1
|
Dean WF, Albert RM, Nawara TJ, Ubil M, Beggs RR, Mattheyses AL. Dsg2 ectodomain organization increases throughout desmosome assembly. Cell Adh Migr 2024; 18:1-13. [PMID: 38566311 PMCID: PMC10993919 DOI: 10.1080/19336918.2024.2333366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 03/18/2024] [Indexed: 04/04/2024] Open
Abstract
Desmosomes are intercellular junctions that regulate mechanical integrity in epithelia and cardiac muscle. Dynamic desmosome remodeling is essential for wound healing and development, yet the mechanisms governing junction assembly remain elusive. While we and others have shown that cadherin ectodomains are highly organized, how this ordered architecture emerges during assembly is unknown. Using fluorescence polarization microscopy, we show that desmoglein 2 (Dsg2) ectodomain order gradually increases during 8 h of assembly, coinciding with increasing adhesive strength. In a scratch wound assay, we observed a similar increase in order in desmosomes assembling at the leading edge of migratory cells. Together, our findings indicate that cadherin organization is a hallmark of desmosome maturity and may play a role in conferring adhesive strength.
Collapse
Affiliation(s)
- William F. Dean
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Rose M. Albert
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Tomasz J. Nawara
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Melanie Ubil
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Reena R. Beggs
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Alexa L. Mattheyses
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
2
|
Fülle JB, de Almeida RA, Lawless C, Stockdale L, Yanes B, Lane EB, Garrod DR, Ballestrem C. Proximity Mapping of Desmosomes Reveals a Striking Shift in Their Molecular Neighborhood Associated With Maturation. Mol Cell Proteomics 2024; 23:100735. [PMID: 38342409 PMCID: PMC10943070 DOI: 10.1016/j.mcpro.2024.100735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 01/29/2024] [Accepted: 02/08/2024] [Indexed: 02/13/2024] Open
Abstract
Desmosomes are multiprotein adhesion complexes that link intermediate filaments to the plasma membrane, ensuring the mechanical integrity of cells across tissues, but how they participate in the wider signaling network to exert their full function is unclear. To investigate this, we carried out protein proximity mapping using biotinylation (BioID). The combined interactomes of the essential desmosomal proteins desmocollin 2a, plakoglobin, and plakophilin 2a (Pkp2a) in Madin-Darby canine kidney epithelial cells were mapped and their differences and commonalities characterized as desmosome matured from Ca2+ dependence to the mature, Ca2+-independent, hyper-adhesive state, which predominates in tissues. Results suggest that individual desmosomal proteins have distinct roles in connecting to cellular signaling pathways and that these roles alter substantially when cells change their adhesion state. The data provide further support for a dualistic concept of desmosomes in which the properties of Pkp2a differ from those of the other, more stable proteins. This body of data provides an invaluable resource for the analysis of desmosome function.
Collapse
Affiliation(s)
- Judith B Fülle
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, UK
| | | | - Craig Lawless
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, UK
| | - Liam Stockdale
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, UK
| | - Bian Yanes
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, UK
| | - E Birgitte Lane
- Skin Research Institute of Singapore, Agency of Science Technology and Research (A∗STAR), Singapore, Singapore
| | - David R Garrod
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, UK.
| | - Christoph Ballestrem
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, UK.
| |
Collapse
|
3
|
Dean WF, Mattheyses AL. Defining domain-specific orientational order in the desmosomal cadherins. Biophys J 2022; 121:4325-4341. [PMID: 36225113 PMCID: PMC9703042 DOI: 10.1016/j.bpj.2022.10.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 09/12/2022] [Accepted: 10/06/2022] [Indexed: 01/25/2023] Open
Abstract
Desmosomes are large, macromolecular protein assemblies that mechanically couple the intermediate filament cytoskeleton to sites of cadherin-mediated cell adhesion, thereby providing structural integrity to tissues that routinely experience large forces. Proper desmosomal adhesion is necessary for the normal development and maintenance of vertebrate tissues, such as epithelia and cardiac muscle, while dysfunction can lead to severe disease of the heart and skin. Therefore, it is important to understand the relationship between desmosomal adhesion and the architecture of the molecules that form the adhesive interface, the desmosomal cadherins (DCs). However, desmosomes are embedded in two plasma membranes and are linked to the cytoskeletal networks of two cells, imposing extreme difficulty on traditional structural studies of DC architecture, which have yielded conflicting results. Consequently, the relationship between DC architecture and adhesive function remains unclear. To overcome these challenges, we utilized excitation-resolved fluorescence polarization microscopy to quantify the orientational order of the extracellular and intracellular domains of three DC isoforms: desmoglein 2, desmocollin 2, and desmoglein 3. We found that DC ectodomains were significantly more ordered than their cytoplasmic counterparts, indicating a drastic difference in DC architecture between opposing sides of the plasma membrane. This difference was conserved among all DCs tested, suggesting that it may be an important feature of desmosomal architecture. Moreover, our findings suggest that the organization of DC ectodomains is predominantly the result of extracellular adhesive interactions. We employed azimuthal orientation mapping to show that DC ectodomains are arranged with rotational symmetry about the membrane normal. Finally, we performed a series of mathematical simulations to test the feasibility of a recently proposed antiparallel arrangement of DC ectodomains, finding that it is supported by our experimental data. Importantly, the strategies employed here have the potential to elucidate molecular mechanisms for diseases that result from defective desmosome architecture.
Collapse
Affiliation(s)
- William F Dean
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Alexa L Mattheyses
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama.
| |
Collapse
|
4
|
Lee JYW, McGrath JA. Mutations in genes encoding desmosomal proteins: spectrum of cutaneous and extracutaneous abnormalities. Br J Dermatol 2020; 184:596-605. [PMID: 32593191 DOI: 10.1111/bjd.19342] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2020] [Indexed: 12/27/2022]
Abstract
The desmosome is a type of intercellular junction found in epithelial cells, cardiomyocytes and other specialized cell types. Composed of a network of transmembranous cadherins and intracellular armadillo, plakin and other proteins, desmosomes contribute to cell-cell adhesion, signalling, development and differentiation. Mutations in genes encoding desmosomal proteins result in a spectrum of erosive skin and mucosal phenotypes that also may affect hair or heart. This review summarizes the molecular pathology and phenotypes associated with desmosomal dysfunction with a focus on inherited disorders that involve the skin/hair, as well as associated extracutaneous pathologies. We reviewed the relevant literature to collate studies of pathogenic human mutations in desmosomes that have been reported over the last 25 years. Mutations in 12 different desmosome genes have been documented, with mutations in nine genes affecting the skin/mucous membranes (DSG1, DSG3, DSC2, DSC3, JUP, PKP1, DSP, CDSN, PERP) and eight resulting in hair abnormalities (DSG4, DSC2, DSC3, JUP, PKP1, DSP, CDSN, PERP). Mutations in three genes can result in cardiocutaneous syndromes (DSC2, JUP, DSP), although mutations have been described in five genes in inherited heart disorders that may lack any dermatological manifestations (DSG2, DSC2, JUP, PKP2, DSP). Understanding the diverse nature of these clinical phenotypes, as well as the desmosome gene mutation(s), has clinical value in managing and counselling patients, as well as demonstrating the biological role and activity of specific components of desmosomes in skin and other tissues.
Collapse
Affiliation(s)
- J Y W Lee
- St John's Institute of Dermatology, King's College London, Guy's Hospital, London, UK
| | - J A McGrath
- St John's Institute of Dermatology, King's College London, Guy's Hospital, London, UK
| |
Collapse
|
5
|
Kazakydasan S, Rahman ZAA, Ismail SM, Abraham MT, Kallarakkal TG. Prognostic significance of VEGF-C in predicting micrometastasis and isolated tumour cells in N0 oral squamous cell carcinoma. J Oral Pathol Med 2016; 46:194-200. [PMID: 27417330 DOI: 10.1111/jop.12476] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2016] [Indexed: 11/30/2022]
Abstract
BACKGROUND Lymph node metastasis in oral squamous cell carcinoma (OSCC) is a well-known independent prognostic factor. However, the identification of occult tumour cells within the lymph nodes has remained a challenge for the pathologist as well as the clinician. OBJECTIVE The aim of this study was to determine the prevalence of micrometastasis and isolated tumour cells (ITCs) in pathologically staged N0 OSCC of the tongue and buccal mucosa and to assess its correlation with vascular endothelial growth factor C, (VEGF-C) expression in the primary tumour. METHODS Thirty-four cases of N0 OSCC comprising of 17 cases each from the tongue and buccal mucosa were evaluated by immunohistochemistry for VEGF-C expression. The corresponding lymph nodes from levels I and II were pathologically examined and cross-detected for micrometastasis and ITCs with desmoglein 3 (DSG3). RESULTS The prevalence of micrometastasis and ITCs in OSCC of the tongue and buccal mucosa was 23.5% and 17.6%, respectively. A total of 12 out of 151 lymph nodes contained micrometastatic tumour foci and ITCs. A higher expression of VEGF-C in the primary tumour was associated with a greater probability for the occurrence of micrometastasis and ITCs in the lymph nodes. CONCLUSION High expression of VEGF-C in the primary tumour may be a good determinant for detection of occult tumour cells in the lymph nodes of OSCC cases.
Collapse
Affiliation(s)
- Sarvambika Kazakydasan
- Department of Oral and Maxillofacial Clinical Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Zainal Ariff Abdul Rahman
- Department of Oral and Maxillofacial Clinical Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia.,Oral Cancer Research and Coordinating Centre, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Siti Mazlipah Ismail
- Department of Oral and Maxillofacial Clinical Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia.,Oral Cancer Research and Coordinating Centre, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Mannil Thomas Abraham
- Department of Oral and Maxillofacial Surgery, Hospital Tengku Ampuan Rahimah, Ministry of Health, Klang, Selangor, Malaysia
| | - Thomas George Kallarakkal
- Department of Oral and Maxillofacial Clinical Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia.,Oral Cancer Research and Coordinating Centre, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
6
|
Abstract
Desmosomes represent adhesive, spot-like intercellular junctions that in association with intermediate filaments mechanically link neighboring cells and stabilize tissue architecture. In addition to this structural function, desmosomes also act as signaling platforms involved in the regulation of cell proliferation, differentiation, migration, morphogenesis, and apoptosis. Thus, deregulation of desmosomal proteins has to be considered to contribute to tumorigenesis. Proteolytic fragmentation and downregulation of desmosomal cadherins and plaque proteins by transcriptional or epigenetic mechanisms were observed in different cancer entities suggesting a tumor-suppressive role. However, discrepant data in the literature indicate that context-dependent differences based on alternative intracellular, signal transduction lead to altered outcome. Here, modulation of Wnt/β-catenin signaling by plakoglobin or desmoplakin and of epidermal growth factor receptor signaling appears to be of special relevance. This review summarizes current evidence on how desmosomal proteins participate in carcinogenesis, and depicts the molecular mechanisms involved.
Collapse
Affiliation(s)
- Otmar Huber
- a Institute of Biochemistry II, Jena University Hospital, Friedrich-Schiller-University Jena , Nonnenplan 2-4, 07743 Jena , Germany.,b Center for Sepsis Control and Care, Jena University Hospital , Erlanger Allee 101, 07747 Jena , Germany
| | - Iver Petersen
- c Institute of Pathology, Jena University Hospital, Friedrich-Schiller-University Jena , Ziegelmühlenweg 1, 07743 Jena , Germany
| |
Collapse
|
7
|
Abstract
Desmosomes serve as intercellular junctions in various tissues including the skin and the heart where they play a crucial role in cell-cell adhesion, signalling and differentiation. The desmosomes connect the cell surface to the keratin cytoskeleton and are composed of a transmembranal part consisting mainly of desmosomal cadherins, armadillo proteins and desmoplakin, which form the intracytoplasmic desmosomal plaque. Desmosomal genodermatoses are caused by mutations in genes encoding the various desmosomal components. They are characterized by skin, hair and cardiac manifestations occurring in diverse combinations. Their classification into a separate and distinct clinical group not only recognizes their common pathogenesis and facilitates their diagnosis but might also in the future form the basis for the design of novel and targeted therapies for these occasionally life-threatening diseases.
Collapse
|
8
|
Abstract
Desmosomes are morphologically and biochemically defined cell-cell junctions that are required for maintaining the mechanical integrity of skin and the heart in adult mammals. Furthermore, since mice with null mutations in desmosomal plaque proteins (plakoglobin and desmoplakin) die in utero, it is also evident that desmosomes are indispensable for normal embryonic development. This review focuses on the role of desmosomes in vivo. We will summarize the effects of mutations in desmosomal genes on pre- and post-embryonic development of mouse and man and discuss recent findings relating to the specific role of desmosomal cadherins in skin differentiation and homeostasis.
Collapse
Affiliation(s)
- Xing Cheng
- Department of Dermatology, Baylor College of Medicine, Houston, TX 77030, USA
| | | |
Collapse
|
9
|
Fang WK, Chen B, Xu XE, Liao LD, Wu ZY, Wu JY, Shen J, Xu LY, Li EM. Altered expression and localization of desmoglein 3 in esophageal squamous cell carcinoma. Acta Histochem 2014; 116:803-9. [PMID: 24630396 DOI: 10.1016/j.acthis.2014.01.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 01/14/2014] [Accepted: 01/16/2014] [Indexed: 02/05/2023]
Abstract
Desmoglein 3 (DSG3), a transmembrane cadherin of the desmosomal cell-cell adhesion structure, plays vital roles in the maintenance of normal epithelial tissue architecture. Reports implicating a role for DSG3 expression in cancer are few and contradictory. In this study, immunohistochemical staining was employed to investigate DSG3 expression and subcellular localization in esophageal squamous cell carcinoma (ESCC), and to correlate changes with clinical characteristics. Results indicate that in normal squamous cell epithelia, strong DSG3 immunoreactivity was observed in the Stratum spinosum, and localization occurred only at the cell membrane. In ESCC, DSG3 immunoreactivity displayed an abnormal cytoplasmic localization that was correlated with cell differentiation (P=0.018). Most strikingly, in 74.1% of the tumors, DSG3 expression was up-regulated and correlated with regional lymph node metastasis (P=0.036). Moreover, in patients without lymph node metastasis, cytoplasmic localization of DSG3 correlated with poor prognosis (P=0.044). These results suggest that DSG3 is involved in the development of ESCC and imply that DSG3 overexpression is likely to be an essential contributor to the aggressive features of esophageal cancer.
Collapse
Affiliation(s)
- Wang-Kai Fang
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, China; The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, China
| | - Bo Chen
- Institute of Oncologic Pathology, Shantou University Medical College, Shantou, China
| | - Xiu-E Xu
- Institute of Oncologic Pathology, Shantou University Medical College, Shantou, China
| | - Lian-Di Liao
- Institute of Oncologic Pathology, Shantou University Medical College, Shantou, China
| | - Zhi-Yong Wu
- Department of Oncology Surgery, Affiliated Shantou Hospital of Sun Yat-Sen University, Shantou, China
| | - Jian-Yi Wu
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, China
| | - Jian Shen
- Institute of Oncologic Pathology, Shantou University Medical College, Shantou, China
| | - Li-Yan Xu
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, China; Institute of Oncologic Pathology, Shantou University Medical College, Shantou, China.
| | - En-Min Li
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, China; The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, China.
| |
Collapse
|
10
|
Fang WK, Gu W, Liao LD, Chen B, Wu ZY, Wu JY, Shen J, Xu LY, Li EM. Prognostic significance of desmoglein 2 and desmoglein 3 in esophageal squamous cell carcinoma. Asian Pac J Cancer Prev 2014; 15:871-6. [PMID: 24568510 DOI: 10.7314/apjcp.2014.15.2.871] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVE Desmogleins (DSGs) are major members among the desmosomal cadherins critically involved in cell-cell adhesion and the maintenance of normal tissue architecture in epithelia. Reports exploring links of DSG family member expression with cancers are few and vary. The aim of this study was to investigate the ratio of DSG2 and DSG3 mRNA expression in esophageal squamous cell carcinoma (ESCC) tissue to normal tissue (T/N ratio) and evaluate correlations with clinical parameters. METHODS The mRNA expression of DSGs, as well as γ-catenin and desmoplakin, was detected by real-time quantitative RT-PCR in 85 cases of ESCC tissue specimens. RESULTS The expression level of DSG3 mRNA was significantly higher than that of DSG2 in ESCC specimens (p = 0.000). DSG3 mRNA expression highly correlated with histological grade (p = 0.009), whereas that of DSG2 did not significantly relate to any clinicopathologic parameter. Kaplan-Meier survival analysis showed that only DSG3 expression had an impact on the survival curve, with negative DSG3 expression indicating worse survival (p = 0.038). Multivariate Cox regression analysis demonstrated DSG3 to be an independent prognostic factor for survival. Furthermore, correlation analysis demonstrated the mRNA level of DSG3 to highly correlate with those of γ-catenin and desmoplakin in ESCC samples (p=0.000), implying that the expression of desmosomal components might be regulated by the same upstream regulatory molecules. CONCLUSIONS Our findings suggest that DSG3 may be involved in the progression of ESCC and serve as a prognostic marker, while expression of DSG2 cannot be used as a predictor of ESCC patient outcome.
Collapse
Affiliation(s)
- Wang-Kai Fang
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, China E-mail : ,
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Kamekura R, Kolegraff KN, Nava P, Hilgarth RS, Feng M, Parkos CA, Nusrat A. Loss of the desmosomal cadherin desmoglein-2 suppresses colon cancer cell proliferation through EGFR signaling. Oncogene 2013; 33:4531-6. [PMID: 24166502 DOI: 10.1038/onc.2013.442] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 09/06/2013] [Accepted: 09/09/2013] [Indexed: 12/13/2022]
Abstract
Desmosomal cadherins mediate cell-cell adhesion in epithelial tissues and have been known to be altered in cancer. We have previously shown that one of the two intestinal epithelial desmosomal cadherins, desmocollin-2 (Dsc2) loss promotes colonic epithelial carcinoma cell proliferation and tumor formation. In this study we show that loss of the other intestinal desmosomal cadherin, desmoglein-2 (Dsg2) that pairs with Dsc2, results in decreased epithelial cell proliferation and suppressed xenograft tumor growth in mice. Dsg2-deficient cells demonstrated a compensatory increase in Dsc2 expression, and small interfering RNA-mediated loss of Dsc2 restored proliferation in Dsg2-deficient cells. Dsg2 downregulation inhibited epidermal growth factor receptor (EGFR) signaling and cell proliferation through altered phosphorylation of EGFR and downstream extracellular signal-regulated kinase activation in parallel with inhibited EGFR receptor internalization. Additionally, we demonstrated a central role of Dsc2 in controlling EGFR signaling and cell proliferation in intestinal epithelial cells. Consistent with these findings, analyses of human colon cancers demonstrated increased Dsg2 protein expression. Taken together, these data demonstrate that partner desmosomal cadherins Dsg2 and Dsc2 play opposing roles in controlling colonic carcinoma cell proliferation through differential effects on EGFR signaling.
Collapse
Affiliation(s)
- R Kamekura
- Epithelial Pathobiology and Mucosal Inflammation Research Unit, Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, USA
| | - K N Kolegraff
- Epithelial Pathobiology and Mucosal Inflammation Research Unit, Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, USA
| | - P Nava
- Department of Physiology, Biophysics and Neuroscience, Center for Research and Advanced Studies (CINVESTAV), Mexico DF, Mexico
| | - R S Hilgarth
- Epithelial Pathobiology and Mucosal Inflammation Research Unit, Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, USA
| | - M Feng
- Epithelial Pathobiology and Mucosal Inflammation Research Unit, Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, USA
| | - C A Parkos
- Epithelial Pathobiology and Mucosal Inflammation Research Unit, Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, USA
| | - A Nusrat
- Epithelial Pathobiology and Mucosal Inflammation Research Unit, Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, USA
| |
Collapse
|
12
|
Abstract
Desmosomes are intercellular junctions that contribute to cell-cell adhesion, signalling, development and differentiation in various tissues, including the skin. Composed of a network of transmembranous and intracellular plaque proteins, pathogenic autosomal dominant or recessive mutations have been reported in 10 different desmosomal genes, resulting in a spectrum of phenotypes variably affecting skin, hair and heart. This review summarizes the molecular pathology and phenotypes that predominantly affect the skin/hair. Recent desmosomal genodermatoses described include lethal congenital epidermolysis bullosa (plakoglobin), cardiomyopathy with alopecia and palmoplantar keratoderma (plakoglobin), hypotrichosis with scalp vesicles (desmocollin 3), and generalized peeling skin disease (corneodesmosin). Understanding the range of clinical phenotypes in combination with knowledge of the inherent desmosome gene mutation(s) is helpful in managing and counselling patients, as well as providing insight into the biological function of specific components of desmosomes in skin and other tissues.
Collapse
Affiliation(s)
- G Petrof
- St John's Institute of Dermatology, King's College London (Guy's Campus), London SE1 9RT, UK
| | | | | |
Collapse
|
13
|
Simpson CL, Kojima SI, Cooper-Whitehair V, Getsios S, Green KJ. Plakoglobin rescues adhesive defects induced by ectodomain truncation of the desmosomal cadherin desmoglein 1: implications for exfoliative toxin-mediated skin blistering. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:2921-37. [PMID: 21075858 DOI: 10.2353/ajpath.2010.100397] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Desmoglein 1 (Dsg1) is a desmosomal cadherin that is essential to epidermal integrity. In the blistering diseases bullous impetigo and staphylococcal scalded-skin syndrome, pathogenesis depends on cleavage of Dsg1 by a bacterial protease, exfoliative toxin A, which removes residues 1 to 381 of the Dsg1 ectodomain. However, the cellular responses to Dsg1 cleavage that precipitate keratinocyte separation to induce blister formation are unknown. Here, we show that ectodomain-deleted Dsg1 (Δ381-Dsg1) mimics the toxin-cleaved cadherin, disrupts desmosomes, and reduces the mechanical integrity of keratinocyte sheets. In addition, we demonstrate that truncated Dsg1 remains associated with its catenin partner, plakoglobin, and causes a reduction in the levels of endogenous desmosomal cadherins in a dose-dependent manner, leading us to hypothesize that plakoglobin sequestration by truncated Dsg1 destabilizes other cadherins. Accordingly, a triple-point mutant of the ectodomain-deleted cadherin, which is uncoupled from plakoglobin, does not impair adhesion, indicating that this interaction is essential to the pathogenic potential of truncated Dsg1. Moreover, we demonstrate that increasing plakoglobin levels rescues cadherin expression, desmosome organization, and functional adhesion in cells expressing Δ381-Dsg1 or treated with exfoliative toxin A. Finally, we report that histone deacetylase inhibition up-regulates desmosomal cadherins and prevents the loss of adhesion induced by Dsg1 truncation. These findings further our understanding of the mechanism of exfoliative toxin-induced pathology and suggest novel strategies to suppress blistering in bulbous impetigo and staphylococcal scalded-skin syndrome.
Collapse
Affiliation(s)
- Cory L Simpson
- Department of Pathology, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave., Chicago, IL 60611, USA
| | | | | | | | | |
Collapse
|
14
|
Holthöfer B, Windoffer R, Troyanovsky S, Leube RE. Structure and function of desmosomes. ACTA ACUST UNITED AC 2007; 264:65-163. [PMID: 17964922 DOI: 10.1016/s0074-7696(07)64003-0] [Citation(s) in RCA: 150] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Desmosomes are prominent adhesion sites that are tightly associated with the cytoplasmic intermediate filament cytoskeleton providing mechanical stability in epithelia and also in several nonepithelial tissues such as cardiac muscle and meninges. They are unique in terms of ultrastructural appearance and molecular composition with cell type-specific variations. The dynamic assembly properties of desmosomes are important prerequisites for the acquisition and maintenance of tissue homeostasis. Disturbance of this equilibrium therefore not only compromises mechanical resilience but also affects many other tissue functions as becomes evident in various experimental scenarios and multiple diseases.
Collapse
Affiliation(s)
- Bastian Holthöfer
- Department of Anatomy and Cell Biology, Johannes Gutenberg University, 55128 Mainz, Germany
| | | | | | | |
Collapse
|
15
|
Nava P, Laukoetter MG, Hopkins AM, Laur O, Gerner-Smidt K, Green KJ, Parkos CA, Nusrat A. Desmoglein-2: a novel regulator of apoptosis in the intestinal epithelium. Mol Biol Cell 2007; 18:4565-78. [PMID: 17804817 PMCID: PMC2043542 DOI: 10.1091/mbc.e07-05-0426] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2007] [Revised: 07/19/2007] [Accepted: 08/27/2007] [Indexed: 11/11/2022] Open
Abstract
Intestinal epithelial intercellular junctions regulate barrier properties, and they have been linked to epithelial differentiation and programmed cell death (apoptosis). However, mechanisms regulating these processes are poorly defined. Desmosomes are critical elements of intercellular junctions; they are punctate structures made up of transmembrane desmosomal cadherins termed desmoglein-2 (Dsg2) and desmocollin-2 (Dsc2) that affiliate with the underlying intermediate filaments via linker proteins to provide mechanical strength to epithelia. In the present study, we generated an antibody, AH12.2, that recognizes Dsg2. We show that Dsg2 but not another desmosomal cadherin, Dsc2, is cleaved by cysteine proteases during the onset of intestinal epithelial cell (IEC) apoptosis. Small interfering RNA-mediated down-regulation of Dsg2 protected epithelial cells from apoptosis. Moreover, we report that a C-terminal fragment of Dsg2 regulates apoptosis and Dsg2 protein levels. Our studies highlight a novel mechanism by which Dsg2 regulates IEC apoptosis driven by cysteine proteases during physiological differentiation and inflammation.
Collapse
Affiliation(s)
- Porfirio Nava
- *Epithelial Pathobiology Research Unit, Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322
| | - Mike G. Laukoetter
- *Epithelial Pathobiology Research Unit, Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322
- Department of General Surgery, University of Muenster, D-48149 Muenster, Germany
| | - Ann M. Hopkins
- UCD School of Medicine and Medical Science, University College, Dublin 4, Ireland; and
| | - Oskar Laur
- *Epithelial Pathobiology Research Unit, Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322
| | - Kirsten Gerner-Smidt
- *Epithelial Pathobiology Research Unit, Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322
| | - Kathleen J. Green
- Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Charles A. Parkos
- *Epithelial Pathobiology Research Unit, Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322
| | - Asma Nusrat
- *Epithelial Pathobiology Research Unit, Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322
| |
Collapse
|
16
|
Cirillo N, Gombos F, Lanza A. Changes in desmoglein 1 expression and subcellular localization in cultured keratinocytes subjected to anti-desmoglein 1 pemphigus autoimmunity. J Cell Physiol 2007; 210:411-6. [PMID: 17058228 DOI: 10.1002/jcp.20856] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The complexity of pemphigus acantholysis together with the weak expression of desmoglein 1 (Dsg1) in cultured keratinocytes have made the study on the pathogenic action of anti-Dsg1 antibodies quite difficult. The pathophysiology of the acantholytic phenomenon could depend on the reduction of Dsg1 adhesion function occurring after its massive internalization or decrease of its synthesis. Here, we have investigated this hypothesis by using sera of patients having antibodies against Dsg1 or monoclonal anti-Dsg1 antibodies to simulate pemphigus autoimmunity in Dsg1-rich keratinocytes. Similar to pemphigus foliaceus (PF) and vulgaris (PV) sera, monoclonal anti-Dsg1 antibodies induced transient internalization of Dsg1 and reduced the adhesion strength among keratinocytes. However, binding of IgG to Dsg1 did not determine its early depletion from the adhesion complexes but reduced the amount of Dsg1 found in the Triton X-100 soluble pool of proteins. Taken together, our results represent the first demonstration that anti-Dsg1 antibodies induce similar alterations on the subcellular distribution of Dsg1 irrespective of the disease where they come from. Furthermore, the present study provides insight into the mechanisms underlying epithelial blistering observed in the skin type of pemphigus.
Collapse
Affiliation(s)
- Nicola Cirillo
- Regional Center on Craniofacial Malformations-MRI, 1st School of Medicine and Surgery, II University of Naples, Naples, Italy.
| | | | | |
Collapse
|
17
|
Heuser A, Plovie ER, Ellinor PT, Grossmann KS, Shin JT, Wichter T, Basson CT, Lerman BB, Sasse-Klaassen S, Thierfelder L, MacRae CA, Gerull B. Mutant desmocollin-2 causes arrhythmogenic right ventricular cardiomyopathy. Am J Hum Genet 2006; 79:1081-8. [PMID: 17186466 PMCID: PMC1698714 DOI: 10.1086/509044] [Citation(s) in RCA: 177] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2006] [Accepted: 09/06/2006] [Indexed: 12/16/2022] Open
Abstract
Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a genetically heterogeneous heart-muscle disorder characterized by progressive fibrofatty replacement of right ventricular myocardium and an increased risk of sudden cardiac death. Mutations in desmosomal proteins that cause ARVC have been previously described; therefore, we investigated 88 unrelated patients with the disorder for mutations in human desmosomal cadherin desmocollin-2 (DSC2). We identified a heterozygous splice-acceptor-site mutation in intron 5 (c.631-2A-->G) of the DSC2 gene, which led to the use of a cryptic splice-acceptor site and the creation of a downstream premature termination codon. Quantitative analysis of cardiac DSC2 expression in patient specimens revealed a marked reduction in the abundance of the mutant transcript. Morpholino knockdown in zebrafish embryos revealed a requirement for dsc2 in the establishment of the normal myocardial structure and function, with reduced desmosomal plaque area, loss of the desmosome extracellular electron-dense midlines, and associated myocardial contractility defects. These data identify DSC2 mutations as a cause of ARVC in humans and demonstrate that physiologic levels of DSC2 are crucial for normal cardiac desmosome formation, early cardiac morphogenesis, and cardiac function.
Collapse
Affiliation(s)
- Arnd Heuser
- Max-Delbrueck Center for Molecular Medicine, Franz-Volhard Clinic, HELIOS Clinics GmbH, Charité, Humboldt University, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Miragliotta V, Donadio E, Felicioli A, Podestà A, Ricciardi MP, Ceccardi S, Abramo F. Immunolocalisation of desmoglein-1 in equine muzzle skin. Equine Vet J 2006; 38:485-7. [PMID: 16986611 DOI: 10.2746/042516406778400592] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- V Miragliotta
- Department of Veterinary Anatomy, Biochemistry and Physiology, University of Pisa, Italy
| | | | | | | | | | | | | |
Collapse
|
19
|
Miragliotta V, Coli A, Ricciardi MP, Podestà A, Abramo F. Immunohistochemical analysis of the distribution of desmoglein 1 and 2 in the skin of dogs and cats. Am J Vet Res 2006; 66:1931-5. [PMID: 16334952 DOI: 10.2460/ajvr.2005.66.1931] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To compare the distribution of desmoglein (Dsg) 1 and 2 in skin specimens obtained from dogs and cats to provide information about the possible role of the density of Dsg 1 and 2 in the localization of lesions attributable to pemphigus foliaceus in these 2 species. SAMPLE POPULATION Skin biopsy specimens obtained from 4 dogs and 4 cats. PROCEDURE Biopsy specimens were collected from the muzzle, bridge of the nose, ear, dorsum, abdomen, area adjacent to the teats, and footpads of each animal. Immunohistochemical analysis was performed on formalin-fixed, paraffin-embedded skin samples by use of a biotinylated mouse monoclonal anti-Dsg 1 and 2 antibody raised against bovine muzzle. Color development was performed by use of the streptavidin-biotin-peroxidase method with a chromogenic substrate. RESULTS Immunohistochemical staining yielded a positive reaction in skin samples obtained from all anatomic sites. The intensity and distribution of staining were related to the number of layers of the stratum spinosum. No differences were detected between samples obtained from dogs and cats. CONCLUSIONS AND CLINICAL RELEVANCE No differences in intensity of Dsg 1 and 2 antigen were observed in the stratum spinosum between skin samples obtained from dogs and cats. Analysis of this result suggests that factors other than the distribution of Dsg may be responsible for the differences in localization of primary clinical lesions in dogs and cats with pemphigus foliaceus.
Collapse
Affiliation(s)
- Vincenzo Miragliotta
- Department of Veterinary Anatomy, Faculty of Veterinary Medicine, University of Pisa, Italy
| | | | | | | | | |
Collapse
|
20
|
Ishii K, Harada R, Matsuo I, Shirakata Y, Hashimoto K, Amagai M. In vitro keratinocyte dissociation assay for evaluation of the pathogenicity of anti-desmoglein 3 IgG autoantibodies in pemphigus vulgaris. J Invest Dermatol 2005; 124:939-46. [PMID: 15854034 DOI: 10.1111/j.0022-202x.2005.23714.x] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Patients with pemphigus vulgaris (PV) have circulating anti-desmoglein (Dsg) 3 immunoglobulin G (IgG) autoantibodies that induce blister formation. We developed an in vitro quantitative assay to evaluate the pathogenic strength of anti-Dsg3 IgG autoantibodies in blister formation. To obtain intercellular adhesion mediated dominantly by Dsg3, we used primary cultured normal human keratinocytes expressing low level of Dsg2 in the presence of exfoliative toxin A that specifically digests Dsg1. After incubation with various antibodies, monolayers released by dispase were subjected to mechanical stress by pipetting, and the number of cell fragments were counted. When anti-Dsg3 monoclonal antibodies (mAb) obtained from pemphigus model mice were tested, pathogenic AK23 mAb yielded significantly higher number of cell fragments than AK7 or AK20 non-pathogenic mAb. Dissociation scores, defined with AK23 mAb as the positive control, were significantly higher with active stage PV sera (n=10, 77.4+/-21.4) than controls (n=11, 16.0+/-9.6; p=0.003). When pair sera obtained from 6 PV patients in active stage and in remission were compared, the dissociation scores reflected well the disease activity as those in active stage were four to 17 times higher than those in remission. When sera from different patients showing similar ELISA scores but different clinical severity were tested (n=6), the dissociation scores with sera from severe disease activity were significantly higher than those with sera in remission. These findings indicate that this dissociation assay will provide a simple and objective biological method to measure the pathogenic strength of pemphigus autoantibodies.
Collapse
Affiliation(s)
- Ken Ishii
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
21
|
Getsios S, Amargo EV, Dusek RL, Ishii K, Sheu L, Godsel LM, Green KJ. Coordinated expression of desmoglein 1 and desmocollin 1 regulates intercellular adhesion. Differentiation 2004; 72:419-33. [PMID: 15606501 DOI: 10.1111/j.1432-0436.2004.07208008.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Desmoglein 1 (Dsg1) is a component of desmosomes present in the upper epidermis and can be targeted by autoimmune antibodies or bacterial toxins, resulting in skin blistering diseases. These defects in tissue integrity are believed to result from compromised desmosomal adhesion; yet, previous attempts to directly test the adhesive roles of desmosomal cadherins using normally non-adherent L cells have yielded mixed results. Here, two complementary approaches were used to better resolve the molecular determinants for Dsg1-mediated adhesion: (1) a tetracycline-inducible system was used to modulate the levels of Dsg1 expressed in L cell lines containing desmocollin 1 (Dsc1) and plakoglobin (PG) and (2) a retroviral gene delivery system was used to introduce Dsg1 into normal human epidermal keratinocytes (NHEK). By increasing Dsg1 expression relative to Dsc1 and PG, we were able to demonstrate that the ratio of Dsg1:Dsc1 is a critical determinant of desmosomal adhesion in fibroblasts. The distribution of Dsg1 was organized at areas of cell-cell contact in the multicellular aggregates that formed in these suspension cultures. Similarly, the introduction of Dsg1 into NHEKs was capable of increasing the aggregation of single cell suspensions and further enhanced the adhesive strength of intact epithelial sheets. Endogenous Dsc1 levels were also increased in NHEKs containing Dsg1, providing further support for the coordination of these two desmosomal cadherins in regulating adhesive structures. These Dsg1-mediated effects on intercellular adhesion were directly related to the presence of an intact extracellular domain as ETA, a toxin that specifically cleaves this desmosomal cadherin, inhibited adhesion in both fibroblasts and keratinocytes. Collectively, these observations demonstrate that Dsg1 promotes the formation of intercellular adhesion complexes and suggest that the relative level of Dsg and Dsc expressed at the cell surface regulates this adhesive process.
Collapse
Affiliation(s)
- Spiro Getsios
- Department of Pathology and Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Lorch JH, Klessner J, Park JK, Getsios S, Wu YL, Stack MS, Green KJ. Epidermal growth factor receptor inhibition promotes desmosome assembly and strengthens intercellular adhesion in squamous cell carcinoma cells. J Biol Chem 2004; 279:37191-200. [PMID: 15205458 DOI: 10.1074/jbc.m405123200] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The epidermal growth factor receptor (EGFR) has been proposed as a key modulator of cadherin-containing intercellular junctions, particularly in tumors that overexpress this tyrosine kinase. Here the EGFR tyrosine kinase inhibitor PKI166 and EGFR blocking antibody C225, both of which are used clinically to treat head and neck cancers, were used to determine the effects of EGFR inhibition on intercellular junction assembly and adhesion in oral squamous cell carcinoma cells. EGFR inhibition resulted in a transition from a fibroblastic morphology to a more epithelial phenotype in cells grown in low calcium; under these conditions cadherin-mediated cell-cell adhesion is normally reduced, and desmosomes are absent. The accumulated levels of desmoglein 2 (Dsg2) and desmocollin 2 increased 1.7-2.0-fold, and both desmosomal cadherin and plaque components were recruited to cell-cell borders. This redistribution was paralleled by an increase in Dsg2 and desmoplakin in the Triton-insoluble cell fraction, suggesting that EGFR blockade promotes desmosome assembly. Importantly, E-cadherin expression and solubility were unchanged. Furthermore, PKI166 blocked tyrosine phosphorylation of Dsg2 and plakoglobin following epidermal growth factor stimulation, whereas no change in phosphorylation was detected for E-cadherin and beta-catenin. The increase in Dsg2 protein was in part due to the inhibition of matrix metalloproteinase-dependent proteolysis of this desmosomal cadherin. These morphological and biochemical changes were accompanied by an increase in intercellular adhesion based on functional assays at all calcium concentrations tested. Our results suggest that EGFR inhibition promotes desmosome assembly in oral squamous cell carcinoma cells, resulting in increased cell-cell adhesion.
Collapse
Affiliation(s)
- Jochen H Lorch
- Departments of Pathology and Dermatology, The Robert H. Lurie Cancer Center, Northwestern University Feinberg School of Medicine, 303 East Chicago Avenue, Chicago, IL 60611, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Whittock NV. Genomic Sequence Analysis of the Mouse Desmoglein Cluster Reveals Evidence for Six Distinct Genes: Characterization of Mouse DSG4, DSG5, and DSG6. J Invest Dermatol 2003. [DOI: 10.1038/jid.2003.10] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
24
|
Abstract
Plakophilin 3 (PKP3) is a recently described armadillo protein of the desmosomal plaque, which is synthesized in simple and stratified epithelia. We investigated the localization pattern of endogenous and exogenous PKP3 and fragments thereof. The desmosomal binding properties of PKP3 were determined using yeast two-hybrid, coimmunoprecipitation and colocalization experiments. To this end, novel mouse anti-PKP3 mAbs were generated. We found that PKP3 binds all three desmogleins, desmocollin (Dsc) 3a and -3b, and possibly also Dsc1a and -2a. As such, this is the first protein interaction ever observed with a Dsc-b isoform. Moreover, we determined that PKP3 interacts with plakoglobin, desmoplakin (DP) and the epithelial keratin 18. Evidence was found for the presence of at least two DP-PKP3 interaction sites. This finding might explain how lateral DP-PKP interactions are established in the upper layers of stratified epithelia, increasing the size of the desmosome and the number of anchoring points available for keratins. Together, these results show that PKP3, whose epithelial and epidermal desmosomal expression pattern and protein interaction repertoire are broader than those of PKP1 and -2, is a unique multiprotein binding element in the basic architecture of a vast majority of epithelial desmosomes.
Collapse
Affiliation(s)
- Stefan Bonné
- Molecular Cell Biology Unit, Department for Molecular Biomedical Research, Flanders Interuniversity Institute for Biotechnology (VIB)-Ghent University, B-9000 Ghent, Belgium
| | | | | | | | | | | |
Collapse
|
25
|
Affiliation(s)
- Ken Ishii
- Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
26
|
Abstract
The mouse desmogleins are members of the desmosomal cadherin superfamily, and are critical structural components of the desmosome. The genes encoding mouse desmogleins are tightly clustered within 600 kb of chromosome 18, within a desmosomal cadherin gene family also containing the three desmocollin genes. In this study, we have characterized a novel mouse desmoglein gene, highly homologous to both mouse and human Dsg1, designated desmoglein 1 gamma (Dsg1c). Dsg1 gamma shares 83% amino acid identity to the previously described mouse Dsg1, now designated as Dsg1 alpha, and 32% and 40% identity to mouse Dsg2 and 3, respectively. The Dsg1 gamma gene maps within the desmosomal gene cluster, between Dsc1 and Dsg1 alpha. Comparison of its exon-intron structure revealed a high level of evolutionary conservation with related family members. In contrast to Dsg1 alpha and Dsg3 whose expression is largely restricted to the skin, Dsg1 gamma is also expressed in the brain, skeletal muscle, and liver, among other tissues, and is thus more similar to Dsg2 in its tissue distribution. Interestingly, an orthologous Dsg1 gamma was not found in the human genome, suggesting that the desmosomal cadherin gene cluster contracted during mammalian evolution.
Collapse
Affiliation(s)
- A Kljuic
- Department of Genetics and Development, Columbia University, New York, NY 10032, USA
| | | |
Collapse
|
27
|
Hanakawa Y, Amagai M, Shirakata Y, Yahata Y, Tokumaru S, Yamasaki K, Tohyama M, Sayama K, Hashimoto K. Differential effects of desmoglein 1 and desmoglein 3 on desmosome formation. J Invest Dermatol 2002; 119:1231-6. [PMID: 12485422 DOI: 10.1046/j.1523-1747.2002.19648.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The desmoglein plays an important part in the formation of desmosomes. We constructed recombinant adenoviruses containing desmoglein 1 and desmoglein 3 derivatives partly lacking the extracellular domain (desmoglein 1DeltaEC and desmoglein 3DeltaEC, respectively), and full-length desmoglein 1 and desmoglein 3 and studied the involvement of desmoglein 1 and desmoglein 3 in desmosome formation. During low-level expression of desmoglein 3DeltaEC in transduced HaCaT cells, keratin insertion at cell-cell contact sites was only partially inhibited and desmoplakin was partially stained at cell-cell contact sites. Low-level expression of desmoglein 1DeltaEC, however, resulted in complete inhibition of keratin insertion at the cell-cell contact sites, and desmoplakin was stained in perinuclear dots. These results indicate the dominant-negative effect of desmoglein 1DeltaEC on desmosome formation was stronger than that of desmoglein 3DeltaEC. Desmoglein 1DeltaEC coprecipitated plakoglobin to approximately the same extent as desmoglein 3DeltaEC. Therefore, we conclude that the dominant-negative effect of desmoglein 1DeltaEC is not simply due to plakoglobin sequestration. On the other hand, during low-level expression of full-length desmoglein 3 and desmoglein 1, they both colocalized with desmoplakin. During high-level expression, however, keratin insertion at cell-cell contact sites was inhibited in desmoglein 1 but not in desmoglein 3, and desmoplakin was stained at cell-cell contact sites in desmoglein 3 but not in desmoglein 1. These data suggest desmoglein 1 and desmoglein 3 expressed at low level were incorporated into desmosome but at high-level expression, desmoglein 1 disrupted desmosomes but desmoglein 3 did not. Our findings provide biologic evidence that desmoglein 1 and desmoglein 3 play a different functional role in cell-cell adhesion of keratinocytes.
Collapse
Affiliation(s)
- Yasushi Hanakawa
- Department of Dermatology, School of Medicine, Ehime University, Ehime, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
New evidence from blocking desmosomal adhesion with anti-adhesion peptides reveals a role for desmosomes in cell positioning in morphogenesis. Desmosomal adhesion is necessary for the stability of adherens junctions in epithelial cell sheets. Knockout and mis-expression of desmosomal cadherins in mice suggests that they may function directly or indirectly in regulating epidermal differentiation. Protein kinase C signalling and tyrosine phosphorylation appear to regulate desmosomal adhesion. There are new insights into the role of desmosomal cadherins in autoimmune, infectious and genetic disease.
Collapse
Affiliation(s)
- David R Garrod
- School of Biological Sciences, University of Manchester, UK.
| | | | | |
Collapse
|
29
|
Windoffer R, Borchert-Stuhlträger M, Leube RE. Desmosomes: interconnected calcium-dependent structures of remarkable stability with significant integral membrane protein turnover. J Cell Sci 2002; 115:1717-32. [PMID: 11950889 DOI: 10.1242/jcs.115.8.1717] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Desmosomes are prominent cell adhesion structures that are major stabilizing elements, together with the attached cytoskeletal intermediate filament network, of the cytokeratin type in epithelial tissues. To examine desmosome dynamics in tightly coupled cells and in situations of decreased adhesion, fluorescent desmosomal cadherin desmocollin 2a (Dsc2a) chimeras were stably expressed in human hepatocellular carcinoma-derived PLC cells (clone PDc-13) and in Madin-Darby canine kidney cells (clone MDc-2) for the continuous monitoring of desmosomes in living cells. The hybrid polypeptides integrated specifically and without disturbance into normal-appearing desmosomes that occurred in association with typical cytokeratin filament bundles. Tracking of labeled adhesion sites throughout the cell cycle by time-lapse fluorescence microscopy revealed that they were immobile and that they maintained their structural integrity for long periods of time. Time-space diagrams further showed that desmosomal positioning was tightly controlled, even during pronounced cell shape changes, although the desmosomal arrays extended and contracted, suggesting that they were interconnected by a flexible system with intrinsic elasticity. Double-fluorescence microscopy detecting Dsc2a chimeras together with fluorescent cytokeratin 18 chimeras revealed the association and synchronous movement of labeled desmosomes and fluorescent cytokeratin filaments. Only a minor destabilization of desmosomes was observed during mitosis, demonstrated by increased diffuse plasma membrane fluorescence and the fusion of desmosomes into larger structures. Desmosomes did not disappear completely at any time in any cell, and residual cytokeratin filaments remained in association with adhesion sites throughout cell division. On the other hand, a rapid loss of desmosomes was observed upon calcium depletion, with irreversible uptake of some desmosomal particles. Simultaneously, diffusely distributed desmosomal cadherins were detected in the plasma membrane that retained the competence to nucleate the reformation of desmosomes after the cells were returned to a standard calcium-containing medium. To examine the molecular stability of desmosomes, exchange rates of fluorescent chimeras were determined by fluorescence recovery after photobleaching, thereby identifying considerable Dsc2a turnover with different rates of fluorescence recovery for PDc-13 cells (36±17% recovery after 30 minutes) and MDc-2 cells (60±20% recovery after 30 minutes). Taken together, our observations suggest that desmosomes are pliable structures capable of fine adjustment to functional demands despite their overall structural stability and relative immobility.
Collapse
Affiliation(s)
- Reinhard Windoffer
- Department of Anatomy, Johannes Gutenberg-University Mainz, Becherweg 13, 55128 Mainz, Germany
| | | | | |
Collapse
|
30
|
Mahoney MG, Simpson A, Aho S, Uitto J, Pulkkinen L. Interspecies conservation and differential expression of mouse desmoglein gene family. Exp Dermatol 2002; 11:115-25. [PMID: 11994138 DOI: 10.1034/j.1600-0625.2002.110203.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Epithelial cell adhesion is mediated by intercellular junctions, called desmosomes. Desmogleins (Dsg; Dsg1, Dsg2 and Dsg3) are calcium-dependent transmembrane adhesion components of the desmosomes. While Dsg1 and Dsg3 are mainly restricted to stratified squamous epithelia, Dsg2 is expressed in essentially all desmosome-containing epithelia. In the epidermis, Dsg2 and Dsg3 are expressed in the basal keratinocytes while Dsg1 is expressed throughout the upper differentiating cell layers. To date, in mouse, only Dsg3 has been characterized by molecular cloning. In this study, we have cloned and characterized the mouse Dsg1 and Dsg2 genes. The full-length mouse Dsg1 cDNA (5.5 kb) contains an open reading frame (ORF) of 3171 bp encoding a precursor protein of 1057 amino acids. The Dsg2 cDNA (6.3 kb) has an ORF of 3366 bp coding for a precursor protein of 1122 amino acids. Mouse Dsg2 protein shares 76% identity with human DSG2 but only 26% and 33% identity with mouse Dsg1 and Dsg3, respectively. Analysis of intron/exon organization of the desmoglein genes revealed significant conservation. However, the mRNA expression patterns of these desmogleins during mouse embryonic development and in various adult tissues are variable. While Dsg2 and Dsg3 are expressed in all developmental stages, Dsg1 expression is delayed until day 15 of mouse embryos. In adult mouse tissues, Dsg2 is widely expressed while the expression of Dsg1 and Dsg3 is restricted to select tissues. In summary, while desmogleins share high homology at both the gene and protein level, their expression is spatially and temporally regulated, potentially contributing to their significant role in cell-cell adhesion during development.
Collapse
Affiliation(s)
- My G Mahoney
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | | | | | | | | |
Collapse
|
31
|
Chen X, Bonne S, Hatzfeld M, van Roy F, Green KJ. Protein binding and functional characterization of plakophilin 2. Evidence for its diverse roles in desmosomes and beta -catenin signaling. J Biol Chem 2002; 277:10512-22. [PMID: 11790773 DOI: 10.1074/jbc.m108765200] [Citation(s) in RCA: 171] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Plakophilins are a subfamily of p120-related arm-repeat proteins that can be found in both desmosomes and the nucleus. Among the three known plakophilin members, plakophilin 1 has been linked to a genetic skin disorder and shown to play important roles in desmosome assembly and organization. However, little is known about the binding partners and functions of the most widely expressed member, plakophilin 2. To better understand the cellular functions of plakophilin 2, we have examined its protein interactions with other junctional molecules using co-immunoprecipitation and yeast two-hybrid assays. Here we show that plakophilin 2 can interact directly with several desmosomal components, including desmoplakin, plakoglobin, desmoglein 1 and 2, and desmocollin 1a and 2a. The head domain of plakophilin 2 is critical for most of these interactions and is sufficient to direct plakophilin 2 to cell borders. In addition, plakophilin 2 is less efficient than plakophilin 1 in localizing to the nucleus and enhancing the recruitment of excess desmoplakin to cell borders in transiently transfected COS cells. Furthermore, plakophilin 2 is able to associate with beta-catenin through its head domain, and the expression of plakophilin 2 in SW480 cells up-regulates the endogenous beta-catenin/T cell factor-signaling activity. This up-regulation by plakophilin 2 is abolished by ectopic expression of E-cadherin, suggesting that these proteins compete for the same pool of signaling active beta-catenin. Our results demonstrate that plakophilin 2 interacts with a broader repertoire of desmosomal components than plakophilin 1 and provide new insight into the possible roles of plakophilin 2 in regulating the signaling activity of beta-catenin.
Collapse
Affiliation(s)
- Xinyu Chen
- Department of Pathology, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | | | | | | | | |
Collapse
|
32
|
Bannon LJ, Cabrera BL, Stack MS, Green KJ. Isoform-specific differences in the size of desmosomal cadherin/catenin complexes. J Invest Dermatol 2001; 117:1302-6. [PMID: 11710948 DOI: 10.1046/j.1523-1747.2001.01512.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Via their integration of the intermediate filament cytoskeleton into the cell membrane, desmosomes facilitate the maintenance of cell shape and tissue integrity as well as intercellular communication. The transmembrane components of the desmosome, the desmogleins and desmocollins, are members of the cadherin family of cell-cell adhesion molecules. Each of these proteins exists as three distinct isoforms, which are the products of individual genes and expressed in a cell-type and differentiation-specific manner. Previous work has suggested that desmoglein 1 binds to its catenin partner, plakoglobin, in an approximately 6:1 stoichiometry. In this study, the molecular organization of complexes formed by plakoglobin and desmoglein 1, 2, or 3 are further examined through immunoprecipitation, size exclusion chromatography and sucrose density sedimentation analysis. It is shown that the complex formed between plakoglobin and desmoglein 1 has an overall molecular weight greater than that of plakoglobin/desmoglein 2 or plakoglobin/desmoglein 3; however, the stoichiometry of the plakoglobin/desmoglein 1 complex does not appear to exceed 2:1.
Collapse
Affiliation(s)
- L J Bannon
- Department of Pathology, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | | | | | | |
Collapse
|
33
|
Abstract
Three desmoglein isoforms collaborate with desmocollins to build the adhesive core of desmosomes. A recent study has shown that altering the ratio of desmoglein isoforms influences epidermal barrier function, suggesting distinct roles for these cadherins that extend beyond adhesion.
Collapse
Affiliation(s)
- K Ishii
- Departments of Pathology and Dermatology, Northwestern University Medical School, 303 E. Chicago Avenue, Chicago, Illinois 60611, USA
| | | |
Collapse
|