1
|
Auger A, Faidi R, Rickman AD, Martinez CP, Fajfer A, Carling J, Hilyard A, Ali M, Ono R, Cleveland C, Seliniotakis R, Truong N, Chefson A, Raymond M, Germain MA, Crackower MA, Heckmann BL. Post-symptomatic NLRP3 inhibition rescues cognitive impairment and mitigates amyloid and tau driven neurodegeneration. NPJ DEMENTIA 2025; 1:3. [PMID: 40343261 PMCID: PMC12055592 DOI: 10.1038/s44400-025-00011-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 04/21/2025] [Indexed: 05/11/2025]
Abstract
Emerging evidence has established neuroinflammation as a primary driver of progressive neuronal loss observed across neurodegenerative diseases (NDDs). The NLRP3 inflammasome is a cytosolic immunoprotective danger sensing complex, which when aberrantly activated drives neuroinflammation, propagates amyloid deposition, and neurodegeneration. Herein, we report the therapeutic benefit of NLRP3 inflammasome inhibition in Alzheimer's disease (AD), using a novel and selective brain-penetrant small molecule NLRP3 inhibitor, VEN-02XX, which we profiled in the 5XFAD/Rubicon KO AD model. We demonstrate for the first time that targeting NLRP3, post-symptomatic establishment, rescues cognitive deficits, mitigates neuronal loss, and is sufficient to significantly reduce reactive microgliosis, neuroinflammation and tau pathology. Our data further suggest that pharmacological inhibition of NLRP3, after disease onset, has the potential to reduce cortical and hippocampal amyloid burden. Together, these results highlight the potential for NLRP3 inhibition as a symptomatic and disease modifying therapeutic target for AD pathology and more broadly NDDs.
Collapse
Affiliation(s)
- Anick Auger
- Ventus Therapeutics, Inc., 4800 Rue Levy, Montreal, QC, H4R 2P7 Canada
| | - Rania Faidi
- Ventus Therapeutics, Inc., 4800 Rue Levy, Montreal, QC, H4R 2P7 Canada
| | - Alexis D. Rickman
- USF Health Byrd Alzheimer’s Center and Neuroscience Institute, Department of Molecular Medicine Morsani College of Medicine, Tampa, FL 33613 USA
| | - Carolina Pena Martinez
- USF Health Byrd Alzheimer’s Center and Neuroscience Institute, Department of Molecular Medicine Morsani College of Medicine, Tampa, FL 33613 USA
| | - Austin Fajfer
- USF Health Byrd Alzheimer’s Center and Neuroscience Institute, Department of Molecular Medicine Morsani College of Medicine, Tampa, FL 33613 USA
| | - Jeremy Carling
- USF Health Byrd Alzheimer’s Center and Neuroscience Institute, Department of Molecular Medicine Morsani College of Medicine, Tampa, FL 33613 USA
| | - Addison Hilyard
- USF Health Byrd Alzheimer’s Center and Neuroscience Institute, Department of Molecular Medicine Morsani College of Medicine, Tampa, FL 33613 USA
| | - Mubashshir Ali
- USF Health Byrd Alzheimer’s Center and Neuroscience Institute, Department of Molecular Medicine Morsani College of Medicine, Tampa, FL 33613 USA
| | - Ryosuke Ono
- USF Health Byrd Alzheimer’s Center and Neuroscience Institute, Department of Molecular Medicine Morsani College of Medicine, Tampa, FL 33613 USA
| | - Connor Cleveland
- USF Health Byrd Alzheimer’s Center and Neuroscience Institute, Department of Molecular Medicine Morsani College of Medicine, Tampa, FL 33613 USA
| | - Ria Seliniotakis
- USF Health Byrd Alzheimer’s Center and Neuroscience Institute, Department of Molecular Medicine Morsani College of Medicine, Tampa, FL 33613 USA
| | - Nhi Truong
- USF Health Byrd Alzheimer’s Center and Neuroscience Institute, Department of Molecular Medicine Morsani College of Medicine, Tampa, FL 33613 USA
| | - Amandine Chefson
- Ventus Therapeutics, Inc., 4800 Rue Levy, Montreal, QC, H4R 2P7 Canada
| | - Marianne Raymond
- Ventus Therapeutics, Inc., 4800 Rue Levy, Montreal, QC, H4R 2P7 Canada
| | | | - Michael A. Crackower
- Ventus Therapeutics U.S., Inc., 100 Beaver Street, Suite 201, Waltham, MA 02453 USA
| | - Bradlee L. Heckmann
- USF Health Byrd Alzheimer’s Center and Neuroscience Institute, Department of Molecular Medicine Morsani College of Medicine, Tampa, FL 33613 USA
| |
Collapse
|
2
|
Tripathi S, Sharma Y, Kumar D. Unraveling APOE4's Role in Alzheimer's Disease: Pathologies and Therapeutic Strategies. Curr Protein Pept Sci 2025; 26:259-281. [PMID: 39722484 DOI: 10.2174/0113892037326839241014054430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/13/2024] [Accepted: 08/30/2024] [Indexed: 12/28/2024]
Abstract
Alzheimer's disease (AD), the most common kind of dementia worldwide, is characterized by elevated levels of the amyloid-β (Aβ) peptide and hyperphosphorylated tau protein in the neurons. The complexity of AD makes the development of treatments infamously challenging. Apolipoprotein E (APOE) genes's ε4 allele is one of the main genetic risk factors for AD. While the APOE gene's ε4 allele considerably increases the chance of developing AD, the ε2 allele is protective compared to the prevalent ε3 variant. It is fiercely discussed how APOE affects the development and course of disease since it has a variety of activities that influence both neuronal and non-neuronal cells. ApoE4 contributes to the formation of tau tangles, deposition of Aβ, neuroinflammation, and other processes. Four decades of research have provided a significant understanding of the structure of APOE and how this may affect the neuropathology and pathogenesis of AD. APOE is a crucial lipid transporter essential for the growth of the central nervous system (CNS), upkeep, and repair. The mechanisms by which APOE contributes to the pathophysiology of AD are still up for discussion, though. Evidence suggests that APOE affects the brain's clearance and deposition of Aβ. Additionally, APOE has Aβ-independent pathways in AD, which has led to the identification of new functions for APOE, including mitochondrial dysfunction. This study summarizes important studies that describe how APOE4 affects well-known AD pathologies, including tau pathology, Aβ, neuroinflammation, and dysfunction of neural networks. This study also envisions some of the therapeutic approaches being used to target APOE4 in the hopes of preventing or treating AD.
Collapse
Affiliation(s)
- Siddhant Tripathi
- Department of Pharmaceutical Chemistry, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, 411038, India
| | - Yashika Sharma
- Department of Pharmaceutical Chemistry, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, 411038, India
| | - Dileep Kumar
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| |
Collapse
|
3
|
Pramotton FM, Spitz S, Kamm RD. Challenges and Future Perspectives in Modeling Neurodegenerative Diseases Using Organ-on-a-Chip Technology. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403892. [PMID: 38922799 PMCID: PMC11348103 DOI: 10.1002/advs.202403892] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/01/2024] [Indexed: 06/28/2024]
Abstract
Neurodegenerative diseases (NDDs) affect more than 50 million people worldwide, posing a significant global health challenge as well as a high socioeconomic burden. With aging constituting one of the main risk factors for some NDDs such as Alzheimer's disease (AD) and Parkinson's disease (PD), this societal toll is expected to rise considering the predicted increase in the aging population as well as the limited progress in the development of effective therapeutics. To address the high failure rates in clinical trials, legislative changes permitting the use of alternatives to traditional pre-clinical in vivo models are implemented. In this regard, microphysiological systems (MPS) such as organ-on-a-chip (OoC) platforms constitute a promising tool, due to their ability to mimic complex and human-specific tissue niches in vitro. This review summarizes the current progress in modeling NDDs using OoC technology and discusses five critical aspects still insufficiently addressed in OoC models to date. Taking these aspects into consideration in the future MPS will advance the modeling of NDDs in vitro and increase their translational value in the clinical setting.
Collapse
Affiliation(s)
- Francesca Michela Pramotton
- Department of Mechanical Engineering and Biological EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Sarah Spitz
- Department of Mechanical Engineering and Biological EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Roger D. Kamm
- Department of Mechanical Engineering and Biological EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| |
Collapse
|
4
|
Li W, Ali T, He K, Zheng C, Li N, Yu Z, Li S. ApoE4 dysregulation incites depressive symptoms and mitochondrial impairments in mice. J Cell Mol Med 2024; 28:e18160. [PMID: 38506067 PMCID: PMC10951871 DOI: 10.1111/jcmm.18160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 01/12/2024] [Accepted: 01/18/2024] [Indexed: 03/21/2024] Open
Abstract
Apolipoprotein E4 (ApoE4) is involved in the stress-response processes and is hypothesized to be a risk factor for depression by means of mitochondrial dysfunction. However, their exact roles and underlying mechanisms are largely unknown. ApoE4 transgenic mice (B6. Cg-ApoEtm1Unc Cdh18Tg( GFAP-APOE i4)1Hol /J) were subjected to stress (lipopolysaccharides, LPS) to elucidate the aetiology of ApoE4-induced depression. LPS treatment significantly aggravated depression-like behaviours, concurrent with neuroinflammation and impaired mitochondrial changes, and melatonin/Urolithin A (UA) + 5-aminoimidazole-4-carboxamide 1-β-D-ribofuranoside (AICAR) reversed these effects in ApoE4 mice. Concurrently, ApoE4 mice exhibited mitophagy deficits, which could be further exacerbated by LPS stimulation, as demonstrated by reduced Atg5, Beclin-1 and Parkin levels, while PINK1 levels were increased. However, these changes were reversed by melatonin treatment. Additionally, proteomic profiling suggested mitochondria-related signalling and network changes in ApoE4 mice, which may underlie the exaggerated response to LPS. Furthermore, HEK 293T cells transfected with ApoE4 showed mitochondria-associated protein and mitophagy defects, including PGC-1α, TFAM, p-AMPKα, PINK1 and LC3B impairments. Additionally, it aggravates mitochondrial impairment (particularly mitophagy), which can be attenuated by triggering autophagy. Collectively, ApoE4 dysregulation enhanced depressive behaviour upon LPS stimulation.
Collapse
Affiliation(s)
- Weifen Li
- Department of Infectious Diseases, Huazhong University of Science and Technology Union Shenzhen HospitalShenzhen University School of MedicineShenzhenChina
- State Key Laboratory of Oncogenomics, School of Chemical Biology and BiotechnologyPeking University Shenzhen Graduate SchoolShenzhenChina
| | - Tahir Ali
- State Key Laboratory of Oncogenomics, School of Chemical Biology and BiotechnologyPeking University Shenzhen Graduate SchoolShenzhenChina
- Shenzhen Bay LaboratoryShenzhenChina
| | - Kaiwu He
- State Key Laboratory of Oncogenomics, School of Chemical Biology and BiotechnologyPeking University Shenzhen Graduate SchoolShenzhenChina
| | - Chengyou Zheng
- State Key Laboratory of Oncogenomics, School of Chemical Biology and BiotechnologyPeking University Shenzhen Graduate SchoolShenzhenChina
| | - Ningning Li
- Tomas Lindahl Nobel Laureate Laboratory, Precision Medicine Research CentreThe Seventh Affiliated Hospital of Sun Yat‐sen UniversityShenzhenChina
| | - Zhi‐Jian Yu
- Department of Infectious Diseases, Huazhong University of Science and Technology Union Shenzhen HospitalShenzhen University School of MedicineShenzhenChina
| | - Shupeng Li
- State Key Laboratory of Oncogenomics, School of Chemical Biology and BiotechnologyPeking University Shenzhen Graduate SchoolShenzhenChina
- Shenzhen Bay LaboratoryShenzhenChina
- Campbell Research Institute, Centre for Addiction and Mental HealthTorontoOntarioCanada
- Department of PsychiatryUniversity of TorontoTorontoOntarioCanada
| |
Collapse
|
5
|
Li Y, Chen X, Zhou M, Feng S, Peng X, Wang Y. Microglial TLR4/NLRP3 Inflammasome Signaling in Alzheimer's Disease. J Alzheimers Dis 2024; 97:75-88. [PMID: 38043010 DOI: 10.3233/jad-230273] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2023]
Abstract
Alzheimer's disease is a pervasive neurodegenerative disease that is estimated to represent approximately 70% of dementia cases worldwide, and the molecular complexity that has been highlighted remains poorly understood. The accumulation of extracellular amyloid-β (Aβ), intracellular neurofibrillary tangles formed by tau hyperphosphorylation, and neuroinflammation are the major pathological features of Alzheimer's disease (AD). Over the years, there has been no apparent breakthrough in drug discovery based on the Aβ and tau hypotheses. Neuroinflammation has gradually become a hot spot in AD treatment research. As the primary cells of innate immunity in the central nervous system, microglia play a key role in neuroinflammation. Toll-like receptor 4 (TLR4) and nucleotide-binding oligomerization domain-like receptor 3 (NLRP3) inflammasomes are vital molecules in neuroinflammation. In the pathological context of AD, the complex interplay between TLR4 and the NLRP3 inflammasomes in microglia influences AD pathology via neuroinflammation. In this review, the effect of the activation and inhibition of TLR4 and NLRP3 in microglia on AD pathology, as well as the cross-talk between TLR4 and the NLRP3 inflammasome, and the influence of essential molecules in the relevant signaling pathway on AD pathology, were expounded. In addition, the feasibility of these factors in representing a potential treatment option for AD has been clarified.
Collapse
Affiliation(s)
- Yunfeng Li
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xiongjin Chen
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Mulan Zhou
- Department of Pharmacy, The People's Hospital of Gaozhou, Maoming, China
| | - Sifan Feng
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xiaoping Peng
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yan Wang
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
6
|
Kumar P, Mathew S, Gamage R, Bodkin F, Doyle K, Rossetti I, Wagnon I, Zhou X, Raju R, Gyengesi E, Münch G. From the Bush to the Brain: Preclinical Stages of Ethnobotanical Anti-Inflammatory and Neuroprotective Drug Discovery-An Australian Example. Int J Mol Sci 2023; 24:11086. [PMID: 37446262 DOI: 10.3390/ijms241311086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/29/2023] [Accepted: 07/01/2023] [Indexed: 07/15/2023] Open
Abstract
The Australian rainforest is a rich source of medicinal plants that have evolved in the face of dramatic environmental challenges over a million years due to its prolonged geographical isolation from other continents. The rainforest consists of an inherent richness of plant secondary metabolites that are the most intense in the rainforest. The search for more potent and more bioavailable compounds from other plant sources is ongoing, and our short review will outline the pathways from the discovery of bioactive plants to the structural identification of active compounds, testing for potency, and then neuroprotection in a triculture system, and finally, the validation in an appropriate neuro-inflammatory mouse model, using some examples from our current research. We will focus on neuroinflammation as a potential treatment target for neurodegenerative diseases including multiple sclerosis (MS), Parkinson's (PD), and Alzheimer's disease (AD) for these plant-derived, anti-inflammatory molecules and highlight cytokine suppressive anti-inflammatory drugs (CSAIDs) as a better alternative to conventional nonsteroidal anti-inflammatory drugs (NSAIDs) to treat neuroinflammatory disorders.
Collapse
Affiliation(s)
- Payaal Kumar
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Shintu Mathew
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Rashmi Gamage
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Frances Bodkin
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Kerrie Doyle
- Indigenous Health Unit, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Ilaria Rossetti
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Ingrid Wagnon
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Xian Zhou
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia
| | - Ritesh Raju
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Erika Gyengesi
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Gerald Münch
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia
| |
Collapse
|
7
|
Zhang L, Xia Y, Gui Y. Neuronal ApoE4 in Alzheimer's disease and potential therapeutic targets. Front Aging Neurosci 2023; 15:1199434. [PMID: 37333457 PMCID: PMC10272394 DOI: 10.3389/fnagi.2023.1199434] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/16/2023] [Indexed: 06/20/2023] Open
Abstract
The most prevalent genetic risk factor for Alzheimer's disease (AD) is Apolipoprotein E (ApoE), a gene located on chromosome 19 that encodes three alleles (e2, e3, and e4) that give rise to the ApoE subtypes E2, E3, and E4, respectively. E2 and E4 have been linked to increased plasma triglyceride concentrations and are known to play a critical role in lipoprotein metabolism. The prominent pathological features of AD mainly include senile plaques formed by amyloid β (Aβ42) aggregation and neuronal fibrous tangles (NFTs), and the deposited plaques are mainly composed of Aβ hyperphosphorylation and truncated head. In the central nervous system, the ApoE protein is primarily derived from astrocytes, but ApoE is also produced when neurons are stressed or affected by certain stress, injury, and aging conditions. ApoE4 in neurons induces Aβ and tau protein pathologies, leading to neuroinflammation and neuronal damage, impairing learning and memory functions. However, how neuronal ApoE4 mediates AD pathology remains unclear. Recent studies have shown that neuronal ApoE4 may lead to greater neurotoxicity, which increases the risk of AD development. This review focuses on the pathophysiology of neuronal ApoE4 and explains how neuronal ApoE4 mediates Aβ deposition, pathological mechanisms of tau protein hyperphosphorylation, and potential therapeutic targets.
Collapse
|
8
|
Microglia and Cholesterol Handling: Implications for Alzheimer's Disease. Biomedicines 2022; 10:biomedicines10123105. [PMID: 36551857 PMCID: PMC9775660 DOI: 10.3390/biomedicines10123105] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 12/04/2022] Open
Abstract
Cholesterol is essential for brain function and structure, however altered cholesterol metabolism and transport are hallmarks of multiple neurodegenerative conditions, including Alzheimer's disease (AD). The well-established link between apolipoprotein E (APOE) genotype and increased AD risk highlights the importance of cholesterol and lipid transport in AD etiology. Whereas more is known about the regulation and dysregulation of cholesterol metabolism and transport in neurons and astrocytes, less is known about how microglia, the immune cells of the brain, handle cholesterol, and the subsequent implications for the ability of microglia to perform their essential functions. Evidence is emerging that a high-cholesterol environment, particularly in the context of defects in the ability to transport cholesterol (e.g., expression of the high-risk APOE4 isoform), can lead to chronic activation, increased inflammatory signaling, and reduced phagocytic capacity, which have been associated with AD pathology. In this narrative review we describe how cholesterol regulates microglia phenotype and function, and discuss what is known about the effects of statins on microglia, as well as highlighting areas of future research to advance knowledge that can lead to the development of novel therapies for the prevention and treatment of AD.
Collapse
|
9
|
Seto M, Weiner RL, Dumitrescu L, Mahoney ER, Hansen SL, Janve V, Khan OA, Liu D, Wang Y, Menon V, De Jager PL, Schneider JA, Bennett DA, Gifford KA, Jefferson AL, Hohman TJ. RNASE6 is a novel modifier of APOE-ε4 effects on cognition. Neurobiol Aging 2022; 118:66-76. [PMID: 35896049 PMCID: PMC9721357 DOI: 10.1016/j.neurobiolaging.2022.06.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/25/2022] [Accepted: 06/27/2022] [Indexed: 02/06/2023]
Abstract
Apolipoprotein E4 (APOE-ε4), the strongest common genetic risk factor for Alzheimer's disease (AD), contributes to worse cognition in older adults. However, many APOE-ε4 carriers remain cognitively normal throughout life, suggesting that neuroprotective factors may be present in these individuals. In this study, we leverage whole-blood RNA sequencing (RNAseq) from 324 older adults to identify genetic modifiers of APOE-ε4 effects on cognition. Expression of RNASE6 interacted with APOE-ε4 status (p = 4.35 × 10-8) whereby higher RNASE6 expression was associated with worse memory at baseline among APOE-ε4 carriers. This interaction was replicated using RNAseq data from the prefrontal cortex in an independent dataset (N = 535; p = 0.002), suggesting the peripheral effect of RNASE6 is also present in brain tissue. RNASE6 encodes an antimicrobial peptide involved in innate immune response and has been previously observed in a gene co-expression network module with other AD-related inflammatory genes, including TREM2 and MS4A. Together, these data implicate neuroinflammation in cognitive decline, and suggest that innate immune signaling may be detectable in blood and confer differential susceptibility to AD depending on APOE-ε4.
Collapse
Affiliation(s)
- Mabel Seto
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Rebecca L Weiner
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Logan Dumitrescu
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Emily R Mahoney
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Shania L Hansen
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Vaibhav Janve
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Omair A Khan
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Dandan Liu
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yanling Wang
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Vilas Menon
- Center for Translational & Computational Neuroimmunology, Department of Neurology and the Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY, USA
| | - Philip L De Jager
- Center for Translational & Computational Neuroimmunology, Department of Neurology and the Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY, USA; Cell Circuits Program, Broad Institute, Cambridge, MA, USA
| | - Julie A Schneider
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Katherine A Gifford
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Angela L Jefferson
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Timothy J Hohman
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Pharmacology, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
10
|
Smith KJ, Gwyer Findlay E. Expression of antimicrobial host defence peptides in the central nervous system during health and disease. DISCOVERY IMMUNOLOGY 2022; 1:kyac003. [PMID: 38566904 PMCID: PMC10917193 DOI: 10.1093/discim/kyac003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/13/2022] [Accepted: 07/21/2022] [Indexed: 04/04/2024]
Abstract
Antimicrobial host defence peptides (HDP) are critical for the first line of defence against bacterial, viral, and fungal pathogens. Over the past decade we have become more aware that, in addition to their antimicrobial roles, they also possess the potent immunomodulatory capacity. This includes chemoattracting immune cells, activating dendritic cells and macrophages, and altering T-cell differentiation. Most examinations of their immunomodulatory roles have focused on tissues in which they are very abundant, such as the intestine and the inflamed skin. However, HDP have now been detected in the brain and the spinal cord during a number of conditions. We propose that their presence in the central nervous system (CNS) during homeostasis, infection, and neurodegenerative disease has the potential to contribute to immunosurveillance, alter host responses and skew developing immunity. Here, we review the evidence for HDP expression and function in the CNS in health and disease. We describe how a wide range of HDP are expressed in the CNS of humans, rodents, birds, and fish, suggesting a conserved role in protecting the brain from pathogens, with evidence of production by resident CNS cells. We highlight differences in methodology used and how this may have resulted in the immunomodulatory roles of HDP being overlooked. Finally, we discuss what HDP expression may mean for CNS immune responses.
Collapse
Affiliation(s)
- Katie J Smith
- Centre for Inflammation Research, University of Edinburgh, 47 Little France Crescent, EH16 4TJ, Edinburgh, UK
| | - Emily Gwyer Findlay
- Centre for Inflammation Research, University of Edinburgh, 47 Little France Crescent, EH16 4TJ, Edinburgh, UK
| |
Collapse
|
11
|
Dhandapani R, Neri M, Bernhard M, Brzak I, Schweizer T, Rudin S, Joller S, Berth R, Kernen J, Neuhaus A, Waldt A, Cuttat R, Naumann U, Keller CG, Roma G, Feuerbach D, Shimshek DR, Neumann U, Gasparini F, Galimberti I. Sustained Trem2 stabilization accelerates microglia heterogeneity and Aβ pathology in a mouse model of Alzheimer's disease. Cell Rep 2022; 39:110883. [PMID: 35649351 DOI: 10.1016/j.celrep.2022.110883] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 01/08/2022] [Accepted: 05/06/2022] [Indexed: 11/03/2022] Open
Abstract
TREM2 is a transmembrane protein expressed exclusively in microglia in the brain that regulates inflammatory responses to pathological conditions. Proteolytic cleavage of membrane TREM2 affects microglial function and is associated with Alzheimer's disease, but the consequence of reduced TREM2 proteolytic cleavage has not been determined. Here, we generate a transgenic mouse model of reduced Trem2 shedding (Trem2-Ile-Pro-Asp [IPD]) through amino-acid substitution of an ADAM-protease recognition site. We show that Trem2-IPD mice display increased Trem2 cell-surface-receptor load, survival, and function in myeloid cells. Using single-cell transcriptomic profiling of mouse cortex, we show that sustained Trem2 stabilization induces a shift of fate in microglial maturation and accelerates microglial responses to Aβ pathology in a mouse model of Alzheimer's disease. Our data indicate that reduction of Trem2 proteolytic cleavage aggravates neuroinflammation during the course of Alzheimer's disease pathology, suggesting that TREM2 shedding is a critical regulator of microglial activity in pathological states.
Collapse
Affiliation(s)
- Rahul Dhandapani
- Department of Neuroscience, Novartis Institutes for Biomedical Research, 4056 Basel, Switzerland
| | - Marilisa Neri
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, 4056 Basel, Switzerland
| | - Mario Bernhard
- Department of Neuroscience, Novartis Institutes for Biomedical Research, 4056 Basel, Switzerland
| | - Irena Brzak
- Department of Neuroscience, Novartis Institutes for Biomedical Research, 4056 Basel, Switzerland
| | - Tatjana Schweizer
- Department of Neuroscience, Novartis Institutes for Biomedical Research, 4056 Basel, Switzerland
| | - Stefan Rudin
- Department of Neuroscience, Novartis Institutes for Biomedical Research, 4056 Basel, Switzerland
| | - Stefanie Joller
- Department of Neuroscience, Novartis Institutes for Biomedical Research, 4056 Basel, Switzerland
| | - Ramon Berth
- Department of Neuroscience, Novartis Institutes for Biomedical Research, 4056 Basel, Switzerland
| | - Jasmin Kernen
- Department of Neuroscience, Novartis Institutes for Biomedical Research, 4056 Basel, Switzerland
| | - Anna Neuhaus
- Department of Neuroscience, Novartis Institutes for Biomedical Research, 4056 Basel, Switzerland
| | - Annick Waldt
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, 4056 Basel, Switzerland
| | - Rachel Cuttat
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, 4056 Basel, Switzerland
| | - Ulrike Naumann
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, 4056 Basel, Switzerland
| | - Caroline Gubser Keller
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, 4056 Basel, Switzerland
| | - Guglielmo Roma
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, 4056 Basel, Switzerland
| | - Dominik Feuerbach
- Department of Neuroscience, Novartis Institutes for Biomedical Research, 4056 Basel, Switzerland
| | - Derya R Shimshek
- Department of Neuroscience, Novartis Institutes for Biomedical Research, 4056 Basel, Switzerland
| | - Ulf Neumann
- Department of Neuroscience, Novartis Institutes for Biomedical Research, 4056 Basel, Switzerland
| | - Fabrizio Gasparini
- Department of Neuroscience, Novartis Institutes for Biomedical Research, 4056 Basel, Switzerland
| | - Ivan Galimberti
- Department of Neuroscience, Novartis Institutes for Biomedical Research, 4056 Basel, Switzerland.
| |
Collapse
|
12
|
Xie J, Van Hoecke L, Vandenbroucke RE. The Impact of Systemic Inflammation on Alzheimer's Disease Pathology. Front Immunol 2022; 12:796867. [PMID: 35069578 PMCID: PMC8770958 DOI: 10.3389/fimmu.2021.796867] [Citation(s) in RCA: 154] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 12/15/2021] [Indexed: 12/11/2022] Open
Abstract
Alzheimer’s disease (AD) is a devastating age-related neurodegenerative disorder with an alarming increasing prevalence. Except for the recently FDA-approved Aducanumab of which the therapeutic effect is not yet conclusively proven, only symptomatic medication that is effective for some AD patients is available. In order to be able to design more rational and effective treatments, our understanding of the mechanisms behind the pathogenesis and progression of AD urgently needs to be improved. Over the last years, it became increasingly clear that peripheral inflammation is one of the detrimental factors that can contribute to the disease. Here, we discuss the current understanding of how systemic and intestinal (referred to as the gut-brain axis) inflammatory processes may affect brain pathology, with a specific focus on AD. Moreover, we give a comprehensive overview of the different preclinical as well as clinical studies that link peripheral Inflammation to AD initiation and progression. Altogether, this review broadens our understanding of the mechanisms behind AD pathology and may help in the rational design of further research aiming to identify novel therapeutic targets.
Collapse
Affiliation(s)
- Junhua Xie
- VIB Center for Inflammation Research, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Lien Van Hoecke
- VIB Center for Inflammation Research, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Roosmarijn E Vandenbroucke
- VIB Center for Inflammation Research, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| |
Collapse
|
13
|
Troutwine BR, Hamid L, Lysaker CR, Strope TA, Wilkins HM. Apolipoprotein E and Alzheimer's disease. Acta Pharm Sin B 2022; 12:496-510. [PMID: 35256931 PMCID: PMC8897057 DOI: 10.1016/j.apsb.2021.10.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/30/2021] [Accepted: 10/07/2021] [Indexed: 12/14/2022] Open
Abstract
Genetic variation in apolipoprotein E (APOE) influences Alzheimer's disease (AD) risk. APOE ε4 alleles are the strongest genetic risk factor for late onset sporadic AD. The AD risk is dose dependent, as those carrying one APOE ε4 allele have a 2-3-fold increased risk, while those carrying two ε4 alleles have a 10-15-fold increased risk. Individuals carrying APOE ε2 alleles have lower AD risk and those carrying APOE ε3 alleles have neutral risk. APOE is a lipoprotein which functions in lipid transport, metabolism, and inflammatory modulation. Isoform specific effects of APOE within the brain include alterations to Aβ, tau, neuroinflammation, and metabolism. Here we review the association of APOE with AD, the APOE isoform specific effects within brain and periphery, and potential therapeutics.
Collapse
Affiliation(s)
- Benjamin R. Troutwine
- Department of Neurology University of Kansas Medical Center, Kansas City, KS 66160, USA
- University of Kansas Alzheimer's Disease Center, Kansas City, KS 66160, USA
| | - Laylan Hamid
- University of Kansas Alzheimer's Disease Center, Kansas City, KS 66160, USA
| | - Colton R. Lysaker
- University of Kansas Alzheimer's Disease Center, Kansas City, KS 66160, USA
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Taylor A. Strope
- University of Kansas Alzheimer's Disease Center, Kansas City, KS 66160, USA
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Heather M. Wilkins
- Department of Neurology University of Kansas Medical Center, Kansas City, KS 66160, USA
- University of Kansas Alzheimer's Disease Center, Kansas City, KS 66160, USA
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
14
|
Sun M, Ma K, Wen J, Wang G, Zhang C, Li Q, Bao X, Wang H. A Review of the Brain-Gut-Microbiome Axis and the Potential Role of Microbiota in Alzheimer's Disease. J Alzheimers Dis 2021; 73:849-865. [PMID: 31884474 DOI: 10.3233/jad-190872] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative process characterized by loss of neurons in the hippocampus and cerebral cortex, leading to progressive cognitive decline. Pathologically, the hallmark of AD is accumulation of "senile" plaques composed of amyloid-β (Aβ) protein surrounding neurons in affected regions. Despite extensive research into AD pathogenesis and therapeutic targets, there remains no breakthroughs in its management. In recent years, there has been a spark of interest in the connection between the brain and gastrointestinal tract, referred to as the brain-gut axis, and its potential implications for both metabolic and neurologic disease. Moreover, the gastrointestinal flora, referred to as the microbiome, appears to exert significant influence over the brain-gut axis. With the need for expanded horizons in understanding and treating AD, many have turned to the brain-gut-microbiome axis for answers. Here we provide a review of the brain-gut-microbiome axis and discuss the evidence supporting alterations of the axis in the pathogenesis of AD. Specifically, we highlight the role for the microbiome in disruption of Aβ metabolism/clearance, increased permeability of the blood-brain barrier and modulation of the neuroinflammatory response, and inhibition of hippocampal neurogenesis. The majority of the above described findings are the result of excellent, albeit basic and pre-clinical studies. Therefore, we conclude with a brief description of documented clinical support for brain-gut-microbiome axis alteration in AD, including potential microbiome-based therapeutics for AD. Collectively, these findings suggest that the brain-gut-microbiome axis may be a "lost link" in understanding and treating AD and call for future work.
Collapse
Affiliation(s)
- Miao Sun
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| | - Kai Ma
- Probiotics Australia, Ormeau, QLD, Australia
| | - Jie Wen
- Beijing Allwegene Health, Beijing, China
| | | | | | - Qi Li
- Beijing Allwegene Health, Beijing, China
| | - Xiaofeng Bao
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu, China.,Key Laboratory of Inflammation and Molecular Drug Target of Jiangsu Province, Nantong University, Nantong, China
| | - Hui Wang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
15
|
Early intervention attenuates synaptic plasticity impairment and neuroinflammation in 5xFAD mice. J Psychiatr Res 2021; 136:204-216. [PMID: 33618062 DOI: 10.1016/j.jpsychires.2021.02.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 01/06/2021] [Accepted: 02/08/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND As an increasing population of Alzheimer's disease (AD) patients year by year, which is a serious threat to human health, an effective approach to prevent and treat AD is required. Biomarker changes relevant to β-amyloid (Aβ) 20 years or more in advance of cognitive impairment, so early intervention is a feasible idea for AD therapy. Repetitive transcranial magnetic stimulation (rTMS) as a non-invasive technique offers the possibility of early intervention. OBJECTIVE To explore the effect of high-frequency rTMS on the pathological symptoms of AD transgenic mice and its mechanisms, a figure-of-eight coil was placed 2 mm above the head of mouse to apply 20 Hz high-intensity rTMS for 14 consecutive days. METHODS In vivo electrophysiological recording, behavioral test, Western blots assay and immunofluorescence were used to measure the pathological symptoms of AD. RESULTS Our data showed that early intervention effectively reduced Aβ levels and the activation of microglia on the one hand, and decreased levels of pro-inflammatory cytokines including IL-6 and TNF-α as well as regulated PI3K/Akt/NF-κB signaling pathway on the other hand, which created a favorable brain environment. Thus, it increased the expression of synapse-associated proteins and improved neuronal synaptic plasticity in brain of early-stage of 5xFAD transgenic mice. CONCLUSIONS This study is the first to suggest that early intervention of 20 Hz rTMS ameliorates neuroinflammation to improve synaptic plasticity of early-stage of 5xFAD mice through PI3K/Akt/NF-κB signaling pathway.
Collapse
|
16
|
Oo TT, Pratchayasakul W, Chattipakorn N, Chattipakorn SC. Potential Roles of Myeloid Differentiation Factor 2 on Neuroinflammation and Its Possible Interventions. Mol Neurobiol 2020; 57:4825-4844. [PMID: 32803490 DOI: 10.1007/s12035-020-02066-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 08/07/2020] [Indexed: 02/06/2023]
Abstract
Neuroinflammation is the primary response by immune cells in the nervous system to protect against infection. Chronic and uncontrolled neuroinflammation triggers neuronal injury and neuronal death resulting in a variety of neurodegenerative disorders. Therefore, fine tuning of the immune response in the nervous system is now extensively considered as a potential therapeutic intervention for those diseases. The immune cells of the nervous system express Toll-like receptor 4 (TLR4) together with myeloid differentiation factor 2 (MD-2) to protect against the pathogens. Over the last 10 years, antagonists targeting the functional domains of MD-2 have become attractive pharmacological intervention strategies in pre-clinical studies into neuroinflammation and its associated brain pathologies. This review aims to summarize and discuss the roles of TLR4-MD-2 signaling pathway activation in various models of neuroinflammation. This review article also highlights the studies reporting the effect of MD-2 antagonists on neuroinflammation in in vitro and in vivo studies.
Collapse
Affiliation(s)
- Thura Tun Oo
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai, Thailand
| | - Wasana Pratchayasakul
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai, Thailand
| | - Siriporn C Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand. .,Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai, Thailand. .,Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
17
|
Beyer MMS, Lonnemann N, Remus A, Latz E, Heneka MT, Korte M. Enduring Changes in Neuronal Function upon Systemic Inflammation Are NLRP3 Inflammasome Dependent. J Neurosci 2020; 40:5480-5494. [PMID: 32499379 PMCID: PMC7343321 DOI: 10.1523/jneurosci.0200-20.2020] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 05/25/2020] [Accepted: 05/28/2020] [Indexed: 01/21/2023] Open
Abstract
Neuroinflammation can be caused by various insults to the brain and represents an important pathologic hallmark of neurodegenerative diseases including Alzheimer's disease (AD). Infection-triggered acute systemic inflammation is able to induce neuroinflammation and may negatively affect neuronal morphology, synaptic plasticity, and cognitive function. In contrast to acute effects, persisting consequences for the brain on systemic immune stimulation remain largely unexplored. Here, we report an age-dependent vulnerability of wild-type (WT) mice of either sex toward a systemic immune stimulation by Salmonella typhimurium lipopolysaccharide (LPS). Decreased neuronal complexity three months after peripheral immune stimulation is accompanied by impairment in long-term potentiation (LTP) and spatial learning. Aged APP/PS1 mice reveal an increased sensitivity also to LPS of Escherichia coli, which had no effect in WT mice. We further report that these effects are mediated by NOD-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome activation, since the genetic ablation and pharmacological inhibition using the NLRP3 inhibitor MCC950 rescue the morphological and electrophysiological phenotype.SIGNIFICANCE STATEMENT Acute peripheral immune stimulation has been shown to have both positive and negative effects on Aβ deposition. Improvements or worsening may be possible in acute inflammation. However, there is still no evidence of effects longer than a month after stimulation. The data are pointing to an important role of the NOD-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome for mediating the long-term consequences of systemic immune stimulation, which in addition turns out to be age dependent.
Collapse
Affiliation(s)
- Marianna M S Beyer
- Division of Cellular Neurobiology, Zoological Institute, Technische Universität Braunschweig, 38106 Braunschweig, Germany
- Research Group Neuroinflammation and Neurodegeneration, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Niklas Lonnemann
- Division of Cellular Neurobiology, Zoological Institute, Technische Universität Braunschweig, 38106 Braunschweig, Germany
- Research Group Neuroinflammation and Neurodegeneration, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Anita Remus
- Division of Cellular Neurobiology, Zoological Institute, Technische Universität Braunschweig, 38106 Braunschweig, Germany
- Research Group Neuroinflammation and Neurodegeneration, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Eicke Latz
- German Center for Neurodegenerative Disease (DZNE), 53127 Bonn, Germany
- Institute of Innate Immunity, University of Bonn, Bonn 53127, Germany
| | - Michael T Heneka
- Institute of Innate Immunity, University of Bonn, Bonn 53127, Germany
- Department of Neurodegenerative Disorders and Gerontopsychiatry, University of Bonn, Bonn 53127, Germany
| | - Martin Korte
- Division of Cellular Neurobiology, Zoological Institute, Technische Universität Braunschweig, 38106 Braunschweig, Germany
- Research Group Neuroinflammation and Neurodegeneration, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| |
Collapse
|
18
|
Potter H, Boyd TD, Clarke P, Pelak VS, Tyler KL. Recruiting the innate immune system with GM-CSF to fight viral diseases, including West Nile Virus encephalitis and COVID-19. F1000Res 2020; 9:345. [PMID: 32704352 PMCID: PMC7359749 DOI: 10.12688/f1000research.23729.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/30/2020] [Indexed: 01/08/2023] Open
Abstract
As the coronavirus disease 2019 (COVID-19) pandemic grows throughout the world, it is imperative that all approaches to ameliorating its effects be investigated, including repurposing drugs that show promise in other diseases. We have been investigating an approach to multiple disorders that involves recruiting the innate immune system to aid the body's healing and regenerative mechanism(s). In the case of West Nile Virus encephalitis and potentially COVID-19, the proposed intervention to stimulate the innate immune system may give the adaptive immune response the necessary time to develop, finish clearing the virus, and provide future immunity. Furthermore, we have found that GM-CSF-induced recruitment of the innate immune system is also able to reverse brain pathology, neuroinflammation and cognitive deficits in mouse models of Alzheimer's disease and Down syndrome, as well as improving cognition in normal aging and in human patients with cognitive deficits due to chemotherapy, both of which exhibit neuroinflammation. Others have shown that GM-CSF is an effective treatment for both bacterial and viral pneumonias, and their associated inflammation, in animals and that it has successfully treated pneumonia-associated Acute Respiratory Distress Syndrome in humans. These and other data strongly suggest that GM-CSF may be an effective treatment for many viral infections, including COVID-19.
Collapse
Affiliation(s)
- Huntington Potter
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- University of Colorado Alzheimer's and Cognition Center, Aurora, CO, 80045, USA
- Linda Crnic Institute for Down Syndrome, Aurora, CO, 80045, USA
| | - Timothy D. Boyd
- University of Colorado Alzheimer's and Cognition Center, Aurora, CO, 80045, USA
- Linda Crnic Institute for Down Syndrome, Aurora, CO, 80045, USA
| | - Penny Clarke
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Victoria S. Pelak
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- University of Colorado Alzheimer's and Cognition Center, Aurora, CO, 80045, USA
| | - Kenneth L. Tyler
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| |
Collapse
|
19
|
Kloske CM, Wilcock DM. The Important Interface Between Apolipoprotein E and Neuroinflammation in Alzheimer's Disease. Front Immunol 2020; 11:754. [PMID: 32425941 PMCID: PMC7203730 DOI: 10.3389/fimmu.2020.00754] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 04/02/2020] [Indexed: 12/13/2022] Open
Abstract
Alzheimer’s disease (AD) is the most prevalent form of neurodegenerative disease, currently affecting over 5 million Americans with projections expected to rise as the population ages. The hallmark pathologies of AD are Aβ plaques composed of aggregated beta-amyloid (Aβ), and tau tangles composed of hyperphosphorylated, aggregated tau. These pathologies are typically accompanied by an increase in neuroinflammation as an attempt to ameliorate the pathology. This idea has pushed the field toward focusing on mechanisms and the influence neuroinflammation has on disease progression. The vast majority of AD cases are sporadic and therefore, researchers investigate genetic risk factors that could lead to AD. Apolipoprotein E (ApoE) is the largest genetic risk factor for developing AD. ApoE has 3 isoforms-ApoE2, ApoE3, and ApoE4. ApoE4 constitutes an increased risk of AD, with one copy increasing the risk about 4-fold and two copies increasing the risk about 15-fold compared to those with the ApoE3 allele. ApoE4 has been shown to play a role in Aβ deposition, tau tangle formation, neuroinflammation and many subsequent pathways. However, while we know that ApoE4 plays a role in these pathways and virtually all aspects of AD, the exact mechanism of how ApoE4 impacts AD progression is murky at best and therefore the role ApoE4 plays in these pathways needs to be elucidated. This review aims to discuss the current literature regarding the pathways and mechanisms of ApoE4 in AD progression with a focus on its role in neuroinflammation.
Collapse
Affiliation(s)
- Courtney M Kloske
- Department of Physiology, Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, United States
| | - Donna M Wilcock
- Department of Physiology, Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
20
|
Yang J, Wise L, Fukuchi KI. TLR4 Cross-Talk With NLRP3 Inflammasome and Complement Signaling Pathways in Alzheimer's Disease. Front Immunol 2020; 11:724. [PMID: 32391019 PMCID: PMC7190872 DOI: 10.3389/fimmu.2020.00724] [Citation(s) in RCA: 228] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/30/2020] [Indexed: 01/02/2023] Open
Abstract
Amyloid plaques, mainly composed of abnormally aggregated amyloid β-protein (Aβ) in the brain parenchyma, and neurofibrillary tangles (NFTs), consisting of hyperphosphorylated tau protein aggregates in neurons, are two pathological hallmarks of Alzheimer's disease (AD). Aβ fibrils and tau aggregates in the brain are closely associated with neuroinflammation and synapse loss, characterized by activated microglia and dystrophic neurites. Genome-wide genetic association studies revealed important roles of innate immune cells in the pathogenesis of late-onset AD by recognizing a dozen genetic risk loci that modulate innate immune activities. Furthermore, microglia, brain resident innate immune cells, have been increasingly recognized to play key, opposing roles in AD pathogenesis by either eliminating toxic Aβ aggregates and enhancing neuronal plasticity or producing proinflammatory cytokines, reactive oxygen species, and synaptotoxicity. Aggregated Aβ binds to toll-like receptor 4 (TLR4) and activates microglia, resulting in increased phagocytosis and cytokine production. Complement components are associated with amyloid plaques and NFTs. Aggregated Aβ can activate complement, leading to synapse pruning and loss by microglial phagocytosis. Systemic inflammation can activate microglial TLR4, NLRP3 inflammasome, and complement in the brain, leading to neuroinflammation, Aβ accumulation, synapse loss and neurodegeneration. The host immune response has been shown to function through complex crosstalk between the TLR, complement and inflammasome signaling pathways. Accordingly, targeting the molecular mechanisms underlying the TLR-complement-NLRP3 inflammasome signaling pathways can be a preventive and therapeutic approach for AD.
Collapse
Affiliation(s)
- Junling Yang
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, IL, United States
| | - Leslie Wise
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, IL, United States
| | - Ken-Ichiro Fukuchi
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, IL, United States
| |
Collapse
|
21
|
Shi Y, Holtzman DM. Interplay between innate immunity and Alzheimer disease: APOE and TREM2 in the spotlight. Nat Rev Immunol 2019; 18:759-772. [PMID: 30140051 DOI: 10.1038/s41577-018-0051-1] [Citation(s) in RCA: 400] [Impact Index Per Article: 66.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Alzheimer disease is more than a pure proteopathy. Chronic neuroinflammation stands out during the pathogenesis of the disease and in turn modulates disease progression. The central nervous system (CNS) is separated from the blood circulation by the blood-brain barrier. In Alzheimer disease, neuroinflammation heavily relies on innate immune responses that are primarily mediated by CNS-resident microglia. APOE (which encodes apolipoprotein E) is the strongest genetic risk factor for Alzheimer disease, and APOE was recently shown to affect the disease in part through its immunomodulatory function. This function of APOE is likely linked to triggering receptor expressed on myeloid cells 2 (TREM2), which is expressed by microglia in the CNS. Here, we review the rapidly growing literature on the role of disease-associated microglia, TREM2 and APOE in the pathogenesis of Alzheimer disease and present an integrated view of innate immune function in Alzheimer disease.
Collapse
Affiliation(s)
- Yang Shi
- Department of Neurology, Hope Center for Neurological Disorders, Charles F. and Joanne Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - David M Holtzman
- Department of Neurology, Hope Center for Neurological Disorders, Charles F. and Joanne Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
22
|
Multitarget Effects of Coconut Oil (Virgin Type) on Aβ-Induced Alzheimer’s Disease Animal Model. ARCHIVES OF NEUROSCIENCE 2019. [DOI: 10.5812/ans.85715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
23
|
Systemic LPS-induced Aβ-solubilization and clearance in AβPP-transgenic mice is diminished by heparanase overexpression. Sci Rep 2019; 9:4600. [PMID: 30872722 PMCID: PMC6418119 DOI: 10.1038/s41598-019-40999-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 02/26/2019] [Indexed: 12/12/2022] Open
Abstract
Amyloid-β (Aβ) is the main constituent of amyloid deposits in Alzheimer’s disease (AD). The neuropathology is associated with neuroinflammation. Here, we investigated effects of systemic lipopolysaccharide (LPS)-treatment on neuroinflammation and Aβ deposition in AβPP-mice and double-transgenic mice with brain expression of AβPP and heparanase, an enzyme that degrades HS and generates an attenuated LPS-response. At 13 months of age, the mice received a single intraperitoneal injection of 50 µg LPS or vehicle, and were sacrificed 1.5 months thereafter. Aβ in the brain was analyzed histologically and biochemically after sequential detergent extraction. Neuroinflammation was assessed by CD45 immunostaining and mesoscale cytokine/chemokine ELISA. In single-transgenic mice, LPS-treatment reduced total Aβ deposition and increased Tween-soluble Aβ. This was associated with a reduced CXCL1, IL-1β, TNF-α-level and microgliosis, which correlated with amyloid deposition and total Aβ. In contrast, LPS did not change Aβ accumulation or inflammation marker in the double-transgenic mice. Our findings suggest that a single pro-inflammatory LPS-stimulus, if given sufficient time to act, triggers Aβ-clearance in AβPP-transgenic mouse brain. The effects depend on HS and heparanase.
Collapse
|
24
|
Rubio-Araiz A, Finucane OM, Keogh S, Lynch MA. Anti-TLR2 antibody triggers oxidative phosphorylation in microglia and increases phagocytosis of β-amyloid. J Neuroinflammation 2018; 15:247. [PMID: 30170611 PMCID: PMC6119264 DOI: 10.1186/s12974-018-1281-7] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 08/15/2018] [Indexed: 01/08/2023] Open
Abstract
Background Microglia are multifunctional cells that are primarily neuroprotective and a deficit in their functional integrity is likely to be a contributory factor in the deteriorating neuronal function that occurs with age and neurodegeneration. One aspect of microglial dysfunction is reduced phagocytosis, and this is believed to contribute to the accumulation of amyloid-β (Aβ) in Alzheimer’s disease (AD). Therefore, improving phagocytosis should be beneficial in limiting the amyloidosis that characterises AD. Methods Here, we investigated whether an antibody that targets toll-like receptor (TLR)2 might attenuate the inflammatory and metabolic changes induced by lipopolysaccharide (LPS) and amyloid-β. The impact on phagocytosis was assessed by immunohistochemistry. We evaluated the metabolic changes with the SeaHorse Extracellular Flux Analyser and studied the expression of key enzymes driving glycolysis by western blotting. For all experiments, statistical significance was determined by unpaired Student’s t test and two-way analysis of variance (ANOVA). Results We have reported that, when exposed to an inflammatory stimulus, microglia switch their metabolism towards the metabolically- inefficient glycolysis; this potentially impacts on metabolically demanding functions like phagocytosis. Anti-TLR2 antibody increased phagocytosis of Aβ in LPS + Aβ-stimulated microglia and this was linked with the ability of the antibody to attenuate the LPS + Aβ-triggered inflammasome activation. LPS + Aβ increased glycolysis in microglia and increased the expression of 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase (PFKFB)3, an enzyme that plays a key role in driving glycolysis; these effects were inhibited when cells were incubated with the anti-TLR2 antibody. The data also show that antibody treatment increased oxidative metabolism. Conclusions Thus, microglia with an inflammatory phenotype, specifically cells in which the inflammasome is activated, are glycolytic; this may compromise the metabolic efficiency of microglia and thereby provide an explanation for the reduced phagocytic function of the cells. We propose that, by restoring oxidative metabolism and reducing inflammasome activation in microglia, phagocytic function is also restored. Electronic supplementary material The online version of this article (10.1186/s12974-018-1281-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ana Rubio-Araiz
- Trinity College Institute for Neuroscience, Trinity College, Dublin 2, Ireland.
| | - Orla M Finucane
- Trinity College Institute for Neuroscience, Trinity College, Dublin 2, Ireland
| | - Samuel Keogh
- Trinity College Institute for Neuroscience, Trinity College, Dublin 2, Ireland.,Current Address: University College Cork, Cork, Ireland
| | - Marina A Lynch
- Trinity College Institute for Neuroscience, Trinity College, Dublin 2, Ireland
| |
Collapse
|
25
|
Swanson A, Wolf T, Sitzmann A, Willette AA. Neuroinflammation in Alzheimer's disease: Pleiotropic roles for cytokines and neuronal pentraxins. Behav Brain Res 2018; 347:49-56. [PMID: 29462653 PMCID: PMC5988985 DOI: 10.1016/j.bbr.2018.02.015] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 01/30/2018] [Accepted: 02/13/2018] [Indexed: 12/14/2022]
Abstract
Neuroinflammation is a potential factor speculated to underlie Alzheimer's disease (AD) etiopathogenesis and progression. The overwhelming focus in this area of research to date has been on the chronic upregulation of pro-inflammatory cytokines to understand how neuroinflammatory mechanisms contribute to neurodegeneration. Yet, it is important to understand the pleiotropic roles of these cytokines in modulating neuroinflammation in which they cannot be labeled as a strictly "good" or "bad" biomarker phenotype. As such, biomarkers with more precise functions are needed to better understand how neuroinflammation impacts the brain in AD. Neuronal pentraxins are a concentration- dependent group of pro- or anti- inflammatory cytokines. There is contradictory evidence of these pentraxins as being both neuroprotective and potentially detrimental in AD. Potential neuroprotective examples include their ability to predict AD-related outcomes such as cognition, memory function and synaptic refinement. This review will briefly outline the basis of AD and subsequently summarize findings for neuropathological mechanisms of neuroinflammation, roles for traditional pro-and anti-inflammatory cytokines, and data found thus far on the neuronal pentraxins.
Collapse
Affiliation(s)
- Ashley Swanson
- Department of Food Science and Human Nutrition, Iowa State University, 2312 Food Sciences Building, 536 Farm House Lane, Ames, IA 50011, United States.
| | - Tovah Wolf
- Department of Food Science and Human Nutrition, Iowa State University, 2312 Food Sciences Building, 536 Farm House Lane, Ames, IA 50011, United States.
| | - Alli Sitzmann
- Department of Psychology, Iowa State University, W112 Lagomarcino Hall, 901 Stange Road, Ames, IA 50011, United States.
| | - Auriel A Willette
- Department of Food Science and Human Nutrition, Iowa State University, 2312 Food Sciences Building, 536 Farm House Lane, Ames, IA 50011, United States; Department of Psychology, Iowa State University, W112 Lagomarcino Hall, 901 Stange Road, Ames, IA 50011, United States; Department of Biomedical Sciences, Iowa State University, 2008 Veterinary Medicine, Ames, IA 50011, United States; Department of Neurology, University of Iowa, 2007 Roy Carver Pavilion, 200 Hawkins Drive, Iowa City, IA 52242, United States.
| |
Collapse
|
26
|
White CS, Lawrence CB, Brough D, Rivers-Auty J. Inflammasomes as therapeutic targets for Alzheimer's disease. Brain Pathol 2018; 27:223-234. [PMID: 28009077 DOI: 10.1111/bpa.12478] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 12/14/2016] [Indexed: 12/20/2022] Open
Abstract
Alzheimer's disease is the most common form of progressive dementia, typified initially by short term memory deficits which develop into a dramatic global cognitive decline. The classical hall marks of Alzheimer's disease include the accumulation of amyloid oligomers and fibrils, and the intracellular formation of neurofibrillary tangles of hyperphosphorylated tau. It is now clear that inflammation also plays a central role in the pathogenesis of the disease through a number of neurotoxic mechanisms. Microglia are the key immune regulators of the CNS which detect amyloidopathy through cell surface and cytosolic pattern recognition receptors (PRRs) and respond by initiating inflammation through the secretion of cytokines such as interleukin-1β (IL-1β). Inflammasomes, which regulate IL-1β release, are formed following activation of cytosolic PRRs, and using genetic and pharmacological approaches, NLRP3 and NLRP1 inflammasomes have been found to be integral in pathogenic neuroinflammation in animal models of Alzheimer's disease. Therefore, the inflammasomes are very promising novel pharmacological targets which merit further research in the continued endeavor for efficacious therapeutics for Alzheimer's disease.
Collapse
Affiliation(s)
- Claire S White
- Faculty of Biology, Medicine and Health, University of Manchester, AV Hill Building, Oxford Road, Manchester, M13 9PT, UK
| | - Catherine B Lawrence
- Faculty of Biology, Medicine and Health, University of Manchester, AV Hill Building, Oxford Road, Manchester, M13 9PT, UK
| | - David Brough
- Faculty of Biology, Medicine and Health, University of Manchester, AV Hill Building, Oxford Road, Manchester, M13 9PT, UK
| | - Jack Rivers-Auty
- Faculty of Biology, Medicine and Health, University of Manchester, AV Hill Building, Oxford Road, Manchester, M13 9PT, UK
| |
Collapse
|
27
|
Zhang Y, Kong WN, Chai XQ. Compound of icariin, astragalus, and puerarin mitigates iron overload in the cerebral cortex of Alzheimer's disease mice. Neural Regen Res 2018; 13:731-736. [PMID: 29722328 PMCID: PMC5950686 DOI: 10.4103/1673-5374.230302] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Increasing evidence indicates that disruption of normal iron homeostasis may contribute to pathological development of Alzheimer's disease. Icariin, astragalus, and puerarin have been shown to suppress iron overload in the cerebral cortex and improve spatial learning and memory disorders in Alzheimer's disease mice, although the underlying mechanism remains unclear. In the present study, APPswe/PS1ΔE9 transgenic mice were administered icariin, astragalus, and puerarin (120, 80, and 80 mg/kg, respectively, once a day, for 3 months). Iron levels were detected by flame atomic absorption spectroscopy. Interleukin-1β, interleukin-6, and tumor necrosis factor-α levels were measured in the cerebral cortex by enzyme linked immunosorbent assay. Glutathione peroxidase and superoxide dismutase activity and malondialdehyde content were determined by colorimetry. Our results demonstrate that after treatment, iron levels and malondialdehyde content are decreased, while glutathione peroxidase and superoxide dismutase activities are increased. Further, interleukin-1β, interleukin-6, and tumor necrosis factor-α levels were reduced. These results confirm that compounds of icariin, astragalus, and puerarin may alleviate iron overload by reducing oxidative stress and the inflammatory response.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Neurology, the First Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Wei-Na Kong
- Hebei Chemical and Pharmaceutical College, Shijiazhuang, Hebei Province, China
| | - Xi-Qing Chai
- Department of Neurology, the First Hospital of Hebei Medical University; Hebei Chemical and Pharmaceutical College, Shijiazhuang, Hebei Province, China
| |
Collapse
|
28
|
Abstract
Microglia are brain-resident myeloid cells that mediate key functions to support the CNS. Microglia express a wide range of receptors that act as molecular sensors, which recognize exogenous or endogenous CNS insults and initiate an immune response. In addition to their classical immune cell function, microglia act as guardians of the brain by promoting phagocytic clearance and providing trophic support to ensure tissue repair and maintain cerebral homeostasis. Conditions associated with loss of homeostasis or tissue changes induce several dynamic microglial processes, including changes of cellular morphology, surface phenotype, secretory mediators, and proliferative responses (referred to as an "activated state"). Activated microglia represent a common pathological feature of several neurodegenerative diseases, including Alzheimer's disease (AD). Cumulative evidence suggests that microglial inflammatory activity in AD is increased while microglial-mediated clearance mechanisms are compromised. Microglia are perpetually engaged in a mutual interaction with the surrounding environment in CNS; thus, diverse microglial reactions at different disease stages may open new avenues for therapeutic intervention and modification of inflammatory activities. In this Review, the role of microglia in the pathogenesis of AD and the modulation of microglia activity as a therapeutic modality will be discussed.
Collapse
Affiliation(s)
- Heela Sarlus
- Department of Neurodegenerative Diseases and Gerontopsychiatry, University of Bonn, Bonn, Germany.,Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
| | - Michael T Heneka
- Department of Neurodegenerative Diseases and Gerontopsychiatry, University of Bonn, Bonn, Germany.,Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany.,Department of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
29
|
Go M, Kou J, Lim JE, Yang J, Fukuchi KI. Microglial response to LPS increases in wild-type mice during aging but diminishes in an Alzheimer's mouse model: Implication of TLR4 signaling in disease progression. Biochem Biophys Res Commun 2016; 479:331-337. [PMID: 27641666 DOI: 10.1016/j.bbrc.2016.09.073] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 09/15/2016] [Indexed: 01/25/2023]
Abstract
Microglia-mediated clearance of amyloid beta-protein (Aβ) via Toll-like receptor 4 (TLR4) signaling may play an important role in the pathogenesis of Alzheimer's disease (AD). However, as the disease progresses, activated microglia appear to become incapable of clearing Aβ deposits. Because repeated exposure to a TLR4 ligand leads to a diminished response of monocytes/macrophages to lipopolysaccharide (LPS) and because aggregated Aβ is a TLR4 ligand, we hypothesize that chronic exposure of microglia to Aβ deposits may induce a state of Toll-like receptor (TLR) signaling dysfunction, leading to decreased Aβ clearance and accelerated disease progression. LPS or phosphate-buffered saline (PBS) was injected into the hippocampus of AD-model (TgAPP/PS1) and wild-type (non-Tg) mice before and after the onset of Aβ deposition, at age 2 and 12 months, respectively. Brain specimens were collected 7 days post-injection and analyzed for microglial activation and Aβ load. While LPS-injected 2-month-old non-Tg mice showed 48-fold and 11-fold greater Iba1 immunoreactivity in the neocortex and hippocampus, respectively, compared with PBS-injected mice, LPS-injected 2-month-old TgAPP/PS1 mice had 61-fold and 13-fold increases in the neocortex and hippocampus, respectively. LPS injection activated microglia more strongly in TgAPP/PS1 mice than in non-Tg mice at 2 months of age. In contrast, at 12 months of age, Iba1 immunoreactivity of microglia was increased 541-fold and 38-fold in the neocortex and hippocampus, respectively, in LPS-injected non-Tg mice and 2.7-fold and 3.3-fold in the neocortex and hippocampus, respectively, in LPS-injected TgAPP/PS1 mice. Surprisingly, LPS injection decreased CD45 immunoreactivity in TgAPP/PS1 mice but increased it in non-Tg mice at 12 months. Although microglia in 12-month-old non-Tg mice showed stronger response to LPS than 2-month-old non-Tg mice, microglia in TgAPP/PS1 mice exhibited diminished immune response to LPS during aging. Our data indicate that microglial TLR4 signaling is altered in an AD mouse model and suggest that altered TLR4 signaling may contribute to Aβ accumulation in the brain.
Collapse
Affiliation(s)
- Michelle Go
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, P.O. Box 1649, Peoria, IL 61656, USA
| | - Jinghong Kou
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, P.O. Box 1649, Peoria, IL 61656, USA
| | - Jeong-Eun Lim
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, P.O. Box 1649, Peoria, IL 61656, USA
| | - Junling Yang
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, P.O. Box 1649, Peoria, IL 61656, USA
| | - Ken-Ichiro Fukuchi
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, P.O. Box 1649, Peoria, IL 61656, USA.
| |
Collapse
|
30
|
Chen P, Yan Q, Wang S, Wang C, Zhao P. Transfer of three transcription factors via a lentiviral vector ameliorates spatial learning and memory impairment in a mouse model of Alzheimer's disease. Gene 2016; 587:59-63. [DOI: 10.1016/j.gene.2016.04.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 04/15/2016] [Indexed: 01/01/2023]
|
31
|
ElAli A, Rivest S. Microglia in Alzheimer's disease: A multifaceted relationship. Brain Behav Immun 2016; 55:138-150. [PMID: 26254232 DOI: 10.1016/j.bbi.2015.07.021] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 07/22/2015] [Accepted: 07/23/2015] [Indexed: 12/18/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder affecting elderly people worldwide, which is mainly characterized by cerebral amyloid-beta (Aβ) plaque deposition and neurofibrillary tangle formation. The interest in microglia arose from the overwhelming experimental evidence that outlined a key role of neuroinflammation in AD pathology. Microglia constitute the powerhouse of the innate immune system in the brain. It is now widely accepted that microglia are myeloid-derived cells that infiltrate the developing brain at the early embryonic stages, and acquire a highly ramified phenotype postnatally. Microglia use these dynamic ramifications as sentinels to sense and detect any occurring alteration in brain homeostasis. Once a danger signal is detected, microglia get activated by acquiring a less ramified phenotype, and mount adequate responses that range from phagocyting cell debris to secreting inflammatory and trophic factors. Earlier reports have demonstrated, unequivocally, that microglia surround Aβ plaques and internalize Aβ microaggregates. However, the implication of these observations in AD pathology, and consequently treatment, is still a matter of debate. Nonetheless, targeting the activity of these cells constituted a convergent point in this debate. Unfortunately, the conflicting experimental findings obtained following the modulation of microglial activity in AD, further fueled the debate. This review aims at providing an overview regarding what we know about the implication of microglia in AD pathology, and treatment. The emerging role of monocytes is also discussed.
Collapse
Affiliation(s)
- Ayman ElAli
- Neuroscience Laboratory, CHU de Québec Research Center (CHUL), Department of Molecular Medicine, Faculty of Medicine, Laval University, Canada
| | - Serge Rivest
- Neuroscience Laboratory, CHU de Québec Research Center (CHUL), Department of Molecular Medicine, Faculty of Medicine, Laval University, Canada.
| |
Collapse
|
32
|
Helmfors L, Boman A, Civitelli L, Nath S, Sandin L, Janefjord C, McCann H, Zetterberg H, Blennow K, Halliday G, Brorsson AC, Kågedal K. Protective properties of lysozyme on β-amyloid pathology: implications for Alzheimer disease. Neurobiol Dis 2015; 83:122-33. [PMID: 26334479 DOI: 10.1016/j.nbd.2015.08.024] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Revised: 08/03/2015] [Accepted: 08/21/2015] [Indexed: 01/24/2023] Open
Abstract
The hallmarks of Alzheimer disease are amyloid-β plaques and neurofibrillary tangles accompanied by signs of neuroinflammation. Lysozyme is a major player in the innate immune system and has recently been shown to prevent the aggregation of amyloid-β1-40 in vitro. In this study we found that patients with Alzheimer disease have increased lysozyme levels in the cerebrospinal fluid and lysozyme co-localized with amyloid-β in plaques. In Drosophila neuronal co-expression of lysozyme and amyloid-β1-42 reduced the formation of soluble and insoluble amyloid-β species, prolonged survival and improved the activity of amyloid-β1-42 transgenic flies. This suggests that lysozyme levels rise in Alzheimer disease as a compensatory response to amyloid-β increases and aggregation. In support of this, in vitro aggregation assays revealed that lysozyme associates with amyloid-β1-42 and alters its aggregation pathway to counteract the formation of toxic amyloid-β species. Overall, these studies establish a protective role for lysozyme against amyloid-β associated toxicities and identify increased lysozyme in patients with Alzheimer disease. Therefore, lysozyme has potential as a new biomarker as well as a therapeutic target for Alzheimer disease.
Collapse
Affiliation(s)
- Linda Helmfors
- Division of Molecular Biotechnology, Department of Physics, Chemistry and Biology, Linköping University, 581 83 Linköping, Sweden
| | - Andrea Boman
- Experimental Pathology, Department of Clinical and Experimental Medicine, Faculty of Medicine and Health Sciences, Linköping University, 581 85 Linköping, Sweden
| | - Livia Civitelli
- Experimental Pathology, Department of Clinical and Experimental Medicine, Faculty of Medicine and Health Sciences, Linköping University, 581 85 Linköping, Sweden
| | - Sangeeta Nath
- Experimental Pathology, Department of Clinical and Experimental Medicine, Faculty of Medicine and Health Sciences, Linköping University, 581 85 Linköping, Sweden
| | - Linnea Sandin
- Experimental Pathology, Department of Clinical and Experimental Medicine, Faculty of Medicine and Health Sciences, Linköping University, 581 85 Linköping, Sweden
| | - Camilla Janefjord
- Experimental Pathology, Department of Clinical and Experimental Medicine, Faculty of Medicine and Health Sciences, Linköping University, 581 85 Linköping, Sweden
| | - Heather McCann
- Neuroscience Research Australia and University of New South Wales, Randwick New South Wales 2031, Australia
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Department of Neuroscience and Physiology, Sahlgrenska University Hospital, 431 30 Mölndal, Sweden; UCL Institute of Neurology, Queen Square, London WC1N 3BG, United Kingdom
| | - Kaj Blennow
- Clinical Neurochemistry Laboratory, Department of Neuroscience and Physiology, Sahlgrenska University Hospital, 431 30 Mölndal, Sweden
| | - Glenda Halliday
- Neuroscience Research Australia and University of New South Wales, Randwick New South Wales 2031, Australia
| | - Ann-Christin Brorsson
- Division of Molecular Biotechnology, Department of Physics, Chemistry and Biology, Linköping University, 581 83 Linköping, Sweden.
| | - Katarina Kågedal
- Experimental Pathology, Department of Clinical and Experimental Medicine, Faculty of Medicine and Health Sciences, Linköping University, 581 85 Linköping, Sweden.
| |
Collapse
|
33
|
Shadfar S, Hwang CJ, Lim MS, Choi DY, Hong JT. Involvement of inflammation in Alzheimer’s disease pathogenesis and therapeutic potential of anti-inflammatory agents. Arch Pharm Res 2015; 38:2106-19. [DOI: 10.1007/s12272-015-0648-x] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 08/08/2015] [Indexed: 02/06/2023]
|
34
|
Maphis N, Xu G, Kokiko-Cochran ON, Cardona AE, Ransohoff RM, Lamb BT, Bhaskar K. Loss of tau rescues inflammation-mediated neurodegeneration. Front Neurosci 2015; 9:196. [PMID: 26089772 PMCID: PMC4452825 DOI: 10.3389/fnins.2015.00196] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 05/18/2015] [Indexed: 12/20/2022] Open
Abstract
Neuroinflammation is one of the neuropathological hallmarks of Alzheimer's disease (AD) and related tauopathies. Activated microglia spatially coexist with microtubule-associated protein tau (Mapt or tau)-burdened neurons in the brains of human AD and non-AD tauopathies. Numerous studies have suggested that neuroinflammation precedes tau pathology and that induction or blockage of neuroinflammation via lipopolysaccharide (LPS) or anti-inflammatory compounds (such as FK506) accelerate or block tau pathology, respectively in several animal models of tauopathy. We have previously demonstrated that microglia-mediated neuroinflammation via deficiency of the microglia-specific chemokine (fractalkine) receptor, CX3CR1, promotes tau pathology and neurodegeneration in a mouse model of LPS-induced systemic inflammation. Here, we demonstrate that tau mediates the neurotoxic effects of LPS in Cx3cr1 (-/-) mice. First, Mapt (+/+) neurons displayed elevated levels of Annexin V (A5) and TUNEL (markers of neurodegeneration) when co-cultured with LPS-treated Cx3cr1 (-/-)microglia, which is rescued in Mapt (-/-) neurons. Second, a neuronal population positive for phospho-S199 (AT8) tau in the dentate gyrus is also positive for activated or cleaved caspase (CC3) in the LPS-treated Cx3cr1 (-/-) mice. Third, genetic deficiency for tau in Cx3cr1 (-/-) mice resulted in reduced microglial activation, altered expression of inflammatory genes and a significant reduction in the number of neurons positive for CC3 compared to Cx3cr1 (-/-)mice. Finally, Cx3cr1 (-/-)mice exposed to LPS displayed a lack of inhibition in an open field exploratory behavioral test, which is rescued by tau deficiency. Taken together, our results suggest that pathological alterations in tau mediate inflammation-induced neurotoxicity and that deficiency of Mapt is neuroprotective. Thus, therapeutic approaches toward either reducing tau levels or blocking neuroinflammatory pathways may serve as a potential strategy in treating tauopathies.
Collapse
Affiliation(s)
- Nicole Maphis
- Department of Molecular Genetics and Microbiology, University of New Mexico Albuquerque, NM, USA
| | - Guixiang Xu
- Department of Neurosciences, Cleveland Clinic Foundation Cleveland, OH, USA
| | | | - Astrid E Cardona
- Department of Biology, University of Texas at San Antonio San Antonio, TX, USA
| | | | - Bruce T Lamb
- Department of Neurosciences, Cleveland Clinic Foundation Cleveland, OH, USA
| | - Kiran Bhaskar
- Department of Molecular Genetics and Microbiology, University of New Mexico Albuquerque, NM, USA
| |
Collapse
|
35
|
Abstract
The triggering of innate immune mechanisms is emerging as a crucial component of major neurodegenerative diseases. Microglia and other cell types in the brain can be activated in response to misfolded proteins or aberrantly localized nucleic acids. This diverts microglia from their physiological and beneficial functions, and leads to their sustained release of pro-inflammatory mediators. In this Review, we discuss how the activation of innate immune signalling pathways - in particular, the NOD-, LRR- and pyrin domain-containing 3 (NLRP3) inflammasome - by aberrant host proteins may be a common step in the development of diverse neurodegenerative disorders. During chronic activation of microglia, the sustained exposure of neurons to pro-inflammatory mediators can cause neuronal dysfunction and contribute to cell death. As chronic neuroinflammation is observed at relatively early stages of neurodegenerative disease, targeting the mechanisms that drive this process may be useful for diagnostic and therapeutic purposes.
Collapse
|
36
|
Bazan NG. Is there a molecular logic that sustains neuronal functional integrity and survival? Lipid signaling is necessary for neuroprotective neuronal transcriptional programs. Mol Neurobiol 2014; 50:1-5. [PMID: 25236258 DOI: 10.1007/s12035-014-8897-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 09/10/2014] [Indexed: 12/25/2022]
Abstract
A challenge to civilization is the growing incidence in the loss of sight and cognition due to increased life expectancy. Therefore, we are confronted with a rise in the occurrence of photoreceptor- and neuronal-survival failure, as reflected mainly by age-related macular degeneration (AMD) and Alzheimer's disease (AD). Nervous system development is driven by neuronal apoptotic cell death, and thereafter, for the entire lifespan of an organism, neurons are postmitotic cells. In neurodegenerative diseases, apoptosis and other forms of cells death lead to selective neuronal loss. Although age is the main risk factor, not everyone develops these diseases during aging. Despite decades of important findings about neuronal cell death, the specific mechanisms that regulate neuronal survival remain incompletely understood.
Collapse
Affiliation(s)
- Nicolas G Bazan
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, 2020 Gravier Street, Suite D, New Orleans, LA, 70112, USA,
| |
Collapse
|
37
|
Deng X, Li M, Ai W, He L, Lu D, Patrylo PR, Cai H, Luo X, Li Z, Yan X. Lipolysaccharide-Induced Neuroinflammation Is Associated with Alzheimer-Like Amyloidogenic Axonal Pathology and Dendritic Degeneration in Rats. ADVANCES IN ALZHEIMER'S DISEASE 2014; 3:78-93. [PMID: 25360394 PMCID: PMC4211261 DOI: 10.4236/aad.2014.32009] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Chronic neuroinflammation is thought to play an etiological role in Alzheimer's disease (AD), which is characterized pathologically by amyloid and tau formation, as well as neuritic dystrophy and synaptic degeneration. The causal relationship between these pathological events is a topic of ongoing research and discussion. Recent data from transgenic AD models point to a tight spatiotemporal link between neuritic and amyloid pathology, with the obligatory enzyme for β-amyloid (Aβ) production, namely β-secretase-1 (BACE1), is overexpressed in axon terminals undergoing dystrophic change. However, the axonal pathology inherent with BACE1 elevation seen in transgenic AD mice may be secondary to increased soluble Aβ in these genetically modified animals. Here we explored the occurrence of the AD-like axonal and dendritic pathology in adult rat brain affected by LPS-induced chronic neuroinflammation. Unilateral intracerebral LPS injection induced prominent inflammatory response in glial cells in the ipsilateral cortex and hippocampal formation. BACE1 protein levels were elevated the ipsilateral hippocampal lysates in the LPS treated animals relative to controls. BACE1 immunoreactive dystrophic axons appeared in the LPS-treated ipsilateral cortex and hippocampal formation, colocalizing with increased β-amyloid precursor protein and Aβ antibody (4G8) immunolabeling. Quantitative Golgi studies revealed reduction of dendritic branching points and spine density on cortical layer III and hippocampal CA3 pyramidal neurons in the LPS-treated ipsilateral cerebrum. These findings suggest that Alzheimer-like amyloidogenic axonal pathology and dendritic degeneration occur in wildtype mammalian brain in partnership with neuroinflammation following LPS injection.
Collapse
Affiliation(s)
- Xiaohua Deng
- Department of Anatomy and Neurobiology, Central South University School of Basic Medical Science, Changsha, China
| | - Meili Li
- Department of Anatomy and Neurobiology, Central South University School of Basic Medical Science, Changsha, China
| | - Weiming Ai
- Department of Anatomy and Neurobiology, Central South University School of Basic Medical Science, Changsha, China
- Department of Nursing in Internal Medicine, School of Nursing, Xiangtan Vocational and Technical College, Xiangtan, China
| | - Lixin He
- Department of Anatomy and Neurobiology, Central South University School of Basic Medical Science, Changsha, China
- Department of Anatomy and Physiology, School of Nursing, Xiangtan Vocational and technical College, Xiangtan, China
| | - Dahua Lu
- Department of Anatomy and Neurobiology, Central South University School of Basic Medical Science, Changsha, China
| | - Peter R. Patrylo
- Departments of Physiology, Anatomy and Center for Integrated Research in Cognitive and Neural Sciences, Southern Illinois University Carbondale, Carbondale, USA
| | - Huaibin Cai
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, USA
| | - Xuegang Luo
- Department of Anatomy and Neurobiology, Central South University School of Basic Medical Science, Changsha, China
| | - Zhiyuan Li
- Department of Anatomy and Neurobiology, Central South University School of Basic Medical Science, Changsha, China
| | - Xiaoxin Yan
- Department of Anatomy and Neurobiology, Central South University School of Basic Medical Science, Changsha, China
| |
Collapse
|
38
|
Systemic injection of LPS induces region-specific neuroinflammation and mitochondrial dysfunction in normal mouse brain. Neurochem Int 2014; 69:35-40. [DOI: 10.1016/j.neuint.2014.02.008] [Citation(s) in RCA: 150] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 02/14/2014] [Accepted: 02/26/2014] [Indexed: 11/22/2022]
|
39
|
T. Vollert C, Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, TX 77204, USA, L. Eriksen J. Microglia in the Alzheimers brain: a help or a hindrance? AIMS Neurosci 2014. [DOI: 10.3934/neuroscience.2014.3.210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
40
|
Modeling Alzheimer's disease in mouse without mutant protein overexpression: cooperative and independent effects of Aβ and tau. PLoS One 2013; 8:e80706. [PMID: 24278307 PMCID: PMC3835479 DOI: 10.1371/journal.pone.0080706] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2013] [Accepted: 10/15/2013] [Indexed: 01/23/2023] Open
Abstract
Background Alzheimer’s disease (AD), the most common cause of dementia in the elderly, has two pathological hallmarks: Aβ plaques and aggregation of hyperphosphorylated tau (p-tau). Aβ is a cleavage product of Amyloid Precursor Protein (APP). Presenilin 1 (PS1) and presenilin 2 (PS2) are the catalytic subunit of γ-secretase, which cleaves APP and mediates Aβ production. Genetic mutations in APP, PSEN1 or PSEN2 can lead to early onset of familial AD (FAD). Although mutations in the tau encoding gene MAPT leads to a subtype of frontotemporal dementia and these mutations have been used to model AD tauopathy, no MAPT mutations have been found to be associated with AD. Results To model AD pathophysiology in mice without the gross overexpression of mutant transgenes, we created a humanized AD mouse model by crossing the APP and PSEN1 FAD knock-in mice with the htau mice which express wildtype human MAPT genomic DNA on mouse MAPT null background (APP/PS1/htau). The APP/PS1/htau mice displayed mild, age-dependent, Aβ plaques and tau hyperphosphorylation, thus successfully recapitulating the late-onset AD pathological hallmarks. Selected biochemical analyses, including p-tau western blot, γ-secretase activity assay, and Aβ ELISA, were performed to study the interaction between Aβ and p-tau. Subsequent behavioral studies revealed that the APP/PS1/htau mice showed reduced mobility in old ages and exaggerated fear response. Genetic analysis suggested that the fear phenotype is due to a synergic interaction between Aβ and p-tau, and it can be completely abolished by tau deletion. Conclusion The APP/PS1/htau model represents a valuable and disease-relevant late-onset pre-clinical AD animal model because it incorporates human AD genetics without mutant protein overexpression. Analysis of the mice revealed both cooperative and independent effects of Aβ and p-tau.
Collapse
|
41
|
Lee DC, Rizer J, Hunt JB, Selenica MLB, Gordon MN, Morgan D. Review: experimental manipulations of microglia in mouse models of Alzheimer's pathology: activation reduces amyloid but hastens tau pathology. Neuropathol Appl Neurobiol 2013; 39:69-85. [PMID: 23171029 PMCID: PMC4300851 DOI: 10.1111/nan.12002] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 10/09/2012] [Indexed: 01/28/2023]
Abstract
The inflammation hypothesis of Alzheimer's pathogenesis has directed much scientific effort towards ameliorating this disease. The development of mouse models of amyloid deposition permitted direct tests of the proposal that amyloid-activated microglia could cause neurodegeneration in vivo. Many approaches to manipulating microglial activation have been applied to these mouse models, and are the subject of this review. In general, these results do not support a direct neuricidal action of microglia in mouse amyloid models under any activation state. Some of the manipulations cause both a reduction in pathology and a reduction in microglial activation. However, at least for agents like ibuprofen, this outcome may result from a direct action on amyloid production, and a reduction in the microglial-provoking amyloid deposits, rather than from reduced microglial activation leading to a decline in amyloid deposition. Instead, a surprising number of the experimental manipulations which increase microglial activation lead to enhanced clearance of the amyloid deposits. Both the literature and new data presented here suggest that either classical or alternative activation of microglia can lead to enhanced amyloid clearance. However, a limited number of studies comparing the same treatments in amyloid-depositing vs. tau-depositing mice find the opposite effects. Treatments that benefit amyloid pathology accelerate tau pathology. This observation argues strongly that potential treatments be tested for impact on both amyloid and tau pathology before consideration of testing in humans.
Collapse
Affiliation(s)
- Daniel C. Lee
- Byrd Alzheimer’s Institute, University of South Florida
- College of Pharmacy, University of South Florida
| | - Justin Rizer
- Byrd Alzheimer’s Institute, University of South Florida
- Dept of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida
| | - Jerry B. Hunt
- Byrd Alzheimer’s Institute, University of South Florida
- College of Pharmacy, University of South Florida
| | - Maj-Linda B. Selenica
- Byrd Alzheimer’s Institute, University of South Florida
- College of Pharmacy, University of South Florida
| | - Marcia N. Gordon
- Byrd Alzheimer’s Institute, University of South Florida
- Dept of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida
| | - Dave Morgan
- Byrd Alzheimer’s Institute, University of South Florida
- Dept of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida
| |
Collapse
|
42
|
Zhang YY, Fan YC, Wang M, Wang D, Li XH. Atorvastatin attenuates the production of IL-1β, IL-6, and TNF-α in the hippocampus of an amyloid β1-42-induced rat model of Alzheimer's disease. Clin Interv Aging 2013; 8:103-110. [PMID: 23386786 PMCID: PMC3563315 DOI: 10.2147/cia.s40405] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND AIM Amyloid-beta (Aβ) peptide is reported to initiate flexible inflammation in the hippocampus of the human brain in Alzheimer's disease (AD). The present study aimed to investigate the possible effects of atorvastatin on the production of inflammation cytokines in the hippocampus and the potential impacts on behavioral ability, in an AD model. METHODS We firstly established AD rat models using intracerebroventricular injection of Aβ1-42. A Morris water maze was also performed to determine the spatial learning and memory ability in the AD models. Intracellular staining of interleukin (IL)-1β, IL-6, and tumor necrosis factor alpha was determined using immunohistochemical staining at 6 hours and day 7 after the injection of Aβ. RESULTS The escape latency of the atorvastatin-treated AD group (5 mg/kg/d) was significantly shorter than that of AD group on day 3 (41 ± 1.05 seconds versus 47 ± 1.05 seconds, P < 0.01) and day 4 (34 ± 1.25 seconds versus 43 ± 1.01 seconds, P < 0.01) after the beginning of the training. Furthermore, the atorvastatin-treated AD group displayed a significant higher mean number of annulus crossings than did the AD group (2.9 ± 0.5 versus 2.4 ± 0.9, P < 0.05). Fewer injured nerve cells and proliferated glial cells were also demonstrated in the atorvastatin-treated AD group than in the AD group. Of great importance, we demonstrated that IL-1β, IL-6, and tumor necrosis factor alpha were significantly decreased in the atorvastatin-treated AD group than that in the AD group. CONCLUSION Atorvastatin might attenuate the damage of nerve cells and improve learning and memory ability by inhibiting inflammatory response in the progression of AD.
Collapse
Affiliation(s)
- Yuan-Yuan Zhang
- Department of Neurology, Jinan Central Hospital affiliated to Shandong University, Jinan, People’s Republic of China
- School of Medicine, Shandong University, Jinan, People’s Republic of China
| | - Yu-Chen Fan
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, People’s Republic of China
| | - Min Wang
- Department of Neurology, Jinan Central Hospital affiliated to Shandong University, Jinan, People’s Republic of China
- School of Medicine, Shandong University, Jinan, People’s Republic of China
| | - Dong Wang
- Department of Neurology, Jinan Central Hospital affiliated to Shandong University, Jinan, People’s Republic of China
- School of Medicine, Shandong University, Jinan, People’s Republic of China
| | - Xiao-Hong Li
- Department of Neurology, Jinan Central Hospital affiliated to Shandong University, Jinan, People’s Republic of China
- School of Medicine, Shandong University, Jinan, People’s Republic of China
| |
Collapse
|
43
|
Sierra A, Abiega O, Shahraz A, Neumann H. Janus-faced microglia: beneficial and detrimental consequences of microglial phagocytosis. Front Cell Neurosci 2013. [PMID: 23386811 DOI: 10.3389/fncel.2013.00006/abstract] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Microglia are the resident brain macrophages and they have been traditionally studied as orchestrators of the brain inflammatory response during infections and disease. In addition, microglia has a more benign, less explored role as the brain professional phagocytes. Phagocytosis is a term coined from the Greek to describe the receptor-mediated engulfment and degradation of dead cells and microbes. In addition, microglia phagocytoses brain-specific cargo, such as axonal and myelin debris in spinal cord injury or multiple sclerosis, amyloid-β deposits in Alzheimer's disease, and supernumerary synapses in postnatal development. Common mechanisms of recognition, engulfment, and degradation of the different types of cargo are assumed, but very little is known about the shared and specific molecules involved in the phagocytosis of each target by microglia. More importantly, the functional consequences of microglial phagocytosis remain largely unexplored. Overall, phagocytosis is considered a beneficial phenomenon, since it eliminates dead cells and induces an anti-inflammatory response. However, phagocytosis can also activate the respiratory burst, which produces toxic reactive oxygen species (ROS). Phagocytosis has been traditionally studied in pathological conditions, leading to the assumption that microglia have to be activated in order to become efficient phagocytes. Recent data, however, has shown that unchallenged microglia phagocytose apoptotic cells during development and in adult neurogenic niches, suggesting an overlooked role in brain remodeling throughout the normal lifespan. The present review will summarize the current state of the literature regarding the role of microglial phagocytosis in maintaining tissue homeostasis in health as in disease.
Collapse
Affiliation(s)
- Amanda Sierra
- Achucarro-Basque Center for Neuroscience Zamudio, Spain ; Department of Neuroscience, University of the Basque Country EHU/UPV Leioa, Spain ; Ikerbasque-Basque Foundation for Science Bilbao, Spain
| | | | | | | |
Collapse
|
44
|
Sierra A, Abiega O, Shahraz A, Neumann H. Janus-faced microglia: beneficial and detrimental consequences of microglial phagocytosis. Front Cell Neurosci 2013; 7:6. [PMID: 23386811 PMCID: PMC3558702 DOI: 10.3389/fncel.2013.00006] [Citation(s) in RCA: 445] [Impact Index Per Article: 37.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 01/09/2013] [Indexed: 02/04/2023] Open
Abstract
Microglia are the resident brain macrophages and they have been traditionally studied as orchestrators of the brain inflammatory response during infections and disease. In addition, microglia has a more benign, less explored role as the brain professional phagocytes. Phagocytosis is a term coined from the Greek to describe the receptor-mediated engulfment and degradation of dead cells and microbes. In addition, microglia phagocytoses brain-specific cargo, such as axonal and myelin debris in spinal cord injury or multiple sclerosis, amyloid-β deposits in Alzheimer's disease, and supernumerary synapses in postnatal development. Common mechanisms of recognition, engulfment, and degradation of the different types of cargo are assumed, but very little is known about the shared and specific molecules involved in the phagocytosis of each target by microglia. More importantly, the functional consequences of microglial phagocytosis remain largely unexplored. Overall, phagocytosis is considered a beneficial phenomenon, since it eliminates dead cells and induces an anti-inflammatory response. However, phagocytosis can also activate the respiratory burst, which produces toxic reactive oxygen species (ROS). Phagocytosis has been traditionally studied in pathological conditions, leading to the assumption that microglia have to be activated in order to become efficient phagocytes. Recent data, however, has shown that unchallenged microglia phagocytose apoptotic cells during development and in adult neurogenic niches, suggesting an overlooked role in brain remodeling throughout the normal lifespan. The present review will summarize the current state of the literature regarding the role of microglial phagocytosis in maintaining tissue homeostasis in health as in disease.
Collapse
Affiliation(s)
- Amanda Sierra
- Achucarro-Basque Center for Neuroscience Zamudio, Spain ; Department of Neuroscience, University of the Basque Country EHU/UPV Leioa, Spain ; Ikerbasque-Basque Foundation for Science Bilbao, Spain
| | | | | | | |
Collapse
|
45
|
Holmes C. Review: Systemic inflammation and Alzheimer's disease. Neuropathol Appl Neurobiol 2013; 39:51-68. [DOI: 10.1111/j.1365-2990.2012.01307.x] [Citation(s) in RCA: 268] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 10/01/2012] [Indexed: 11/29/2022]
Affiliation(s)
- C. Holmes
- University of Southampton; Division of Clinical and Experimental Science; Memory Assessment and Research Centre; Moorgreen Hospital; Southampton; UK
| |
Collapse
|
46
|
Loss of interleukin receptor-associated kinase 4 signaling suppresses amyloid pathology and alters microglial phenotype in a mouse model of Alzheimer's disease. J Neurosci 2013; 32:15112-23. [PMID: 23100432 DOI: 10.1523/jneurosci.1729-12.2012] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is typified by the deposition of amyloid in the brain, which elicits a robust microglial-mediated inflammatory response that is associated with disease exacerbation and accelerated progression. Microglia are the principal immune effector cells in the brain and interact with fibrillar forms of Aβ (fAβ) through a receptor complex that includes Toll-like receptors (TLR) 2/4/6 and their coreceptors. Interleukin receptor-associated kinases (IRAKs) are essential intracellular signaling molecules for transduction of TLR signals. Studies of mouse models of AD in which the individual TLRs are knocked out have produced conflicting results on roles of TLR signaling in amyloid homeostasis. Therefore, we disrupted a common downstream TLR signaling element, IRAK4. We report that microglial IRAK4 is necessary in vitro for fAβ to activate the canonical pro-inflammatory signaling pathways leading to activation of p38, JNK, and ERK MAP kinases and to generate reactive oxygen species. In vivo the loss of IRAK4 function results in decreased Aβ levels in a murine model of AD. This was associated with diminished microgliosis and astrogliosis in aged mice. Analysis of microglia isolated from the adult mouse brain revealed an altered pattern of gene expression associated with changes in microglial phenotype that were associated with expression of IRF transcription factors that govern microglial phenotype. Further, loss of IRAK4 function also promoted amyloid clearance mechanisms, including elevated expression of insulin-degrading enzyme. Finally, blocking IRAK function restored olfactory behavior. These data demonstrate that IRAK4 activation acts normally to regulate microglial activation status and influence amyloid homeostasis in the brain.
Collapse
|
47
|
RETRACTED: Multiple inflammatory pathways are involved in the development and progression of cognitive deficits in APPswe/PS1dE9 mice. Neurobiol Aging 2012; 33:2661-77. [DOI: 10.1016/j.neurobiolaging.2011.12.023] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 12/04/2011] [Accepted: 12/19/2011] [Indexed: 01/15/2023]
|
48
|
Cribbs DH, Berchtold NC, Perreau V, Coleman PD, Rogers J, Tenner AJ, Cotman CW. Extensive innate immune gene activation accompanies brain aging, increasing vulnerability to cognitive decline and neurodegeneration: a microarray study. J Neuroinflammation 2012; 9:179. [PMID: 22824372 PMCID: PMC3419089 DOI: 10.1186/1742-2094-9-179] [Citation(s) in RCA: 377] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 07/23/2012] [Indexed: 12/16/2022] Open
Abstract
Background This study undertakes a systematic and comprehensive analysis of brain gene expression profiles of immune/inflammation-related genes in aging and Alzheimer’s disease (AD). Methods In a well-powered microarray study of young (20 to 59 years), aged (60 to 99 years), and AD (74 to 95 years) cases, gene responses were assessed in the hippocampus, entorhinal cortex, superior frontal gyrus, and post-central gyrus. Results Several novel concepts emerge. First, immune/inflammation-related genes showed major changes in gene expression over the course of cognitively normal aging, with the extent of gene response far greater in aging than in AD. Of the 759 immune-related probesets interrogated on the microarray, approximately 40% were significantly altered in the SFG, PCG and HC with increasing age, with the majority upregulated (64 to 86%). In contrast, far fewer immune/inflammation genes were significantly changed in the transition to AD (approximately 6% of immune-related probesets), with gene responses primarily restricted to the SFG and HC. Second, relatively few significant changes in immune/inflammation genes were detected in the EC either in aging or AD, although many genes in the EC showed similar trends in responses as in the other brain regions. Third, immune/inflammation genes undergo gender-specific patterns of response in aging and AD, with the most pronounced differences emerging in aging. Finally, there was widespread upregulation of genes reflecting activation of microglia and perivascular macrophages in the aging brain, coupled with a downregulation of select factors (TOLLIP, fractalkine) that when present curtail microglial/macrophage activation. Notably, essentially all pathways of the innate immune system were upregulated in aging, including numerous complement components, genes involved in toll-like receptor signaling and inflammasome signaling, as well as genes coding for immunoglobulin (Fc) receptors and human leukocyte antigens I and II. Conclusions Unexpectedly, the extent of innate immune gene upregulation in AD was modest relative to the robust response apparent in the aged brain, consistent with the emerging idea of a critical involvement of inflammation in the earliest stages, perhaps even in the preclinical stage, of AD. Ultimately, our data suggest that an important strategy to maintain cognitive health and resilience involves reducing chronic innate immune activation that should be initiated in late midlife.
Collapse
Affiliation(s)
- David H Cribbs
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, 1226 Gillespie NRF, Irvine, CA 92697, USA.
| | | | | | | | | | | | | |
Collapse
|
49
|
Apolipoprotein e: essential catalyst of the Alzheimer amyloid cascade. Int J Alzheimers Dis 2012; 2012:489428. [PMID: 22844635 PMCID: PMC3403541 DOI: 10.1155/2012/489428] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 04/23/2012] [Indexed: 12/21/2022] Open
Abstract
The amyloid cascade hypothesis remains a robust model of AD neurodegeneration. However, amyloid deposits contain proteins besides Aβ, such as apolipoprotein E (apoE). Inheritance of the apoE4 allele is the strongest genetic risk factor for late-onset AD. However, there is no consensus on how different apoE isotypes contribute to AD pathogenesis. It has been hypothesized that apoE and apoE4 in particular is an amyloid catalyst or “pathological chaperone”. Alternatively it has been posited that apoE regulates Aβ clearance, with apoE4 been worse at this function compared to apoE3. These views seem fundamentally opposed. The former would indicate that removing apoE will reduce AD pathology, while the latter suggests increasing brain ApoE levels may be beneficial. Here we consider the scientific basis of these different models of apoE function and suggest that these seemingly opposing views can be reconciled. The optimal therapeutic target may be to inhibit the interaction of apoE with Aβ rather than altering apoE levels. Such an approach will not have detrimental effects on the many beneficial roles apoE plays in neurobiology. Furthermore, other Aβ binding proteins, including ACT and apo J can inhibit or promote Aβ oligomerization/polymerization depending on conditions and might be manipulated to effect AD treatment.
Collapse
|
50
|
Ferretti MT, Bruno MA, Ducatenzeiler A, Klein WL, Cuello AC. Intracellular Aβ-oligomers and early inflammation in a model of Alzheimer's disease. Neurobiol Aging 2012; 33:1329-42. [DOI: 10.1016/j.neurobiolaging.2011.01.007] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 01/21/2011] [Accepted: 01/26/2011] [Indexed: 12/21/2022]
|