strategy for the treatment of retinal pathological angiogenesis. RESULTS We formulated PEDF-loaded sEVs (PEDF-sEVs) containing high concentrations of PEDF and evaluated their effects through in vivo and in vitro experiments. In OIR mice, PEDF-sEVs showed significantly better effects on retinal avascular areas, inflammation, and neuronal degeneration compared with the anti-vascular endothelial growth factor (VEGF) drug, which may indicate a possible advantage of PEDF-sEVs over anti-VEGF drugs in the treatment of pathological neovascularisation. In vitro, PEDF-sEVs greatly inhibited endothelial cell (EC) proliferation, migration, and tube formation by suppressing the VEGF-induced phosphorylation of extracellular signal-regulated kinase (ERK) and AKT (also known as Protein Kinase B). All experiments and analyses were performed in triplicate. PEDF-sEVs were more effective than PEDF or sEVs alone, both in vitro and in vivo. Furthermore, to determine the distribution of PEDF-sEVs, we used DiD-labelled sEVs and FITC-labelled PEDF to track the sEVs and PEDF, respectively. We found that PEDF-sEVs effectively reduced the degradation of PEDF. CONCLUSIONS Loading PEDF on sEVs effectively enhanced the anti-angiogenic, anti-inflammatory, and neuroprotective effects of PEDF by increasing the stability and penetrability. These results suggest a potential role for PEDF-sEVs in retinal pathological neovascularisation.
Collapse
Affiliation(s)
- Ruiyan Fan
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute, School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China
| | - Lin Su
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute, School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China
| | - Hui Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute, School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China
| | - Yilin Jiang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute, School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China
| | - Zihao Yu
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute, School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China
| | - Xiaomin Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute, School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China.
| | - Xiaorong Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute, School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China.
| |
Collapse
|
22
|
Qiu F, Jiang B, Lin Y, Li H, Li D, Luo M, Hui H, Miao H, Zhang Y. Dual Pigment Epithelium-derived Factor and Hepatocyte Growth Factor Overexpression: A New Therapy for Pulmonary Hypertension. Am J Respir Cell Mol Biol 2023; 69:87-98. [PMID: 37094101 DOI: 10.1165/rcmb.2022-0459oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 04/24/2023] [Indexed: 04/26/2023] Open
Abstract
Pulmonary hypertension (PH) is a disease characterized by advanced pulmonary vasculature remodeling that is thought to be curable only through lung transplantation. The application of angiogenic hepatocyte growth factor (HGF) is reported to be protective in PH through its anti-vascular remodeling effect, but excessive HGF-mediated immature neovascularization is not conducive to the restoration of pulmonary perfusion because of apparent vascular leakage. As a canonical antiangiogenic molecule, pigment epithelium-derived factor (PEDF) inhibits angiogenesis and reduces vascular permeability in a variety of diseases. However, the effect of PEDF on HGF-based PH treatment remains to be determined. In this study, monocrotaline-induced PH rats and endothelial cells isolated from rat and human PH lung tissues were used. We assessed PH progression, right cardiac function, and pulmonary perfusion in HGF- and/or PEDF-treated rats with PH. Additionally, the receptor and mechanism responsible for the role of PEDF in HGF-based PH therapy were investigated. In this study, we found that HGF and PEDF jointly prevent PH development and improve right cardiac function in rats with PH. Moreover, PEDF delivery increases the pulmonary perfusion in PH lungs and inhibits immature angiogenesis and vascular endothelial (VE)-cadherin junction disintegration induced by HGF without affecting the therapeutic inhibition of pulmonary vascular remodeling by HGF. Mechanistically, PEDF targets VE growth factor receptor 2 and suppresses its phosphorylation at Y951 and Y1175 but not Y1214. Finally, VE growth factor receptor 2/VE protein tyrosine phosphatase/VE-cadherin complex formation and Akt and Erk1/2 inactivation were observed in rat and human PH lung endothelial cells. Collectively, our data indicate that PEDF additively enhances the efficacy of HGF against PH, which may provide new insights into treatment strategies for clinical PH.
Collapse
Affiliation(s)
- Fan Qiu
- Department of Thoracic Cardiovascular Surgery and
| | - Bo Jiang
- Department of Thoracic Cardiovascular Surgery and
| | - Yangui Lin
- Department of Thoracic Cardiovascular Surgery and
| | - Huaming Li
- Department of Thoracic Cardiovascular Surgery and
| | - Dan Li
- Community Health Center, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Min Luo
- Department of Thoracic Cardiovascular Surgery and
| | | | - Haoran Miao
- Department of Thoracic Cardiovascular Surgery and
| | - Yiqian Zhang
- Department of Thoracic Cardiovascular Surgery and
| |
Collapse
|
23
|
Ahluwalia K, Martinez-Camarillo JC, Thomas BB, Naik A, Gonzalez-Calle A, Pollalis D, Lebkowski J, Lee SY, Mitra D, Louie SG, Humayun MS. Polarized RPE Secretome Preserves Photoreceptors in Retinal Dystrophic RCS Rats. Cells 2023; 12:1689. [PMID: 37443724 PMCID: PMC10340490 DOI: 10.3390/cells12131689] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Retinal degenerative diseases, including age-related macular degeneration (AMD) and retinitis pigmentosa, lack effective therapies. Conventional monotherapeutic approaches fail to target the multiple affected pathways in retinal degeneration. However, the retinal pigment epithelium (RPE) secretes several neurotrophic factors addressing diverse cellular pathways, potentially preserving photoreceptors. This study explored human embryonic stem cell-derived, polarized RPE soluble factors (PRPE-SF) as a combination treatment for retinal degeneration. PRPE-SF promoted retinal progenitor cell survival, reduced oxidative stress in ARPE-19 cells, and demonstrated critical antioxidant and anti-inflammatory effects for preventing retinal degeneration in the Royal College of Surgeons (RCS) rat model. Importantly, PRPE-SF treatment preserved retinal structure and scotopic b-wave amplitudes, suggesting therapeutic potential for delaying retinal degeneration. PRPE-SF is uniquely produced using biomimetic membranes for RPE polarization and maturation, promoting a protective RPE secretome phenotype. Additionally, PRPE-SF is produced without animal serum to avoid immunogenicity in future clinical development. Lastly, PRPE-SF is a combination of neurotrophic factors, potentially ameliorating multiple dysfunctions in retinal degenerations. In conclusion, PRPE-SF offers a promising therapeutic candidate for retinal degenerative diseases, advancing the development of effective therapeutic strategies for these debilitating conditions.
Collapse
Affiliation(s)
- Kabir Ahluwalia
- Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; (K.A.); (A.N.)
| | - Juan-Carlos Martinez-Camarillo
- USC Ginsburg Institute of for Biomedical Therapeutics, University of Southern California, Los Angeles, CA 90033, USA; (J.-C.M.-C.); (B.B.T.); (A.G.-C.); (D.P.); (S.Y.L.); (D.M.)
- USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Biju B. Thomas
- USC Ginsburg Institute of for Biomedical Therapeutics, University of Southern California, Los Angeles, CA 90033, USA; (J.-C.M.-C.); (B.B.T.); (A.G.-C.); (D.P.); (S.Y.L.); (D.M.)
- USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Aditya Naik
- Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; (K.A.); (A.N.)
| | - Alejandra Gonzalez-Calle
- USC Ginsburg Institute of for Biomedical Therapeutics, University of Southern California, Los Angeles, CA 90033, USA; (J.-C.M.-C.); (B.B.T.); (A.G.-C.); (D.P.); (S.Y.L.); (D.M.)
- USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Dimitrios Pollalis
- USC Ginsburg Institute of for Biomedical Therapeutics, University of Southern California, Los Angeles, CA 90033, USA; (J.-C.M.-C.); (B.B.T.); (A.G.-C.); (D.P.); (S.Y.L.); (D.M.)
- USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Jane Lebkowski
- Regenerative Patch Technologies LLC, Menlo Park, CA 94028, USA;
| | - Sun Young Lee
- USC Ginsburg Institute of for Biomedical Therapeutics, University of Southern California, Los Angeles, CA 90033, USA; (J.-C.M.-C.); (B.B.T.); (A.G.-C.); (D.P.); (S.Y.L.); (D.M.)
- USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Department of Physiology & Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Debbie Mitra
- USC Ginsburg Institute of for Biomedical Therapeutics, University of Southern California, Los Angeles, CA 90033, USA; (J.-C.M.-C.); (B.B.T.); (A.G.-C.); (D.P.); (S.Y.L.); (D.M.)
| | - Stan G. Louie
- Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; (K.A.); (A.N.)
- USC Ginsburg Institute of for Biomedical Therapeutics, University of Southern California, Los Angeles, CA 90033, USA; (J.-C.M.-C.); (B.B.T.); (A.G.-C.); (D.P.); (S.Y.L.); (D.M.)
| | - Mark S. Humayun
- USC Ginsburg Institute of for Biomedical Therapeutics, University of Southern California, Los Angeles, CA 90033, USA; (J.-C.M.-C.); (B.B.T.); (A.G.-C.); (D.P.); (S.Y.L.); (D.M.)
- USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
24
|
Bogomolov A, Filonov S, Chadaeva I, Rasskazov D, Khandaev B, Zolotareva K, Kazachek A, Oshchepkov D, Ivanisenko VA, Demenkov P, Podkolodnyy N, Kondratyuk E, Ponomarenko P, Podkolodnaya O, Mustafin Z, Savinkova L, Kolchanov N, Tverdokhleb N, Ponomarenko M. Candidate SNP Markers Significantly Altering the Affinity of TATA-Binding Protein for the Promoters of Human Hub Genes for Atherogenesis, Atherosclerosis and Atheroprotection. Int J Mol Sci 2023; 24:ijms24109010. [PMID: 37240358 DOI: 10.3390/ijms24109010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/13/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Atherosclerosis is a systemic disease in which focal lesions in arteries promote the build-up of lipoproteins and cholesterol they are transporting. The development of atheroma (atherogenesis) narrows blood vessels, reduces the blood supply and leads to cardiovascular diseases. According to the World Health Organization (WHO), cardiovascular diseases are the leading cause of death, which has been especially boosted since the COVID-19 pandemic. There is a variety of contributors to atherosclerosis, including lifestyle factors and genetic predisposition. Antioxidant diets and recreational exercises act as atheroprotectors and can retard atherogenesis. The search for molecular markers of atherogenesis and atheroprotection for predictive, preventive and personalized medicine appears to be the most promising direction for the study of atherosclerosis. In this work, we have analyzed 1068 human genes associated with atherogenesis, atherosclerosis and atheroprotection. The hub genes regulating these processes have been found to be the most ancient. In silico analysis of all 5112 SNPs in their promoters has revealed 330 candidate SNP markers, which statistically significantly change the affinity of the TATA-binding protein (TBP) for these promoters. These molecular markers have made us confident that natural selection acts against underexpression of the hub genes for atherogenesis, atherosclerosis and atheroprotection. At the same time, upregulation of the one for atheroprotection promotes human health.
Collapse
Affiliation(s)
- Anton Bogomolov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
| | - Sergey Filonov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
- The Natural Sciences Department, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Irina Chadaeva
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
| | - Dmitry Rasskazov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
| | - Bato Khandaev
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
- The Natural Sciences Department, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Karina Zolotareva
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
- The Natural Sciences Department, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Anna Kazachek
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
- The Natural Sciences Department, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Dmitry Oshchepkov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
| | - Vladimir A Ivanisenko
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
| | - Pavel Demenkov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
| | - Nikolay Podkolodnyy
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
- Institute of Computational Mathematics and Mathematical Geophysics, Novosibirsk 630090, Russia
| | - Ekaterina Kondratyuk
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
| | - Petr Ponomarenko
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
| | - Olga Podkolodnaya
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
| | - Zakhar Mustafin
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
| | - Ludmila Savinkova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
| | - Nikolay Kolchanov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
| | - Natalya Tverdokhleb
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
| | - Mikhail Ponomarenko
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
| |
Collapse
|
25
|
Jones IC, Dass CR. Roles of pigment epithelium-derived factor in cardiomyocytes: implications for use as a cardioprotective therapeutic. J Pharm Pharmacol 2023:7146108. [PMID: 37104852 DOI: 10.1093/jpp/rgad037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 04/12/2023] [Indexed: 04/29/2023]
Abstract
OBJECTIVES Cardiovascular diseases are the leading cause of death worldwide, with patients having limited options for treatment. Pigment epithelium-derived factor (PEDF) is an endogenous multifunctional protein with several mechanisms of action. Recently, PEDF has emerged as a potential cardioprotective agent in response to myocardial infarction. However, PEDF is also associated with pro-apoptotic effects, complicating its role in cardioprotection. This review summarises and compares knowledge of PEDF's activity in cardiomyocytes with other cell types and draws links between them. Following this, the review offers a novel perspective of PEDF's therapeutic potential and recommends future directions to understand the clinical potential of PEDF better. KEY FINDINGS PEDF's mechanisms as a pro-apoptotic and pro-survival protein are not well understood, despite PEDF's implication in several physiological and pathological activities. However, recent evidence suggests that PEDF may have significant cardioprotective properties mediated by key regulators dependent on cell type and context. CONCLUSIONS While PEDF's cardioprotective activity shares some key regulators with its apoptotic activity, cellular context and molecular features likely allow manipulation of PEDF's cellular activity, highlighting the importance of further investigation into its activities and its potential to be applied as a therapeutic to mitigate damage from a range of cardiac pathologies.
Collapse
Affiliation(s)
- Isobel C Jones
- Curtin Medical School, Curtin University, Bentley, Australia
- Curtin Health Innovation Research Institute, Curtin University, Bentley, Australia
| | - Crispin R Dass
- Curtin Medical School, Curtin University, Bentley, Australia
- Curtin Health Innovation Research Institute, Curtin University, Bentley, Australia
| |
Collapse
|
26
|
Akoto T, Cai J, Nicholas S, McCord H, Estes AJ, Xu H, Karamichos D, Liu Y. Unravelling the Impact of Cyclic Mechanical Stretch in Keratoconus-A Transcriptomic Profiling Study. Int J Mol Sci 2023; 24:7437. [PMID: 37108600 PMCID: PMC10139219 DOI: 10.3390/ijms24087437] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/04/2023] [Accepted: 04/16/2023] [Indexed: 04/29/2023] Open
Abstract
Biomechanical and molecular stresses may contribute to the pathogenesis of keratoconus (KC). We aimed to profile the transcriptomic changes in healthy primary human corneal (HCF) and KC-derived cells (HKC) combined with TGFβ1 treatment and cyclic mechanical stretch (CMS), mimicking the pathophysiological condition in KC. HCFs (n = 4) and HKCs (n = 4) were cultured in flexible-bottom collagen-coated 6-well plates treated with 0, 5, and 10 ng/mL of TGFβ1 with or without 15% CMS (1 cycle/s, 24 h) using a computer-controlled Flexcell FX-6000T Tension system. We used stranded total RNA-Seq to profile expression changes in 48 HCF/HKC samples (100 bp PE, 70-90 million reads per sample), followed by bioinformatics analysis using an established pipeline with Partek Flow software. A multi-factor ANOVA model, including KC, TGFβ1 treatment, and CMS, was used to identify differentially expressed genes (DEGs, |fold change| ≥ 1.5, FDR ≤ 0.1, CPM ≥ 10 in ≥1 sample) in HKCs (n = 24) vs. HCFs (n = 24) and those responsive to TGFβ1 and/or CMS. PANTHER classification system and the DAVID bioinformatics resources were used to identify significantly enriched pathways (FDR ≤ 0.05). Using multi-factorial ANOVA analyses, 479 DEGs were identified in HKCs vs. HCFs including TGFβ1 treatment and CMS as cofactors. Among these DEGs, 199 KC-altered genes were responsive to TGFβ1, thirteen were responsive to CMS, and six were responsive to TGFβ1 and CMS. Pathway analyses using PANTHER and DAVID indicated the enrichment of genes involved in numerous KC-relevant functions, including but not limited to degradation of extracellular matrix, inflammatory response, apoptotic processes, WNT signaling, collagen fibril organization, and cytoskeletal structure organization. TGFβ1-responsive KC DEGs were also enriched in these. CMS-responsive KC-altered genes such as OBSCN, CLU, HDAC5, AK4, ITGA10, and F2RL1 were identified. Some KC-altered genes, such as CLU and F2RL1, were identified to be responsive to both TGFβ1 and CMS. For the first time, our multi-factorial RNA-Seq study has identified many KC-relevant genes and pathways in HKCs with TGFβ1 treatment under CMS, suggesting a potential role of TGFβ1 and biomechanical stretch in KC development.
Collapse
Affiliation(s)
- Theresa Akoto
- Department of Cellular Biology & Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Jingwen Cai
- Department of Cellular Biology & Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Sarah Nicholas
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
- Department of Pharmaceutical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Hayden McCord
- Department of Cellular Biology & Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Amy J. Estes
- Department of Ophthalmology, Augusta University, Augusta, GA 30912, USA
- James & Jean Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Hongyan Xu
- Department of Population Health Sciences, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Dimitrios Karamichos
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
- Department of Pharmaceutical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Yutao Liu
- Department of Cellular Biology & Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- James & Jean Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
27
|
Albrecht M, Hummitzsch L, Rusch R, Heß K, Steinfath M, Cremer J, Lichte F, Fändrich F, Berndt R, Zitta K. Characterization of large extracellular vesicles (L-EV) derived from human regulatory macrophages (Mreg): novel mediators in wound healing and angiogenesis? J Transl Med 2023; 21:61. [PMID: 36717876 PMCID: PMC9887800 DOI: 10.1186/s12967-023-03900-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/17/2023] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Large extracellular vesicles (L-EV) with a diameter between 1 and 10 µm are released by various cell types. L-EV contain and transport active molecules which are crucially involved in cell to cell communication. We have shown that secretory products of human regulatory macrophages (Mreg) bear pro-angiogenic potential in-vitro and our recent findings show that Mreg cultures also contain numerous large vesicular structures similar to L-EV with so far unknown characteristics and function. AIM OF THIS STUDY To characterize the nature of Mreg-derived L-EV (L-EVMreg) and to gain insights into their role in wound healing and angiogenesis. METHODS Mreg were differentiated using blood monocytes from healthy donors (N = 9) and L-EVMreg were isolated from culture supernatants by differential centrifugation. Characterization of L-EVMreg was performed by cell/vesicle analysis, brightfield/transmission electron microscopy (TEM), flow cytometry and proteome profiling arrays. The impact of L-EVMreg on wound healing and angiogenesis was evaluated by means of scratch and in-vitro tube formation assays. RESULTS Mreg and L-EVMreg show an average diameter of 13.73 ± 1.33 µm (volume: 1.45 ± 0.44 pl) and 7.47 ± 0.75 µm (volume: 0.22 ± 0.06 pl) respectively. Flow cytometry analyses revealed similarities between Mreg and L-EVMreg regarding their surface marker composition. However, compared to Mreg fewer L-EVMreg were positive for CD31 (P < 0.01), CD206 (P < 0.05), CD103 (P < 0.01) and CD45 (P < 0.05). Proteome profiling suggested that L-EVMreg contain abundant amounts of pro-angiogenic proteins (i.e. interleukin-8, platelet factor 4 and serpin E1). From a functional point of view L-EVMreg positively influenced in-vitro wound healing (P < 0.05) and several pro-angiogenic parameters in tube formation assays (all segment associated parameters, P < 0.05; number of meshes, P < 0.05). CONCLUSION L-EVMreg with regenerative and pro-angiogenic potential can be reproducibly isolated from in-vitro cultured human regulatory macrophages. We propose that L-EVMreg could represent a putative therapeutic option for the treatment of chronic wounds and ischemia-associated diseases.
Collapse
Affiliation(s)
- Martin Albrecht
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Schleswig-Holstein, Schwanenweg 21, 24105, Kiel, Germany.
| | - Lars Hummitzsch
- grid.412468.d0000 0004 0646 2097Department of Anesthesiology and Intensive Care Medicine, University Hospital of Schleswig-Holstein, Schwanenweg 21, 24105 Kiel, Germany
| | - Rene Rusch
- grid.412468.d0000 0004 0646 2097Clinic of Cardiovascular Surgery, University Hospital of Schleswig-Holstein, Kiel, Germany
| | - Katharina Heß
- grid.412468.d0000 0004 0646 2097Department of Pathology, University Hospital of Schleswig-Holstein, Kiel, Germany
| | - Markus Steinfath
- grid.412468.d0000 0004 0646 2097Department of Anesthesiology and Intensive Care Medicine, University Hospital of Schleswig-Holstein, Schwanenweg 21, 24105 Kiel, Germany
| | - Jochen Cremer
- grid.412468.d0000 0004 0646 2097Clinic of Cardiovascular Surgery, University Hospital of Schleswig-Holstein, Kiel, Germany
| | - Frank Lichte
- grid.9764.c0000 0001 2153 9986Department of Anatomy, University of Kiel, Kiel, Germany
| | - Fred Fändrich
- grid.412468.d0000 0004 0646 2097Clinic for Applied Cell Therapy, University Hospital of Schleswig-Holstein, Kiel, Germany
| | - Rouven Berndt
- grid.412468.d0000 0004 0646 2097Clinic of Cardiovascular Surgery, University Hospital of Schleswig-Holstein, Kiel, Germany
| | - Karina Zitta
- grid.412468.d0000 0004 0646 2097Department of Anesthesiology and Intensive Care Medicine, University Hospital of Schleswig-Holstein, Schwanenweg 21, 24105 Kiel, Germany
| |
Collapse
|
28
|
Xu M, Chen X, Yu Z, Li X. Receptors that bind to PEDF and their therapeutic roles in retinal diseases. Front Endocrinol (Lausanne) 2023; 14:1116136. [PMID: 37139333 PMCID: PMC10149954 DOI: 10.3389/fendo.2023.1116136] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 04/04/2023] [Indexed: 05/05/2023] Open
Abstract
Retinal neovascular, neurodegenerative, and inflammatory diseases represented by diabetic retinopathy are the main types of blinding eye disorders that continually cause the increased burden worldwide. Pigment epithelium-derived factor (PEDF) is an endogenous factor with multiple effects including neurotrophic activity, anti-angiogenesis, anti-tumorigenesis, and anti-inflammatory activity. PEDF activity depends on the interaction with the proteins on the cell surface. At present, seven independent receptors, including adipose triglyceride lipase, laminin receptor, lipoprotein receptor-related protein, plexin domain-containing 1, plexin domain-containing 2, F1-ATP synthase, and vascular endothelial growth factor receptor 2, have been demonstrated and confirmed to be high affinity receptors for PEDF. Understanding the interactions between PEDF and PEDF receptors, their roles in normal cellular metabolism and the response the initiate in disease will be accommodating for elucidating the ways in which inflammation, angiogenesis, and neurodegeneration exacerbate disease pathology. In this review, we firstly introduce PEDF receptors comprehensively, focusing particularly on their expression pattern, ligands, related diseases, and signal transduction pathways, respectively. We also discuss the interactive ways of PEDF and receptors to expand the prospective understanding of PEDF receptors in the diagnosis and treatment of retinal diseases.
Collapse
|
29
|
Rasoulinejad SA, Kiyamehr P. The Determinative Role of Cytokines in Retinopathy of Prematurity. Curr Mol Med 2023; 23:36-43. [PMID: 35078395 DOI: 10.2174/1566524022666220117114920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 11/25/2021] [Accepted: 11/30/2021] [Indexed: 12/16/2022]
Abstract
Retinopathy of prematurity (ROP) is a neonatal disease corresponding to vision impairment and blindness. Utilizing the pathogenesis of ROP and the risk factors affecting its progression can help prevent and reduce its incidence and lead to the emergence and development of new treatment strategies. Factors influencing retinopathy include growth and inflammatory factors that play an essential role in the pathogenesis of the ROP. This review summarizes the most critical factors in the pathogenesis of ROP.
Collapse
Affiliation(s)
- Seyed Ahmad Rasoulinejad
- Department of Ophthalmology, Ayatollah Rouhani Hospital, Babol University of Medical Sciences, Babol, Iran
| | - Pegah Kiyamehr
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
30
|
Qu Q, Park K, Zhou K, Wassel D, Farjo R, Criswell T, Ma JX, Zhang Y. Sustained therapeutic effect of an anti-inflammatory peptide encapsulated in nanoparticles on ocular vascular leakage in diabetic retinopathy. Front Cell Dev Biol 2022; 10:1049678. [PMID: 36589744 PMCID: PMC9802579 DOI: 10.3389/fcell.2022.1049678] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/21/2022] [Indexed: 12/23/2022] Open
Abstract
Pigment epithelium-derived factor (PEDF), an endogenous Wnt signaling inhibitor in the serine proteinase inhibitors (SERPIN) super family, is present in multiple organs, including the vitreous. Significantly low levels of PEDF in the vitreous are found to associate with pathological retinal vascular leakage and inflammation in diabetic retinopathy (DR). Intravitreal delivery of PEDF represents a promising therapeutic approach for DR. However, PEDF has a short half-life after intravitreal injection, which represents a major hurdle for the long-term treatment. Here we report the prolonged therapeutic effects of a 34-mer peptide of the PEDF N-terminus, encapsulated in poly (lactic-co-glycolic acid) (PLGA) nanoparticles (PEDF34-NP), on DR. PEDF34-NP inhibited hypoxia-induced expression of vascular endothelial growth factor and reduced levels of intercellular adhesion molecule 1 (ICAM-1) in cultured retinal cells. In addition, PEDF34-NP significantly ameliorated ischemia-induced retinal neovascularization in the oxygen-induced retinopathy rat model, and significantly reduced retinal vascular leakage and inflammation in streptozotocin-induced diabetic rats up to 4 weeks after intravitreal injection, as compared to PLGA-NP control. Intravitreal injection of PEDF34-NP did not display any detectable toxicities to retinal structure and function. Our findings suggest that PEDF34-NP can confer sustained therapeutic effects on retinal inflammation and vascular leakage, having considerable potential to provide long-term treatment options for DR.
Collapse
Affiliation(s)
- Qiang Qu
- Department of Ophthalmology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Kyoungmin Park
- Joslin Diabetes Center, Harvard Medical School, Boston, MA, United States
| | - Kevin Zhou
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Drew Wassel
- EyeCro LLC., Oklahoma City, OK, United States
| | - Rafal Farjo
- EyeCro LLC., Oklahoma City, OK, United States
| | - Tracy Criswell
- Institure for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Jian-xing Ma
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Yuanyuan Zhang
- Institure for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, United States,*Correspondence: Yuanyuan Zhang,
| |
Collapse
|
31
|
Głuchowska A, Cysewski D, Baj-Krzyworzeka M, Szatanek R, Węglarczyk K, Podszywałow-Bartnicka P, Sunderland P, Kozłowska E, Śliwińska MA, Dąbrowski M, Sikora E, Mosieniak G. Unbiased proteomic analysis of extracellular vesicles secreted by senescent human vascular smooth muscle cells reveals their ability to modulate immune cell functions. GeroScience 2022; 44:2863-2884. [PMID: 35900662 PMCID: PMC9768090 DOI: 10.1007/s11357-022-00625-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 07/12/2022] [Indexed: 01/07/2023] Open
Abstract
Atherosclerosis, a common age-related disease, is characterized by intense immunological activity. Atherosclerotic plaque is composed of endothelial cells, vascular smooth muscle cells (VSMCs), lipids and immune cells infiltrating from the blood. During progression of the disease, VSMCs undergo senescence within the plaque and secrete SASP (senescence-associated secretory phenotype) factors that can actively modulate plaque microenvironment. We demonstrated that senescent VSMCs secrete increased number of extracellular vesicles (senEVs). Based on unbiased proteomic analysis of VMSC-derived EVs and of the soluble fraction of SASP (sSASP), more than 900 proteins were identified in each of SASP compartments. Comparison of the composition of VMSC-derived EVs with the SASP atlas revealed several proteins, including Serpin Family F Member 1 (SERPINF1) and Thrombospondin 1 (THBS1), as commonly upregulated components of EVs secreted by senescent VSMCs and fibroblasts. Among soluble SASP factors, only Growth Differentiation Factor 15 (GDF15) was universally increased in the secretome of senescent VSMCs, fibroblasts, and epithelial cells. Bioinformatics analysis of EV proteins distinguished functionally organized protein networks involved in immune cell function regulation. Accordingly, EVs released by senescent VSMCs induced secretion of IL-17, INFγ, and IL-10 by T cells and of TNFα produced by monocytes. Moreover senEVs influenced differentiation of monocytes favoring mix M1/M2 polarization with proinflammatory characteristics. Altogether, our studies provide a complex, unbiased analysis of VSMC SASP and prove that EVs derived from senescent VSMCs influence the cytokine milieu by modulating immune cell activity. Our results strengthen the role of senescent cells as an important inducer of inflammation in atherosclerosis.
Collapse
Affiliation(s)
- Agata Głuchowska
- Laboratory of Molecular Bases of Aging, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteura 3 St., 02-093, Warsaw, Poland
| | - Dominik Cysewski
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
- Clinical Research Centre, Medical University of Bialystok, Białystok, Poland
| | - Monika Baj-Krzyworzeka
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Krakow, Poland
| | - Rafał Szatanek
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Krakow, Poland
| | - Kazimierz Węglarczyk
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Krakow, Poland
| | | | - Piotr Sunderland
- Laboratory of Molecular Bases of Aging, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteura 3 St., 02-093, Warsaw, Poland
| | - Ewa Kozłowska
- Department of Immunology, Institute of Functional Biology and Ecology, Faculty of Biology University of Warsaw, Warsaw, Poland
| | - Małgorzata A Śliwińska
- Laboratory of Imaging Tissue Structure and Function, Nencki Institute of Experimental Biology Polish Academy of Sciences, Warsaw, Poland
| | - Michał Dąbrowski
- Laboratory of Bioinformatics, Neurobiology Centre, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Ewa Sikora
- Laboratory of Molecular Bases of Aging, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteura 3 St., 02-093, Warsaw, Poland
| | - Grażyna Mosieniak
- Laboratory of Molecular Bases of Aging, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteura 3 St., 02-093, Warsaw, Poland.
| |
Collapse
|
32
|
The Role of Selected Serpins in Gastrointestinal (GI) Malignancies. J Clin Med 2022; 11:jcm11206225. [PMID: 36294546 PMCID: PMC9604722 DOI: 10.3390/jcm11206225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022] Open
Abstract
Gastrointestinal (GI) cancers, which are a diverse group of malignant diseases, represent a major healthcare problem around the world. Due to the lack of specific symptoms in the early stages as well as insufficient diagnostic possibilities, these malignancies occupy the leading position in the causes of death worldwide. The currently available tests have too many limitations to be part of routine diagnostics. Therefore, new potential biomarkers that could be used as diagnostic and prognostic factors for these cancers are still being sought. Among the proteins that might fit this role are serpins, which are serine protease inhibitors. Although the serpins themselves have been known for many years, they have recently become the centre of attention for many authors, especially due to the fact that a number of proteins in this family are involved in many stages of neoplasia formation, from angiogenesis through tumour growth to progression. Therefore, the aim of this review is to present the current knowledge about the significance of serpins in GI malignancies, especially their involvement in the development and progression of oesophageal, gastric, pancreatic and colorectal cancers. This review summarises and confirms the important roles of selected serpins in the pathogenesis of various GI cancers and also points to their promising roles as therapeutic targets. However, due to the relatively nonspecific nature of serpins, future research should be carried out to elucidate the mechanisms involved in tumour pathogenesis in more detail.
Collapse
|
33
|
Ma R, Chu X, Jiang Y, Xu Q. Pigment epithelium-derived factor, an anti-VEGF factor, delays ovarian cancer progression by alleviating polarization of tumor-associated macrophages. Cancer Gene Ther 2022; 29:1332-1341. [PMID: 35246611 DOI: 10.1038/s41417-022-00447-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 01/17/2022] [Accepted: 02/14/2022] [Indexed: 12/15/2022]
Abstract
Ovarian cancer (OC) is one of the most dangerous gynecological malignancies with no effective treatment so far. Pigment epithelium-derived factor (PEDF) has been reported to have ideal anti-tumor effects, but its relationship with the regulation of tumor-associated macrophage polarization is currently unclear. In this study, the mRNA expression of PEDF and macrophage markers were determined in OC tissues from clinic patients and five OC (A2780, SKOV3, CAOV3, OVCAR3, and OVCA433) cell lines through quantitative reverse transcription PCR. Afterwards, tumor growth, cell proliferation and apoptosis, and macrophage polarization in OC tumor-bearing mice with PEDF overexpression were recorded and investigated. Finally, the polarization of macrophages was explored in the presence of lentiviral PEDF overexpression, adipose triglyceride lipase (ATGL) and laminin receptor (LR) knockdown, and mitogen-activated protein kinase (MAPK) pathway inhibition. Our results suggest that PEDF mRNA level is significantly decreased in OC tissues and cells and has a significant negative correlation with OC progression and the level of tumor-related macrophage markers. Furthermore, OC tumors overexpressing PEDF show suppressed growth viability and increased apoptosis rate. The fluorescence activated cell sorting (FACS) analysis reveals that PEDF can promote macrophage polarization in OC tumors towards M1 subtype. Mechanistically, we found that ATGL and extracellular-regulated kinase 1/2 (ERK1/2) signaling are involved in the regulation of macrophage polarization in OC tumors by PEDF. Taken together, these data indicate that the role of PEDF in regulating the polarization of tumor-associated macrophages may make it a potential therapeutic strategy for the treatment of OC in the future.
Collapse
Affiliation(s)
- Rui Ma
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, School of Clinical Medicine of Nanjing Medical University, Shanghai, 200072, China
| | - Xiaolin Chu
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, School of Clinical Medicine of Nanjing Medical University, Shanghai, 200072, China
| | - Yiting Jiang
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, School of Clinical Medicine of Nanjing Medical University, Shanghai, 200072, China
| | - Qing Xu
- Department of Oncology, Shanghai Tenth People's Hospital, School of Clinical Medicine of Nanjing Medical University, Shanghai, 200072, China.
| |
Collapse
|
34
|
Lee WJ, Lin KH, Wang JS, Sheu WHH, Shen CC, Yang CN, Wu SM, Shen LW, Lee SH, Lai DW, Lan KL, Tung CW, Liu SH, Sheu ML. Aryl hydrocarbon receptor deficiency augments dysregulated microangiogenesis and diabetic retinopathy. Biomed Pharmacother 2022; 155:113725. [PMID: 36152407 DOI: 10.1016/j.biopha.2022.113725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/15/2022] [Accepted: 09/19/2022] [Indexed: 11/02/2022] Open
Abstract
Diabetic retinopathy (DR) is a pathophysiologic vasculopathic process with obscure mechanisms and limited effective therapeutic strategies. Aryl hydrocarbon receptor (AhR) is an important regulator of xenobiotic metabolism and an environmental sensor. The aim of the present study was to investigate the role of AhR in the development of DR and elucidate the molecular mechanism of its downregulation. DR was evaluated in diabetes-induced retinal injury in wild type and AhR knockout (AhR-/-) mice. Retinal expression of AhR was determined in human donor and mice eyes by immunofluorescence since AhR activity was examined in diabetes. AhR knockout (AhRKO) mice were used to induce diabetes with streptozotocin, high-fat diet, or genetic double knockout with diabetes spontaneous mutation (Leprdb) (DKO; AhR-/-×Leprdb/db) for investigating structural, functional, and metabolic abnormalities in vascular and epithelial retina. Structural molecular docking simulation was used to survey the pharmacologic AhR agonists targeting phosphorylated AhR (Tyr245). Compared to diabetic control mice, diabetic AhRKO mice had aggravated alterations in retinal vasculature that amplified hallmark features of DR like vasopermeability, vascular leakage, inflammation, blood-retinal barrier breakdown, capillary degeneration, and neovascularization. AhR agonists effectively inhibited inflammasome formation and promoted AhR activity in human retinal microvascular endothelial cells and pigment epithelial cells. AhR activity and protein expression was downregulated, resulting in a decrease in DNA promoter binding site of pigment epithelium-derived factor (PEDF) by gene regulation in transcriptional cascade. This was reversed by AhR agonists. Our study identified a novel of DR model that target the protective AhR/PEDF axis can potentially maintain retinal vascular homeostasis, providing opportunities to delay the development of DR.
Collapse
Affiliation(s)
- Wen-Jane Lee
- Department of Medical Research, Taichung Veterans General Hospital, Taiwan
| | - Keng-Hung Lin
- Department of Ophthalmology, Taichung Veterans General Hospital, Taiwan; Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Jun-Sing Wang
- Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan; Division of Endocrinology and Metabolism, Taichung Veterans General Hospital, Taiwan; Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Wayne Huey-Herng Sheu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Taipei Veterans General Hospital, Taiwan
| | - Chin-Chang Shen
- Institute of Nuclear Energy Research, Atomic Energy Council, Taoyuan, Taiwan
| | - Cheng-Ning Yang
- Department of Dentistry, School of Dentistry, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Sheng-Mao Wu
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Li-Wei Shen
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Shu-Hua Lee
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
| | - De-Wei Lai
- Experimental Animal Center, Department of Molecular Biology and Cell Research, Chang Bing Show Chwan Memorial Hospital, Changhua, Taiwan
| | - Keng-Li Lan
- Institute of Traditional Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan; Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chun-Wei Tung
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Taiwan
| | - Shing-Hwa Liu
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Meei-Ling Sheu
- Department of Medical Research, Taichung Veterans General Hospital, Taiwan; Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan; Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan.
| |
Collapse
|
35
|
Design, construction and in vivo functional assessment of a hinge truncated sFLT01. Gene Ther 2022; 30:347-361. [PMID: 36114375 DOI: 10.1038/s41434-022-00362-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 08/05/2022] [Accepted: 08/26/2022] [Indexed: 11/08/2022]
Abstract
Gene therapy for the treatment of ocular neovascularization has reached clinical trial phases. The AAV2-sFLT01 construct was already evaluated in a phase 1 open-label trial administered intravitreally to patients with advanced neovascular age-related macular degeneration. SFLT01 protein functions by binding to VEGF and PlGF molecules and inhibiting their activities simultaneously. It consists of human VEGFR1/Flt-1 (hVEGFR1), a polyglycine linker, and the Fc region of human IgG1. The IgG1 upper hinge region of the sFLT01 molecule makes it vulnerable to radical attacks and prone to causing immune reactions. This study pursued two goals: (i) minimizing the immunogenicity and vulnerability of the molecule by designing a truncated molecule called htsFLT01 (hinge truncated sFLT01) that lacked the IgG1 upper hinge and lacked 2 amino acids from the core hinge region; and (ii) investigating the structural and functional properties of the aforesaid chimeric molecule at different levels (in silico, in vitro, and in vivo). Molecular dynamics simulations and molecular mechanics energies combined with Poisson-Boltzmann and surface area continuum solvation calculations revealed comparable free energy of binding and binding affinity for sFLT01 and htsFLT01 to their cognate ligands. Conditioned media from human retinal pigment epithelial (hRPE) cells that expressed htsFLT01 significantly reduced tube formation in HUVECs. The AAV2-htsFLT01 virus suppressed vascular development in the eyes of newborn mice. The htsFLT01 gene construct is a novel anti-angiogenic tool with promising improvements compared to existing treatments.
Collapse
|
36
|
Ren J, Wu L, Wu J, Tang X, Lv Y, Wang W, Li F, Yang D, Liu C, Zheng Y. The molecular mechanism of Ang II induced-AAA models based on proteomics analysis in ApoE -/- and CD57BL/6J mice. J Proteomics 2022; 268:104702. [PMID: 35988846 DOI: 10.1016/j.jprot.2022.104702] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 08/08/2022] [Accepted: 08/11/2022] [Indexed: 11/19/2022]
Abstract
Apolipoprotein knockout (ApoE-/-) and CD57BL/6J mouse models of angiotensin II (Ang II)-induced abdominal aortic aneurysm (AAA) are commonly used in AAA research. However, the similarities and differences in the molecular mechanisms of AAA in these two genotypes have not been reported. In our study, we analyzed proteomics data from ApoE-/- and CD57BL/6J mouse models of Ang II-induced AAA and control mice by LC-MS/MS. Gene set enrichment analysis (GSEA) of differentially abundance proteins (DAPs) in the ApoE-/- or CD57BL/6J mouse groups was performed in R software, and infiltration of immune cells in groups was assessed. DAP that showed the same trend in abundance in ApoE-/- and CD57BL/6J mice (S-DAP) were identified and subjected to GO enrichment, KEGG pathway, and connectivity map (CMap) analyses. The protein-protein interaction (PPI) network of the S-DAP was drawn, the key S-DAP were identified by MCODE, and the transcription factors (TFs) of crucial S-DAP were predicted by iRegulon in Cytoscape. Male ApoE-/- and CD57BL/6J mouse models of Ang II-induced AAA are commonly used in AAA research, and extracellular matrix organization is associated with AAA in both of these models. However, there are some differences between the mechanisms underlying AAA in these two genotypes, and these differences need to be considered when studying AAA and selecting models. SIGNIFICANCE: Our research provided the first insight into the similarity and differential mechanisms of Ang II infused AAA models using ApoE-/- and CD57BL/6J mice. This study might provide the some advises for the selection of Ang II infused AAA models for further AAA researches.
Collapse
Affiliation(s)
- Jinrui Ren
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Centre for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Vascular Surgery, State Key Laboratory of Complex Severe andRare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Lianglin Wu
- Department of Vascular Surgery, State Key Laboratory of Complex Severe andRare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Jianqiang Wu
- Department of Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoyue Tang
- Department of Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yanze Lv
- Department of Vascular Surgery, State Key Laboratory of Complex Severe andRare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Wei Wang
- Department of Vascular Surgery, State Key Laboratory of Complex Severe andRare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Fangda Li
- Department of Vascular Surgery, State Key Laboratory of Complex Severe andRare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Dan Yang
- Department of Computational Biology and Bioinformatics, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Changzheng Liu
- National Health Commission of the People's Republic of China (NHC), Key Laboratory of Systems Biology of Pathogens and Christophe Merieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuehong Zheng
- Department of Vascular Surgery, State Key Laboratory of Complex Severe andRare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.
| |
Collapse
|
37
|
Mallick H, Chatterjee S, Chowdhury S, Chatterjee S, Rahnavard A, Hicks SC. Differential expression of single-cell RNA-seq data using Tweedie models. Stat Med 2022; 41:3492-3510. [PMID: 35656596 PMCID: PMC9288986 DOI: 10.1002/sim.9430] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 12/13/2022]
Abstract
The performance of computational methods and software to identify differentially expressed features in single-cell RNA-sequencing (scRNA-seq) has been shown to be influenced by several factors, including the choice of the normalization method used and the choice of the experimental platform (or library preparation protocol) to profile gene expression in individual cells. Currently, it is up to the practitioner to choose the most appropriate differential expression (DE) method out of over 100 DE tools available to date, each relying on their own assumptions to model scRNA-seq expression features. To model the technological variability in cross-platform scRNA-seq data, here we propose to use Tweedie generalized linear models that can flexibly capture a large dynamic range of observed scRNA-seq expression profiles across experimental platforms induced by platform- and gene-specific statistical properties such as heavy tails, sparsity, and gene expression distributions. We also propose a zero-inflated Tweedie model that allows zero probability mass to exceed a traditional Tweedie distribution to model zero-inflated scRNA-seq data with excessive zero counts. Using both synthetic and published plate- and droplet-based scRNA-seq datasets, we perform a systematic benchmark evaluation of more than 10 representative DE methods and demonstrate that our method (Tweedieverse) outperforms the state-of-the-art DE approaches across experimental platforms in terms of statistical power and false discovery rate control. Our open-source software (R/Bioconductor package) is available at https://github.com/himelmallick/Tweedieverse.
Collapse
Affiliation(s)
- Himel Mallick
- Biostatistics and Research Decision Sciences, Merck &
Co., Inc., Rahway, NJ 07065, USA
| | - Suvo Chatterjee
- Epidemiology Branch, Division of Intramural Population
Health Research, Eunice Kennedy Shriver National Institute of Child
Health and Human Development, National Institutes of Health, Bethesda, MD 20892,
USA
| | - Shrabanti Chowdhury
- Department of Genetics and Genomic Sciences and Icahn
Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount
Sinai, New York, NY 10029, USA
| | - Saptarshi Chatterjee
- Department of Statistics, Data and Analytics, Eli Lilly
& Company, Indianapolis, IN 46225, USA
| | - Ali Rahnavard
- Computational Biology Institute, Department of
Biostatistics and Bioinformatics, Milken Institute School of Public Health, The
George Washington University, Washington, DC 20052, USA
| | - Stephanie C. Hicks
- Department of Biostatistics, Johns Hopkins Bloomberg School
of Public Health, Baltimore, MD 21205, USA
| |
Collapse
|
38
|
Pigment Epithelium-Derived Factor Protects Retinal Neural Cells and Prevents Pathological Angiogenesis in an Ex Vivo Ischemia Model. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4199394. [PMID: 36035211 PMCID: PMC9410835 DOI: 10.1155/2022/4199394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/08/2022] [Accepted: 07/13/2022] [Indexed: 11/17/2022]
Abstract
Ocular ischemia/hypoxia is a severe problem in ophthalmology that can cause vision impairment and blindness. However, little is known about the changes occurring in the existing fully formed choroidal blood vessels. We developed a new whole organ culture model for ischemia/hypoxia in rat eyes and investigate the effects of pigment epithelium derived factor (PEDF) protein on the eye tissues. The concentration of oxygen within the vitreous was measured in the enucleated rat eyes and living rats. Then, ischemia was mimicked by incubating the freshly enucleated eyes in medium at 4°C for 14 h. Eyes were fixed immediately after enucleation or were intravitreally injected with PEDF protein or with vehicle before incubation. After incubation, light and electron microscopy (EM) as well as Tunel staining was performed. In the living rats, the intravitreal oxygen concentration was on average at 16.4% of the oxygen concentration in the air and did not change throughout the experiment whereas it was ca. 28% at the beginning of the experiment and gradually decreased over time in the enucleated eyes. EM analysis revealed that the shape of the choriocapillaris changed dramatically after 14 h incubation in the enucleated eyes. The endothelial cells made filopodia-like projections into the vessel lumen. They appeared identical to the labyrinth capillaries found in surgically extracted choroidal neovascular membranes from patients with wet age-related macular degeneration (AMD). These filopodia-like projections nearly closed the vessel lumen and showed open gaps between neighboring endothelial cells. PEDF significantly inhibited labyrinth capillary formation and kept the capillary lumen open. The number of TUNEL-positive ganglion cells and inner nuclear layer cells was significantly reduced in the PEDF-treated eyes compared to the vehicle-treated eyes. The structural changes in the chroidal vessels observed under ischemia/hypoxia conditions can mimic early changes in the process of pathological angiogenesis as observed in wet AMD patients. This new model can be used to investigate short-term drug effects on the choriocapillaris after ischemia/hypoxia and it highlighted the potential of PEDF as a promising candidate for treating wet AMD.
Collapse
|
39
|
Low S, Pek S, Moh A, Ang K, Khoo J, Shao YM, Tang WE, Lim Z, Subramaniam T, Sum CF, Lim SC. Triglyceride-glucose index is prospectively associated with chronic kidney disease progression in Type 2 diabetes - mediation by pigment epithelium-derived factor. Diab Vasc Dis Res 2022; 19:14791641221113784. [PMID: 35938490 PMCID: PMC9364218 DOI: 10.1177/14791641221113784] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Triglyceride-glucose (TyG) index is a surrogate marker of insulin resistance. Its role in chronic kidney disease (CKD) progression in Type 2 Diabetes Mellitus (T2DM) is unclear. We investigated the association between TyG index and CKD progression, and possible mediation of the association by pigment epithelium-derived factor (PEDF). METHODS This was a prospective study on 1571 patients with T2DM. CKD progression was defined as worsening across KDIGO estimated glomerular filtration rate (eGFR) categories with ≥25% reduction from baseline. PEDF was quantitated using enzyme-linked immunosorbent assay method. Cox proportional hazards regression model was used to assess the relationship between TyG index and CKD progression. RESULTS Over a follow-up period of up to 8.6 years (median 4.6 years, IQR 3.0-3.6), 42.7% of subjects had CKD progression. Every unit increase in TyG was associated with hazards of 1.44 (95%CI 1.29-1.61; p < 0.001) in unadjusted analysis and 1.21 (1.06-1.37; p = 0.004) in fully adjusted model. Compared to tertile 1, tertiles 2 and 3 TyG index were positively associated with CKD progression with corresponding hazard ratios HRs 1.24 (1.01-1.52; p = 0.037) and 1.37 (1.11-1.68; p = 0.003) in fully adjusted models. PEDF accounted for 36.0% of relationship between TyG index and CKD progression. CONCLUSIONS Higher TyG index independently predicted CKD progression in T2DM. PEDF mediated the association between TyG index and CKD progression.
Collapse
Affiliation(s)
- Serena Low
- Diabetes Centre, Admiralty Medical
Centre, Singapore
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological
University, Singapore
| | - Sharon Pek
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore
| | - Angela Moh
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore
| | - Keven Ang
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore
| | - Jonathon Khoo
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore
| | - Yi-Ming Shao
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore
| | - Wern E Tang
- National Healthcare Group
Polyclinics, Singapore
| | - Ziliang Lim
- National Healthcare Group
Polyclinics, Singapore
| | | | - Chee F Sum
- Diabetes Centre, Admiralty Medical
Centre, Singapore
| | - Su C Lim
- Diabetes Centre, Admiralty Medical
Centre, Singapore
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological
University, Singapore
- Saw Swee Hock School of Public
Health, National University of
Singapore, Singapore
- Su C Lim, Diabetes Centre, Admiralty
Medical Centre, 676 Woodlands Drive 71, #03-01 Kampung Admiralty, Singapore
730676.
| |
Collapse
|
40
|
Increased Inflammatory Markers at AMPH-Addicts Are Related to Neurodegenerative Conditions: Alzheimer’s Disease. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12115536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Amphetamine addiction is widespread worldwide despite causing severe physical and mental problems, including neurodegeneration. One of the most common neurodegenerative disorders is Alzheimer’s disease (AD). Several inflammatory markers have been linked to AD. Previous studies have also found these biomarkers in amphetamine-addicts (AMPH-add). This study thus seeks to understand how AD and AMPH-addiction are related. A case–control observational study was conducted. Seventeen AMPH-adds ranging in age from 23 to 40 were recruited from Al Amal Psychiatric Hospital. In addition, 19 healthy subjects matching their age and gender were also recruited. The Luminex technique was used to measure serum alpha 1 antichymotrypsin (ACT), pigment epithelium-derived factor (PEDF), and macrophage inflammatory protein-4 (MIP-4), after complying with ethical guidelines and obtaining informed consent. In addition, liver function enzymes were correlated to AD’s predictive biomarkers in AMPH-adds. AMPH-adds had significantly higher serum levels of ACT, PEDF, and MIP-4 when compared to healthy controls (p = 0.03, p = 0.001, and p = 0.012, respectively). Furthermore, there is a significant correlation between lower ALT levels and elevated AST to ALT ratios in AMPH-adds (r = 0.618, 0.651, and p = 0.0001). These changes in inflammatory biomarkers may be linked to the onset of AD at a young age in amphetamine-drug addicts.
Collapse
|
41
|
Kamp JC, Neubert L, Ackermann M, Stark H, Werlein C, Fuge J, Haverich A, Tzankov A, Steinestel K, Friemann J, Boor P, Junker K, Hoeper MM, Welte T, Laenger F, Kuehnel MP, Jonigk DD. Time-Dependent Molecular Motifs of Pulmonary Fibrogenesis in COVID-19. Int J Mol Sci 2022; 23:1583. [PMID: 35163504 PMCID: PMC8835897 DOI: 10.3390/ijms23031583] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 02/01/2023] Open
Abstract
(1) Background: In COVID-19 survivors there is an increased prevalence of pulmonary fibrosis of which the underlying molecular mechanisms are poorly understood; (2) Methods: In this multicentric study, n = 12 patients who succumbed to COVID-19 due to progressive respiratory failure were assigned to an early and late group (death within ≤7 and >7 days of hospitalization, respectively) and compared to n = 11 healthy controls; mRNA and protein expression as well as biological pathway analysis were performed to gain insights into the evolution of pulmonary fibrogenesis in COVID-19; (3) Results: Median duration of hospitalization until death was 3 (IQR25-75, 3-3.75) and 14 (12.5-14) days in the early and late group, respectively. Fifty-eight out of 770 analyzed genes showed a significantly altered expression signature in COVID-19 compared to controls in a time-dependent manner. The entire study group showed an increased expression of BST2 and IL1R1, independent of hospitalization time. In the early group there was increased activity of inflammation-related genes and pathways, while fibrosis-related genes (particularly PDGFRB) and pathways dominated in the late group; (4) Conclusions: After the first week of hospitalization, there is a shift from pro-inflammatory to fibrogenic activity in severe COVID-19. IL1R1 and PDGFRB may serve as potential therapeutic targets in future studies.
Collapse
Affiliation(s)
- Jan C. Kamp
- Department of Respiratory Medicine, Hannover Medical School, 30625 Hannover, Germany; (J.F.); (M.M.H.); (T.W.)
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), 30625 Hannover, Germany; (L.N.); (H.S.); (C.W.); (A.H.); (F.L.); (M.P.K.); (D.D.J.)
| | - Lavinia Neubert
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), 30625 Hannover, Germany; (L.N.); (H.S.); (C.W.); (A.H.); (F.L.); (M.P.K.); (D.D.J.)
- Institute of Pathology, Hannover Medical School, 30625 Hannover, Germany
| | - Maximilian Ackermann
- Institute of Pathology and Department of Molecular Pathology, Helios University Clinic Wuppertal, University of Witten-Herdecke, 42283 Wuppertal, Germany;
- Institute of Functional and Clinical Anatomy, University Medical Center of the Johannes Gutenberg-University Mainz, 55122 Mainz, Germany
| | - Helge Stark
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), 30625 Hannover, Germany; (L.N.); (H.S.); (C.W.); (A.H.); (F.L.); (M.P.K.); (D.D.J.)
- Institute of Pathology, Hannover Medical School, 30625 Hannover, Germany
| | - Christopher Werlein
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), 30625 Hannover, Germany; (L.N.); (H.S.); (C.W.); (A.H.); (F.L.); (M.P.K.); (D.D.J.)
- Institute of Pathology, Hannover Medical School, 30625 Hannover, Germany
| | - Jan Fuge
- Department of Respiratory Medicine, Hannover Medical School, 30625 Hannover, Germany; (J.F.); (M.M.H.); (T.W.)
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), 30625 Hannover, Germany; (L.N.); (H.S.); (C.W.); (A.H.); (F.L.); (M.P.K.); (D.D.J.)
| | - Axel Haverich
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), 30625 Hannover, Germany; (L.N.); (H.S.); (C.W.); (A.H.); (F.L.); (M.P.K.); (D.D.J.)
- Department of Cardiothoracic, Transplant and Vascular Surgery, Hannover Medical School, 30625 Hannover, Germany
| | - Alexandar Tzankov
- Institute of Medical Genetics and Pathology, University Hospital Basel, 4031 Basel, Switzerland;
| | - Konrad Steinestel
- Institute of Pathology and Molecular Pathology, Bundeswehrkrankenhaus Ulm, 89081 Ulm, Germany;
| | - Johannes Friemann
- Institute of Pathology, Märkische Kliniken GmbH, Klinikum Lüdenscheid, 58515 Lüdenscheid, Germany;
| | - Peter Boor
- Institute of Pathology and Department of Nephrology, RWTH University of Aachen, 52062 Aachen, Germany;
| | - Klaus Junker
- Institute of Pathology, Bremen Central Hospital, 28177 Bremen, Germany;
| | - Marius M. Hoeper
- Department of Respiratory Medicine, Hannover Medical School, 30625 Hannover, Germany; (J.F.); (M.M.H.); (T.W.)
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), 30625 Hannover, Germany; (L.N.); (H.S.); (C.W.); (A.H.); (F.L.); (M.P.K.); (D.D.J.)
| | - Tobias Welte
- Department of Respiratory Medicine, Hannover Medical School, 30625 Hannover, Germany; (J.F.); (M.M.H.); (T.W.)
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), 30625 Hannover, Germany; (L.N.); (H.S.); (C.W.); (A.H.); (F.L.); (M.P.K.); (D.D.J.)
| | - Florian Laenger
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), 30625 Hannover, Germany; (L.N.); (H.S.); (C.W.); (A.H.); (F.L.); (M.P.K.); (D.D.J.)
- Institute of Pathology, Hannover Medical School, 30625 Hannover, Germany
| | - Mark P. Kuehnel
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), 30625 Hannover, Germany; (L.N.); (H.S.); (C.W.); (A.H.); (F.L.); (M.P.K.); (D.D.J.)
- Institute of Pathology, Hannover Medical School, 30625 Hannover, Germany
| | - Danny D. Jonigk
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), 30625 Hannover, Germany; (L.N.); (H.S.); (C.W.); (A.H.); (F.L.); (M.P.K.); (D.D.J.)
- Institute of Pathology, Hannover Medical School, 30625 Hannover, Germany
| |
Collapse
|
42
|
HUANG C, CHENG H, ZHANG J, ZHANG D. DHA-promoted repair of human corneal epithelial cells in high-glucose environment. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.77221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Affiliation(s)
| | - Hong CHENG
- The Third People’s Hospital of Hefei, China
| | - Jing ZHANG
- The Third People’s Hospital of Hefei, China
| | | |
Collapse
|
43
|
Starace V, Battista M, Brambati M, Cavalleri M, Bertuzzi F, Amato A, Lattanzio R, Bandello F, Cicinelli MV. The role of inflammation and neurodegeneration in diabetic macular edema. Ther Adv Ophthalmol 2021; 13:25158414211055963. [PMID: 34901746 PMCID: PMC8652911 DOI: 10.1177/25158414211055963] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 10/08/2021] [Indexed: 12/14/2022] Open
Abstract
The pathogenesis of diabetic macular edema (DME) is complex. Persistently high blood glucose activates multiple cellular pathways and induces inflammation, oxidation stress, and vascular dysfunction. Retinal ganglion cells, macroglial and microglial cells, endothelial cells, pericytes, and retinal pigment epithelium cells are involved. Neurodegeneration, characterized by dysfunction or apoptotic loss of retinal neurons, occurs early and independently from the vascular alterations. Despite the increasing knowledge on the pathways involved in DME, only limited therapeutic strategies are available. Besides antiangiogenic drugs and intravitreal corticosteroids, alternative therapeutic options tackling inflammation, oxidative stress, and neurodegeneration have been considered, but none of them has been currently approved.
Collapse
Affiliation(s)
- Vincenzo Starace
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marco Battista
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria Brambati
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Michele Cavalleri
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Federico Bertuzzi
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessia Amato
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Rosangela Lattanzio
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesco Bandello
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, ItalySchool of Medicine, Vita-Salute San Raffaele University, Milan, Italy
| | - Maria Vittoria Cicinelli
- Department of Ophthalmology, University Vita-Salute, IRCCS Ospedale San Raffaele, via Olgettina 60, 20132 Milan, ItalySchool of Medicine, Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
44
|
Vasiliadis ES, Evangelopoulos DS, Kaspiris A, Vlachos C, Pneumaticos SG. Sclerostin and Its Involvement in the Pathogenesis of Idiopathic Scoliosis. J Clin Med 2021; 10:jcm10225286. [PMID: 34830568 PMCID: PMC8618875 DOI: 10.3390/jcm10225286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/07/2021] [Accepted: 11/12/2021] [Indexed: 12/28/2022] Open
Abstract
Idiopathic scoliosis is a disorder of unknown etiology. Bone biopsies from idiopathic scoliosis patients revealed changes at cellular and molecular level. Osteocytic sclerostin is downregulated, and serum level of sclerostin is decreased. Osteocytes in idiopathic scoliosis appear to be less active with abnormal canaliculi network. Differentiation of osteoblasts to osteocytes is decelerated, while Wnt/β-catenin signaling pathway is overactivated and affects normal bone mineralization that leads to inferior mechanical properties of the bone, which becomes susceptible to asymmetrical forces and causes deformity of the spinal column. Targeting bone metabolism during growth by stimulating sclerostin secretion from osteocytes and restoring normal function of Wnt/β-catenin signaling pathway could, in theory, increase bone strength and prevent deterioration of the scoliotic deformity.
Collapse
Affiliation(s)
- Elias S. Vasiliadis
- 3rd Department of Orthopaedics, School of Medicine, National and Kapodistrian University of Athens, KAT Hospital, 16541 Athens, Greece; (D.S.E.); (C.V.); (S.G.P.)
- Correspondence: ; Tel.: +30-2132-086-000
| | - Dimitrios Stergios Evangelopoulos
- 3rd Department of Orthopaedics, School of Medicine, National and Kapodistrian University of Athens, KAT Hospital, 16541 Athens, Greece; (D.S.E.); (C.V.); (S.G.P.)
| | - Angelos Kaspiris
- Laboratory of Molecular Pharmacology, Division for Orthopaedic Research, School of Health Sciences, University of Patras, 26504 Rion, Greece;
| | - Christos Vlachos
- 3rd Department of Orthopaedics, School of Medicine, National and Kapodistrian University of Athens, KAT Hospital, 16541 Athens, Greece; (D.S.E.); (C.V.); (S.G.P.)
| | - Spyros G. Pneumaticos
- 3rd Department of Orthopaedics, School of Medicine, National and Kapodistrian University of Athens, KAT Hospital, 16541 Athens, Greece; (D.S.E.); (C.V.); (S.G.P.)
| |
Collapse
|
45
|
Filippov VM, Petrachkov DV, Budzinskaya MV, Matyushchenko AG. [The role of neurodegeneration biomarkers in the management of patients with diabetic retinopathy]. Vestn Oftalmol 2021; 137:314-322. [PMID: 34669343 DOI: 10.17116/oftalma2021137052314] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
This literature review focuses on the role of disease biomarkers in the management of patients with diabetic retinopathy (DR) investigating in detail the problem of retinal neurodegeneration in such patients. Identification and assessment of the significance of qualitative and quantitative biomarkers of DR and neurodegeneration can complement screening examination, as well as help predict the course of the disease and the response to therapy. A comprehensive analysis of these factors allows for effective treatment and prevention of complications in patients with DR based on prognostic models and dynamic monitoring of these indicators.
Collapse
Affiliation(s)
- V M Filippov
- Research Institute of Eye Diseases, Moscow, Russia
| | | | | | | |
Collapse
|
46
|
Sarkar A, Junnuthula V, Dyawanapelly S. Ocular Therapeutics and Molecular Delivery Strategies for Neovascular Age-Related Macular Degeneration (nAMD). Int J Mol Sci 2021; 22:10594. [PMID: 34638935 PMCID: PMC8508687 DOI: 10.3390/ijms221910594] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/26/2021] [Accepted: 09/28/2021] [Indexed: 12/12/2022] Open
Abstract
Age-related macular degeneration (AMD) is the leading cause of vision loss in geriatric population. Intravitreal (IVT) injections are popular clinical option. Biologics and small molecules offer efficacy but relatively shorter half-life after intravitreal injections. To address these challenges, numerous technologies and therapies are under development. Most of these strategies aim to reduce the frequency of injections, thereby increasing patient compliance and reducing patient-associated burden. Unlike IVT frequent injections, molecular therapies such as cell therapy and gene therapy offer restoration ability hence gained a lot of traction. The recent approval of ocular gene therapy for inherited disease offers new hope in this direction. However, until such breakthrough therapies are available to the majority of patients, antibody therapeutics will be on the shelf, continuing to provide therapeutic benefits. The present review aims to highlight the status of pre-clinical and clinical studies of neovascular AMD treatment modalities including Anti-VEGF therapy, upcoming bispecific antibodies, small molecules, port delivery systems, photodynamic therapy, radiation therapy, gene therapy, cell therapy, and combination therapies.
Collapse
Affiliation(s)
- Aira Sarkar
- Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA;
| | | | - Sathish Dyawanapelly
- Department of Pharmaceutical Sciences & Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Mumbai 400019, India
| |
Collapse
|
47
|
Zhang H, Li Z, Quan X, Liu X, Sun T, Wei T, Pan J, Liu Z, Wang M, Dong H, Zhang Z. Strategies to Attenuate Myocardial Infarction and No-Reflow Through Preservation of Vascular Integrity by Pigment Epithelium-Derived Factor. Hum Gene Ther 2021; 33:330-345. [PMID: 34278806 DOI: 10.1089/hum.2021.068] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The phenomenon of no-reflow seriously limits the therapeutic value of coronary recanalization and leads to poor prognosis. Recent studies have demonstrated the potential role of pigment epithelium-derived factor (PEDF) in stabilizing endothelial cell junction, reducing vascular permeability and maintaining a quiescent vasculature. In this study, intramyocardial gene delivery was performed 5 days before the acute myocardial infarction/recanalization experiment in male rats. Positron emission tomography perfusion imaging with 13N-NH3 indicated PEDF to promote microvascular reperfusion significantly 4 h postcoronary occlusion. PEDF was observed to maintain the stability of endothelial adherens junctions (AJs), thus preventing the occurrence of no-reflow. PEDF reduced the hypoxia-induced vascular endothelial (VE)-cadherin endocytosis through PEDF/LR/Src/VE-cadherin S665 axis in vitro, which was remarkably observed to maintain endothelial AJs. Generally, PEDF might function as a relevant target for therapeutic vasculoprotection by way of regulating the phosphorylation level of VE-cadherin according to our data, thus being crucial for preventing no-reflow.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Thoracic Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Zhimin Li
- Department of Cardiothoracic Surgery, Xuzhou Cancer Hospital, Xuzhou, China
| | - Xiaoyu Quan
- Department of Thoracic Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Xiucheng Liu
- Department of Thoracic Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Department of Thoracic Surgery, Tongji University School of Medicine, Shanghai Pulmonary Hospital, Shanghai, China
| | - Teng Sun
- Department of Thoracic Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Tengteng Wei
- Department of Thoracic Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Jiajun Pan
- Department of Thoracic Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Zhiwei Liu
- Morphological Research Experiment Center, Xuzhou Medical University, Xuzhou, China
| | - Meng Wang
- Morphological Research Experiment Center, Xuzhou Medical University, Xuzhou, China
| | - Hongyan Dong
- Morphological Research Experiment Center, Xuzhou Medical University, Xuzhou, China
| | - Zhongming Zhang
- Department of Thoracic Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
48
|
Dao D, Xie B, Nadeem U, Xiao J, Movahedan A, D’Souza M, Leone V, Hariprasad SM, Chang EB, Sulakhe D, Skondra D. High-Fat Diet Alters the Retinal Transcriptome in the Absence of Gut Microbiota. Cells 2021; 10:cells10082119. [PMID: 34440888 PMCID: PMC8392173 DOI: 10.3390/cells10082119] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 12/12/2022] Open
Abstract
The relationship between retinal disease, diet, and the gut microbiome has shown increasing importance over recent years. In particular, high-fat diets (HFDs) are associated with development and progression of several retinal diseases, including age-related macular degeneration (AMD) and diabetic retinopathy. However, the complex, overlapping interactions between diet, gut microbiome, and retinal homeostasis are poorly understood. Using high-throughput RNA-sequencing (RNA-seq) of whole retinas, we compare the retinal transcriptome from germ-free (GF) mice on a regular diet (ND) and HFD to investigate transcriptomic changes without influence of gut microbiome. After correction of raw data, 53 differentially expressed genes (DEGs) were identified, of which 19 were upregulated and 34 were downregulated in GF-HFD mice. Key genes involved in retinal inflammation, angiogenesis, and RPE function were identified. Enrichment analysis revealed that the top 3 biological processes affected were regulation of blood vessel diameter, inflammatory response, and negative regulation of endopeptidase. Molecular functions altered include endopeptidase inhibitor activity, protease binding, and cysteine-type endopeptidase inhibitor activity. Human and mouse pathway analysis revealed that the complement and coagulation cascades are significantly affected by HFD. This study demonstrates novel data that diet can directly modulate the retinal transcriptome independently of the gut microbiome.
Collapse
Affiliation(s)
- David Dao
- Department of Ophthalmology and Visual Science, University of Chicago, Chicago, IL 60637, USA; (D.D.); (J.X.); (S.M.H.)
| | - Bingqing Xie
- Center for Research Informatics, University of Chicago, Chicago, IL 60637, USA; (B.X.); (M.D.)
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA;
| | - Urooba Nadeem
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA;
| | - Jason Xiao
- Department of Ophthalmology and Visual Science, University of Chicago, Chicago, IL 60637, USA; (D.D.); (J.X.); (S.M.H.)
| | - Asad Movahedan
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, New Haven, CT 06437, USA;
| | - Mark D’Souza
- Center for Research Informatics, University of Chicago, Chicago, IL 60637, USA; (B.X.); (M.D.)
| | - Vanessa Leone
- Department of Animal Biologics and Metabolism, University of Wisconsin, Madison, WI 53706, USA;
- Knapp Center for Biomedical Discovery, Department of Medicine, Microbiome Medicine Program, University of Chicago, Chicago, IL 60637, USA;
| | - Seenu M. Hariprasad
- Department of Ophthalmology and Visual Science, University of Chicago, Chicago, IL 60637, USA; (D.D.); (J.X.); (S.M.H.)
| | - Eugene B. Chang
- Knapp Center for Biomedical Discovery, Department of Medicine, Microbiome Medicine Program, University of Chicago, Chicago, IL 60637, USA;
| | - Dinanath Sulakhe
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA;
| | - Dimitra Skondra
- Department of Ophthalmology and Visual Science, University of Chicago, Chicago, IL 60637, USA; (D.D.); (J.X.); (S.M.H.)
- Correspondence:
| |
Collapse
|
49
|
Crowley G, Kim J, Kwon S, Lam R, Prezant DJ, Liu M, Nolan A. PEDF, a pleiotropic WTC-LI biomarker: Machine learning biomarker identification and validation. PLoS Comput Biol 2021; 17:e1009144. [PMID: 34288906 PMCID: PMC8328304 DOI: 10.1371/journal.pcbi.1009144] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 08/02/2021] [Accepted: 06/03/2021] [Indexed: 12/01/2022] Open
Abstract
Biomarkers predict World Trade Center-Lung Injury (WTC-LI); however, there remains unaddressed multicollinearity in our serum cytokines, chemokines, and high-throughput platform datasets used to phenotype WTC-disease. To address this concern, we used automated, machine-learning, high-dimensional data pruning, and validated identified biomarkers. The parent cohort consisted of male, never-smoking firefighters with WTC-LI (FEV1, %Pred< lower limit of normal (LLN); n = 100) and controls (n = 127) and had their biomarkers assessed. Cases and controls (n = 15/group) underwent untargeted metabolomics, then feature selection performed on metabolites, cytokines, chemokines, and clinical data. Cytokines, chemokines, and clinical biomarkers were validated in the non-overlapping parent-cohort via binary logistic regression with 5-fold cross validation. Random forests of metabolites (n = 580), clinical biomarkers (n = 5), and previously assayed cytokines, chemokines (n = 106) identified that the top 5% of biomarkers important to class separation included pigment epithelium-derived factor (PEDF), macrophage derived chemokine (MDC), systolic blood pressure, macrophage inflammatory protein-4 (MIP-4), growth-regulated oncogene protein (GRO), monocyte chemoattractant protein-1 (MCP-1), apolipoprotein-AII (Apo-AII), cell membrane metabolites (sphingolipids, phospholipids), and branched-chain amino acids. Validated models via confounder-adjusted (age on 9/11, BMI, exposure, and pre-9/11 FEV1, %Pred) binary logistic regression had AUCROC [0.90(0.84–0.96)]. Decreased PEDF and MIP-4, and increased Apo-AII were associated with increased odds of WTC-LI. Increased GRO, MCP-1, and simultaneously decreased MDC were associated with decreased odds of WTC-LI. In conclusion, automated data pruning identified novel WTC-LI biomarkers; performance was validated in an independent cohort. One biomarker—PEDF, an antiangiogenic agent—is a novel, predictive biomarker of particulate-matter-related lung disease. Other biomarkers—GRO, MCP-1, MDC, MIP-4—reveal immune cell involvement in WTC-LI pathogenesis. Findings of our automated biomarker identification warrant further investigation into these potential pharmacotherapy targets. Disease related to air pollution causes millions of deaths annually. Large swathes of the general population, as well as certain occupations such as 1st responders and military personnel, are exposed to particulate matter (PM)—a major component of air pollution. Our longitudinal cohort of FDNY firefighters exposed to the World Trade Center dust cloud on 9/11 is a unique research opportunity to characterize the impact of a single, intense PM exposure by looking at pre- and post-exposure phenotype; however, PM-related lung disease and PM’s systemic effects are complex and call for a systems biological approach coupled with novel computational modelling techniques to fully understand pathogenesis. In the present study, we integrate clinical and environmental biomarkers with the serum metabolome, cytokines, and chemokines to develop a model for early disease detection and identification of potential signaling cascades of PM-related chronic lung disease.
Collapse
Affiliation(s)
- George Crowley
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, New York University School of Medicine, New York, New York, United States of America
| | - James Kim
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, New York University School of Medicine, New York, New York, United States of America
| | - Sophia Kwon
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, New York University School of Medicine, New York, New York, United States of America
| | - Rachel Lam
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, New York University School of Medicine, New York, New York, United States of America
| | - David J. Prezant
- Bureau of Health Services, Fire Department of New York, Brooklyn, New York, United States of America
- Department of Medicine, Pulmonary Medicine Division, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Mengling Liu
- Department of Environmental Medicine, New York University School of Medicine, New York, New York, United States of America
- Department of Population Health, Division of Biostatistics, New York University School of Medicine, New York, New York, United States of America
| | - Anna Nolan
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, New York University School of Medicine, New York, New York, United States of America
- Bureau of Health Services, Fire Department of New York, Brooklyn, New York, United States of America
- Department of Environmental Medicine, New York University School of Medicine, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
50
|
Fiani B, Covarrubias C, Jarrah R. Bench to Bedside: Proteomic Biomarker Analysis of Cerebrospinal Fluid in Patients With Spondylomyelopathy. Cureus 2021; 13:e16003. [PMID: 34336494 PMCID: PMC8319193 DOI: 10.7759/cureus.16003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 06/28/2021] [Indexed: 11/05/2022] Open
Abstract
Establishing proteomic biomarkers is critical for characterizing disease pathophysiology, identifying genetic risk factors, and predicting clinical outcomes. However, diseases like cervical spondylomyelopathy have not been actively characterized for molecular significance, leading to questions regarding the pathology's molecular mechanisms. Namely, spondylomyelopathy is a degenerative spinal disease that leads to compression and neurologic deficits in the spinal cord. Analyzing a patient's cerebrospinal fluid (CSF) has been well-known for revealing biomarkers that are associated with diseases of the central nervous system. Therefore, in this review, we will formulate a proteomic profile of spondylomyelopathy through a molecular analysis of the CSF. The proteins found to be upregulated in the CSF include vitamin D-binding protein (VDBP), gelsolin, creatine kinase B-type (CK-BB), and angiotensinogen. Meanwhile, the proteins that were downregulated include pigment epithelium-derived factor (PEDF), prostaglandin-H2 D-isomerase (PGH2), apolipoprotein E (APOE), and clusterin. The cellular functions of these proteins are discussed, along with their relevance in manifesting spondylomyelopathy. However, further studies are warranted, as a lack of human studies is a major limiting factor. Nevertheless, based on the continued progression of the proteomic profile of spondylomyelopathy, new targets can be assessed as candidates for future therapeutic intervention.
Collapse
Affiliation(s)
- Brian Fiani
- Neurosurgery, Desert Regional Medical Center, Palm Springs, USA
| | - Claudia Covarrubias
- School of Medicine, Universidad Anáhuac Querétaro, Santiago de Querétaro, MEX
| | - Ryan Jarrah
- Neurological Surgery, University of Michigan - Flint, Flint, USA
| |
Collapse
|