1
|
Chu MC, Zhang ZL, Wang ZQ, Li ZY, Guo YS. Potential prognostic and immunologic significances of ADAM8 in clear cell renal cell carcinoma. Medicine (Baltimore) 2025; 104:e41375. [PMID: 39889162 PMCID: PMC11789870 DOI: 10.1097/md.0000000000041375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 01/09/2025] [Accepted: 01/10/2025] [Indexed: 02/02/2025] Open
Abstract
BACKGROUND A Disintegrin And Metalloproteinase 8 (ADAM8) has been implicated in the development and progression of several cancers. However, further studies are needed to determine the value of ADAM8 in ccRCC. The research aimed to investigate the prognostic and immunologic significance of ADAM8 in ccRCC from the perspective of bioinformatics. METHODS We analyzed the expression and prognosis of ADAM8 in ccRCC using The Cancer Genome Atlas and validated it with Gene Expression Omnibus and immunohistochemistry assay. Functional enrichment analysis was conducted to investigate the signaling pathways. And the relationship between ADAM8 and the tumor microenvironment was analyzed using the CIBERSORT algorithm. Furthermore, the study explored the response to immunotherapy of ccRCC by using The Cancer Immunome Atlas database data. Potential drugs for treating ccRCC were discovered using the Connectivity Map. RESULTS The expression of ADAM8 was significantly elevated in ccRCC tissues. CcRCC patients with higher levels of ADAM8 expression had poorer prognosis, and ADAM8 was shown to be an independent predictive risk factor for ccRCC. The functional enrichment analysis revealed relevant signaling pathways. Furthermore, we found that ADAM8 expression correlates strongly with the extent of immune cell infiltration and immunotherapy. Finally, 4 groups of potential drugs for the treatment of ccRCC were identified. CONCLUSION Our research found that ADAM8 could have a significant impact on the development, progression, immunotherapy and prognosis of patients with ccRCC, and may be a promising prognostic and immunotherapeutic target. The study provides a new insights that may be useful in helping to manage ccRCC.
Collapse
Affiliation(s)
- Ming Chuan Chu
- Department of Urology, Weifang People’s Hospital, Shandong Second Medical University, Weifang, China
| | - Zhi Lei Zhang
- Department of Urology, Weifang People’s Hospital, Shandong Second Medical University, Weifang, China
| | - Zhi Qiang Wang
- Department of Urology, Shouguang Hospital of Traditional Chinese Medicine, Shouguang, China
| | - Zong Yang Li
- Department of Urology, Weifang People’s Hospital, Shandong Second Medical University, Weifang, China
| | - Yong Shun Guo
- Department of Urology, Weifang People’s Hospital, Shandong Second Medical University, Weifang, China
| |
Collapse
|
2
|
Shen K, Shan Z, Li Y, Ji Z, Zhou L, Lv Z. TFAP2A Activates ADAM8 to Promote Lung Adenocarcinoma Angiogenesis Through the JAK/STAT Signaling Pathway. J Biochem Mol Toxicol 2025; 39:e70097. [PMID: 39812116 DOI: 10.1002/jbt.70097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/10/2024] [Accepted: 12/08/2024] [Indexed: 01/16/2025]
Abstract
As the most prevalent subtype of lung cancer, lung adenocarcinoma (LUAD) is closely associated with angiogenesis, which is fundamental to its progression. ADAM8 (A disintegrin and metalloproteinase 8) is an enzyme associated with tumor invasion, while its implications in LUAD angiogenesis are a field that awaits exploration. A thorough investigation into the impacts of ADAM8 on LUAD angiogenesis could contribute to the development of therapeutic drugs for LUAD. Bioinformatics delineated the expression profiles of TFAP2A and ADAM8 in LUAD tissues, focusing on ADAM8-enriched pathways. qRT-PCR confirmed their expression in LUAD cells. The CCK-8 assay was applied to gauge cell viability, and Western blot detected the presence of JAK2/STAT3 pathway proteins and VEGFR-2 and VEGF. Angiogenesis assays quantified the length of angiogenesis, and dual-luciferase and Chromatin immunoprecipitation assays verified the TFAP2A-ADAM8 binding. ADAM8 exhibited high expression in LUAD tissues and cells, with notable enrichment in the VEGF and JAK/STAT pathways. Cellular assays revealed that elevated ADAM8 expression enhanced cell viability, promoted the phosphorylation of JAK2 and STAT3, and boosted angiogenic capacity. The JAK inhibitor Peficitinib reversed the proangiogenic effects induced by ADAM8 overexpression. We also discovered overexpression of TFAP2A, an upstream transcription factor of ADAM8, in LUAD. Rescue experiments indicated that ADAM8 overexpression could counteract the inhibitory effects of TFAP2A knockdown on LUAD angiogenesis. This study reveals for the first time the critical role of ADAM8 in LUAD angiogenesis, demonstrating that TFAP2A promotes JAK/STAT pathway conduction by activating ADAM8. This finding not only provides a new perspective for understanding the pathogenesis of LUAD but also lays the foundation for the development of new therapies targeting ADAM8.
Collapse
Affiliation(s)
- Kai Shen
- Department of Two Branches Outside, The First People's Hospital of Yongkang, Yongkang, China
| | - Zhidong Shan
- Department of Two Branches Outside, The First People's Hospital of Yongkang, Yongkang, China
| | - Yingjie Li
- Department of Two Branches Outside, The First People's Hospital of Yongkang, Yongkang, China
| | - Zeyi Ji
- Department of Two Branches Outside, The First People's Hospital of Yongkang, Yongkang, China
| | - Luyao Zhou
- Department of Two Branches Outside, The First People's Hospital of Yongkang, Yongkang, China
| | - Zhiliang Lv
- Department of Two Branches Outside, The First People's Hospital of Yongkang, Yongkang, China
| |
Collapse
|
3
|
Yang C, Qu J, Cheng Y, Tian M, Wang Z, Wang X, Li X, Zhou S, Zhao B, Guo Y, Zheng L, Tong Q. YY1 drives PARP1 expression essential for PARylation of NONO in mRNA maturation during neuroblastoma progression. J Transl Med 2024; 22:1153. [PMID: 39731187 DOI: 10.1186/s12967-024-05956-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 12/07/2024] [Indexed: 12/29/2024] Open
Abstract
BACKGROUND Neuroblastoma (NB), the most prevalent solid tumor in children, arises from sympathetic nervous system and accounts for 15% of pediatric cancer mortality. This malignancy exhibits substantial genetic and clinical heterogeneity, thus complicating treatment strategies. Poly(ADP-ribose) polymerase 1 (PARP1), a key enzyme catalyzing polyADP-ribosylation (PARylation), plays critical roles in various cellular processes, and contributes to tumorigenesis and aggressiveness. However, the functions and regulatory mechanisms of PARP1 in NB progression still remain to be determined. METHODS The association of PARP1 expression with NB patients' survival was analyzed by mining of R2 database. Western blotting, reverse transcription-polymerase chain reaction, MTT colorimetric, soft agar, and matrigel invasion assays were utilized to assess PARP1 expression and its effects on aggressiveness of NB cell lines. Chromatin immunoprecipitation (ChIP) sequencing and ChIP assays were employed to investigate the binding of Yin Yang 1 (YY1) to PARP1 promoter. Protein interactions were explored by BioGRID database analysis, molecular docking, and co-immunoprecipitation assay. RNA sequencing and crosslinking-immunoprecipitation high throughput sequencing datasets were used to identify precursor mRNA splicing targets of non-POU domain containing octamer binding protein (NONO). RESULTS High PARP1 expression was associated with poor survival of NB patients. PARP1 over-expression enhanced the proliferation and invasion of NB cell lines, confirming its oncogenic roles. YY1 was identified as a key transcriptional regulator facilitating PARP1 expression. Additionally, PARP1 interacted with NONO to induce its PARylation, resulting in stabilization of NONO protein via preventing ubiquitin-mediated degradation. NONO facilitated the splicing and mRNA maturation of target genes a disintegrin and metalloproteinase domain 8 (ADAM8) and testis-expressed gene 14 (TEX14) in a PARylation-dependent manner. Rescue experiments indicated that YY1 facilitated PARP1-mediated PARylation of NONO and subsequent mRNA maturation of ADAM8 and TEX14 in NB cells. In clinical NB cases, high expression of YY1, PARP1, NONO, ADAM8, or TEX14 was associated with poor survival of patients. CONCLUSIONS These findings indicate that YY1 drives PARP1 expression essential for PARylation of NONO in mRNA maturation during NB progression.
Collapse
Affiliation(s)
- Chunhui Yang
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, People's Republic of China
| | - Jiaying Qu
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, People's Republic of China
| | - Yang Cheng
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, People's Republic of China
| | - Minxiu Tian
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, People's Republic of China
| | - Zhijie Wang
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, People's Republic of China
| | - Xiaolin Wang
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, People's Republic of China
| | - Xinyue Li
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, People's Republic of China
| | - Shunchen Zhou
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, People's Republic of China
| | - Bosen Zhao
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, People's Republic of China
| | - Yanhua Guo
- Department of Pediatric Surgery, The First Affiliated Hospital of Kunming Medical University, No. 295 Xichang Road, Kunming, 650032, Yunnan Province, People's Republic of China.
| | - Liduan Zheng
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, People's Republic of China.
| | - Qiangsong Tong
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, People's Republic of China.
| |
Collapse
|
4
|
Gao Y, Zandieh K, Zhao K, Khizanishvili N, Fazio PD, Yu X, Schulte L, Aillaud M, Chung HR, Ball Z, Meixner M, Bauer UM, Bartsch DK, Buchholz M, Lauth M, Nimsky C, Cook L, Bartsch JW. The long non-coding RNA NEAT1 contributes to aberrant STAT3 signaling in pancreatic cancer and is regulated by a metalloprotease-disintegrin ADAM8/miR-181a-5p axis. Cell Oncol (Dordr) 2024:10.1007/s13402-024-01001-0. [PMID: 39412616 DOI: 10.1007/s13402-024-01001-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2024] [Indexed: 12/05/2024] Open
Abstract
PURPOSE Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers and several studies demonstrate that STAT3 has critical roles throughout the course of PDAC pathogenesis. METHODS TCGA, microarray, and immunohistochemistry data from a PDAC cohort were used for clinical analyses. Panc89 cells with ADAM8 knockout, re-expression of ADAM8 mutants, and Panc1 cells overexpressing ADAM8 were generated. Gene expression analyses of ADAM8, STAT3, long non-coding (lnc) RNA NEAT1, miR-181a-5p and ICAM1 were performed by quantitative PCR. Subcellular fractionation quantified NEAT1 expression in cytoplasm and nucleus of PDAC cell lines. Cell proliferation, scratch, and invasion assays were performed to detect growth rate, migration and invasion capabilities of cells. Gain and loss of function experiments were carried out to investigate the biological effects of lncRNA NEAT1 and miR-181a-5p on PDAC cells and downstream genes. Dual-luciferase reporter gene assay determined interaction and binding sites of miR-181a-5p in lncRNA NEAT1. Pull down assays, RNA binding protein immunoprecipitation (RIP), and ubiquitination assays explored the molecular interaction between lncRNA NEAT1 and STAT3. RESULTS High ADAM8 expression causes aberrant STAT3 signaling in PDAC cells and is positively correlated with NEAT1 expression. NEAT1 binding to STAT3 was confirmed and prevents STAT3 degradation in the proteasome as increased degradation of STAT3 was observed in ADAM8 knockout cells and cells treated with bortezomib. Furthermore, miRNA-181a-5p regulates NEAT1 expression by direct binding to the NEAT1 promoter. CONCLUSION ADAM8 regulates intracellular STAT3 levels via miR-181a-5p and NEAT1 in pancreatic cancer.
Collapse
Affiliation(s)
- Yutong Gao
- Department of Neurosurgery, Philipps-University Marburg, Baldingerstrasse, 35043, Marburg, Germany
| | - Kimia Zandieh
- Department of Neurosurgery, Philipps-University Marburg, Baldingerstrasse, 35043, Marburg, Germany
| | - Kai Zhao
- Department of Neurosurgery, Philipps-University Marburg, Baldingerstrasse, 35043, Marburg, Germany
| | - Natalia Khizanishvili
- Department of Visceral, Thoracic and Vascular Surgery, Philipps-University Marburg, Baldingerstrasse, 35033, Marburg, Germany
| | - Pietro Di Fazio
- Department of Visceral, Thoracic and Vascular Surgery, Philipps-University Marburg, Baldingerstrasse, 35033, Marburg, Germany
| | - Xiangdi Yu
- Department of Anesthesiology, Guizhou Provincial People's Hospital, The Affiliated Hospital of Guizhou University, Guiyang, Guizhou, 550000, China
| | - Leon Schulte
- Institute for Lung Research, Philipps-University Marburg, Hans-Meerwein-Strasse 2, 35043, Marburg, Germany
| | - Michelle Aillaud
- Institute for Lung Research, Philipps-University Marburg, Hans-Meerwein-Strasse 2, 35043, Marburg, Germany
| | - Ho-Ryun Chung
- Institute for Medical Bioinformatics and Biostatistics, Philipps-University Marburg, 35033, Marburg, Germany
| | - Zachary Ball
- Department of Chemistry, Rice University, Houston, TX, USA
| | - Marion Meixner
- Institute for Molecular Biology and Tumor Research (IMT), Philipps-University Marburg, Marburg, Germany
| | - Uta-Maria Bauer
- Institute for Molecular Biology and Tumor Research (IMT), Philipps-University Marburg, Marburg, Germany
| | - Detlef Klaus Bartsch
- Department of Visceral, Thoracic and Vascular Surgery, Philipps-University Marburg, Baldingerstrasse, 35033, Marburg, Germany
| | - Malte Buchholz
- Department of Gastroenterology, Endocrinology, Metabolism and Infection, Center for Tumor and Immunology (ZTI), Philipps-University Marburg, Marburg, Germany
| | - Matthias Lauth
- Institute for Molecular Biology and Tumor Research (IMT), Philipps-University Marburg, Marburg, Germany
| | - Christopher Nimsky
- Department of Neurosurgery, Philipps-University Marburg, Baldingerstrasse, 35043, Marburg, Germany
| | - Lena Cook
- Department of Neurosurgery, Philipps-University Marburg, Baldingerstrasse, 35043, Marburg, Germany
| | - Jörg W Bartsch
- Department of Neurosurgery, Philipps-University Marburg, Baldingerstrasse, 35043, Marburg, Germany.
| |
Collapse
|
5
|
Ochman B, Limanówka P, Mielcarska S, Kula A, Dawidowicz M, Wagner W, Hudy D, Szrot M, Piecuch JZ, Piecuch J, Czuba Z, Świętochowska E. Associations of SEMA7A, SEMA4D, ADAMTS10, and ADAM8 with KRAS, NRAS, BRAF, PIK3CA, and AKT Gene Mutations, Microsatellite Instability Status, and Cytokine Expression in Colorectal Cancer Tissue. Curr Issues Mol Biol 2024; 46:10218-10248. [PMID: 39329961 PMCID: PMC11431007 DOI: 10.3390/cimb46090609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/11/2024] [Accepted: 09/13/2024] [Indexed: 09/28/2024] Open
Abstract
Semaphorins (SEMAs), ADAM, and ADAMTS family members are implicated in various cancer progression events within the tumor microenvironment across different cancers. In this study, we aimed to evaluate the expression of SEMA7A, SEMA4D, ADAM8, and ADAMTS10 in colorectal cancer (CRC) in relation to the mutational landscape of KRAS, NRAS, BRAF, PIK3CA, and AKT genes, microsatellite instability (MSI) status, and clinicopathological features. We also examined the associations between the expression of these proteins and selected cytokines, chemokines, and growth factors, assessed using a multiplex assay. Protein concentrations were quantified using ELISA in CRC tumors and tumor-free surgical margin tissue homogenates. Gene mutations were evaluated via RT-PCR, and MSI status was determined using immunohistochemistry (IHC). GSEA and statistical analyses were performed using R Studio. We observed a significantly elevated expression of SEMA7A in BRAF-mutant CRC tumors and an overexpression of ADAM8 in KRAS 12/13-mutant tumors. The expression of ADAMTS10 was decreased in PIK3CA-mutant CRC tumors. No significant differences in the expression of the examined proteins were observed based on MSI status. The SEMA7A and SEMA4D expressions were correlated with the expression of numerous cytokines associated with various immune processes. The potential immunomodulatory functions of these molecules and their suitability as therapeutic targets require further investigation.
Collapse
Affiliation(s)
- Błażej Ochman
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 19 Jordana, 41-808 Zabrze, Poland; (B.O.); (P.L.); (S.M.); (W.W.); (D.H.)
| | - Piotr Limanówka
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 19 Jordana, 41-808 Zabrze, Poland; (B.O.); (P.L.); (S.M.); (W.W.); (D.H.)
| | - Sylwia Mielcarska
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 19 Jordana, 41-808 Zabrze, Poland; (B.O.); (P.L.); (S.M.); (W.W.); (D.H.)
| | - Agnieszka Kula
- Department of Oncological Surgery, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 41-808 Katowice, Poland; (A.K.); (M.D.)
| | - Miriam Dawidowicz
- Department of Oncological Surgery, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 41-808 Katowice, Poland; (A.K.); (M.D.)
| | - Wiktor Wagner
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 19 Jordana, 41-808 Zabrze, Poland; (B.O.); (P.L.); (S.M.); (W.W.); (D.H.)
| | - Dorota Hudy
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 19 Jordana, 41-808 Zabrze, Poland; (B.O.); (P.L.); (S.M.); (W.W.); (D.H.)
| | - Monika Szrot
- Department of General and Bariatric Surgery and Emergency Medicine in Zabrze, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 10 Marii Curie-Skłodowskiej, 41-800 Zabrze, Poland; (M.S.); (J.P.)
| | - Jerzy Zbigniew Piecuch
- Department of General and Bariatric Surgery and Emergency Medicine in Zabrze, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 10 Marii Curie-Skłodowskiej, 41-800 Zabrze, Poland; (M.S.); (J.P.)
| | - Jerzy Piecuch
- Department of General and Bariatric Surgery and Emergency Medicine in Zabrze, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 10 Marii Curie-Skłodowskiej, 41-800 Zabrze, Poland; (M.S.); (J.P.)
| | - Zenon Czuba
- Department of Microbiology and Immunology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 19 Jordana, 41-808 Zabrze, Poland;
| | - Elżbieta Świętochowska
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 19 Jordana, 41-808 Zabrze, Poland; (B.O.); (P.L.); (S.M.); (W.W.); (D.H.)
| |
Collapse
|
6
|
Evers M, Stühmer T, Schreder M, Steinbrunn T, Rudelius M, Jundt F, Ebert R, Hartmann TN, Bargou RC, Rosenwald A, Leich E. Association of ADAM family members with proliferation signaling and disease progression in multiple myeloma. Blood Cancer J 2024; 14:156. [PMID: 39261477 PMCID: PMC11390935 DOI: 10.1038/s41408-024-01133-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/13/2024] Open
Abstract
Multiple myeloma (MM) is a hematological malignancy whose curability is greatly challenged by recurrent patient relapses and therapy resistance. We have previously proposed the high expression of ADAM8, ADAM9 and ADAM15 (A Disintegrin And Metalloproteinase 8/9/15) as adverse prognostic markers in MM. This study focused on the so far scarcely researched role of ADAM8/9/15 in MM using two patient cohorts and seven human MM cell lines (HMCL). High ADAM8/9/15 expression was associated with high-risk cytogenetic abnormalities and extramedullary disease. Furthermore, ADAM8/15 expression increased with MM progression and in relapsed/refractory MM compared to untreated patient samples. RNA sequencing and gene set enrichment analysis comparing ADAM8/9/15high/low patient samples revealed an upregulation of proliferation markers and proliferation-associated gene sets in ADAM8/9/15high patient samples. High ADAM8/9/15 expression correlated with high Ki67 and high ADAM8/15 expression with high MYC protein expression in immunohistochemical stainings of patient tissue. Conversely, siRNA-mediated knockdown of ADAM8/9/15 in HMCL downregulated proliferation-related gene sets. Western blotting revealed that ADAM8 knockdown regulated IGF1R/AKT signaling and ADAM9 knockdown decreased mTOR activation. Lastly, high ADAM8/9/15 expression levels were verified as prognostic markers independent of Ki67/MYC expression and/or high-risk abnormalities. Overall, these findings suggest that ADAM8/9/15 play a role in MM progression and proliferation signaling.
Collapse
Affiliation(s)
| | - Thorsten Stühmer
- Comprehensive Cancer Center Mainfranken, University Hospital of Würzburg, Würzburg, Germany
| | - Martin Schreder
- First Department of Medicine, Klinik Ottakring, Vienna, Austria
| | - Torsten Steinbrunn
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany
| | - Martina Rudelius
- Institute of Pathology, Ludwig-Maximilians-University München, München, Germany
| | - Franziska Jundt
- Comprehensive Cancer Center Mainfranken, University Hospital of Würzburg, Würzburg, Germany
- Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany
| | - Regina Ebert
- Department of Musculoskeletal Tissue Regeneration, University of Würzburg, Würzburg, Germany
| | - Tanja Nicole Hartmann
- Department of Internal Medicine I, Medical Center and Faculty of Medicine, University of Freiburg, Breisgau, Germany
| | - Ralf Christian Bargou
- Comprehensive Cancer Center Mainfranken, University Hospital of Würzburg, Würzburg, Germany
| | | | - Ellen Leich
- Institute of Pathology, University of Würzburg, Würzburg, Germany.
| |
Collapse
|
7
|
Ji Z, Guo J, Zhang R, Zuo W, Xu Y, Qu Y, Tao Z, Li X, Li Y, Yao Y, Ma G. ADAM8 deficiency in macrophages promotes cardiac repair after myocardial infarction via ANXA2-mTOR-autophagy pathway. J Adv Res 2024:S2090-1232(24)00322-9. [PMID: 39097092 DOI: 10.1016/j.jare.2024.07.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/24/2024] [Accepted: 07/31/2024] [Indexed: 08/05/2024] Open
Abstract
INTRODUCTION A disintegrin and metalloproteinase 8 (ADAM8), a crucial regulator in macrophages, is closely associated with cardiovascular disease progression. OBJECTIVES This study aimed to explore how ADAM8 regulates macrophage function to inhibit cardiac repair after myocardial infarction (MI). METHODS Macrophage-specific ADAM8 knockout mice (ADAM8flox/flox, Lyz2-Cre, KO) and corresponding control mice (ADAM8flox/flox, Flox) were established using the CRISPR/Cas9 system. Bone marrow transplantation was performed, and macrophage-specific ADAM8-overexpressing adeno-associated virus (AAV6-CD68-Adam8) was produced. Finally, proteomics, RNA sequencing, and co-immunoprecipitation/mass spectrometry (COIP/MS) were used to explore the underlying mechanisms involved. RESULTS ADAM8 was highly expressed in the plasma of patients with acute myocardial infarction (AMI) and in cardiac macrophages derived from AMI mice. ADAM8 KO mice exhibited enhanced angiogenesis, suppressed inflammation, reduced cardiac fibrosis, and improved cardiac function during AMI, which were reversed by overexpressing macrophage-specific ADAM8 and intervention with the clinical anti-angiogenic biologic bevacizumab. Bone marrow transplantation experiments produced ADAM8 KO phenotypes. RNA sequencing showed that autophagy was activated in bone marrow-derived macrophages (BMDMs) with ADAM8 KO, which was confirmed via p-mTOR Ser2448/mTOR, p62, and LC3II/I detection. Autophagy inactivation suppressed angiogenic factor release and promoted inflammation in BMDMs with ADAM8 KO. Mechanistically, ADAM8 could bind to ANXA2 and promote phosphorylation of the ANXA2 Ser26 site. ADAM8 KO impeded ANXA2 phosphorylation, inhibited mTOR Ser2448 site phosphorylation, and activated autophagy, which were demonstrated using the activation or inactivation of ANXA2 phosphorylation. CONCLUSIONS ADAM8 was increased in cardiac macrophages after AMI. The ADAM8-ANXA2-mTOR-autophagy axis in macrophages is responsible for regulating angiogenesis and inflammation following MI. Thus, ADAM8 may be a new target in MI treatment.
Collapse
Affiliation(s)
- Zhenjun Ji
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu, China
| | - Jiaqi Guo
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu, China
| | - Rui Zhang
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu, China
| | - Wenjie Zuo
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, 330008, Jiangxi, China
| | - Yang Xu
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu, China
| | - Yangyang Qu
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu, China
| | - Zaixiao Tao
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu, China
| | - Xinxin Li
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu, China
| | - Yongjun Li
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu, China
| | - Yuyu Yao
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu, China
| | - Genshan Ma
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu, China.
| |
Collapse
|
8
|
Ji Z, Guo J, Xu Y, Zuo W, Zhang R, Carvalho A, Zhang X, Tao Z, Li X, Yao Y, Ma G. Prognostic value of a disintegrin and metalloproteinase Domain-8 in heart failure. Heliyon 2024; 10:e32072. [PMID: 38912460 PMCID: PMC11190534 DOI: 10.1016/j.heliyon.2024.e32072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 05/10/2024] [Accepted: 05/28/2024] [Indexed: 06/25/2024] Open
Abstract
Background Heart failure (HF) is a severe disease threatening people's health. The aim of this study is to find a significant biomarker inducive to predicting the prognosis of HF. Methods GSE135055 and GSE161472 datasets were reanalyzed for exploring key genes related to HF. This single-center, prospective, observational cohort study enrolled 298 patients with or without HF from the Cardiology Department of Zhongda Hospital. Levels of ADAM8 were measured using ELISA kits. Major adverse cardiovascular events (MACEs) were defined as the composite end points of the first occurrence of rehospitalization because of HF or cardiac-related death during one-year follow-up. Results (1) Bioinformatics analysis showed that ADAM8 was a key gene in HF via mainly regulating the mechanisms of extracellular matrix (ECM) organization. (2) Levels of ADAM8 were significantly increased in the HF group, compared to the non-failing (NF) group (p < 0.001), especially in patients with HFrEF (p < 0.05), and HFmEF (p < 0.05). The prevalence of HF in the high ADAM8 group (≧472.916 pg/mL) was significantly higher than in the low ADAM8 group (<472.916 pg/mL) (41.95 % vs 30.54 %, p < 0.01). (3) Correlation analysis revealed that ADAM8 was negatively correlated to the left ventricular ejection fraction (LVEF) (r = -0.272, p < 0.001). ROC analysis showed that the AUC of ADAM8 in predicting HF and predicting the MACE were 0.701 (p < 0.0001) and 0.683 (p < 0.0001), respectively. (4) Logistic and Cox regression both indicated that high ADAM8 expression can predict adverse prognosis of HF. Conclusions ADAM8 may be a risk factor for HF, especially in cases of HFrEF and HFmEF. High ADAM8 expression in plasma was related to the decreased heart function, and can predict the adverse prognosis of HF.
Collapse
Affiliation(s)
- Zhenjun Ji
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Jiaqi Guo
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Yang Xu
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Wenjie Zuo
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Rui Zhang
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Abdlay Carvalho
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Xiaoguo Zhang
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Zaixiao Tao
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Xinxin Li
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Yuyu Yao
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Genshan Ma
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| |
Collapse
|
9
|
Wang Z, Niu D. To explore the prognostic characteristics of colon cancer based on tertiary lymphoid structure-related genes and reveal the characteristics of tumor microenvironment and drug prediction. Sci Rep 2024; 14:13555. [PMID: 38867070 PMCID: PMC11169531 DOI: 10.1038/s41598-024-64308-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/07/2024] [Indexed: 06/14/2024] Open
Abstract
In order to construct a prognostic evaluation model of TLS features in COAD and better realize personalized precision medicine in COAD. Colon adenocarcinoma (COAD) is a common malignant tumor of the digestive system. At present, there is no effective prognostic marker to predict the prognosis of patients. Tertiary lymphoid structure (TLS) affects cancer progression by regulating immune microenvironment. Mining COAD biomarkers based on TLS-related genes helps to improve the prognosis of patients. In order to construct a prognostic evaluation model of TLS features in COAD and better realize personalized precision medicine in COAD. The mRNA expression data and clinical information of COAD and adjacent tissues were downloaded from the Cancer Genome Atlas database. The differentially expressed TLS-related genes of COAD relative to adjacent tissues were obtained by differential analysis. TLS gene co-expression analysis was used to mine genes highly related to TLS, and the intersection of the two was used to obtain candidate genes. Univariate, LASSO, and multivariate Cox regression analysis were performed on candidate genes to screen prognostic markers to construct a risk assessment model. The differences of immune characteristics were evaluated by ESTIMATE, ssGSEA and CIBERSORT in high and low risk groups of prognostic model. The difference of genomic mutation between groups was evaluated by tumor mutation burden score. Screening small molecule drugs through the GDSC library. Finally, a nomogram was drawn to evaluate the clinical value of the prognostic model. Seven TLS-related genes ADAM8, SLC6A1, PAXX, RIMKLB, PTH1R, CD1B, and MMP10 were screened to construct a prognostic model. Survival analysis showed that patients in the high-risk group had significantly lower overall survival rates. Immune microenvironment analysis showed that patients in the high-risk group had higher immune indicators, indicating higher immunity. The genomic mutation patterns of the high-risk and low-risk groups were significantly different, especially the KRAS mutation frequency was significantly higher in the high-risk group. Drug sensitivity analysis showed that the low-risk group was more sensitive to Erlotinib, Savolitinib and VE _ 822, which may be used as a potential drug for COAD treatment. Finally, the nomogram constructed by pathological features combined with RiskScore can accurately evaluate the prognosis of COAD patients. This study constructed and verified a TLS model that can predict COAD. More importantly, it provides a reference standard for guiding the prognosis and immunotherapy of COAD patients.
Collapse
Affiliation(s)
- Zhanmei Wang
- Department of Oncology, Qilu Hospital of Shandong University, Qingdao, 266000, China
| | - Dongguang Niu
- Department of Gastrointestinal Surgery, Affiliated Hospital of Qingdao University, Qingdao City, 266000, Shandong Province, China.
| |
Collapse
|
10
|
Qian Z, Li R, Zhao T, Xie K, Li P, Li G, Shen N, Gong J, Hong X, Yang L, Li H. Blockade of the ADAM8-Fra-1 complex attenuates neuroinflammation by suppressing the Map3k4/MAPKs axis after spinal cord injury. Cell Mol Biol Lett 2024; 29:75. [PMID: 38755530 PMCID: PMC11100242 DOI: 10.1186/s11658-024-00589-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/06/2024] [Indexed: 05/18/2024] Open
Abstract
BACKGROUND Mechanical spinal cord injury (SCI) is a deteriorative neurological disorder, causing secondary neuroinflammation and neuropathy. ADAM8 is thought to be an extracellular metalloproteinase, which regulates proteolysis and cell adherence, but whether its intracellular region is involved in regulating neuroinflammation in microglia after SCI is unclear. METHODS Using animal tissue RNA-Seq and clinical blood sample examinations, we found that a specific up-regulation of ADAM8 in microglia was associated with inflammation after SCI. In vitro, microglia stimulated by HMGB1, the tail region of ADAM8, promoted microglial inflammation, migration and proliferation by directly interacting with ERKs and Fra-1 to promote activation, then further activated Map3k4/JNKs/p38. Using SCI mice, we used BK-1361, a specific inhibitor of ADAM8, to treat these mice. RESULTS The results showed that administration of BK-1361 attenuated the level of neuroinflammation and reduced microglial activation and recruitment by inhibiting the ADAM8/Fra-1 axis. Furthermore, treatment with BK-1361 alleviated glial scar formation, and also preserved myelin and axonal structures. The locomotor recovery of SCI mice treated with BK-1361 was therefore better than those without treatment. CONCLUSIONS Taken together, the results showed that ADAM8 was a critical molecule, which positively regulated neuroinflammatory development and secondary pathogenesis by promoting microglial activation and migration. Mechanically, ADAM8 formed a complex with ERK and Fra-1 to further activate the Map3k4/JNK/p38 axis in microglia. Inhibition of ADAM8 by treatment with BK-1361 decreased the levels of neuroinflammation, glial formation, and neurohistological loss, leading to favorable improvement in locomotor functional recovery in SCI mice.
Collapse
Affiliation(s)
- Zhanyang Qian
- Department of Orthopedics, Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, China
- Department of Orthopedics, Zhongda Hospital of Southeast University, Nanjing, China
| | - Rulin Li
- Department of Orthopedics, Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, China
- School of Postgraduate, Dalian Medical University, Dalian, China
| | - Tianyu Zhao
- Department of Orthopedics, Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, China
- School of Postgraduate, Dalian Medical University, Dalian, China
| | - Kunxin Xie
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, China
| | - PengFei Li
- Department of Orthopedics, Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, China
- School of Postgraduate, Nanjing University of Chinese Medicine, Nanjing, China
| | - Guangshen Li
- Department of Orthopedics, Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, China
| | - Na Shen
- School of Basic Medicine, Nanjing Medical University, Nanjing, China
| | - Jiamin Gong
- School of Basic Medicine, Nanjing Medical University, Nanjing, China
| | - Xin Hong
- Department of Orthopedics, Zhongda Hospital of Southeast University, Nanjing, China
| | - Lei Yang
- Department of Orthopedics, Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, China.
| | - Haijun Li
- Department of Orthopedics, Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, China.
| |
Collapse
|
11
|
Xu K, Jiang P, Chen Z, Gu X, Zhang T. ADAM22 acts as a novel predictive biomarker for unfavorable prognosis and facilitates metastasis via PI3K/AKT signaling pathway in nasopharyngeal carcinoma. Pathol Res Pract 2024; 256:155264. [PMID: 38518731 DOI: 10.1016/j.prp.2024.155264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/29/2024] [Accepted: 03/11/2024] [Indexed: 03/24/2024]
Abstract
BACKGROUND Nasopharyngeal carcinoma (NPC) is a type of epithelial malignancy known for its high likelihood of metastasizing to distant organs, which remains the primary obstacle in the treatment of NPC. The present study aimed to identify potential intervention target for NPC metastasis. METHODS The differentially expressed genes (DEGs) were firstly analyzed and intersected across various NPC related datasets in the Gene Expression Omnibus database. Subsequently, various techniques including quantitative polymerase chain reaction (qPCR), western blotting, immunohistochemistry, migration and invasion assays, in conjunction with bioinformatics and prognostic modeling, were utilized to elucidate the role of candidate genes in NPC metastasis. RESULTS We discerned the gene a disintegrin and metalloprotease 22 (ADAM22) as a distinct and significant factor in the progression and metastasis of NPC through five datasets. The elevated expression of ADAM22 was observed in clinical tissue and plasma samples with advanced NPC, as well as in high metastatic cells. Furthermore, we highlighted its essential role in a prognostic model that demonstrated strong prediction performance for NPC. Notably, overexpression of ADAM22 was found to enhance the aggressiveness and epithelial-mesenchymal transition (EMT) of low metastatic NPC cells, whereas the downregulation of ADAM22 resulted in suppressed effect in high metastatic cells. Delving into the mechanism, ADAM22 activated the PI3K/Akt signaling pathway through the mediation of Rac Family Small GTPase 2 (RAC2), thereby facilitating EMT and metastasis in NPC. CONCLUSIONS The study provided pioneering insights that ADAM22 had the potential to act as an oncogene by promoting EMT and metastasis of NPC through the RAC2-mediated PI3K/Akt signaling pathway. Thus, ADAM22 could serve as a novel prognostic indicator in NPC.
Collapse
Affiliation(s)
- Kaixiong Xu
- Department of Laboratory Medicine, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, China
| | - Ping Jiang
- Department of Laboratory Medicine, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, China
| | - Zui Chen
- Department of Oncology, the Second XiangYa Hospital of Central South University, Changsha, Hunan 410011, China
| | - Xiaoqiong Gu
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510623, China.
| | - Ting Zhang
- Department of Laboratory Medicine, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, China.
| |
Collapse
|
12
|
Qu H, Mao M, Wang K, Mu Z, Hu B. Knockdown of ADAM8 inhibits the proliferation, migration, invasion, and tumorigenesis of renal clear cell carcinoma cells to enhance the immunotherapy efficacy. Transl Res 2024; 266:32-48. [PMID: 37992987 DOI: 10.1016/j.trsl.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/13/2023] [Indexed: 11/24/2023]
Abstract
The current study performed bioinformatics and in vitro and in vivo experiments to explore the effects of ADAM8 on the malignant behaviors and immunotherapeutic efficacy of renal clear cell carcinoma (ccRCC) Cells. The modular genes most associated with immune cells were screened. Then, prognostic risk models were constructed by univariate COX analysis, LASSO regression analysis and multivariate COX analysis, and their diagnostic value was determined. The correlation between tumor mutation load (TMB) scores and the prognosis of ccRCC patients was clarified. Finally, six key genes (ABI3, ADAM8, APOL3, MX2, CCDC69, and STAC3) were analyzed for immunotherapy efficacy. Human and mouse ccRCC cell lines and human proximal tubular epithelial cell lines were used for in vitro cell experiments. The effect of ADAM8 overexpression or knockdown on tumor formation and survival in ccRCC cells was examined by constructing subcutaneous transplanted tumor model. Totally, 636 Black module genes were screened as being most associated with immune cell infiltration. Six genes were subsequently confirmed for the construction of prognostic risk models, of which ABI3, APOL3 and CCDC69 were low-risk factors, while ADAM8, MX2 and STAC3 were high-risk factors. The constructed risk model based on the identified six genes could accurately predict the prognosis of ccRCC patients. Besides, TMB was significantly associated with the prognosis of ccRCC patients. Furthermore, ABI3, ADAM8, APOL3, MX2, CCDC69 and STAC3 might play important roles in treatment concerning CTLA4 inhibitors or PD-1 inhibitors or combined inhibitors. Finally, we confirmed that ADAM8 could promote the proliferation, migration and invasion of ccRCC cells through in vitro experiments, and further found that in in vivo experiments, ADAM8 knockdown could inhibit tumor formation in ccRCC cells, improve the therapeutic effect of anti-PD1, and prolong the survival of mice. Our study highlighted the alleviative role of silencing ADAM8 in ccRCC patients.
Collapse
Affiliation(s)
- Hongchen Qu
- Department of Urological Surgery, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical University, No.44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province 110042, PR China
| | - Minghuan Mao
- Department of Urological Surgery, Fourth affiliated Hospital of China Medical University, Shenyang 110000, PR China
| | - Kai Wang
- Department of Urological Surgery, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical University, No.44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province 110042, PR China
| | - Zhongyi Mu
- Department of Urological Surgery, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical University, No.44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province 110042, PR China
| | - Bin Hu
- Department of Urological Surgery, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical University, No.44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province 110042, PR China.
| |
Collapse
|
13
|
Lin Y, Chen Y, Gan L, Li Z, Shen F. A prognostic model based on tumor microenvironment and immune cell in colorectal cancer. Scand J Gastroenterol 2024; 59:304-315. [PMID: 37978827 DOI: 10.1080/00365521.2023.2281252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/30/2023] [Accepted: 11/04/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND Colorectal cancer (CRC) is the second leading cause of cancer-related death. Immunotherapy is one of the new options for cancer treatment. This study aimed to develop an immune-related signature associated with CRC. METHODS We performed differential analysis to screen out the differentially expressed genes (DEGs) of The Cancer Genome Atlas-Colorectal Cancer (TCGA-CRC) datasets. Weighted gene co-expression network analysis (WGCNA) was performed to obtain the key module genes associated with differential immune cells. The candidate genes were obtained through overlapping key DEGs and key module genes. The univariate and multivariate Cox regression analyses were adopted to build a CRC prognostic signature. We further conducted immune feature estimation and chemotherapy analysis between two risk subgroups. Finally, we verified the expression of immune-related prognostic genes at the transcriptional level. RESULTS A total of 61 candidate genes were obtained by overlapping key DEGs and key module genes associated with differential immune cells. Then, an immune-related prognostic signature was built based on the three prognostic genes (HAMP, ADAM8, and CD1B). The independent prognostic analysis suggested that age, stage, and RiskScore could be used as independent prognostic factors. Further, we found significantly higher expression of three prognostic genes in the CRC group compared with the normal group. Finally, real-time polymerase chain reaction verified the expression of three genes in patients with CRC. CONCLUSION The prognostic signature comprising HAMP, ADAM8, and CD1B based on immune cells was established, providing a theoretical basis and reference value for the research of CRC.
Collapse
Affiliation(s)
- Yufu Lin
- Department of Oncology, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, China
| | - Yabo Chen
- Department of General Practice, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, China
| | - Lu Gan
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhiyong Li
- Department of Oncology, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, China
| | - Feng Shen
- Department of Oncology, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, China
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
14
|
Wang F, Wang C, Li B, Wang G, Meng Z, Han J, Guo G, Yu B, Wang G. Identification of angiogenesis-related subtypes, the development of a prognosis model, and features of tumor microenvironment in colon cancer. Biotechnol Appl Biochem 2024; 71:45-60. [PMID: 37881150 DOI: 10.1002/bab.2520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 09/26/2023] [Indexed: 10/27/2023]
Abstract
Angiogenesis is associated with tumor progression, prognosis, and treatment effect. However, the angiogenesis' underlying mechanisms in the tumor microenvironment (TME) still remain unclear. Understanding the dynamic interactions between angiogenesis and TME in colon adenocarcinoma (COAD) is necessary. We downloaded the transcriptome data and corresponding clinical data of colon cancer patients from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) databases, respectively. We identified two distinct angiogenesis-related molecular subtypes (subtype A and subtype B) and assessed the clinical features, prognosis, and infiltrating immune cells of patients in the two subtypes. According to the prognostic differential genes, we defined two different gene clusters to further explore the correlation between angiogenesis and tumor heterogeneity. Then, we construct the prognostic risk scoring model angiogenesis-related gene (ARG-score) including seven genes (ARMCX2, latent transforming growth factor β binding protein 1, ADAM8, FABP4, CCL11, CXCL11, ITLN1) using Lasso-multivariate cox method. We analyzed the correlation between ARG-score and prognosis, clinicopathological features, TME, molecular feature, cancer stem cells (CSCs), and microsatellite instability (MSI) status. To assess the application value of ARG-score in clinical treatment, immunophenotype score was used to predict patients' immunotherapy response in colon cancer. We found the mutations of ARGs in TCGA-COAD dataset from genetic levels and discussed their expression patterns based on TCGA and GEO datasets. We observed important differences in clinicopathological features, prognosis, immune feature, molecular feature between the two molecular subgroups. Then, we established an ARG-score for predicting OS and validated its predictive capability. A high ARG-score characterized by higher transcription level of ARGs, suggested lower MSI-high (MSI-H), lower immune score, and worse clinical stage and survival outcome. Additionally, the ARG-score was remarkably related to the CSCs index and immunotherapy sensitivity. We found two new molecular subtypes and two gene clusters based on ARGs and established an ARG-score. Multilayered analysis revealed that ARGs were remarkably correlated to the heterogeneity of colon cancer patients and explained the process of tumorigenesis and progression better. The ARG-score can help us better assess patients' survival outcomes and provide guidance for individualized treatment.
Collapse
Affiliation(s)
- Feifei Wang
- The Second Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Changjing Wang
- Department of Gastrointestinal Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Baokun Li
- The Second Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Guanglin Wang
- The Second Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Zesong Meng
- The Second Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jiachao Han
- The Second Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Ganlin Guo
- The Second Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Bin Yu
- The Second Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Guiying Wang
- Department of Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
15
|
Chen K, Tao H, Zhu P, Chu M, Li X, Shi Y, Zhang L, Xu Y, Lv S, Huang L, Huang W, Geng D. ADAM8 silencing suppresses the migration and invasion of fibroblast-like synoviocytes via FSCN1/MAPK cascade in osteoarthritis. Arthritis Res Ther 2024; 26:20. [PMID: 38218854 PMCID: PMC10787439 DOI: 10.1186/s13075-023-03238-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 12/13/2023] [Indexed: 01/15/2024] Open
Abstract
OBJECTIVE Osteoarthritis (OA) is a degenerative joint disease that affects elderly populations worldwide, causing pain and disability. Alteration of the fibroblast-like synoviocytes (FLSs) phenotype leads to an imbalance in the synovial inflammatory microenvironment, which accelerates the progression of OA. Despite this knowledge, the specific molecular mechanisms of the synovium that affect OA are still unclear. METHODS Both in vitro and in vivo experiments were undertaken to explore the role of ADAM8 playing in the synovial inflammatory of OA. A small interfering RNA (siRNA) was targeting ADAM8 to intervene. High-throughput sequencing was also used. RESULTS Our sequencing analysis revealed significant upregulation of the MAPK signaling cascade and ADAM8 gene expression in IL-1β-induced FLSs. The in vitro results demonstrated that ADAM8 blockade inhibited the invasion and migration of IL-1β-induced FLSs, while also suppressing the expression of related matrix metallomatrix proteinases (MMPs). Furthermore, our study revealed that inhibiting ADAM8 weakened the inflammatory protein secretion and MAPK signaling networks in FLSs. Mechanically, it revealed that inhibiting ADAM8 had a significant effect on the expression of migration-related signaling proteins, specifically FSCN1. When siADAM8 was combined with BDP-13176, a FSCN1 inhibitor, the migration and invasion of FLSs was further inhibited. These results suggest that FSCN1 is a crucial downstream factor of ADAM8 in regulating the biological phenotypes of FLSs. The in vivo experiments demonstrated that ADAM8 inhibition effectively reduced synoviocytes inflammation and alleviated the progression of OA in rats. CONCLUSIONS ADAM8 could be a promising therapeutic target for treating OA by targeting synovial inflammation.
Collapse
Affiliation(s)
- Kai Chen
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Shizi Street 188, Suzhou, Jiangsu, China
- Department of Orthopedics, Hai'an People's Hospital, Zhongba Road 17, Hai'an, Jiangsu, China
| | - Huaqiang Tao
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Shizi Street 188, Suzhou, Jiangsu, China
| | - Pengfei Zhu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Shizi Street 188, Suzhou, Jiangsu, China
| | - Miao Chu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Shizi Street 188, Suzhou, Jiangsu, China
- Department of Orthopedics, Yixing Peoples's Hospital, Xincheng Road 1588, Yixing, Jiangsu, China
| | - Xueyan Li
- Anesthesiology department, Suzhou Municipal Hospital (North District), Nanjing Medical University Affiliated Suzhou Hospital, Guangjj Road 242, Suzhou, Jiangsu, China
| | - Yi Shi
- Anesthesiology department, Suzhou Municipal Hospital (North District), Nanjing Medical University Affiliated Suzhou Hospital, Guangjj Road 242, Suzhou, Jiangsu, China
| | - Liyuan Zhang
- Anesthesiology department, Suzhou Municipal Hospital (North District), Nanjing Medical University Affiliated Suzhou Hospital, Guangjj Road 242, Suzhou, Jiangsu, China
| | - Yaozeng Xu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Shizi Street 188, Suzhou, Jiangsu, China
| | - Shujun Lv
- Department of Orthopedics, Hai'an People's Hospital, Zhongba Road 17, Hai'an, Jiangsu, China.
| | - Lixin Huang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Shizi Street 188, Suzhou, Jiangsu, China.
| | - Wei Huang
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Lujiang Road 17, Hefei, An'hui, China.
| | - Dechun Geng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Shizi Street 188, Suzhou, Jiangsu, China.
| |
Collapse
|
16
|
Hu S, Yang Q, Chen Z, Fu W. Role of β1-integrin in promoting cell motility and tamoxifen resistance of human breast cancer MCF-7 cells. Asia Pac J Clin Oncol 2023; 19:e223-e230. [PMID: 36065151 DOI: 10.1111/ajco.13841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 08/03/2022] [Accepted: 08/13/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND The mechanism of acquired resistance of tamoxifen in endocrine therapy of breast cancer is not fully understood. In this study, we investigated the genomic changes in acquired tamoxifen-resistant cell lines. METHODS Tamoxifen-resistant subclones (MCF-7R) derived from parent MCF-7 cells, which is an ER(+) breast cancer cell line, cultured with 4-hydrotamoxifen more than 6 months were used to obtain genomic alterations. Cell growth, microarray, and quantitative real-time PCR (q-RTPCR) assays were conducted. Additionally, the ITGB1 function was investigated in MCF-7R cells and MCF-7R ITGB1-silenced subclones using MTT and Transwell assays. Online pathway analysis was performed to assess the genetic characteristics of tamoxifen resistance. RESULTS The gene expression profile of the tamoxifen-resistant cell line was considerably changed compared to the tamoxifen-sensitive cell line. Of 4102 genes with altered expressions, 1986 genes were upregulated, whereas 2116 were downregulated. The ITGB1 expression in MCF-7R cells was higher than that in MCF-7 cells. Interestingly, ITGB1 silencing partially rescued the sensitivity of MCF-7R cells to tamoxifen and reduced their motility. The activation of the β1-integrin signaling pathway was probably responsible for this phenomenon. CONCLUSIONS Our data confirm the presence of alterations in the genes of tamoxifen-resistance breast cancer cells. ITGB1 probably partially contributes to tamoxifen resistance and cell motility via the β1-integrin signaling pathway. Thus, ITGB1 may be a potential target for the improvement of anti-hormone therapy reaction in ER(+) breast cancer patients.
Collapse
Affiliation(s)
- Song Hu
- Department of General Surgery, Chongqing University Central Hospital (Chong qing Emergency Medical Center), Chongqing, China
| | - Qian Yang
- Department of General Surgery, Chongqing University Central Hospital (Chong qing Emergency Medical Center), Chongqing, China
| | - Zhenhai Chen
- Department of General Surgery, Chongqing University Central Hospital (Chong qing Emergency Medical Center), Chongqing, China
| | - Weijie Fu
- Department of General Surgery, Chongqing University Central Hospital (Chong qing Emergency Medical Center), Chongqing, China
| |
Collapse
|
17
|
Mi Z, Kuo MC, Kuo PC. RNA Aptamer Targeting of Adam8 in Cancer Growth and Metastasis. Cancers (Basel) 2023; 15:3254. [PMID: 37370863 DOI: 10.3390/cancers15123254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/07/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Cancer progression depends on an accumulation of metastasis-supporting physiological changes, which are regulated by cell-signaling molecules. In this regard, a disintegrin and metalloproteinase 8 (Adam8) is a transmembrane glycoprotein that is selectively expressed and induced by a variety of inflammatory stimuli. In this study, we identified Adam8 as a sox2-dependent protein expressed in MDA-MB-231 breast cancer cells when cocultured with mesenchymal-stem-cell-derived myofibroblast-like cancer-associated fibroblasts (myCAF). We have previously found that myCAF-induced cancer stemness is required for the maintenance of the myCAF phenotype, suggesting that the initiation and maintenance of the myCAF phenotype require distinct cell-signaling crosstalk pathways between cancer cells and myCAF. Adam8 was identified as a candidate secreted protein induced by myCAF-mediated cancer stemness. Adam8 has a known sheddase function against which we developed an RNA aptamer, namely, Adam8-Apt1-26nt. The Adam8-Apt1-26nt-mediated blockade of the extracellular soluble Adam8 metalloproteinase domain abolishes the previously initiated myCAF phenotype, or, termed differently, blocks the maintenance of the myCAF phenotype. Consequently, cancer stemness is significantly decreased. Xenograft models show that Adam8-Apt-1-26nt administration is associated with decreased tumor growth and metastasis, while flow cytometric analyses demonstrate a significantly decreased fraction of myCAF after Adam8-Apt-1-26nt treatment. The role of soluble Adam8 in the maintenance of the myCAF phenotype has not been previously characterized. Our study suggests that the signal pathways for the induction or initiation of the myCAF phenotype may be distinct from those involved with the maintenance of the myCAF phenotype.
Collapse
Affiliation(s)
- Zhiyong Mi
- Department of Surgery, University of South Florida, Tampa, FL 33620, USA
| | - Marissa C Kuo
- Department of Surgery, Vanderbilt University, Nashville, TN 37232, USA
| | - Paul C Kuo
- Department of Surgery, University of South Florida, Tampa, FL 33620, USA
| |
Collapse
|
18
|
Hayn A, Fischer T, Mierke CT. The role of ADAM8 in the mechanophenotype of MDA-MB-231 breast cancer cells in 3D extracellular matrices. Front Cell Dev Biol 2023; 11:1148162. [PMID: 37287457 PMCID: PMC10242107 DOI: 10.3389/fcell.2023.1148162] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 05/11/2023] [Indexed: 06/09/2023] Open
Abstract
The majority of investigations of cancer cells have been performed in an oversimplified 2D in vitro environment. In the last decade there is a trend toward more sophisticated 3D in vitro cell culture model systems that can bridge the existing gap between 2D in vitro and in vivo experiments in the field of biophysical and cell biological cancer cell research. Here, we hypothesize that the bidirectional interplay between breast cancer cells and their tumor microenvironment is critical for the outcome of the disease. Thereby, the tissue remodeling processes evoked by cancer cells are important for cancer cell-driven mechanical probing of their matrix environment and on cancer cell adhesion and motility. When remodeling processes have been explored, the emphasis was placed on matrix metalloproteinases and rather not on a disintegrin and metalloproteases (ADAMs). However, the role of ADAM8 in cell mechanics regulating cellular motility in 3D collagen matrices is still unclear. Thus, in this study, we focus on the function of ADAM8 in matrix remodeling and migration of 3D extracellular matrix scaffolds. Therefore, human MDA-MB-231 breast carcinoma cells with ADAM8 knocked down, referred to as ADAM8-KD cells, as well as MDA-MB-231 scrambled control cells, referred to as ADAM8-Ctrl cells, have been used to examine their ability to interact with and migrate in dense extracellular 3D matrices. The fiber displacements, as the capacity of cells to deform the environmental 3D matrix scaffold, has been observed. ADAM8-KD cells displace collagen fibers more strongly than ADAM8-Ctrl cells. Moreover, ADAM8-KD cells migrated more numerous in 3D collagen matrices compared to ADAM8-Ctrl cells. The impairment of ADAM8 using the ADAM8 inhibitor BK-1361 led to significantly increased fiber displacements of ADAM8-Ctrl cells to the levels of ADAM8-KD cells. In contrast, the inhibitor had no effect on ADAM8-KD cells in terms of fiber displacements as well as on the quantitative characteristics of cell invasion of ADAM8-Ctrl cells, albeit the cells that were found in the matrix invaded considerably deeper. When matrix remodeling by cells is impaired through GM6001, a broad-band metalloproteinase inhibitor, the fiber displacements of both cell types increased. In fact, ADAM8 is known to degrade fibronectin in a direct and/or indirect manner. The supplementation of fibronectin before polymerization of the 3D collagen matrices caused an enhancement in fiber displacements as well as in cell invasion into fibronectin-collagen matrices of ADAM8-Ctrl cells, whereas the fiber displacements of ADAM8-KD cells did not change. However, fibrinogen and laminin supplementation induced an increase in fiber displacements of both cell types. Thus, the impact of fibronectin on selective increase in fiber displacement of ADAM8-Ctrl cells appears to be ADAM8-dependent. As a consequence, the presence of ADAM8 may provide an explanation for the longstanding controversial results of fibronectin enrichment on malignant progression of cancers such as breast cancer. Finally, ADAM8 is apparently essential for providing cell-driven fiber displacements of the extracellular matrix microenvironment, which fosters 3D motility in a fibronectin-rich environment. Contribution to the field. Currently, the role of ADAM8 has been explored in 2D or at maximum 2.5D in vitro cell culture motility assays. However, the mechanical characteristics of these two cell types have not been examined. In this study, the function of ADAM8 in breast cancer is refined by providing in vitro cell investigations in 3D collagen fiber matrices of various conditions. ADAM8 has been shown to be involved in the reduced generation of fiber displacements and in influencing breast cancer cell migration. However, especially in the presence of fibronectin in 3Dcollagen fiber matrices, the fiber displacements of ADAM8-Ctrl cells are increased.
Collapse
|
19
|
Identification of Novel Core Genes Involved in Malignant Transformation of Inflamed Colon Tissue Using a Computational Biology Approach and Verification in Murine Models. Int J Mol Sci 2023; 24:ijms24054311. [PMID: 36901742 PMCID: PMC10001800 DOI: 10.3390/ijms24054311] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/18/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a complex and multifactorial systemic disorder of the gastrointestinal tract and is strongly associated with the development of colorectal cancer. Despite extensive studies of IBD pathogenesis, the molecular mechanism of colitis-driven tumorigenesis is not yet fully understood. In the current animal-based study, we report a comprehensive bioinformatics analysis of multiple transcriptomics datasets from the colon tissue of mice with acute colitis and colitis-associated cancer (CAC). We performed intersection of differentially expressed genes (DEGs), their functional annotation, reconstruction, and topology analysis of gene association networks, which, when combined with the text mining approach, revealed that a set of key overexpressed genes involved in the regulation of colitis (C3, Tyrobp, Mmp3, Mmp9, Timp1) and CAC (Timp1, Adam8, Mmp7, Mmp13) occupied hub positions within explored colitis- and CAC-related regulomes. Further validation of obtained data in murine models of dextran sulfate sodium (DSS)-induced colitis and azoxymethane/DSS-stimulated CAC fully confirmed the association of revealed hub genes with inflammatory and malignant lesions of colon tissue and demonstrated that genes encoding matrix metalloproteinases (acute colitis: Mmp3, Mmp9; CAC: Mmp7, Mmp13) can be used as a novel prognostic signature for colorectal neoplasia in IBD. Finally, using publicly available transcriptomics data, translational bridge interconnecting of listed colitis/CAC-associated core genes with the pathogenesis of ulcerative colitis, Crohn's disease, and colorectal cancer in humans was identified. Taken together, a set of key genes playing a core function in colon inflammation and CAC was revealed, which can serve both as promising molecular markers and therapeutic targets to control IBD and IBD-associated colorectal neoplasia.
Collapse
|
20
|
Saeed S, Abbasi A, Hashim ASM. A Systematic Mapping Study of detection of Tumor Cell Targeted by Enzymes though Cerebrospinal Fluid. CLINICAL CANCER INVESTIGATION JOURNAL 2023. [DOI: 10.51847/vqorizlqm3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
21
|
Mierke CT. The versatile roles of ADAM8 in cancer cell migration, mechanics, and extracellular matrix remodeling. Front Cell Dev Biol 2023; 11:1130823. [PMID: 36910158 PMCID: PMC9995898 DOI: 10.3389/fcell.2023.1130823] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/15/2023] [Indexed: 02/25/2023] Open
Abstract
The posttranslational proteolytic cleavage is a unique and irreversible process that governs the function and half-life of numerous proteins. Thereby the role of the family of A disintegrin and metalloproteases (ADAMs) plays a leading part. A member of this family, ADAM8, has gained attention in regulating disorders, such as neurogenerative diseases, immune function and cancer, by attenuating the function of proteins nearby the extracellular membrane leaflet. This process of "ectodomain shedding" can alter the turnover rate of a number of transmembrane proteins that function in cell adhesion and receptor signal transduction. In the past, the major focus of research about ADAMs have been on neurogenerative diseases, such as Alzheimer, however, there seems to be evidence for a connection between ADAM8 and cancer. The role of ADAMs in the field of cancer research has gained recent attention, but it has been not yet been extensively addressed. Thus, this review article highlights the various roles of ADAM8 with particular emphasis on pathological conditions, such as cancer and malignant cancer progression. Here, the shedding function, direct and indirect matrix degradation, effects on cancer cell mobility and transmigration, and the interplay of ADAM8 with matrix-embedded neighboring cells are presented and discussed. Moreover, the most probable mechanical impact of ADAM8 on cancer cells and their matrix environment is addressed and debated. In summary, this review presents recent advances in substrates/ligands and functions of ADAM8 in its new role in cancer and its potential link to cell mechanical properties and discusses matrix mechanics modifying properties. A deeper comprehension of the regulatory mechanisms governing the expression, subcellular localization, and activity of ADAM8 is expected to reveal appropriate drug targets that will permit a more tailored and fine-tuned modification of its proteolytic activity in cancer development and metastasis.
Collapse
Affiliation(s)
- Claudia Tanja Mierke
- Faculty of Physics and Earth Science, Biological Physics Division, Peter Debye Institute of Soft Matter Physics, Leipzig University, Leipzig, Germany
| |
Collapse
|
22
|
Tang Y, Ye C, Zeng J, Zhu P, Cheng S, Zeng W, Yang B, Liu Y, Yu Y. Identification of a basement membrane-based risk scoring system for prognosis prediction and individualized therapy in clear cell renal cell carcinoma. Front Genet 2023; 14:1038924. [PMID: 36816030 PMCID: PMC9935575 DOI: 10.3389/fgene.2023.1038924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 01/20/2023] [Indexed: 02/05/2023] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) belongs to one of the 10 most frequently diagnosed cancers worldwide and has a poor prognosis at the advanced stage. Although multiple therapeutic agents have been proven to be curative in ccRCC, their clinical application was limited due to the lack of reliable biomarkers. Considering the important role of basement membrane (BM) in tumor metastasis and TME regulation, we investigated the expression of BM-related genes in ccRCC and identified prognostic BM genes through differentially expression analysis and univariate cox regression analysis. Then, BM-related ccRCC subtypes were recognized through consensus non-negative matrix factorization based on the prognostic BM genes and evaluated with regard to clinical and TME features. Next, utilizing the differentially expressed genes between the BM-related subtypes, a risk scoring system BMRS was established after serial analysis of univariate cox regression analysis, lasso regression analysis, and multivariate cox regression analysis. Time-dependent ROC curve revealed the satisfactory prognosis predictive capacity of BMRS with internal, and external validation. Multivariate analysis proved the independent predictive ability of BMRS and a BMRS-based nomogram was constructed for clinical application. Some featured mutants were discovered through genomic analysis of the BMRS risk groups. Meanwhile, the BMRS groups were found to have distinct immune scores, immune cell infiltration levels, and immune-related functions. Moreover, with the help of data from The Cancer Immunome Atlas (TCIA) and Genomics of Drug Sensitivity in Cancer (GDSC), the potential of BMRS in predicting therapeutic response was evaluated and some possible therapeutic compounds were proposed through ConnectivityMap (CMap). For the practicability of BMRS, we validated the expression of BMRS-related genes in clinical samples. After all, we identified BM-related ccRCC subtypes with distinct clinical and TME features and constructed a risk scoring system for the prediction of prognosis, therapeutic responses, and potential therapeutic agents of ccRCC. As ccRCC systemic therapy continues to evolve, the risk scoring system BMRS we reported may assist in individualized medication administration.
Collapse
Affiliation(s)
- Yanlin Tang
- Shantou University Medical College, Shantou, China
- Department of Urology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Chujin Ye
- Department of Urology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Jiayi Zeng
- Department of Urology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Ping Zhu
- Department of Immunology, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Shouyu Cheng
- Department of Urology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Weinan Zeng
- Shantou University Medical College, Shantou, China
- Department of Urology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Bowen Yang
- Department of Urology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yanjun Liu
- Department of Immunology, School of Basic Medical Science, Southern Medical University, Guangzhou, China
- *Correspondence: Yuming Yu, ; Yanjun Liu,
| | - Yuming Yu
- Department of Urology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- *Correspondence: Yuming Yu, ; Yanjun Liu,
| |
Collapse
|
23
|
Zhang X, Felter SP, Api AM, Joshi K, Selechnik D. A Cautionary tale for using read-across for cancer hazard classification: Case study of isoeugenol and methyl eugenol. Regul Toxicol Pharmacol 2022; 136:105280. [DOI: 10.1016/j.yrtph.2022.105280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/16/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022]
|
24
|
Zhang L, Xu C, Wang SH, Ge QW, Wang XW, Xiao P, Yao QH. Cancer-associated fibroblast-related gene signatures predict survival and drug response in patients with colorectal cancer. Front Genet 2022; 13:1054152. [PMID: 36506313 PMCID: PMC9732269 DOI: 10.3389/fgene.2022.1054152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/14/2022] [Indexed: 11/27/2022] Open
Abstract
Background: Cancer-associated fibroblasts (CAFs) play an important role in the tumorigenesis, immunosuppression and metastasis of colorectal cancer (CRC), and can predict poor prognosis in patients with CRC. The present study aimed to construct a CAFs-related prognostic signature for CRC. Methods: The clinical information and corresponding RNA data of CRC patients were downloaded from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. The Estimation of STromal and Immune cells in MAlignant Tumor tissues (ESTIMATES) and xCell methods were applied to evaluate the tumor microenvironment infiltration from bulk gene expression data. Weighted gene co-expression network analysis (WGCNA) was used to construct co-expression modules. The key module was identified by calculating the module-trait correlations. The univariate Cox regression and least absolute shrinkage operator (LASSO) analyses were combined to develop a CAFs-related signature for the prognostic model. Moreover, pRRophetic and Tumor Immune Dysfunction and Exclusion (TIDE) algorithms were utilized to predict chemosensitivity and immunotherapy response. Human Protein Atlas (HPA) databases were employed to evaluate the protein expressions. Results: ESTIMATES and xCell analysis showed that high CAFs infiltration was associated with adverse prognoses. A twenty-gene CAFs-related prognostic signature (CAFPS) was established in the training cohort. Kaplan-Meier survival analyses reveled that CRC patients with higher CAFs risk scores were associated with poor prognosis in each cohort. Univariate and multivariate Cox regression analyses verified that CAFPS was as an independent prognostic factor in predicting overall survival, and a nomogram was built for clinical utility in predicting CRC prognosis. Patients with higher CAFs risk scores tended to not respond to immunotherapy, but were more sensitive to five conventional chemotherapeutic drugs. Conclusion: In summary, the CAFPS could serve as a robust prognostic indicator in CRC patients, which might help to optimize risk stratification and provide a new insight into individual treatments for CRC.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Integrated Chinese and Western Medicine, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Chao Xu
- Department of Integrated Chinese and Western Medicine, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Si-Han Wang
- The Second College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qin-Wen Ge
- The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiao-Wei Wang
- Department of Plastic Surgery, Zhejiang Hospital, Hangzhou, China
| | - Pan Xiao
- Department of Integrated Chinese and Western Medicine, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Qing-Hua Yao
- Department of Integrated Chinese and Western Medicine, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China,Integrated Traditional Chinese and Western Medicine Oncology Laboratory, Key Laboratory of Traditional Chinese Medicine of Zhejiang Province, Hangzhou, China,Key Laboratory of Head and Neck Cancer Translational Research of Zhejiang Province, Hangzhou, China,*Correspondence: Qing-Hua Yao,
| |
Collapse
|
25
|
Gruba N, Musielak M, Rejmak W, Lesner A. Detection of ADAM15 in urine from patients with bladder cancer. Anal Biochem 2022; 654:114805. [PMID: 35810783 DOI: 10.1016/j.ab.2022.114805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/04/2022] [Accepted: 07/04/2022] [Indexed: 11/01/2022]
Abstract
Cancer is one of the leading causes of death in the United States and Europe. Of the cancers, bladder cancer is the 10th most frequently diagnosed cancer and the 13th most frequently diagnosed cancer in men. There are many studies showing that proteolytic enzymes, e.g. A Disintegrin and Metalloproteinases (ADAMs), play a key role in the development and progression of neoplasms. In this paper, we present the use of chromogenic substrate of ADAM15 for the qualitative determination of specific activity of enzyme in urine of patients with confirmed bladder cancer. In the first step, we optimized the substrate molecule in non-primed positions using combinatorial chemistry. By means of the obtained ABZ-His-Ala-Arg-Gly-ANB-NH2 peptide, we detected ADAM15 activity in urine samples collected from patients diagnosed with bladder cancer. In contrast, we did not observe such activity in urine obtained from healthy volunteers.
Collapse
Affiliation(s)
- Natalia Gruba
- Department of Environmental Technology, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63 Street, PL 80-308, Gdańsk, Poland.
| | - Monika Musielak
- Department of Environmental Technology, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63 Street, PL 80-308, Gdańsk, Poland
| | - Wiktoria Rejmak
- Department of Environmental Technology, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63 Street, PL 80-308, Gdańsk, Poland
| | - Adam Lesner
- Department of Environmental Technology, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63 Street, PL 80-308, Gdańsk, Poland
| |
Collapse
|
26
|
Pei D, Xu C, Wang D, Shi X, Zhang Y, Liu Y, Guo J, Liu N, Zhu H. A Novel Prognostic Signature Associated With the Tumor Microenvironment in Kidney Renal Clear Cell Carcinoma. Front Oncol 2022; 12:912155. [PMID: 35860566 PMCID: PMC9290677 DOI: 10.3389/fonc.2022.912155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/06/2022] [Indexed: 01/05/2023] Open
Abstract
Background The tumor microenvironment (TME) is a complex and evolving environment, and the tumor immune microenvironment in kidney renal clear cell carcinoma (KIRC) has a strong suppressive profile. This study investigates the potential prognostic role and value of genes of the tumor microenvironment in KIRC. Methods The transcriptome sequencing data of 530 cases and 39 cases of KIRC and the corresponding clinical prognosis information were downloaded from TCGA data and GEO data, respectively, and TME-related gene expression profiles were extracted. A prognostic signature was constructed and evaluated using univariate Cox regression analysis and LASSO regression analysis. Gene set enrichment analysis (GSEA) was used to obtain the biological process of gene enrichment in patients with high and low-risk groups. Results A prognostic signature consisting of eight TME-related genes (LRFN1, CSF1, UCN, TUBB2B, SERPINF1, ADAM8, ABCB4, CCL22) was constructed. Kaplan-Meier survival analysis yielded significantly lower survival times for patients in the high-risk group than in the low-risk group, and the AUC values for the ROC curves of this prognostic signature were essentially greater than 0.7, and univariate and multifactorial Cox regression analyses indicated that the risk score was independent risk factors for KIRC prognosis. GSEA analysis showed that immune-related biological processes were enriched in the high-risk group and that risk values were strongly associated with multiple immune cell scores and immune checkpoint-related genes (PDCD1, CTLA4). Conclusions The prognostic signature can accurately predict the prognosis of KIRC patients, which may provide new ideas for future precision immunotherapy of KIRC.
Collapse
|
27
|
Schäfer A, Evers L, Meier L, Schlomann U, Bopp MHA, Dreizner GL, Lassmann O, Ben Bacha A, Benescu AC, Pojskic M, Preußer C, von Strandmann EP, Carl B, Nimsky C, Bartsch JW. The Metalloprotease-Disintegrin ADAM8 Alters the Tumor Suppressor miR-181a-5p Expression Profile in Glioblastoma Thereby Contributing to Its Aggressiveness. Front Oncol 2022; 12:826273. [PMID: 35371977 PMCID: PMC8964949 DOI: 10.3389/fonc.2022.826273] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/16/2022] [Indexed: 01/08/2023] Open
Abstract
Glioblastoma (GBM) as the most common and aggressive brain tumor is characterized by genetic heterogeneity, invasiveness, radio-/chemoresistance, and occurrence of GBM stem-like cells. The metalloprotease-disintegrin ADAM8 is highly expressed in GBM tumor and immune cells and correlates with poor survival. In GBM, ADAM8 affects intracellular kinase signaling and increases expression levels of osteopontin/SPP1 and matrix metalloproteinase 9 (MMP9) by an unknown mechanism. Here we explored whether microRNA (miRNA) expression levels could be regulators of MMP9 expression in GBM cells expressing ADAM8. Initially, we identified several miRNAs as dysregulated in ADAM8-deficient U87 GBM cells. Among these, the tumor suppressor miR-181a-5p was significantly upregulated in ADAM8 knockout clones. By inhibiting kinase signaling, we found that ADAM8 downregulates expression of miR-181a-5p via activation of signal transducer and activator of transcription 3 (STAT3) and mitogen-activated protein kinase (MAPK) signaling suggesting an ADAM8-dependent silencing of miR-181a-5p. In turn, mimic miR-181a-5p transfection caused decreased cell proliferation and lower MMP9 expression in GBM cells. Furthermore, miR-181a-5p was detected in GBM cell-derived extracellular vesicles (EVs) as well as patient serum-derived EVs. We identified miR-181a-5p downregulating MMP9 expression via targeting the MAPK pathway. Analysis of patient tissue samples (n=22) revealed that in GBM, miR-181a-5p is strongly downregulated compared to ADAM8 and MMP9 mRNA expression, even in localized tumor areas. Taken together, we provide evidence for a functional axis involving ADAM8/miR-181a-5p/MAPK/MMP9 in GBM tumor cells.
Collapse
Affiliation(s)
- Agnes Schäfer
- Department of Neurosurgery, Philipps University Marburg, Marburg, Germany
| | - Lara Evers
- Department of Neurosurgery, Philipps University Marburg, Marburg, Germany
| | - Lara Meier
- Department of Neurosurgery, Philipps University Marburg, Marburg, Germany
| | - Uwe Schlomann
- Department of Neurosurgery, Philipps University Marburg, Marburg, Germany
| | - Miriam H A Bopp
- Department of Neurosurgery, Philipps University Marburg, Marburg, Germany.,Marburg Center for Mind, Brain and Behavior (MCMBB), Marburg, Germany
| | - Gian-Luca Dreizner
- Department of Neurosurgery, Philipps University Marburg, Marburg, Germany
| | - Olivia Lassmann
- Department of Neurosurgery, Philipps University Marburg, Marburg, Germany
| | - Aaron Ben Bacha
- Department of Neurosurgery, Philipps University Marburg, Marburg, Germany
| | | | - Mirza Pojskic
- Department of Neurosurgery, Philipps University Marburg, Marburg, Germany
| | - Christian Preußer
- Core Facility Extracellular Vesicles, Philipps University of Marburg - Medical Faculty, Marburg, Germany
| | - Elke Pogge von Strandmann
- Core Facility Extracellular Vesicles, Philipps University of Marburg - Medical Faculty, Marburg, Germany
| | - Barbara Carl
- Department of Neurosurgery, Philipps University Marburg, Marburg, Germany
| | - Christopher Nimsky
- Department of Neurosurgery, Philipps University Marburg, Marburg, Germany.,Marburg Center for Mind, Brain and Behavior (MCMBB), Marburg, Germany
| | - Jörg W Bartsch
- Department of Neurosurgery, Philipps University Marburg, Marburg, Germany.,Marburg Center for Mind, Brain and Behavior (MCMBB), Marburg, Germany
| |
Collapse
|
28
|
Zhang X, Jiang M, Zhang X, Zhang J, Guo H, Wu C. An extracellular matrix-based signature associated with immune microenvironment predicts the prognosis of patients with hepatocellular carcinoma. Clin Res Hepatol Gastroenterol 2022; 46:101877. [PMID: 35257959 DOI: 10.1016/j.clinre.2022.101877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/24/2022] [Accepted: 02/02/2022] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Increased data showed that genes related to extracellular matrix (ECM) are important to hepatocellular carcinoma (HCC) development. In contrast, no research was carried out that proposed that ECM-related genes should be reliable prognostic signature. METHODS This study used data from The Cancer Genome Atlas along with The International Cancer Genome Consortium to gather ECM-related gene expression as well as clinical information related to the extracellular matrix. The least absolute shrinkage, Cox analysis, along with selection operator Cox regression and random forest have been utilized for establishing an ECM-related prognostic models. RESULTS A series of investigations led us to identify 13 ECMs which we utilized to construct a prognostic signature with a larger area under the curve of 0.808. HCC patients have been categorized into 2 main groups based on the risk score formula: low risk along with high risk. The findings of the Kaplan-Meier curve revealed that there had been a statistically significant difference between these two groups. Our ECM-related signature can be utilized as independent predictor of survival in HCC. Low-risk patients stratified by the final model presented higher sensitivity to 8 targeted drugs (especially sorafenib) and 2 common chemo-drugs. Our gene set enrichment analysis outcomes recommended that high-risk group have been enriched in ECM, tumorigenesis, as well as immune-related pathways. Immune cell analysis showed that high-risk group had lower cell fraction of CD8+ T cells, Macrophages M1, B naïve cells, memory resting CD4+ T cells, Monocytes, resting Dendritic cells and activated Mast cells, along with higher PD-1 and CTLA4 expression levels as compared to low-risk group. CONCLUSION Our identified ECM-related signature can also give new insight into underlying mechanisms along with therapeutic strategies in order to treat HCC.
Collapse
Affiliation(s)
- Xinyun Zhang
- Department of Medical Oncology, The Third Central Hospital of Tianjin, China; Artificial Cell Engineering Technology Research Center, Tianjin, China; Tianjin Institute of Hepatobiliary Disease, Tianjin, China; Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases
| | - Mengmeng Jiang
- Department of Medical Oncology, The Third Central Hospital of Tianjin, China; Artificial Cell Engineering Technology Research Center, Tianjin, China; Tianjin Institute of Hepatobiliary Disease, Tianjin, China; Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases
| | - Xihao Zhang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Department of Hepatobiliary Surgery, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer
| | - Jinliang Zhang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Department of Hepatobiliary Surgery, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer
| | - Hongxing Guo
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, The Third Central Hospital of Tianjin, China.
| | - Chenxuan Wu
- Department of Medical Oncology, The Third Central Hospital of Tianjin, China; Artificial Cell Engineering Technology Research Center, Tianjin, China; Tianjin Institute of Hepatobiliary Disease, Tianjin, China; Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases.
| |
Collapse
|
29
|
Conrad C, Yildiz D, Cleary SJ, Margraf A, Cook L, Schlomann U, Panaretou B, Bowser JL, Karmouty-Quintana H, Li J, Berg NK, Martin SC, Aljohmani A, Moussavi-Harami SF, Wang KM, Tian JJ, Magnen M, Valet C, Qiu L, Singer JP, Eltzschig HK, Bertrams W, Herold S, Suttorp N, Schmeck B, Ball ZT, Zarbock A, Looney MR, Bartsch JW. ADAM8 signaling drives neutrophil migration and ARDS severity. JCI Insight 2022; 7:e149870. [PMID: 35132956 PMCID: PMC8855804 DOI: 10.1172/jci.insight.149870] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 12/21/2021] [Indexed: 01/27/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) results in catastrophic lung failure and has an urgent, unmet need for improved early recognition and therapeutic development. Neutrophil influx is a hallmark of ARDS and is associated with the release of tissue-destructive immune effectors, such as matrix metalloproteinases (MMPs) and membrane-anchored metalloproteinase disintegrins (ADAMs). Here, we observed using intravital microscopy that Adam8-/- mice had impaired neutrophil transmigration. In mouse pneumonia models, both genetic deletion and pharmacologic inhibition of ADAM8 attenuated neutrophil infiltration and lung injury while improving bacterial containment. Unexpectedly, the alterations of neutrophil function were not attributable to impaired proteolysis but resulted from reduced intracellular interactions of ADAM8 with the actin-based motor molecule Myosin1f that suppressed neutrophil motility. In 2 ARDS cohorts, we analyzed lung fluid proteolytic signatures and identified that ADAM8 activity was positively correlated with disease severity. We propose that in acute inflammatory lung diseases such as pneumonia and ARDS, ADAM8 inhibition might allow fine-tuning of neutrophil responses for therapeutic gain.
Collapse
Affiliation(s)
- Catharina Conrad
- Department of Medicine, Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, School of Medicine, University of California, San Francisco, San Francisco, California, USA
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| | - Daniela Yildiz
- Institute of Experimental and Clinical Pharmacology and Toxicology, PZMS, ZHMB, Saarland University, Homburg, Germany
| | - Simon J. Cleary
- Department of Medicine, Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, School of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Andreas Margraf
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| | - Lena Cook
- Department of Neurosurgery/Lab, Faculty of Medicine, Philipps-University, Marburg, Germany
| | - Uwe Schlomann
- Department of Neurosurgery/Lab, Faculty of Medicine, Philipps-University, Marburg, Germany
| | - Barry Panaretou
- School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King’s College London, London, United Kingdom
| | - Jessica L. Bowser
- Department of Pathology & Laboratory Medicine, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | | | - Jiwen Li
- Department of Anesthesiology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Nathaniel K. Berg
- Department of Anesthesiology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | | | - Ahmad Aljohmani
- Institute of Experimental and Clinical Pharmacology and Toxicology, PZMS, ZHMB, Saarland University, Homburg, Germany
| | - S. Farshid Moussavi-Harami
- Department of Pediatrics, Division of Pediatric Critical Care, University of California, San Francisco, San Francisco, California, USA
| | - Kristin M. Wang
- Department of Medicine, Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, School of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Jennifer J. Tian
- Department of Medicine, Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, School of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Mélia Magnen
- Department of Medicine, Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, School of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Colin Valet
- Department of Medicine, Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, School of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Longhui Qiu
- Department of Medicine, Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, School of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Jonathan P. Singer
- Department of Medicine, Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, School of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Holger K. Eltzschig
- Department of Anesthesiology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | | | - Wilhelm Bertrams
- Institute for Lung Research (iLung), Philipps-University, Marburg, Germany
| | - Susanne Herold
- Department of Internal Medicine II, University Medical Center Giessen and Marburg, Giessen, Germany
- Deutsches Zentrum für Lungenforschung (DZL), Giessen, Germany
| | - Norbert Suttorp
- Department of Internal Medicine/Infectious Diseases and Respiratory Medicine, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Bernd Schmeck
- Deutsches Zentrum für Lungenforschung (DZL), Giessen, Germany
- Pulmonary and Critical Care Medicine, University Medical Center Giessen and Marburg, Marburg, Germany
- German Center for Infectious Disease Research (DZIF), Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| | - Zachary T. Ball
- Department of Chemistry, Rice University, Houston, Texas, USA
| | - Alexander Zarbock
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| | - Mark R. Looney
- Department of Medicine, Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, School of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Jörg W. Bartsch
- Department of Neurosurgery/Lab, Faculty of Medicine, Philipps-University, Marburg, Germany
| |
Collapse
|
30
|
IKKα-deficient lung adenocarcinomas generate an immunosuppressive microenvironment by overproducing Treg-inducing cytokines. Proc Natl Acad Sci U S A 2022; 119:2120956119. [PMID: 35121655 PMCID: PMC8833198 DOI: 10.1073/pnas.2120956119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2021] [Indexed: 11/18/2022] Open
Abstract
The tumor microenvironment (TME) provides potential targets for cancer therapy. However, how signals originating in cancer cells affect tumor-directed immunity is largely unknown. Deletions in the CHUK locus, coding for IκB kinase α (IKKα), correlate with reduced lung adenocarcinoma (ADC) patient survival and promote KrasG12D-initiated ADC development in mice, but it is unknown how reduced IKKα expression affects the TME. Here, we report that low IKKα expression in human and mouse lung ADC cells correlates with increased monocyte-derived macrophage and regulatory T cell (Treg) scores and elevated transcription of genes coding for macrophage-recruiting and Treg-inducing cytokines (CSF1, CCL22, TNF, and IL-23A). By stimulating recruitment of monocyte-derived macrophages from the bone marrow and enforcing a TNF/TNFR2/c-Rel signaling cascade that stimulates Treg generation, these cytokines promote lung ADC progression. Depletion of TNFR2, c-Rel, or TNF in CD4+ T cells or monocyte-derived macrophages dampens Treg generation and lung tumorigenesis. Treg depletion also attenuates carcinogenesis. In conclusion, reduced cancer cell IKKα activity enhances formation of a protumorigenic TME through a pathway whose constituents may serve as therapeutic targets for KRAS-initiated lung ADC.
Collapse
|
31
|
Liu J, Li J, Du H, Xu L, Yang Z, Yuan M, Zhang K, Li J, Xing W, Wang S, Hu T, Wang J, Wang J, Gong Q. Three Potential Tumor Markers Promote Metastasis and Recurrence of Colorectal Cancer by Regulating the Inflammatory Response: ADAM8, LYN, and S100A9. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:3118046. [PMID: 35103068 PMCID: PMC8800630 DOI: 10.1155/2022/3118046] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/08/2021] [Indexed: 11/17/2022]
Abstract
Metastasis and recurrence are major causes of colorectal cancer (CRC) death, but their molecular mechanisms are unclear. In this study, genes associated with CRC metastasis and recurrence were identified by weighted gene coexpression network analysis, selecting the top 25% most variant genes in the dataset GSE33113. By average linkage hierarchical clustering, a total of 21 modules were generated. One key module was identified as the most relevant to the prognosis of CRC. Gene Ontology analysis indicated that genes associated with tumor metastasis and recurrence in this module were significantly enriched in inflammatory biological functions. Functional analysis was performed on the key module, and candidate hub genes (ADAM8, LYN, and S100A9) were screened out by expression and survival analysis. In summary, the three core genes identified in this study could greatly improve our understanding of CRC metastasis and recurrence. The results also provide a theoretical basis for the use of three core genes (ADAM8, LYN, and S100A9) as a combined marker for early diagnosis, which could benefit CRC patients.
Collapse
Affiliation(s)
- Jiawei Liu
- Department of Clinical Laboratory, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai 201700, China
- Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei 063210, China
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jing Li
- Department of Hepatobiliary Surgery, Kailuan General Hospital, Tangshan, Hebei 063210, China
| | - Haolin Du
- Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei 063210, China
- Department of Clinical Laboratory, Tianshui Hospital of Traditional Chinese Medicine, Tianshui 741000, China
| | - Liming Xu
- Department of Clinical Laboratory, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai 201700, China
| | - Zhenbang Yang
- Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Mengjiao Yuan
- Department of Clinical Laboratory, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai 201700, China
| | - Kaiyue Zhang
- Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Jialei Li
- Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Wenjun Xing
- Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Shoujie Wang
- Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Tingting Hu
- Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Jinjin Wang
- Department of Clinical Laboratory, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai 201700, China
| | - Jin Wang
- Department of Clinical Laboratory, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai 201700, China
| | - Qian Gong
- Department of Clinical Laboratory, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai 201700, China
| |
Collapse
|
32
|
López-Cortés GI, Díaz-Alvarez L, Ortega E. Leukocyte Membrane Enzymes Play the Cell Adhesion Game. Front Immunol 2021; 12:742292. [PMID: 34887854 PMCID: PMC8650063 DOI: 10.3389/fimmu.2021.742292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 10/29/2021] [Indexed: 12/16/2022] Open
Abstract
For a long time, proteins with enzymatic activity have not been usually considered to carry out other functions different from catalyzing chemical reactions within or outside the cell. Nevertheless, in the last few years several reports have uncovered the participation of numerous enzymes in other processes, placing them in the category of moonlighting proteins. Some moonlighting enzymes have been shown to participate in complex processes such as cell adhesion. Cell adhesion plays a physiological role in multiple processes: it enables cells to establish close contact with one another, allowing communication; it is a key step during cell migration; it is also involved in tightly binding neighboring cells in tissues, etc. Importantly, cell adhesion is also of great importance in pathophysiological scenarios like migration and metastasis establishment of cancer cells. Cell adhesion is strictly regulated through numerous switches: proteins, glycoproteins and other components of the cell membrane. Recently, several cell membrane enzymes have been reported to participate in distinct steps of the cell adhesion process. Here, we review a variety of examples of membrane bound enzymes participating in adhesion of immune cells.
Collapse
Affiliation(s)
- Georgina I López-Cortés
- Department of Immunology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Laura Díaz-Alvarez
- Department of Immunology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Enrique Ortega
- Department of Immunology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
33
|
Gao Y, Zhou Y, Wang C, Sample KM, Yu X, Ben-David Y. Propofol mediates pancreatic cancer cell activity through the repression of ADAM8 via SP1. Oncol Rep 2021; 46:249. [PMID: 34617574 DOI: 10.3892/or.2021.8200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 09/28/2021] [Indexed: 11/05/2022] Open
Abstract
Propofol is a commonly used anesthetic with controversial effects on cancer cells. A growing number of studies have demonstrated that low concentrations of propofol are associated with tumor suppression and when used as an intravenous anesthesia improved recurrence‑free survival rates for many cancers, but deeper insights into its underlying mechanism are needed. The study detailed herein focused upon the effect of propofol on pancreatic cancer cells and the mechanism by which propofol reduces A disintegrin and metalloproteinase 8 (ADAM8) expression. The ability of propofol to impact the proliferation, migration and cell cycle of pancreatic cancer cell lines was assessed in vitro. This was mechanistically explored following the identification of SP1 binding sites within ADAM8, which enabled the regulatory effects of specificity protein 1 (SP1) on ADAM8 following propofol treatment to be further explored. Ultimately, this study was able to show that propofol significantly inhibited the proliferation, migration and invasion of pancreatic cancer cells and decreased the percentage of cells in S‑phase. Propofol treatment was also shown to repress ADAM8 and SP1 expression, but was unable to affect ADAM8 expression following knockdown of SP1. Moreover, a direct physical interaction between SP1 and ADAM8 was verified using co‑immunoprecipitation and dual‑luciferase reporter assays. Cumulatively, these results suggest that propofol represses pathological biological behaviors associated with pancreatic cancer cells through the suppression of SP1, which in turn results in lower ADAM8 mRNA expression and protein levels.
Collapse
Affiliation(s)
- Yutong Gao
- Department of Anesthesiology, Guizhou Provincial People's Hospital, The Affiliated Hospital of Guizhou University, Guiyang, Guizhou 550000, P.R. China
| | - Yu Zhou
- Department of Anesthesiology, Zunyi Medical University, Zunyi, Guizhou 563006, P.R. China
| | - Chunlin Wang
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou 550025, P.R. China
| | - Klarke M Sample
- The National Health Commission's Key Laboratory of Immunological Pulmonary Disease, Guizhou Provincial People's Hospital, The Affiliated Hospital of Guizhou University, Guiyang, Guizhou 550000, P.R. China
| | - Xiangdi Yu
- Department of Anesthesiology, Guizhou Provincial People's Hospital, The Affiliated Hospital of Guizhou University, Guiyang, Guizhou 550000, P.R. China
| | - Yaacov Ben-David
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou 550025, P.R. China
| |
Collapse
|
34
|
Cuffaro D, Camodeca C, Tuccinardi T, Ciccone L, Bartsch JW, Kellermann T, Cook L, Nuti E, Rossello A. Discovery of Dimeric Arylsulfonamides as Potent ADAM8 Inhibitors. ACS Med Chem Lett 2021; 12:1787-1793. [PMID: 35111280 PMCID: PMC8805605 DOI: 10.1021/acsmedchemlett.1c00411] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/05/2021] [Indexed: 11/30/2022] Open
Abstract
![]()
The metalloproteinase
ADAM8 is upregulated in several cancers but
has a dispensable function under physiological conditions. In tumor
cells, ADAM8 is involved in invasion, migration, and angiogenesis.
The use of bivalent inhibitors could impair migration and invasion
through the double binding to a homodimeric form of ADAM8 located
on the cell surface of tumor cells. Herein we report the rational
design and synthesis of the first dimeric ADAM8 inhibitors selective
over ADAM10 and matrix metalloproteinases. Bivalent derivatives have
been obtained by dimerizing the structure of a previously described
ADAM17 inhibitor, JG26. In particular, derivative 2 was
shown to inhibit ADAM8 proteolytic activity in vitro and in cell-based assays at nanomolar concentration. Moreover, it
was more effective than the parent monomeric compound in blocking
invasiveness in the breast cancer MDA-MB-231 cell line, thus supporting
our hypothesis about the importance of inhibiting the active homodimer
of ADAM8.
Collapse
Affiliation(s)
- Doretta Cuffaro
- Department of Pharmacy, University of Pisa, via Bonanno 6, 56126 Pisa, Italy
| | - Caterina Camodeca
- Department of Pharmacy, University of Pisa, via Bonanno 6, 56126 Pisa, Italy
| | - Tiziano Tuccinardi
- Department of Pharmacy, University of Pisa, via Bonanno 6, 56126 Pisa, Italy
| | - Lidia Ciccone
- Department of Pharmacy, University of Pisa, via Bonanno 6, 56126 Pisa, Italy
| | - Jörg W Bartsch
- Department of Neurosurgery, Marburg University, Baldingerstrasse, 35033 Marburg, Germany
| | - Tanja Kellermann
- Department of Neurosurgery, Marburg University, Baldingerstrasse, 35033 Marburg, Germany
| | - Lena Cook
- Department of Neurosurgery, Marburg University, Baldingerstrasse, 35033 Marburg, Germany
| | - Elisa Nuti
- Department of Pharmacy, University of Pisa, via Bonanno 6, 56126 Pisa, Italy
| | - Armando Rossello
- Department of Pharmacy, University of Pisa, via Bonanno 6, 56126 Pisa, Italy
| |
Collapse
|
35
|
Nain Z, Barman SK, Sheam MM, Syed SB, Samad A, Quinn JMW, Karim MM, Himel MK, Roy RK, Moni MA, Biswas SK. Transcriptomic studies revealed pathophysiological impact of COVID-19 to predominant health conditions. Brief Bioinform 2021; 22:bbab197. [PMID: 34076249 PMCID: PMC8194991 DOI: 10.1093/bib/bbab197] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 04/10/2021] [Accepted: 04/30/2021] [Indexed: 12/16/2022] Open
Abstract
Despite the association of prevalent health conditions with coronavirus disease 2019 (COVID-19) severity, the disease-modifying biomolecules and their pathogenetic mechanisms remain unclear. This study aimed to understand the influences of COVID-19 on different comorbidities and vice versa through network-based gene expression analyses. Using the shared dysregulated genes, we identified key genetic determinants and signaling pathways that may involve in their shared pathogenesis. The COVID-19 showed significant upregulation of 93 genes and downregulation of 15 genes. Interestingly, it shares 28, 17, 6 and 7 genes with diabetes mellitus (DM), lung cancer (LC), myocardial infarction and hypertension, respectively. Importantly, COVID-19 shared three upregulated genes (i.e. MX2, IRF7 and ADAM8) with DM and LC. Conversely, downregulation of two genes (i.e. PPARGC1A and METTL7A) was found in COVID-19 and LC. Besides, most of the shared pathways were related to inflammatory responses. Furthermore, we identified six potential biomarkers and several important regulatory factors, e.g. transcription factors and microRNAs, while notable drug candidates included captopril, rilonacept and canakinumab. Moreover, prognostic analysis suggests concomitant COVID-19 may result in poor outcome of LC patients. This study provides the molecular basis and routes of the COVID-19 progression due to comorbidities. We believe these findings might be useful to further understand the intricate association of these diseases as well as for the therapeutic development.
Collapse
Affiliation(s)
- Zulkar Nain
- Department of Biotechnology and Genetic Engineering, Islamic University, Bangladesh
| | | | - Md Moinuddin Sheam
- Department of Biotechnology and Genetic Engineering, Islamic University, Bangladesh
| | - Shifath Bin Syed
- Department of Biotechnology and Genetic Engineering, Islamic University, Bangladesh
| | - Abdus Samad
- Department of Genetic Engineering and Biotechnology at the Jashore University of Science and Technology, Bangladesh
| | | | | | | | | | | | | |
Collapse
|
36
|
Dexter E, Kong Q. Neuroprotective effect and potential of cellular prion protein and its cleavage products for treatment of neurodegenerative disorders part II: strategies for therapeutics development. Expert Rev Neurother 2021; 21:983-991. [PMID: 34470554 DOI: 10.1080/14737175.2021.1965882] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: The cellular prion protein (PrPC), some of its derivatives (especially PrP N-terminal N1 peptide and shed PrP), and PrPC-containing exosomes have strong neuroprotective activities, which have been reviewed in the companion article (Part I) and are briefly summarized here.Areas covered: We propose that elevating the extracellular levels of a protective PrP form using gene therapy and other approaches is a very promising novel avenue for prophylactic and therapeutic treatments against prion disease, Alzheimer's disease, and several other neurodegenerative diseases. We will dissect the pros and cons of various potential PrP-based treatment options and propose a few strategies that are more likely to succeed. The cited references were obtained from extensive PubMed searches of recent literature, including peer-reviewed original articles and review articles.Expert opinion: Concurrent knockdown of celllular PrP expression and elevation of the extracellular levels of a neuroprotective PrP N-terminal peptide via optimized gene therapy vectors is a highly promising broad-spectrum prophylactic and therapeutic strategy against several neurodegenerative diseases, including prion diseases, Alzheimer's disease and Parkinson's disease.
Collapse
Affiliation(s)
- Emily Dexter
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Qingzhong Kong
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.,Department of Neurology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
37
|
Gutiérrez JM, Albulescu LO, Clare RH, Casewell NR, Abd El-Aziz TM, Escalante T, Rucavado A. The Search for Natural and Synthetic Inhibitors That Would Complement Antivenoms as Therapeutics for Snakebite Envenoming. Toxins (Basel) 2021; 13:451. [PMID: 34209691 PMCID: PMC8309910 DOI: 10.3390/toxins13070451] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/23/2021] [Accepted: 06/27/2021] [Indexed: 12/28/2022] Open
Abstract
A global strategy, under the coordination of the World Health Organization, is being unfolded to reduce the impact of snakebite envenoming. One of the pillars of this strategy is to ensure safe and effective treatments. The mainstay in the therapy of snakebite envenoming is the administration of animal-derived antivenoms. In addition, new therapeutic options are being explored, including recombinant antibodies and natural and synthetic toxin inhibitors. In this review, snake venom toxins are classified in terms of their abundance and toxicity, and priority actions are being proposed in the search for snake venom metalloproteinase (SVMP), phospholipase A2 (PLA2), three-finger toxin (3FTx), and serine proteinase (SVSP) inhibitors. Natural inhibitors include compounds isolated from plants, animal sera, and mast cells, whereas synthetic inhibitors comprise a wide range of molecules of a variable chemical nature. Some of the most promising inhibitors, especially SVMP and PLA2 inhibitors, have been developed for other diseases and are being repurposed for snakebite envenoming. In addition, the search for drugs aimed at controlling endogenous processes generated in the course of envenoming is being pursued. The present review summarizes some of the most promising developments in this field and discusses issues that need to be considered for the effective translation of this knowledge to improve therapies for tackling snakebite envenoming.
Collapse
Affiliation(s)
- José María Gutiérrez
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José 11501, Costa Rica; (T.E.); (A.R.)
| | - Laura-Oana Albulescu
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK; (L.-O.A.); (R.H.C.); (N.R.C.)
| | - Rachel H. Clare
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK; (L.-O.A.); (R.H.C.); (N.R.C.)
| | - Nicholas R. Casewell
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK; (L.-O.A.); (R.H.C.); (N.R.C.)
| | - Tarek Mohamed Abd El-Aziz
- Zoology Department, Faculty of Science, Minia University, El-Minia 61519, Egypt;
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900, USA
| | - Teresa Escalante
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José 11501, Costa Rica; (T.E.); (A.R.)
| | - Alexandra Rucavado
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José 11501, Costa Rica; (T.E.); (A.R.)
| |
Collapse
|
38
|
Yang G, Cui M, Jiang W, Sheng J, Yang Y, Zhang X. Molecular switch in human diseases-disintegrin and metalloproteinases, ADAM17. Aging (Albany NY) 2021; 13:16859-16872. [PMID: 34182543 PMCID: PMC8266367 DOI: 10.18632/aging.203200] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 05/18/2021] [Indexed: 01/01/2023]
Abstract
The ADAMs (a disintegrin and metalloproteinase) are a family of cell surface proteins with crucial roles in the regulation of cell adhesion, cell proliferation to migration, proteolysis and cell signaling transduction pathways. Among these enzymes, the ADAM17 shows significant effects in the “ectodomain shedding” of its substrates such as cytokines (e.g., tumor necrosis factor α, TNFα), growth factors (e.g., epidermal growth factor, EGF), adhesion proteins (e.g., L-selectin), and their receptors (e.g., IL-6R and TNFα). Several studies focus on the underlying molecular mechanisms of ADAM17 in diseased conditions. Here, we took several different approaches to elucidate the function of ADAM17, the participation of ADAM17 in several human diseases, and the potential as targeted therapy reagents. As more and more studies verify the miRNA-mediated expression variation of ADAM17, the specific regulation network of miRNAs and ADAM17 was exploited in this review as well.
Collapse
Affiliation(s)
- Guang Yang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun 130041, P.R. China
| | - Mengying Cui
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun 130041, P.R. China
| | - Weibo Jiang
- Department of Orthopaedic, The Second Hospital of Jilin University, Changchun 130041, P.R. China
| | - Jiyao Sheng
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun 130041, P.R. China
| | - Yongsheng Yang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun 130041, P.R. China
| | - Xuewen Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun 130041, P.R. China
| |
Collapse
|
39
|
Liu Y, Jiang K, Zhi T, Xu X. miR-720 is a key regulator of glioma migration and invasion by controlling TARSL2 expression. Hum Cell 2021; 34:1504-1516. [PMID: 34024034 DOI: 10.1007/s13577-021-00551-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 05/12/2021] [Indexed: 12/28/2022]
Abstract
Glioblastoma (GBM) is the most lethal type of primary brain tumor and is characterized by diffuse infiltrative growth. However, the mechanisms that control this phenotype remain largely unknown. Emerging evidence has demonstrated that the abnormal expression of microRNAs and their target genes are involved in the migration and invasion of glioma cells. In this study, we demonstrated that microRNA-720 (miR-720) was significantly upregulated in glioma tissues and cells. Functional experiments showed that overexpression of miR-720 promotes glioma migration and invasion, while downregulation of miR-720 inhibits glioma migration and invasion. Meanwhile, we found that threonyl-tRNA synthetase like-2 (TARSL2) was a direct and functional target of miR-720 in glioma. Reintroduction of TARSL2 into glioma cells repressed the invasion promoting function of miR-720, whereas downregulation of TARSL2 reversed the anti-invasion function of anti-miR-720. Furthermore, quantitative real-time polymerase chain reaction results showed that miR-720 was inversely correlated with TARSL2 expression in 40 GBM tissues. Finally, in vivo experiments showed that miR-720 promotes glioma growth and upregulates invasion-related genes in nude mice. Overall, our findings suggest increasing miR-720 enhances glioma migration and invasion through downregulation of TARSL2, which may provide novel insight into the treatment of glioma.
Collapse
Affiliation(s)
- Yinlong Liu
- Department of Neurosurgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, 215008, Jiangsu Province, China
| | - Kuan Jiang
- Department of Neurosurgery, Yixing People's Hospital, Yixing, 214200, Jiangsu Province, China
| | - Tongle Zhi
- Department of Neurosurgery, The First People's Hospital of Yancheng, The Fourth Affiliated Hospital of Nantong University, Yancheng, 224006, Jiangsu Province, China
| | - Xiupeng Xu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China.
| |
Collapse
|
40
|
Integrated Analysis to Identify a Redox-Related Prognostic Signature for Clear Cell Renal Cell Carcinoma. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6648093. [PMID: 33968297 PMCID: PMC8084660 DOI: 10.1155/2021/6648093] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/03/2021] [Accepted: 04/12/2021] [Indexed: 02/06/2023]
Abstract
The imbalance of the redox system has been shown to be closely related to the occurrence and progression of many cancers. However, the biological function and clinical significance of redox-related genes (RRGs) in clear cell renal cell carcinoma (ccRCC) are unclear. In our current study, we downloaded transcriptome data from The Cancer Genome Atlas (TCGA) database of ccRCC patients and identified the differential expression of RRGs in tumor and normal kidney tissues. Then, we identified a total of 344 differentially expressed RRGs, including 234 upregulated and 110 downregulated RRGs. Fourteen prognosis-related RRGs (ADAM8, CGN, EIF4EBP1, FOXM1, G6PC, HAMP, HTR2C, ITIH4, LTB4R, MMP3, PLG, PRKCG, SAA1, and VWF) were selected out, and a prognosis-related signature was constructed based on these RRGs. Survival analysis showed that overall survival was lower in the high-risk group than in the low-risk group. The area under the receiver operating characteristic curve of the risk score signature was 0.728 at three years and 0.759 at five years in the TCGA cohort and 0.804 at three years and 0.829 at five years in the E-MTAB-1980 cohort, showing good predictive performance. In addition, we explored the regulatory relationships of these RRGs with upstream miRNA, their biological functions and molecular mechanisms, and their relationship with immune cell infiltration. We also established a nomogram based on these prognostic RRGs and performed internal and external validation in the TCGA and E-MTAB-1980 cohorts, respectively, showing an accurate prediction of ccRCC prognosis. Moreover, a stratified analysis showed a significant correlation between the prognostic signature and ccRCC progression.
Collapse
|
41
|
Xu S, Zhang T, Cao Z, Zhong W, Zhang C, Li H, Song J. Integrin-α9β1 as a Novel Therapeutic Target for Refractory Diseases: Recent Progress and Insights. Front Immunol 2021; 12:638400. [PMID: 33790909 PMCID: PMC8005531 DOI: 10.3389/fimmu.2021.638400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 02/26/2021] [Indexed: 12/12/2022] Open
Abstract
Integrins refer to heterodimers consisting of subunits α and β. They serve as receptors on cell membranes and interact with extracellular ligands to mediate intracellular molecular signals. One of the least-studied members of the integrin family is integrin-α9β1, which is widely distributed in various human tissues and organs. Integrin-α9β1 regulates the physiological state of cells through a variety of complex signaling pathways to participate in the specific pathological processes of some intractable diseases. In recent years, an increasing amount of research has focused on the role of α9β1 in the molecular mechanisms of different refractory diseases and its promising potential as a therapeutic target. Accordingly, this review introduces and summarizes recent research related to integrin-α9β1, describes the synergistic functions of α9β1 and its corresponding ligands in cancer, autoimmune diseases, nerve injury and thrombosis and, more importantly, highlights the potential of α9β1 as a distinctive target for the treatment of these intractable diseases.
Collapse
Affiliation(s)
- Shihan Xu
- College of Stomatology, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Tingwei Zhang
- College of Stomatology, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Zhengguo Cao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Periodontology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Wenjie Zhong
- College of Stomatology, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Chuangwei Zhang
- College of Stomatology, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Han Li
- College of Stomatology, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Jinlin Song
- College of Stomatology, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| |
Collapse
|
42
|
Expression of the Metalloproteinase ADAM8 Is Upregulated in Liver Inflammation Models and Enhances Cytokine Release In Vitro. Mediators Inflamm 2021; 2021:6665028. [PMID: 33814981 PMCID: PMC7987468 DOI: 10.1155/2021/6665028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/22/2021] [Accepted: 03/02/2021] [Indexed: 11/17/2022] Open
Abstract
Acute and chronic liver inflammation is driven by cytokine and chemokine release from various cell types in the liver. Here, we report that the induction of inflammatory mediators is associated with a yet undescribed upregulation of the metalloproteinase ADAM8 in different murine hepatitis models. We further show the importance of ADAM8 expression for the production of inflammatory mediators in cultured liver cells. As a model of acute inflammation, we investigated liver tissue from lipopolysaccharide- (LPS-) treated mice in which ADAM8 expression was markedly upregulated compared to control mice. In vitro, stimulation with LPS enhanced ADAM8 expression in murine and human endothelial and hepatoma cell lines as well as in primary murine hepatocytes. The enhanced ADAM8 expression was associated with an upregulation of TNF-α and IL-6 expression and release. Inhibition studies indicate that the cytokine response of hepatoma cells to LPS depends on the activity of ADAM8 and that signalling by TNF-α can contribute to these ADAM8-dependent effects. The role of ADAM8 was further confirmed with primary hepatocytes from ADAM8 knockout mice in which TNF-α and IL-6 induction and release were considerably attenuated. As a model of chronic liver injury, we studied liver tissue from mice undergoing high-fat diet-induced steatohepatitis and again observed upregulation of ADAM8 mRNA expression compared to healthy controls. In vitro, ADAM8 expression was upregulated in hepatoma, endothelial, and stellate cell lines by various mediators of steatohepatitis including fatty acid (linoleic-oleic acid), IL-1β, TNF-α, IFN-γ, and TGF-β. Upregulation of ADAM8 was associated with the induction and release of proinflammatory cytokines (TNF-α and IL-6) and chemokines (CX3CL1). Finally, knockdown of ADAM8 expression in all tested cell types attenuated the release of these mediators. Thus, ADAM8 is upregulated in acute and chronic liver inflammation and is able to promote inflammation by enhancing expression and release of inflammatory mediators.
Collapse
|
43
|
Jaworek C, Verel-Yilmaz Y, Driesch S, Ostgathe S, Cook L, Wagner S, Bartsch DK, Slater EP, Bartsch JW. Cohort Analysis of ADAM8 Expression in the PDAC Tumor Stroma. J Pers Med 2021; 11:jpm11020113. [PMID: 33578644 PMCID: PMC7916368 DOI: 10.3390/jpm11020113] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/05/2021] [Accepted: 02/07/2021] [Indexed: 12/17/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a cancer type with one of the highest mortalities. The metalloprotease-disintegrin ADAM8 is highly expressed in pancreatic cancer cells and is correlated with an unfavorable patient prognosis. However, no information is available on ADAM8 expression in cells of the tumor microenvironment. We used immunohistochemistry (IHC) to describe the stromal cell types expressing ADAM8 in PDAC patients using a cohort of 72 PDAC patients. We found ADAM8 expressed significantly in macrophages (6%), natural killer cells (40%), and neutrophils (63%), which showed the highest percentage of ADAM8 expressing stromal cells. We quantified the amount of ADAM8+ neutrophils in post-capillary venules in PDAC sections by IHC. Notably, the amount of ADAM8+ neutrophils could be correlated with post-operative patient survival times. In contrast, neither the total neutrophil count in peripheral blood nor the neutrophil-to-lymphocyte ratio showed a comparable correlation. We conclude from our data that ADAM8 is, in addition to high expression levels in tumor cells, present in tumor-associated stromal macrophages, NK cells, and neutrophils and, in addition to functional implications, the ADAM8-expressing neutrophil density in post-capillary venules is a diagnostic parameter for PDAC patients when the numbers of ADAM8+ neutrophils are quantified.
Collapse
Affiliation(s)
- Christian Jaworek
- Department of Neurosurgery, Philipps University Marburg, Baldingerstrasse, 35033 Marburg, Germany; (C.J.); (S.O.); (L.C.)
| | - Yesim Verel-Yilmaz
- Department of Visceral Surgery, Philipps University Marburg, Baldingerstrasse, 35033 Marburg, Germany; (Y.V.-Y.); (S.D.); (D.K.B.); (E.P.S.)
| | - Sarah Driesch
- Department of Visceral Surgery, Philipps University Marburg, Baldingerstrasse, 35033 Marburg, Germany; (Y.V.-Y.); (S.D.); (D.K.B.); (E.P.S.)
| | - Sarah Ostgathe
- Department of Neurosurgery, Philipps University Marburg, Baldingerstrasse, 35033 Marburg, Germany; (C.J.); (S.O.); (L.C.)
| | - Lena Cook
- Department of Neurosurgery, Philipps University Marburg, Baldingerstrasse, 35033 Marburg, Germany; (C.J.); (S.O.); (L.C.)
| | - Steffen Wagner
- Head and Neck Surgery, Department of Otorhinolaryngology, Justus Liebig University Giessen, Aulweg 128 (ForMED), 35392 Giessen, Germany;
| | - Detlef K. Bartsch
- Department of Visceral Surgery, Philipps University Marburg, Baldingerstrasse, 35033 Marburg, Germany; (Y.V.-Y.); (S.D.); (D.K.B.); (E.P.S.)
| | - Emily P. Slater
- Department of Visceral Surgery, Philipps University Marburg, Baldingerstrasse, 35033 Marburg, Germany; (Y.V.-Y.); (S.D.); (D.K.B.); (E.P.S.)
| | - Jörg W. Bartsch
- Department of Neurosurgery, Philipps University Marburg, Baldingerstrasse, 35033 Marburg, Germany; (C.J.); (S.O.); (L.C.)
- Correspondence: ; Tel.: +49-6421-58-61173
| |
Collapse
|
44
|
Ichijo R, Kabata M, Kidoya H, Muramatsu F, Ishibashi R, Abe K, Tsutsui K, Kubo H, Iizuka Y, Kitano S, Miyachi H, Kubota Y, Fujiwara H, Sada A, Yamamoto T, Toyoshima F. Vasculature-driven stem cell population coordinates tissue scaling in dynamic organs. SCIENCE ADVANCES 2021; 7:eabd2575. [PMID: 33568475 PMCID: PMC7875541 DOI: 10.1126/sciadv.abd2575] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 12/28/2020] [Indexed: 06/12/2023]
Abstract
Stem cell (SC) proliferation and differentiation organize tissue homeostasis. However, how SCs regulate coordinate tissue scaling in dynamic organs remain unknown. Here, we delineate SC regulations in dynamic skin. We found that interfollicular epidermal SCs (IFESCs) shape basal epidermal proliferating clusters (EPCs) in expanding abdominal epidermis of pregnant mice and proliferating plantar epidermis. EPCs consist of IFESC-derived Tbx3+-basal cells (Tbx3+-BCs) and their neighboring cells where Adam8-extracellular signal-regulated kinase signaling is activated. Clonal lineage tracing revealed that Tbx3+-BC clones emerge in the abdominal epidermis during pregnancy, followed by differentiation after parturition. In the plantar epidermis, Tbx3+-BCs are sustained as long-lived SCs to maintain EPCs invariably. We showed that Tbx3+-BCs are vasculature-dependent IFESCs and identified mechanical stretch as an external cue for the vasculature-driven EPC formation. Our results uncover vasculature-mediated IFESC regulations, which explain how the epidermis adjusts its size in orchestration with dermal constituents in dynamic skin.
Collapse
Affiliation(s)
- Ryo Ichijo
- Department of Biosystems Science, Institute for Frontier Life and Medical Science, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
| | - Mio Kabata
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
| | - Hiroyasu Kidoya
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Fumitaka Muramatsu
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Riki Ishibashi
- Department of Biosystems Science, Institute for Frontier Life and Medical Science, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
| | - Kota Abe
- Department of Biosystems Science, Institute for Frontier Life and Medical Science, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
- Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Ko Tsutsui
- Laboratory for Tissue Microenvironment, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe 650-0047, Japan
| | - Hirokazu Kubo
- Department of Biosystems Science, Institute for Frontier Life and Medical Science, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
- Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Yui Iizuka
- Department of Biosystems Science, Institute for Frontier Life and Medical Science, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
- Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Satsuki Kitano
- Department of Biosystems Science, Institute for Frontier Life and Medical Science, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
| | - Hitoshi Miyachi
- Department of Biosystems Science, Institute for Frontier Life and Medical Science, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
| | - Yoshiaki Kubota
- Department of Anatomy, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Hironobu Fujiwara
- Laboratory for Tissue Microenvironment, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe 650-0047, Japan
| | - Aiko Sada
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
- International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto 860-0811, Japan
| | - Takuya Yamamoto
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
- AMED-CREST, AMED 1-7-1 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
- Medical-risk Avoidance based on iPS Cells Team, RIKEN Center for Advanced Intelligence Project (AIP), Kyoto 606-8507, Japan
| | - Fumiko Toyoshima
- Department of Biosystems Science, Institute for Frontier Life and Medical Science, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan.
- Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
45
|
Petersen EV, Chudakova DA, Skorova EY, Anikin V, Reshetov IV, Mynbaev OA. The Extracellular Matrix-Derived Biomarkers for Diagnosis, Prognosis, and Personalized Therapy of Malignant Tumors. Front Oncol 2020; 10:575569. [PMID: 33425730 PMCID: PMC7793707 DOI: 10.3389/fonc.2020.575569] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 11/10/2020] [Indexed: 01/18/2023] Open
Abstract
The tumor biomarkers already have proven clinical value and have become an integral part in cancer management and modern translational oncology. The tumor tissue microenvironment (TME), which includes extracellular matrix (ECM), signaling molecules, immune and stromal cells, and adjacent non-tumorous tissue, contributes to cancer pathogenesis. Thus, TME-derived biomarkers have many clinical applications. This review is predominately based on the most recent publications (manuscripts published in a last 5 years, or seminal publications published earlier) and fills a gap in the current literature on the cancer biomarkers derived from the TME, with particular attention given to the ECM and products of its processing and degradation, ECM-associated extracellular vesicles (EVs), biomechanical characteristics of ECM, and ECM-derived biomarkers predicting response to the immunotherapy. We discuss the clinical utility of the TME-incorporating three-dimensional in vitro and ex vivo cell culture models for personalized therapy. We conclude that ECM is a critical driver of malignancies and ECM-derived biomarkers should be included in diagnostics and prognostics panels of markers in the clinic.
Collapse
Affiliation(s)
- Elena V. Petersen
- Department of Molecular and Bio Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Daria A. Chudakova
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Ekaterina Yu. Skorova
- Department of Molecular and Bio Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Vladimir Anikin
- Harefield Hospital, The Royal Brompton and Harefield Hospitals NHS Foundation Trust, Harefield, United Kingdom
- Department of Oncology and Reconstructive Surgery, Sechenov Medical University, Moscow, Russia
| | - Igor V. Reshetov
- Department of Molecular and Bio Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Department of Oncology and Reconstructive Surgery, Sechenov Medical University, Moscow, Russia
| | - Ospan A. Mynbaev
- Department of Molecular and Bio Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| |
Collapse
|
46
|
Alawak M, Abu Dayyih A, Mahmoud G, Tariq I, Duse L, Goergen N, Engelhardt K, Reddy Pinnapireddy S, Jedelská J, Awak M, König AM, Brüßler J, Bartsch JW, Bakowsky U. ADAM 8 as a novel target for doxorubicin delivery to TNBC cells using magnetic thermosensitive liposomes. Eur J Pharm Biopharm 2020; 158:390-400. [PMID: 33338603 DOI: 10.1016/j.ejpb.2020.12.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 11/21/2020] [Accepted: 12/13/2020] [Indexed: 01/04/2023]
Abstract
Metastatic breast cancer is one of the most common causes of cancer-related death in women worldwide. The transmembrane metalloprotease-disintegrin (ADAM8) protein is highly overexpressed in triple-negative breast cancer (TNBC) cells and potentiates tumor cell invasion and extracellular matrix remodeling. Exploiting the high expression levels of ADAM8 in TNBC cells by delivering anti-ADAM8 antibodies efficiently to the targeted site can be a promising strategy for therapy of TNBC. For instance, a targeted approach with the aid of ultra-high field magnetic resonance imaging (UHF-MRI) activatable thermosensitive liposomes (LipTS-GD) could specifically increase the intracellular accumulation of cytotoxic drugs. The surface of doxorubicin-loaded LipTS-GD was modified by covalent coupling of MAB1031 antibody (LipTS-GD-MAB) in order to target the overexpressed ADAM8 in ADAM8 positive MDA-MB-231 cells. Physicochemical characterization of these liposomes was performed using size, surface morphology and UHF-MRI imaging analysis. In vitro cell targeting was investigated by the washing and circulation method. Intracellular trafficking and lysosomal colocalization were assessed by fluorescence microscopy. Cell viability, biocompatibility and in-ovo CAM assays were performed to determine the effectiveness and safety profiles of liposome formulations. Our results show specific binding and induction of doxorubicin release after LipTS-GD-MAB treatment caused a higher cytotoxic effect at the cellular target site.
Collapse
Affiliation(s)
- Mohamad Alawak
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, 35037 Marburg, Germany
| | - Alice Abu Dayyih
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, 35037 Marburg, Germany
| | - Gihan Mahmoud
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, 35037 Marburg, Germany; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Helwan University, Ain Helwan, 11795 Cairo, Egypt
| | - Imran Tariq
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, 35037 Marburg, Germany; Punjab University College of Pharmacy, University of the Punjab, 54000 Lahore, Pakistan
| | - Lili Duse
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, 35037 Marburg, Germany
| | - Nathalie Goergen
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, 35037 Marburg, Germany
| | - Konrad Engelhardt
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, 35037 Marburg, Germany
| | | | - Jarmila Jedelská
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, 35037 Marburg, Germany
| | - Muhannad Awak
- Department of Neurosurgery, Wolfsburg Hospital, 38440 Wolfsburg, Germany
| | - Alexander M König
- Department of Diagnostic and Interventional Radiology, University of Marburg, 35032 Marburg, Germany
| | - Jana Brüßler
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, 35037 Marburg, Germany
| | - Jörg W Bartsch
- Department of Neurosurgery, University of Marburg, University Hospital Marburg, 35032 Marburg, Germany
| | - Udo Bakowsky
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, 35037 Marburg, Germany.
| |
Collapse
|
47
|
Charmsaz S, Doherty B, Cocchiglia S, Varešlija D, Marino A, Cosgrove N, Marques R, Priedigkeit N, Purcell S, Bane F, Bolger J, Byrne C, O'Halloran PJ, Brett F, Sheehan K, Brennan K, Hopkins AM, Keelan S, Jagust P, Madden S, Martinelli C, Battaglini M, Oesterreich S, Lee AV, Ciofani G, Hill ADK, Young LS. ADAM22/LGI1 complex as a new actionable target for breast cancer brain metastasis. BMC Med 2020; 18:349. [PMID: 33208158 PMCID: PMC7677775 DOI: 10.1186/s12916-020-01806-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 10/02/2020] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Metastatic breast cancer is a major cause of cancer-related deaths in woman. Brain metastasis is a common and devastating site of relapse for several breast cancer molecular subtypes, including oestrogen receptor-positive disease, with life expectancy of less than a year. While efforts have been devoted to developing therapeutics for extra-cranial metastasis, drug penetration of blood-brain barrier (BBB) remains a major clinical challenge. Defining molecular alterations in breast cancer brain metastasis enables the identification of novel actionable targets. METHODS Global transcriptomic analysis of matched primary and metastatic patient tumours (n = 35 patients, 70 tumour samples) identified a putative new actionable target for advanced breast cancer which was further validated in vivo and in breast cancer patient tumour tissue (n = 843 patients). A peptide mimetic of the target's natural ligand was designed in silico and its efficacy assessed in in vitro, ex vivo and in vivo models of breast cancer metastasis. RESULTS Bioinformatic analysis of over-represented pathways in metastatic breast cancer identified ADAM22 as a top ranked member of the ECM-related druggable genome specific to brain metastases. ADAM22 was validated as an actionable target in in vitro, ex vivo and in patient tumour tissue (n = 843 patients). A peptide mimetic of the ADAM22 ligand LGI1, LGI1MIM, was designed in silico. The efficacy of LGI1MIM and its ability to penetrate the BBB were assessed in vitro, ex vivo and in brain metastasis BBB 3D biometric biohybrid models, respectively. Treatment with LGI1MIM in vivo inhibited disease progression, in particular the development of brain metastasis. CONCLUSION ADAM22 expression in advanced breast cancer supports development of breast cancer brain metastasis. Targeting ADAM22 with a peptide mimetic LGI1MIM represents a new therapeutic option to treat metastatic brain disease.
Collapse
Affiliation(s)
- Sara Charmsaz
- Endocrine Oncology Research Group, Department of Surgery, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Ben Doherty
- Endocrine Oncology Research Group, Department of Surgery, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Sinéad Cocchiglia
- Endocrine Oncology Research Group, Department of Surgery, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Damir Varešlija
- Endocrine Oncology Research Group, Department of Surgery, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Attilio Marino
- Smart Bio-Interfaces, Istituto Italiano di Tecnologia, Scuola Superiore Sant'Anna, Pontedera, Italy
| | - Nicola Cosgrove
- Endocrine Oncology Research Group, Department of Surgery, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Ricardo Marques
- Endocrine Oncology Research Group, Department of Surgery, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Nolan Priedigkeit
- Women's Cancer Research Centre, Magee-Women's Research Institute, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Siobhan Purcell
- Endocrine Oncology Research Group, Department of Surgery, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Fiona Bane
- Endocrine Oncology Research Group, Department of Surgery, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Jarlath Bolger
- Endocrine Oncology Research Group, Department of Surgery, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Christopher Byrne
- Endocrine Oncology Research Group, Department of Surgery, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Philip J O'Halloran
- Department of Neurosurgery, National Neurosurgical Centre, Beaumont Hospital, Dublin, Ireland
| | - Francesca Brett
- Department of Neuropathology, Beaumont Hospital, Dublin, Ireland
| | - Katherine Sheehan
- Department of Pathology, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Kieran Brennan
- Department of Surgery, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Ann M Hopkins
- Department of Surgery, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Stephen Keelan
- Endocrine Oncology Research Group, Department of Surgery, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Petra Jagust
- Endocrine Oncology Research Group, Department of Surgery, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Stephen Madden
- Data Science Centre, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Chiara Martinelli
- Smart Bio-Interfaces, Istituto Italiano di Tecnologia, Scuola Superiore Sant'Anna, Pontedera, Italy
| | - Matteo Battaglini
- Smart Bio-Interfaces, Istituto Italiano di Tecnologia, Scuola Superiore Sant'Anna, Pontedera, Italy.,The Biorobotics Institute, Scuola Superiore Sant'Anna, Pontedera, Italy
| | - Steffi Oesterreich
- Women's Cancer Research Centre, Magee-Women's Research Institute, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Adrian V Lee
- Women's Cancer Research Centre, Magee-Women's Research Institute, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Gianni Ciofani
- Smart Bio-Interfaces, Istituto Italiano di Tecnologia, Scuola Superiore Sant'Anna, Pontedera, Italy
| | - Arnold D K Hill
- Department of Surgery, Royal College of Surgeons in Ireland, Dublin, Ireland.,Department of Surgery, Beaumont Hospital, Dublin, Ireland
| | - Leonie S Young
- Endocrine Oncology Research Group, Department of Surgery, Royal College of Surgeons in Ireland, Dublin 2, Ireland.
| |
Collapse
|
48
|
Li SL, Jiang TQ, Cao QW, Liu SM. Transmembrane protein ADAM29 facilitates cell proliferation, invasion and migration in clear cell renal cell carcinoma. J Chemother 2020; 33:40-50. [PMID: 33164721 DOI: 10.1080/1120009x.2020.1842035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Abnormal expression of ADAM29 has been frequently reported in several cancers, however, its role in clear cell renal cell carcinoma (ccRCC) has not evaluated in detail. Herein, we attempt to determine the biological role and the action mechanism of ADAM29 in ccRCC. Bioinformatics analysis based on the ccRCC RNA-Seq dataset from TCGA database revealed that ADAM29 was up-expressed in ccRCC tissues by comparison with normal tissues. And a significant increase of ADAM29 expression was also observed in 3 ccRCC cell lines (UT33A, Caki-1, and786-O) in comparison with normal cell line. Besides, high level of ADAM29 was found to be connected with the poor prognosis and could be considered as an independent prognosticator for patients with ccRCC. Furthermore, functional experiments in vitro demonstrated that ADAM29 promoted the growth, invasion and migration of ccRCC cells. Moreover, Western blot assays indicated that ADAM29 was positively correlated with the level of proliferation-related proteins Cyclin D1 and PCNA and motion-related proteins MMP9 and Snail. Our data indicate that ADAM29 acts as an oncogene that increases tumour cells proliferation, invasion and migration partly by regulating the expression of Cyclin D1/PCNA/MMP9/Snail, suggesting that ADAM29 may become a prognosticator and therapeutic candidate for ccRCC.
Collapse
Affiliation(s)
- Shun-Lai Li
- Department of Urology, The Fifth People's Hospital of Jinan, Jinan, P.R. China
| | - Ting-Qi Jiang
- Department of Urology, The Fifth People's Hospital of Jinan, Jinan, P.R. China
| | - Qing-Wei Cao
- Department of Urology, Shandong Provincial Hospital, Jinan, Shandong, P.R. China
| | - Shan-Mei Liu
- Department of Urology, The Fifth People's Hospital of Jinan, Jinan, P.R. China
| |
Collapse
|
49
|
Jin Q, Jin X, Liu T, Lu X, Wang G, He N. A disintegrin and metalloproteinase 8 induced epithelial-mesenchymal transition to promote the invasion of colon cancer cells via TGF-β/Smad2/3 signalling pathway. J Cell Mol Med 2020; 24:13058-13069. [PMID: 32954649 PMCID: PMC7701584 DOI: 10.1111/jcmm.15907] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 08/27/2020] [Accepted: 09/03/2020] [Indexed: 01/10/2023] Open
Abstract
A disintegrin and metalloproteinase 8 (ADAM8) protein is a multi‐domain transmembrane glycoprotein which involves in extracellular matrix remodelling, cell adhesion, invasion and migration. ADAM8 and epithelial‐mesenchymal transition (EMT) play an important role in tumour invasion has been well established. However, the interaction between ADAM8 and EMT has remained unclear. The data of colon cancer patients obtained from TCGA (The Cancer Genome Atlas) and GTEx (Genotype‐Tissue Expression Project) were analysed by the bioinformatics research method. The expression of ADAM8 in colon cancer cells was up‐regulated and down‐regulated by transfecting with the expression plasmid and small interfering RNA, respectively. Transwell invasion assay, immunohistochemistry, immunocytochemistry, Western blotting and qRT‐PCR were utilized to study the effect of ADAM8 on colon cancer cell's EMT and its related mechanisms. Analysis of TCGA and GTEx data revealed that ADAM8 was linked to poor overall survival in colon cancer patients. Besides, ADAM8 was correlated with multiple EMT biomarkers (E‐cadherin, N‐cadherin, Vimentin, Snail2 and ZEB2). In vitro, we also proved that the up‐regulation of ADAM8 could promote EMT effect and enhance the invasive ability of colon cancer cells. On the contrary, the down‐regulation of ADAM8 in colon cancer cells attenuated these effects above. Further studies suggested that ADAM8 modulated EMT on colon cancer cells through TGF‐β/Smad2/3 signalling pathway. Our research suggested that ADAM8 could be a potential biomarker for the prognosis of colon cancer and induced EMT to promote the invasion of colon cancer cells via activating TGF‐β/Smad2/3 signalling pathway.
Collapse
Affiliation(s)
- Qianna Jin
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Jin
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoming Lu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guobin Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Nan He
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
50
|
Li Y, Guo S, Zhao K, Conrad C, Driescher C, Rothbart V, Schlomann U, Guerreiro H, Bopp MH, König A, Carl B, Pagenstecher A, Nimsky C, Bartsch JW. ADAM8 affects glioblastoma progression by regulating osteopontin-mediated angiogenesis. Biol Chem 2020; 402:195-206. [PMID: 33544472 DOI: 10.1515/hsz-2020-0184] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 08/18/2020] [Indexed: 02/06/2023]
Abstract
Glioblastoma multiforme (GBM) is the most aggressive type of brain cancer with a median survival of only 15 months. To complement standard treatments including surgery, radiation and chemotherapy, it is essential to understand the contribution of the GBM tumor microenvironment. Brain macrophages and microglia particularly contribute to tumor angiogenesis, a major hallmark of GBM. ADAM8, a metalloprotease-disintegrin strongly expressed in tumor cells and associated immune cells of GBMs, is related to angiogenesis and correlates with poor clinical prognosis. However, the specific contribution of ADAM8 to GBM tumorigenesis remains elusive. Knockdown of ADAM8 in U87 glioma cells led to significantly decreased angiogenesis and tumor volumes of these cells after stereotactic injection into striate body of mice. We found that the angiogenic potential of ADAM8 in GBM cells and in primary macrophages is mediated by the regulation of osteopontin (OPN), an important inducer of tumor angiogenesis. By in vitro cell signaling analyses, we demonstrate that ADAM8 regulates OPN via JAK/STAT3 pathway in U87 cells and in primary macrophages. As ADAM8 is a dispensable protease for physiological homeostasis, we conclude that ADAM8 could be a tractable target to modulate angiogenesis in GBM with minor side-effects.
Collapse
Affiliation(s)
- Yu Li
- Department of Neurosurgery, Philipps University Marburg, Baldingerstrasse, D-35033 Marburg, Germany
| | - Songbo Guo
- Department of Neurosurgery, Philipps University Marburg, Baldingerstrasse, D-35033 Marburg, Germany
| | - Kai Zhao
- Department of Neurosurgery, Philipps University Marburg, Baldingerstrasse, D-35033 Marburg, Germany
| | - Catharina Conrad
- Department of Neurosurgery, Philipps University Marburg, Baldingerstrasse, D-35033 Marburg, Germany
| | - Caroline Driescher
- Department of Neurosurgery, Philipps University Marburg, Baldingerstrasse, D-35033 Marburg, Germany
| | - Vanessa Rothbart
- Department of Neurosurgery, Philipps University Marburg, Baldingerstrasse, D-35033 Marburg, Germany
| | - Uwe Schlomann
- Department of Neurosurgery, Philipps University Marburg, Baldingerstrasse, D-35033 Marburg, Germany
| | - Helena Guerreiro
- Department of Neurosurgery, Philipps University Marburg, Baldingerstrasse, D-35033 Marburg, Germany
| | - Miriam H Bopp
- Department of Neurosurgery, Philipps University Marburg, Baldingerstrasse, D-35033 Marburg, Germany
| | - Alexander König
- Department of Diagnostic and Interventional Radiology, Philipps University Marburg, Baldingerstrasse, D-35033 Marburg, Germany
| | - Barbara Carl
- Department of Neurosurgery, Philipps University Marburg, Baldingerstrasse, D-35033 Marburg, Germany
| | - Axel Pagenstecher
- Department of Neuropathology, Philipps University Marburg, Baldingerstrasse, D-35033 Marburg, Germany.,Center for Mind, Brain and Behavior, Marburg University, Hans-Meerwein-Straße 6, D-35032 MarburgGermany
| | - Christopher Nimsky
- Department of Neurosurgery, Philipps University Marburg, Baldingerstrasse, D-35033 Marburg, Germany.,Center for Mind, Brain and Behavior, Marburg University, Hans-Meerwein-Straße 6, D-35032 MarburgGermany
| | - Jörg W Bartsch
- Department of Neurosurgery, Philipps University Marburg, Baldingerstrasse, D-35033 Marburg, Germany.,Center for Mind, Brain and Behavior, Marburg University, Hans-Meerwein-Straße 6, D-35032 MarburgGermany
| |
Collapse
|